PROGRESS REPORT

(January 1997 to December 1997 inclusive)

March 1998

Editor
J.Katakura
Japanese Nuclear Data Committee

Japan Atomic Energy Research Institute
Tokai Research Establishment
Tokai-mura, Naka-gun, Ibaraki-ken, Japan

Editor's Note

This is a collection of reports which have been submitted to the Japanese Nuclear Data Committee at the committee's request. The request was addressed to the following individuals who might represent or be touch with groups doing researches related to the nuclear data of interest to the development of the nuclear energy programs.

Although the editor tried not to miss any appropriate addressed, there may have been some oversight. Meanwhile, contribution of a report rested with discretion of its author. The coverage of this document, therefore, may not be uniform over the related field or research.

In this progress report, each individual report is generally reproduced as it was received by the JNDC secretariat, and editor also let pass some simple obvious errors in the manuscripts if any. This edition covers a period of January 1, 1997 to December 31, 1997. The information herein contained is of a nature of "Private Communication." Data contained in this report should not be quoted without the author's permission.

Table of Contents

I. Electrotechnical Laboratory
A. Quantum Radiation DivisionI-A-1 Development of Intermediate Neutron Fluence Standard byUsing ${ }^{45} \mathrm{Sc}(\mathrm{p}, \mathrm{n}){ }^{45} \mathrm{Ti}$ Reaction and ${ }^{124} \mathrm{Sb}(\gamma)$-Be SourceK. Kudo, N. Takeda, M. Fujishiro, K. Okamoto,K. Kobayashi and S. Yoshimoto
I-A-2 Search for Bound State M1 Transitions in ${ }^{208} \mathrm{~Pb}$ H. Ohgaki, T. Noguchi, H. Toyokawa, S. Sugiyama, T. Mikado, K. Yamada, R. Suzuki, T. Ohdaira, N. Sei and T. Yamazaki5
II. Japan Atomic Energy Research Institute
A. Nuclear Data Center and Working Groups of Japanese Nuclear Data Committee
II-A-1 Improvement of Gamma-Ray Production Data for JENDL-3.2
K. Shibata, S. Igarasi, T. Asami, M. Mizumoto, M. Igashira, H. Kitazawa and K. Hida11
II-A-2 Evaluation of Neutron Nuclear Data for Mercury K. Shibata, T. Fukahori, S. Chiba and N. Yamamuro 11
II-A-3 Curves and Tables of Neutron Cross Sections in JENDL-3.2 K. Shibata, T. Nakagawa, H. Sugano and H. Kawasaki 12
II-A-4 Estimation of Uncertainties in Resonance Parameters of
${ }^{56} \mathrm{Fe},{ }^{239} \mathrm{Pu},{ }^{240} \mathrm{Pu}$ and ${ }^{238} \mathrm{U}$T. Nakagawa and K. Shibata12
II-A-5 Estimation of Covariances of ${ }^{16} \mathrm{O},{ }^{23} \mathrm{Na}, \mathrm{Fe},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$ Neutron Nuclear Data in JENDL-3.2
K. Shibata, Y. Nakajima, T. Kawano, Soo Youl Oh, H. Matsunobu and T. Murata13
II-A-6 Deve lopment of Libraries for ORIGEN2 Code Based on JENDL-3.2
K. Suyama, J. Katakura, M. Ishikawa and Y. Ohkawachi 14
II-A-7 Status of JENDL Intermediate Energy Nuclear Data File T. Fukahori, S. Chiba, N. Kishida, M. Kawai, Y. Oyama and H. Hasegawa15
II-A-8 Status of Nuclear Data Evaluation for JENDL Photonuclear Data File
T. Fukahori andJNDC (Photonuclear Data Evaluation WG)15
II-A-9 Systematics of Fission Cross Sections at the Intermediate Energy Region
T. Fukahori, O. Iwamoto and S. Chiba16
B. Department of Chemistry and Fuel Research II-B-1 Conversion Electron Measurements in the ${ }^{127} \mathrm{Ce}$ and ${ }^{127} \mathrm{La}$ β-Decay
H. Iimura, S. Ichikawa, M. Oshima, T. Sekine, J. Katakura, N. Shinohara, M. Magara, A. Osa, M. Asai, M. Miyaji and
H. Yamamoto18
III. Kyoto University
A. Research Reactor Institute
III-A-1 Fission Cross Section Measurements of Am-241 between 0.1 eV and 10 keV with Lead Slowing-down Spectrometer and at Thermal Neutron Energy
S. Yamamoto, K. Kobayashi, M. Miyoshi, I. Kimura, I. Kanno, N. Shinohara and Y. Fujita21
III-A-2 Measurement of Fission Cross Sections for Nuclear Transmutation on Am-241, Am-242m and Am-243 Using Lead Slowing-down Spectrometer
K. Kobayashi, S. Yamamoto, T. Kai, Y. Fujita, I. Kimura, M. Miyoshi, I. Kanno, T. Wakabayashi, Y. Ohkawachi, S. Ohki and N. Shinohara
III-A-3 Measurement of the ${ }^{243} \mathrm{Am}(\mathrm{n}, \mathrm{f})$ Cross Section Between 0.1 eV and 10 keV Using Lead Slowing-down Spectrometer
K. Kobayashi, T. Kai, S. Yamamoto, Y. Fujita, I. Kimura and N. Shinihara23
III-A-4 Fission Cross Section Measurement of Am-242m Using Lead Slowing-down Spectrometer
T. Kai, K. Kobayashi, S. Yamamoto, Y. Fujita, I. Kimura, Y. Ohkawachi and T. Wakabayashi24
B. Department of Nuclear EngineeringIII-B-1 Multi-Parametric Measure ment of Prompt Neutrons andFission Fragments for ${ }^{233} U\left(n_{t h}, f\right)$
K. Nishio, I. Kimura, M. Nakashima and Y. Nakagome25
IV. Kyushu University
A. Department of Energy Conversion Engineering IV-A-1 Partial-Wave Analysis with the Optical Model for the Resolved and Unresolved Resonance Regions of ${ }^{56} \mathrm{Fe}$ T. Kawano and F.H. Fröhner31
IV-A-2 Covariance Evaluation System
T. Kawano and K. Shibata 31
IV-A-3 Application of a Client-Server Model to the Evaluated Nuclear Data Libraries
T. Kawano, O. Sakai and H. Nakashima32
IV-A-4 Measurement of Helium Production Cross Sections of Stainless Steels for 14 MeV Neutrons Y. Takao, Y. Kanda, Y. Uenohara, T. Takahashi, S. Itadani, T. Iida and A. Takahashi33
IV-A-5 Measurement of Proton-Induced Helium Production Cross Sections for Aluminum and Nickel below 16 MeV
Y. Takao, Y. Kanda, H. Hashimoto, K. Yamasaki, K. Yamaguchi, T. Yonemoto, M. Miwa, H. Etoh and K. Nagae33
IV-A-6 Measurement of Helium Production Cross Sections of Iron for d-T Neutrons by Helium Accumulation Method
Y. Takao, Y. Kanda, K. Nagae, T. Fujimoto and Y. Ikeda 34
IV-A-7 Evaluation of Neutron Cross Sections of Carbon-12 for Energy up to 80 MeV
M. Harada, Y. Watanabe, S. Chiba and T. Fukahori35
IV-A-8 Development of a System of Measuring Double-Differential Cross Sections for Proton-Induced Reactions
M. Harada, Y. Watanabe, K. Sato and S. Meigo35
IV-A-9 Semi-classical Distorted Wave Model for Multistep Direct (N,N'x) Reactions at Intermediate Energies
Y. Watanabe, M. Higashi, H. Shinohara, M. Kawai and M. Kohno
IV-A-10 Continuum (p,xp) Spectra at 14.1 and 26 MeV
Y. Watanabe, S. Yoshioka, M. Harada, K. Sato, Y. Nakao, H. Ijiri, S. Chiba, T. Fukahori, S. Meigo, M. Iwamoto and N. Koori37
V. Nagoya University
A. Department of Energy Engineering and Science
V-A-1 Uncertainties in Fission-Product Decay-Heat Calculations K. Oyamatsu, H. Ohta, T. Miyazono and K. Tasaka41
V-A-2 Comparison of Decay and Yield Data between JNDC2 and ENDF/B-VI
K. Oyamatsu, M. Sagisaka and T. Miyazono42
V-A-3 Delayed Neutron Spectra and their Uncertainties in Fission Product Summation Calculations
T. Miyazono, M. Sagisaka, H. Ohta, K. Oyamatsu and M. Tamaki43
V-A-4 Comparison of Yield and Decay Data among JNDC2, ENDF/B-VI and JEF2.2
K. Oyamatsu, M. Sagisaka and T. Miyazono44
V-A-5 Uncertainties in Summation Calculations of Aggregate Decay Heat and Delayed Neutron Emission with ENDF/B-VI
K. Oyamatsu, H. Ohta, T. Miyazono and M. Sagisaka45
V-A-6 Two Methods for Evaluation and Benchmark Test of Fission Product Summation Calculations
K. Oyamatsu, M. Sagisaka, H. Takeuchi and T. Miyazono 46
V-A-7 Measure ment of (n, α) Cross Sections for Short-Lived Products by $13.4-14.9 \mathrm{MeV}$ Neutrons
Y. Kasugai, H. Yamamoto, K. Kawade and T. Iida47
V-A-8 Systematics for (n, α) Excitations in the Neutron Energy between 13.3 and 15.0 MeV
Y. Kasugai, Y. Ikeda, H. Yamamoto and K. Kawade47
V-A-9 Measurement of (n,p) Cross Sections for Short-Lived Products by $13.4-14.9 \mathrm{MeV}$
Y. Kasugai, H. Yamamoto, K. Kawade and T. Iida48
V-A-10 Measurement of $Q_{E C}$-Value of ${ }^{126}$ La Isomers
Y. Kojima, M. Asai, A. Osa, M. Koizumi, T. Sekine, M. Shibata, H. Yamamoto and K. Kawade48
V-A-11 Energy Systematics for Low-Lying 0+ States in Neutron- Deficient Ba Nuclei
M. Asai, T. Sekina, A. Osa, M. Koizumi, Y. Kojima, M. Shibata, H. Yamamoto and K. Kawade
VI. Osaka University
A. Department of Nuclear Engineering
VI-A-1 Measurements of Double Differential Cross Sections of ${ }^{51} \mathrm{~V}(\mathrm{n}, \mathrm{xp}),{ }^{51} \mathrm{~V}(\mathrm{n}, \mathrm{x} \alpha)$ and ${ }^{\text {nat }} \mathrm{Zr}(\mathrm{n}, \mathrm{xp})$ Reactions by 14.1 MeVIncident Neutrons
A. Takahashi, KoKooo, H. Takagi and I. Murata53
VI-A-2 Benchmark Experiment on V, V-alloy, $\mathrm{Li}_{2} \mathrm{ZrO}_{3}$ and $\mathrm{Li}_{2} \mathrm{TiO}_{3}$ Assemblies with D-T Neutron

- Leakage Neutron Spectrum Measurement -
A. Takahashi, Kokooo, I. Murata, D. Nakano, F. Maekawaand Y. Ikeda54
VI-A-3 Measurement of Reaction Cross Sections of Fission Products Induced by D-T Neutrons
I. Murata, D. Nakano and A. Takahashi55
VI-A-4 Measurement of Nuclear Reaction Cross Sections of ${ }^{9} \mathrm{Be}$ Induced by Low Energy DeuteronA. Takahashi, K. Ochiai, K. Ishii and H. Miyamaru56
B. Department of Chemistry
VI-B-1 Specific Fission J-Window and Angular MomentumDependence of the Fission BarrierH. Baba, A. Shinihara, T. Saito, N. Takahashi andA. Yokoyama57
VI-B-2 Role of Effective Distance in the Fission Mechanism Study by the Double-Energy Measurement for Uranium Isotopes H. Baba, T. Saito, N. Takahashi, A. Yokoyama, T. Miyauchi, S. Mori, D. Yano and Y. Nakagome58
VI-B-3 Charge Degree of Freedom as a Sensitive Probe for Fission Mechanism
A. Yokoyama, H. Baba, N. Takahashi, M.-C. Duh and T. Saito59
VII. Power Reactor and Nuclear Fuel Development Corp.
A. Nuclear Fuel Technology Development Division
VII-A-1 Measurement of Neutron Cross Section and Resonance Integral of the Reaction ${ }^{133} \mathrm{Cs}(\mathrm{n}, \gamma)^{134} \mathrm{Cs}$
S. Nakamura, H. Harada and T. Katoh63
VII-A-2 Measurement of Thermal Neutron Capture Cross Section and Resonance Integral of the Reaction ${ }^{127} \mathrm{I}(\mathrm{n}, \gamma)^{128} \mathrm{I}$T. Katoh, S. Nakamura, H. Harada and Y. Ogata66
VII-A-3 Measurement of Thermal Neutron Cross Section andResonance Integral of the Reaction ${ }^{135} \mathrm{Cs}(\mathrm{n}, \gamma)^{136} \mathrm{Cs}$T. Katoh, S. Nakamura, H. Harada, Y. Hatsukawa,
N. Shinohara, K. Hata, K. Kobayashi, S. Motojima, M. Tanase
VIII. Tohoku University
A. Department of Quantum Science and Energy Engineering VIII-A-1 Measurement of ${ }^{14} \mathrm{~N}\left((\mathrm{n}, \mathrm{p}){ }^{14} \mathrm{C}\right.$ Cross Section for $\mathrm{kT}=25.3 \mathrm{keV}$ Maxwellian Neutron Using Gridded Ionization Chamber T. Sanami, M. Baba, I. Matsuyama, S. Matsuyama, T. Kiyosumi, Y. Nauchi and N. Hirakawa73
VIII-A-2 Meas urements of Double-Differential Neutron Emission Cross Sections and Development of a Wide Range Charged Particle Spectrometer for Ten's MeV Neutrons
Y. Nauchi, M. Baba, T. Kiyosumi, T. Iwasaki, T. Sanami, S. Matsuyama, N. Hirakawa, S. Tanaka, S. Meigo, H. Nakashima and T. Nakamura74
VIII-A-3 Measurements of Double-Differential Neutron Emission Cross Section of ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ for 18 MeV Neutrons
M. Ibaraki, M. Baba, S. Matsuyama, T. Sanami, T. Win, T. Miura and N. Hirakawa75
VIII-A-4 (n, α) Cross Section Measurement of Gaseous Samples Using Gridded Ionization Chamber - Cross Section Determination - T. Sanami, M. Baba, K. Saito, Y. Ibara and N. Hirakawa 76
B. Laboratory of Nuclear Science
VIII-B-1 Angular Correlations for the ${ }^{12} \mathrm{C}\left(\mathrm{e}, \mathrm{e} \mathrm{e}^{\prime}\right)^{11} \mathrm{C}$ Reaction in theGiant Resonance RegionT. Saito, S. Suzuki, K. Takahisa, C. Takakuwa, M. Oikawa,
T. Tohei, T. Nakagawa and K. Abe 77
VIII-B-2 Study of the Giant Resonance of ${ }^{16} \mathrm{O}$ by the (e,e'n) Reaction K. Kouichi, T. Saito, Y. Suga, T. Endo, K. Yoshida, K. Takahashi, T. Nakagawa, K. Abe and H. Ueno78
C. Cyclotron and Radioisotope Center
VIII-C-1 Neutron Activation Cross Sections of ${ }^{12} \mathrm{C},{ }^{27} \mathrm{Al},{ }^{59} \mathrm{Co},{ }^{\text {nat }} \mathrm{Cu}$, and ${ }^{209} \mathrm{Bi}$ Nuclides in the Energy Range of 20 MeV to 150 MeV
E. Kim, T. Nakamura, Y. Uwamino, M. Imamura, N. Nakao and S. Tanaka80
VIII-C-2 Measurements of Secondary Neutrons Produced from Thick Targets Bombarded by Heavy Ions
T. Kurosawa, T. Nakamura, N. Nakao, T. Shibata, Y. Uwamino, N. Nakanishi A. Fukumura and Y. Kumamoto84
IX. Tokyo Institute of Technology
IX-1 Low-Energy Neutron Direct Capture by ${ }^{12} \mathrm{C}$ in a Dispersive Optical Potential H. Kitazaw a, K. Go and M. Igashira91
IX-2 Measurement of ${ }^{1} \mathrm{H}(\mathrm{n}, \gamma)^{2} \mathrm{H}$ Reaction Cross Section at a Comparable M1/E1 Strength
Y. Nagai, T.S. Suzuki, T. Kikuchi, T. Shima, T. Kii, H. Sato and M. Igashira91
IX-3 Measurements of keV-Neutron Capture γ Rays of Fission Products and Structural Materials
M. Igashira, S. Mizuno, T. Ohsaki and H. Kitazawa92
IX-4 Low-Ene rgy Neutron Direct Capture by ${ }^{16}$ H. Kitazawa and M. Igashira92
IX-5 Measurements of Gamma Rays from keV-Neutron
Resonance Capture by Odd-Z Nuclei in the 2s-1d Shell Region M. Igashira, S.Y. Lee, S. Mizuno, J. Hori and H. Kitazawa 93

		CONTENTS QUANTITY		OF		PROGRESS		INDC(JPN)-181/U			00000700			PAGE		E 1
$\begin{gathered} \text { ELE } \\ S \end{gathered}$	MENT A			ENERGY MIN\qquad		LAB	TYPE	DOCUMENTATION REF VOL PAGE	DATE		COMMENTS					
H	1		(N,GAMMA)	5. $5+5$		TIT	EXPT-PROG	INDC(JPN)-181U	MAR	98	NAGAIt.SIG=35.2+-2.4 M			ICRO BARNS		
LI	6	N	1 EMISSION	$1 \cdot 8+7$		TOH	EXPT-PROG	INOC(JPN)-181U	MAR	98	I BARAKI +. DA/	DE MEA	ASUREM	ENT		
LI	7	N	EMISSION	$1.8+7$		TOH	EXPT-PROG	INDC(JPN)-181U	MAR	98	IBARAKI + . DA	DE MEA	ASUREM	MENT		
C		P	EMISSION	$6.4+7$		TOH	EXPT-PROG	INDC(JPN)-181U	MAR	98	NAUCHI +. MEA	BY D	L E-E	E METHOD		
C		D	EMISSION	$6.4+7$		TOH	EXPT-PROG	INDC(JPN)-181U	MAR	98	NAUCHI +.MEAS	BY DE	L E-	METHOD		
C	12		OTAL	$2.0+7$	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+ . FOR	JENDL	H I G H	ENERGY		ILE
C	12		LASTIC	$2.0+7$	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+ , FOR	JENDL	HIGH	ENERGY		ILE
C	12		IFF ELASTIC	$2.0+7$	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+. FOR	JENDL	HIGH	ENERGY		ILE
C	12		OT INELAST	2. $0+7$	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+ FOR	JENDL	HIGH	ENERGY		ILE
C	12		IFF INELAST	$2.0+7$	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+ . FOR	JENDL	HI G H	ENERGY		F L E
C	12		(N,GAMMA)	2.0+4	$1.0+6$	TIT	THEO-PROG	INDC(JPN)-181U	MAR	98	KITAZAWA+. D	RECT	CAPTUR	CALCU	A	ATION
C	12		(N, 2N)	2.0+7	1. 5+8	TOH	EXPT-PROG	INDC(JPN)-181U	MAR	98	KIM+.SIG IN	FIG				
C	12	N	N EMISSION	2. $0+7$	$8 \cdot 0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+.FOR	JENDL	HIGH	ENERGY		ILE
C	12	P	EMISSION	2.0+7	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+ . FOR	JENDL	HIGH	ENERGY		ILE
C	12	D	EMISSION	2.0+7	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARAOA+. FOR	JENDL	HIGH	ENERGY		FILE
C	12	T	EMISSION	2.0+7	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+ . FOR	JENDL	HIGH	ENERGY		F L E
C	12		(N,ALPHA)	$1.4+7$		TOH	EXPT-PROG	INDC(JPN)-181U	MAR	98	SANAMI+.GROU	UND STA	ATE TR	RANSITIO		
C	12	A	EMISSION	2.0+7	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+ F FOR	JENDL	HIGH	ENERGY		FILE
C	12		NUCL PROD	$2.0+7$	$8.0+7$	KYU	EVAL-PROG	INDC(JPN)-181U	MAR	98	HARADA+.FOR	JENDL	HIGH	ENERGY		FLE
N	14		(,$~ P$)	MAXW		TOH	EXPT-PROG	INDC(JPN)-181U	MAR	98	SANAMI + . KT $=2$	25.3 KE	EV.SIG	$G=1.7+-$	08	8 MB

$$
\begin{array}{lll}
0 & 16 & (N, G A M M A) \\
0 & 16 & (N, A L P H A) \\
F & 19 & \text { SPECT (N,G) } \\
F & 19(N, P) \\
N A & 23 & \text { SPECT (N,G) } \\
\text { MG } & 26(N, A L P H A)
\end{array}
$$

$$
\text { AL } 27 \text { SPECT (N,G) }
$$

$$
\text { AL } 27 \text { NUCL PROD }
$$

$$
N A I+G E
$$

$$
A I+G E
$$

$$
2.0+43.0+5 \text { TIT THEO-PROG INDC(JPN)-181U MAR } 98 \text { KITAZAWA+.DIRECT CAPTURE CALCULATION }
$$ $P \quad 31$（N，ALPHA） CL $37(N, P)$ $V 51$ SPECT（N，G） 51 P EMISSION 51 A EMISSION $52(N, P)$

$53(N, P)$

$$
A L-27(N, A) S I G
$$

$$
1, A)
$$

METHOD
SIG

$$
\text { TOH EXPT-PROG INDC(JPN)-181U MAR } 98 \text { SANAMI+.GRIDDED IONIZATION CHAMBER }
$$

IGASHIRA+.ANTI-COMPTON NAI+GE $(d / N) 8 Z$ IS
NOISSIWヨ
NOISSIWヨ d n
a
2
2
a
n
n
n

OSA EXPT－PROG INDC（JPN）－181U MAR 98 TAKAHASHI＋．DA／DE IN FIG
AG EXPT－PROG INDC（JPN）－181U MAR 98 KASUGAI＋．ACT METH．REL AL－27（N，A） NAG EXPT－PROG INDC（JPN）－181U MAR 98 KASUGAI＋．ACT METH．REL AL－27（N－A）SIG 9 IS 0
n
0 SIG SIG VIS \square 0
\vdots
0 0
0
0 $1.3+7$ 1．5＋7 NAG EXPT－PROG INDC（JPN）－181U MAR 98 KASUGAI＋．ACT METH．REL AL－27（N，A）SIG 1．3＋7 1．5＋7 NAG EXPT－PROG INDC（JPN）－181U MAR 98 KASUGAI＋．ACT METH．REL AL－2T（N－A）SIG 0
-4
0 (N, A)

$$
\begin{aligned}
& \text { PNC EXPT-PROG INDC(JPN)-181U MAR } 98 \text { KATOH+.SIG GIVEN IN TABLE } \\
& \text { PNC EXPT-PROG INDC(JPN)-181U MAR } 98 \text { KATOH+. RI GIVEN IN TABLE } \\
& \text { OSA EXPT-PROG INDC(JPN)-181U MAR } 98 \text { MURATA+.ACT METH.SIG GIVEN } \\
& \text { PNC EXPT-PROG INDC(JPN)-181U MAR } 98 \text { NAKAMURA+.SIG GIVEN IN TABLE } \\
& \text { PNC EXPT-PROG INDC(JPN)-181U MAR } 98 \text { NAKAMURA+.RI GIVEN IN TABLE } \\
& \text { PNC EXPT-PROG INDC(JPN)-181U MAR } 98 \text { KATOH+.SIG=8. } 3+-O .3 \text { BARNS }
\end{aligned}
$$ $1.3+71.5+7$ 2．5－2 \qquad 1．3＋7 2．5－2

NDG 2．5－2 $C D 112$（N，ALPHA） CD $116(N, P)$ SN $119(N, P)$ n
n
z
\vdots
0
n
2
n （ $\forall W W \forall ๑$（N）くてII I 127 RES INT CAP I $129(N, 2 N)$ CS 133 （N，GAMMA） $d \forall J$ LNI Sヨy عEL $S \supset$ CS 135 （N，GAMMA）

		CONTENTS	OF JAPANESE		PROGRESS REPORT		INDC(JPN)-181/U			00000700		PAGE	
$\begin{gathered} E L \\ S \end{gathered}$	MENT A		$\begin{aligned} & \text { ENER } \\ & \text { MIN } \end{aligned}$	GY MAX	LAB	TYPE	DOCUMENTATION REF VOL PAGE	D A		COMMENTS			
HG	196	(N, P)	1.0-5	2.0+7	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	196	(N,NP)	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	196	(N,ALPHA)	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3-3	
HG	196	(N,NA)	1.0-5	2.0+7	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+ , EVALUATION	FOR	JENDL-3.3	
HG	196	RESON PARAMS	1.0-5	2.0+7	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	TOTAL	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	ELASTIC	1.0-5	2.0+7	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	DIFF ELASTIC	1.0-5	2.0+7	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3-3	
HG	198	TOT INELAST	1.0-5	$2 \cdot 0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+ . EVALUATION	FOR	JENDL-3.3	
H G	198	DIFF INELAST	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+ . EVALUATION	FOR	JENDL-3.3	
HG	198	(N,GAMMA)	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	SPECT (N,G)	1.0-5	$2 \cdot 0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+ , EVALUATION	FOR	JENDL-3.3	
HG	198	INELA GAMMA	1.0-5	2.0+7	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	NONELA GAMMA	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	(N, 2N)	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC (JPN)-181U	MAR	98	SHIBATA+ . EVALUATION	FOR	JENDL-3.3	
HG	198	($N, X N$) $X>2$	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	(N,P)	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	(N,NP)	1.0-5	$2.0+7$	7 JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	(N, ALPHA)	1.0-5	$2.0+7$	J JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	198	(N,NA)	1.0-5	$2.0+7$	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	

		CONTENTS	OF JAPA	ANESE	PROGR	RESS REPOR	INDC(JPN)-181			00000700		PAGE	8
$\begin{gathered} \text { EL } \\ S \end{gathered}$	$\begin{gathered} \text { MENT } \\ A \end{gathered}$	QUANTITY	ENER MIN	G MAX	LAB	TYPE	DOCUMENTATION REF VOL PAGE	D A		COMMENTS			
HG	200	TOT INELAST	1.0-5	$2.0+7$	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+ . EVALUATION	FOR	JENDL-3.3	
HG	200	DIFF INELAST	1.0-5	2.0+7	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	
HG	200	($\mathrm{N}, \mathrm{GAMMA}$)	1.0-5	2.0+7	JAE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	
HG	200	SPECT (N,G)	1.0-5	$2.0+7$	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	200	INELA GAMMA	1.0-5	2.0+7	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	
HG	200	NONELA GAMMA	1.0-5	$2.0+7$	$J A E$	EVAL-PROG	INDC (JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	
HG	200	($\mathrm{N}, 2 \mathrm{~N}$)	1.0-5	$2.0+7$	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+ - EVALUATION	FOR	JENDL-3.	
HG	200	($N, X N$) $X>2$	1.0-5	$2.0+7$	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	200	(N, P)	1.0-5	$2.0+7$	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+ . EVALUATION	FOR	JENDL-3.3	
HG	200	(N,NP)	1.0-5	$2.0+7$	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.	
HG	200	($N, A L P H A$)	1.0-5	2.0+7	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	200	(N,NA)	1.0-5	2.0+7	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	200	RESON PARAMS	1.0-5	$2.0+7$	J A E	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	
HG	201	ELASTIC	1.0-5	$2.0+7$	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	201	DIFF ELASTIC	1.0-5	2.0+7	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	201	TOT INELAST	1.0-5	2.0+7	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	201	DIFF INELAST	1.0-5	$2.0+7$	J A E	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	
HG	201	($\mathrm{N}, \mathrm{GAMMA}$)	1.0-5	2.0+7	$J A E$	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	
HG	201	SPECT (N,G)	1.0-5	$2.0+7$	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+. EVALUATION	FOR	JENDL-3.3	
HG	201	INELA GAMMA	1.0-5	$2.0+7$	J AE	EVAL-PROG	INDC(JPN)-181U	MAR	98	SHIBATA+.EVALUATION	FOR	JENDL-3.3	

CONTENTS OF JAPANESE PROGRESS REPORT INDC(JPN)-181/U

DATE

00000700 COMMENTS

I. Electrotechnical Laboratory

A. Quantum Radiation Division

I-A-1 Development of Intermediate Neutron Fluence Standard by Using ${ }^{45} \mathrm{Sc}(\mathbf{p}, \mathrm{n}){ }^{45} \mathrm{Ti}$ Reaction and ${ }^{124} \mathrm{Sb}(\gamma)$-Be Source

K. Kudo ${ }^{1}$, N. Takeda ${ }^{1}$, M. Fujishiro ${ }^{2}$, K. Okamoto ${ }^{3}$, K. Kobayashi ${ }^{3}$ and S. Yoshimoto ${ }^{3}$

For neutron radiation dosimetry in many working environments around nuclear reactors, a significant fraction of the neutron equivalent dose is due to neutrons within the energy range from thermal to 25 keV . Because of the difficulty of producing suitable monoenergetic neutron sources, instruments are rarely calibrated in this energy range and biological data are sparse. Thus calibration fields of monoenergetic neutrons are necessary for this energy range from a few keV to 50 keV . Different techniques are known for producing monoenergetic neutrons in this energy range, such as a radioisotope neutron source of ${ }^{124} \mathrm{Sb}(\gamma)$ Be , iron filtered reactor neutron beams and the reaction of ${ }^{45} \mathrm{Sc}(\mathrm{p}, \mathrm{n}){ }^{45} \mathrm{Ti}$.

The radioisotope of ${ }^{124} \mathrm{Sb}$ with a half life of 60.20 days was produced at the Kyoto University Reactor (KUR) and sent to the Electrotechnical Laboratory (ETL) to determine the precise neutron emission rate measured by the manganese bath method ${ }^{1)}$ with an uncertainty of $\pm 1 \%$. The energy spectrum from the $\mathbf{S b}$ Be source with the dimension of $3 \mathrm{~cm}^{\mathrm{D} x 3} \mathrm{~cm}^{\mathrm{H}}$ was calculated by the MCNP-4 Monte Carlo code ${ }^{2)}$. The 62% amount of neutrons produced in the source were scattered by Be blanket and gave a continuous spectrum composed by the broad energy part from 0 keV to 22 keV and the higher energy part ranging from 22 keV to $25 \mathrm{keV}^{3}$.

The second source of an iron filtered beam at the B1 experimental facility of KUR was established as a standard source of intermediate neutrons ${ }^{4}$. We have been performing the intercomparison by using a ${ }^{3} \mathrm{He}$ or H_{2} proportional counter with or without a shadow cone with a homogeneous mixture of polyethylene and 10% lithium fluoride. The measurement will be continued by changing the thickness of iron filter to find a adequate condition of the beam intensity.

The third source of ${ }^{45} \mathrm{Sc}(\mathrm{p}, \mathrm{n}){ }^{45} \mathrm{Ti}$ reaction was produced by a Van de Graaff type accelerator at ETL ${ }^{5}$. The neutron yield of the reaction was determined as a function of the incident proton beam energy using a DC beam with the energy resolution of 2 keV (FWHM). Scandium metal targets with a thickness of 30 $\mu \mathrm{g} / \mathrm{cm}^{2}$ were used corresponding to an energy loss of about 2 keV for incident proton energy. The neutron fluence was measured with a calibrated long counter at 0° with respect to the direction of the proton beam. The effect of scattered neutron background was taken into account by placing a shadow cone between the target and the long counter. Other background neutrons contaminated in the field produced around the slit were measured by decreasing the energy of incident protons just below the threshold energy 2.908 MeV of the ${ }^{45} \mathrm{Sc}(\mathrm{p}, \mathrm{n})^{45} \mathrm{Ti}$ reaction.

[^0]ETL has been doing the calibration of Bonner sphere counters at 24.5 keV for the international intercomparison of intermediate neutron fluence held under the auspices of the Bureau International des Poids et Mesures and would be expected to contribute to establish the international standard.

References

1) K. Kudo, Researches of Electrotechnical Laboratory No. 825 (1982).
2) Documentation for CCC-200/MCNP 4.2 Code Package, DLC-105 (1993).
3) N. Takeda, K. Kudo, T. Sugita, M. Fujishiro and K. Okamoto, Proc. Of the Scientific Meeting of the Research Reactor Institute, Kyoto University (1996)67.
4) H. Utsumi, K. Kobayashi et. al., Proc. Of the Scientific Meeting of the Research Reactor Institute, Kyoto University (1996)311.
5) K. Kudo, T. Michikawa et. al., J. Nucl. Sci. Technol., 24 (1987) 684.

I-A-2 SEARCH FOR BOUND STATE MI TRASITIONS IN ${ }^{208} \mathrm{~Pb}$

H.Ohgaki, T.Noguchi, H.Toyokawa, S.Sugiyama, T.Mikado, K.Yamada, R.Suzuki, T.Ohdaira, N.Sei, and T.Yamazaki

Abstract

A paper on this subject was presented at International Conference on Nuclear Structure and Related Topics at Dubna, Russia held on Sep.9-13, 1997.

Polarized gamma rays are of interest in the field of nuclear physics, because the real photon has high spin selectivity and a polarized beam assigns an unambiguous parity. Highly polarized gamma rays, Laser Compton Photons (LCPs), have been developed to investigate the substructure of the giant-dipole resonance. The LCP facility employs a conventional Nd:YLF laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. The available LCP energy covers from 1 to $40 \mathrm{MeV} .{ }^{1)}$ By using such LCPs, the nuclear fluorescence experiment to assign the parities of $J=1$ levels in ${ }^{208} \mathrm{~Pb}$ has been started. ${ }^{2)}$ Completely linear-polarized LCPs of 7.8 MeV with 13% energy spread bombarded an enriched $(98.4 \%){ }^{208} \mathrm{~Pb}$ target of $8767 \mathrm{mg}, 7 \mathrm{~mm}$ in diameter and 15 mm long. A pure-Ge detector that has 120% relative detection efficiency has been used to measure the scattered photon at a scattering angle of 90° and 127°. To reduce the pile-up effect from Compton scattering photons from the target, a $4-\mathrm{mm}$ thick lead hardener was placed between the target and the pure-Ge detector. A lead collimator of 50 mm thick was placed in front of the Ge detector and it defined the detector solid angle of 0.85 sr with its entrance window of $40 \times 20 \mathrm{~mm}^{2}$. The Ge detector was surrounded by lead shield of 20 cm thick which was thick enough because of extremely low background. The incoming photon beam was highly, $>90 \%$, linear polarized beam whose polarization axis was changed in 100 seconds interval. The top figure of fig.l shows the energy spectrum of the elastic scattering photons against the parallelpolarized photons. The bottom one shows that of the elastic scattering photons against the perpendicularly polarized photons. Thus the upper peak shows that this resonance level has the positive parity originated in M1 or E2 transition. On the other hand, the lower peak shows the negative parity originated in E1 transition. This is clear in the asymmetry analysis displayed in figure 2. The E2 and the MI were separated by the angular distribution of the scatted photons. Generally, an intensity ratio, $\mathrm{W}\left(90^{\circ}\right) / \mathrm{W}\left(127^{\circ}\right)$, has been commonly used to analyze the angular distribution. Figure 3 shows the measured intensity ratio. Three M1 transitions are newly found at $7.175,7.207$, and 7.243 MeV . Table 1 shows the present results. Furthermore two M1 candidates are found in 6.957 and 7.112 McV . Three 2^{+} levels and sixteen 1^{-}levels are also observed. The total Ml transition strength of ${ }^{208} \mathrm{~Pb}$ is deduced to be $7.14 \pm 2 \mu_{N}^{2}$ from 6.8 to 7.3 MeV and this strength exhausts the total strength predicted by the RPA calculation ${ }^{2}$ which includes $2 \mathrm{p}-2 \mathrm{~h}$ as well as $1 \Delta-1 \mathrm{~h}$ configurations. The present M 1 strength distribution centers on 7.38 MeV and width of about 1.3 MeV shows excellent agreement with that from the calculation.

References

1)H.Ohgaki et al. , Nucl. Instr. and Meth. A375(1995)602.
2)D.Cha et al., Nucl. Phys. A430, 321 (1984).
3)T.Chapuran et al., Phys. Rev.C, vol. 22(1980)1420.

Table 1 Results of ${ }^{206,208} \mathrm{~Pb}\left(\gamma_{\text {pol }}, \gamma\right)$ experiment. Parentheses indicate tentative assignments.

Energy (MeV)	J^{π}	$\Gamma_{0}{ }^{2} / \Gamma(\mathrm{eV})^{\text {a }}$	$\Gamma_{0}^{2} / \Gamma(\mathrm{eV})^{\mathrm{b}}$	Strength
6.720	$1{ }^{-}$	6.46 ± 2.51	7.6 ± 1.5	$0.059 \pm 0.023 \mathrm{e}^{2} \mathrm{fm}^{2}$
6.751	1^{-}	0.76 ± 0.86		$0.007 \pm 0.008 \mathrm{e}^{2} \mathrm{fm}^{2}$
6.883	(1)	3.04 ± 1.72		$0.026 \pm 0.015 \mathrm{e}^{2} \mathrm{fm}^{2}$
6.897	1^{-}	1.43 ± 1.18		$0.012 \pm 0.010 \mathrm{e}^{2} \mathrm{fm}^{2}$
6.911	(1)	2.57 ± 1.58		$0.022 \pm 0.014 \mathrm{e}^{2} \mathrm{fm}^{2}$
6.941	1^{-}	2.38 ± 1.52		$0.020 \pm 0.013 \mathrm{e}^{2} \mathrm{fm}^{2}$
6.957	$\left(1^{+}\right)$	2.00 ± 1.40		$1.53 \pm 1.07 \mu_{N}{ }^{2}$
6.985	1^{-}	1.24 ± 1.10		$0.010 \pm 0.009 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.020	(1)	1.24 ± 1.10		$0.010 \pm 0.009 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.034	$1{ }^{-}$	2.28 ± 1.49		$0.019 \pm 0.012 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.044	$1{ }^{-}$	2.85 ± 1.67		$0.024 \pm 0.014 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.054	(1)	1.52 ± 1.22		$0.013 \pm 0.010 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.062	1^{-}	13.50 ± 3.63	15.7 ± 2.6	$0.11 \pm 0.030 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.083	1^{-}	9.03 ± 2.97	8.8 ± 1.5	$0.074 \pm 0.024 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.112	$\left(1^{+}\right)$	1.14 ± 1.06		$0.84 \pm 0.77 \mu_{\mathrm{N}}{ }^{2}$
7.132	1^{-}	1.52 ± 1.22		$0.012 \pm 0.010 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.175	1^{+}	1.05 ± 1.01		$0.75 \pm 0.73 \mu_{N}{ }^{2}$
7.207	1^{+}	1.71 ± 1.29		$1.2 \pm 0.92 \mu_{N}{ }^{2}$
7.243	1^{+}	2.47 ± 1.55	1.7 ± 0.6	$1.7 \pm 1.1 \mu_{N}{ }^{2}$
7.280	1^{+}	1.52 ± 1.22	1.7 ± 0.6	$1.1 \pm 0.85 \mu_{N}^{2}$
7.300	2^{+}	1.33 ± 1.14		$414 \pm 355 \mathrm{e}^{2} \mathrm{fm}{ }^{4}$
7.314	2^{+}	4.09 ± 2.00		$1263 \pm 618 \mathrm{e}^{2} \mathrm{fm}{ }^{4}$
7.332	1^{-}	26.90 ± 5.13	26.9 ± 4.8	$0.21 \pm 0.039 \mathrm{e}^{2} \mathrm{fm}^{2}$
7.350	$\left(2^{+}\right)$	0.29 ± 0.53		$86.4 \pm 220 \mathrm{e}^{2} \mathrm{fm}^{4}$
7.549	1^{-}	1.24 ± 1.10		$0.009 \pm 0.008 \mathrm{e}^{2} \mathrm{fm}^{2}$

a)Normalized to 7.332 MeV level.
b)Data from Ref. 3.

Fig. 1 Top figure shows the energy spectrum of the ${ }^{208} \mathrm{~Pb}\left(\gamma_{\mathrm{pol}}, \gamma\right)$ experiment at the scattering angle of 90° against the parallel-polarized plane, and the bottom figure displays that against the perpendicularly polarized plane.

Fig. 2 Measured asymmetry for individual peaks in ${ }^{208} \mathrm{~Pb}\left(\gamma_{\mathrm{pol}}, \gamma\right)$ experiment.

Fig. 3 Measured intensity ratio for individual peaks in ${ }^{208} \mathrm{~Pb}\left(\gamma_{\text {pol }}, \gamma\right)$ experiment.

II. Japan Atomic Energy Research Institute

A. Nuclear Data Center and Working Groups of Japanese Nuclear Data Committee

II-A-1 Improvement of Gamma-ray Production Data for JENDL-3.2
K. Shibata, S. Igarasi, T. Asamai, M. Mizumoto, M. Igashira, H. Kitazawa and K. Hida

A paper on this subject was published in J. Nucl. Sci. Technol., 34, 503 (1997) with the following abstract:

Gamma-ray production cross sections and spectra have been updated for the latest version of JENDL-3 (JENDL-3.2). Problems of gamma-ray production data contained in the previous version JENDL-3.1 were examined, and they have been mostly resolved in the present work. In the medium-heavy mass region, capture gamma-ray spectra for incident neutron energies below 10 keV were re-calculated with the statistical model taking account of experimentally determined branching ratios for primary transitions. For natural elements, line gamma-rays due to inelastic scattering were explicitly given in JENDL-3.2 up to several MeV. Capture cross sections of some light nuclides were evaluated by considering a p-wave capture behavior indicated by recent measurements. Gamma-ray production data for 66 nuclides have been compiled into JENDL-3.2 in the ENDF-6 format.

II-A-2 Evaluation of Neutron Nuclear Data for Mercury

K. Shibata, T. Fukahori, S. Chiba and N. Yamamuro

A paper on this subject was published in J. Nucl. Sci. Technol., 34, 1171 (1997) with the following abstract:

Neutron nuclear data of stable mercury isotopes have been evaluated in the energy range of $10^{-5} \mathrm{eV}$ to 20 MeV . Evaluated quantities are the total, elastic and inelastic scattering, capture, $(n, 2 n),(n, 3 n),(n, p),(n, \alpha),(n, n p),(n, n \alpha)$ reaction and gamma-ray production cross sections, resonance parameters, and the angular and energy distributions of emitted neutrons and gamma-rays. The evaluation is mainly based on nuclear reaction model calculations. Statistical-model calculation played a significant role in the determination of the reaction cross sections. The evaluated data have been compiled in the ENDF-6 format, and are used for the design study of a mercury target system proposed at the Neutron Science Research Center, JAERI.

II-A-3 Curves and Tables of Neutron Cross Sections in JENDL-3.2
 K. Shibata, T. Nakagawa, H. Sugano* and H. Kawasaki*

A paper on this subject was published in JAERI-Data/Code 97-003 (1997) with the following abstract:

Neutron cross sections of 340 nuclei in JENDL-3.2 are shown in graphs and tables. Average values of total, elastic scattering and capture cross sections are also illustrated with 70 energy-group structure. Tabulated are thermal cross sections, 14MeV cross sections, resonance integrals, Maxwellian- and fission-spectrum average cross sections calculated from JENDL-3.2.

II-A-4 Estimation of Uncertainties in Resonance Parameters of ${ }^{56} \mathrm{Fe}^{239}{ }^{239} \mathrm{Pu}{ }^{240} \mathrm{Pu}$ and ${ }^{238} \mathrm{U}$

T. Nakagawa and K. Shibata

A paper on this subject was published in JAERI-Research 97-035 (1997) [in Japanese] with the following abstract:

Uncertainties have been estimated for the resonance parameters of ${ }^{56} \mathrm{Fe},{ }^{239} \mathrm{Pu}$, ${ }^{240} \mathrm{Pu}$ and ${ }^{238} \mathrm{U}$ contained in JENDL-3.2. Errors of the parameters were determined from the measurements which the evaluation was based on. The estimated errors have been compiled in the MF32 of the ENDF format. The numerical results are given in tables.

[^1]
II-A-5 Estimation of Covariances of ${ }^{16} \mathrm{O},{ }^{23} \mathrm{Na}, \mathrm{Fe}^{235} \mathrm{U},{ }^{238} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$ _Neutron Nuclear Data in JENDL-3.2

K. Shibata, Y. Nakajima, T. Kawano, Soo Youl OH", H. Matsunobu and T. Murata

A paper on this subject was published in JAERI-Research 97-074 (1997) with the following abstract:

Covariances of nuclear data have been estimated for 6 nuclides contained in JENDL-3.2. The nuclides considered are ${ }^{16} \mathrm{O},{ }^{23} \mathrm{Na}, \mathrm{Fe},{ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$, and ${ }^{239} \mathrm{Pu}$, which are regarded as important for the nuclear design study of fast reactors. The physical quantities for which covariances are deduced are cross sections, resolved and unresolved resonance parameters, and the first order Legendre-polynomial coefficient for the angular distribution of elastically scattered neutrons. As for ${ }^{233} \mathrm{U}$, covariances were obtained also for the average number of neutrons emitted in fission. The covariances were estimated by using the same methodology that had been used in the JENDL-3.2 evaluation in order to keep a consistency between mean values and their covariances. The least-squares fitting code GMA was used in estimating covariances for reactions of which JENDL- 3.2 cross sections had been evaluated by taking account of measurements. In nuclear model calculations, the covariances were calculated by the KALMAN system. The covariance data obtained were compiled in the ENDB-6 format, and will be put into the JENDL-3.2 Covariance File which is one of JENDL special purpose files..

[^2]
II-A-6

Development of Libraries for ORIGEN2 Code Based on JENDL-3.2

Kenya SUYAMA
Dept. of Fuel Cycle Safety Research, JAERI, Tokai-mura, Ibaraki-ken, 319-11, JAPAN
e-mail: kenya@cyclone.tokai.jaeri.go.jp
Jun-ichi KATAKURA
Nuclear Data Center, JAERI, Tokai-mura, Ibaraki-ken, 319-11, JAPAN
e-mail: katakura@cracker.tokai.jaeri.go.jp
Makoto ISHIKA WA
O-arai Engineering Center, PNC, O-arai-machi, Ibaraki-ken, JAPAN
e-mail:ishikawa@oec.pnc.go.jp
Yasushi OHKA WACHI
O-arai Engineering Center, PNC, O-arai-machi, Ibaraki-ken, JAPAN
e-mail: okawachi@oec.pnc.go.jp

ORIGEN2 code[1] is one of the most widely used burnup codes for many purposes. The advantage of using ORIGEN2 is that it has a variety of data libraries for various reactor systems. However, the libraries are based on obsolete design of reactors and old nuclear data libraries. To overcome these problems, JNDC launched the project to make libraries of ORIGEN2 code based on the current reactor design using JENDL-3.2. The aim of making these libraries is to evaluate assembly averaged isotopic composition as correctly as possible.

The main work in this fiscal year was to make libraries of LWR and FBR. For LWR, three PWR libraries of 17×17 fuel assembly was prepared. Also, nine libraries for BWR STEP-1, 2 and 3 fuel assembly were developed. To carry out this work, SWAT[2] was used. For verification of PWR libraries, one of the latest PIE was analyzed. This analysis showed improved results for U and Pu isotopes using our new library. For FBR, libraries for eight types of cores were constructed using new code system[3]. The comparison using new and old libraries for FBR revealed that some isotopes had large deviations that resulted from the difference of source of nuclear data and the collapsing neutron spectrums. The outline of our activities was presented at the 1997 Symposium on Nuclear Data[3].

Current status of these libraries are under evaluation. After extensive tests performed, these libraries will be hopefully distributed for use in many fields of nuclear engineering.

References

[1] Croff, A.G.: ORNL-5621(1980).
[2] Suyama,K. et al: JAERI-Data/Code 97-047, (1997)(in Japanese).
[3] To be published as JAERI-Conf(1998).

II-A-7 Status of JENDL Intermediate Energy Nuclear Data File

T. Fukahori, S. Chiba, N. Kishida, M. Kawai, Y. Oyama and A. Hasegawa

A paper on this subject will be published in Proc. of the International Conference on Nuclear Data for Science and Technology, May 19-24, 1997, Trieste, Italy with the following abstract.

The JAERI Nuclear Data Center has started evaluation work in cooperation with Japanese Nuclear Data Committee (JNDC) to produce evaluated intermediate energy nuclear data files which are JENDL High Energy File, JENDL PKA/KERMA File and JENDL Photonuclear Data File. JENDL High Energy File will include nuclear data for proton- and neutron- induced reactions up to 2 GeV . For photonuclear reaction data up to 140 MeV , JENDL Photonuclear Data File is provided for applications such as electron accelerator shielding and radiation therapy. JENDL PKA/KERMA File is generated to supply PKA spectra, damage energy spectra, DPA (displacement per atom) cross sections and kerma factors by neutron-induced reactions up to 50 MeV for estimation of radiation damage. The present status of these files is reported in this paper.

U-A-8 Status of Nuclear Data Evaluation for JENDL Photonuclear Data File

T. Fukahori and JNDC (Photonuclear Data Evaluation WG)

A paper on this subject will be published in Proc. of the Third Specialists' Meeting on Shielding Aspects of Accelerator, Targets and Irradiation Facilities (SATIF-3), May 12-13, 1997, Tohoku University, Sendai, Japan with the following abstract.

For γ-ray induced reaction data up to 140 MeV , the JENDL Photonuclear Data File is provided for applications such as electron accelerator shielding and radiation therapy. The file will include the photonuclear reaction data for 29 elements (50 isotopes) from $\mathrm{H}-2$ to U-238 The photon absorption cross section is evaluated with the giant dipole resonance model and quasi-deuteron model, and the decaying processes are estimated with the statistical model with preequilibrium correction by using MCPHOTO and ALICE-F codes. The evaluation work is now in a final stage. In this paper, the present status of the Photonuclear Data File is reviewed.

II-A-9 Systematics of Fission Cross Sections at the Intermediate Energy Region

T. Fukahori, O. Iwamoto and S. Chiba

The fission cross section of actinide nuclei is one of the important physical quantities for radioactive waste transmutation. Calculation tools for this quantity in the intermediate energy region are still under development, except some codes such as ALICE and HETC. We have developed a semi-empirical formula for proton-induced fission cross section, which has rather more experimental data than the other particle induced cross sections. On the other hand, neutron-induced fission cross sections in the intermediate energy region have been systematically measured at Gatchina (Russia) and Los Alamos National Laboratory (U.S.). This report shows the semi-empirical formula previously developed has been expanded for neutron-, proton- and photon-induced fission cross sections simultaneously and the formula succeeded to explain most of experimental data.

The \boldsymbol{Z} - and \boldsymbol{A}-independent parameters, \boldsymbol{q},i, has been fit by using experimental data for 29 isotopes from Ag to ${ }^{2+3} \mathrm{Am}$ with following formula;

$$
\begin{aligned}
& P_{t i s}(Z, A, E)=p_{1} \cdot\left[1-\exp \left\{-p_{3}\left(E-p_{2}\right)\right\}\right] \\
& p_{1}=\exp \left(q_{t, 1}+q_{t, 2} x\right) \quad\left(i=1,2,3, \quad x=Z^{2} / A\right)
\end{aligned}
$$

where $P_{f i s}$ is fission cross section fraction to total reaction cross section $\left(=\sigma_{f i} / \sigma_{k}\right), Z$ and \boldsymbol{A} are atomic and mass number of compound nuclei, and E is excited energy. The fitting results are shown in Fig. 1 and Table 1, and the "best-fit" parameters have a trend of good linearity. These results can derive that neutron-, proton- and photon-induced fission cross section can be explained by only one formula. This formula can give not only the systematics for fission cross section at a certain energy point but also the shapes of excite function. Using this formula make possible to estimate the fission cross section for the nuclei for which few experimental data exist.

Table 1 Results of parameter fitting.

	\boldsymbol{p}_{1}	$\boldsymbol{p}_{\mathbf{2}}$	$\boldsymbol{p}_{\mathbf{3}}$
$\boldsymbol{q}_{\mathrm{i}, \mathbf{1}}$	-29.3156	27.0703	-50.4533
$\boldsymbol{q}_{\mathrm{i}, 2}$	0.807776	-0.698254	1.38907

Fig. 1 Fitting results of systematics (solid lines) and "best fit" parameters, which were obtained by directly fitting to experimental data (closed circles) for \boldsymbol{p}_{1} (a), \boldsymbol{p}_{2} (b) and \boldsymbol{p}_{3} (c) parameters.

B. Department of Chemistry and Fuel Research

II-B-1

Conversion Electron Measurements in the 127Ce and 127La β-Decay

H.Iimura, S.Ichikawa, M.Oshima, T.Sekine, J.Katakura, N.Shinohara, M.Magara, A.Osa, M.Asai, M.Miyaji ${ }^{1}$ and H.Yamamoto ${ }^{2}$

We have studied the level scheme of ${ }^{127} \mathrm{La}$ through the β-decay of ${ }^{127} \mathrm{Ce}$ ($\mathrm{T}_{1 / 2=31 \mathrm{~s})}$ to clarify mainly the structure of low-spin levels. The preliminary results of gamma-ray measurements have already been reported[1]. To obtain internal conversion coefficients we measured electron spectra. The experiments were performed by using the on-line mass separator at the tandem accelerator facility in JAERI. The ${ }^{127} \mathrm{Ce}$ nucleus was produced by the reaction ${ }^{\text {nat }} \mathrm{Mo}\left({ }^{35} \mathrm{Cl}, \mathrm{pxn}\right){ }^{127} \mathrm{Ce}$ with $185-\mathrm{MeV}{ }^{35} \mathrm{Cl}$ beam and massseparated electromagnetically from other reaction products. A simultaneous measurement of electrons and γ-rays was made with $\mathrm{Si}(\mathrm{Li})$ and HPGe detectors. From the present measurements, multipolarities of some transitions have been determined and information on parities of low-lying levels has been obtained. Preliminary level scheme of ${ }^{127} \mathrm{La}$ has been compared with those previously reported. Conversion electron measurements in the β-decay of daughter nucleus, ${ }^{127}$ La were also made. Further analysis is now in progress.

References

[1] H.Iimura et al., Proc. of the 9th Int. Symp. on Capture Gamma-Ray Spectroscopy and Related Topics (Springer, 1997) 297

${ }^{1}$ Toshiba Ltd.
${ }^{2}$ Department of Nuclear Engineering, Nagoya University

III. Kyoto University

A. Research Reactor Institute

III-A-1
Fission Cross Section Measurements of Am-241 between 0.1 eV and 10 keV with Lead Slowing-down Spectrometer and at Thermal Neutron Energy

Shuji Yamamoto ${ }^{1}$, Katsuhei Kobayashi ${ }^{1}$, Mitsuharu Miyoshi ${ }^{2}$, Itsuro Kimura ${ }^{2}$, Ikuo Kanno ${ }^{2}$, Nobuo Shinohara ${ }^{3}$, and Yoshiaki Fujita ${ }^{1}$
1 Research Reactor Institute, Kyoto University
Kumatori-cho, Sennan-gun, Osaka 590-04, Japan
2 Department of Nuclear Engineering, Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto 606-01, Japan
* Present address: GE and Yokogawa Medical System Inc.
4-chome, Asahigaoka, Hino-shi, Tokyo 191, Japan
3 Department of Radioisotopes, Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki 319-11, Japan

A paper on this subject was published in Nuclear Science and Technology, Vol.126, No.2, 201-212 (1997) with the following abstract.

Making use of back-to-back type double fission chambers and a lead slowing-down spectrometer coupled to an electron linear accelerator, the cross section for the ${ }^{241} \mathrm{Am}(\mathrm{n}, \mathrm{f})$ reaction has been measured relative to that for the ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ reaction in the energy range from 0.1 eV to 10 keV . To avoid the interference between the ${ }^{241} \mathrm{Am}$ and the ${ }^{235} \mathrm{U}$ resonances, the fission cross section below 1 keV was measured relative to the ${ }^{10} \mathrm{~B}(\mathrm{n}, \alpha)$ reaction with a BF_{3} counter, and the result obtained was normalized to the absolute value by the ${ }^{235} U$ reference data between 200 eV and 1 keV . The measured result has been compared with (1) the evaluated nuclear data contained in the ENDF/B-VI and JENDL-3.2 libraries, and (2) the existing experimental data, with the evaluated and measured data being broadened using the energy resolution function of the spectrometer.

There is general agreement between the evaluated data and the present measurement, although some discrepancies are found in the energy region where the cross section shapes show a pronounced structure. The JENDL-3.2 data are underestimated by a factor in the range 1.2 to 2.3 between 22 and 140 eV , while the more recently measured data by Dabbs et al. and the evaluated data in ENDF/B-VI are in good agreement with the measurement within the uncertainties. In the energy range from 1 to 10 keV , the present result is 15 to 18% higher than the evaluations and the Dabbs' data. Some of the earlier experimental data which were measured over part of the relevant energy region are not always in agreement with the present measurement.

The fission cross section for thermal neutrons was also measured in a pure Maxwellian neutron spectrum field with the double fission chambers. The derived result at 0.0253 eV is $3.15 \pm 0.097 \mathrm{~b}$, which is obtained relative to the reference value of 586.2 b for the ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ reaction. The ENDF/B-VI data is in good agreement with the present measurement, while the JENDL-3.2 value is lower by 4.2%. The ratios of the earlier experimental data to the present value are distributed between 0.89 and 1.02 .

III-A-2 Measurement of Fission Cross Sections for Nuclear Transmutation on

Am-241, Am-242m and Am-243
Using Lead Slowing-down Spectrometer

Katsuhei Kobayashi ${ }^{1}$, Shuji Yamamoto ${ }^{1}$, Tetsuya Kai 1, Yoshiaki Fujita ${ }^{1}$, Itsuro Kimura ${ }^{2}$, Mitsuharu Miyoshi ${ }^{2}$, Ikuo Kanno ${ }^{2}$, Toshio Wakabayashi ${ }^{3}$, Yasushi Ohkawachi ${ }^{3}$, Shigeo Ohki ${ }^{3}$ and Nobuo Shinohara ${ }^{4}$
1 Research Reactor Institute, Kyoto University
Kumatori-cho, Sennan-gun, Osaka, 590-04 Japan
2 Department of Nuclear Engineering, Kyoto University
Yoshida-honmachi, Sakyo-ku, Kyoto, 606-01 Japan
3 Power Reactor \& Nuclear Fuel Development Corporation
Narita, O-arai, Ibaraki, 311-13 Japan
4 Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki, 319-11 Japan

A paper on this subject was presented at the International Conference on Future Nuclear Systems, Global ' 97 on October 5-10, 1997, Yokohama, Japan and published in the Proceedings of the Conference, Vol.2, 784-788 (1997) with the following abstract.

Making use of a lead slowing-down spectrometer coupled to a 46 MeV electron linear accelerator and a back-to-back type double fission chamber, the fission cross sections of Am$241, \mathrm{Am}-242 \mathrm{~m}$ and $\mathrm{Am}-243$ have been measured relative to that of $\mathrm{U}-235$ from 0.1 eV to 10 keV with the energy resolution of about 40% full width at half maximum. Each of the measured result has been compared with (1) the evaluated nuclear data in ENDF/B-VI and JENDL3.2, and (2) the existing experimental data, for which the evaluated and the experimental data were broadened by the energy resolution function of the spectrometer.

III-A-3

Measurement of the ${ }^{243} \mathrm{Am}(\mathrm{n}, \mathrm{f})$ Cross Section Between 0.1 eV and 10 keV Using Lead Slowing-down Spectrometer

Katsuhei Kobayashi ${ }^{1}$, Tetsuya Kai ${ }^{1}$, Shuji Yamamoto ${ }^{1}$, Yoshiaki Fujita ${ }^{1}$ Itsuro Kimura ${ }^{2}$ and Nobuo Shinohara ${ }^{3}$
1 Research Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-04, Japan
2 Department of Nuclear Engineering, Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto 606-01, Japan
3 Department of Radioisotopes, Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki 319-11, Japan

A paper on this subject was presented at the International Conference on Nuclear Data for Science and Technology, on May 19-24, 1997, Trieste Italy.

Making use of back-to-back type double fission chambers and a lead slowing-down spectrometer coupled to an electron linear accelerator, the fission cross section for the ${ }^{243} \mathrm{Am}(\mathrm{n}, \mathrm{f})$ reaction has been measured relative to that for the ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ reaction in the energy range from 0.1 eV to 10 keV . The measured result has been compared with the evaluated nuclear data in ENDF/B-VI and JENDL-3.2, whose evaluated data were broadened by the energy resolution function of the spectrometer. General agreement is seen between the evaluated data and the measurement except that the ENDF/B-VI data are lower in the range from 15 to 60 eV and that the JENDL-3.2 data seem to be lower above 100 eV . The experimental data by Wisshak and Kappeler and by Knitter and Budtz-Jфrgensen are in general agrrement with the present measurement in the relevant energy region. However, the data by Seeger are considerably higher.

III-A-4 Fission Cross Section Measurement of Am-242m using Lead Slowing-down Spectrometer

Tetsuya Kai ${ }^{1}$, Katsuhei Kobayashi ${ }^{1}$, Shuji Yamamoto ${ }^{1}$, Yoshiaki Fujita ${ }^{1}$, Itsuro Kimura ${ }^{2}$, Yasushi Ohkawachi ${ }^{3}$ and Toshio Wakabayashi ${ }^{3}$
1 Research Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-04, Japan
2 Department of Nuclear Engineering, Kyoto University Yoshidahonmachi, Sakyo-ku, Kyoto 606-01, Japan
3 Power Reactor and Nuclear Fuel Development Corporation 4002 Narita, O-arai machi, Ibaraki, 311-13, Japan

A paper on this subject was presented at the 1997 Symposium on Nuclear Data at Tokai-mura, JAERI held on Nov. 27-28, 1997.

By making use of double fission chamber and lead slowing-down spectrometer coupled to an electron linear accelerator, fission cross section for the ${ }^{242 m} \mathrm{Am}(\mathrm{n}, \mathrm{f})$ reaction has been measured relative to that for the ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ reaction in the energy range from 0.1 eV to 10 keV . The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, of which evaluated data were broadened by the energy resolution function of the spectrometer. Although the JENDL-3.2 data seem to be a little smaller than the present measurement, good agreement can be seen in the general shape and the absolute values. The ENDF/B-VI data are larger more than 50% than the present values above 3 eV .

B. Department of Nuclear Engineering

III-B-1 Multi-parametric Measurement of Prompt Neutrons and Fission Fragments for ${ }^{233} U\left(n_{b}, \mathrm{f}\right)$

K. Nishio, I. Kimura, M. Nakashima and Y. Nakagome ${ }^{1}$

A paper on this subject was submitted to J. Nucl. Sci. and Technol. for publication [1].

Simultaneous measurement of fission fragments and prompt neutrons for ${ }^{233} U\left(n_{\mathrm{th}}, \mathrm{f}\right)$ was carried out with the system reported previously [2][3]. The results determined the neutron multiplicity and emission energy as a function of fragment mass and total kinetic energy.

The measurement was carried out using the slow neutrons from the Kyoto University Reactor. The experimental arrangement is shown in Fig. 1. In the vacuum chamber, the ${ }^{233} \mathrm{U}$ target and fragment detectors were mounted. The kinetic energy of fission fragment 1 (FF1) was determined by using a silicon surface barrier detector (SSBD). The energy of FF2 was obtained from the time difference between the signals from the SSBD and a parallel plate avalanche counter (PPAC). Neutron emitted from the FF1 was detected with a NE213 and the energy was determined by the TOF method, for which the start signal was triggered by the SSBD too.

Fig. 1 Experimental arrangement for the simultaneous measurement of fission fragments and prompt neutron.

[^3]The average neutron energy in the fragment center-of-mass system as a function of fragment mass, $\bar{\eta}\left(m^{*}\right)$, is shown in Fig. 2. Also shown is the mass yield curve obtained in this measurement. It is evident that (1) the $\bar{\eta}\left(m^{*}\right)$ is approximately symmetrically distributed about the equal-mass division of the fissioning nucleus, and the minimum values appear at 95 and 145 u , and (2) the neutron energy from the symmetric and very asymmetric fission fragments reaches to about 1.8 MeV . Figure 3(a) shows the average neutron multiplicity from the specified fragment, $\bar{v}\left(m^{*}\right)$, and Fig. 3(b) the total neutron multiplicity, $\bar{v}^{\text {ba }}\left(m^{*}\right)$. Present data are compared to the results by Apalin et al. [4] (dotted curve). The interesting aspect is the marked enhancement of the $\bar{v}^{\text {'a }}\left(m^{*}\right)$ in the symmetric fission. It suggests that the total deformation energy of the system at the scission point is quite large. The saw-toothed shape of $\bar{v}\left(m^{*}\right)$ sharply contrasts with the $\bar{\eta}\left(m^{*}\right)$ in Fig. 2. The difference is attributed to the level density parameter of fragments, which is affected by the shell-effects and is expressed by the shell-energy correction. The fragment with $m^{*} \approx 130 \mathrm{u}$ is close to the nucleus with double-magic number, ${ }^{132} \mathrm{Sn}$, and the fragment with $m^{*} \approx 80$ is close to ${ }^{78} \mathrm{Ni}$, and thus the level density parameters of these fragments are very low. This is the reason for the experimental evidence that these fragments, which have rather low excitation energy, emit neutrons with high energy.

Fig. 2 Average neutron energy as a function of fragment mass for ${ }^{233} \mathrm{U}\left(\mathrm{n}_{\mathrm{th}}, \mathrm{f}\right)$. Mass yield curve obtained in this measurement is also indicated.

Fig. 3 (a) Average neutron multiplicity. (b) Average total neutron multiplicity. The dotted curve is the data in Ref. [4].

References :

[1] K. Nishio, M. Nakashima, l. Kimura and Y. Nakagome, submitted to J. Nucl. Sci. and Technol.
[2] K. Nishio, H. Yamamoto, I. Kimura and Y. Nakagome, Nucl. Instrum. Meth. A385 (1997) 171.
[3] K. Nishio, Y. Nakagome, H. Yamamoto and I. Kimura, Nucl. Phys. A, accepted for publication. [4] V.F. Apalin et al., Nucl. Phys. 71 (1965) 553.

IV. Kyushu University

A. Department of Energy Conversion Engineering

IV-A-1 Partial-Wave Analysis with the Optical Model for the Resolved and Unresolved Resonance Regions of ${ }^{56} \mathrm{Fe}$

T. Kawano and F. H. Fröhner*

A paper on this subject was published in Nucl. Sci. Eng., 127, p.130, 1997, and partly in the Proc. the First Internet Symposium on Nuclear Data, JAERI, Tokai, 1996, p. 257 with the following abstract:

We have studied optical model fits to total neutron cross sections of ${ }^{56} \mathrm{Fe}$ using the accurate data base existing in the resolved and unresolved resonance region. Averages over resolved resonances were calculated from resonance parameters in Reich-Moore (reduced R matrix) approximation with Lorentzian weighting. Optical potential parameters were obtained for the s-, p-, and d-waves that reproduce the smoothed cross sections in the resolved resonance region. The p-wave optical potential was found to differ from the s-wave potential. When the appropriate higher angular momentum contributions are added, the average total cross sections can be fitted quite well, from the resolved resonance region all the way up to 20 MeV .

[^4]
IV-A-2 Covariance Evaluation System

T. Kawano and K. Shibata**

A paper on this subject was published in JAERI-DATA/Code, 97-037, with the following abstract:

A covariance evaluation system for the evaluated nuclear data library was established. The parameter estimation method and the least squares method with a spline function are used to generate the covariance data. Uncertainties of nuclear reaction model parameters are estimated from experimental data uncertainties, then the covariance of the evaluated cross sections is calculated by means of error propagation. Computer programs ELIESE-3, EGNASH4, ECIS, and CASTHY are used. Covariances of ${ }^{238} \mathrm{U}$ reaction cross sections were calculated with this system.

[^5]
IV-A-3 Application of a Client-Server Model to the Evaluated Nuclear Data Libraries

T. Kawano, O. Sakai, and H. Nakashima

A paper on this subject was partly presented at the 1996 Symposium on Nuclear Data, and published in JAERI-Conf, 97-005, p.307, and published in Engineering Science Reports, Kyushu University, 19, 317 (1997) with the following abstract:

A nuclear data server which transmits the evaluated nuclear data libraries through network is proposed. The evaluated nuclear data are provided by means of TCP/IP, and client programs can receive the nuclear data with the socket library. Some examples with a prototype server program are demonstrated, the first is a nuclear data retrieval program which allows users to extract data from the nuclear data library, and the second is an access to the nuclear data library from the existent nuclear data process code.

IV-A-4 Measurement of Helium Production Cross Sections of Stainless Steels for 14 MeV Neutrons

Y. Takao, Y. Kanda, Y. Uenohara, T. 'Takahashi, S. Itadani, T. Iida*, and A. Takahashi*

A paper on this subject was published in Journal of Nuclear Science and Technology, Vol.34, No.1, 1-4(1997) with the following abstract:

Helium production cross sections of the austenitic stainless steels, Type 316 stainless steel, JPCA, and JPCA2, and the ferritic / martensitic stainless steels, HT-9, and JFMS have been measured for 14.5 MeV neutrons, employing a helium accumulation method. The measured effective cross sections range from 52 to 59 mb with $\pm 8 \%$ error and have been compared with the composite values which are calculated from measured or estimated He production cross sections for individual constituent elements. The measured effective cross sections agree well with the composite cross sections. The contributions from constituent elements to the composite cross sections were compared. As a result, the comparison shows that the carbon content of the stainless steel has a significant effect on the He production rate.

[^6]
IV-A-5

Measurement of Proton-Induced Helium Production Cross Sections for Aluminum and Nickel below 16 MeV

Y. Takao, Y. Kanda, H. Hashimoto, K. Yamasaki, K. Yamaguchi, 'T. Yonemoto, M. Miwa, H. Etoh, and K. Nagae

A paper on this subject was published in Journal of Nuclear Science and Technology, Vol.34, No.2, 109-115(1997) with the following abstract:

Proton-induced He production cross sections, (p, He), for Al and Ni have been measured up to 16 MeV by using a He accumulation method.

The reliability of the present experiment was confirmed by performing three kinds of experiments for the $\mathrm{Al}(\mathrm{p}, \mathrm{He})$. The sample structure or the manner of measuring the number of bombarding protons differs in each experiment. A comparison of their results shows that it is valid to install an Al sample in a Faraday cup for determination of the absolute number of incident protons and to sandwich a sample sheet by two Au foils to catch outgoing a-particles from the sample surface layer for measuring the all He produced in the sample.

IV-A-6

Measurement of Helium Production Cross Sections of Iron for d-T Neutrons by Helium Accumulation Method

Y. Takao, Y. Kanda, K. Nagae, 'T. Fujimoto, and Y. Ikeda*

A paper on this subject was presented at the 1996 Symposium on Nuclear Data, and published in JAERI-Conf 97-005, p.159(1997) with the following abstract:

Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV . Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3.

[^7]
IV-A-7 Evaluation of Neutron Cross Sections of Carbon-12 for energies up to 80 MeV

M. Harada, Y. Watanabe, S. Chiba*, and T. Fukahori*

A paper on this subject was published in J. Nucl. Sci. and Technol. 34, 116 (1997) with the following abstract:

We have evaluated the cross sections of ${ }^{12} \mathrm{C}$ for neutrons up to 80 MeV , paying more attention to the intermediate energy range above 20 MeV . For energies below 20 MeV , the evaluated data of JENDL-3.2 were adopted with some modifications. In the energy range above 20 MeV , total cross section and its covariance matrix were evaluated using a generalized least-squares method with available experimental data. The spherical optical model was used to evaluate reaction and elastic scattering cross sections. Inelastic scattering to the first 2^{+}state was calculated based on the DWBA. The optical potentials used in these calculations were obtained by means of the microscopic folding model based on the Jeukenne-Lejeune-Mahaux theory. Double-differential emission cross sections for neutron, proton, deuteron, triton, ${ }^{3} \mathrm{He}$ and alpha-particle and other heavier products were calculated using the Monte-Carlo method by which three-body simultaneous breakup process and twobody sequential decay process were taken into account in $\mathrm{n}+{ }^{12} \mathrm{C}$ multibody breakup reactions. Kerma factors calculated from the evaluated cross sections were also compared with measurements and other evaluations.
*Japan Atomic Energy Research Institute

IV-A-8 Development of a system of measuring double-differential cross sections for proton-induced reactions

M. Harada, Y. Watanabe, K. Sato, and S. Meigo*

A paper on this subject was published in JAERI-Conf, 97-005, p. 240 with the following abstract:

We report the present status of a counter telescope and a data acquisition system which are being developed for the measurement of double-differential cross sections of all lightcharged particles emitted from proton-induced reactions on ${ }^{12} \mathrm{C}$ at incident energies less than 90 MeV . The counter telescope consists of an active collimator made of a plastic scintillator, two thin silicon $\Delta \mathrm{E}$-detectors and a $\mathrm{CsI}(\mathrm{Tl}) \mathrm{E}$-detector with photo-diode readout. Signals from each detector are processed using the data acquisition system consisting of the front-end electronics (CAMAC) and two computers connected with the ethernet LAN: a personal computer as the data collector and server, and a UNIX workstation as the monitor and analyzer.

The above-mentioned detector system has recently been tested using the $\alpha+{ }^{12} \mathrm{C}$ reaction at an incident energy of 50 MeV at TIARA (Takasaki, JAERI). The relation between energy and light output for the CsI(Tl) scintillator was measured using emitted light particles (proton, deuteron, triton and alpha particle).It was also found it possible to detect heavier products such as $6,7 \mathrm{Li}$ and ${ }^{7} \mathrm{Be}$ using two thin silicon $\Delta \mathrm{E}$-detectors. The detector system will be used for an experiment of proton-induced reactions for energies of 45 to 90 MeV which is planned from 1998 at TIARA.

[^8]
IV-A-9 Semi-classical distorted wave model for multistep direct ($\mathrm{N}, \mathrm{N}^{\prime} \mathbf{x}$) reactions at intermediate energies

Y. Watanabe, M. Higashi, H. Shinohara, M. Kawai*, and M. Kohno**

A paper on this title was presented at Int. Conf. on Nuclear Data for Science and Technology, May 19-24, 1997, Trieste, Italy with the following abstract:

The Semi-Classical Distorted Wave (SCDW) model has been proposed and developed to describe the multistep direct (MSD) process in preequilibrium nuclear reactions (1). The model is based on the DWBA series of the T-matrix, a local semiclassical approximation of distorted waves, the eikonal approximation to the Green functions describing propagation of the intermediate nucleons, and the local-density Fermi gas model of the nucleus. Recently, the SCDW model has been extended so as to take into account the leading three MSD steps. Using the extended SCDW model, we have analyzed preequilibrium angular distributions of nucleon-induced nucleon-emission ($\mathrm{N}^{\prime} \mathrm{N}^{\prime} \mathrm{x}$) reactions at intermediate energies: e.g., ${ }^{58} \mathrm{Ni}(\mathrm{p}, \mathrm{p} \mathrm{x})$ at 65 to 200 MeV and ${ }^{90} \mathrm{Zr}\left(\mathrm{p}, \mathrm{p}^{\prime} \mathrm{x}\right)$ reactions at 160 MeV . The SCDW calculations with no adjustable parameter are in good agreement with the experimental angular distributions, except at very small and large angles. For the SCDW analysis, the contribution from higher order steps, the medium effect on nucleon-nucleon interactions, and the effect of the nonlocality correction to distorting potentials are discussed. Moreover, comparisons with other models are made with attention to the step-wise MSD contributions to calculated angular distributions. The use of the simple degenerate Fermi-gas model are resposible for the discrepancies seen at very small and large angles. Finally, we propose a possible approach to treat more realistic nuclear wave functions within the framework of the SCDW model.

After the conference, we have carried out a preliminary calculation of ${ }^{90} \mathrm{Zr}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ at 160 MeV using the above-mentioned new approach with the Wigner transform of one-body mixed density. Single-particle wave functions in a harmonic oscillator potential were used instead of those given by the local-density Fermi-gas model. As a result, it was found that the underestimation seen at backward angles is improved well. A further calculation with the Woods-Saxson potential is now in progress. The result with this new approach was partly presented at the 1997 Symp. on Nuclear Data, Nov. 27-28, 1997, JAERI, Tokai, Japan as a paper entitled "Improvements on semi-classical distorted wave model".

References:
(1) Y. L. Luo and M. Kawai, Phys. Rev. C 43, 2367 (1991); M. Kawai and H.A.

Weidenmüller, Phys. Rev. C 45, 1856 (1992); Y. Watanabe and M. Kawai, Nucl. Phys. A560, 43 (1993); M. Kawai, Y. Watanabe and H. Shinohara, acta physica Slovaca 45, 693 (1995).

* Department of Physics, Kyushu University
** Kyushu Dental College

IV-A-10 Continuum ($p, x p$) spectra at 14.1 and $26 \mathbf{~ M e V}$

Y. Watanabe, S. Yoshioka, M. Harada, K. Sato, Y. Nakao, H. Ijiri, S. Chiba*, T. Fukahori*, S. Meigo*, M. Iwamoto*, and N. Koori**

A paper on this title was presented at Int. Conf. on Nuclear Data for Science and Technology, May 19-24, 1997, Trieste, Italy with the following abstract and the related work was also published in JAERI-Conf, 97-005, p. 301.

Double differential cross sections of (p, xp) reactions on several medium-heavy nuclei ${ }^{54,56} \mathrm{Fe},{ }^{60} \mathrm{Ni},{ }^{90} \mathrm{Zr}$, and ${ }^{93} \mathrm{Nb}$) were measured at incident energies of 14.1 and 26 MeV using tandem Van de Graaf accelerators at Kyushu University and Japan Atomic Energy Research Institute (JAERI), respectively. A $\Delta \mathrm{E}-\mathrm{E}$ Si-detector counter telescope with an active collimator consisting of an NEIO2A plastic scintillator was used in the measurements. The active collimator operates as a veto detector to reduce the continuum background component due to the edge-penetration which makes it difficult to measure ($\mathrm{p}, \mathrm{p}^{\prime}$) spectra at small angles.

The data of two targets (i.e., ${ }^{56} \mathrm{Fe}$ and ${ }^{93} \mathrm{Nb}$) were analysed together with the (n, xn) data for the same incident energies in terms of the Feshbach-Kerman-Koonin (FKK) model for the preequilibrium process and the Hauser-Feshbach (HF) model for the equilibrium process. Using the same method of the FKK analysis as in Ref. (1), we have extracted the strength V_{0} of the effective $\mathrm{N}-\mathrm{N}$ interaction which is only a free parameter in the multi-step direct calculation. We discuss the incident energy dependence of the extracted V_{0} values and the difference in them between (p, p^{\prime}) and (n, n^{\prime}) being pointed out in Refs. (1) and (2). In addition, we have found that isospin conservation plays a crucial role in multistep compound and HF processes in ($\mathrm{p}, \mathrm{p}^{\prime}$) at low incident energies of our interest.

References:
(1) Y. Watanabe et al., Phys. Rev. C 51 (1995) 1891.
(2) P. Demetriou et al., J. Phys. G 22 (1996) 629.
*Japan Atomic Energy Research Institute
** The University of Tokushima

V. Nagoya University

A. Department of Energy Engineering and Science

V-A-1 Uncertainties in fission-product decay-heat calculations

K. Oyamatsu, H. Ohta, T. Miyazono and K.Tasaka

A paper on this subject was published in Proc. the First Internet Symposium on Nuclear Data (JAERI-Conf 97-004, pp. 141-148 (1997)) with the following abstract.

The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, ${ }^{235} \mathrm{U}(\mathrm{t}),{ }^{239} \mathrm{Pu}(\mathrm{t})$ and ${ }^{238} \mathrm{U}(\mathrm{f})$. The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries.

V-A-2

Comparision of decay and yield data between JNDC2 and ENDF/B-VI

K. Oyamatsu, M. Sagisaka and T. Miyazono

Abstract

A paper on this subject was published in Proc. the First Internet Symposium on Nuclear Data (JAERI-Conf 97-004, pp. 234-246 (1997)) with the following abstract.

This work is intended to be our first step to solve disagreements of the decay heat powers between measurements and summation calculations. We examine differences between nuclear data libraries to complement our uncertainty evaluation of the decay heat summation calculations only with ENDF/B-VI. The comparison is made mainly between JNDC2 and ENDF/B-VI while JEF2.2 decay data is also discussed. In this study, we propose and use a simple method which is an analogue of the overlap integral of two wave functions in quantum mechanics. As the first step, we compare the whole input nuclear data for the summation calculations as a whole. We find a slight difference of the fission yields especially for highenergy neutron induced fissions between JNDC2 and ENDF/B-VI. As for the decay energies, JNDC2, ENDF/B-VI are quite similar while JEF2.2 is found significantly different from these two libraries. We find substantial differences in the decay constant values among the three libraries. As the second step, we calculate the decay heat powers with FPGS90 using JNDC2 and ENDF/B-VI. The total decay heat powers with the two libraries differ by more than 10% at short cooling times while they agree well on the average at cooling times longer that $100(\mathrm{~s})$. We also point out nuclides whose contributions are significantly different between the two libraries even though the total decay heats agree well. These nuclides may cause some problems in predicting aggregate spectra of β and γ rays as well as delayed neutrons, and are to be reviewed in the future revision of decay and yield data.

V-A-3
 Delayed Neutron Spectra and their Uncertainties in Fission Product Summation Calculations

T. Miyazono, M. Sagisaka, H. Ohta, K. Oyamatsu and M. Tamaki

A paper on this subject was published in Proc. the 1996 Nuclear Data Symposium (JAERI-Conf 97-005, pp. 83-88 (1997)) with the following abstract.

Uncertainties in delayed neutron summation calculations are evaluated with ENDF/BVI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about $6 \sim 14 \%$ for 238 U (F) and about $13 \sim 23 \%$ for $243 \mathrm{Am}(\mathrm{F})$ at cooling times $0.1 \sim 100$ (s). These values are typically $2 \sim 3$ times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary.

V-A-4 Comparison of Yield and Decay Data among JNDC2, ENDF/B-VI and JEF2.2

K. Oyamatsu, M. Sagisaka and T. Miyazono

A paper on this subject was published in Proc. the 1996 Nuclear Data Symposium (JAERI-Conf 97-005, pp. 153-158 (1997)) with the following abstract.

Fission yields and decay data for fission product summation calculations are compared among JNDC2 and ENDF/B-VI and JEF2.2. Special attention is paid to the summation calculation of the total delayed neutrons per fission because it requires the data of the most unstable nuclides among all fission products. The cumulative fission yields of delayed neutron precursors are found to be appreciably different among the libraries even though values of the independent fission yields and the total number of delayed neutrons are chosen to be in fair agreement with each other. This suggests that there still exist large uncertainties in delayed neutron emission probabilities (or decay chains) for the precursors far from the stability line.

V-A-5
 UNCERTAINTIES IN SUMMATION CALCULATIONS OF AGGREGATE DECAY HEAT AND DELAYED NEUTRON EMISSION WITH ENDF/B-VI

K.Oyamatsu, H.Ohta, T.Miyazono and M.Sagisaka

A paper on this subject will be published in Proc. Int. Conf. on Nuclear Data for Science and Engineering, May 1997, Trieste, Italy, with the following abstract.

Uncertainties in aggregate decay heat and delayed neutron activity calculations are evaluated for 50 fissioning systems with ENDF/B-VI. A simplification is made in the analyses in order to identify sources of the large uncertainties easily.

V-A-6

TWO METHODS FOR EVALUATION AND BENCHMARK TEST OF FISSION PRODUCT SUMMATION CALCULATIONS

K. Oyamatsu, M.Sagisaka, H.Takeuchi and T. Miyazono

A paper on this subject will be published in Proc. Int. Conf. on Nuclear Data for Science and Engineering, May 1997, Trieste, Italy, with the following abstract.

Fission yields and decay data for fission product summation calculations are compared among JNDC2 and ENDF/B-VI and JEF2.2. Special attention is paid to the summation calculation of the total delayed neutrons per fission because it requires the data of the most unstable nuclides among all fission products. The cumulative fission yields of delayed neutron precursors are found to be appreciably different among the libraries even though values of the independent fission yields and the total number of delayed neutrons are chosen to be in fair agreement with each other. This suggests that there still exist large uncertainties in delayed neutron emission probabilities (or decay chains) for the precursors far from the stability line.

V-A-7 Measurement of (n, a) cross sections for short-lived products by $13.4-14.9 \mathrm{MeV}$ neutrons
 Y. Kasugai ${ }^{1}$, H. Yamamoto, K. Kawade and T. Iida ${ }^{2}$

A paper on this subject was submitted to Ann. Nucl. Energy in 1997.
Twelve (n, a) activation cross sections leading to short-lived nuclei with half-lives between 37 s and 15 min were measured in the energy range between 13.4 and 14.9 MeV by activation method. The measured reactions involved the isotopes of ${ }^{26} \mathrm{Mg},{ }^{31} \mathrm{P},{ }^{54} \mathrm{Cr},{ }^{63} \mathrm{Cu}$, ${ }^{64} \mathrm{Ni},{ }^{69} \mathrm{Ga},{ }^{71} \mathrm{Ga},{ }^{87} \mathrm{Ru},{ }^{89} \mathrm{Y},{ }^{104} \mathrm{Ru}$ and ${ }^{112} \mathrm{Cd}$. The intense 14 MeV neutron source facility (OKTAVIAN) at Osaka university was used for irradiation. The y-rays emitted from the irradiated samples were measured with high-purity germanium (HPGe) detectors. All cross section values were obtained relative to the standard reaction cross section of ${ }^{27} \mathrm{Al}(\mathrm{n}, \mathrm{a}){ }^{24} \mathrm{Na}$. The cross sections of 4 reactions were measured for the first time. The present experimental data were discussed by comparing with previously reported experimental data and the evaluated data of JENDL-3 and ENDF/B-VI. The 6 evaluated data in JENDL-3 shows reasonable agreement within 7%, but the evaluation of ${ }^{26} \mathrm{Mg}$ reaction is 25% higher than our data. The 2 evaluation data of ENDF/B-VI agree well, but one evaluation is deviated more than 25% have been seen for 3 reactions.

[^9]
V-A-8

Systematics for (n, a) excitations in the neutron energy between 13.3 and 15.0 MeV

Y. Kasugai ${ }^{1}$, Y. Ikeda*, H. Yamamoto and K. Kawade

A paper on this subject was submitted to Ann. Nucl. Energy in 1997.
Systematics of (n, a) excitation functions in the neutron energy between 13.3 and 15.0 MeV were studied on the basis of experimental data measured by the Nagoya University and FNS groups (Japan Atomic Energy Research Institute). The empirical formulae of cross sections at $14.0 \mathrm{MeV}\left(\sigma_{14}\right)$ and relative slopes of excitation functions (S) were deduced. These formulae covered the mass range between 19 and 188 . The empirical formula of relative slope was expressed as a function effective threshold energy $\mathrm{E}_{\mathrm{th}}+\mathrm{V}_{\mathrm{a}}$, where E_{th} is threshold energy and V_{a} is Coulomb barrier for a -particle emitted from the compound nucleus. The empirical formula of σ_{14} was expressed by a simple formula with two fitting parameters. By using the proposed empirical formulae, the partial excitation functions between 13 and 15 MeV were reproduced. Comparing the experimental data with the calculated excitations, we concluded that the accuracy of the proposed empirical formulae was $\pm 30 \%$.

[^10]
V-A-9 Measurement of (n,p)cross sections for short-lived products
 by $13.4-14.9 \mathrm{MeV}$ neutrons

Y. Kasugai ${ }^{1}$, H. Yamamoto, K. Kawade and T. Ida ${ }^{2}$

A paper on this subject was submitted to Ann. Nucl. Energy in 1997.
The $28(\mathrm{n}, \mathrm{p})$ activation cross sections leading to short-lived nuclei with half-lives between 20 s and 18 min were measured in the energy range between 13.4 and 14.9 MeV by activation method. The measured isotopes were ${ }^{19} \mathrm{~F}, 28,29 \mathrm{Si},{ }^{37} \mathrm{Cl},{ }^{50} \mathrm{Ti}, 52,53,54 \mathrm{Cr},{ }^{60,62} \mathrm{Ni},{ }^{66,68} \mathrm{Zn}$, ${ }^{86,88} \mathrm{Sr},{ }^{97} \mathrm{Mo},{ }^{101,102,104} \mathrm{Ru}, 104,105,108 \mathrm{Pd},{ }^{107} \mathrm{Ag},{ }^{116} \mathrm{Cd}$ and ${ }^{119,120} \mathrm{Sn}$ The intense 14 MeV neutron source facility (OKTAVIAN) at Osaka university was used for irradiation. The Y -rays emitted from the irradiated samples were measured with high-purity germanium (HPGe) detectors. All cross section values were obtained relative to the standard reaction cross section of ${ }^{27} \mathrm{Al}(\mathrm{n}, \mathrm{a}){ }^{24} \mathrm{Na}$. The present results were compared with previous data and the evaluated data of JENDL-3 and ENDF/B-VI. Ten reactions have been obtained at multi-point-energies for the first time. By using intense neutron sources and making careful corrections, reliable results could be obtained. Most of previous data obtained at multi-point-energies have shown reasonable agreement within 25%. In comparison of experimental 10 reactions with the evaluated data, significant discrepancies more than 25% have been seen for 3 reactions.

[^11]
V-A-10 Measurement of Q_{EC}-value of ${ }^{126} \underline{\mathrm{La} \text { isomers }}$

Y. Kojima, M. Asai, A. Osal ${ }^{1}$, M. Koizumi ${ }^{1}$, T. Sekine ${ }^{1}$, M. Shibata, H. Yamamoto and K. Kawade,

A paper on this subject was submitted to Applied Radiation Isotopes in 1997
Beta-ray endpoint energies of the neutron-deficient nuclide of ${ }^{126}$ La have been measured with an HPGe detector. The ${ }^{126} \mathrm{La}$ activities were produced by the ${ }^{94} \mathrm{Mo}\left({ }^{36} \mathrm{Ar}, 3 \mathrm{pn}\right)$ reaction and mass-separated on-line. From the β - y coincidence measurements, QEc-values of the high- and low- spin isomers of ${ }^{126}$ La were determined for the first time to be $7700(100) \mathrm{keV}$ and $7910(400) \mathrm{keV}$, respectively. The experimental atomic masses were compared with predicted values of mass formulas.

[^12]
V-A-11 Energy systematics of low-lying 0) states in neutron-deficient Ba nuclei

M. Asai, T. Sekine ${ }^{1}$, A. Osa 1, M. Koizumi ${ }^{1}$, Y. Kojima, M. Shibata, H. Yamamoto and K. Kawade

A paper on this subject was submitted to Phys. Rev. C in 1997

Low-spin states in $124,126,128,130 \mathrm{Ba}$ fed by the $\mathrm{EC} / \beta+$ decay of their La parents have been investigated by means of $\gamma-\gamma$ angular correlation measurement coupled with an isotope separator on-line. The spin of the first excited 0^{+}states $\left(0^{+}{ }_{2}\right)$ were unambiguously established, and higher-excited $0+$ states were newly identified. The energy of the $0{ }^{+}{ }_{2}$ state in ${ }^{124} \mathrm{Ba}$ previously assigned was revised upward. Resultingly, the level energy of the (0) +2 state in neutron-deficient Ba nuclei takes a minimum at $\mathrm{N}=72$ and then gradually increases toward neutron midshell $(\mathrm{N}=66)$, while the level energy of the $0^{+} 3$ state rapidly decreases with decreasing neutron number. Their systematic behavior strongly suggests that the energy relation between the $0^{+}+2$ and $0^{+} 3$ state would invert at ${ }^{122} \mathrm{Ba}$ or at more deformed Ba nuclei, which is interpreted as the evolution of the $0^{+} 2$ state in axially-symmetric deformed nuclei, while the $0^{+}{ }_{3}$ state toward the β-vibrational 0^{+}state

[^13]
VI. Osaka University

A. Department of Nuclear Engineering

VI-A-1

Measurements of Double Differential Cross Sections of ${ }^{51} \mathrm{~V}(\mathrm{n}, \mathrm{xp}),{ }^{51} \mathrm{~V}(\mathrm{n}, \mathrm{x} \alpha)$ and

${ }^{n a t} \mathrm{Zr}(\mathrm{n}, \mathrm{xp}) \quad$ Reactions by 14.1 MeV Incident Neutrons

Akito TAKAHASHI, Kokooo, Hiroyuki TAKAGI and Isao MURATA

The two dimensional E-TOF charged particle spectrometer has been developed and used to measure the double differential cross sections of charged particle emission reaction for several structural elements of fusion power reactor at OKTAVIAN, the Intense 14 MeV Neutron Source Facility of Osaka University. ${ }^{(1)}{ }^{(2)}$ In 1997, we have done the experiment to measure DDX data for $V(n, x p), V(n, x \alpha)$ and $\mathrm{Zr}(\mathrm{n}, \mathrm{xp})$ reactions. The measurements for vanadium were done also in 1996 but the the data were available up to 8 MeV . So, we have done the vanadium measurement again in 1997 to get a better data. The $\mathrm{Li}_{2} \mathrm{ZrO}_{3}$ has a potential to use as a breeding material in fusion power reactor. However, the DDX data of the proton emission reaction of natural zirconium is not available until now. So, we have done the measurement for ${ }^{n a l} \mathrm{Zr}(\mathrm{n}, \mathrm{xp})$ and compared with the evaluated nuclear data of JENDL Fusion File. The measured data for $V(n, x p)$ reaction are good agreement with other experimental data, evaluated nuclear data of JENDL Fusion File and SINCROS-II calculation. In the case of ${ }^{51} V(n, x \alpha)$ reaction, the measured EDX data is good agreement with SINCROS II calculation, while the JENDL-Fusion File shows good agreement with Grimes' data ${ }^{(3)}$. The total cross sections for vanadium measurement can be seen in Table.(1). The measured data and the evaluation for Zr show good agreement with each other as shown in Fig. 2.

Fig. 1. EDX data of $V(n, x p)$ reaction

Fig. 2.The DDX data of $\mathrm{Zr}(\mathrm{n}, \mathrm{xp})$ reaction at 45 degree

	$\mathrm{V}(\mathrm{n}, \mathrm{xp})$ mb	$\mathrm{V}(\mathrm{n}, \mathrm{x} \alpha)$ mb
Present Work	84.25 ± 1.61	16.71 ± 2.312
Grimes	91 ± 14	17 ± 3
JENDL Fusion-file	85.4446	15.6003

Table. 1.Total cross- sections for vanadium

References:
(1)A. Takahashi, et al., Nucl. Instr. Meth A 401, 93 (1997).
(2)Kokooo, et.al.,"Measurements of double differential cross sections of charged particle emission reactions by 14.1 MeV incident neutrons", Proc. International Conference on Nuclear Data for Science and Technology, May. 19-24, 1997, Trieste, Italy, to be published.
(3)S.M Grimes, et al., Phys. Rev., C17, 508(1978).

VI-A-2

Benchmark Experiment on V, V-alloy, $\mathrm{Li}_{2} \mathrm{ZrO}_{3}$ and $\mathrm{Li}_{2} \mathrm{TiO}_{3}$ Assemblies with D-T Neutrons -Leakage Neutron Spectrum Measurement-

A.Takahashi, Kokooo, I.Murata, D.Nakano, F.Maekawa* and Y.Ikeda*

The benchmark experiments have been done for V, V-alloy $(96 \% \mathrm{~V}, 4 \% \mathrm{Cr}, 4 \% \mathrm{Ti})$, $\mathrm{Li}_{2} \mathrm{ZrO}_{3}$ and $\mathrm{Li}_{2} \mathrm{TiO}_{3}$ at two angle points, 0 degree and 24.9 degree by using slab assembly and time-of-flight (TOF) method[1] at Fusion Neutronics Source (FNS) in JAERI under the IEA collaboration. The efficiencies were determined by using SCINFUL calculation as well as the measured neutron spectra from beryllium assembly, graphite assembly, ${ }^{252} \mathrm{Cf}$ source and polyethylene. The data were obtained as low as 50 keV to perform the precise comparison with the evaluated nuclear data. The measured data were compared with MCNP-4A calculations which have been done by using evaluated nuclear data of JENDL-3.2, JENDL-Fusion File and FENDL/E-1.0. The measured data are almost good agreement with the evaluated nuclear data. The measured neutron angular flux spectrum compared with the evaluation for vanadium assembly of 15 cm thickness at 24.9 degree angle point is shown in Fig. 1.

Fig. 1. The neutron flux spectrum at 25 degree for vanadium asembly of 15 cm thickness

Reference:
(1)Y. Oyama, H. Maekawa, Nucl. Instrum. Meth.,A245, 173

[^14]
VI-A-3

Measurement of Reaction Cross Sections of Fission Products Induced by D-T Neutrons

Isao Murata, Daisuke Nakano and Akito Takahashi

The incineration of nuclear wastes, namely, minor actinides and fission products, has been widely investigated. With the view of future application of fusion reactor to incineration of fission products, we measured the ${ }^{129} \mathrm{I}(\mathrm{n}, 2 \mathrm{n}){ }^{128} \mathrm{I}$ reaction cross section by D-T neutrons with the activation method.

The measurement was carried out using a continuous D-T neutron source of OKTAVIAN facility of Osaka University, Japan. The sample was a sealed source of ${ }^{129} \mathrm{I}$, which was set up on the front surface of the water cooled fixed tritium target assembly and in the end section of a pneumatic tube of the irradiation and sample transport system. The effective reaction energy and neutron flux were determined by using Nb and Zr foils. The irradiating, cooling and counting periods were 60,5 and 75 minutes in each run. After retrieving the sample by the pneumatic sample transport system, the gamma-rays from the irradiated sample were measured with a $\mathrm{Hp} \cdot \mathrm{Ge}$ detector.

The measured cross sections of ${ }^{129} \mathrm{I}(\mathrm{n}, 2 \mathrm{n}){ }^{128} \mathrm{I}$ reaction in the neutron energies of $13.6,14.2$ and 14.6 MeV were $1.53 \pm 0.20,1.61 \pm 0.21$ and $1,58 \pm$ 0.21 barn, respectively. In the determination of cross sections, a recently measured emission probability for the 443 keV gamma-ray emitted by the β decay of ${ }^{128}$ I was referred as 0.12613 ± 0.00077 in Ref. (1). The evaluation of JENDL-3.2 underestimates the cross sections by about 9% to the experimental result.

However, if emission probability is quoted from Table of Isotope ${ }^{(2)}$, the measured cross sections are $1.14 \pm 0.15,1.20 \pm 0.16$ and 1.18 ± 0.16 barn, respectively, as described else where ${ }^{(3)}$. In this case, JENDL-3.2 overestimates the cross sections by about 25%.

Reference:
(1) H. Miyahara, et al., Nucl. Instr. and Meth. in Phys. Res. A 353 (1994) 229.
(2) Table of Isotopes, Eighth Edition, John Wiley \& Sons, Inc. (1996).
(3) D. Nakano et al., Proc. of the 1997 Symposium on Nuclear Data, JAERI, Tokai, Nov.27~28, 1997, to be published.

VI-A-4

Measurement of Nuclear Reaction Cross Sections of ${ }^{9} \mathrm{Be}$ induced by Low Energy Deuteron

A.Takahashi, K.Ochiai, K. Ishii, H. Miyamaru

Recently, beryllium (${ }^{9} \mathrm{Be}$) metal and materials compounded ${ }^{9} \mathrm{Be}$ are prospective candidates for the first wall materials in of future fusion reactor. So we have measured the nuclear reaction cross sections of ${ }^{9} \mathrm{Be}$ induced by low energy deuteron.

This work has been done using OKTAVIAN at Osaka University and the tandem Pelletron 5SDH-2 at Kobe University of Mercantile Marine. A thick ${ }^{9} \mathrm{Be}$ metal foil $(100 \mu \mathrm{~m})$ on an aluminum backing metal was used as the target. Charged particles emitted by ${ }^{9} \mathrm{Be}(\mathbf{d}, \mathbf{x})$ reactions have been measured with a Si-Surface Barrier Detector (SSBD) set up at $\theta_{\text {lab }}=90^{\circ}$. Also, aluminum thin foil was set up in front of the SSBD for the screening of scattering deuteron and separation of the charge particles spectrum. As a result of the experiment, cross section of ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{p})^{10} \mathrm{Be}$ below 1000 keV was obtained, e.g., $0.6-1.6 \mu \mathrm{barn} / \mathrm{sr}$ between 180 and 250 keV . The energy dependent ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{p})^{10} \mathrm{Be}$ reaction cross section was reduced considering bare coulomb barrier transmission coefficient. Since the cross section might be enhanced by electron screening effect in ${ }^{9}$ Be metal especially in lower energy region, We would try to measure the cross section in such a energy region aiming at investigation for very low energy nuclear reaction theory.

Reference:

(1) J.A.Biggerstaff, R.F.Hood, H.Scott and M.T.McEllistrem, Nucl.Phys. 36(1962)
(2) C.Rolf, Somorjai, Nucl. Instr. and Meth. B 99 (1995) 297-300

B. Department of Chemistry

VI-B-1

Specific Fission J-Window and Angular Momentum Dependence of the Fission Barrier

Hiroshi Baba*, Atushi Shinohara ${ }^{\dagger}$, Tadashi Saito*, Naruto Takahashi* and Akihiko Yokoyama*

A paper on this subject was published in Journal of the Physical Society of Japan, Vol. 66, No. 4 (1997) pp. 998-1009 with the following abstract.

Abstract

: A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barrier for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer's model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ($\gamma=2$ for $T \geq 1.0 \mathrm{MeV}$ and 0.5 for $T<1.0$) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics.

[^15]
VI-B-2

Role of Effective Distance in the Fission Mechanism Study by the Double-Energy Measurement for Uranium Isotopes

Hiroshi Baba ${ }^{\ddagger}$, Tadashi Saito ${ }^{\ddagger}$, Naruto Takahashi ${ }^{\ddagger}$, Akihiko Yokoyama ${ }^{\ddagger}$, Takahiro Miyauchi ${ }^{\ddagger}$, Sigehisa Mori ${ }^{\ddagger}$, Daisaku Yano ${ }^{\ddagger}$, and Yoshihiro Nakagome ${ }^{\S}$

A paper on this subject was published in Journal of Nuclear Science and Technology, Vol. 34, No. 9 (1997) pp. 871-881 with the following abstract.

Abstract

: Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of ${ }^{235,233} \mathrm{U}$ and proton-induced fission of ${ }^{238} \mathrm{U}$ at the $15.8-\mathrm{MeV}$ excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission.

[^16]
VI-B-3
 Charge Degree of Freedom as a Sensitive Probe for Fission Mechanism

A paper on this subject was published in Journal of Radioanalytical and Nuclear Chemistry, Vol. 223, No. 1-2 (1997) pp. 99-120 with the following abstract.

Abstract

: The role of the charge degree of freedom in the heavy-ion-induced fission was investigated by carrying out a systematic analysis of radiochemically observed charge distribution in the fission of ${ }^{238} \mathrm{U}$ with ${ }^{12} \mathrm{C}$ ions of the incident energy between 85 and 140 MeV , particularly in connection with the energy given to the compound system. The charge distribution was found to follow essentially identical systematics as those which govern the light-ion fission except for the extremely weak energy dependence of the most probable charge Z_{p}. That is, values of the derivative of Z_{p} with respect to the energy were found quite small, or nearly zero, in the heavy-ion fission as compared with those of the light-ion fission. According to an analysis combining the derivatives of Z_{p} and fission neutron data, it was deduced that the excess energy given to the fused system was completely spent in the form of pre-scission neutrons and hence the number of post-scission neutrons remained constant as in the case of light-ion fission. The observed charge distribution was reproduced under the conditions that the relaxation of the charge degree of freedom be very fast and that the separation between the two potential fragments at the moment when the charge degree of freedom has been frozen is determined by using Viola's systematics on the fragment kinetic energy.

[^17]
VII. Power Reactor and Nuclear Fuel Development Corp.

A. Nuclear Fuel Technology Development Division

VII-A-1 Measurement of Neutron Cross Section and Resonance Integral of the Reaction ${ }^{133} \mathrm{Cs}(\mathrm{n}, \gamma){ }^{134} \mathrm{Cs}$

Shoji Nakamura, Hideo Harada and Toshio Katoh

I. Introduction

More accurate neutron cross section data of long-lived fission product nuclides are of special importance for the transmutation study. In the case of the transmutation using reactor neutrons, particularly, the thermal neutron capture cross section (σ_{0}) and the resonance integral (I_{0}) are needed.

The present experiment was designed to measure more reliable data of the cross section and resonance integral for the formation of the isomeric state ${ }^{134 m} \mathrm{Cs}$ and for the ground state ${ }^{1348} \mathrm{Cs}$ of the ${ }^{133} \mathrm{Cs}(\mathrm{n}, \gamma){ }^{134} \mathrm{Cs}$ reaction separately.

II. Experiment

The spec-pure (99.99\%) cesium chloride powder was used as targets. The targets were prepared as following manner: First, cylindrical quartz cases (7 mm in outer diameter, 1 mm in thickness and 8 mm in outer length) were weighed on a microbalance (Mettler model-UM3). About 12 mg CsCl powder was poured into each weighing quartz case. They were housed in a oven and then heated at temperature up to $120^{\circ} \mathrm{C}$ for about 100 min in order to make CsCl powder anhydrous. After the end of heating, quartz cases were reweighed immediately on the microbalance. The amount of CsCl was determined quantitatively from the gain in weight of the quartz case. Finally, after weighing, each quartz case was sealed with a quartz plug and the ceramic bond whose principal component was aluminum oxide.

The irradiation of the target was performed with the Rikkyo Research Reactor at Rikkyo University, which reactor type is commonly known as TRIGA MK-II. Each target was housed in a polyethylene irradiation capsule, and placed in a rotary specimen rack (RSR), which was located in the reflector surrounding the reactor core. Some of targets were irradiated without a Cd shield capsule and others within a Cd shield capsule, which was 1 mm in thickness, 22 mm in outer diameter and 63 mm in outer length A Cd shield capsule was used in order to reduce the neutron flux at the irradiation position. In order to monitor the neutron flux, the wires of $0.112 \mathrm{wt} \% \mathrm{Au} / \mathrm{Al}$ alloy (0.510 mm in diameter) and $0.46 \mathrm{wt} \% \mathrm{Co} / \mathrm{Al}$ alloy (0.381 mm in diameter) were used as activation detectors.

A high purity Ge detector was used to measure the γ-rays from the irradiated targets. Its performance was characterized as a 90% relative efficiency to a $3^{\prime \prime} \times 3^{\prime \prime}$ $\mathrm{NaI}(\mathrm{Tl})$ detector and 2.1 keV FWHM at 1.33 MeV peak of ${ }^{60} \mathrm{Co}$. The full energy peak efficiencies of the detector were calibrated with the standard γ-ray sources of ${ }^{152} \mathrm{Eu}$ and
${ }^{133} \mathrm{Ba}$. The signals from the detector were fed to a fast data acquisition system, and then γ-ray spectra measured were recorded on a memory of a personal computer; the details of the data taking system were described elsewhere ${ }^{1)}$.

III. Result

Figure 1 shows the γ-ray spectra emitted from the Cs targets irradiated without and within a Cd shield capsule for 2 hours measurement, respectively. The γ-rays, originated from the isomeric state ${ }^{134 \mathrm{~m}} \mathrm{Cs}$ and the ground state ${ }^{1348} \mathrm{Cs}$ induced by the ${ }^{133} \mathrm{Cs}(\mathrm{n}, \gamma)$ reaction, were seen at the energies of $127,563,569,605,796$ and 802 keV . The γ-rays were used to estimate the activities, the half-lives and the reaction rates.

The half-life of the ${ }^{134 \mathrm{~m}} \mathrm{Cs}$ was determined by following the decay of $127 \mathrm{keV} \gamma$-ray intensity in order to identify the $127 \mathrm{keV} \gamma$-ray peak as that of ${ }^{134 \mathrm{~m}} \mathrm{Cs}$. The resultant half-life was measured as 2.913 ± 0.003 hours. The present value was in good agreement with the evaluated value of $2.914 \pm 0.003(h)^{2)}$.

Fig. 1 Gamma-ray spectra of Cs targets irradiated without and within a Cd shield capsule by reactor neutrons

The analyses of the reaction rates of the ${ }^{133} \mathrm{Cs}$ targets and the flux monitors irradiated without and within a Cd shield capsule have given the thermal cross sections
and the resonance integrals for the ${ }^{133} \mathrm{Cs}(\mathrm{n}, \gamma){ }^{134 \mathrm{~m}, 1348} \mathrm{Cs}$ reaction as shown in Table1.
The thermal neutron capture cross section leading to the ${ }^{134 m+8} \mathrm{Cs}$ agreed with the evaluated value and one leading to ${ }^{134 \mathrm{~m}} \mathrm{Cs}$ was in good agreement with the data reported previously. The value of the isomer ratio estimated by the cross sections given in this work was in good agreement with the previous ones. On the other hand, the value of the resonance integral was 32% smaller than that reported by Steinnes et al ${ }^{3}$.

Table 1 Results of neutron cross sections, resonance integrals and isomer ratio for the ${ }^{133} \mathrm{Cs}(\mathrm{n}, \gamma){ }^{134 \mathrm{~m}, 1348} \mathrm{Cs}$ reaction

	Present work		Previous measurements	
	$\begin{gathered} \sigma_{0} \\ \text { (barns) } \end{gathered}$	$\begin{gathered} \mathrm{I}_{0} \\ \text { (barns) } \end{gathered}$	$\begin{gathered} \sigma_{0} \\ \text { (barns) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{0} \\ \text { (barns) } \end{gathered}$
to ${ }^{134 m} \mathrm{Cs}$	2.70 ± 0.15	23.2 ± 2.2	$2.82 \pm 0.07{ }^{(4)}$	$34.4 \pm 1.9^{(4)}$
			$2.44 \pm 0.15{ }^{(5)}$	
to ${ }^{1348} \mathrm{Cs}$	26.3 ± 1.3	274 ± 23		
to ${ }^{134 m+8} \mathrm{Cs}$	29.0 ± 1.3	297 ± 23	$30.4 \pm 0.8^{(4)}$	$461 \pm 25^{(4)}$
			$29.0 \pm 1.5^{(6)}$	$437 \pm 26^{(3)}$
			$28.7 \pm 0.7^{(7)}$	
isomer ratio	0.085 ± 0.006		$0.085 \pm 0.003^{(4)}$	
			$0.086 \pm 0.013^{(8)}$	

Acknowledgments

The authors wish to acknowledge their indeptedness to Prof. K. Tomura of Rikkyo University for his help and valuable discussions on the neutron irradiations and the activity measurements and to the crew of the Rikkyo Research Reactor for their cooperation.

This work was supported by PNC, and support by the Inter-University program for the Joint Use of Rikkyo University Reactor was also helpful and acknowledged.

References:

1) Harada, H., Nakamura, S., Ogata, Y., Katoh, T.: J. Nucl. Sci. Technol., 32, 395 (1995).
2) Firestone, R.B., Shirley, V.S.: "Table of Isotopes", (8th ed.), John Wiley \& Sons, Inc. New York (1996).
3) Steinnes, E.: J. Inorg. Nucl. Chem., 34, 2699 (1972).
4) Baerg, A.P., Bartholomew, R.M.: Can. J. Chem., 38, 2528 (1960).
5) Keisch, B.: J. Inorg. Nucl. Chem., 17, 180 (1961).
6) Pomerance, H.: Phys. Rev., 83, 641 (1951).
7) Takiue, M., Ishikawa, H.: Nucl. Instr. And Meth., 148, 157 (1978).
8) Bishop, C.T., Vonach, H.K., Huizenga, J.R.: Nucl. Phys., 60, 241 (1964).

VII-A-2

Measurement of Thermal Neutron Capture Cross Section and Resonance Integral of the Reaction ${ }^{12 T}(\mathrm{n}, \gamma)^{128 I}$
Toshio KATOH ${ }^{1)}$, Shoji NAKAMURA, Hideo HARADA and Yoshimune OGATA ${ }^{2)}$

1. Introduction

The measurement of the thermal neutron $(2,200 \mathrm{~m} / \mathrm{s}$ neutron) capture cross section $\left(\sigma_{0}\right)$ and the resonance integral $\left(I_{0}\right)$ of the reaction ${ }^{127} \mathrm{I}(\mathrm{n}, \gamma)^{128} \mathrm{I}$ were carried out along with the measurement of those of the reaction ${ }^{129} \mathrm{I}(\mathrm{n}, \gamma){ }^{130} \mathrm{I}$ by the activation method in order to obtain fundamental data for research on the transmutation of the nuclear wastes. The most of references published previously reported either of σ_{0} or I_{0}. The purpose of the present experiment is to perform simultaneous measurement of the σ_{0} and the I_{0} of ${ }^{127} \mathrm{I}$ by using an activation method.

2. Experiment

The targets of the iodine including ${ }^{127} \mathrm{I}$ and ${ }^{129} \mathrm{I}$ were irradiated within and without a cadmium shield capsule in the Rotary Specimen Rack(RSR) of Rikkyo University Research Reactor. Two kinds of flux monitor wires, $\mathrm{Co} / \mathrm{Al}$ and $\mathrm{Aw} / \mathrm{Al}$ wires, were irradiated at the same position as the iodine targets to monitor the thermal neutron flux and the fraction of the epithermal component(Westcott's index).

The yields of γ-rays emitted from the irradiated targets were measured using a high purity Ge detector with a 90% relative efficiency and an energy resolution of 2.1 keV FWHM at 1.33 MeV . Gamma-ray spectra obtained are shown in Fig. 1.

To correct the full energy peak efficiencyfor the pulse pile-up loss, the counting loss of pulse from a pulser was measured in advance as a function of the ratio of ADC live time to its real time. The correction factor of the pulse pile-up loss for the γ-rays detected was obtained by inserting the ratio of ADC live time to the real time for each measurement into this function.

1) Power Reactor and Nuclear Fuel Development Corp. and Gifu College of Medical Technology
2) Radioisotope Research Center, Nagoya University

Gamma-ray spectra were taken successively and the decay of peak intensity of the $443 \mathrm{keV} \gamma$-ray of ${ }^{128} \mathrm{I}$ were followed. A half-life of ${ }^{128} \mathrm{I}$ obtained from the decay of the $443 \mathrm{keV} \gamma$-ray intensity was $24.72 \pm 0.03 \mathrm{~min}$.

The radioactivities of the flux monitor wires were measured with the same Ge detector. The thermal neutron flux at the irradiation position was 4.6×10^{11} $\mathrm{n} /\left(\mathrm{cm}^{2} \cdot \mathrm{~s}\right)$ and the epithermal index in the Westcott's convention was 0.038 .

3. Result

In Fig. 1, γ-ray peaks from ${ }^{128}$ I produced by the ${ }^{127} \mathrm{I}(\mathrm{n}, \gamma){ }^{128} \mathrm{I}$ reaction were observed at energies of 443,527 and 969 keV . The intense γ-ray peak of ${ }^{128} \mathrm{I}$ at 443 keV was used for the determination of the reaction rate to generate the ${ }^{128} \mathrm{I}$.

When an effective cross section $\hat{\sigma}$ for well moderated neutrons is expressed by the Westcott convention, the reaction rate R is given by the following equation,

$$
\begin{equation*}
R=n v_{0} \hat{\sigma}, \tag{1}
\end{equation*}
$$

where $n v_{0}$ is the "neutron flux" in the Westcott convention with the neutron density n, including thermal and epithermal neutrons, and with the velocity of neutron $v_{0}=$ $2,200 \mathrm{~m} / \mathrm{s}$, and

$$
\begin{equation*}
\hat{\sigma}=\sigma_{0}\left[g G_{\mathrm{th}}+r\left(T / T_{0}\right)^{1 / 2} s_{0} G_{e p i}\right] \tag{2}
\end{equation*}
$$

Here, σ_{0} is the reaction cross section for $2,200 \mathrm{~m} / \mathrm{s}$ neutrons, and g the measure of the cross section deviation from the $1 / v$ law in the thermal energy region. The quantity $r\left(T / T_{0}\right)^{1 / 2}$ gives the fraction of epithermal neutron in the neutron spectrum, and s_{0} is defined by

$$
\begin{equation*}
s_{0}=\frac{2}{\pi^{1 / 2}} \cdot \frac{\Gamma_{0}}{\sigma_{0}} \tag{3}
\end{equation*}
$$

with Γ_{0}, the resonance integral after subtracting the $1 / v$ component. The $G_{b h}$ and $G_{e p i}$ denote self-shielding coefficients for thermal and epithermal neutrons, respectively. The value of $g G_{\mathrm{th}}$ was set to unity in the following analysis, since g and $G_{t h}$ are almost unity in this experiment. The value of $G_{e p i}$ was also set to unity.

Equation(1) with Eqs.(2) and (3) is written in simplified forms as $R / \sigma_{0}=\phi_{1}+\phi_{2} s_{0}$,
for irradiation without a Cd shield capsule, and $R^{\prime} / \sigma_{0}=\phi_{1}^{\prime}+\phi_{2}^{\prime} s_{0}$, for irradiation within a Cd shield capsule.
The values of simplified flux factors, $\phi_{1,2}$ and $\phi_{1,2}$ were determined using the R and R^{\prime} values of the flux monitor wires, $\mathrm{Co} / \mathrm{Al}$ and $\mathrm{Au} / \mathrm{Al}$. The $\phi_{1,2}$ and $\phi_{1,2}^{\prime}$
obtained are summarized in Table 1.
Since Eqs.(4) and (5) give a relation,

$$
\begin{equation*}
s_{0}=-\frac{\phi_{1}-\phi_{1}^{\prime}(R / R)}{\phi_{2}-\phi_{2}^{\prime}(R / R)} \tag{6}
\end{equation*}
$$

the s_{0} value of the ${ }^{127} \mathrm{I}(\mathrm{n}, \gamma)^{128} \mathrm{I}$ reaction is deduced from the R / R^{\prime} value of irradiated ${ }^{127}$ I samples. The value of σ_{0} is obtained by substituting the s_{0} into Eq.(4). The value of Γ_{0} is then obtained using Eq.(3).

The resonance integral I_{0} is calculated by assuming the Cd cut-off energy to be 0.55 eV , where the effective thickness of the Cd shield was estimated to be 1.4 mm by considering neutrons penetrating obliquely through the cylindrical Cd shield capsule of thickness of 1.0 mm . Then, the resonance integral I_{0} is given by

$$
\begin{equation*}
I_{0}=I_{0}^{\prime}+0.429 \sigma_{0} \tag{7}
\end{equation*}
$$

where $0.429 \sigma_{0}$ is the $1 / v$ contribution.
The thermal neutron capture cross section $\left(\sigma_{0}\right)$ and the values of s_{0}, Γ_{0} and I_{0} obtained from the above analysis are shown in Table 2. Weighted average of the σ_{0} and the I_{0} of the reaction ${ }^{127} \mathrm{I}(\mathrm{n}, \gamma)^{128} \mathrm{I}$ obtained were 6.40 ± 0.34 barns and 162 ± 12 barns, respectively.

Table 1 Results of neutron flux measurements in Rotary Specimen Rack Rikkyo Reactor

Irradiation	irradiation		ϕ_{1} or ϕ_{1}^{\prime}	ϕ_{2} or ϕ_{2}^{\prime}
type	period		$\left(10^{11} \mathrm{n} /\left(\mathrm{cm}^{2} \mathrm{~s}\right)\right)$	
Without Cd	10 min		4.618 ± 0.098	0.173 ± 0.013
Within Cd	10 min		0.122 ± 0.012	0.178 ± 0.005

Table 2 Present results of measurement of σ_{0} of I_{0} of ${ }^{127} \mathrm{I}$

	Run 1	Run 2	Run 3	Weighted average
σ_{0} (barns)	6.37 ± 0.35	6.68 ± 0.36	6.09 ± 0.33	6.40 ± 0.34
s_{0}	28.7 ± 1.6	26.5 ± 1.5	$29,5 \pm 1.7$	28.0 ± 1.5
Γ_{0} (barns)	162 ± 13	157 ± 12	160 ± 12	159 ± 12
I_{0} (barns)	164 ± 13	160 ± 13	162 ± 13	162 ± 12

Fig. 1. Gamma-ray spectra of ${ }^{12 T}-{ }^{129 I}$ targets irradiated without and within a Cd shield capsule

VII-A-3 Measurement of Thermal Neutron Cross Section and Resonance Integral of the Reaction ${ }^{135} \mathrm{Cs}(\mathrm{n}, \gamma){ }^{136} \mathrm{Cs}$
 T. Katoh ${ }^{1)}$, S. Nakamura, H. Harada, Y. Hatsukawa ${ }^{2}$, N. Shinohara ${ }^{2}$, K. Hata ${ }^{2)}$, K. Kobayashi ${ }^{2)}$, S. Motojima ${ }^{2)}$, M. Tanase ${ }^{2)}$

A paper on this subject was published in J. Nuclear Science and Technology vol. 34, no.5, pp431~438(1997) with a following abstract.

The thermal neutron $\left(2,200 \mathrm{~m} / \mathrm{s}\right.$ neutron) capture cross section $\left(\sigma_{0}\right)$ and the resonance integral $\left(\mathrm{I}_{0}\right)$ of the reaction ${ }^{135} \mathrm{Cs}(\mathrm{n}, \gamma){ }^{136} \mathrm{Cs}$ were measured by means of an activation method to obtain fundamental data for research on the transmutation of nuclear waste. Targets of radioactive cesium, which include ${ }^{135} \mathrm{Cs}$ and ${ }^{137} \mathrm{Cs}$ as well as stable ${ }^{133} \mathrm{Cs}$, were irradiated with reactor neutrons within or without a Cd shield case. The $\mathrm{Co} / \mathrm{Al}$ and $\mathrm{Au} / \mathrm{Al}$ alloy wires as activation detectors were irradiated together with cesium samples to monitor the neutron flux and the fraction of the epithermal part(Westcott's index). A high purity Ge detector was used for the γ-ray measurements. \quad The ${ }^{137} \mathrm{Cs}$ nuclide was used as a tracer of ${ }^{135} \mathrm{Cs}$, since ${ }^{135} \mathrm{Cs}$ decays through a β-transition, but does not emit γ-rays. The ratio of the number of nuclei of ${ }^{135} \mathrm{Cs}$ to that of ${ }^{137} \mathrm{Cs}$ in the target was measured with a quadrupole mass spectrometer. This ratio and the ratio of activity of ${ }^{136} \mathrm{Cs}$ to that of ${ }^{137} \mathrm{Cs}$ in the irradiated target were used for deduction of the σ_{0} and the I_{0} of ${ }^{135} \mathrm{Cs}$. The σ_{0} and the I_{0} of the reaction ${ }^{135} \mathrm{Cs}(\mathrm{n}, \gamma){ }^{136} \mathrm{Cs}$ were 8.3 ± 0.3 barn and 38.1 ± 2.6 barn, respectively. The σ_{0} is in agreement with that reported by Baerg et al., while the I_{0} is about $2 / 3$ of that reported by Baerg et al.

[^18]2) Japan Atomic Energy Research Institute

VIII. Tohoku University

A. Department of Quantum Science and Energy Engineering

VIII-A-1 Measurement of ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{p})^{14} \mathrm{C}$ Cross Section for $\mathrm{kT}=25.3 \mathrm{keV}$ Maxwellian Neutrons using a Gridded Ionization Chamber
Toshiya Sanami, Mamoru Baba*, Isamu Matsuyama, Sigeo Matsuyama Takehide Kiyosumi, Yasushi Nauchi and Naohiro Hirakawa

A paper on this subject has been published in Nuclear Instruments and Methods A394 (1997) p.368-373 with the following abstract:

We measured the ${ }^{14} \mathrm{~N}(\mathrm{n}, \mathrm{p}){ }^{14} \mathrm{C}$ reaction cross section for neutrons with a quasi Maxwellian distribution of $\mathrm{kT}=25.3 \mathrm{keV}$ which is one of the key parameters for the s-process nucleosynthesis in astrophysics. Protons were detected with high efficiency using a gridded ionization chamber. We employed a thick Li target and a 1.912 MeV proton beam for neutron production, and a vacuumevaporated melamine $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6}\right)$ film as a ${ }^{14} \mathrm{~N}$ sample. The absolute cross section was determined relatively to the ${ }^{6} \mathrm{Li}(\mathrm{n}, \mathrm{t}) \boldsymbol{\alpha}$ cross section by measuring the triton yield from a ${ }^{6} \mathrm{LiF}$ film in place of melamine. Our result ($1.70 \pm 0.08 \mathrm{mb}$) is approximately a factor 2 larger than the value reported in an ealier direct measurement for the same Maxwellian neutron spectrum; it is consistent with results deduced from monoenergetic neutrons or inverse reaction.

VIII-A-2

Measurements of Double-differential Neutron Emission Cross Sections and Development. of a Wide Range Charged Particle Spectrometer for ten's MeV Neutrons

Y.Nauchi, M.Baba, T.Kiyosumi, T.Iwasaki, T.Sanami, S.Matsuyama, N.Hirakawa

Su.Tanaka ${ }^{\text {a }}$, S.Meigo ${ }^{\text {b }}$, H.Nakashima ${ }^{\text {b }}$, T.Nakamura ${ }^{\text {a }}$

A paper on this subject has been published in JAERI-Conf 97-005 (1997) p.126-131 with the following abstract:

We measured (n, xp), (n, xd) cross sections of C and Al for $\mathrm{En}=64.3 \mathrm{MeV}$ neutrons at the ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})$ neutron source facility at TIARA (Takasaki Establishment, JAERI) by using a conventional SSD-NaI telescope placed in the air. They show characteristic energy and angular dependence in high energy region.

In order to extend the measurements to low energy protons and α particles, a spectrometer consisting of low pressure gas counters and BaF_{2} scintillators is now under development. A low threshold for low energy α particles will be achieved by using the gas counter. The particle identification over a wide energy range will be achieved by combining the $\Delta \mathrm{E}-\mathrm{E}$ method for low energy particles with the pulse shape discrimination (PSD) method of BaF_{2} for high energy particles.

[^19]
VIII-A-3

Measurements of Double-differential Neutron Emission Cross Sections of ${ }^{6} \mathrm{Li}$ and ${ }^{\top} \mathrm{Li}$ For 18 MeV Neutrons
Masanobu Ibaraki, Mamoru Baba, Shigeo Matsuyama, Toshiya Sanami, Than Win, Takako Miura and Naohiro Hirakawa

A paper on the subject has been published in JAERI-Conf 97-005 (1997) p.164-168 with the following abstract:

Double-differential neutron emission cross sections of ${ }^{6} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}$ were measured for 18 MeV neutrons at Tohoku University 4.5 MV Dynamitron facility. Neutron emission spectra were obtained down to 1 MeV at 13 angles with energy resolution good enough to separate discrete levels. A care was taken to eliminate the sample-dependent background due to parasitic neutrons. Experimental results were in fair agreement with the JENDL-3.2 data and a simple model considering a threebody breakup process and discrete level excitations.

VIII-A-4 ($n, \alpha)$ Cross Section Measurement of Gaseous Samples using Gridded Ionization Chamber
 - Cross Section Determination-

Toshiya Sanami, Mamoru Baba, Keiichiro Saito, Yasutaka Ibara and Naohiro Hirakawa

A paper on the subject has been published in JAERI-Conf 97-005 (1997) p.176-181 with the following abstract:

We are developing a method of (n, α) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve the problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the ${ }^{12} \mathrm{C}\left(\mathrm{n}, \alpha_{0}\right)^{9} \mathrm{Be}$ measurement. We applied this method to the ${ }^{16} \mathrm{O}(\mathrm{n}, \alpha){ }^{13} \mathrm{C}$ cross section around 14.1 MeV .

B. Laboratory of Nuclear Science

VIII-B-1

Angular correlations for the ${ }^{12} \mathrm{C}\left(e, e^{\prime} n\right)^{11} \mathrm{C}$ reaction in the giant resonance region

T. Saito, S. Suzuki, K. Takahisa, C. Takakuwa, M. Oikawa,
T. Tohei* T. Nakagawa* and K. Abe ${ }^{\dagger}$

A paper on this subject was published in Phys. Rev. Lett. 78, 1018 (1997) with the following abstract:

Angular correlations for the ${ }^{12} \mathrm{C}\left(e, \mathrm{e}^{\prime} \mathrm{n}\right){ }^{12} \mathrm{C}$ reaction in the giant resonance region lave been measured for forward scattering at an effective momentum transfer of 0.35 fm^{-1}. The angular correlations for the ground-state transition indicates a strong forwardbackward asymmetry at the peak of the giant dipole resonance ($\omega=22.5 \mathrm{MeV}$), which is different from the nearly symmetric angular correlations observed for the ${ }^{12} \mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{0}\right)^{11} \mathrm{~B}$ reaction. Recent RPA predictions fail to reproduce the experimental angular correlations for both ($e, e^{\prime} n_{0}$) and ($e, e^{\prime} p_{0}$), predicting the opposite patterns to those observed.

[^20]VIII-B-2 Study of the giant resonance of ${ }^{16} \mathrm{O}$ by the (e,e'n) reaction
K. Kouichi, T. Saito, Y. Suga ${ }^{1}$, T. Endo, K. Yoshida, K. Takahashi, T. Nakagawa ${ }^{2}$, K. Abe ${ }^{3}$ and H. Ueno ${ }^{4}$

In study of the giant resonance, ${ }^{16} \mathrm{O}$ nucleus is one of the well studied nuclei. The cross section of the GDR in ${ }^{16} \mathrm{O}$ consists of the two major peaks corresponding to mainly $\left(1 \mathrm{~d}_{5 / 2}, 1 \mathrm{p}_{3 / 2}^{-1}\right),\left(1 \mathrm{~d}_{3 / 2}, 1 \mathrm{p}_{3 / 2}^{-1}\right) 1 \mathrm{p}-1 \mathrm{~h}$ configurations. In addition, ${ }^{16} \mathrm{O}\left(\alpha, \alpha^{\prime} \alpha\right),{ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \alpha\right)$ and ${ }^{15}$. $\mathrm{N}\left(\vec{p}, \gamma_{0}\right)$ experiments have revealed that the IS- and IV-GQR exist in the low and high GDR region respectively. In this report we introduce the result of the ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{n}\right)$ angular distribution measurement. Angular distributions are sensitive to resonances and they reflect an existence of a weak resonance in a strong one through the effect of interference between these resonances. So we intend to see the isospin dependency of the interference effect between the GDR and the IS- or IV-GQR. An RPA calcuration ${ }^{1)}$ with the SK3 effective interaction supports this cxpectation. It predicts that an (e, e' n_{0}) angular distribution at low excitation energy shows a strong backward peak because of the interference between the GDR and the IS-GQR, but shows a strong forward peak at high excitation energy because of that between the GDR and the IV-GQR.

The ${ }^{16} \mathrm{O}\left(\mathrm{c}, \mathrm{e}^{\prime} \mathrm{n}\right)$ experiment has been done using a 129 MeV continuous electron beam. Scattered electrons were momentun analyzed with a double-focused spectrometer settled at $\theta_{\mathrm{e}}=30^{\circ}$ in the excitation energy range of $20 \sim 30 \mathrm{MeV}$. It corresponds to a momentum transfer $0.33 \mathrm{fm}^{-1}$. Neutrons were detected by the 10 liquid scintillation counters surround the target at a distance of 1 meter. The neutron energy was decided by the TOF method. We used a natural target of $\mathrm{Li}_{2} \mathrm{O}$ ($100.6 \mathrm{mg} / \mathrm{cm}^{2}$, mainly ${ }^{16} \mathrm{O}$ and ${ }^{7} \mathrm{Li}$).

Figure 1 shows a missing energy distribution. We can see n_{0} and n_{3} peaks. These two peaks show a lp-1h coherency of the giant resonance, because the configurations of the residual nucleus ${ }^{15} \mathrm{O}$ corresponding to n_{0} and n_{3} decays are $1 \mathrm{p}_{1 / 2}^{-1}$ and $1 \mathrm{p}_{3 / 2}^{-1}$ of ${ }^{16} \mathrm{O}$ respectively. On the other hand for near another decay channels n_{1}, n_{2} and n_{4}, the residual nucleus ${ }^{15} \mathrm{O}$ has even parity and its configuration is much more complex than that of n_{0} or n_{3}.

Figure 2 shows ${ }^{16} \mathrm{O}\left(e, e^{\prime} \mathrm{n}_{0}\right)$ angular distributions. At the whole excitation energy we can see two peaks at q - and anti q-direction. This is the specific feature that the resonance is mainly El. But the strengths of these peaks are not equal. It is due to the fact that E2 resonance exists at the same excitation enrgy. The forward peak at the low excitation energy is bigger than the backward one and this feature is much different

[^21]from the prediction by the RPA calucuration. The angular distributions at the high excitation encrgy are same as lower ones. The RPA calcuration predicts a shape of the angular distribution well but does not reproduce the magnitude. Our results are similar to those of ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{0}\right)$ experiment ${ }^{2)}$ in the whole excitation energy at a similar momentunm transfer. However it is difficult to discuss the isospin dependency of the interference in the ($e, e^{\prime} p$) reaction since the contribution from a quasi-clastic process must be subtracted from the resonance.

Fig. 1. ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{n}\right)$ reaction missing energy distribution. The n_{0} stands for the reaction that residual nucleus ${ }^{15} \mathrm{O}$ is the ground state and $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$ and n_{4} stand for that ${ }^{15} \mathrm{O}$ is the excited state.

Fig. 2. ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{n}_{0}\right)$ angular distribution. θ is the angle of the neutron emission with respect to the direction of the momentum transfer. Solid lines are the χ^{2} fits by the Legendre polynomials. Dotted lines represent the RPA calculation ${ }^{1)}$ with the SK3 effective interaction. The calculations are normalised to the values of solid lines at $\theta=0^{\circ}$.

References:

1) M. Cavinato, M. Marangoni and A. M. Saruis : Phys.Lett. 163B (1985) 49.
2) V. F. Dmitriev, D. M. NIkolenko, S. G. Popov, I. A. Rachek and D. K. Toporkov : Nucl.Phys. A464 (1987) 237.

C. Cyclotron and Radioisotope Center

VIII-C-1 Neutron activation cross sections of ${ }^{12} \mathrm{C},{ }^{27} \mathrm{Al},{ }^{59} \mathrm{Co},{ }^{\text {na }} \mathrm{Cu}$, and ${ }^{209} \mathrm{Bi}$ nuclides in the energy range of 20 MeV to 150 MeV

E. Kim ${ }^{1}$, T. Nakamura', Y. Uwamino ${ }^{2}$, M. Imamura ${ }^{3}$, N. Nakao ${ }^{4}$, Su.Tanaka ${ }^{5}$

The neutron activation cross sections of ${ }^{12} \mathrm{C},{ }^{27} \mathrm{Al},{ }^{59} \mathrm{Co}$, ${ }^{\text {nat }} \mathrm{Cu}$ and ${ }^{209} \mathrm{Bi}$ nuclides have been measured in the quasi-monoenergetic p - Li neutron fields in the energy range of 20 MeV to 150 MeV . The irradiation experiments were performed at four cyclotron facilities of 1) INS of Univ. of Tokyo, 2) CYRIC of Tohoku Univ., 3) TIARA of JAERI, and 4) RIKEN. Our experimental data were compared with other experimental and calculated data and the ENDF/B-VI high energy file data.

1. INTRODUCTION

With the increasing use of the high energy and high intensity accelerators, the radioactivities induced in the accelerator materials, shielding materials and the air and water of accelerator facility bombarded by the primary accelerating charged particles as well as the secondary neutrons have become a serious problem. Nevertheless, neutron activation cross section data in the energy range above 20 MeV are very poor mainly due to very limited number of facilities having quasi-monoenergetic neutron fields. We measured the neutron activation cross sections of ${ }^{12} \mathrm{C},{ }^{27} \mathrm{Al},{ }^{59} \mathrm{Co}$, ${ }^{\text {na }} \mathrm{Cu}$, and ${ }^{209} \mathrm{Bi}$ nuclides by using the quasi-monoenergetic $\mathrm{p}-\mathrm{Li}$ neutron fields at four cyclotron facilities of 1) Institute for Nuclear Study (INS), University of Tokyo ${ }^{1)}$, 2) Cyclotron and Radioisotope Center (CYRIC), Tohoku University ${ }^{11}$, 3) Takasaki Research Establishment (TIARA), Japan Atomic Energy Research Institute ${ }^{2}$, and 4) Institute of Physical and Chemical Research (RIKEN) ${ }^{3)}$.

2. EXPERIMENT

The irradiation experiments were performed in the quasi-monoenergetic neutron fields produced by the ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})$ reaction, which have been established at three cyclotron facilities of the AVF cy clotron at INS for 20 to 40 MeV , of the AVF cyclotron at TIARA for 40 to 90 MeV , and of the Separate-Sector (Ring) cy clotron at RIKEN for 80 to 150 MeV . The Li-targets of 2 to 10 mm thicknesses were bombarded by proton beams of 20 to 150 MeV energies which were extracted from these cyclotrons. The neutrons produced in the forward direction from the target were transported through the collimator for sample irradiation and the proton beams passed through the target were swept out by the magnet to the beam dump at CYRIC, TIARA and RIKEN. The neutron spectra were measured with the TOF method using a NE213 liquid organic scintillator. The absolute neutron fluence was determined with the PRT(Proton Recoil counter Telescope) at TIARA, and with the Li activation method to detect the ${ }^{7} \mathrm{Be}$ activity from the ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$ reaction at CYRIC and RIKEN. The p-Li neutron field at INS has a small space and the neutron TOF measurement could not be done, then the neutron spectra measured at the CYRIC p-Li neutron field were used instead.

Table I summarizes the physical data of irradiation samples used at INS, TIARA and RIKEN. At INS, the samples were irradiated for 4 to 13 hours, and at TIARA and RIKEN the ir radiation time consisted of short irradiation time (1 to 2 hours under $120 \mathrm{MeV}, 30 \mathrm{~min}$ above 120 MeV) and long irradiation time (about 20 hours) by considering the half lives of produced nuclei.

The proton beam current during irradiation was recorded by the digital current integrator, connected to a multi-channel scaler with the dwelling time of $10 \mathrm{sec}, 60 \mathrm{sec}$ and 60 sec at INS, TIARA and RIKEN, respectively, to monitor fluctuations of the neutron fluence.

[^22]After the irradiation, the gamma rays emitted by the irradiated samples were measured with a high purity HP-Ge detector. These samples were counted several times to identify the halflives of the activities produced.

3. AN ALYSIS

Estimation of photo-peak area of gamma-ray spectra which were measured by the HPGe detector was done with the computer program for the automatic analys is of gamma-ray spectrum by Komura et al ${ }^{4)}$ or the direct counting of eye-fitting peak area only for very weak photo-peaks.

The reaction rates of radioisotopes identified from the gamma-ray spectra and the decay curves were estimated after corrected for the peak efficiency of Ge detector, the coincidencesumming effect, self-absorption effect in thick samples, and also for the beam current fluctuation during sample irradiation. The peak efficiency of the HP-Ge detector was determined by using the standard mixed gamma-ray source and the correction factor for self absorption of gamma rays in the samples was calculated by the Monte Carlo code, PEAK ${ }^{51}$ for the INS and TIARA experiments, but for the RIKEN experiment, the peak efficiencies of the HP-Ge detector including the self-absorption of the irradiated samples were calculated simultaneously by the electron-photon cascade Monte Calro code, EGS4 ${ }^{6}$, due to very thick samples as seen in Table I. The coincidence-summing effect caused by the coincidence detection of two or more gammarays in the gamma ray spectrum was corrected by using the SU MECC code ${ }^{7}$.

The obtained reaction rate is connected to neutron cross section $\sigma(\mathrm{E})$ as follows,

$$
\begin{equation*}
R=\int_{E h}^{E_{\operatorname{mx}}} \sigma(E) \cdot \phi(E) \cdot d E \tag{1}
\end{equation*}
$$

where $\phi(E)$ is the neutron fluence ($\mathrm{n} \cdot \mathrm{cm}^{-2} \cdot \mathrm{MeV}^{-1} \cdot$ Coulomb $^{-1}$), $E_{t h}$ the threshold energy and $E_{\max }$ the maximum energy of the monoenergetic peak neutrons.
The cross section at the effective energy of peak neutrons $\sigma\left(E_{c f f}\right)$ can be obtained, after corrected the contribution of low-energy tail neutrons to the obtained reaction rate as follows

$$
\begin{equation*}
\sigma\left(E_{e f f}\right)=\frac{R \cdot f}{\phi\left(E_{\text {peak }}\right)} \tag{2}
\end{equation*}
$$

The f value is the ratio of peak reaction rate from $E_{\text {min }}$ (minimum energy of the monoenergy peak) to $E_{\max }$ and total reaction rate from $E_{t b}$ to $E_{\max }$, the peak-to-total ratio of reaction rate, which is expressed as,

$$
\begin{equation*}
f=\frac{\int_{E_{\min }}^{E_{\max }} \sigma(E) \cdot \phi(E) \cdot d E}{\int_{E_{\max }}^{E_{\max }} \sigma(E) \cdot \phi(E) \cdot d E} \tag{3}
\end{equation*}
$$

The f value is at first estimated from the lowest peak neutron energy by using the measured neutron flux, $\phi(E)$ and the cross section, $\sigma(E)$, of the evaluated high energy data files, ENDF/B- $\mathrm{VI}^{8)}$ or experimental data complied by McLane et al. ${ }^{9}$. By using thus-obtained f value, the cross section at the higher peak neutron energy, $\left.\sigma E_{\text {eff }}\right)$ can be calculated from Eq.(2).

The statistical errors of the reaction rates were about 0.5% to 11% depending on the gamma-ray peak counts of irradiated samples. The errors of peak neutron fluences were between 12% and 14%. The error of the f value which was used for the correction of the contribution to the reaction rate due to the low-energy neutron tail was estimated to be 2% to 35% at maximum by combining the neutron flux error of 2% to 7% with the cross section error between 1% and 35% according to the variations observed for the published data.

4. RESULTS AND DISCUSSION

The neutron activation cross sections of 20 reactions occured in ${ }^{12} \mathrm{C},{ }^{27} \mathrm{Al},{ }^{59} \mathrm{Co},{ }^{\text {nat }} \mathrm{Cu}$, and ${ }^{209} \mathrm{Bi}$ nuclides were measured in the energy range of 20 to 150 MeV . As examples, Figs. 1 to

6 give the cross section data of $\left.{ }^{12} \mathrm{C}(\mathrm{n}, 2 \mathrm{n}),{ }^{27} \mathrm{Al}(\mathrm{n}, 2 \mathrm{n} \alpha)^{22} \mathrm{Na},{ }^{59} \mathrm{Co}(\mathrm{n}, 3 \mathrm{n}){ }^{57} \mathrm{Co},{ }^{\mathrm{nat}} \mathrm{Cu}(\mathrm{n}, \mathrm{sp})\right)^{58} \mathrm{Co}$ and ${ }^{20} \mathrm{Bi}(\mathrm{n}, \mathrm{xn})^{210 \cdot x} \mathrm{Bi}$ reactions, respectively, compared with other experimental data and ENDF/B-VI high energy file data. We found that the measured ${ }^{12} \mathrm{C}(\mathrm{n}, 2 \mathrm{n})^{11} \mathrm{C}$ cross section has a constant value of about 20 mb arn in the energy range above 40 MeV differently from the ENDF/B-VI data. The experimental cross section data of ${ }^{59} \mathrm{Co}\left(\mathrm{n}, 3 \mathrm{n},{ }^{57} \mathrm{Co}\right.$ show good agreement with the calculation data by Odano ${ }^{[10]}$. The obtained data of ${ }^{27} \mathrm{Al}(\mathrm{n}, 2 \mathrm{n} \alpha)^{22} \mathrm{Na},{ }^{\mathrm{na}}{ }^{\mathrm{C}} \mathrm{Cu}(\mathrm{n}, \mathrm{sp})^{58} \mathrm{Co}$ and ${ }^{209} \mathrm{Bi}(\mathrm{n}, \mathrm{xn})^{210 \cdot \mathrm{x}} \mathrm{Bi}$ were compared with the ENDF/B-VI high energy file data calculated with the ALICE code ${ }^{[1]}$ by Fakahori. Our experimental results for ${ }^{209} \mathrm{Bi}$ nuclide are generally in good agreement with the ENDF/B-VI data.

Reference

1) Y.Uno, Y.Uwamino, T.S.Soewarsono and T.Nakamura, Nucl. Sci. Eng. 122, 247 (1996).
2) N.Nakao, H.Nakashima, T.Nakamura, Sh. Tanaka, S.Tanaka, K.Shin, M.Baba, Y.Sakamoto and Y.Nakane, Nucl. Sci. Eng. 124, 228 (1996).
3) T.Nakamura, Proceeding of the 30th Midyear Topical Meeting, San Jose, California, 1997, published by Health Physics Society, p. 143
4) K.Komura, INS-TCH-9, Institute for Nuclear Study, University of Tokyo(1974)
5) T.Nakamaura and T.Suzuki, Nucl, Instrum. Methods, 205211 (1983)
6) W.R.Nelson, H.Hirayama and D.W.O.Rogers, The EGS4 Code System, SLAC-265, Stanford Linear Accelerator Center, Stanford University (1985)
7) A.Torii, Y.Uwamino and T.Nakamura, INS-T-468, Institute for Nuclear Study, University of Tokyo(1987)
8) National Nuclear Data Center, Brookhaven National Laboratory, ENDF/B-VI(1990)
9) V.MaLane, C.L.Dunford and P.F.Rose, Vol.2, Neutron Cross Section Curves, Academic press., New York (1988)
10)O.dano and S. Iwasaki, Proceeding s of 1993 Symposium on Nuclear Data, Tokai, Japan, 1994, Edited M. Kawai and T. Tokio, p. 310

11) M.Blann, CODE ALICE/89, Private communication (1989)

Table I. Physical data of irradiation samples

Facility	Sample	Diameter	Thickness	Weight	Purity
INS	${ }^{22} \mathrm{C}$	20 mm	2.2 mm	1.57 g	98.81%
	${ }^{27} \mathrm{Al}$	30 mm	2.0 mm	3.80 g	99.99%
	${ }^{20} \mathrm{Bi}$	15 mm	0.6 mm	0.65 g	99.99%
TIARA	${ }^{12} \mathrm{C}$	33 mm	1.0 mm	1.83 g	98.81%
	${ }^{27} \mathrm{Al}$	33 mm	1.0 mm	3.00 g	99.99%
	${ }^{59} \mathrm{Co}$	33 mm	2.0 mm	20.0 g	99.99%
	${ }^{\mathrm{na}} \mathrm{Cu}$	33 mm	2.0 mm	20.0 g	99.99%
	${ }^{20} \mathrm{Cu}$	80 mm	2.0 mm	6.90 g	99.99%
RIKEN	${ }^{12} \mathrm{C}$	80 mm	10.0 mm	104 g	98.81%
	${ }^{27} \mathrm{Al}$	80 mm	10.0 mm	140 g	99.99%
	${ }^{n 21} \mathrm{Cu}$	80 mm	10.0 mm	490 g	99.99%
	${ }^{20} \mathrm{Bi}$	80 mm	10.8 mm	530 g	99.99%

Fig. $1{ }^{12} \mathrm{C}(\mathrm{n}, 2 \mathrm{n}){ }^{11} \mathrm{C}$ Reaction Cross Section

Fig. $3{ }^{59} \mathrm{Co}(\mathrm{n}, 3 \mathrm{n}){ }^{57} \mathrm{Co}$ Reaction Cross Section

Fig. $2{ }^{27} \mathrm{Al}(\mathrm{n}, 2 \mathrm{n} \alpha)^{22} \mathrm{Na}$ Reaction Cross Section

Fig. $4{ }^{\text {nat }} \mathrm{Cu}(\mathrm{n}, \mathrm{sp}){ }^{58} \mathrm{Co}$ Reaction Cross Section

Fig. $5{ }^{209} \mathrm{Bi}(\mathrm{n}, \mathrm{xn})(\mathrm{x}=3,7)$ Reaction Cross Section

Fig. $6{ }^{209} \operatorname{Bi}(\mathrm{n}, \mathrm{xn})(\mathrm{x}=8,12)$ Reaction Cross Section

VIII-C-2

Measurements of secondary neutrons produced from thick targets bombarded by heavy ions

T.Kurosawa ${ }^{1)}$, T.Nakamura ${ }^{1)}$, N.Nakao ${ }^{2)}$, T.Shibata ${ }^{2)}$
Y.Uwamino ${ }^{3)}$, N.Nakanishi ${ }^{3 \text { 3 }}$, A.Fukumura ${ }^{4}$, Y.Kumamoto ${ }^{4}$)

1. Introduction

At the National Institute of Radiological Sciences, the HIMAC accelerator (Heavy Ion Medical Accelerator in Chiba) is routinely used for the heavy ion cancer therapy. During operation of this machine, we started to measure the angular and energy distributions of secondary neutrons, from thick targets bombarded by helium, carbon and neon ions, whose experimental data are very scarce. These data are needed to design shielding for the heavy-ion accelerator facility, and also are of interest for estimating neutron doses producted by nuclear interactions during irradiation of tumors with heavy ions.

2. Experimental Procedure

The target materials with the thicknesses and the incident energies of carbon, helium and neon ions are shown in Table 1. All targets have a shape of 10 cm by 10 cm square. The target thickness was determined to stop the incident particles completely. Fig. 1 shows the experimental arrangement at HIMAC. We used three sets of NE213 organic liquid scintillator (12.7 cm diam. by $12.7 \mathrm{~cm}-l o n g$) for E counter and NE102A plastic scintillator (15 cm by 15 cm and 0.5 cm thickness) for $\Delta \mathrm{E}$ counter. A thin NE102A plastic scintillator (3 cm diam. by 0.05 cm thickness) was set for beam pick-up near by the end of the beam line, and the output pulses of this scintillator were used as start signals of the TOF measurement and also to count the absolute number of beam particles incident on the target. For discriminating between neutrons and charged particles, we used the output pulses of the $\Delta \mathrm{E}$ counter that was placed just in front of each E counter, and charged particles were identified from twodimensional $\Delta \mathrm{E}-\mathrm{E}$ graphical plots.

The contribution of the background neutrons caused by the room-scattering was measured at 90 degree placing a rectangular iron block with the size of 15 cm by 15 cm by 60 cm long between the target and the detector.

The beam pick-up timing signal started a 2048 channel CAMAC time-to-digital converter (TDC). Anode signals of the photomultipliers, which were connected to the NE213 scintillators, were divided into three pulses. One pulse was put into CFD to produce the start signal of TDC.Two pulses were put into ADCs that collected the charge of pulse during the gate signal duration. In order to reject the events induced by gamma rays, the two-gate integration method ${ }^{1)}$, total gate and slow gate, was adopted. The total gate also employed to measure the pulse height of the scintillation.

[^23]
3. Data Analysis

For discrimination between neutrons and charged particles, we used the output pulses of the $\Delta \mathrm{E}$ couter, and charged particles were identified from two-dimensional $\Delta \mathrm{E}-\mathrm{E}$ graphical plots. After the neutron and gamma ray (neutral charge) events were distinguished from the charged particle events, the neutron events and the gamma ray ones were separated using two dimensional total-slow pulse height graphical plots. Thus the TOF spectrum of neutrons was obtained and was converted into the energy spectrum of neutrons by the following expression,

$$
\Phi(E)=\frac{C\left(E, L_{t h}\right)}{\varepsilon\left(E, L_{t h}\right) \cdot \Delta E \cdot Q \cdot \Delta \Omega} \cdot f_{d}
$$

where $C\left(E, L_{b}\right)$ is the energy distribution of neutron counts, ΔE the energy bin, $\Delta \Omega$ the solid angle sustained by the detector to the center of the target, Q the incident heavy ion counts, f_{d} the correction of dead time, $\varepsilon\left(\mathrm{E}, \mathrm{L}_{\mathrm{h}}\right)$ the detection efficiency for neutron, L_{h} the discrimination level for the neutron pulse height, $\Phi(\mathrm{E})$ the neutron energy spectrum. The detection efficiencies were calculated with the Cecil code ${ }^{2)}$.

4.Results

4.1. Neutron spectra

As an example, secondary neutron spectra from carbon and lead targets for $400 \mathrm{MeV} / \mathrm{nucleon}$ carbon incidence are shown in Figs. 2 and 3. These spectra in the forward direction have a broad peak at high energy end, especially a large bump at 0 degree and this peak becomes more prominent for lighter target and for higher projectile energy. The peak energy of this bump is about 60 to 70% of the projectile energy per nucleon. This means that these high energy neutron components produced in the forward direction by knock-on collision and the momentum transfer from projectile to target nuclei are both higher for lighter nucleus and higher projectile energy than for heavier nucleus and lower projectile energy.

The neutron spectra have two components: One below about 10 MeV corresponds to neutrons produced isotropically in the center of mass system mainly by the equilibrium process; the other above 10 MeV corresponds to those produced by the preequilibrium process. Since the neutron emission by the preequilibrium process has a sharp forward peaking of the angular distribution, the neutron spectra become softer at larger emission angles, where the equilibrium process is prominent.

The high energy neutrons in the forward direction spread up to about the energy which is equivalent to the twice of the incident particle energy per nucleon.

4.2. Angle distribution

The neutron yields integrated above 5 MeV are shown in Fig. 4-7. All of the results suggest that the neutron yield is larger for lighter target nucleus in the forward direction while at large angles the yield is larger for heavier target nucleus. This means that the neutron production at the forward angle mainly occurs by the direct reaction process which reduces in magnitude with increase of emission angle, and at the large angle the low energy neutrons via equilibrium process dominate. The former production process gives that the momentum transfer from a heavier projectile to a lighter target is
greater and the velocity of the center of mass is greater in the laboratory system; then based on the kinematics, a nucleon is emitted in the more forward direction from the heavier projectile and the lighter target. The latter process is proportional to the nucleon numbers that the heavier target have higher values than the lighter target.

5.Conclusins

We measured neutron angular and energy distributions produced by helium, carbon and neon ions stopping in targets of carbon, aluminum, copper, and lead. We are also proceeding the experiments for other heavy ions with several energies.

References

1) Z.W.Bell, Nucl. Instrum. Meth., 188, 105(1981).
2) R.A.Cecil, et al., Nucl. Instrum. Meth., 161, 439(1979).

Table 1 Projectile and target combinations and detector positions for measuring the secondary particles.

Incident particle energy[MeV]	Target thickness [cm]	Detector position [degree]
C [100]	$\mathrm{C}[2] \mathrm{Al}[2] \mathrm{Cu}[0.5] \mathrm{Pb}[0.5]$	$0,7.5,15,30,60,90$
C [180]	C [6] Al [4] $\mathrm{Cu}[1.5] \mathrm{Pb}$ [1.5]	$0,7.5,15,30,60,90$
C [400]	C [20] Al [15] Cu [5] Pb [5]	$0,7.5,15,30,60,90$
He [100]	C [5] Al [4] Cu [1.5] Pb [1.5]	0, 7.5, 15
He [180]	C [16] Al [12] Cu [4.5] Pb [5]	$0,7.5,15,30,60,90$
Ne [400]	$\mathrm{C}[11] \mathrm{Al}[9] \mathrm{Cu}[3] \mathrm{Pb}[3]$	$0,7.5,15,30,60,90$

Fig. 1 Experimental arrangement at HIMAC

Fig. 2 Neutron spectra from $400 \mathrm{MeV} / \mathrm{u}$ carbon ions in carbon target.

Fig. 4 Neutron yields integrated above 5 MeV from $100 \mathrm{MeV} / \mathrm{u}$ helium ions.

Fig. 6 Neutron yields integrated above 5 MeV from $100 \mathrm{MeV} / \mathrm{u}$ carbon ions.

Fig. 3 Neutron spectra from $400 \mathrm{MeV} / \mathrm{u}$ carbon ions in lead target.

Fig. 5 Neutron yields integrated above 5 MeV from $180 \mathrm{MeV} / \mathrm{u}$ helium ions.

Fig. 7 Neutron yields integrated above 5 MeV from $400 \mathrm{MeV} / \mathrm{u}$ carbon ions.

IX. Tokyo Institute of Technology

IX-1 Low-energy neutron direct capture by ${ }^{12} \mathrm{C}$ in a dispersive optical potential

H. Kitazawa, K. Go, and M. Igashira

A paper of this subject was published in Phys. Rev. C57, 202(1998), with the following abstract.

A dispersive optical potential for the interaction between low-energy neutrons and ${ }^{12} \mathrm{C}$-nuclei is derived from a dispersion relation based on the Feshbach generalized optical model. The potential reproduces completely neutron total cross sections below 1.0 MeV , and substantially the energy of the $3090 \mathrm{keV}\left(1 / 2^{+}\right)$level in ${ }^{13} \mathrm{C}$ which is of nearlypure $2 s_{1 / 2}$ single-particle character. It is found that direct-capture model calculations with this potential explain quite successfully observed off-resonance capture transitions to the ground $\left(1 / 2^{-}\right)$, $3090 \mathrm{keV}\left(1 / 2^{+}\right), 3685 \mathrm{keV}\left(3 / 2^{-}\right)$, and $3854 \mathrm{keV}\left(5 / 2^{+}\right)$levels in ${ }^{13} \mathrm{C}$ at neutron energies of $20-600 \mathrm{keV}$. Special emphasis is laid on the fact that in those model analyses, account should be taken of the spatial nonlocality of the neutron-nucleus interaction potential, in particular for negative energies.

IX-2 Measurement of ${ }^{1} \mathrm{H}(n, \gamma){ }^{2} \mathrm{H}$ reaction cross section at a comparable $M 1 / E 1$ strength

Y. Nagai, T. S. Suzuki, T. Kikuchi, T. Shima, T. Kii, H. Sato, and M. Igashira

A paper of this subject was published in Phys. Rev. C56, 3173(1997), with the following abstract.

The cross section of the $p(n, \gamma) d$ reaction was directly measured for the first time at $E_{n}=550 \mathrm{keV}$, where the theoretical $E 1$ transition strength is comparable to the M1 strength. It was determined accurately to be $35.2(24) \mu \mathrm{b}$, and it agrees with the theoretical one which includes the meson-exchange currents. In this work, a prompt discrete γ-ray detection method combined with a pulsed neutron beam and a newly developed Monte Carlo code was essential to obtain an accurate cross section.

IX-3 Measurements of keV-Neutron Capture γ Rays of Fission Products and Structural Materials

M. Igashira, S. Mizuno, T. Ohsaki, and H. Kitazawa
γ rays from the keV -neutron capture reactions by ${ }^{51} \mathrm{~V},{ }^{55} \mathrm{Mn},{ }^{140} \mathrm{Ce},{ }^{144} \mathrm{Pr},{ }^{147,150,152,154} \mathrm{Sm}$, ${ }^{153} \mathrm{Eu}$, and ${ }^{162} \mathrm{Dy}$ have been measured at a neutron energy of 550 keV , using a large antiCompton $\mathrm{NaI}(\mathrm{Tl}) \quad \gamma$-ray spectrometer and the ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$ pulsed neutron source with a $3-\mathrm{MV}$ Pelletron accelerator. The preliminary results for the capture cross sections and γ-ray spectra of those nuclei are obtained. ${ }^{11}$

Reference:

1) M. Igashira et al.: Proc.Int.Conf.on Future Nuclear Systems, Yokohama, Japan, October 5-10, 1997, p.1360(1997)

IX-4 Low-Energy Neutron Direct Capture by ${ }^{16} \mathrm{O}$

H. Kitazawa and M. Igashira

A paper of this subject was presented at the 1997 Symposium on Nuclear Data, Tokai, Japan, November 27-28, 1997, with the following abstract.

Low-energy neutron capture reactions on light nuclei play an important role in the nucleosynthesis on the inhomogeneous big-bang model as well as in the s-process nucleosynthesis in red giant stars. Furthermore, drip-line light nuclei are found to have radii much larger than those of other neighboring nuclei[1]. This suggests the existence of a neutron-halo stucture in the nuclei.

Stimulated by the above findings, a lot of experimental work has recently been performed to obtain off-resonance neutron-capture cross sections of light nuclei in the steller energy region [2-4]. Simultaneously, these cross sections have been evaluated by Mengoni et al.[5], Otsuka et al.[6], and Kitazawa et al.[7] in the framework of a direct-capture model, because the reactions may be decoupled from resonance excitation. In particular, Kitazawa et al have used a dispersive optical model to achieve consistency between capture and scattering. In the present study, a dispersive optical potential for the interaction between
low-energy neutrons and ${ }^{16} \mathrm{O}$-nuclei is derived from a dispersion relation based on the Feshbach generalized optical model, following our previous work[7]. This potential is applied to direct-capture model calculations in explaining off-resonance neutron-capture cross sections of ${ }^{16} \mathrm{O}$ observed at $20-70 \mathrm{keV}[8]$. The model calculations take account of the spatial nonlocality of the neutron-nucleus interaction potential.

References

[1] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, and T. Kobayashi : Phys. Rev. Lett., 55, 2676(1985).
[2] Y. Nagai, M. Igashira, K. Takeda, N. Mukai, S. Motoyama, F. Uesawa, H. Kitazawa, and T. Fukuda : Astrophys. J., 372, 683(1991).
[3] T. Ohsaki, Y. Nagai, M. Igashira, T. Shima, K. Takeda, S. Seino, and T. Irie: Astrophys. J., 422, 912(1994).
[4] M. Igashira, Y. Nagai, K. Masuda, T. Ohsaki, and H. Kitazawa : Astrophys. J., 441, L89(1995).
[5] A. Mengoni, T. Otsuka, and M. Ishihara : Phys. Rev., C52, R2334(1995).
[6] T. Otsuka, M. Ishihara, N. Fukunishi, T.Nakamura, and M. Yokoyama : Phys. Rev., C49, R2289(1994).
[7] H. Kitazawa, K. Go, and M. Igashira : Proc. 9th Int. Symp. On Capture Gamma-ray Spectroscopy and Related Topics, Budapest, Hungary, October 8-12, 1996; to be published in Phys. Rev. C.
[8] M. Igashira : private communication.

IX-5 Measurements of Gamma Rays from keV-Neutron Resonance Capture by Odd-Z Nuclei in the 2s-1d Shell Region

M. Igashira, S. Y. Lee, S. Mizuno, J. Hori, and H. Kitazawa

A paper of this subject was presented at the 1997 Symposium on Nuclear Data, Tokai, Japan, November 27-28, 1997, with the following abstract.

For the last decade, we measured capture gamma rays from broad keV-neutron resonances of 1 p shell and $2 \mathrm{~s}-1 \mathrm{~d}$ shell nuclei to study resonance capture mechanisms[1], using an anti-Compton $\mathrm{NaI}(\mathrm{Tl})$ gamma-ray spectrometer because the detection efficiency of $\mathrm{NaI}(\mathrm{Tl})$ was much larger than that of $\mathrm{Ge}(\mathrm{Li})$ or HPGe detector. For odd-Z nuclei, however,
the energy resolution of $\mathrm{NaI}(\mathrm{Tl})$ is not enough because the level spacing of residual nucleus is so small that some gamma rays cannot be resolved.

On one hand, large HPGe detectors are available at present, and it becomes possible to apply a large HPGe detector to our resonance experiment. Therefore, we have constructed an anti-Compton HPGe spectrometer with 100% relative efficiency[2], and started systematic measurements of keV-neutron resonance capture gamma rays for odd- Z nuclei in the $2 \mathrm{~s}-1 \mathrm{~d}$ shell region, using pulsed keV -neutrons produced from the ${ }^{7} \mathrm{Li}(p, n)^{7} \mathrm{Be}$ reaction by bombarding a Li-evaporated copper disk with a $1.5-\mathrm{ns}$ bunched proton beam from the $3-\mathrm{MV}$ Pelletron accelerator of the Research Laboratory for Nuclear Reactors at the Tokyo Institute of Technology.

A series of measurements for ${ }^{19} \mathrm{~F},{ }^{23} \mathrm{Na}$ and ${ }^{27} \mathrm{Al}$ has been performed, and capture gamma rays from the $27-, 49$-, and $97-\mathrm{keV}$ resonances of ${ }^{19} \mathrm{~F}$, the 35 - and $53 \cdot \mathrm{keV}$ resonances of ${ }^{23} \mathrm{Na}$, and the $35-\mathrm{keV}$ resonance of ${ }^{27} \mathrm{Al}$ were observed. Some results are presented in this contribution.

References

[1] H. Kitazawa and M. Igashira, Proc. Specialists' Meeting on Measurement, Calculation and Evaluation of Photon Production Data, NEA/NSC/DOC(95)1 (1995) 169.
[2] M. Igashira et al., Proc. the 8th Int. Symp. on Capture Gamma-Ray Spectroscopy and Related Topics, 1993, p. 992.

[^0]: ${ }^{1}$ Quantum Radiation Division, Electrotechnical Laboratory
 ${ }^{2}$ Research Institute for Advanced Science and Technology, Osaka Prefecture University
 ${ }^{3}$ Research Reactor Institute, Kyoto University

[^1]: * CRC Research Institute, Inc.

[^2]: * Korea Atomic Energy Research Institute

[^3]: 1. Research Reactor Institute, Kyoto University
[^4]: * Forschungszentrum Karlsruhe, Institut für Neutronenphysik und Reaktortechnik

[^5]: ** Japan Atomic Energy Research Institute

[^6]: * Department of Nuclear Engineering, Osaka University

[^7]: * Department of Reactor Engineering, Japan Atomic Energy Research Institute

[^8]: *Japan Atomic Energy Research Institute

[^9]: ${ }^{1}$ Present address; Japan Atomic Energy Research Institute.
 ${ }^{2}$ Department of electronic, information systems and energy engineering, Osaka University

[^10]: ${ }^{1}$ Present adress; Japan Atomic Energy Research Institute
 *Japan Atomic Energy Research Institute

[^11]: ${ }^{1}$ Present address; Japan Atomic Energy Research Institute.
 ${ }^{2}$ Department of electronic, information systems and energy enginecring, Osaka University

[^12]: ${ }^{1}$ Japan Atomic Energy Research Institute

[^13]: ${ }^{1}$ Japan Atomic Energy Research Institute

[^14]: * High Energy Neutron Laboratory, Japan Atomic Energy Research Institute.

[^15]: *Department of Chemistry, Graduate School of Science, Osaka University
 ${ }^{\dagger}$ Department of Chemistry, Faculty of Science, Nagoya University

[^16]: ${ }^{\ddagger}$ Department of Chemistry, Graduate School of Science, Osaka University
 ${ }^{\S}$ Research Reactor Institute, Kyoto University

[^17]: ${ }^{\top}$ Department of Chemistry, Graduate School of Science, Osaka University

[^18]: 1) Power Reactor and Nuclear Fuel Development Corp. and Gifu College of Medical Technology
[^19]: a: Takasaki Establishment, Japan Atomic Energy Research Institute
 b: Tokai Establsihement, Japan Atomic Energy Research Institute
 c: Cyclotron Radioisotope Center, Tohoku University

[^20]: -Department of Physics, Tohoku University
 ${ }^{\dagger}$ Department of Nuclear Engineering, Tohoku University

[^21]: ${ }^{1}$ Present Address: Hitachi Software.
 ${ }^{2}$ Department of Physics, Tohoku Univ.
 ${ }^{3}$ Department of Nuclear Engineering, Tohoku Univ.
 ${ }^{4}$ Department of Physics, Yamagata Univ.

[^22]: ${ }_{2}^{1}$ Cyclotron and Radioisotope Center, Tohoku University
 ${ }^{2}$ Institute of Physical and Chemical Research
 ${ }_{4}^{3}$ National Museum of Japanese History
 ${ }_{5}^{4}$ High Energy Accelerat or Research Organization
 ${ }^{5}$ Takasaki Research Establishment, Japan Atomic Energy Research Institute

[^23]: ${ }^{13}$ Cyclotron and Radioisotope Center, Tohoku University
 ${ }^{2)}$ High Energy Accelerator Research Organization
 ${ }^{3}$ The Insutitute of Physical and Chemical Research
 ${ }^{4}$ National Institute of Radiological Sciences

