

Review of JENDL/HE-2007 Neutron-Induced Fission Cross Sections of Uranium-235 and 238 above 200 MeV

Tokio Fukahori

Policy Planning and Administration Department Japan Atomic Energy Agency

October 2023

Selected INDC documents may be downloaded in electronic form from <u>http://nds.iaea.org/publications/</u> or sent as an e-mail attachment. Requests for hardcopy or e-mail transmittal should be directed to <u>nds.contact-point@iaea.org</u> or to:

> Nuclear Data Section International Atomic Energy Agency Vienna International Centre PO Box 100 A-1400 Vienna Austria

Produced by the IAEA in Austria October 2023

Review of JENDL/HE-2007 Neutron-Induced Fission Cross Section of Uranium-235 and 238 above 200 MeV

Tokio Fukahori

Policy Planning and Administration Department Japan Atomic Energy Agency

October 2023

Abstract

The neutron-induced fission cross section of uranium-235 evaluated for JENDL/HE-2007 above 200 MeV is wrongly compiled in the library file. This report provides the correct numbers. The neutron-induced fission cross section of uranium-238 compiled in this file above 500 MeV was also reviewed, and new cross sections are recommended.

Review of JENDL/HE-2007 neutron-induced fission cross sections of uranium-235 and 238 above 200 MeV

Tokio Fukahori

Policy Planning and Administration Department, Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken, 319-1184 Japan fukahori.tokio@jaea.go.jp

1. ²³⁵U(n,f) cross section

The high energy part of the 235 U(n,f) cross section for the JENDL/HE-2007 library [1] above 200 MeV was evaluated by using the FISCAL code [2]. This code calculates fission cross sections by using the following systematics on the fission probability P_f (fission cross section divided by the total reaction cross section):

$$P_f(x, E_{\text{exc}}) = p_1 [1 - e^{-(E_{\text{exc}} - p_2)p_3}],$$

where $x = Z^2/A$ with Z and A are the atomic and mass numbers of the compound nucleus (Z = 92 and A = 236 for ²³⁵U(n,f) cross section) and E_{exc} is the excitation energy of the compound nucleus. The three parameters for the ²³⁶U compound system are $p_1=0.81$, $p_2=5$ and $p_3=0.1$. After calculation of the fission probability, this code calculates the total reaction cross section σ_r to obtain the fission cross section σ_f by $\sigma_f = P_f \sigma_r$. See Ref. [1] for more details about the FISCAL code. Unfortunately, the values calculated by this code were not correctly compiled in the ENDF format, and wrong values are disseminated in the JENDL/HE-2007 file. Table 1 provides the correct ²³⁵U(n,f) cross sections of the JENDL/HE-2007 library above 200 MeV. **These values must be quoted as the JENDL/HE-2007 cross sections above 200 MeV**.

E_n (MeV)	σ (b)	E_n (MeV)	σ (b)
200	1.41924	380	1.52048
210	1.42346	400	1.53145
220	1.42666	450	1.55591
230	1.43074	500	1.57621
240	1.43550	550	1.59274
250	1.44080	600	1.60603
260	1.44649	700	1.62503
280	1.45867	800	1.63689
300	1.47138	900	1.64419
320	1.48417	1000	1.64867
340	1.49674	1500	1.65502
350	1.50288	2000	1.65554
360	1.50889	3000	1.65558

Table 1: ²³⁵U(n,f) cross sections evaluated for the JENDL/HE-2007 library.

The cross sections in Table 1 are compared with those compiled in the JENDL/HE-2007 file, IAEA High-Energy Reference 2015 [3] and experimental datasets [4-7] in Fig. 1.

Figure 1. ²³⁵U(n,f) cross sections evaluated for the JENDL/HE-2007 library (red) and compiled in the JENDL/HE-2007 file (dashed) compared with IAEA High-Energy Reference 2015 (green) [3] and experimental datasets [4-7].

2. ²³⁸U(n,f) cross section

It is seen in Fig. 2 that the ²³⁸U(n,f) cross sections compiled in the JENDL/HE-2007 library file are also suffered a similar compilation error. Not like the ²³⁵U(n,f) case, the values calculated by FISCAL for ²³⁸U(n,f) is too high comparing to the values compiled in the JENDL/HE-2007 library file below 200 MeV. and it indicates the JENDL/HE-2007 evaluation did not adopt the default output of the FISCAL code for the ²³⁸U(n,f) case. In order to examine performance of the FISCAL systematics, a new calculation of the ²³⁸U(n,f) cross sections was done with the (1) fission probability corresponding to a parameter set (p_1 =0.72, p_2 =4.9 and p_3 =0.05) and (2) total reaction cross sections calculated from the total and elastic scattering cross sections in the JENDL/HE-2007 file. The cross sections from FISCAL systematics in Table 2 are recommended above 500 MeV instead of those compiled in the JENDL/HE-2007 file.

Figure 2. ²³⁸U(n,f) cross sections recommended by the FISCAL systematics (red), compiled in the JENDL/HE-2007 file (dashed) and FISCAL output (cyan) compared with IAEA High-Energy Reference 2015 (green) [3] and experimental datasets [4, 9-15].

Table 2: 238 U(n,f) cross sections recommended by the FISCAL systematics with p_1 =0.72, p_2 =4.9 and p_3 =0.05. The cross section at 500 MeV is taken from the JENDL/HE-2007 file.

σ (b)
1.44670
1.44101
1.45807
1.46873
1.47402
1.47931
1.48500
1.48543
1.48550

Acknowledgements

The author would like to acknowledge the opportunity to investigate the compilation errors in the JENDL/HE-2007 file given by Dr. Roberto Capote. The author also appreciates to Dr. Naohiko Otsuka with his support.

References

[1] Y. Watanabe et al., "Status of JENDL high-energy file", J. Kor. Phys. Soc. **59** (2011) 1040. DOI: <u>https://doi.org/10.3938/jkps.59.1040</u>.

[2] T. Fukahori, O. Iwamoto, S. Chiba, "Unified description of neutron-, proton- and photoninduced fission cross sections in intermediate energy region", Report JAERI-Conf 2003-019, p. 603, Japan Atomic Energy Research Institute (2003). DOI: <u>https://doi.org/10.11484/jaericonf-2003-019</u>.

[3] B. Marcinkevicius, S. Simakov, V. Pronyaev, "²⁰⁹Bi(n,f) and ^{nat}Pb(n,f) cross sections as a new reference and extension of the ²³⁵U, ²³⁸U and ²³⁹Pu(n,f) Standards up to 1 GeV", Report INDC(NDS)-0681, International Atomic Energy Agency (2015).

[4] R. Nolte et al., "Cross sections for neutron-induced fission of ²³⁵U, ²³⁸U, ²⁰⁹Bi, and ^{nat}Pb in the energy range from 33 to 200 MeV measured relative to n-p scattering", Nucl. Sci. Eng. **156** (2007) 197. DOI: <u>http://doi.org/10.13182/NSE06-14</u>.

[5] P.W. Lisowski et al., "Fission cross sections in the intermediate energy region", Report NEANDC-305, p. 177, Organization for Economic Co-operation and Development (1991).

[6] J. Rapaport, "Preliminary measurement of the ²³⁵U(n,f) cross section up to 750 MeV", Report LA-11078-MS, Los Alamos National Laboratory (1987).

[7] V.I. Goldanskii et al., "Fission of heavy nuclei by high energy neutrons", Sov. Phys. JETP 2 (1956) 677.

[8] A.D. Carlson et al., "Evaluation of the neutron data standards", Nucl. Data Sheets **163** (2020) 280. DOI: <u>https://doi.org/10.1016/j.nds.2018.02.002</u>.

[9] Zhizhou Ren et al., "Measurement of the ^{236,238}U(n,f) cross sections from the threshold

to 200 MeV at CSNS Back-n", Eur. Phys. J. A 59 (2023) 5. DOI: https://doi.org/10.1140/epja/s10050-022-00910-8.

[10] A.S. Vorobyev et al., "Measurement of the cross section for the neutron-induced fission of ²³⁸U nuclei in the energy range of 0.3–500 MeV", JETP Letters 117 (2023) 557. DOI: http://doi.org/10.1134/S0021364023600787.

[11] Z.W. Miller, "A measurement of the prompt fission neutron energy spectrum for 235 U(n,f) and the neutron-induced fission cross section for 238 U(n,f)", Ph.D thesis submitted to University of Kentucky.

[12] F. Tovesson et al., "Fast Neutron-Induced Fission Cross Sections of ^{233, 234, 236, 238}U up to 200 MeV", Nucl. Sci. Eng. **178** (2014) 57. DOI: <u>http://dx.doi.org/10.13182/NSE13-56</u>.

[13] O. Scherbakov et al., "Neutron-induced fission of ²³³U, ²³⁸U, ²³²Th, ²³⁹Pu, ²³⁷Np, ^{nat}Pb and ²⁰⁹Bi relative to ²³⁵U in the energy range 1-200 MeV", J. Nucl. Sci. Technol. Supplement **2** (2002) 230. DOI: <u>http://dx.doi.org/10.1080/00223131.2002.10875081</u>.

[14] V.P. Eismont et al., "Relative and absolute neutron-induced fission cross sections of ²⁰⁸Pb, ²⁰⁹Bi, and ²³⁸U in the intermediate energy region", Phys. Rev. C **53** (1996) 2911. DOI: <u>http://dx.doi.org/10.1103/PhysRevC.53.2911</u>.

[15] V.I. Goldanskii et al., "Fission of heavy nuclei by high energy neutrons", Sov. Phys. JETP **2** (1956) 677.

Nuclear Data Section International Atomic Energy Agency Vienna International Centre, P.O. Box 100 A-1400 Vienna Austria e-mail: nds.contact-point@iaea.org fax: (43-1) 26007 telephone: (43-1) 2600-21710 Web: http://nds.iaea.org/