

International Atomic Energy Agency

INDC-342

INTERNATIONAL NUCLEAR DATA COMMITTEE

Emergy dependent T-values for ²³⁵0, ²³⁹10, ²³³0, ²⁴⁰10, ²⁴¹Fu, and the status of Ther prostaneous fission isotopes

V.L. Honnish, P. Monoro

POOR QUALITY ORIGINAL

Vicana, June 1970

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11, A-1010 VIENNA

All recent and the majority of the old measurements of $\bar{\nu}$ -values for fissile elements were made relative to the $\bar{\nu}(^{252}\text{Cf})$ -value. In connection with it the knowledge of the absolute $\bar{\nu}(^{252}\text{Cf})$ -value is of great importance.

The experimental results available for $\bar{\nu} (^{252}Cf)$ show a spread of about 1 % due to a disagreement between the liquid scintillator measurements (higher values) and manganese bath and boron pile measurements (lower values).

The survey of $\tilde{\nu}(^{252}\text{Cf})$ measurements carried out up to 1963 was made by J.J. Schmidt [1] who gave the following value for the average number of total neutrons resulting from spontaneous fission of ^{252}Cf : $\bar{\nu}_{4}(^{252}\text{Cf}) = 3,773$, with the number of delayed neutrons being 0,009. This $\bar{\nu}(\text{Cf})$ value was mainly based on the boron pile measurements of Colvin et al [2] and liquid scintillator measurements [3], [4]. From that time several new measurements of $\bar{\nu}(^{252}\text{Cf})$ have been carried out, the most recent among them are the Axton et al. measurements [5] and the De-Volpi and Forges measurements [6]. The results of Axton measurements are provisional at the present time, because they have restarted the experiment with a new larger sample of modern californium.

The present status and the evaluation of the absolute $\bar{\nu}(^{252}\text{Cf})$ -value has recently been made by 6.6. Henna, C. H. Restcott et al. [7] in their comprehensive study of the 2200 m/sec constants for fissile isotopes. They considered the absolute $^{252}\text{Cf}\bar{\nu}$ -measurements in relationship to the ratio of $\bar{\nu}$ -values for 2350 and ^{252}Cf , and the $\bar{\nu}$, γ and \propto -values for 2350 . The procedure adopted by Hanna et al. was to consider the individual data separately and first derive weighted means for the individual parameters and then to use these as input data for a fitting scheme from which a set of fitted parameters is obtained. The experimental values for $\bar{\nu}(^{252}\text{Cf})$, which Hanna et al. used, are given in table 1.

TABLE 1

The average number of prompt neutrons per fission, $\vec{\nu}$, for 252 Cf (taken from Hanna et al.[7])

References	Technique used	Experimental $\tilde{v}(Cf)$ -values with the corrections made by Hanna et al.
Asplund-Nilsson et al. [3] Hopkins and Diven [4] Colvin and Sowerby [2] Moat et al.[8] Colvin et al.[9] White and Axton[10] Axton et al.[11] DeVolpi and Porges (DeVolpi revise value)	liquid scintillator liquid scintillator boron pile manganese bath _"- _"- _"- [6] d _"-	$3,830 \pm 0,037$ $3,793 \pm 0,031$ $3,713 \pm 0,015$ $3,727 \pm 0,056$ $3,700 \pm 0,031$ $3,796 \pm 0,031$ $3,700 \pm 0,020$ $3,739 \pm 0,017$ $(3,725 \pm 0,015)$
Hanna et al.[7] weighted mean Fitted value		3,743 <u>+</u> 0,016 3,7653 <u>+</u> 0,0104

As one can see from the table, there are two separate groups of results with the values of about 3,800 and 3,700.

Henna et al. incorporated into the experimental values for $\bar{\nu}$ the correction for the energy dependence of neutron detector efficiencies. The necessity of such a correction was due to the uncertainty in the measured fission spectra for 252 Cf and for the other fissile isotopes. This uncertainty can be one of the sources of possible systematic errors which can be reduced by considering $\bar{\nu}$ -ratios for different fissile isotopes rather than considering $\bar{\nu}$ -ratio to $\bar{\nu}(^{252}$ Cf) only, because the mean neutron energy value $\bar{\mathbf{E}}$ for 252 Cf is high enough [$\bar{\mathbf{E}}(^{252}$ Cf) = 2,35 MeV, $\bar{\mathbf{E}}(^{250}$ U) = 2,10 MeV, $\bar{\mathbf{E}}(^{232}$ U) = 2,14 MeV, $\bar{\mathbf{E}}(^{239}$ Pu) = 2,24 MeV, $\bar{\mathbf{E}}(^{240}$ Fu) = 1,93 MeV, according to [7]].

Besides, Hanna et al. made the correction to manganese bath measurements for the loss of fast neutrons by the reactions $160 (n, \alpha)$ ^{13}C , $^{32}S(n, \alpha)$ 29Si and $^{32}S(n,p)$ 32P , because new results for oxygen (n, α) -cross section became evailable, but this effect is quite small for the fission spectrum.

There are two more physical effects which should be taken into consideration when analysing results of absolute $\bar{\gamma}$ -measurements. The first one is connected with delayed γ -rays which can be detected by the liquid scintillater technique, but not a boron pile method. The respective correction is of the order of about 0.2 - 0.5 % at the thermal neutron energy for ^{235}U and ^{239}Fu and of $(0.25 \pm 0.12)\%$ for ^{252}Cf [12]. Therefore, this effect can definitely not explain the 2 - 3 % difference between liquid scintillator and boron pile measurements.

The second physical phenomenon in which the source of discrepancies can be searched for, is chemical instability of the solutions by the Szilard-Chalmers reaction. It was noted that the MnSO₄ solution was getting instable during the irradiation time, and $56\,\text{Km}$ precipitates slowly from the solution. The value of the precipitation depends on the concentration of the solution, the amount of oxygen soluted, temperature, acidity, irradiation dose etc. This effect of precipitation can lead to a systematic error depending on the activity counting technique. De Volpi and Porges indicate that this effect was about 1 to 2 % in their measurements. The activity in a bath can be stabilized by special additives such as sulfur acid and hydrogen peroxide, but introducing additives to manganese bath complicates the determination of a _Aimportant Kn/H-ratio.

véry

On the other hand, according to Axton [14], the chemical instability of the solution is not a reason of systematic errors in the measurements carried out in his laboratory, although this effect should be taken into account, at least for $KEnO_A$ solution.

It seems there is no single cause for the explanation of a spread in the experimental results for $\overline{\gamma}(^{252}$ Cf), but probably a combination of fortuitous circumstances lead to a systematic error. Perhaps errors assigned to systematic effects have been insufficient in the various experiments.

As far as beron pile measurements are concerned it must be taken into consideration that these measurements were carried out without calibration with neutron sources, the strength of which had been determined predominantly by bath measurements. Calibration of boron pile measurements has been made by the absolute counting of photo-protons in the ²H (y,n) ¹H-reaction. The boron pile - manganese bath comparisons were introduced at a late stage when Colvin and Sowerby were searching for possible systematic errors. The comparison of both methods was based on the radium beryllium photoneutron source, and agreement was within 0,25 percent. Other comparisons made with a Ra-Be-source and a ²⁴⁰Pu spontaneous fission source give agreement 0,25 % and 0,67 % respectively. We can conclude therefore that renormalization of the boron pile results is not justifiable.

Hence the available experimental results can be grouped into the following three independent categories: liquid scintillator, boron pile and manganese bath measurements. This grouping is, of course, relative because the important question about systematic errors still remains. And if two experiments are similar to each other, (a possibility of a same systematic error remains,) then those two experiments should be considered in one group. But anyway the weight of each group should be considered separately. It was done in the review of Hanna et al., who obtained the fitted value of $\bar{v}(^{252}Cf) = 3,7653$, which is not so close to the weighted mean 3,743. This reflects the fact that the fitted value of $\overline{\nu}$ (252Cf) is strongly dependent upon the highly accurate η and α -values for the fissile isotopes and the precisely measured ratios of $\overline{\nu}$ for the fissile isotopes to the \vec{v} (252 cf). For this reason, although DeVolpi and Porges have revised their results to 3,725 + 0,015, the fitted value of $\overline{\nu}$ (²⁵²Cf) should only change very slightly by the use of the revised De Volpi and Forges result. It is also confirmed by the fact that a revised weighted mean value obtained by using the revised De Volpi and Porges results is equal to 3.740 (the Hanna weighted mean is 3,743).

Therefore we shall use in this review for normalization purposes the following values for 252 Cf: $\overline{\nu}_t(^{252}$ Cf) = 3,765, $\overline{\nu}_p(^{252}$ Cf) = 3,756.

2) The energy dependence of T for 235U

The energy-dependence of $\bar{\nu}$ for 235 U below 1,0 MeV is of great importance to fast reactor physics, since in this region the majority of the neutron fission spectrum lies. Therefore we shall consider in greater detail this energy region.

All available experimental information on $\overline{\gamma}(^{235}0)$ in the energy region below 1 MeV is given in table 2. Fart of these results, which were obtained up to 1965, has already been considered by J.J. Schmidt in [1]. The table 2 contains the results of all the measurements carried out up to April 1970.

We do not consider $\overline{\nu}$ values at thermal energies. Recently obtained ratios at thermal energies agree with each other with an accuracy better than 1 % [15], and the accuracy of the majority of the measurements is about 0.5 - 1%. All available information up to late 1969 has recently been evaluated carefully by Hanna, Westcott et al. [7]. They considered the absolute measurements for $\overline{\nu}$ (²³⁵U) at thermal energies as well as the ratios $\overline{\nu}$ (²³⁵U) to $\overline{\nu}$ (²⁵²Cf) and the ratios $\overline{\nu}$ (²³⁵U) to $\overline{\nu}$ for ²³³U, ²³⁹Pu. The fitted values for the $\overline{\nu}$ -ratios ²³⁵U/²⁵²Cf, ²³³U/²³⁵U, ²³⁹Pu/²³⁵U are not close enough to the weighted means and therefore the fitted value is dependent on the accurate $\overline{\nu}$, ∞ and η -values for ²³³U, ²³⁹Pu and ²⁵²Cf. Hanna et al. get the following figures: $\overline{\nu}_t^{th}$ (²³⁵U) = 2,4229 ± 0,0066, $\overline{\nu}_t = \overline{\nu}_p + \overline{\nu}_d$, $\overline{\nu}_p$ = average number of prompt fission neutrons, $\overline{\nu}_d$ = average number of delayed fission neutrons. Assuming for $\overline{\nu}_d$ the value 0,0153 taken from Keepin [68] we get $\overline{\nu}_p^{th}$ (²³⁵U) = 2,4071. We used these thermal $\overline{\nu}_p$ and $\overline{\nu}$ -values for ²³⁵U as standards in renormalizing all the experimental $\overline{\nu}$ -values given in table 2. For ²⁵²Cf used as a standard the following values were used for renormalization: $\overline{\nu}_t^{Sp}$ (²⁵²Cf) = 3,765, $\overline{\nu}_p^{Sp}$ (²⁵²Cf) = 3,756.

There was clear evidence of the non-linear dependence of $\overline{\nu}(^{235}U)$ below lMeV in the investigations of Moat, Mather and Fieldhouse [22], and in the studies of Mather, Fieldhouse and Moat [25]. This trend has been confirmed by the works of Blyumkina, Bondarenko et al. [25], Kuznetsov, Smirenkin [29], Nadkarni and Ballal [30]. Unfortunately, the energy resolution obtained in those three works was not adequate in order to investigate the energydependence of $\overline{\nu}$ below 1 MeV in detail. The better energy resolution was achieved in the measurements of Meadows and Whalen [28] and in those of Soleilhac, Decarsin et al.[31].

Meadows and Whalen have measured the energy dependence of $\bar{\nu}_p$ over the incident neutron energy range 0,04 - 1,0 MeV by determining the ratio of prompt neutrons from neutron-induced fission of ²³⁵U to those from spontaneous fission of ²⁷²Cf. They used as standard $\bar{\nu}_p$ (²⁵²Cf) = 3,782. The Meadows and Whalen results have been renormalized to the adopted $\bar{\nu}_p$ (²⁵²Cf) value and are shown in table 2.

Soleilhac, Decarsin et al. [31] have recently determined the energy-dependence of $\bar{\nu}$ relative to $\bar{\nu}_{(252Cf)}^{(252Cf)}$ over the energy range 210 keV to 1,36 MeV, using the time-of-flight technique. The liquid scintillator method was used to detect the neutrons. Their numerical results as well as the results of the other authors are given in table 2.

The analysis of the experimental data below 1 KeV shows the existence of a certain structure. In order to illustrate this characteristic, two sets of data were chosen for this purpose because of their better energy resolution; i.e. the data of Soleilhac et al. [32] obtained with an energy resolution of ± 10 keV telew 0.7 MeV, and those of Wendows and Whalen [28], with a resolution of $\pm 25 - 30$ keV. The data of Flynkina et al. [25] were obtained with the energy resolution of about ± 50 keV and therefore could not be expected to show the fine structure. The data of Soleilhac et al., and those of Meadows and Whalen, have been plotted in fig. 1, having also drawn

a histogram through the experimental points of the first author. The experimental errors in $\overline{\nu}$ shown in the fig. 1 are of $\pm 0.017 - 0.020$ for the Meadows and Maalen data and $\pm 0.040 - 0.020$ for the Soleilhac data in the energy range up to 0.4 KeV and $\pm 0.020 - 0.014$ for both sets at the energy region 0.4 - 1.0 MeV. As is seen from fig. 1., both sets of data are in good agreement at practically all energies from 240 keV to 1 MeV, confirming particularly the structure shown at 250, 330, 400, and 500 keV. Moreover, the Soleilhac values show a periodical fine structure with an interval of about 80 keV, superposed to a broader one.

From this reality of a fine structure in $\overline{\nu}$, the conclusion can be drawn that we need to be very careful is any interpolation of $\overline{\nu}$ from near the thermal energy region to an energy of about a hundred keV. The reality of such a structure in $\overline{\nu}$ will undouttedly affect the data used for reactor calculations as the difference in $\overline{\nu}$ (2,530 rather than 2,45) of about 3 % is highly significant since it is used for multiplication constant K_{eff} calculations for fast reactors and might be the main reason for the inaccurate prediction of 235U critical masses.

The energy dependence of $\bar{\nu}$ for ²³⁵U from 1 to 15 MeV was studied by several authors; for instance, a recent evaluation of $\bar{\nu}$ -energy dependence was made by Fillmore [15]. All data for $\bar{\nu}$ available up to 1966 were analyzed. The linear equation obtained by a least-squares fit of the points between 1,0 and 2,57 MeV has the form: $\bar{\nu}_{\pm} = 2,417 \pm 0,1146$ E; and for the energy region E > 2,44 KeV - $\bar{\nu}_{\pm} = 2,324 \pm 0,1569$ E the normalization to $\bar{\nu}_{\mu}$ (252 Cf) = 3,756.

The points above 2,5 MeV show considerable scattering and the accuracy obtained from the least-squares analysis mentioned above may be not so good because of the use of many points of low accuracy around 14 MeV which may exert a strong influence on the slope. Also, in view of the scatter of the points, the possibility of systematic errors in some of them remains.

There are two latest works in which the 235 U $\bar{\nu}$ -energy dependence was studied with great details in the energy region above 1 MeV - the work of Soleilhac, Frehaut and Gauriau [32] in the energy region 1,3 - 28,0 KeV and the work of Savin, Khokhlov, Zamjatnin and Faramonova [34] in the energy region 0,6 - 5,0 MeV.

The results of Soleilhac et al. were published in [32] for $\tilde{\nu}$ -values in the energy region 1.3 - 15.0 MeV. The published data were changed by the authors of 0.1 - 0.5 $\frac{1}{2}$ mainly in the energy region 7 - 13 MeV. These new data up to the energy 28 MeV, sent to us by the authors, are given in table 3. The data obtained by Soleilhac et al. are in general in agreement with the results of other measurements within the limit of the experimental errors. Their curve goes somewhat lower than the results of the other authors in the region 2 - 6 MeV and a little higher in the region 7 - 15 MeV. The Soleilhac data also shows that there is an increase of 5 $\frac{1}{2}$ in $\frac{d \nu}{2}$ between 5 and 7.5 MeV. Such an increase can be explained in the terms of (n,n'f)-reaction, but the $\overline{\nu}$ -values calculated with the fission cross section ratio $\frac{f(n,n'f)}{f(n,n'f)}$ avail-

able from the literature are about 3 % less than the experimental data. Soleilhac et al. give the following least squares fit to their results for 2359:

 $\overline{\mathbf{v}}(\mathbf{E}) = 2,3709 \pm 0,1293^{\circ},$ 1,36 < E < 5,06 MeV $\overline{\mathbf{v}}(\mathbf{E}) = 2,0284 \pm 0,2000^{\circ},$ 5,06 < E < 7,48 MeV $\overline{\mathbf{v}}(\mathbf{E}) = 2,5204 \pm 0,1353^{\circ},$ 7,48 < 3 < 14,79 MeV

using as standard to $\overline{\nu} (2520f) = 3.782$. With the renormalization to $\overline{\nu} (2520f) = 3.756$ the linear equations will be the following: $\overline{\nu}(E) = 2.3566 \pm 0.1284 E$, $\overline{\nu}(E) = 2.0144 \pm 0.1986E, \overline{\nu}(E) = 2.5030 \pm 0.1344 E$ for the respective, above mentioned energy regions.

Soleilhac et al. did not find any steps in the energy dependence of $\overline{\nu}$ in the energy region from 1 to 3 MeV. It is explained by the fact that in this energy region they measured the $\overline{\nu}$ -values at four energies only, at steps of about 0.5 MeV.

Savin et al. [34] carried out the measurements of $\sqrt{(En)}$ for 20 energy points in the region 1 - 3 KeV and extended the measurements to the energy of 6 KeV. Eackground conditions gave them the allowance to perform the relative measurements with an accuracy of about 1 5 in the energy region 0.6 - 5.0 MeV, where the background due to scattered neutrons was 2 - 7% of the effect. The numerical data of Savin et al., renormalized to the value of $\sqrt{(252Cf)} = 3.756$ are given in table 3. These data are systematically somewhat higher than those of Prokhorova, et al., [33] in the region 1-3 MeV, although coinciding with the latter within the limit error of 1 p.

The Savin data repeat the characteristic peculiarities of the energy dependence of $\bar{\nu}$ in the energy region from 1 to 3 MeV obtained by Frokhorova et al., namely, the stepped form of the energy dependence of $\bar{\nu}$ in this region. The totality of the data shows that there is an increase of $\bar{\nu}$ at about 1 MeV, and in the energy region 1,5 - 2,0 MeV the $\bar{\nu}$ -value remains constant. Then, beginning from 2,5 - 3 MeV a faster increase is ascertained with $\frac{d\bar{\nu}}{dEn} \approx 0,16$ MeV-1. The derivative $\frac{d\bar{\nu}}{dEn}$ increases again with the beginning of the process (n,n'f) at the energy En- 5,5 - 6 MeV as it was measured by Soleilhac et al. [32], and an increase of $\bar{\nu}$ (En) in the energy region between 5,06 and 7,48 MeV may be fitted by the slope $\frac{d\bar{\nu}}{dEn} = 0,20$ MeV⁻¹.

The stepped dependence of $\overline{\nu}$ is associated with the discrete energy levels of a nucleus in the transition state (so-called fission channels). The stepped form of the energy dependence of $\overline{\nu}$, as is shown in [33], is in good qualitative agreement with the conclusions of M.V. Strutinsky and Pavlinchuk [35], regarding the effect of nucleon pairing on the internal excitation spectrum of fissionable nuclei. The effect of the stepped dependence of $\overline{\nu}$ on the energy of neutrons inducing fission of the even-even compound nucleus 236 U as well as \mathbb{K}^2 - the mean square of the angular momentum projection on the nucleus axis - was explained by the stepped change of the number of excited quasiparticles with the increase of excitation energy in the interval of several Δ (Δ is an energy gap in the 236 U inner excitation spectrum, $2\Delta = 2,5$ MeV).

In summary, the totality of all the experimental data available for $\overline{\nu} (^{23}5_{\rm U})$ gives evidence that the linear energy dependence of $\overline{\nu}$ exists only in the energy region above 2,5 MeV. Below this energy it is necessary to use for practical purposes of reactor calculations the experimental data themselves, shown as a histogram on Fig. 1 and 2, and given in tables 2 and 3.

Present status of the energy dependence of 7 for 239 Pu

It is not necessary to emphasize the importance of an accurate knowledge of ∇ for ²³⁹Fu in reactor physics, but in spite of this importance the problem has not completely been solved yet, particularly in the low energy region, below 1.5 MeV, where more accurate and precise measurements would certainly be welcomed.

We have left out in this review the subject of thermal $\overline{\nu}$ for 239 Fu, because it has been considered in detail in the latest 2200 m/sec constants revision of Hanna et al. [7] and, to our knowledge, no new value has been published afterwards.

As regards the energy dependence of $\overline{\nu}(^{239}\text{Pu})$, the present situation is as follows: a total amount of 14 different experimental sets of values are available, five of which give $\overline{\nu}$ only at one energy and are very old, and another two give $\overline{\nu}$ at two different energies only. We then have seven different sets of values with more than four points each, three of which will be released at the 2nd International IAEA Conference on Nuclear Data for Reactors at Helsinki. The remaining four sets have been published between 1963 and 1969.

The first set of data of interest to be considered is that of Hopkins and Diven [4] with a total number of six points in the energy range from 0,250 to 14,5 MeV. They used $\bar{\nu}^{p}(252Cf) = 3,771$ as standard and a gated cadmium loaded liquid scintillation tank as a neutron detector. The efficiency of the detector was obtained by a Monte Carlo method and chequed experimentally at one energy and angle by n-p scattering on a plastic scintillator. They measured in the same experiment $\bar{\nu}(233U)$ and $\bar{\nu}(235U)$ and the claimed accuracy of their measurements is of the order of 1,3%. No correction was applied for the fission spectra differences of the samples and of the standard used.

The same technique was used by Mather et al. [37] to determine $\bar{\nu}(^{239}\text{Pu})$ and $\bar{\nu}(^{233}\text{U})$ at four energies between 1 and 4 MeV. They used $\bar{\nu}(^{252}\text{Cf}) =$ 3,782 as standard and the time-of-flight technique to determine the spectrum of incident neutrons. Their final results were corrected for spectral differences between the sample and the standard (the correction was obtained by Monte Carlo calculations supposing a Maxwellian spectrum) and for the anisotropy of fission fragment emission.

The total correction applied to the experimental values was less than 2,1% and the reported accuracy in $\overline{\nu}$ of the order of 1,7 %.

Conde et al. [44] have used also a gated scintillation tank and the timeof-flight technique to measure $\bar{\nu}(^{239}\text{Pu})$ between 4,22 and 14,8 MeV at five different energies, but the liquid scintillator was loaded with gadolinium instead of cadmium. As standard was used $\bar{\nu}(^{252}\text{Cf}) = 3,764$. In the same experiment $\bar{\nu}(^{241}\text{Pu})$ was also determined in the same energy range. Their final values were corrected among other effects for the contribution of the spontaneous fission of ^{240}Pu (correction ~2%), for differences in fission neutron spectra (-0,2% at 4 MeV) and for anisotropy of the fission neutron emission. The total correction applied to the measured values was 1,2% at 4 MeV, and the reported accuracy was better than 3%. Soleilhac et al. [3?] have used the same type of neutron detector to determine $\overline{\nu}_{p}$ for 239 Pu, 2350 and 2380 between 1,3 and 15 MeV. The standard was $\overline{\nu}(^{252}$ Cf) = 3,782 and the measurements were carried out with a multiplate ionization chamber which allowed determining simultaneously $\overline{\nu}$ for the three isotepes and for the standard. In order to minimize alpha pile-up, the total 239Pu mass was distributed over eight outputs with 12 mg per output. The measured values were corrected, among other effects, for spectral differences (maximum correction + 0,5 %) between sample and standard. The anisotropy in fission neutron emission was not accounted for, because following Mather [37] the maximum correction would be + 0,2 % at 7 KeV, and was considered negligible.

These published $\bar{\nu}$ -values have been modified slightly afterwards by the authors [31], who have also increased the reported error to include the statistical errors of the corrections for efficiency and degraded neutrons.

They have extended down also the measured energy range up to 0,2 MeV in an intent to look for structures. The measurements in this low energy region were carried out with a thick neutron target and the neutron energy was determined by flight-of-time. The total energy resolution was 20 keV below 0,7 MeV, and 50 keV above this energy. They have used the same standard that in previous measurements and in the same experiment was determined also $\bar{\nu}_{\rm p}$ (2350).

Other unpublished results are those of Mather et al [38], who have used a large scintillator counter to measure average values of $\frac{1}{2}$ for the neutron induced fission of ²³⁹Fu over 11 energy bands below 1,2 MeV. The energy bands were 40 - 115 keV, 115 - 285 keV, and 100 keV wide from 300 keV to 1,2 MeV. The raw data were corrected among other effects for the contribution of the ⁻⁴⁰Pu content and for fission spectral differences between sample and standard, determined by a Monte Carlo calculation supposing a Maxwellian distribution with E deduced from the expression given by Terrell [78]. The correction was of the order of - 0,3 %. The ²⁹Fu results were quoted as ratios to $\frac{1}{2}(252 \text{ Cf})$, which was used as standard, and the relative accuracy was 1 % being dominated by the counting statistic.

Finally, we have obtained the data of Savin et al. [34] between 0,6 and 5 MeV, with an accuracy of 1 - 3%. They used $\overline{\nu}(^{252}\text{Gf}) = 3,772$ as standard value, and in the same experiment $\overline{\nu}_{p}(^{2350}\text{U})$ and $\overline{\nu}_{p}(^{240}\text{Pu})$ were also measured. They have used a large liquid scintillation tank as neutron detector. This was divided in two halves and a coincidence was established between the pulses coming from both parts. In this form they succeeded in reducing the background by two orders of magnitude, being only 2 - 7% of the total number of counts in the energy range from 0,6 to 5 KeV. In the final $\overline{\nu}$ -value was taken into account the angular correlation between incoming and fission neutrons, spectral differences between sample and standard, multiplication effects in the sample and the effects of impurities. According to the authors, their results for (²³⁹Pu) give evidence of some structure in the region from 0,7 to 3,3 MeV in the form of two steps at En = 1,3 MeV and En = 2,5 MeV. All the reported data are listed in tables 4 and 5, together with their renormalized values considering, as in the case of ²³⁵U, the standard value $\overline{\nu}_{\text{Bp}}(^{252}\text{Cf}) = 3,756$, and were plotted as a function of the energy in figure no. 2. An inspection of this figure shows that: i) all the old data about 14 MeV and some old ones at lower energies deviate too much from the general trend expressed by the new ones and should be excluded in any least-square fit.

ii) There is good general agreement among the data of Hopkins et al. [4], Condé et al. [44], Soleilhac et al. [31,32] and Savin et al. [34].

iii) The old data of Mather et al. [37] - although showing the same linear dependence as the others, present a wrong slope and should be disregarded, unless they are renormalized by pivoting them into the 1,99 MeV value, chosen as pivot because of its agreement with other measurements.

iv) The latest data of Mather et al. [38], though showing large fluctuations, agree with the mean general tendency of the other measurements.

v)Confirming the subjections of provious measurements and the theoretical analysis of Schuster and Howerton [79], there seems to be some structure in the energy dependence of $\overline{\nu}$, in the form of changes of slope, which take place at about 6.5 MeV and 12 MeV and which - like in the case of 2320 - can be related with (n,n'f) and (n,2nf) processes, but nevertheless the effect observed is very small.

vi) It seems to be some indication of a certain structure below 4 MeV, but of smaller amplitude than for ²³⁵U. This question will be considered more carefully later on.

There have been many attempts to represent the experimental data by $\frac{5}{1}$ inear equation of the form $\overline{\nu}(E) = \overline{\nu} + AE_r$, where $\overline{\nu}_r$ is the thermal value; merely by determining the coefficients $\overline{\nu}$ and A by means of a least squares fit. These determinations have been listed in the following table where the coefficients $\overline{\nu}_r$ and A are given as ratios to the standard used, $\overline{\nu}_{sp}(^{252}Cf)$ in all of them, in order to give an easier comparison.

Reference		year	Energy range (MeV)	<u>v</u> /v _p (²⁵² cf)	A/\bar{v}_{p} (²⁵² cf)
Mather et al.[37]	(e)	1963	0 - 4	0,7852 <u>+</u> 0,0063	0,0259+0,0029
	(b)	11	0 - 4	0,7639 <u>+</u> 0,0037	0,0346+0,0021
Hopkins et al.[4]	(a)	1965	0 -14	0,7523+0,1007	0,0424
Filmore [15]	(b)	1968	0 -14	0,7662	0,0337
Condé et al.[44]	(a)	**	4 -15	0,773 +0,013	0,037 ±0,003
	(b)	11	0 -14	0,7665	0,0364
Soleilhac et al.[32	?](a)	1969	1,36 -5,06	0,7548+0,0025	0,0401 <u>+</u> 0,0007
			6,08-11,93	0,7613 <u>+</u> 0,0035	0,0400+0,0005
			12.41-14,79	0,7374+0,0012	. 0,0407±0,0022
[1,36-5,	06)+(12,41-14,79]	0,7572 <u>+</u> 0,0015	0,0393 <u>+</u> 0,0002
			1,36-14,79	0,7595 <u>+</u> 0,0027	0,0396 <u>+</u> 0,0003
Mather et al.[38]	(a)	1970	0,040-1,2	0,7660+0,0053	0,0396+0,0074
		"	0,040-1,2	0,7664 <u>+</u> 0,0056	0,0389+0,0078
Colvin	(c)		4,2	0,7658 <u>+</u> 0,0018	0,0354 <u>+</u> 0,0011
Savin [34]	(a)	1970			0,0397
Hanna et al.[7]	(ð)	1969	thermal	0,7650+0,0022	

Parameters of the best fits to the experimental data on $\overline{\nu}_{p}(\frac{239}{Pu})$

(a) least square fit to author's data

(b) " " to all available data at that moment

(c) Quoted by Mather et al. [38]

•

(d) Derived from the IAEA best Values after making allowance for delayed neutrons.

,

.

Then we can see from the table above that below $\simeq 5$ MeV the energy dependence of $\overline{\nu}$ for 239 Fu can be expressed in a first approximation, by a linear equation with a slope of 0.150 neutrons/MeV.

At the present moment it is a controversial subject if some structure exists or not in the energy dependence of $\overline{\nu}$ below ~ 1 MeV. While some authors, as Soleilhac [31], are inclined to the existence of some structure of a similar kind to those reported for 235 U below 1 MeV, other authors, as Boldeman[80], are against the existence of it.

In order to throw some light on this subject, all available experimental data below 1,4 MeV have been plotted on figure 5. This figure shows that, in spite of the different energy resolution of the several sets of values and the large spread among them, some structure seems to be present at about 400 keV.

In order to enhance this apparent structure, we have considered the data of Soleilhac et al. [31] alone, obtained with good resolution and short spacing; and we have smoothed them by averaging at first each two end then each three subsequent points in order to suppress the statistical fluctuations. The result of this smoothing has been plotted in figure 4, together with the remaining values from the other authors. We see that the smoothing procedure has displayed the existence of a structure in the form of some steps at about 0,6 and 1 MeV. This structure seems to be confirmed by the latest results of Mather et al. [38], in spite of their much larger fluctuations, and by the measurements of Hopkins et al.[4]. Nevertheless the amplitude of the structure is extremely low, of the order of 0,6 β only, i.e. much lower than in the case of 2350, but seems to exist really.

From this analysis we conclude that:

a) the thermal value of $\tilde{\nu}$ for ²³⁹Fu is well represented by the value of the latest neutron constants revision of Hanna et al. [7]. This value is

$$\tilde{\mathbf{v}}_{\mathrm{T}}^{\mathrm{Th}}(^{239}\mathrm{Fu}) = 2,8799 \pm 0,0090$$

from which we deduce

 $\bar{\mathbf{v}}_{p}^{\text{th}} = 2,8738 \pm 0,0090$

after subtracting $\bar{v}_{d} = 0,0061$ taken from Keepin et al. [81]

- b) This value is in good agreement with the value obtained from the intercept at zero energy of the line obtained from the least-squares fit of the energy dependent values between 1 and 5 MeV.
- c) The energy dependence of $\overline{\nu}$ (²³⁹Pu) between 1 and 5 MeV can be represented fairly accurately by a linear equation with a slope of 0,150 neutrons/MeV.
- d) For practical purposes this linear dependence is also an adequate representation of the energy dependence of $\overline{\nu}$ below 1 MeV.
- e) Superposed to a linear dependence there is a structure below 1,5 MeV with an amplitude of about 0,6% and specing of ~ 400 keV in the form of plateaux and steps, hich should be taken into account in more detailed calculations.

The energy dependence of 7 for 2330.

The most recent and thereuch evaluation of the $\bar{\nu}$ -value for 233 U at thermal energy is that of Hanna et al. [7]. They considered experimental results both for the ratio $-\upsilon(^{233}\upsilon)/\bar{\upsilon}(^{235}\upsilon)$ and $\bar{\upsilon}(^{233}\upsilon)/\bar{\upsilon}(^{252}cf)$. The most recent and accurate measurement of the $\bar{\upsilon}(^{233}\upsilon)/\bar{\upsilon}(^{235}\upsilon)$ -ratio is the result by Foldeman and Dolton [65], on which Hanna's evaluation is heavily based. Hanna et al. give the following value for $\bar{\upsilon}(^{233}\upsilon)$ at thermal energy: $\bar{\upsilon}_{t}^{th}(^{233}\upsilon) = 2,4666 \pm 0,0069$.

For the energy region above thermal all experimental data available for $\frac{1}{2}\binom{2330}{1}$ are given in the FNL-sigma book [66] and in the report by Drake [67]. The latest measurements quoted there stem to 1965, and to the best of our knowledge there are only very few data to be added.

All the experimental data for $\overline{\nu}(^{233}U)$ available so far are given in table 6. The data were renormalized to the values indicated in the comments to the table. The average number of delayed neutrons was taken to be 0,007 [74].

As one can see from the table, there is the energy gap between 4 and 14 MeV, where no results are available. Also, similar to 2350 , there is some indication of structure between 0 and 1 MeV, but this structure is not studied in great detail. The complexity of the situation is shown by the available evidence for 2330 , where the measurements by Blyumkina et al. [25] and the relative $\bar{\nu}$ measurements of Kuznetsev and Smirenkin [73] show that there is a maximum for the $\bar{\nu}$ -value at about 300 keV and $\bar{\nu}$ decreases in going from 300 keV and then rises in going to higher energies.

The least squares fits for $\overline{\sim}(^{233}\text{U})$ given by Snidow [76], Keepin [77], and Boroughs, Craven and Drake [75] were mainly based on the experimental data quoted in the table 6. All of them use a linear representation of $\overline{\gamma}(^{233}\text{U})$ in the energy regions from 0 to 1 MeV and 1 to 15 MeV:

Snidow [76] : $\overline{\nu} = 2,504 + 0,028 \text{ E}, 0 \le 1,1 \text{ MeV}, \overline{\nu} = 2,532 \text{ at } E = 1 \text{ MeV}$ $\overline{\nu} = 2,3900+0,1323\text{ E}, 1,1<\text{E} < 15 \text{ MeV}, \overline{\nu} = 4,375 \text{ at } E = 15 \text{ MeV}$

Keepin [77]: $\overline{\mathfrak{d}} = 2,482 + 0,075 \text{ E}, 04 \text{ E} = 1 \text{ MeV}, \overline{\mathfrak{d}} = 2,557 \text{ at } \text{E} = 1 \text{ MeV}, \overline{\mathfrak{d}} = 2,412 + 0,136 \text{ E}, \text{ E} > 1 \text{ MeV} \quad \overline{\mathfrak{d}} = 4,452 \text{ at } \text{E} = 15 \text{ MeV}.$

The most recent fit for $\bar{\nu}(^{233}U)$ is that of Boroughs et al. [75], who presents the $\bar{\nu}$ -energy dependence by two linear segments in the form: $\bar{\nu} = 2,500$ at $E = 2,53 \cdot 10^{-8}$ MeV,

 $\bar{v} = 2,562, \quad E = 1 \text{ MeV}$ $\bar{v} = 4,360, \quad E = 15 \text{MeV}.$

We would recommend the employ of the latter fit of Boroughs et al., but it would be preferable to use the value $\vec{v} = 2,4866$ at thermal energy as given by Hanna et al.

Energy dependence of Vfor 240 Fu, 241 Fu

The experimental available data on $\overline{\nu}(\mathbb{E})$ for the plutonium heavier isotopes are very scarce. For ²⁴⁰Pu there is no value at thermal energy. For the energy dependence of $\overline{\nu}(^{240}\text{Pu})$ we have only the measurements of Kuzminov [45] at 3,69 and 15 MeV, obtained using $\overline{\nu}_{\text{th}}^{\text{p}}(^{239\text{Fu}})$ as standard and with an accuracy of about 5%; three points below 1,6 MeV, due to De Vroey et al. [46], of comparable accuracy to the preceding ones, and finally the recent measurements of Savin et al. [34] between 1 and 4 MeV with a reported accuracy of 2 - 3%, obtained in an experiment were $\overline{\nu}_{p}(^{235}\text{U})$ and $\overline{\nu}_{p}(^{239}\text{Fu})$ were also determined. The standard used was $\overline{\nu}_{p}^{\text{e}}(^{252}\text{cf}) = 3,772$.

There are also three other measurements carried out with a fission spectrum and not with moncenergetic neutrons. These are those of Sander [91], who gives $\overline{\nu}(^{240}\text{Pu}) = 3,15\pm0,20$ for an energy of 2,1 KeV, the value of Engle et al. [70), who give for $\overline{\Sigma}=2,13$ $\overline{\nu}=3,27\pm0,14$ and finally the measurement of Barton et al. [92] who obtained $3,32\pm0,14$ for $\Xi=2,0$ MeV.

All the available experimental values including the measurements with a fission spectrum, are plotted in figure 5. We can see there, as reported by Savin et al. [34] that there seems to be some anormalous behaviour in $\frac{1}{2}$ but the relatively low statistic due to the spontaneous fission of $\frac{240}{\text{Fu}}$ does not allow to deduce definite conclusions. On the other hand we can see that the results of Kuzminov are too low compared with those of Savin and the systematic of the other measured Pu isotopes, for which $\tilde{\nu} \approx 5$ at 14 MeV.

The total value of $\sqrt[a]{r}$ for ²⁴⁰Pu was obtained by adding $\sqrt[a]{d} = 0,0057$ at 14 MeV and $\sqrt[a]{d} = 0,0028$ below 5 MeV, according to the results of Keepin [81, 82].

In the case of ²⁴¹Pu the situation is even worse. The thermal value is well represented by the revised value of Hanna et al. [7], who give $\bar{\mathbf{v}}_{\mathrm{T}}(241\mathrm{Pu}) = 2,934 \pm 0,012$. After the publication of the value of Hanna et al., a new value of $\bar{\mathbf{v}}_{\mathrm{Ph}}^{\mathrm{p}}(241\mathrm{Pu})$ has been reported, that of Jaffey et al. [62], who have obtained $\bar{\mathbf{v}}_{\mathrm{Ph}}(241\mathrm{Pu}) = 2,874 \pm 0,015$, a value too low compared to the remaining more recent measurements from which the value of Hanna was deduced. According to the own authors, apart from this discrepancy, they have not found a basis for suspecting a systematic error in the method. Indeed, other measured values for other isotopes agree with previous measurements. For the energy dependence of $\bar{\mathbf{v}}(241\mathrm{Pu})$ the only values available are those of Conde et al. [44], obtained in the same experiment in which $\bar{\mathbf{v}}_{\mathrm{p}}(259\mathrm{Pu})$ was also measured, but the accuracy of the $241\mathrm{Pu}$ measurements are lower. They are listed, together with the renormalized values, in table 8. The total value of $\bar{\mathbf{v}}$ was obtained by adding $\bar{\mathbf{v}}_{\mathrm{d}} = 0,0084$ at 15 MeV [82] and $\bar{\mathbf{v}}_{\mathrm{d}} = 0,013$ at lower energies. This late value has been deduced from the value at 15 MeV by multiplying it by 1,6, according to the results of Masters et al. [83] who have found a decrease in $\bar{\mathbf{v}}_{\mathrm{d}}$ with increasing energy.

The set of values of Condé et al. [44] showsclearly a linear dependence which can be represented by the equation

$$\bar{\boldsymbol{v}}_{p}$$
 (E) = 2,921 + 0,1430 En

The intercept at zero energy is in good agreement with the thermal prompt value of the Hanne revision.

As for the energy dependence of $\overline{\nu}$ for heavier plutonium isotopes, as 242 pu, no experimental values are available to our knowledge.

Energy dependence of the delayed neutron yield

Endowed because of its importance in the development of kinetic response methods used in nuclear safeguards problems [93].

The first determinations of the delayed neutron yield were carried out with fission spectra of different types of reactors. [81,84-85]. The work of Keepin et al. [81] included also values of the thermal delayed neutron yield.

Some years later Shpakov et al. [86] and Maksyutenko [87] found that the neutron delayed yield increases with increasing energy in unexpected contradiction to the theoretical predictions.

This long standing discrepancy has lately been resolved. It has been reported by Easters et al. [83] et East et al. [82] that the yield decreases with increasing energy, the ratios being in the range 1,60 to 1,94 at 3,1 and 14,9 MeV for different fissionable isotopes. These results are in accordance with gualitative predictions based on fission systematics.

According to the latest published results we have the following absolute delayed neutron yields for the isotopes in study;

Isoto	pe thermal(a) Fast (a) (Fission spe	3,2KeV ^{(b} ectr.)) 14,9 Kev(c)
233 _U 235 _U 239 _{Pu} 240 _{Pu} 241 _{Pu}	0,0066 <u>+</u> 0,0003 0,0158 <u>+</u> 0,0005 0,0061 <u>+</u> 0,0003	0,0070 <u>+</u> 0,0004 0,0165 <u>+</u> 0,0005 0,0063 <u>+</u> 0,0003 0,0088 <u>+</u> 0,0006	0,0077 <u>+</u> 0,0008 0,018 <u>+</u> 0,002 0,0069 <u>+</u> 0,0007	0,0043 <u>+</u> 0,0004 0,0095 <u>+</u> 0,0008 0,0043 <u>+</u> 0,0004 0,0057 <u>+</u> 0,0007 0,0084+0,0012

(a) values of Ref. [81]

(b) values of Ref. [83]

(c) values of Refs. [82, 83]

V-values for Spontaneous Fission

The only isotope of which the $\overline{\nu}$ value for spontaneous fission was measured absolutely, is 25^{2} Cf. For all the other isotopes the measurements were made relative to the $\overline{\nu}$ value of another spontaneous fissionable isotope, mainly 252Cf, or the thermal $\overline{\nu}$ value of 2350. Therefore the final value for all the remaining isotopes depends strongly on the value adopted for the standards.

After 252 Cf, already considered, the next closely studied isotope has been 240 Fu, and in a third position 242 Fu and 244 Cm. For all the remaining isotopes the knowledge of their spontaneous fission $\tilde{\nu}$ values rely on the measurements carried out in two or three laboratories, some of them being very old indeed.

All available experimental values on those isotopes are listed in tables 9, 10 and 11, together with their renormalized values and the mean value obtained by averaging the renormalized experimental values with weights proportional to the inverse of the square of their standard errors.

In the case of ²⁴⁰Pu the corrections applied to the measured values by the authors were almost the same in all of them. In these cases, where a liquid scintillation tank was used as neutron detector, only Boldeman [57] has taken also into account the spectral differences between sample and standard. Nevertheless we have not considered this detail when giving weights, because the value of Boldeman had already the largest weight due to its much smaller error, so that the final mean value for $\overline{\upsilon}_{\rm sp}(^{240}{\rm Pu})$ is almost entirely determined by this value. The same applied also to $\overline{\upsilon}_{\rm sp}(^{242}{\rm Pu})$.

In the case of $\overline{\nu}_{sp}$ (²⁴⁴Cm) the weighted mean value is determined mainly by the data of Jaffey et al. [62]. Their $\overline{\nu}_{sp}$ (²⁴⁴Cm) was obtained as mean value of several determinations relative to different well established standards.

In most of the cases the $\bar{\nu}$ value for the spontaneous fission of the isotopes considered was determined in an experiment, in which the $\bar{\nu}$ values of other fissionable isotopes were also measured. It seems then interesting to consider the ratios of $\bar{\nu}$ for spontaneous fission of these isotopes to the $\bar{\nu}_{sp}$ or $\bar{\nu}_{th}$ of the more important isotopes. These ratios are listed in tables 12, 13 and J4 respectively.

In such case where the ratio considered has not been measured directly, the reported error has been increased in the percentage corresponding to the error with which the now considered standard has been determined, as is shown in the tables reducing in this form its weight in an average.

From the mean values of these ratios an average of $\bar{\nu}_{sp}$ has been deduced. The error in the mean values includes also the error of the standards.

Although the average values obtained agree to those deduced by direct averaging of the renormalized values, this concordance is not significative because in both cases the final results are strongly influenced by the same best determined values.

For the sake of completeness we are listing in table 15 all available experimental data on $\bar{\tau}$ for the spontaneous fission of the remaining isotopes, and their mean values have been plotted together with 240pu, ²⁴²Pu and ²⁴⁴Cm in figure 6, as a function of the mass number.

 $\frac{\text{TABLE 2}}{\tilde{\nu}(^{235}\text{U})}$ in the energy range 0,03 to 1 MeV.

Reference	Energy, MeV	νexp	Standard originally used	$ec{ u}$ renormalized	$ \overline{\nu} total = \overline{\nu}_{p} + \overline{\nu} d $
J.M. Blair [16]	0,2	2,39 <u>+</u> 0,15		2,39 <u>+</u> 0,15	2,39 <u>+</u> 0,15
J. Terrel et al. [17]	0,7	1,02 <u>+</u> 0,02	$-\bar{v}_{th}^{p} (v^{235}) = 1$	2,46 <u>+</u> 0,05	2,48 + 0,05
B.C. Diven et al.[18]	0,08	2,47 <u>+</u> 0,03	$-\overline{\nu}_{th} (U^{235}) = 2,46$	2,4 <u>3</u> <u>+</u> 0,03	2,43 <u>+</u> 0,03
R.C. Hanna [19]	0,74	2,48 <u>+</u> 0,05	$\overline{v_{th}}$ (U ²³⁵) = 2,47	2,44 <u>+</u> 0,05	2,44 <u>+</u> 0,05
	1,3	2,61 <u>+</u> 0,09	_!!_	2,57 <u>+</u> 0,09	2,57 <u>+</u> 0,09
L.N. Usachev et al.[20]] 0,7	2,52 <u>+</u> 0,06	$-\bar{v}_{th} (U^{235}) = 2,47$	2,48 + 0,06	2,48 ± 0,06
	1,0	2,84 <u>+</u> 0,35	_!!	2,80 <u>+</u> 0,35	2,80 <u>+</u> 0,35
D.Eutler et al.[21]	0,21	2,492 <u>+</u> 0,016	$-\tilde{v}_{th} (U^{235}) = 2,47$	2,44 <u>5+</u> 0,016	2,44 <u>5+</u> 0,016
	0,625	2,538 <u>+</u> 0,024	_!!_	2,490 <u>+</u> 0,024	2,490 <u>+</u> 0,024
	1,10	2,570+ 0,020	_"	2,5 <u>21+</u> 0,020	2,521 <u>+</u> 0,020
A. Moat et al.[22]	0,04	2,384+ 0,018	$\bar{\nu}_{sn}^{p}$ (cf ²⁵²) = 3,77	2,375 <u>+</u> 0,018	2,390 <u>+</u> 0,018
	0,25	2,469 <u>+</u> 0,021		2,460+ 0,021	2,476+ 0,021
	0,50	2,468 <u>+</u> 0,018	_"_	2,459 <u>+</u> 0,018	2,475 <u>+</u> 0,018
	0,75	2,447 <u>+</u> 0,014	_"_	2,438 <u>+</u> 0,014	2,454 <u>+</u> 0,014
	1,00	2,475+ 0,018	-"-	2,466 <u>+</u> 0,018	2,482 <u>+</u> 0,018
	1,25	2,540 <u>+</u> 0,019		2,531 <u>+</u> 0,019	2,547 <u>+</u> 0,019
B.C.Diven et al.[23]	0,32 <u>5+</u> 0,093	2,424 <u>+</u> 0,039	$\bar{\nu}_{th}^{p}(v^{235}) = 2,414$	2,41 <u>7+</u> 0,039	2,43 <u>3+</u> 0,039
	0,475 <u>+</u> 0,075	2,431 <u>+</u> 0,038	_"_	2,424 0,038	2,44 C+ 0,038
	0,842 <u>+</u> 0,059	· 2,458 <u>+</u> 0,038	_"	2,451+ 0,038	2,467 <u>+</u> 0,038
	1,106 <u>+</u> 0,052	2,519 <u>+</u> 0,040	_''_	2,51. <u>2+</u> 0,040	2,528+ 0,040

Reference	Energy, MeV	ν _{exp}	Standard originally used	$\overline{\mathcal{V}}$ renormalized ,	$\overline{\overline{\nu}}$ total $=\overline{\overline{\nu}}_{p}+\overline{\overline{\nu}}d$
A. Moat et al.[24]	0,075	2,39 <u>+</u> 0,05	$\bar{v}_{sn}^{p} (cf^{252}) = 3,69)$	2,43 <u>+</u> 0,05	2,59 <u>+</u> 0,05
J.C. Hopkins et al.[4	1]0,280 <u>+</u> 0,090	2,438+ 0,022	$\overline{v}_{sp}^{\tilde{p}^{p}}$ (Cf ²⁵²) = 3,771)	2,428 <u>+</u> 0,022	2,444+ 0,022
	0,470+0,080	2,456 <u>+</u> 0,022	_"_	2,446 <u>+</u> 0,022	2,462 <u>+</u> 0,022
	0,815 <u>+</u> ,0,060	2,471 <u>+</u> 0,026	_!!_	2,461 <u>+</u> 0,026	2,477 <u>+</u> 0,026
	1,08 <u>+</u> 0,05	2,530 <u>+</u> 0,026	_"_	2,520 <u>+</u> 0,026	2,536 <u>+</u> 0,026
D.W.Colvin et al.[2]	0,101 <u>+</u> 0,060	2,478+ 0,027	$\bar{\nu}_{sp}^{p}$ (Cf ²⁵²) = 3,76	2,475 <u>+</u> 0,027	2,491 <u>+</u> 0,027
	0,514 <u>+</u> 0,054	2,524+ 0,045	-"-	2,521 <u>+</u> 0,045	2,537 ± 0,016
	0,571 <u>+</u> 0,156	2,511 <u>+</u> 0,023	_!!_	2,508 <u>+</u> 0,023	2,524+ 0,023
	0,572 <u>+</u> 0,015	2,501 <u>+</u> 0,029	_11_	2,498 <u>+</u> 0,029	2,514 <u>+</u> 0,029
	0,604 <u>+</u> 0,053	2,519+ 0,023	!!_	2,516 <u>+</u> 0,023	2,534+ 0,023
	0,946 <u>+</u> 0,128	2,534 <u>+</u> 0,018	_"_	2,531 <u>+</u> 0,018	2,547 <u>+</u> 0,018
Y.A. Blyumkina et el. [25]	0,08 <u>+</u> 0,05 0,06	2,431 <u>+</u> 0,030	$-\tilde{\nu}_{\text{th}}^{\text{p}} (U^{235}) = 2,43$	2,408+ 0,030	2,424 + 0,030
	0,31 <u>+</u> 0,04	2,481 <u>+</u> 0,025		2,45 <u>8+</u> 0,025	2,474 <u>+</u> 0,025
	0,39 <u>+</u> 0,05	2,491 <u>+</u> 0,017	_"_	2,468 <u>+</u> 0,017	2,484 <u>+</u> 0,017
	0,55 <u>+</u> 0,05	2,451 <u>+</u> 0,024	_''_	2,428 <u>+</u> 0,024	2,444 <u>+</u> 0,024
	0,67 <u>+</u> 0,05	2,48 <u>8+</u> 0,023	¹¹	2,465+ 0,023	2,481 + 0,023
	0,78 + 0,06	2,486 <u>+</u> 0,025	_"_	2,463 <u>+</u> 0,025	2,479 <u>+</u> 0,025
	0,99 <u>+</u> 0,06	2,521 <u>+</u> 0,029	_"_	2,497 <u>+</u> 0,029	2,513 + 0,029
	0,08 <u>+</u> 0,05 0,06	2,391+0,035	_'''_	2,369 <u>+</u> 0,035	2,385 <u>+</u> 0,035
	0,19 <u>+</u> 0,09	2,448 <u>+</u> 0,038	_"_	2,425 <u>+</u> 0,038	2,441 <u>+</u> 0,038
	• 0,29 <u>+</u> 0,04	2,483 <u>+</u> 0,034	-"-	2,460 <u>+</u> 0,034	2,476 <u>+</u> 0,034

TABLE 2 (continued)

Reference	Energy, MeV	νexp	Standard originally used	$\overline{ u}$ renormalized	\vec{v} total = $\vec{v_p} + \vec{v}d$
Y.A. Blyumkina et al. [25] (cont'd)	0,39 <u>+</u> 0,05	2,491 <u>+</u> 0,017	$\sqrt[5]{v}_{th}^{p} (u^{235}) = 2,43$	2,468 <u>+</u> 0,017	2,484 <u>+</u> 0,017
	0,46 <u>+</u> 0,05 .	2,493 <u>+</u> 0,037	_11_	2,470 <u>+</u> 0,037	2,486 <u>+</u> 0,037
	0,64 + 0,05	2,468 <u>+</u> 0,038	-"-	2,445 <u>+</u> 0,038	2,461 <u>+</u> 0,038
D.S.Mather et al.[26]	0,04	2,420 + 0,021	$\hat{\nu}_{\rm sp}^{\rm p}$ (cf ²⁵²) = 3,782	2,403 <u>+</u> 0,021	2,419 <u>+</u> 0,021
	0,14 <u>+</u> 0,04	2,423 <u>+</u> 0,045	_ "_	2,406 <u>+</u> 0,045	2,422 + 0,045
	0,23 <u>+</u> 0,025	2,490 <u>+</u> 0,027	_" <u>_</u>	2,473 <u>+</u> 0,027	2,489 + 0,027
	0,33 <u>+</u> 0,115	2,478 <u>+</u> 0,026	_"_	$2,461 \pm 0,026$	2,477 <u>+</u> 0,026
	0,43 <u>+</u> 0,115	2,475 <u>+</u> 0,025	-"-	2,458 <u>+</u> 0,025	2,474 <u>+</u> 0,025
	0,70 <u>+</u> 0,145	2,457 <u>+</u> 0,022	_"_	2,440 <u>+</u> 0,022	2,456 <u>+</u> 0,022
	0,84 <u>+</u> 0,070	2,529 <u>+</u> 0,026	_11_	2,511 <u>+</u> 0,026	2,527 <u>+</u> 0,026
	0,93 <u>+</u> 0,190	2,499 <u>+</u> 0,026	_11_	2,482 <u>+</u> 0,026	2,498 <u>+</u> 0,026
	1,17 <u>+</u> 0,175	2,557 <u>+</u> 0,027		2,539 <u>+</u> 0,027	2,555 <u>+</u> 0,027
H. Conde [27]	0,06	2,416 <u>+</u> 0,023	$\bar{\tau}_{sp}^{p}$ (cf^{252}) = 3,767	2,409 + 0,023	2,424 <u>+</u> 0,023
[28]	0,039 <u>+</u> 0,050	2,422 <u>+</u> 0,017	$\bar{\nu}_{sp}^{p} (cf^{252}) = 3,782$	2,405 <u>+</u> 0,017	2,421 <u>+</u> 0,017
	0,046 <u>+</u> 0,050	2,423 <u>+</u> 0,016	_"_	2,406 <u>+</u> 0,016	2,422 <u>+</u> 0,016
	0,150+ 0,032	2,462 + 0,018	11	2,445 <u>+</u> 0,0018	2,461 + 0,018
	0,225 <u>+</u> 0,030	2,480 + 0,018	t	2,463 <u>+</u> 0,018	2,479 ± 0,018
	0,265 <u>+</u> 0,028	2,470 <u>+</u> 0,022	_"_	2,453 <u>+</u> 0,022	2,469 <u>+</u> 0,022

Reference	Energy, MeV	νexp	Standard originally used	-7 renormalized	\vec{v} total = \vec{v}_{p} + \vec{v} d
J.W. Meadows et al	**************************************		, , ,	•	
[28] cont'd.	0,298 <u>+</u> 0,027	2,472 <u>+</u> 0,022	$\bar{\nu}_{sp}^{p}(cf^{252}) = 3,782$	2,455 <u>+</u> 0,022	2,471 <u>+</u> 0,022
	0,325 <u>+</u> 0,027	2,514 <u>+</u> 0,018		2,496 <u>+</u> 0,018	2,512 <u>+</u> 0,018
	0,358 <u>+</u> 0,025	2,436 <u>+</u> 0,018	_ ¹¹ _	2,419 <u>+</u> 0,018	2,435 <u>+</u> 0,018
	0,375 <u>+</u> 0,025	2,477 <u>+</u> 0,022	_"_	2,460 <u>+</u> 0,022	2,476 <u>+</u> 0,022
	0,405 <u>+</u> 0,025	2,468 <u>+</u> 0,022	n	2,451 <u>+</u> 0,022	2,467 <u>+</u> 0,022
	0,425 <u>+</u> 0,025	2,534 <u>+</u> 0,017	_"_	2,516 <u>+</u> 0,017	2,532 <u>+</u> 0,017
	0,476 <u>+</u> 0,024	2,512 <u>+</u> 0,019	_"_	2,494 <u>+</u> 0,019	2,510 <u>+</u> 0,019
	0,548 <u>+</u> 0,021	2,489 + 0,017	_"_	2,472 <u>+</u> 0,017	2,488 <u>+</u> 0,017
	0,675 <u>+</u> 0,018	2,514 <u>+</u> 0,017	_"_	2,496 <u>+</u> 0,017	2,512 <u>+</u> 0,017
	0,785 + 0,021	2,527 <u>+</u> 0,014	_"_	2,509 <u>+</u> 0,014	2,525 <u>+</u> 0,014
	1,000 <u>+</u> 0,020	2,561 <u>+</u> 0,016	_"_	2,543 <u>+</u> 0,016	2,559 <u>+</u> 0,016
/.F.Kuznetsov et al. [29]	0,03	0,986 <u>+</u> 0,006	\vec{v} (\widetilde{En}) = 2,491 + 0,00 \vec{v} $_{th}^{p}$ (U-235) = 2,430	07 and 2,433 <u>+</u> 0,022	2,449 <u>+</u> 0,022
	0,20	1,013 <u>+</u> 0,007	_"_	2,500 <u>+</u> 0,024	2,516 <u>+</u> 0,024
	0,30	1,008 + 0,006	_"_	2,487 <u>+</u> 0,022	2,503 <u>+</u> 0,022
	0,40	$1,000 \pm 0,000$	_"_	2,468 + 0,007	2,4 <u>84 +</u> 0,007
	0,50	0,998 <u>+</u> 0,005	"_	2,463 <u>+</u> 0,019	2,479 <u>+</u> 0,019
	0,60	0,995 <u>+</u> 0,005	_"_	2,455 <u>+</u> 0,019	2,471 <u>+</u> 0,019
	0,70	0,994 <u>+</u> 0,005	_"_	$2,453 \pm 0,019$	2,469 <u>+</u> 0,019
	0,99	$1,005 \pm 0,009$	_"_	2,480 + 0,029	2,496 + 0,029

Reference	Energy, MeV	ν exp	'Standard originally used	^v renormalized	$\vec{\nu}$ total = $\vec{\nu}_{p} + \vec{\nu} d$
D.M. Nadkarni et al.	0,37 <u>+</u> 0,15	2,57 <u>+</u> 0,11	?		
[]0]	0,43 <u>+</u> 0,14	2,53 <u>+</u> 0,11			
	0,49 <u>+</u> 0,14	$2,49 \pm 0,11$			
	0,54 <u>+</u> 0,14	2,49 <u>+</u> 0,11			
	0,65 <u>+</u> 0,13	2,37 <u>+</u> 0,07			
	0,76 <u>+</u> 0,13	2,50 <u>+</u> 0,10			
	0,82 <u>+</u> 0,13	2,60 <u>+</u> 0,10			
	0,87 <u>+</u> 0,12	2,65 <u>+</u> 0,10			
	0,92 <u>+</u> 0,12	2,64 <u>+</u> 0,10			
	0,98 <u>+</u> 0,12	2,62 <u>+</u> 0,09			
	1,03 <u>+</u> 0,12	2,59 <u>+</u> 0,09			
	1,09 <u>+</u> 0,12	2,56 <u>+</u> 0,05			
M.Soleilhac et al.[3]]0,21 <u>+</u> 0,01	2,4307 <u>+</u> 0,0535	$\tilde{v}_{sp}^{p}(cf^{252}) = 3,782$	2,4139 <u>+</u> 0,0533	2,4300 <u>+</u> 0,0533
	0,23 <u>+</u> 0,01	2,4471 <u>+</u> 0,0410	_"_	2,4302+ 0,0408	2,4463 <u>+</u> 0,0408
	0,25 <u>+</u> 0,01	2,4635 <u>+</u> 0,0371	_!!_	2,446 <u>5+</u> 0,0369	2,4625 <u>+</u> 0,0369
	0,27 <u>+</u> 0,01	2,4930 <u>+</u> 0,0307	_!!_	2,4758 <u>+</u> 0,0305	2,4918 <u>+</u> 0,0305
	0,29 <u>+</u> 0,01	2,4607 <u>+</u> 0,0292	_"_"	2,4437 <u>+</u> 0,0290	2,4597 <u>+</u> 0,0290
	0,31 <u>+</u> 0,01	2,4699 <u>+</u> 0,0257	_"_	2,4529 <u>+</u> 0,0255	2,4689 <u>+</u> 0,0255
	0,33 <u>+</u> 0,01	2,4455 <u>+</u> 0,0242	_"_	2,4286 <u>+</u> 0,0240	2,4446 + 0,0240
	0,35 <u>+</u> 0,01	2,516 <u>5+</u> 0,0237	-"-	2,4991 <u>+</u> 0,0235	2,5151 <u>+</u> 0,0235
	0,37 <u>+</u> 0,01	2,4736 <u>+</u> 0,0232	"-	2,456 <u>5+</u> 0,0230	2,4725 <u>+</u> 0,0230

Reference	Energy, MeV	Ψ exp	Standard originally used	\overline{arphi} renormalized	$\vec{\nu}$ total = $\vec{\nu}_{p} + \vec{\nu} d$
M.Soleilhac et al	0,39 <u>+</u> C,01	2,4788 <u>+</u> 0,0229	$\overline{\nu}_{sp}^{p} (cf^{252}) = 3,782$	2,4617 <u>+</u> 0,0227	2,4777 <u>+</u> 0,0227
	$0,41 \pm 0,01$	2,5326 <u>+</u> 0,0212	!! <u></u>	2,5151 <u>+</u> 0,0210	2,531 <u>1+</u> 0,0210
	0,43 <u>+</u> 0,01	2,4969 <u>+</u> 0,0206	_"~	2,4797 <u>+</u> 0,0204	2,49 57 0,0204
	0,45 <u>+</u> 0,01	2,4764 <u>+</u> 0,0184	_11_	2,459 <u>3+</u> 0,0182	2,475 <u>3+</u> 0,0182
	0,47 <u>+</u> 0,01	2,4562 <u>+</u> 0,0179	_11_	2,4393 <u>+</u> 0,0177	2,4553 <u>+</u> 0,0177
	0,49 <u>+</u> 0,01	2,5004 <u>+</u> 0,0163	_"_	2,4831 <u>+</u> 0,0161	2,4991 <u>+</u> 0,0161
	0,51 <u>+</u> 0,01	2,4960 <u>+</u> 0,0162		2,4788+0,0160	2,49,48+0,0160
	0,53 <u>+</u> 0,01	2,5140 <u>+</u> 0,0155	_**_	2,49 ^{67<u>+</u>0,0153}	2,512 <u>7+</u> 0,0153
	0,55 <u>+</u> 0,01	2,47?5 <u>+</u> 0,0146	-"-	2,4554 <u>+</u> 0,0144	2,4714 <u>+</u> 0,0144
	0,57 <u>+</u> 0,01	2,4885 <u>+</u> 0,0143	-"-	2,471 <u>3+</u> 0,0141	2,487 <u>3+</u> 0,0141
	0,59 <u>+</u> 0,01	2,4725 <u>+</u> 0,0142	· _"_	2,455 <u>4+</u> 0,0140	2,471 <u>4+</u> 0,0140
	0,61 ± 0,01	2,4928 <u>+</u> 0,0168	_"_	2,475 <u>6+</u> 0,0166	2,491 <u>6+</u> 0,0166
	0,63 <u>+</u> 0,01	2,4921 <u>+</u> 0,0162	_"_	2,47 49+0,0160	2,49 09±0,0160
	0,65 <u>+</u> 0,01	2,5108 <u>+</u> 0,0167	-"-	2,493 <u>5+</u> 0,0165	2,509 <u>5+</u> 0,0165
	0,670 <u>+</u> 0,01	2,4998 <u>+</u> 0,0168	_"_	2,4826+0,0166	2,4986 <u>+</u> 0,0166
	0,690 <u>+</u> 0,01	2,4920 <u>+</u> 0,0195	-"-	2,4756 <u>+</u> 0,0193	2,491 <u>6+</u> 0,0193
	0,72 <u>5+</u> 0,025	2,4958 <u>+</u> 0,0129	_ ⁰ _	2,4786+0,0127	2,494 <u>6+</u> 0,0127
	0,775 <u>+</u> 0,025	2, <u>5215+</u> 0,0136	_" _	2,5041 <u>+</u> 0,0134	2,5201 <u>+</u> 0,0134
	0,82 <u>5+</u> 0,025	2,5347 <u>+</u> 0,0151	_"_	2,517 2 <u>+</u> 0,0149	2,5332 <u>+</u> 0,0149
	0,875 <u>+</u> 0,025	2,5473 <u>+</u> 0,0166	_"_	2,5297 <u>+</u> 0,0164	2,5457 <u>+</u> 0,0164
	0,925+ 0,025	2,5498 <u>+</u> 0,0173	_"_	2,5322+0,0171	2,5482+0,0171

TABLE 2 (continued)

Reference	Energy, MeV	√exp	Standard originally used	$\overline{\mathcal{V}}$ renormalized	$\vec{\nu}$ total = $\vec{\nu_p} + \vec{\nu} d$
M.Scleilhac et al.	0,975 <u>+</u> 0,025	2,5539+0,0194	$v_{sp}^{p} (cf^{252}) = 3,782$	2,5363 <u>+</u> 0,0192	2,552 <u>3+</u> 0,0192
[31]	1,025 <u>+</u> 0,025	2,5471 <u>+</u> 0,0233	-"-	2,5295+0,0231	2,5455 <u>+</u> 0,0231
	1,075 <u>+</u> 0,025	2,5782 <u>+</u> 0,0242	_"_	2,5604+0,0240	2,5764+0,0240
	1,125 <u>+</u> 0,025	2,5786 <u>+</u> 0,0277	_"-	2,5608+0,0275	2,5768+0,0275
	1,175 <u>+</u> 0,025	2,5769 <u>+</u> 0,0292	-"-	2,5559 <u>+</u> 0,0290	2,5719 <u>+</u> 0,0290
	1,225 <u>+</u> 0,025	2,5779 <u>+</u> 0,0300	_"_	2,5601 <u>+</u> 0,0298	2,5701 <u>+</u> 0,0298
	1,275 <u>+</u> 0,025	2,6378 <u>+</u> 0,0396	_"_	2,6196 <u>+</u> 0,0394	2,6356 <u>+</u> 0,0394
	1,325 <u>+</u> 0,025	2,5588 <u>+</u> 0,0399	_"_	2,5411 <u>+</u> 0,0397	2,5571 <u>+</u> 0,0397
	1,375 <u>+</u> 0,025	2,5826 <u>+</u> 0,0317	_"_	2,5648 <u>+</u> 0,0315	2,580 <u>8+</u> 0,0315
	1,360 <u>+</u> 0,025	2,5650 <u>+</u> 0,0100	_"_	2,5473 <u>+</u> 0,0100	2,5633 <u>+</u> 0,0100
N.V. Savin et al.[34]	0,65	2,432+0,039	$\overline{v}_{sp}^{p}(cf^{252}) = 3,772$	2,422 <u>+</u> 0,039	2,438 <u>+</u> 0,039
	0,68	2,447 <u>+</u> 0,0 <u>39</u>	_"_	2,437 <u>+</u> 0,039	2,453 <u>+</u> 0,039
	0,71	2,472 <u>+</u> 0,039	_"_	2,461 <u>+</u> 0,039	2,477 <u>+</u> 0,039
	0,73	2,473 <u>+</u> 0,039	_"_	2,462 <u>+</u> 0,039	2,468 <u>+</u> 0,039
	0,79	2,478 <u>+</u> 0,039	_ "_	2,467 <u>+</u> 0,039	2,483 <u>+</u> 0,039
	0,82	2,491 <u>+</u> 0,040	_"_	2,480 <u>+</u> 0,040 [·]	2,496 <u>+</u> 0,040
	0,87	2 ,4 74 <u>+</u> 0,039	·11	2,463 <u>+</u> 0,039	2,479 <u>+</u> 0,039
	0,91	2,499 <u>+</u> 0,040	-"-	2,488 <u>+</u> 0,040	2,504 <u>+</u> 0,040
	0,97	2,484 <u>+</u> 0,039	_"_	2,473 <u>+</u> 0,039	2,489 <u>+</u> 0,039
	1,01	2,491 <u>+</u> 0,039	_"_	2,480 <u>+</u> 0,039	2,496 <u>+</u> 0,039

TABLE 3

•

Recent experimental data on $\overline{\nu}(U^{235})$ in the energy region 1 to 28 MeV

Reference	En, MeV	ν _{exp}	Standard originally used	$ec{ u}$ renormalized	$\overline{\nu}$ total = $\overline{\nu}_{p}$ + $\overline{\nu}$ d
M.Soleilhac et al.	1,36	2,565 <u>+</u> 0,017	$\bar{\nu}^{\text{Sp}(Cf}^{252}) = 3,782$	2,547 <u>+</u> 0,017	2,563 <u>+</u> 0,017
[32]	1,87	2,631 + 0,022	p. ''	$2,613 \pm 0,022$	2,629 + 0,022
	2,45	2,688 + 0,022	_"_	2, <i>ö</i> 69 <u>+</u> 0,022	2,685 <u>+</u> 0,022
	2,98	2,757 <u>+</u> 0,018	_"_	2,738 <u>+</u> 0,018	2,754 <u>+</u> 0,018
	3,50	$2,804 \pm 0,023$	¹¹	2,784 <u>+</u> 0,023	2,800 <u>+</u> 0,023
	4,03	2,890 + 0,019	_"_	2,870 + 0,019	2,886 <u>+</u> 0,019
	4,54	2,984 + 0,022	_"_	2,963 + 0,022	2,979 <u>+</u> 0,022
	5,06	3,040 <u>+</u> 0,019	_"_	3,019 <u>+</u> 0,019	3,035 <u>+</u> 0,019
	5,57	3,163 <u>+</u> 0,028	_"_	3,14ľ <u>+</u> 0,028	3,159 <u>+</u> 0,028
	6,08	3,254 + 0,029	_ "_	3,231 + 0,029	3,247 <u>+</u> 0,029
	6,97	3,422 <u>+</u> 0,022	_ ¹¹ _	3,398 + 0,022	· 3,414 <u>+</u> 0,022
	7,09	3,428 <u>+</u> 0,029	_11_	3,404 <u>+</u> 0,029	3,420 <u>+</u> 0,029
	7,48	3,521 <u>+</u> 0,016	_"_	3,496 <u>+</u> 0,016	3,512 <u>+</u> 0,016
	7,99	3,582 + 0,017	_"_	3,567 <u>+</u> 0,017	3,573 <u>+</u> 0,017
	8,49	3,658 + 0,018	_"_	3,632 <u>+</u> 0,018	3,648 <u>+</u> 0,018
	9,00	3,731 <u>+</u> 0,018	_"_	3,705 <u>+</u> 0,018	3,721 <u>+</u> 0,018
	9,49	3,809 <u>+</u> 0,020	·	3,782 <u>+</u> 0,020	3,798 <u>+</u> 0,020
	9,74	3,850 <u>+</u> 0,021	_"_	3,823 <u>+</u> 0,021	3,839 <u>+</u> 0,021
	9,98	3,882 + 0,014	_" <u>_</u>	3,855 <u>+</u> 0,014	3,871 <u>+</u> 0,014
	10,47	3,937 + 0,020	 .	3,909 <u>+</u> 0,020	3,925 <u>+</u> 0,020

5.

TABLE 3 (continued)

Reference	En, MeV	Dexp	Standard originally used	$\bar{\mathcal{V}}$ renormalized	$\overline{\nu}$ total = $\overline{\nu}_{p}$ + $\overline{\nu}_{d}$
M. Soleilhac et al.	10.96	3.972 + 0.019	$\bar{v}_{v}^{sp}(cf^{252}) = 3,782$	3,944 <u>+</u> 0,019	3,960 <u>+</u> 0,019
[32]	11,44	4,074 ± 0,020	_11_	4,045 + 0,020	4,061 + 0,020
	11,93	4,136 + 0,021	_11_	4,107 + 0,021	4,123 + 0,021
	12,41	 4,202 <u>+</u> 0,020	_"_	4,172 + 0,020	4,188 + 0,020
	12,88	4,257 ± 0,024	_"_	4,227 + 0,024	4,243 + 0,024
	13,36	4,345 + 0,222	_"_	4,315 + 0,022	$4,331 \pm 0,022$
	13,84	4,411 <u>+</u> 0,022	_ ¹¹ _	4,380 + 0,022	4,496 + 0,022
	14,31	4,481 <u>+</u> 0,023	_"_	4,450 <u>+</u> 0,023	4,466 <u>+</u> 0,023
	14,79	4,508 + 0,023	_"_	4,476 <u>+</u> 0,023	4, 4 92 <u>+</u> 0, 023
	22,79	5,511 <u>+</u> 0,049	_11_	5,472 <u>+</u> 0,049	5,488 <u>+</u> 0,049
	23,94	5,654 <u>+</u> 0,054 .	_"_	5,614 <u>+</u> 0,054	5,630 <u>+</u> 0,054
	25,05	5,693 <u>+</u> 0,054	_"_	5,653 <u>+</u> 0,054	5,669 <u>+</u> 0,054
	26,15	5,789 <u>+</u> 0,042	_!!_	5,748 <u>+</u> 0,042	5,764 <u>+</u> 0,042
	27,22	5,986 <u>+</u> 0,062	_"_	5,944 <u>+</u> 0,062	5,960 <u>+</u> 0,062
	28,28	6,108 <u>+</u> 0,090	_"_	6,0 <u>65 +</u> 0,090	6,081 <u>+</u> 0,090
L.I. Prokhorova et al. [33]	0,81 <u>+</u> 0,09	2,457 <u>+</u> 0,035	$\overline{\nu}(0,39 \text{ MeV})=1,025.\overline{\nu}_{1}^{p}$ (U-235);	2,43 4 <u>+</u> 0,035	2,4 50 <u>+</u> 0,035
			$\bar{\nu}_{+b}^{p}(U-235) = 2,430$		
	1,02 + 0,08	2,534 + 0,027	_n_	2,510 + 0,027	2,526 ± 0,027
	$1,23 \pm 0,08$	$2,551 \pm 0,037$	-"-	2,527 + 0,037	$2,543 \pm 0,037$
	1,44 <u>+</u> 0,07	2,555 <u>+</u> 0,037	_"_	2,531 <u>+</u> 0,037	2,547 ± 0,037
	_				

TABLE 3 (continued)

Reference	En, MeV	vexp	Standard $\overline{\nu}$ originally used	renormalized	$\overline{\nu}$ total = $\overline{\nu}_{p}$ + $\overline{\nu}_{d}$
L.I.Prokhorova et al. [33]	1,64 <u>+</u> 0,07	2,583 <u>+</u> 0,034 i v	$\overline{\nu}(0, 39 \text{MeV}) = 1,025. \overline{\nu}_{\text{th}}^{\text{p}}(U-235);$ $_{\text{th}}^{\text{p}}(U-235) = 2,430$	2,559 <u>+</u> 0,034	2,575 <u>+</u> 0,034
	1,85 <u>+</u> 0,07	2,610 <u>+</u> 0,032	_"_	2,586 <u>+</u> 0,032	2,602 + 0,032
	2,05 <u>+</u> 0,06	2,598 + 0,029	_11_	2,574 <u>+</u> 0,029	2,590 <u>+</u> 0,029
	2,25 <u>+</u> 0,06	2,665 <u>+</u> 0,035	_"_	2,640 <u>+</u> 0,035	2,556 <u>+</u> 0,035
·	2,46 + 0,06	2,741 <u>+</u> 0,938	¹¹	2,715 <u>+</u> 0,038	2,731 <u>+</u> 0,038
	2,76 <u>+</u> 0,06	2,795 <u>+</u> 0,034	_'' _	2,769 <u>+</u> 0,034	2,785 + 0,034
	3,06 <u>+</u> 0,05	2,803 <u>+</u> 0,046	n	2,777 <u>+</u> 0,046	2,793 <u>+</u> 0,046
	3,25 <u>+</u> 0,05	2,830 + 0,042	_n_	2,803 + 0,042	2,819 + 0,042
M.V. Savin et al [34]	1,06	2,539 <u>+</u> 0,038 ,	$sp(cf^{252}) = 3,772$	2,528 <u>+</u> 0,038	2,544 <u>+</u> 0,038
	1,15	2,575 <u>+</u> 0,038	p _"_	2,564 <u>+</u> 0,038	2,580 <u>+</u> 0,038
	1,25	2,578 <u>+</u> 0,038	''	2,567 <u>+</u> 0,038	2,583 <u>+</u> 0,038
	1,35	2,613 <u>+</u> 0,039	_"	2,602 <u>+</u> 0,039	2,618 <u>+</u> 0,039
	1,41	2,618 <u>+</u> 0,039	¹¹	2,607 <u>+</u> 0,039	2,622 <u>+</u> 0,039
	1,48	2,636 <u>+</u> 0,039	-"-	2,625 <u>+</u> 0,039	2,641 <u>+</u> 0,039
	1,63	2,641 <u>+</u> 0,039	-"- <u>.</u>	2,630 <u>+</u> 0,039	2,646 <u>+</u> 0,039
	1,80	2,641 <u>+</u> 0,039	_"-	2,630 <u>+</u> 0,039	2,646 <u>+</u> 0,039
	1,97 ·	2,645 <u>+</u> 0,039	_!!_	2,634 <u>+</u> 0,039	2,650 <u>+</u> 0,039
	2,05	2,661 <u>+</u> 0,040	_" _	2,650 <u>+</u> 0,040	2,666 <u>+</u> 0,040
	2,18	2,700 <u>+</u> 0,033	¹¹	2,688 <u>+</u> 0,033	2,704 <u>+</u> 0,033

Reference	En, MeV	-7 éxp	'Standard originally used	ッ マ renormalized	\overline{v} total = \overline{p} + $\overline{v}d$
Savin et al. [34]	2,26	2,713 <u>+</u> 0,035	$\overline{\nu}_{p}^{sp}(^{252}Cf) = 3,772$	2,701 <u>+</u> 0,035	2,717 <u>+</u> 0,035
	2,39	2,748 <u>+</u> 0,035	_"_	2,736 <u>+</u> 0,035	2,752 + 0,035
	2,55	2,711 <u>+</u> 0,035	_"_	2,699 <u>+</u> 0,035	2,715 <u>+</u> 0,035
	2,68	2,763 <u>+</u> 0,033	_"_	2,751 <u>+</u> 0,033	2,767 <u>+</u> 0,033
	2,85	2,812 <u>+</u> 0,034	_"_	2,800 <u>+</u> 0,034	2,816 <u>+</u> 0,034
	2,94	2,806 <u>+</u> 0,034	_"_	2,794 <u>+</u> 0,034	2,810 <u>+</u> 0,034
	3,06	2,800 <u>+</u> 0,034	_"_	2,788 <u>+</u> 0,034	2,804 <u>+</u> 0,034
	3,28	2,833 <u>+</u> 0,043	_"_	2,821 <u>+</u> 0,043	2,837 <u>+</u> 0,043
	3,71	2,871 <u>+</u> 0,043	_"_	2,859 <u>+</u> 0,043	2,875 <u>+</u> 0,043
	4,23	2,903 <u>+</u> 0,044	_"_	2,891 <u>+</u> 0,044	2,907 <u>+</u> 0,044
	4,57	2,937 <u>+</u> 0,058	_"_	2,924 <u>+</u> 0,058	2,940 <u>+</u> 0,058
	4,90	3,032 + 0,061		3,019 <u>+</u> 0,061	3,035 <u>+</u> 0,061
	5,32	3,095 <u>+</u> 0,072	_"_	3,082 <u>+</u> 0,072	3,098 <u>+</u> 0,072
	5,60	3,110 <u>+</u> 0,082	_**_	3,097 <u>+</u> 0,082	3,113 <u>+</u> 0,082
	5,94	3,234 <u>+</u> 0,106	_"_	3,220 <u>+</u> 0,105	3,236 <u>+</u> 0,105
	6,60	3,373 <u>+</u> 0,111	_"_	3,759 <u>+</u> 0,110	3,775 <u>+</u> 0,110

TABLE 3 (continued)

			TABLE 4	
Available	experimental	data or	$\bar{\nu}(239-Fu)$ in the energy range 0.08 to 1.5 MeV	

Reference	Energy (MeV)	v exp	Standard	√p (*) renormalized	^{- v} total = ^{- v} p ⁺ v _d
: Diven et al.[18]	0,080	3,048 + 0,079	$\bar{\nu}_{+h}^{p}(^{235}U)=2.46$	2,982 + 0,078	2,988 <u>+</u> 0,078
Allen et al.[36]	0,5	$(1.3 \pm 0,2)$	$\bar{v}_{\pm h}^{(235_U)=1}$		3,156 ± 0,48
	1,0	$(1,3 \pm 0,2)$	_"_		3,156 <u>+</u> 0,48
Hopkins et al.[4]	0,250 <u>+</u> 0,050	2,931 + 0,039	$\bar{v}_{\pm b}^{p}(^{252}c_{f})=3,771$	2,920 + 0,039	2,926 + 0,039
	0,420 + 0,110	2,957 + 0,046	_"_	2,946 <u>+</u> 0,046	2,952 <u>+</u> 0,046
	0,610 <u>+</u> 0,070	2,904 + 0,041	_"_	2,893 <u>+</u> 0,041	2,899 <u>+</u> 0,041
	0,900 <u>+</u> 0,080	3,004 <u>+</u> 0,041	_"_	2,993 <u>+</u> 0,041	2,999 <u>+</u> 0,041
Mather et al.[37]	0,99 + 0,185	3,103 <u>+</u> 0,056	$\sqrt{p}_{sp}^{p}(^{252}c_{f})=3,782$	3,082 <u>+</u> 0,053	3,088 <u>+</u> 0,053
Soleilhac et al.[31]	0,21 <u>+</u> 0,01	2,8969 <u>+</u> 0,0941	. ⁵ ^p (²⁵² Cf)=3,782	2,8778 <u>+</u> 0,0935	2,8838 <u>+</u> 0,0935
	0,23 <u>+</u> 0,01	2,9185 <u>+</u> 0,0588	່sp''_	2,8992 <u>+</u> 0,0584	2,9052 <u>+</u> 0,0584
	0,25 <u>+</u> 0,01	2,8537 <u>+</u> 0,0493	_"_	2,8349 <u>+</u> 0,0490	2,8409 <u>+</u> 0,0490
	0,27 + 0,01	2,8863+ 0,0420	_n_	2,8692 <u>+</u> 0,0417	2,8752 <u>+</u> 0,0417
	0,29 + 0,01	2,8795 <u>+</u> 0,0359	_"_	2,8605 <u>+</u> 0,0358	2,8695 <u>+</u> 0,0358
	0,31 + 0,01	2,9307 <u>+</u> 0,0324	_"_	2,9113 <u>+</u> 0,0324	2,9173 <u>+</u> 0,0358
	0,33 <u>+</u> 0,01	2,9576 <u>+</u> 0,0306	_"_	2,9381 <u>+</u> 0,0304	?, 9441 <u>+</u> 0,0304
	0,35 <u>+</u> 0,01	2,9467 <u>+</u> 0,0300	_"_	2,9272 <u>+</u> 0,0300	2,9332 <u>+</u> 0,0300
	0,37 + 0,01	2,9367 <u>+</u> 0,0295	- <u>"</u> -	2,9173 <u>+</u> 0,0294	2,933 <u>3+</u> 0,0294
	0,39 <u>+</u> 0,01	2,9592 <u>+</u> 0,0270	_"_	2,9397 <u>+</u> 0,0269	2,9457 <u>+</u> 0,0269
	0,41 <u>+</u> 0,01	2,9345 <u>+</u> 0,0275	_"_	2,9151 <u>+</u> 0,0274	2,9211+ 0,0274
	0,43 <u>+</u> 0,01	2,9641 <u>+</u> 0,0249	_"_	2,944 <u>5+</u> 0,0247	2,9505 <u>+</u> 0,0247
	0,45 <u>+</u> 0,01	2,9366 <u>+</u> 0,0228	-"-	2,9172 <u>+</u> 0,0226	2,9232 <u>+</u> 0,0226
	0,47 <u>+</u> 0,01	2,9577 <u>+</u> 0,0220	_"_	2,9382+ 0,0219	2,9442+ 0,0219
	0,49 <u>+</u> 0,01	2, 9202 <u>+</u> 0,0193	"_	2,900 <u>9+</u> 0,0193	2,9069 <u>+</u> 0,0193

1910 - 125 - 1265-3 1	her _i y (Fe7)	Dexp	Standard	μ _p (x) renormalized	$\frac{\partial p_{\rm pct}}{\partial p_{\rm p}} + \frac{\partial p_{\rm p}}{\partial t}$
Soleilhac et al.[31]	0,51 <u>+</u> 0,01	2,9683 ± 0,0176	$u_{sp}^{p}(^{252} vf) = 3,782$	2,9487 <u>+</u> 0,0175	2,9547 ± 0,0175
	0,53 <u>+</u> 0,01	2,9281 ± 0,0173	_"_	2,9088 <u>+</u> 0,0172 [·]	2,9148 <u>+</u> 0,0172
	0,55 <u>+</u> 0,01	2,9600 <u>+</u> 0,0169	_"	2,9405 <u>+</u> 0,0168	2,9465 <u>+</u> 0,0168
	0,57 <u>+</u> 0,01	2,9605 <u>+</u> 0,0164	11	2,9410 <u>+</u> 0,0164	2,9470 <u>+</u> 0,0164
	0,59 <u>+</u> 0,01	2,9358 <u>+</u> 0,0178	<u> </u>	2,9164 <u>+</u> 0,0177	2,9254 <u>+</u> 0,0177
	0,61 <u>+</u> 0,01	2,9702 <u>+</u> 0,0162	_"_	2,9506 <u>+</u> 0,0161	2,9566 <u>+</u> 0,0161
	0,63 <u>+</u> 0,01	2,9686 <u>+</u> 0,0181	_"_	2,9490 <u>+</u> 0,0180	2,9550 <u>+</u> 0,0180
	0,65 <u>+</u> 0,01	2,9562 <u>+</u> 0,0184	_"_	2,9367 <u>+</u> 0,0183	2,9427 <u>+</u> 0,0183
	0,67 <u>+</u> 0,01	2,9719 <u>+</u> 0,0190	_"_	2,9523 <u>+</u> 0,0189	2,9583 <u>+</u> 0,0189
	0,69 <u>+</u> 0,01	2,9781 <u>+</u> 0,189	"	2,9584 <u>+</u> 0,0188	2,9644 <u>+</u> 0,0188
	0,725 <u>+</u> 0,025	2,9712 <u>+</u> 0,0145		2,9516 <u>+</u> 0,0145	2,9576 <u>+</u> 0,0145
	0,77 <u>5+</u> 0,025	2,9912 <u>+</u> 0,0153	_ ¹¹	2,9714 <u>+</u> 0,0152	2,9774 <u>+</u> 0,0152
	0,825 <u>+</u> 0,025	$2,9674 \pm 0,0180$	_"_	2,9478 <u>+</u> 0,0179	2,9538 <u>+</u> 0,0179
	0,875 <u>+</u> 0,025	3,0035 <u>+</u> 0,0176	11	2,9837 <u>+</u> 0,0175	2,9897 <u>+</u> 0,0175
	0,925 <u>+</u> 0,025	2,9858 + 0,0209	_** <u>_</u>	2,9661 <u>+</u> 0,0208	2,9721 <u>+</u> 0,0208
	0,975 <u>+</u> 0,025	2,9885 <u>+</u> 0,0206	-"-	2,9688 <u>+</u> 0,0205	2,9748 <u>+</u> 0,0205
	1,025 <u>+</u> 0,025	3,0177 <u>+</u> 0,0263	_" <u>_</u>	2,9978 <u>+</u> 0,0261	3,0038 <u>+</u> 0,0261
	1,075 <u>+</u> 0,025	3,0457 <u>+</u> 0,0307	_"_	3,0276 <u>+</u> 0,0305	3,0336 <u>+</u> 0,0305
	1,125 <u>+</u> 0,025	3,0614 <u>+</u> 0,0288	_" <u>_</u>	3,0412 <u>+</u> 0,0286	3,0472 <u>+</u> 0,0286
	1,175 <u>+</u> 0,025	3,0 <u>310 +</u> 0,0343	_"	3,0100 <u>+</u> 0,0341	3,0160 <u>+</u> 0,0341
	1,225 <u>+</u> 0,025	3,0835 <u>+</u> 0,0406	_"_	3,0631 + 0,0404	3,0691 <u>+</u> 0,0404
	1,275 <u>+</u> 0,025	3,1027 <u>+</u> 0,0381	_"_	3,0822 <u>+</u> 0,0380	3,0882 <u>+</u> 0,0380
	1,325 <u>+</u> 0,025	3,1439 <u>+</u> 0,0473	H	3,1231 <u>+</u> 0,0471	3,1291 <u>+</u> 0,0471
	1,375 <u>+</u> 0,025	3,0446 <u>+</u> 0,0421	_"_	3,0245 ± 0,0420	3,0305 <u>+</u> 0,0420
	1,36 <u>+</u> 0,165	3,0708 <u>+</u> 0,0180	_"_	3,0505 <u>+</u> 0,0180	3,0565 <u>+</u> 0,0180

TABLE 4 continued

TABLE 4 continued							
Reference	Energy (NeV)	D _{exp}	Standard	^Ξ p (*) renormalized	$\vec{\mathcal{D}}_{total} = \vec{\mathcal{D}}_{p} + \vec{\mathcal{D}}_{d}$		
Mather et al.[38]	0,0775 <u>+</u> 0,0375	0,7650 <u>+</u> 0,0072	$\overline{v}_{sp}^{p}(^{252}cf) = 1$	2,874 <u>+</u> 0,027	2,880 + 0,027		
	0,200 + 0,085	0,7754 <u>+</u> 0,0077	9 L	2,913 <u>+</u> 0,029	2,919 <u>+</u> 0,029		
	0,350 <u>+</u> 0,050	0,7738 <u>+</u> 0,0073		2,915 <u>+</u> 0,027	2,923 + 0,027		
	0,450 <u>+</u> 0,050	0,7933 <u>+</u> 0,0077		2,980 ± 0,029	2,986 + 0,029		
	0,550 <u>+</u> 0,050	0,7964 <u>+</u> 0,0075		2,992 <u>+</u> 0,028	2,998 + 0,028		
	0,650 <u>+</u> 0,050	0,8023 <u>+</u> 0,0076		3,014 + 0,028	3,020 + 0,028		
	0,750 + 0,050	0,7795 <u>+</u> 0,0073		2,929 <u>+</u> 0,027	2,935 ± 0,027		
	0,850 <u>+</u> 0,050	0,7969 <u>+</u> 0,0078		2,994 <u>+</u> 0,029	3,000 ± 0,029		
	0,950 <u>+</u> 0,050	0,8046 <u>+</u> 0,0074		3,023 <u>+</u> 0,028	3,029 ± 0,028		
	1,050 <u>+</u> 0,050	0,8070 <u>+</u> 0,0075		3,032 <u>+</u> 0,028	3,038 <u>+</u> 0,028		
	1,150 <u>+</u> 0,050	0,8134 <u>+</u> 0,0075		3,056 <u>+</u> 0,028	3,062 <u>+</u> 0,028		
	0,550 <u>+</u> 0,025	0,7889 <u>+</u> 0,0101	$\overline{\mathcal{D}}_{sn}^{p}(^{252}cf) = 1$	2,964 <u>+</u> 0,038	2,970 <u>+</u> 0,038		
	0,600 <u>+</u> 0,025	0,771 <u>5+</u> 0,0102	, op	2,898 <u>+</u> 0,038	2,904 <u>+</u> 0,038		
	0,650 <u>+</u> 0,025	0,8158 <u>+</u> 0,0120		3,065 <u>+</u> 0,045	3,071 <u>+</u> 0,045		
	0,700 <u>+</u> 0,025	0,8114 <u>+</u> 0,0110	•	3,048 <u>+</u> 0,038	3,054 <u>+</u> 0,038		
	0,750 <u>+</u> 0,025	0,7917 <u>+</u> 0,0122		2,974 <u>+</u> 0,046	2,980 <u>+</u> 0,046		
	0,800 <u>+</u> 0,025	0,7928 <u>+</u> 0,0108		2,978 <u>+</u> 0,041	2,984 <u>+</u> 0,041		
	0,850 <u>+</u> 0,025	0,7874 <u>+</u> 0,0106		2,958 <u>+</u> 0,040	2,964 ± 0,040		
Savin et al.[34]	0,89	3,026 <u>+</u> 0,070	$\overline{\Im}_{sn}^{p}(^{252}c_{f})=3,772$	3,013 + 0,070	3,019 ± 0,070		
	0,96	3,005 + 0,060	qa	2,442 + 0,060	2,998 + 0,060		
	0,99	3,011 ± 0,060		2,998 + 0,060	3,004 + 0,060		
	1,03	3,049 <u>+</u> 0,046		3,036 + 0,046	3,042 + 0,046		

TABLE 4 continued

Refere nce	Energy (MeV)	Dexp	Standard	. ジ _p (*) renormalized	$\overline{\mathcal{V}}$ total = $\overline{\mathcal{V}}_{p} + \overline{\mathcal{V}}_{d}$
Savin et al.[34]	1,07	3,009 <u>+</u> 0,046	$\bar{\upsilon}_{sp}^{p}(^{252}cf) = 3,772$	2,996 <u>+</u> 0,046	3,002 <u>+</u> 0,046
	1,10	3,053 <u>+</u> 0,046	0p	3,040 <u>+</u> 0,046	3,046 + 0,046
	1,14	3,089 <u>+</u> 0,047		3,076 <u>+</u> 0,047	3,082 <u>+</u> 0,047
1	1,17	3,066 <u>+</u> 0,046		3,053 <u>+</u> 0,046	3,059 <u>+</u> 0,046
	1,22	3,061 <u>+</u> 0,046		3,048 <u>+</u> 0,046	3,054 <u>+</u> 0,046
	1,26	2,984 <u>+</u> 0,045		2,971 <u>+</u> 0,045	2.977 <u>+</u> 0,045
	1,30	3,021 <u>+</u> 0,045		3,008 <u>+</u> 0,045	3,014 <u>+</u> 0,045
	1,34	3,129 <u>+</u> 0,047		3,116 <u>+</u> 0,047	3,122 ± 0,047
	1,39	3,118 <u>+</u> 0,047		3,105 <u>+</u> 0,047	3,111 + 0,047
1,49	1,49	3,138 <u>+</u> 0,047		3,125 <u>+</u> 0,047	3,131 <u>+</u> 0,047
	1,54	3,165 <u>+</u> 0,047		3,151 <u>+</u> 0,047	3,157 + 0,047

(*) Renormalization values

$$\overline{\mathcal{D}}_{sp}^{p}(^{252}cf) = 3.756 \pm 0,000$$

 $\overline{\mathcal{D}}_{th}^{p}(^{235}v) = 2,407 \pm 0.000$

 \mathbb{S}

Available experimental data on $\overline{\nu}(^{239}$ Pu) above 1.0 MeV

Reference	Energy (MeV)	יעֿ פּאָד	Standard	ヮ゙p (*) renormalized	\vec{v} total = $\vec{v}_p + \vec{v}_d$
Bethe et al.[39]	4,25	3,66 <u>+</u> 0,40	-	3,66 <u>+</u> 0,40	3,67 <u>+</u> 0,40
Smirenkin et al.[40] 4, <u>+</u> 0,3	3,43 <u>+</u> 0,11	$\tilde{v}_{th}^{p}(^{239}Pu) = 2,91$	` 3,38 <u>+</u> 0,11	3,39 <u>+</u> 0,11
	15 <u>+</u> 0,5	4,71 <u>+</u> 0,20	_"_	4,64 <u>+</u> 0,20	4,65 <u>+</u> 0,20
Flerov et al.[41]	14	4,62 <u>+</u> 0,28	-	4,62 <u>+</u> 0,28	4,63 <u>+</u> 0,28
Leroy [42]	14,2 ,	4,75 <u>+</u> 0,4	$\bar{\tau}_{th}^{p}(^{235}U) = 2,47$	4,63 <u>+</u> 0,39	4,64 <u>+</u> 0,39
Hopkins et al.[4]	3,90+ 0,29	3,422 <u>+</u> 0,039	$\sqrt[5]{p}$ $(^{252}Cf) = 3,771$	3,409 <u>+</u> 0,039	3,414 <u>+</u> 0,039
	14,5 <u>+</u> 1,0	4,942 <u>+</u> 0,119	- " -	4 , 924 <u>+</u> 0,119	4,930 <u>+</u> 0,119
Mather et al.[37]	1,99 <u>+</u> 0,135	3,170 <u>+</u> 0,045	$\bar{v}_{sp}^{p}(^{252}Cf) = 3,782$	3,149 <u>+</u> 0,040	3,155 <u>+</u> 0,040
	3,00 <u>+</u> 0,105	3,243 <u>+</u> 0,054	_ ''_	3,221 <u>+</u> 0,049	3,227 <u>+</u> 0,049
	4,02 <u>+</u> 0,095	3,325 <u>+</u> 0,054	_"_	3,303 <u>+</u> 0,050	3,309 <u>+</u> 0,050
Johnston [43]	14,1	4,85 <u>+</u> 0,50		4,85 <u>+</u> 0,50	4,86 <u>+</u> 0,50
Condé et al.[44]	4,22 <u>+</u> 0,02	3,47 <u>+</u> 0,07	$\cdot \bar{\imath}_{sp}^{p}(^{252}Cf) = 3,764$	3,46 <u>+</u> 0,07	3,47 <u>+</u> 0,07
	5,91 <u>+</u> 0,12	3,74 <u>+</u> 0,07	_!!_	3,73 <u>+</u> 0,07	3,74 <u>+</u> 0,07
	6,77 <u>+</u> 0,10	3,94 <u>+</u> 0,10	_''_	3,93 <u>+</u> 0,10	3,94 <u>+</u> 0,10
	7,51 <u>+</u> 0,09	3,97 <u>+</u> 0,06	_ ¹¹ _	3,96 <u>+</u> C,06	3,97 <u>+</u> 0,06
	14,8 <u>+</u> 0,20	4 , 98 <u>+</u> 0,09	_"_	4,97 <u>+</u> 0,09	4,98 + 0,09
Soleilhac et al.[31] 1,025 <u>+</u> 0,025	3,0177 <u>+</u> 0,0263	$\sqrt{p}_{2} p_{sp}^{252} (cf) = 3,782$	2,9978 <u>+</u> 0,0261	3,0068 <u>+</u> 0,0261
	1,075 <u>+</u> 0,025	3,0457 <u>+</u> 0,0307	_11_	3,0276 <u>+</u> 0,0305	3,0336 <u>+</u> 0,0305
	1,125 <u>+</u> 0,025	3,0614 <u>+</u> 0,0288	_"_	3,0412 <u>+</u> 0,0286	3,0472 <u>+</u> 0,0286
	1,175 <u>+</u> 0,025	3,0310 <u>+</u> 0,0343	^{ir}	3,0100 <u>+</u> 0,0341	3,0160 <u>+</u> 0,0341
	1,225 <u>+</u> 0,025	3,0835 <u>+</u> 0,0406	_11_	3,0631 <u>+</u> 0,0404	3,0691 <u>+</u> 0,0404
	1,275 <u>+</u> 0,025	3,1027 <u>+</u> 0,0381	_"_	3,0822 <u>+</u> 0,0380	3,0882 <u>+</u> 0,0380
	1,325 <u>+</u> 0,025	3,1439 <u>+</u> 0,0473	_"_	3,1231 <u>+</u> 0,0471	3,1291 <u>+</u> 0,0471
	.1,375 <u>+</u> 0,025	3,0446 <u>+</u> 0,0421	_"_	3,0245 <u>+</u> 0,0420	3,0305 <u>+</u> 0,0420

TABLE 5 continued

Reference	Energy (MeV)	-v̄ _{exp}	Standard	<pre> \$\$ p. (*) renormalized </pre>	$\frac{\sqrt{7} \text{ total}}{\sqrt{7} p + \sqrt{7} a}$
Soleilhac et al.[3	1] 1,36 <u>+</u> 0,165	3,071 <u>+</u> 0,018	$-\bar{\nu}_{sp}^{p}(^{252}cf)=3,782$	3,051 <u>+</u> 0,018	3,057 <u>+</u> 0,018
	1,87 <u>+</u> 0,150	3,152 <u>+</u> 0,021	_"-	3,131 <u>+</u> 0,020	3,136 <u>+</u> 0,020
	2,45 <u>+</u> 0,125	3,222 <u>+</u> 0,022	***	3,201 <u>+</u> 0,021	3,207 <u>+</u> 0,021
	2,98 <u>+</u> 0,105	3,311 <u>+</u> 0,016	_"_	3,289 <u>+</u> 0,016	3,295 <u>+</u> 0,016
	3,50 <u>+</u> 0,100	3,372 + 0,022	-"-	3,350 <u>+</u> 0,021	3,356 <u>+</u> 0,021
	4,03 <u>+</u> .0,090	3,467 <u>+</u> 0,017		3,444 <u>+</u> 0,017	3,450 <u>+</u> 0,017
	4,54 <u>+</u> 0,080	3,562 <u>+</u> 0,022		3,538 <u>+</u> 0,021	3,544 <u>+</u> 0,021
	5,06 <u>+</u> 0,070	3,628 <u>+</u> 0,017	_"_	3,604 <u>+</u> 0,017	3,610 <u>+</u> 0,017
	5,57 <u>+</u> 0,070	3,688 <u>+</u> 0,027	_"_	3,664 <u>+</u> 0,026	3,670 <u>+</u> 0,026
	6,08 <u>+</u> 0,075	3,791 <u>+</u> 0,028	_"_	3,766 <u>+</u> 0,027	3,772 <u>+</u> 0,027
	6,97 <u>+</u> 0,170	3,937 <u>+</u> 0,022	_"	3,911 <u>+</u> 0,021	3,917 <u>+</u> 0,021
	7,09 <u>+</u> 0,065	3,970 <u>+</u> 0,029	_"_	3,944 <u>+</u> 0,028	3,950 <u>+</u> 0,028
	7,48 <u>+</u> 0,165	3,998 <u>+</u> 0,018 ·	_"-	3,972 <u>+</u> 0,018	3,978 <u>+</u> 0,018
	7,99 <u>+</u> 0,145	4,090 <u>+</u> 0,018		4,063 <u>+</u> 0,018	4,069 <u>+</u> 0,018
	8,49 <u>+</u> 0,130	4,176 <u>+</u> 0,020	-"	4,148 + 0,020	4, 154 <u>+</u> 0,020
	9,00 + 0,120	4,249 <u>+</u> 0,020	_"_	4,221 <u>+</u> 0,020	4,227 <u>+</u> 0,020
	9,49 <u>+</u> 0,110	4,324 <u>+</u> 0,023	_11_	4,298 <u>+</u> 0,022	4,304 <u>+</u> 0,022
	9,74 <u>+</u> 0,110	4,334 <u>+</u> 0,021	·!!	4,305 <u>+</u> 0,021	4,311 <u>+</u> 0,021
	9,98 <u>+</u> 0,100	4,421 <u>+</u> 0,016	3 <u></u> 1	4,391 <u>+</u> 0,016	4,397 <u>+</u> 0,016
	10,47 <u>+</u> 0,095	4,462 <u>+</u> 0,022	_"_	4,432 <u>+</u> 0,021	4,438 <u>+</u> 0,021
	10,96 <u>+</u> 0,090	4,542 <u>+</u> 0,021	_"-	4,512 <u>+</u> 0,020	4,518 <u>+</u> 0,020
	11,44 <u>+</u> 0,085	4,620 <u>+</u> 0,023	-"	4,589 <u>+</u> 0,022	4,595 <u>+</u> 0,022

TABLE 5 continued

Reference	Ener _E y (MeV)	ν exp	Standard •	√p (*) renormalized	$\vec{\nu}$ total = $\vec{\nu}$.p + $\vec{\nu}$ d
Soleilhac et al[31]	11,93 <u>+</u> 0,080	4,683 + 0,023	$\sqrt[7]{v_{sp}}^{p}(^{252}Cf)=3,782$	4,652 <u>+</u> 0,022	4,658 <u>+</u> 0,022
	12,41 <u>+</u> 0,080	4,697 <u>+</u> 0,024	_"_	4,666 <u>+</u> 0,023	4,672 <u>+</u> 0,023
	12,88 <u>+</u> 0,080	4,804 <u>+</u> 0,025	-"-	4,772 <u>+</u> 0,024	4,778 <u>+</u> 0,024
	13,36 <u>+</u> 0,075	4,859 <u>+</u> 0,026	 ''	4,827 <u>+</u> 0,025	4,833 <u>+</u> 0,025
	13,84 + 0,075	4,939 <u>+</u> 0,025	_11_	4,906 <u>+</u> 0,024	4,912 <u>+</u> 0,024
	14,31 ± 0,070	4,997 <u>+</u> 0,029	_11_	4,964 <u>+</u> 0,028	4,970 <u>+</u> 0,028
	14,79 <u>+</u> 0,070	5,048 <u>+</u> 0,027	_11_	5,015 <u>+</u> 0,026	5,021 <u>+</u> 0,026
	22,79 <u>+</u> 0,140	6.026 <u>+</u> 0,077	_11_	5,986 <u>+</u> 0,075	5,992 <u>+</u> 0,075
	23,94 <u>+</u> 0,115	6,127 <u>+</u> 0,064	_''_	6,086 <u>+</u> 0,062	6,092 <u>+</u> 0,062
	25,05 <u>+</u> 0,105	6,170 <u>+</u> 0,086	_11_	6,129 <u>+</u> 0,084	6,135 <u>+</u> 0,084
	26,15 <u>+</u> 0,090	6,296 <u>+</u> 0,056	_"_	6,254 <u>+</u> 0,054	6,260 <u>+</u> 0,054
	27,22 <u>+</u> 0,080	6,457 <u>+</u> 0,076	_"_	6,414 <u>+</u> 0,074	6,420 <u>+</u> 0,074
	28,28 <u>+</u> 0,075	6,513 <u>+</u> 0,104 .	_''_	6,470 + 0,101	6,476 <u>+</u> 0,101
Savin et al.[34]	0,89	3,026 <u>+</u> 0,070	$\sqrt{252}$ Cf)=3,772	3,013 <u>+</u> 0,070	3,019 + 0,070
	0,96	3,005 <u>+</u> 0,060	ap	2,992 + 0,060	2,998 + 0,060
	0,99	3,011 <u>+</u> 0,060		2,998 <u>+</u> 0,060	3,004 <u>+</u> 0,060
	1,03	3,049 <u>+</u> 0,046		3,036 <u>+</u> 0,046	· 3,042 <u>+</u> 0,046
	1,07	3,009 <u>+</u> 0,046		2,996 <u>+</u> 0,046	3,002 <u>+</u> 0,046
	1,10	3,053 <u>+</u> 0,046		3,040 + 0,046	3,046 + 0,046
	1,14	3,089 <u>+</u> 0,047		3,076 <u>+</u> 0,047	3,082 + 0,047
	1,17	3,066 + 0,046		3,053 <u>+</u> 0,046	3,059 <u>+</u> 0,046
	1,22	3,061 + 0,046		3,048 <u>+</u> 0,046	3,054 + 0,046

TABLE 5 continued

Reference	Enerty (MeV)	νexp	Standard	-νρ (*) renormalized	$\bar{\nu}$ total = $\nu p + \bar{\nu} d$
Savin et al.[34]	1,26	2,984 <u>+</u> 0,045	$\overline{\bar{v}_{sn}^{p}}^{(252)}(252)=3,772$	2,971 <u>+</u> 0,045	2,977 <u>+</u> 0,045
	1,30	3,021 <u>+</u> 0,045	51	3,008 <u>+</u> 0,045	3,014 <u>+</u> 0,045
	1,34	3,129 + 0,047		3,116 <u>+</u> 0,047	3,122 <u>+</u> 0,047
	1,39	$3,118 \pm 0,047$		3,105 <u>+</u> 0,047	3,111 <u>+</u> 0,047
	1,49	3,138 <u>+</u> 0,047		3,125 <u>+</u> 0,047	3,131 <u>+</u> 0,047
	1,54	3,165 <u>+</u> 0,047		3,151 <u>+</u> 0,047	3,157 <u>+</u> 0,047
	1,60	3,135 <u>+</u> 0,045		3,122 <u>+</u> 0,045	3,128 <u>+</u> 0,045
	1,66	3,100 <u>+</u> 0,045		3,087 <u>+</u> 0,045	3,093 <u>+</u> 0,045
	1,72	3,142 <u>+</u> 0,047		3,129 <u>+</u> 0,047	3,135 <u>+</u> 0,047
	1,78	3,203 <u>+</u> 0,048		3,189 <u>+</u> 0,048	3,195 <u>+</u> 0,048
	1,85	3,217 <u>+</u> 0,048		3,203 <u>+</u> 0,048	3,209 <u>+</u> 0,048
	1,91	3,220 <u>+</u> 0,048		3,206 <u>+</u> 0,048	3,212 <u>+</u> 0,048
	1,97	3,243 <u>+</u> 0,048		3,229 <u>+</u> 0,048	3,235 <u>+</u> 0,048
	2,05	3,163 <u>+</u> 0,047	,	3,149 <u>+</u> 0,047	3,155 <u>+</u> 0,047
	2,14	3,176 <u>+</u> 0,047		3,162 <u>+</u> 0,047	3,168 <u>+</u> 0,047
	2,23	3,230 <u>+</u> 0,048		3,216 <u>+</u> 0,048	3,224 <u>+</u> 0,048
	2,36	3,227 <u>+</u> 0,048		3,213 <u>+</u> 0,048	3,219 <u>+</u> 0,048
	2,49	3,310 <u>+</u> 0,049		3,296 <u>+</u> 0,049	3,302 <u>+</u> 0,049
	2,59	3,304 + 0,049		3,290 <u>+</u> 0,049	3,296 <u>+</u> 0,049
	2,67	3,338 <u>+</u> 0,057		3,324 <u>+</u> 0,057	3,330 <u>+</u> 0,057
	2,79	3,320 <u>+</u> 0,056		3,306 <u>+</u> 0,056	3,312 <u>+</u> 0,056
	3,01	3,364 <u>+</u> 0,057		3,350 <u>+</u> 0,057	3,356 <u>+</u> 0,057
	3,21	3,415 <u>+</u> 0,061		3,400 + 0,061	3,406 + 0,061

Referenç <u>e</u>	Energy (MeV)	ν́exp	Standard	$ar{ u}$.p (*) renormalized	$\frac{1}{\nu_{p}} + \frac{1}{\nu_{d}} = $
Savin et al.[34]	3,34	3,395 + 0,061	$\bar{v}_{a}(^{252}Cf)=3,772$	3,381 + 0,061	3,387 + 0,061
	3,52	3,387 + 0,061	sp	$3,373 \pm 0,061$	3,379 + 0,061
	3,72	3,379 + 0,067		3,365 <u>+</u> 0,067	3,371 ± 0,067
	3,94	3,439 <u>+</u> 0,075		3,424 + 0,075	3,430 ± 0,075
	4,05	3,579 <u>+</u> 0,078		3,564 <u>+</u> 0,078	3,570 <u>+</u> 0,078
	4,23	3,558 <u>+</u> 0,089		3,543 <u>+</u> 0,089	3,549 <u>+</u> 0,089
	4,35	3,551 <u>+</u> 0,089		3,536 <u>+</u> 0,089	3,542 <u>+</u> 0,089
4,49	4,49	3,661 <u>+</u> 0,091		3,645 <u>+</u> 0,091	3,651 <u>+</u> 0,091
	4,70	$3,684 \pm 0,110$		$3,668 \pm 0,109$	$3,674 \pm 0,109$

TABLE 5 continued

(*) Renormalization value

$$\bar{v}_{sp}^{p} (^{252} cf) = 3,756$$

Available experimental data on $\overline{\nu}(^{233}\overline{U})$

Reference	Energy (MeV)	vexp	Standard originally used	v renormalized	$\overline{\nu}$ total = p + d
Smirenkin et al.[40]	4,0	3,00 <u>+</u> 0,11	$\bar{\nu}_{th}^{p}(^{233}v) = 2,55$	2,92 <u>+</u> 0,11	2,93 <u>+</u> 0,11
	15,0	4,33 <u>+</u> 0,16	_"_ `	4,21 <u>+</u> 0,16	4,22 <u>+</u> 0,16
Kalashnikova et al.	1,8	2,69 <u>+</u> 0,06	р		
[00] Diven et al. [18]	0,08	2,585 <u>+</u> 0,062	$v_{\rm th}(^{235}_{\rm U})=2,46$	2,530 <u>+</u> 0,062	2,540 <u>+</u> 0,062
Protopopov et al.[69]] 14,8 .	4,35 <u>+</u> 0,40	$-\bar{v}^{p}(^{233}U)=2,52$	4,28 <u>+</u> 0,40	4,29 <u>+</u> 0,40
Engle et al[70]	1,45	2,71 <u>+</u> 0,08	th	2,71 <u>+ 0</u> ,08	2,71 <u>+</u> 0,08
Flerov et al[41]	14,0	4,23 <u>+</u> 0,24	$\operatorname{sin}(^{233}\mathrm{U})=2,85$ barns	4,23 <u>+</u> 0,24	4,23 <u>+</u> 0,24
Vasil'ev et al[71]	14,3	4,20 <u>+</u> 0,30	Gin-G _f =0,2 barns		
Hopkins et al [4]	0,280+0,090	2,489 <u>+</u> 0,033	$\bar{\nu}_{p}^{sp}(^{252}Cf) = 3,771$	2,479 <u>+</u> 0,033	2,486 <u>+</u> 0,033
	0 , 440 <u>+</u> 0 ,0 80	2,502 <u>+</u> 0,033	_""	2,492 <u>+</u> 0,033	2,499 <u>+</u> 0,033
	0.980 <u>+</u> 0,050	2,553 <u>+</u> 0,035	~"-	2 ,543<u>+</u>0, 035	2,550 <u>+</u> 0,035
	1,080 <u>+</u> 0,050	2,510 <u>+</u> 0,030	· _"_	2,500 <u>+</u> 0,030	2,507 <u>+</u> 0,030
	3,930 <u>+</u> 0,290	2,983 <u>+</u> 0,040	_"_	2,971 <u>+</u> 0,040	2,978 <u>+</u> 0,040
Colvin et al[72]	0,58	2,47 <u>+</u> 0,05	$\bar{\nu}_{p}^{sp}(^{252}cf) = 3,780$	2,45 <u>+</u> 0,05	2,46 <u>+</u> 0,05
	0,93	2,56 <u>+</u> 0,05	_!!_	2,54 <u>+</u> 0,05	2,55 <u>+</u> 0,05
	1,49	2,52 <u>+</u> 0,10	<u>_""_</u>	2,50 <u>+</u> 0,10	2,51 <u>+</u> 0,10
	2,12	2,575 <u>+</u> 0,050	_ "_	2,56 <u>+</u> 0,05	2,57 <u>+</u> 0,05
	2,58	2,81 <u>+</u> 0,06	<u></u>	2,79 <u>+</u> 0,06	2,80 <u>+</u> 0,06
Mather et al[37]	0,960 <u>+</u> 0,205	2,532 <u>+</u> 0,040	$\bar{\nu}_{p}^{sp}(^{252} vf)=3,782$	2,515 <u>+</u> 0,040	2,522 <u>+</u> 0,040
	1,980 <u>+</u> 0,145	2,639 <u>+</u> 0,037	-"" Y	2,621 <u>+</u> 0,037	2,628 <u>+</u> 0,037
	3,000 <u>+</u> 0,115	2,855 <u>+</u> 0,042		2,835 <u>+</u> 0,042	2,842+0,042
	4,000+0,090	2,923+ 0,047	_11_	2,903+0,047	2,910+0,047

TABLE 6 continued

Reference	Energy (NeV)	₽, exp	Standard originally used	$\overline{\mathcal{D}}_{i}$ renormalized	$\overline{\mathcal{D}}_{total} = \overline{\mathcal{D}}_{p} + \overline{\mathcal{D}}_{d}$
Kuznetsov et al[73]	0,08	2,489 <u>+</u> 0,030	$\vec{v}(\vec{En})(\frac{233}{2}U)=2,462$	2,481 ± 0,030	2,481 + 0,030
	0,20	2,467 <u>+</u> 0,031	→th/ (En)=1,013 _"_	2,459 <u>+</u> 0,031	2,459 <u>+</u> 0,031
	0,30	2,442 <u>+</u> 0,027	11	2,434 <u>+</u> 0,027	2,434 <u>+</u> 0,027
	0,40	2,462+0,025	_11_	2,454 <u>+</u> 0,025	2,454 <u>+</u> 0,025
	0,50	2,472+0,027	11	2,464 + 0,027	2,464 <u>+</u> 0,027
	0,60	2,491 <u>+</u> 0,028	_"_	2,483 <u>+</u> 0,028	2,483 <u>+</u> 0,028
	0,70	2,516 <u>+</u> 0,029	_n_	2,508 ± 0,029	2,508 <u>+</u> 0,029

* The following values were used for renormalization:

 $\bar{v}_{t}^{\text{th}}({}^{233}\text{U}) = 2,4866, \ \bar{v}_{p}^{\text{th}}({}^{233}\text{U}) = 2,480, \ \bar{v}_{t}^{\text{th}}({}^{235}\text{U}) = 2,4229, \ \bar{v}_{p}^{\text{th}}({}^{235}\text{U}) = 2,4071, \\ \bar{v}_{t}^{\text{sp}}({}^{252}\text{cr}) = 3,765, \ \bar{v}_{p}^{\text{sp}}({}^{252}\text{cr}) = 3,756.$

Refe rence	Energy	v exp	Standard		\vec{v} total = $\vec{v}_{p} + \vec{v}_{d}$
Kuzminov [45]	3,69	3,25 <u>+</u> 0,15	$\overline{D}_{+h}^{p}(^{239}Pu) = 2,90$	3,22 <u>+</u> 0,14	3,23 <u>+</u> 0,14
	15,0	4,4 + 0,2	····	4,36 <u>+</u> 0,20	4,37 <u>+</u> 0,20
De Vrcey et al[46]	0,1	2,89 <u>+</u> 0,19	$\overline{D}_{th}^{p}(^{235}U) = 2,414$	2,88 <u>+</u> 0,19	2,89 <u>+</u> 0,19
	1,0	2,55 ± 0,35	_"-	2,54 <u>+</u> 0,35	2,55 <u>+</u> 0,35
	1,6	3,26 <u>+</u> 0,12	-"-	3,05 <u>+</u> 0,12	$3,06 \pm 0,12$
Savin et al.[34]	1,08	3,138 <u>+</u> 0,156	$\overline{D}_{sp}^{p}(^{252}cf) = 3,772$	2 3,125 <u>+</u> 0,155	3,134 <u>+</u> 0,155
	1,15	3,221 <u>+</u> 0,1ő1	~P	3,207 <u>+</u> 0,160	3,216 <u>+</u> 0,160
	1,23	3,018 <u>+</u> 0,120		3,005 <u>+</u> 0,129	3,014 <u>+</u> 0,119
	1,31	3,038 <u>+</u> 0,106		3,025 <u>+</u> 0,105	3,034 <u>+</u> 0,105
	1,39	3,037 <u>+</u> 0,106		3,024 <u>+</u> 0,105	3,033 <u>+</u> 0,105
	1,46	3,051 <u>+</u> 0,112		3,038 <u>+</u> 0,111	3,047 <u>+</u> 0,111
	1,54	3,192 <u>+</u> 0,102		3,178 <u>+</u> 0,101	3,187 <u>+</u> 0,101
	1,62	3,260 <u>+</u> 0,097		3,246 <u>+</u> 0,096	3,255 <u>+</u> 0,096
	1,71	3,170 <u>+</u> 0,095		3,156 <u>+</u> 0,095	3,16 <u>5+</u> 0,095
	1,81	3,264 <u>+</u> 0,091		3,250 <u>+</u> 0,091	3,259 <u>+</u> 0,091
	1,92	3,238 <u>+</u> 0,090		3,224+ 0,089	3,233 <u>+</u> 0,089
	2,02	3,175 <u>+</u> 0,104		3,161 <u>+</u> 0,103	3,170 <u>+</u> 0,103
	2,15	3,151 <u>+</u> 0,104		3,138 <u>+</u> 0,103	3,147 <u>+</u> 0,103
	2,29	3,280+ 0,114		3,266 <u>+</u> 0,113	3,275 <u>+</u> 0,113
	2,39	3,262 <u>+</u> 0,114		3,248 <u>+</u> 0,113	3,257 <u>+</u> 0,113
	2,50	3,435 <u>+</u> 0,127		3,420 <u>+</u> 0,126	3,429 <u>+</u> 0,126

TABLE 7 Available experimental data on the energy dependence of \overline{v} for ²⁴⁰Pu

Reference	Energy	v exp	Stondard	⇒p(*) renormalized	$\overline{\nu}$ total = $\overline{\nu}$ p + $\overline{\nu}$ d
Savin et al.[34]	2,62	3,367 <u>+</u> 0,134	$p_{sp}(^{252}v_f)=3.772$	3,353 <u>+</u> 0,133	3,362+0,133
	2,74	3,327 <u>+</u> 0,133		3,313 <u>+</u> 0,132	3,322 <u>+</u> 0,132
	2,88	3,450 <u>+</u> 0,138		3,435 <u>+</u> 0,137	3,444+0,137
	3,02	3,42 <u>3+</u> 0,143		3,408+0,142	3,417 <u>+</u> 0,142
	3,18	3,484 <u>+</u> 0,156		3,469 <u>+</u> 0,155	3,478 <u>+</u> 0,155
	3,53	3,501 <u>+</u> 0,157		3,486 <u>+</u> 0,156	3,49 <u>5+</u> 0,156
	3,73	3,406 <u>+</u> 0,170		3,391 <u>+</u> 0,169	3,400 <u>+</u> 0,169
	3,94	3,507 <u>+</u> 0,200		3,492 <u>+</u> 0,199	3,501 <u>+</u> 0,199

TABLE 7 continued

(*) Renormalization values $\bar{v}_{sp}^{p} (^{252} \text{cf}) = 3,756 \pm 0,000$

$$\bar{\nu}_{\text{th}}^{\text{p}} (^{235}\text{U}) = 3,407 \pm 0,000$$

 $\bar{\nu}_{\text{th}}^{\text{p}} (^{239}\text{Pu}) = 2,874 \pm 0,000$

Reference	Energy (MeV)	vexp	Standard	ν́p(*) renormalized	\vec{v} total = $\vec{v}_{p} + \vec{v}_{d}$
Condé et al.[44]	0,52 ± 0,02	2,89 <u>+</u> 0,11	$\overline{D}_{sr}^{p}(^{252} \text{ of})=3,764$	2,88 <u>+</u> 0,11	2,89 <u>+</u> 0,11
	2,71 + 0,01	3,37 <u>-</u> 0,11	9F	3,36 <u>+</u> 0,11	3,37 <u>+</u> 0,11
	4,19 <u>+</u> 0,02	3,50 <u>+</u> 0,10		3,49 <u>+</u> 0,10	3,49 <u>+</u> 0,10
	5,88 <u>+</u> 0,12	3,84 <u>+</u> 0,12		3,83 <u>+</u> 0,12	3,83 <u>+</u> 0,12
	14,8 + 0,2	5,02 <u>+</u> 0,14		5,01 <u>+</u> 0,14	5,01 <u>+</u> 0,14

 $\frac{\text{TABLE 8}}{\text{Available experimental data on the energy dependence of <math>\sqrt[7]{ ext{Pu}}$

(*) Renormalization value

 $\tilde{\nu}_{sp}^{p}$ (²⁵²cf) = 3,756 ± 0,000

"ABLE 9

Available experimental data on $\tilde{\nu}$ for the spontaneous fission of $^{240}{
m Pu}$

Reference.	verp	Standard	$\bar{v}^{\dot{p}}$ renormalized	'ītotal = p + vd	
Segre [47]	2,31 + 0,3	_			
Earclay et al.[48]	2,84 <u>+</u> 0,26	Ra-Be Source			
Carter [49]	2,22 + 0,11	-			
Martin et al.[50]	2,20 <u>+</u> 0,05				
Sanders [51]	0,759 <u>+</u> 0,028	$\bar{v}_{th}^{(239}_{Pu}) = 1$	2,181 <u>+</u> 0,080	2,187 <u>+</u> 0,080	
Carter et al.[52]	2,20 <u>+</u> 0,03	_			
Kalashnikova [53]	2,20 <u>+</u> 0,09	Calibrated n-sour	ce		
Johnstone [43]	2,21 <u>+</u> 0,13	Calibrated n-sour	ce		
Crame et al.[54]	2,09 <u>+</u> 0,11	$\bar{v}_{sp}^{p}(^{252}cf) = 3,53$	2,22 <u>+</u> 0,12	2,229 <u>+</u> 0,12	<u> </u>
Diven et al.[18]	2,257 <u>+</u> 0,045	$-\bar{v}_{th}^{\tilde{p}'}(^{235}U) = 2,46$	2,208 <u>+</u> 0,044	2,217 <u>+</u> 0,044	
Noat et al.[8]	2,13 <u>+</u> 0,05	$v_{\rm sp}^{\rm p}(^{252}{\rm cf}) = 3,69$	2,16 <u>+</u> 0,05	2,169 <u>+</u> 0,05	
Diven et al.[23]	2,187 <u>+</u> 0,036	$-\bar{v}_{th}^{p}(^{235}_{U}) = 2,414$	2,180 <u>+</u> 0,036	2,189 <u>+</u> 0,036	
Asplund-Nilson et a [55]	21. 2,154 <u>+</u> 0,028	$\bar{\nu}_{\rm sp}^{\rm p}(^{252}{\rm Cf})=3,80$	2,130+ 0,028	2,139 <u>+</u> 0,028	
Hopkins et al.[4]	2,189 <u>+</u> 0,026	$-\bar{\nu}_{sn}^{p}(^{252}Cf) = 3,771$	2,181 <u>+</u> 0,026	2,190 + 0,026	
Colvin et al.[2]	(0,888+ 0,005)	$\bar{v}_{+h}^{p}(^{235}U) = 1$	2,137+0,012	2,146 + 0,012	
Baron et al.[56]	2,15 <u>3+</u> 0,020	$v_{sn}^{n}(^{252}Cf) = 3,782$	2,139 <u>+</u> 0,020	2,148 <u>+</u> 0,020	
Boldeman [57]	2,168+ 0,009	$\bar{v}_{sp}^{\tilde{p}'}(^{252}Cf) = 3,784$	2,153 <u>+</u> 0,009	2,162 + 0,009	
·	Averaged valu	16 =	2,150 <u>+</u> 0,015	2,159 <u>+</u> 0,015	

(*) Renormalization values. See table 7

Reference	v exp	Standard	$\overline{v}^{p}(*)$ renormalized	
Crane et al. [54]	2,32 <u>+</u> 0,16	$\bar{v}_{sp}^{p}(^{252}cf) = 3,53$	2,47 <u>+</u> 0,17	
Hicks et al. [58]	2,18 <u>+</u> 0,09	$\frac{p}{v sp} (\frac{240}{Pu}) = 2,257$	2,08 <u>+</u> 0,09	
Boldeman [57]	2,157 <u>+</u> 0,009	$\hat{v}_{sp}^{p}(^{252}c_{f}) = 3,784$	2,142 <u>+</u> 0,009	
Prokhorova [59]	2,13 ± 0,05	$\tilde{\nu}_{sp}^{p}(^{244}Cm) = 2,71$	2,12 <u>+</u> 0,05	
	Ave	cared value =	2.141 + 0.011	

TABLE 10 Available experimental data on $\overline{\nu}$ for the spontaneous fission of ²⁴²Pu

(*) Renormalization values

$$\bar{v}_{sp}^{p} ({}^{252}Cf) = 2,756 \pm 0,000$$

 $\bar{v}_{sp}^{p} ({}^{240}Pu) = 2,150 \pm 0,000$
 $\bar{v}_{sp}^{p} ({}^{244}Cm) = 2,691 \pm 0,000$

Reference	exp	Standard	(*) renormalized
Hicks et al.[60]	2,66 <u>+</u> 0,11	$\bar{\nu}_{\rm sp}(^{252}{ m Cf}) = 3,53$	2,83 <u>+</u> 0,12
Hicks et al.[58]	2,84 <u>+</u> 0,09	$\sqrt{\frac{5}{50}}(240 \text{Pu}) = 2,257$	2,70 + 0,08
Crane et al.[54]	2,61 + 0,13	Calibrated n-source	
Diven et al.[18]	2,810 <u>+</u> 0,059	$-\sqrt{\frac{p}{sp}}(^{240}Pu) = 2,257$	2,677 <u>+</u> 0,056
Bolshov et al.[61]	2,71. <u>+</u> 0,04		2,68 <u>+</u> 0,024
Jaffey et al.[62]	2,692 <u>+</u> 0,024	(a)	2,692 <u>+</u> 0,024
Zamyatnin et al.[63]	2,77 <u>+</u> 0,08	$\sqrt[7]{v_{th}}^{p}(^{235}U) = 2,426$	2,75 <u>+</u> 0,08
		averaged value =	2,691 <u>+</u> 0,032

						TABLE 11			
Available	experimental	data	on	√for	the	spontaneous	fission	of	²⁴⁴ Cm.

$$\bar{v} \frac{p}{sp} ({}^{252}Cf) = 3,756 \pm 0,000$$

 $\bar{v} \frac{p}{sp} ({}^{240}Pu) = 2,150 \pm 0,000$
 $\bar{v} \frac{p}{th} ({}^{235}U) = 2,407 \pm 0,000$

(a) The reported value is an average of several determinations, in which the thermal $\bar{\gamma}_p$ values of 233 U, 235 U and 239 Pu and $\bar{\nu}_{sp}^p$ (252 Cf) were used as standards.

TABLE 12

Retics for the prompt neutron yield in the spontaneous fission of $^{\rm 240}{\rm Pu}$

References	$\frac{\overline{\nu}_{sp} (240F_{u})}{\overline{\nu}_{sp} (2520f)}$	$\frac{\overline{v}_{sp} (240_{Pu})}{\overline{v}_{th} (2350)}$	$\frac{\bar{\nu}_{\rm sp} (240_{\rm Fu})}{\bar{\nu}_{\rm th} (239_{\rm Pu})}$
Sanders [31]			0,757 + 0,028 (*)
Crane et al. [54]	0,592 + 0,031		
Diven et al. [18]	0,5833 <u>+</u> 0,0116 <u>+</u> 0,0118	0,9175 <u>+</u> 0,0183	
Moat et al. [8]	0,577 +0,019	_	
Asplund-Nilsson et al.[55]	0,5668 <u>+</u> 0,0073		
liopkins et al. [4]	0,5805 <u>+</u> 0,0050	0,9027 <u>+</u> 0,0107 <u>+</u> 0,0074	0,7732+0,0092+0,0076
Colvin et al. [2]	0,5704 <u>+</u> 0,0032 <u>+</u> 0,0026	0,898 <u>+</u> 0,005 (*)	0,7513 <u>+</u> 0,0042 <u>+</u> 0,0020
Baron et al. [56]	0,5693 <u>+</u> 0,053		
Eoldeman [57]	0,5729 <u>+</u> 0,0023	0,8700 <u>+</u> 0,0036 <u>+</u> 0,0029	0,7465 <u>+</u> 0,0031 <u>+</u> 0,0020
<i>Iverage</i> values	0,5730+0,0039	C,8838 <u>+</u> 0,0325	0,749 <u>5+</u> 0,0073
5 p (²⁴⁰ Fu) deduced values	2,153 <u>+</u> 0,021	2,127 <u>+</u> 0,084	2,154 <u>+</u> 0,021
$\frac{p}{sp}$ (²⁴⁰ Fu) weighted mean =	2,153 <u>+</u> 0,023		
(*) Authors' reported values	5		

(**) For standards used see table 7

References	$\frac{\tilde{\nu}_{sp}(^{242}Pu)}{\tilde{\nu}_{sp}(^{252}Cf)}$	$\frac{\frac{\bar{\nu}_{\rm sp}(^{242}\rm Pu)}{\bar{\nu}_{\rm sp}(^{240}\rm Pu)}$	$\frac{\overline{\nu}_{\rm sp}(^{242}\rm Pu)}{\overline{\nu}_{\rm sp}(^{244}\rm Pu)}$
(mane of a) [54]	0 650 ± 0 0/5	1 1100+0 077+0 058	
Hicks et al. [58]	0,000 - 0,00	0.966 +0.040	0.768 + 0.032 + 0.024
Boldeman [57]	0,5700+0,0023 (*)	0,9949+0,0041+0,0041	
Prokhorova et al. [59]		0,983 <u>+</u> 0,020	0,787 <u>+</u> 0,016 (*)
Averaged values	0,5702 <u>+</u> 0,0025	0,9926 <u>+</u> 0,0079	0,7864 <u>+</u> 0,019
$\overline{\nu}_{sp}^{p}$ (²⁴² Pu) deduced values (**)	2,142 <u>+</u> 0,016	2,134 <u>+</u> 0,043	2,14 + 0,12
\bar{v}_{sp}^{p} (²⁴² Pu) weighted mean	= 2,141 + 0,021		· ·

 $\frac{\text{TABLE 13}}{\text{Ratios for the prompt neutron yield in the spontaneous fission of }^{242}\text{Pu}$

(*) Authors' reported values

(**) For standards used see table 10

Ţ

Peferences	\bar{v}_{sp} (²⁴⁴ Cm)	\overline{v}_{sp} (²⁴⁴ Cm)	$\bar{\nu}_{\rm SD} (^{244} C_{\rm R})$
·	\vec{v}_{sp} (²⁵² Cf)	$\frac{1}{\sqrt{2}}$ th (235 U)	$\frac{1}{\tilde{\nu}_{\rm sp}}$ (240 _{Pu})
Crane et al. [54]	0,741 + 0,037 + 0,034		1,249 <u>+</u> 0,062 <u>+</u> 0,06
Hicks et al. [60]	0,741 <u>+</u> 0,031 (*)		
Hicks et al. [58]			1,245 <u>+</u> 0,026 <u>+</u> 0,02
Diven et al. [18]	0,7263 <u>+</u> 0,0152 <u>+</u> 0,0147	1,1423 <u>+</u> 0,0239	
Bol'shov et al. [61]			1,250 <u>+</u> 0,018 (*)
Jaffey et al. [62]	0,720 <u>+</u> 0,020 (*)	1,120 + 0,010 (*)	
Zamyatnin et al. [63]	0,734 ± 0,021 ± 0,016	1,142 + 0,033	
Averaged values	0,728 <u>+</u> 0,028	1,125 <u>+</u> 0,013	1,251 <u>+</u> 0,028
\overline{v}_{sp}^{p} (²⁴⁴ Cm)deduced values (**)	2,735 <u>+</u> 0,113	2,708 <u>+</u> 0,038	2,690 <u>+</u> 0,092
\overline{v}^{p} (²⁴⁴ _{Cm}) weighted m	ean =	2,708 + 0,051	

(*) Author reported values

(**) For standards used see table 11

TABLE 14 244, . . .

TABLE 15

Isotope	Reference	v exp	Standard	$\tilde{\nu}$ renormalized (*)
232	٢٢		· · · ·	
Th	F.R.Baclay et al.[88]	2,37 + 0,14		2,13 + 0,14
238 _U	Kuzminov et al.[64]	$2,1 \pm 0,1$	$\sqrt{2} \left(\frac{240}{\text{sp}} \text{Pu} \right) = 2,26$	1,98 + 0,06
	Leroy [42]	2,10 <u>+</u> 0,08	$= \frac{1}{2} $	2,05 + 0,08
	Asplund-Milsson et al. [55] ,	1,97 <u>+</u> 0,07	$\frac{1}{5} \frac{p}{sp} ({}^{252}C_f) = 3,80$	1,95 <u>+</u> 0,07
			Averaged value	1,99 <u>+</u> 0,07
236 _{Pu}	Crane et al.[54]	1,89 + 0,20	$\bar{v}_{\rm em}^{\rm p}(^{252}{\rm Cf}) = 3,52$	2,03 + 0,21
	Hicks et al. [58]	2,30 ± 0,19	$\bar{v}_{sp}^{sp}({}^{240}Pu) = 2,257$	2,19 ± 0,18
			Averaged value =	2,12 <u>+</u> 0,19
238 _{Fu}	Crane et al.[54]	2,04 + 0,13	$\bar{v}_{p}^{p}(^{252}cf) = 3,52$	2,18 + 0,014
	Hicks et al.[58]	2,33 + 0,08	$\tau_{\rm sp}^{\rm sp}({}^{240}{\rm Pu}) = 2,257$	2,22 ± 0,07
	ere an	*****	Averaged value = .	2,21 ± 0,09
242 _{.Cm}	Crane et al. [54]	2,33 + 0,11	$\bar{y}_{p}^{p} = (^{252} cf) = 3,52$	2,48 + 0,12
	Hicks et al. [58]	2,65 + 0.09	$v_{\bar{v}}^{\rm sp} ({}^{240}{\rm Pu}) = 2.257$	2,52 + 0,08
	Jaffey et al.[62]	= 2.51	$v_{sp}^{sp}(^{244}Cm) = 2,69$	2,51
	<u></u>		Averaged value =	2,51 <u>+</u> 0,10

Isotope	Neference	√ exp	Standard	<pre> v renormalized ` (*) </pre>
249 _{Bk}	Pyle [89]	3,67 <u>+</u> 0,16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·
246 _{Cf}	Pyle [89]	2,88 <u>+</u> 0,19		
254 _{Cf}	Pyle [89]	3,90 <u>+</u> 0,14		
254 _{Fm}	Choppin et al.	[90] 4,05 <u>+</u> 0,19	$\bar{v}_{\rm sp}(^{252} {\rm cr}) = 3,82$	3,98 <u>+</u> 0,14

(*)For standards used see tables 10 and 11

TABLE 15 continued

ମ

Fig. 3

<u>ئ</u>

√_t (E) for ²³⁹Pu

3 2

ମ

Fig.4

REFERENCES

[1]	J.J. Schmidt, KFK-120, part 1, February 1966.
[2]	D.W. Colvin, M.G. Sowerby, EANDC(UK)-30"U" (1963) and Proc. of the IAEA Symposium of Physics and Chemistry of Fission, 2,25(1965).
[3]	I. Asplund-Nilsson, H. Conde, N. Starfelt, NSE, <u>16</u> , 124 (1963).
[4]	J.C. Hopkins and B.C. Diven, Eucl. Phys., 48, 433 (1963).
[5]	E.J. Axton, A.G. Bardell, B.N. Audric, EAUDC(UK)110, 70 (1969).
[6]	A.De Volpi, K.G. Forges, private communications (1969).
[7]	G.C. Hanna, C.H. Westcott, H.D. Lemmel, P.R. Leonard, Jr., J.S. Story, P.M. Attree, Atomic Energy Review, V. VII, No. 4,3 (1969).
[8]	A. Moát, D.S. Mather, M.H. McTaggart, J.Nucl.En., parts A/B, <u>15</u> ,102 (1961).
[9]	D.W. Colvin, M.G. Sowerby, Proc. of the 1AEA Conference on Nuclear Data for Reactors, <u>1</u> , 307 (1967).
[10]	P. H. Mhite, E.J. Axton, J. Nucl. En., <u>42</u> , 73 (1968).
[11]	E.J. Axton, A.G. Eardell, B.M. Audric, EANDC(UK)-110,70 (1969).
[12]	R.B. Walton, R.E. Sund, Nucl. Instr. and Meth., 68, 163 (1969).
[13]	A.De Volpi, K.G. Porges, Report RPD-EFM No. 95, April 1968.
[14]	A.J. Axton, private communication (1968).
[15]	F.L. Fillmore, J. of Nucl. Energy, 22, 79 (1968).
[16]	J.M. Elair, unpublished, 1945; quoted by K. Farker, AWRE $0-82/63$ (1963).
[17]	J. Terrel, W.T. Leland, unpublished; quoted by J.J.Schmidt, KFK-120 (1966).
[18]	B.C. Diven, H.C. Martin, R.F. Taschek, J. Terrel, Phys. Rev., 101, 1012 (1956).
[19]	R.C. Hanna, unpublished, 1956; quoted by J.J. Schmidt, KFK-120 (1966).
[20]	L.N. Usachev, V.P. Trubitsyn, unpublished, 1953; quoted in Geneva Conf. Proc., V.15, p. 353 (1958).
[21]	D. Butler, S. Cox et al., IAEA Seminar on the Physics of Fast and Intermediate Reacotrs, Vienna, 1961, V.1, p. 125 (1962).
[22]	A. Moat, D.S. Mather, F. Fieldhouse, IAEA Seminar on the Physics of Fast and Intermediate Reactors, Vienna, 1961, V.1, p.139 (1962).
[23]	B.C. Diven, J.C. Hopkins, IAEA Seminar on the Physics of Fast and Intermediate Reactors, Vienna, 1961, V. L, p. 149 (1962).
[24]	A. Moat, D.S. Mather et al., J.Nucl. En., Pts. A/B, 15,102 (1961).
[25]	Y.A. Blyumkina, I.I. Bondarenko et al., Nucl. Phys., 52, 648 (1964).
[26]	D. S. Mather, P. Fieldhouse, A. Moat, Phys. Rev., 133, B1403 (1964).

- [27] H. Conde, Arkiv Fysik 29, 293 (1965).
- [28] J.W. Meadows and J.F. Mhalen, J. of Nucl. En., 21, 157 (1967).
- [29] V.F. Kuznatsov, G.N. Smirankin, From of the IAEA Conf. on Nuclear Data for Reactors, Paris, V.II, p. 75 (1967).
- [30] D.M. Nadkarni and E.R. Ballal, Kanpur Conference, . , p. 325 (1967).
- [31] M. Soleilhac, J.P. Decarsin, J. Frehaut, J. Gaurian, et al., Report 69 - 10 D.0.0025 U.I (1970).
- [32] M. Soleilhac, J. Frehaut and J. Gaurian, J. of Nucl. En., V.23, 257 (1969).
- [33] L.I. Frokhorova, G.N. Smirenkin, D.L. Shpak, Nuclear Data for Reactors, Paris Conference, V.II, p. 67 (1967).
- [34] M.V. Savin, Ju.A. Khokhlov, Yu. S. Zamjatnin, J.N. Faramonova, Second International IAEA Conference, 15 - 19 June 1970, Helsinki, paper CN-26/40.
- [35] V. M. Strutinsky, V.A. Pavlinchuk, Proc. of the IAEA Symposium on the Physics and Chemistry of Fission 1, 127 (1965).
- [36] R.C. Allen, R.B. Walton, R.B. Ferkins, R.A. Olsen and R.F. Taschek; Fhys. Rev. 104, 731, (1956)
- [37] D.S. Mather, P. Fieldhouse and A. Moat; Nucl. Phys. 66, 149 (1965)
- [38] D.S. Mather, P.F. Bampton, G. James and P.J. Nind. Report AWRE 042/70 Feb. 1970 (private communication from Dr. Mather, May 1970).
- [39] H.A. Bethe, J.R. Eeyster, R.E. Carter 1.4-1939 (1955)
- [40] G.N. Smirenkin, I.I. Bardarenko, L.S. Kutsaeva, Kh. D. Mishchenko, L. I. Frokhorova and B.F. Shemetenko. Atomnaya Energiya 4, 188 (1958)
 J. Nucl. Energ. 9, 155 (1959) (english transl.)
- [41] N.N. Flerov and V.M. Talizin. Atomnaya Energ. 10, 68 (1961) (english transl. J. Nucl. Energ. A/B 17, 423 (1963)
- [42] J. Leroy; J. Phys. Radium 21, 45 (1960)
- [43] I. Johnstone, AERE-NP/R-1912 (1956)
- [44] H. Condé, J. Hansen and M. Holmberg. J. Nucl. Energ. 22, 53 (1968).
- [45] B.D. Kuzminov, AEC-tr-4710 (1962)
- [46] M. de Vroey, A.T.G. Ferguson, N. Starfelt. J. Nucl. Energ. A/B 20, 191 (1966)
- [47] E. Segré, LA-491 (1946)
- [48] F.R. Barclay, W. Galbraith, W.S. Whitehouse, AERE-N/R 831 (1951)
- [49] W.W. Carter, LA-1582 (1953)

- [50] E.C. Martin, J. Terrell, and B.C. Diven. LASL-F-3-76 (1954)
- [51] J.E. Sanders, AERE RP/R 1655 (1955)
- [52] Carter, Haddad, Hand and Smith, unpublished value, quoted by J.E. Hammel and J.F. Hephart, Phys. Rev. 101, 1012 (1956)
- [53] V. I. Kalashnikova, L.A. Mikaelyan, P.E. Spivak and V.P. Zakharova; AEC-tr-2435, p. 13 (1956)
- [54] W.W. T. Crane, G. H. Higgins and H. R. Bowman. Phys. Rev. 101, 1804 (1956)
- [55] I. Asplund-Nilsson, H. Condé and N. Starfelt. Nucl. Sci. Eng. 15, 213 (1963)
- [56] E. Baron, J. Frehaut, F. Cuvry, H. Soleilhac, Proc. of the IAEA Conf. on Nuclear Data for Reactors, II, 57 (1966)
- [57] J. W. Boldeman, J. Nucl. Energ. 22, 63 (1968)
- [58] D.A. Hicks, J. Ise and R.V. Pyle; Phys. Rev. 101, 1016 (1956)
- [59] L.I. Prokhorovs, G.N. Smirenkin and Yu. M. Turchin. Atomnaya Energips 25, 530 (1968) (english translation in Soviet. Atom. Phys. 25, 1369 (1968)
- [60] D.A. Hicks, J. Ise and R.V. Pyle; Phys. Rev. 98, 1521 (1955)
- [61] V.I. Bol'shov, L.I. Prokhorova, V.N. Okolovich and G.N. Smirenkin, Atomnaya Energiya 17, 28 (1964) and J. Nucl. Energ. A/B 19, 457 (1965) (english translation).
- [62] A.H. Jaffey and J.L. Lerner, Nucl. Phys. A 145, 1 (1970)
- [63] Yu. S. Zamyatnin, N.I. Kroshkin, A.K. Melnikov and V.N. Nefedov. Paper to be presented at 2nd International IAEA Conference on Nuclear Data for Reactors, 15 - 19 June 1970, Helsinki
- [64] B.D. Kuzminov, L.S. Kutsaeva, V.G. Nesterov, L.I. Prokhorova and C.P. Smirenkin. Zh. Ekop. Theor. Fiz. 37, 406 (1959), english translation Sov. Phys. JETP 10, 290 (1960).
- [65] J.W. Boldeman, A.W. Dalton. AAEC/E 172 (1967)
- [66] J.R. Stehn et al., Neutron Cross Sections BNL 325, Vol. III, 2nd edit., Suppl. no 2 (Feb. 1965).
- [67] M.K. Drake, Report G.A. 7076, Ceneral Dynamics (Sept. 1966).
- [68] V.I. Kalashnikova et al., Atomnaya Energya, 2, 18 (1957)
- [69] A.N. Protopopov and M.V. Blinov, J. Nucl. Energ. A 10, 65 (1959)

- [70] L.B. Engle, C.E. Hansen and H.C. Faxton, Nucl. Sci. Eng., 8, 543 (1960)
- [71] Yu. A. Vasil'ev, Yu. S. Zemyatnin, E.I. Sirotin, P.V. Toropov, E.F. Fomushkin and V.I. Shamarukhin. Fizika Deleniya Atomik Jader, p. 121 -6 (1962)
- [72] D.W. Colvin and M.C. Sowerby, private communication, data given in [66]
- [73] V. F. Kuznetsov and G.N. Smirenkin, Jaderno-Fyzicheskie Issledovaniya, no. 4 (1967) (INDC/187)
- [74] C.R. Keepin, Physics of Nuclear Kinetics, Addison-Wesley Publ. (1965) p.99
- [75] G.L. Boroughs, C.W. Craven Jr., and M.K. Drake, heport G.A 8854 (August 1968)

(1965)

- [76] N.L. Snidow, Report BAM-393-5 (April 1966)
- [77] G.R. Keepin, Report to the IAEA Consultant's Meeting, Vienna 22 24 June
- [78] J. Terrell, Phys. Rev. 127, 880 (1962)
- [79] S. M. Schuster and R.J. Howerton, J. Nucl. Energ. A/B 18, 125 (1964)
- [80] J.W. Boldeman and R.L. Walsh (quoted by Mather [38])
- [81] G.R. Keepin, T.F. Wimett and R.K. Zeigler, J. Nucl. Energ. 6, 1, 1957 and Phys. Rev. 107, 1044, 1957
- [82] L.V. East and G.R. Keepin, Proc. 2nd IAEA Symp. on Phys. and Chem. of Fission, 647 (1969)
- [83] C.F. Masters, M.M. Thorpe and D.B. Smith. Nucl. Sci.Eng. <u>36</u>, 202 (1969)
- [84] G. Brunson, E.N. Pettit and R.D. McCurdy, Report ANL-5480 (1955)
- [85] H. Rose and R.D. Smith; J.Nucl. Energ, 4, 133 (1957)
- [86] V.I. Shpakov, K.A. Petrzhak, M.A. Bak, S.S. Kovalenko, and O.I. Kostochkin, Atomnaya Energiya 11, 539 (1961) (english translation Sov.J.At. Energ.11, 1190, 1962)
- [87] B.P. Maksyutenko, Atomnaya Energiya, 15, 321 (1963)
- [88] F.R. Barclay, W. Galbraith and W.S. Whitehouse, Proc. Phys. Soc.(London) <u>A65</u>, 73 (1952)
- [89] R.V. Pyle. The multiplicities of Neutrons from Spontaneous Fission (Reported by Bardarenko et al. [94])
- [90] C.R. Choppin; B.G. Harvey, D.A. Hicks, J. Ise and R. Pyle, Phys. Rev. 102, 766 (1956)
- [91] J.E. Sanders, AERE R/M 167 Addendum (1958)

- [92] D.M. Barton, M. Bernard and G.E. Mansen, LAMS-2489 (1961)
- [93] G.R. Keepin, WASH-1076, 150 (1967)
- [94] I.I. Bardarenko, B.D. Kuzminov, L.S. Kutsayeva, L.I. Prokhorova and G.N. Smirenkir. Proc. 2nd Intern. Conf. for Feaceful Uses, Atomic Energy, 15, 353, (1958), P/ 2187.