

INTERNATIONAL NUCLEAR DATA COMMITTEE

CROSS-SECTIONS FOR

FISSION NEUTRON SPECTRUM INDUCED REACTIONS

Ъy

A. Calamand Nuclear Data Section IAEA, Vienna

September 1973

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11, A-1010 VIENNA

Cross-sections for fission neutron spectrum induced reactions.

A. Calamand Nuclear Data Section IAEA (Vienna)

Abstract

This chapter includes a review of cross-sections averaged in a uranium-235 fission neutron spectrum. The review extends to all integral measurements available in the literature up to April 1973 for (n,p), (n,a), (n,2n) and (n,n') reactions. Whenever possible cross-sections have been renormalized to a standard value of 1250 ± 70 mb for the uranium-235 fission cross-section averaged in the thermal fission neutron spectrum of uranium-235. Recommended values have been attributed.

Parallel to this review, an estimation of averaged (n,p), (n,α) , (n,2n) cross-sections has been carried out for all stable and a few long-lived isotopes.

Table of contents

		pages
I	Introduction	2
II	Review of integral measurements for (n,p) , (n,d) , $(n,2n)$ and (n,n') reactions	3
		5
	Introduction	3
	Renormalization	4
	Determination of recommended values	5
	Structure of the tables II, III, IV and V	6
III	Estimated average fission neutron cross-sections for (n,p) , (n,d) and $(n,2n)$ reactions	7
	Introduction	7
	The basis of the estimation	7
IV	References	11
TAB	LES:	
I	Adopted standards Explanation of signs appearing in the tables II, III, IV and V	19 20
II	(n,p) cross-sections	21
III	(n,d) cross-sections	33
IV	(n,2n) cross-sections	38
v	(n,n') cross-sections Footnotes to the tables II, III, IV and V	43 45
VI	Estimated average cross-sections for (n,p) , (n,d) and $(n,2n)$ reactions in a fission neutron spectrum.	50
FIG	URES	
1.	Definition of E _{eff}	69
2.	(n,p) cross-sections	70
3.	(n,of) cross-sections	71
4.	(n,2n) cross-sections	7 2

I. Introduction

The fast component of a reactor neutron flux induces activity which can be used for neutron activation analysis, but which can also interfere with activity induced by thermal neutrons.

In both cases, the knowledge of the cross-sections averaged in the fast neutron spectrum is required. Since the shape of this fast neutron spectrum changes from one reactor to another, even from one position in the reactor to another, one must refer to a precisely defined averaged cross-section. For this one uses the cross-section averaged in the uranium-235 thermal fission neutron spectrum

$$\overline{\sigma} = \int_{\sigma}^{\infty} \sigma(E) \chi(E) dE \quad \text{where } \sigma(E) \text{ is}$$

the activation cross-section and χ (E) the normalized ($\int_{0}^{1} \chi$ (E) dE = 1) fission neutron spectrum.

Estimates of $\overline{\sigma}$ are made either by integral or differential measurements. In integral measurements, the samples are exposed to fission neutrons, $\overline{\sigma}$ is deduced from the measured induced activity and the determined fission neutron flux. In differential measurements, σ (E) is measured and $\overline{\sigma}$ is computed using various representations of $\mathcal{X}(E)$.

This chapter contains a review of integral measurements for (n,p), (n,o), (n,2n) and (n,n') reactions and an estimation of (n,p), (n,o) and (n,2n) averaged cross-sections for the stable and long lived isotopes of the elements from lithium to bismuth. II. Review of integral measurements

for (n,p), (n,q), (n,2n) and (n,n') reactions

INTRODUCTION

Unlike other works, we are more interested in this review in the knowledge of all available data rather than in a very precise assessment of a few reactions important for neutron dosimetry and/or fast reactor technology. This means that we will not discuss or analyze the discrepancies between differential and integral measurements. For most reactions, the agreement between the results from each method is adequate for our purpose.

We have chosen to review only the integral measurements, simply because they are more numerous than the differential ones while at the same time including practically all of them. Therefore when not otherwise indicated, the original values quoted in the tables are derived from integral measurements. In some rare cases, where integral measurements are not available or are too discrepant, we have used differential or calculated data.

In some integral measurements, great care is exercised in exposing the samples to a neutron flux which is as close as possible to a thermal neutron induced uranium-235 fission neutron spectrum. This is achieved using fission plate or converter techniques. In most other cases, one simply checks that the reactor spectrum does not deviate "significantly" from a pure fission spectrum. This spectrum equivalence will be true in general for the energy range above about 1.5MeV. Therefore for threshold reactions, the fission neutron spectrum is used as zero order approximation to the true spectrum independent of reactor type and irradiation position. Most of the integral measurements are made relative to a standard reaction and have therefore to be renormalized for intercomparison. Table I gives the most commonly used standard reactions with the values adopted in this review. These values are taken from a work by A. Fabry (FA72), which is an evaluation of experimental microscopic integral cross-sections measured in the thermal fission neutron spectrum of uranium-235 for 29 nuclear reactions relevant to neutron dosimetry and fast reactor technology.

RENORMALIZATION

Whenever possible and when not already renormalized by Fabry, the original data have been renormalized according to the standard values given in table I. For some less common standards, recommended values from the tables II, III and IV have been used.

The renormalization is done by multiplying, for each reaction, the original data by the ratio of the new standard value to the old one. Branching ratios were not taken into account in this renormalization. Errors have been considered as standard deviations. Renormalized errors always include the uncertainty in the standard cross-section used for renormalization.

In Fabry's evaluation a least squares method is used to produce a recommended set of fission spectrum integral data scaled to a unique standard, chosen to be the uranium-235 fission cross-section averaged in the uranium-235 thermal fission neutron spectrum for which a value of 1250 mb has been accepted.

Fabry first renormalized experimental data sets of various authors to his own experimental data set, for which a uranium-235 standard value of 1335 mb had been accepted. All the renormalized data sets together with Fabry's data set were then scaled to a value of 1250 mb for the fission spectrum averaged uranium-235 fission cross-section.

Consequently all renormalized values appearing in the tables are linked to the uranium-235 standard value. Except for the values renormalized by Fabry, the absolute errors on renormalized values include an absolute error of 70 mb on the uranium-235 standard value.

DETERMINATION OF RECOMMENDED VALUES

Keeping in mind the practical use of these tables, we have decided to give a "recommended" value for each single reaction appearing in the table even if some values are of doubtful quality.

For the reactions which he has evaluated, Fabry recommends values, which are a weighted average of his renormalized then scaled values. In most cases, Fabry's recommended values will also be ours, except for the errors which, in our case, always include the error in the uranium-235 standard. These values are strongly recommended.

For the cross-sections not evaluated by Fabry a selection has been made among the available renormalized values. A weighted average (using the inverse of the squared errors as weight) of the selected values, was then performed. Averaged values of at least three renormalized values agreeing within 15% are also strongly recommended. Both these values and Fabry's recommended values appear underlined in the tables.

Other "recommended" values are, either the average of discrepant values, or the average of only two agreeing values, or no average at all for single measurements.

STRUCTURE OF THE TABLES II, III, IV AND V

Tables II, III, IV and V summarize the status of integral measurements. For each reaction all data available in the common literature up to April 1973 are given together with the standard used when known or relevant. The first column gives the reactions. In the second column appear the references to the original values given in the third column. The fourth column includes the standard used by the author. The numbers in parenthesis refer to footnotes. Renormalized values are given in the fifth column and recommended values are given in the sixth.

The boxes drawn within the tables for some reactions, contain the original data and their renormalized values used by Fabry in his evaluation. The result of the evaluation, Fabry's recommended value, given in the third column, appears in the last line of the box, attached to the underlined reference <u>FA72</u>. Our recommended value, identical to Fabry's value except for the error as explained previously, is given in the last column. The dotted line separates in the box the measurements performed with fission plates or converter (upper part) from the ones done by exposure to pile neutrons (lower part).

The renormalized values selected for averaging are flagged with a"-"on the right hand side. The brace } collects the renormalized values in an average recommended value. Absolute errors may appear in parenthesis, this means they have been arbitrarily chosen when not given by the author.

III. Estimated average fission neutron cross-sections for (n,p), (n,d)

and (n,2n) reactions

INTRODUCTION

The tables II to V are far from being complete and numerous crosssections required by the experimentalist are unknown, hence the need for a complete estimation. Some works provide an answer for some cross-sections which have been theoretically calculated (see for example Pearlstein's calculations (PL73) using an empirical model based on statistical theory for nuclides having 21 to 41 protons) or evaluated (see for example Pope & Story (PO73) evaluation using the U.K. Nuclear Data Library for 64 data files). But, so far, only Roy & Hawton (RO60) have attempted an estimation covering all stable isotopes and a few long-lived radionuclides from lithium to bismuth.

Their work is now twelve years old. Since the number of available measurements, on which the estimation is based has nearly doubled since 1960, we thought it to be useful to review the Roy and Hawton estimated values.

THE BASIS OF THE ESTIMATION

Hughes (HU53) has defined a useful quantity E_{eff} , called the effective energy, assuming that the cross-section $\mathcal{O}(E)$ is proportional to the penetrability P(E) of the Coulomb barrier which confronts the charged particle leaving the compound nucleus. In this case, the reaction rate, as a function of the energy E of the incoming neutrons, is proportional to the product of P(E) and $\chi(E)$. Thus the spectrum averaged cross-section is proportional to the area under the curve $P(E)\chi(E)$ (see fig. 1). E_{eff} is defined, as shown on the figure 1, as the energy for which the area marked A is equal to area marked B, so that the area under the curve P(E) χ (E) is the same as the one delimited by χ (E) and a vertical dotted line drawn at E_{eff} . At unit penetrability, the cross-section σ (E) becomes constant and equals σ_o , which Hughes measurements have shown to be roughly proportional to the surface of the nucleus. The cross-section σ (E) can then be written σ (E) = a P(E)A^{2/3}, where A is the mass number and a is a constant. The spectrum averaged cross section can then be written:

$$\overline{\mathbf{O}} = \int_{\mathbf{O}}^{\infty} (\mathbf{E}) \chi(\mathbf{E}) d\mathbf{E} = aA^{2/3} \int_{\mathbf{O}}^{\infty} P(\mathbf{E}) \chi(\mathbf{E}) d\mathbf{E}$$
$$= aA^{2/3} \int_{\mathbf{E}_{eff}}^{\infty} \chi(\mathbf{E}) d\mathbf{E}$$

The quantity $\overline{\underline{\sigma}}_{\underline{A^2/3}}$ is proportional to the integral of the fission neutron spectrum from E_{eff} to infinity and it is then possible to predict an average cross-section if the effective energy of a given reaction is known. The validity of this very simple model was tested by the old Hughes measurements. Later on, large discrepancies with more recent measurements have shown the inadequacy of the Hughes model to predict average crosssections.

Rather than trying to refine the previous theory, Roy and Hawton (RO60) have looked for an empirical correlation between $\overline{\sigma}$ and E_{eff} . For each measurement, they have plotted the quantity $\overline{\overline{\Omega}_{25}}$ versus E_{eff} (E_{eff} being obtained from Hughes plots (Fig. 4-3, HU53). 25 means that the cross-sections have arbitrarily been normalized to a nucleus of mass A = 125, for which $A^{2/3} = 25$. The (n,2n) cross-sections have been plotted versus the threshold energy E_{T} . From the line giving the best fit of the experimental points, Roy and Hawton have then tabulated the estimated crosssections. Roy and Hawton fitted lines have a greater slope than the ones given by the integral of the fission neutron spectrum from Hughes model. Moreover, for (n,p) cross-sections, the data split along two parallel lines: the odd-A nuclei having much lower cross-sections than the even-A nuclides.

Our present work assumes the Roy and Hawton approach to the measurements available presently. Except for the data flagged with a "+", all recommended values of the tables II, III and IV have been used for the fit. Relative errors on data from a single measurement or averaged over two measurements have arbitrarily been increased up to 20% whenever their relative error was lower than this value. This was done in order to give lower weight to the unsupported measurements. The 20% arbitrary errors appear in the graphs (fig. 2, 3 and 4) as dotted error bars.

Threshold energies E_T have also been recalculated using the latest Q-value evaluation (GV72); for exergic reactions $E_T = -Q$, for endoergic reactions $E_T = -Q(A+1)/A$ where A is the mass number of the target nuclide. Some threshold values, for which Q was not evaluated have been taken from HW70. These changes in the threshold values resulted in corrected effective energies.

The graphs of figures 2, 3 and 4 show the results. The shaded areas define a 67% confidence interval. It can be seen that our best fits have consistently greater slopes than the ones of Roy and Hawton. Except for (n,p) cross-sections of odd-A nuclei, the dispersion of which is anyway large, our fit is not very much different from that of Roy and Hawton.

TABLES OF ESTIMATED VALUES

The neutron fission spectrum averaged cross-sections are estimated from the solid lines giving the best fits to the experimental data (fig. 2, 3 and 4) and are given in table VI together with their estimated relative errors (one standard deviation). For those reactions where $\overline{\sigma}$ is less than O.l microbarn, $\overline{\sigma}$ is simply given as $\langle 0.0001 \text{ millibarn}$. No value has been given for the few reactions for which E_{eff} is less than 2MeV, the validity of the estimation being doubtful in this case. Recommended values of $\overline{\sigma}$, appearing in tables II, III and IV should of course be preferred to the estimated ones.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

ACKNOWLEDGEMENTS

The author wishes to thank C.L. Dunford and J.J. Schmidt for their critical review of the manuscript.

IV. References

- AM64 S. AMIEL, J. GILAT Nucl.Sci.Engng <u>18</u> (1964) 105.
- BA68 H. BRAUN, L. NAGY Radiochim.Acta <u>10</u> (1968) 15.
- BE57 R.H. BETTS, O.F. DAHLINGER Rep. AECL PR-CM-11 (1957) 12. (ref. quoted by STE 70)
- BL65 R.C. BARRALL, W.N. McELROY Personnel dosimetry for radiation accidents (Proc. Symp. Vienna, 1965), IAEA, Vienna (1965) 251.
- B064 J.W. BOLDEMAN J.nucl.Engergy A/B <u>18</u> (1964) 417.
- BR67 A.M. BRESESTI, M. BRESESTI, R.A. RYDIN Nucl.Sci.Engng <u>29</u> (1967) 7.
- BR70 A.M. BRESESTI, M. BRESESTI, A. ROTA, R.A. RYDIN, L. LESCA Nucl.Sci.Engng <u>40</u> (1970) 331.
- BT68 J.P. BUTLER, D.C. SANTRY Neutron Cross-sections and Technology (Proc. Conf. Washington, 1968), <u>2</u>, NBS, Washington (1968) 803.
- BU70 A. BRUGGEMAN, D. DE SOETE, J. HOSTE Radiochim.Acta <u>14</u> (1970) 147.
- BY65 BYRNE Private communication to N.J. FREEMAN, J.Nucl.Engergy 23 (1969) 713.
- CR56 L. CRANBERG, G. FRYE, N. NERESON Phys. Rev. <u>103</u> (1956) 662.
- DB57 B.G. DUBOVSKY, A.V. KAMAEV, E.F. MAKAROV Atomn.Energ. <u>2</u> (1957) 279. [Engl. transl., J.nucl. Engergy <u>6</u> (1957) 172.]
- DE62 H. DEPUYDT, M. NEVE DE MEVERGNIES Reactor Science and Technology (J.nucl.Energy) A/B <u>16</u> (1962) 447.

DI68 S.A. DURRANI, W. KOEHLER J.nucl. Energy 22 (1968) 632. **DR66** A.A. DRUZHININ, A.A. LBOV, L.P. BILIBIN J.nucl. Phys. (USSR) 4 (1966) 515 [Engl. transl.: Soviet Journal of Nuclear Physics 4 (1967) 366.] DR 67 A.A. DRUZHININ, A.A. LBOV, L.P. BILIBIN J.Nuclear Physics (USSR) 5 (1967) 18. [Engl. transl.: Soviet Journal of Nuclear Physics 5 (1967) 13.] DS67 M. DESCHUYTER, J. HOSTE Radiochim.Scta 7 (1967) 198. DS68 M. DESCHUYTER, D.L. MASART, A. SPEECKE, J. HOSTE Radiochim.Acta 10 (1968) 11. DU62 R.W. DURHAM, M.P. NAVALKAR, E. RICCI Rep. AECL-1434 (1962) FA67 A. FABRY Nukleonik 10 (1967) 280. FA70/1 A. FABRY Proc. of the Russian-Dutch-Belgian meeting on Fast Reactor Physics, Melekess (1970) paper 35. FA70/2 A. FABRY, M. DE COSTER, G. MINSART, J.C. SCHEPERS, P. VANDEPLAS Nuclear Data for Reactors (Proc.Conf.Helsinki,1970), 2, IAEA, Vienna (1970) 535. FA72 A. FABRY Rep. BLG-465 (1972) FE66 F.F. FELBER, Jr., D.R. FARMELO, V.C. VAN SICKLE, Nucl. Sci.Engng 25 (1966) 1. FH64 K. FAEHRMANN Unpublished work quoted in Rep. ZFK-RN 23 (1964) 6. N.J. FREEMAN, J.F. BARRY, N.L. CAMPBELL FM69 J.Nucl.Engergy 23 (1969) 713.

FR67	J.P. FRANCOIS, D. DE SOETE, J. HOSTE Radiochim.Acta <u>8</u> (1967) 192.
CN68	L. GREEN Nucl.Sci.Engng. <u>32</u> (1968) 30.
G166	GILLETTE Rep. ORNL-4013 (1966) 7.
G O62	K.P. GOPINATHAN Proc. of the Nuclear Physics Symposium. Madras (1962) 97.
GR 68	J.A. GRUNDL Nucl.Sci.Engng <u>31</u> (1968) 191.
GV72	N.B. GOVE, A.H. WAPSTRA Nucl. Data Tables <u>11</u> (1972) 127.
HA72	J.R. HANSEN, E. STEINNES Radiochim.Acta <u>17</u> (1972) 46.
HE58	W.J. HENDERSON, P.R. TUNNICLIFFE Nucl.Sci.Engng <u>3</u> (1958) 145.
нс66	F. HEGEDUES Helv.Phys.Acta <u>39</u> (1966) 179.
HG71	F. HEGEDUES Rep. EIR-195 (1971)
но62	C.H. HOGG, L.D. WEBER Symposium on radiation effects on metals and neutron dosimetry (Proc.Symp. Los Angeles, 1962) American Society for Testing and Materials (1963) 133.
HP69	H.B. HUPF Rep. TID-24823 (1969) 46 and 52.
HU53	D.J. HUGHES "Pile Neutron Research", Chapter 4. (Addison-Wesley Publishing Company, Inc. CAMBRIDGE 42, Mass) 1953
HW70	R.J. HOWERTON Rep. UCRL-50400 vol. 9 (1970)
JO 68	O. JOHANSEN, E. STEINNES Radiochim.Acta <u>9</u> (1968) 47.

JA64	K. JANTSCH Unpublished work quoted in Rep. ZFK-RN 23 (1964) 6.
KI69	I. KIMURA, K. KOBAYASHI, T. SHIBATA J. Nucl.Sci.Technology <u>6</u> (1969) 485.
KI71	I. KIMURA, K. KOBAYASHI, T. SHIBATA J.Nucl.Sci.Technology <u>8</u> (1971) 59.
KO6 5	W. KOEHLER, K. KNOPF Rep. EANDC (E)-57 (1965) 29.
ко66/1	W. KOEHLER Nukleonik <u>8</u> (1966) 9.
K066/ 2	W. KOEHLER Nukleonik <u>8</u> (1966) 59.
к067	W. KOEHLER Nukleonik <u>10</u> (1967) 181.
KR65	H.H. KRAMER, W.H. WAHL Nucl.Sci.Engng <u>22</u> (1965) 373.
KU65	L.N. KURCHATOVA, V.I. LEVIN, L.N. MORDZOV Radiokhimiya <u>7</u> (1965) 472 [Engl. transl.:Soviet Radiochemistry <u>7</u> (1965) 469.]
la65	T. LAGERWALL Zeitschrift für Naturforschung <u>20a</u> (1965) 1583.
le63	W. LEONHARDT Kernenergie <u>6</u> (1963) 45.
LL 65	LLORET Private communication to H. Liskien, quoted in J. of Nucl. Energy <u>27</u> (1973) 39.
lw66	R.E. LEWIS, T.A. BUTLER Nuclear Applications <u>2</u> (1966) 102.
lw 68	R.E. LEWIS Rep. TID-24823 (1968) 49
MA64/1	W.H. MARTIN, D.M. CLARE Nucl.Sci.Engng. <u>18</u> (1964) 468.

MA64/2	D.M. CLARE, W.H. MARTIN, B.T. KELLY Nucl.Sci.Engng. <u>18</u> (1964) 448.
MA64/3	W.H. MARTIN, D.M. CLARE Nucl.Sci.Engng. <u>19</u> (1964) 465.
MA64/4	D.M. CLARE, W.H. MARTIN J. Nucl. Energy A/B <u>18</u> (1964) 703.
MC72	W.N. MCELROY, R.J. ARMANI, E. TOCHILIN Nucl. Sci.Engng. <u>48</u> (1972) 51.
ME 58	C.E. MELLISH, J.A. PAYNE, R.L. OTLET Rep. AERE I/R 2630 (1958).
ME60	C.E. MELLISH Rep. AERE-R3251 (1960) See also Nucleonics <u>19</u> (3) (1961) 114
MU61	R. MUENZE, K. JANTSCH, O. HLADIK Kernenergie <u>4</u> (1961) 293.
NI63	S. NIESE, P. MORZEK, C. HEROLD Kernenergie <u>6</u> (1963) 37.
NI64	S. NIESE Kernenergie <u>7</u> (1964) 105.
NI65 / 1	S. NIESE Kernenergie <u>8</u> (1965) 499.
NI65/2	S. NIESE Rep. ZFK-Rch 3 (1965) 23.
NJ70	M. NAJZER, J. RANT, H. SOLING Nuclear Data for Reactors (Proc. Conf. Helsinki, 1970), <u>2</u> , IAEA, Vienna (1970) 571.
nl63	R. NILSSON Neutron Dosimetry (Proc. Symp. Harwell, 1962), <u>2</u> , IAEA, Vienna (1963) 275.
NS 68	F. NASYROV Atomn.Energ. 25 (1968) 437 [Engl. transl.: Soviet Atomic Energy 25 (1968) 1251.]

0в67	H.A. O'BRIEN, Jr., J.S. ELDRIDGE Nucleonics <u>25</u> (2) (1967) 41.							
0в69	H.A. O'BRIEN, Jr. Int. Journal of Applied Radiation and Isotopes <u>20</u> (1969) 121							
PA61	T.O. PASSEL, R.L. HEATH Nucl.Sci.Engng. <u>10</u> (1961) 308.							
РН58	J.A. PHILLIPS J. Nucl. Energy <u>7</u> (1958) 215.							
PL73	S. PEARLSTEIN J. Nucl. Energy <u>27</u> (1973) 81.							
P073	A.L. POPE, J.S. STORY Rep. AEEW-M 1191 (1973).							
QA71	S.M. QAIM, R. WOLFLE, G. STOCKLIN Chem. Nucl. Data, Measurements and Applicat. (Proc. Conf. Canterbury, 1971) (1971) 121.							
RA67/1	G. RAU Nukleonik <u>9</u> (1967) 228.							
RA67/2	G. RAU Rep. EANDC (E) <u>89</u> (1967) 41.							
RB59	B.L. ROBINSON, R.W. FINK Private communication to Rochlin, quoted by Rochlin in Nucleonics <u>17</u> , no. 1 (1959) 54, ref. 14.							
RC59	R.S. ROCHLIN Nucleonics <u>17</u> , no. 1 (1959) 54.							
RE67	G.R. REDDY, M. SANKAR DAS Rep. BARC-280 (1967)							
RG68/1	P. DE REGGE, R. DAMS, J. HOSTE Radiochim.Acta <u>9</u> (1968) 57.							
RG68/ 2	P. DE RECCE, R. DAMS, J. HOSTE Radiochim.Acta <u>10</u> (1968) 156.							
RG72	P. DE REGGE, R. DAMS, J. HOSTE Radiochim.Acta <u>17</u> (1972) 69.							
RI57	R. RICHMOND quoted by ROCHLIN in Nucleonics <u>17</u> (1) (1959) 54, ref. 12.							

rn66	S.A. REYNOLDS Rep. ORNL-3889 (1966) 53.
R060	J.C. ROY, J.J. HAWTON Rep. CRC-1003 (1960)
R064	J.C. ROY, R.W. DURHAM, A.G. FOWLER, J.J. HAWTON Rep. CRC-1101 (1964).
RR60	D. RICABARRA, R. TURJANSKI, A.H.W. ATEN, Jr. J. Nucl. Energy, Part A: Reactor Science <u>12</u> (1960) 177.
RV 57	J. RIVIER, J. BLACHOT, J.C. HOCQUENGHEM Radiochim.Acta <u>8</u> (1967) 196.
r y 58	P.A. ROYS, KALMAN SHURE Nucl.Sci.Engng <u>4</u> (1958) 536.
SA59	E. SAELAND, K. SAMSAHL quoted by R.S. ROCHLIN in Nucleonics 17, No. 1 (1959) 54, ref.7.
SC 57	R.P. SCHUMAN, A.C. MEWHERTER Rep. KAPL-1779 (1957).
SC69	R.P. SCHUMAN, D.K. OESTREICH Unpublished work (1969)
ST67	E. STEINNES Rep. KR-123 (1967)
S 170	E. STEINNES Radiochim .Acta <u>13</u> (1970) 169.
VC64	E.W. VOGT, W.G. CROSS quoted by J.C. ROY in Rep. CRC-1101 (1964).
WA62	K. WAGNER Kernenergie <u>10/11</u> (1962) 790.
WA63	K. WAGNER, H. POSER Kernenergie <u>6</u> (1963) 177.
WE 70	J. WEITMAN, N. DAVERHOG, S. FARVOLDEN Trans. of Am. Nucl. Society <u>13</u> (1970) 558.

WT 52	B.E. WATT Phys. Rev. <u>87</u> (1952) 1037.
ZH63	I.F. ZHEZHERUN, I.P. SADIKOV, V.A. TARABAN'KO, A.A. CHERNYSHOV Atomnaya Energiya <u>15</u> (6) (1963) 485. [Engl. transl.: Soviet Atomic Energy <u>15</u> (1963) 1271.]

ZJ63 W.L. ZIJP Neutron Dosimetry (Proc. Symp. Harwell 1962) <u>1</u>, IAEA, Vienna (1963) 589.

$\overline{\mathbf{s}} \pm \Delta \overline{\mathbf{s}} \pmod{\mathbf{mb}}$ $\frac{24}{Mg(n,p)^{24}Na}$ 1.53 ± 0.09 $27_{A1}(n,\mathbf{s})^{24}Na$ 0.725 ± 0.045 $3^{2}s(n,p)^{32}P$ 69 ± 4 $46_{Ti}(n,p)^{46}sc$ 12.5 ± 0.9 $54_{Fe}(n,p)^{54}Mn$ 82.5 ± 5 $5^{8}Ni(n,p)^{58}co$ 113 ± 7 $235U(n,f)FP$ 1250 ± 70 328 ± 10		
$\begin{array}{ccccc} 24_{Mg}(n,p)^{24}Na & 1.53\pm0.09 \\ 27_{A1}(n,ol)^{24}Na & 0.725\pm0.045 \\ 3^{2}S(n,p)^{32}P & 69\pm4 \\ 46_{Ti}(n,p)^{46}Sc & 12.5\pm0.9 \\ 54_{Fe}(n,p)^{54}Mn & 82.5\pm5 \\ 5^{8}Ni(n,p)^{58}Co & 113\pm7 \\ 235U(n,f)F P & 1250\pm70 \\ 23^{8}U(n,f)F P & 328\pm10 \end{array}$		ਓ± △중 (mb)
	$24_{Mg}(n,p)^{24}_{Na}$ $27_{A1}(n,d)^{24}_{Na}$ $3^{2}S(n,p)^{32}P$ $46_{Ti}(n,p)^{46}Sc$ $54_{Fe}(n,p)^{54}Mn$ $5^{8}Ni(n,p)^{58}Co$ 235U(n,f)FP $23^{8}U(n,f)FP$	1.53 ± 0.09 0.725\pm0.045 69±4 12.5±0.9 82.5±5 113±7 1250±70 328±10

Explanation of signs appearing in the tables II, III, IV and V.

- () * The reaction has been used as standard with the numerical value given in parenthesis.
- (± 0.05) The error given in parenthesis has been arbitrarily chosen.
- flags the data selected for use in the averaging process
 collects renormalized values in an averaged recommended value.
 flags the data <u>not</u> accepted for the fit of the estimated values.
- 1.53+0.09 Underlined data are strongly recommended
- <u>FA72</u> refers to Fabry's recommended values (reported in the "original values" column of the tables.

The boxes drawn within the tables for some reactions, include the original data and their renormalized values used by Fabry (FA72) in his evaluation.

---- separates within the box the measurements performed with fission plates or converter (uppert part) from the ones done by exposure to pile neutrons (lower part).

(1), (2) \dots (29) refer to footnotes given after table V.

Table II

Integral (n,p) cross-sections averaged in the uranium-235 thermal fission neutron spectrum

Reactions	References	Original values す±ムす (mb)	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values で±ムで(mb)
16 _{0(n,p})16 _N	HU53 RY58 HE58	0.014 0.019 <u>+</u> 25% (1.85 <u>+</u> 0.11)10 ⁻²	(1) ²⁷ Al(n ,x)= 0.6 <u>+</u> 20% (2)	0.022 0.023 <u>+</u> 0.003 - 0.018 <u>+</u> 0.0011 -	0.019 <u>+</u> 0.001 +
17 _{0(n,p})17 _N	R¥58 HE58 AM64	0.0052 <u>+</u> 30% (9.3 <u>+</u> 0.9) 10 ⁻³ (7.4 <u>+</u> 0.6)10 ⁻³	$27_{A1}(n, \alpha) = 0.6 + 20\%$ (2) $27_{A1}(n, \alpha) = 0.6$	0.0063 <u>+</u> 0.0013 - 0.0093 <u>+</u> 0.0009 - 0.0089 <u>+</u> 0.0009 -	0.0086 <u>+</u> 0.0008+
19 F(n,p) 190	HU 53 SA 59	0•5 0•99	(1) 31 _{P(n,p)=19}	0.8 - 1.9 -]1•35 <u>+</u> 0•8
²³ Na(n,p) ²³ Ne	HU53 SA 59	0.7 1.0	(1) ³¹ P(n,p)=19	1.1 - 1.9 -	}1.5 <u>+</u> 0.6
²⁴ Mg(n,p) ²⁴ Na	HU53 WA62 BO64 BR67,70 NJ70 KI71 FA72 RI57 PA61 HO62 NS68 KI71 MC72 FA72	1.0 1.05 \pm 0.25 1.31 \pm 0.06 1.44 \pm 0.05 1.31 \pm 0.05 (1.4)* 1.62 \pm 0.07 1.29 1.2 1.1 1.30 \pm 0.17 (1.4)* (6) 1.53 \pm 0.03	(1) unknown $3^{2}S(n,p)=60$ (3) $2^{7}A1(n, \alpha)= 0.61$ (4) $2^{3}5U(n,f)=1335$ (7) $2^{3}8U(n,f)=304$ $2^{7}A1(n, \alpha)=0.60$ $2^{7}A1(n, \alpha)=0.57$ (5) (4) $2^{3}5U(n,f)=1250$	1.6 1.53 \pm 0.07 1.53 \pm 0.053 1.58 \pm 0.06 1.56 1.52 \pm 0.045 1.53 1.51 1.41 1.53 \pm 0.20 1.56 1.51 \pm 0.12 1.53 \pm 0.09	<u>1.53+0.09</u>

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values T <u>+</u> AT (mb)
²⁵ Mg(n,p) ²⁵ Na	HU53	2.0	(1)	3.2	3.2(<u>+</u> 1.6) +
27 _{A1(n,p})27 _{Mg}	HU53	2.8	(1)	4.5	
	во64	2.9 <u>+</u> 0.5	32S(n,p)=60	3.4 <u>+</u> 0.6	
	GR68	(8)		4•7 <u>+</u> 0•3	
	NJ70	2•9 <u>+</u> 0•3	²⁷ A1(n,≪)=0.61	3.5 <u>+</u> 0.35	
	FA72	4 . 35 <u>+</u> 0.20	²³⁵ U(n,f)=1335 (7)	4.07 <u>+</u> 0.15	
	RI57	3.43	238 U(n,f)=304	4.01	
	MC72	(6)		4 . 17 <u>+</u> 0 . 33	
	FA72	4.0 <u>+</u> 0.4	235U(n,f)=1250	4.0 <u>+</u> 0.45 -	4.0 <u>+</u> 0.45
	FH64	3.40 <u>+</u> 0.38	unknown		
²⁸ Si(n,p) ²⁸ Al	HU53	4	(1)	6.4	
	BU70	6.68 <u>+</u> 0.08	³² S(n,p)=65	7.1 <u>+</u> 0.4 -	6.4 <u>+</u> 0.8
	KI71	4 . 90 <u>+</u> 0.32	(4)	5•4 <u>+</u> 0•5 –	J
²⁹ Sı(n,p) ²⁹ Al	HU53	2.7	(1)	4•3	<u></u>
	NS68	2.40 <u>+</u> 0.18	(5)	2.8 <u>+</u> 0.3 –	} 3.3 <u>+</u> 0.2
	BU70	3.41 <u>+</u> 0.04	32s(n,p)=65	3.6 <u>+</u> 0.2 -	
	KI71	2.98 <u>+</u> 0.17	(4)	3.3 <u>+</u> 0.3 -	J
³¹ P(n,p) ³¹ Si	HU53	19	(1)	30	
	RR60	(23)	$3^{2}S(n,p)=69+4$	35 <u>+</u> 3	
	BO 64	30.5 <u>+</u> 1.2	32S(n,p)=60	35•5 <u>+</u> 1•4	
	GR 68	(8)		38.6 <u>+</u> 2.5	
	R157	31.2	$238_{U(n,f)=304}$	36.5	
	FA72	36 <u>+</u> 2	$235_{U(n,f)=1250}$	36 <u>+</u> 3 -	<u>36+3</u>
				1	

Reactions	References	Original values $\bar{\sigma} \pm \Delta \bar{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values <u>す</u> + ム で (mb)
³² S(n,p) ³² p	HU53 SA59 DU62 DE62 FH64 LW66,68 BO64 FA72 RI57 PA61 MA64/1 MC72 FA72	30 21 $58\pm15\%$ 65 ± 3 61 ± 5 41 $(60)*\pm1.2$ 73 ± 3 60.3 58 (16) 65 (17) (6) 69 ± 2	(1) 31p(n,p)=19 238u(n,f)=310 (9) unknown 54Fe(n,p)=60 32s(n,p)=60 235u(n,f)=1335 (7) 238u(n,f)=304 $27A1(n, \prec)=0.6$ 32s(n,p)=65 235u(n,f)=1250	48 40 61 ± 9 56 70 ± 1.4 68.5 ± 2 71.2 73 ± 7 68.5 70.5 ± 5.6 69 ± 4	<u>69±4</u>
³³ S(n,p) ³³ p	K066/2 LW66,68	376 <u>+</u> 20 55	³² S(n,p)=66 54Fe(n,p)=60	383 <u>+</u> 31 76 —	76(<u>+</u> 15) +
³⁴ s(n,p) ³⁴ P	RA 67/1	0.36 <u>+</u> 0.032	58 _{Ni(n,p)=95}	0•43 <u>+</u> 0•05	0•43 <u>+</u> 0•05
35 _{Cl(n,p})35 _S	HU53 GI66 RA67/1	16 ~810 <u>+</u> 40 78.3(calc.)	(1) unknown (24)	26	78 (<u>+</u> 23) +
³⁷ Cl(n,p) ³⁷ S	HU53	0.24	(1)	0•38	0.38(<u>+</u> 0.19) +
41 _{K(n,p)} 41 _{Ar}	1465 R467/1	2.73 <u>+</u> 0.41 1.78 <u>+</u> 0.14	unknown 58 _{Ni(n,p})=95	2 .1<u>+</u>0. 2 –	2.1 <u>+</u> 0.2

Reactions 43Ca(n,p)43K	References References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$ 0.3	Standards (mb) unknown	Renormalized values σ ± Δσ (mb)	Recommended values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$ 0.3(± 0.15) +
45 _{Sc(n,p})45 _{Ca}	MU61 RG68/2	9 <u>+</u> 1 34•6 <u>+</u> 0•5	³² s(n,p)=66 ³² s(n,p)=60	9•4 <u>+</u> 1•2 - 39•8 <u>+</u> 2•4 -	} 15 <u>+</u> 12 +
46 _{Ti(n,p})46 _{Sc}	ME58 JU62 NL63 NI63 ZJ K066/1 DS67 B064 BR67,70 KI71 FA72 H062 B064 MA64/2 RA67/1 NS68 SC69 KI71 MC72 FA72 FA72	4.1 $10\pm15\%$ 15 ± 2 17 ± 3 12.8 12.6 ± 0.4 8.6 ± 1.4 12.8 ± 0.6 11.6 ± 0.5 10.8 ± 0.61 13.0 ± 0.6 9.0 8.0 ± 0.6 $8.\pm0.8$ (12.6)* 9.30 ± 0.73 10.9 ± 0.7 11.2 ± 0.63 (6) 12.5 ± 0.5	$3^{2}s(n,p)=30$ $23^{8}U(n,f)=310$ $5^{8}Ni(n,p)=101$ $5^{8}Ni(n,p)=92$ $27_{A1}(n,o)=0.608$ $3^{2}s(n,p)=66$ unknown $3^{2}s(n,p)=60$ (3) (4) $235U(n,f)=1335 (7)$ $27_{A1}(n,o)=0.57$ $5^{8}Ni(n,p)=90$ $5^{8}Ni(n,p)=107$ $4^{6}T_{1}(n,p)=12.6$ (5) $27_{A1}(n,o)=0.767$ (4) $235U(n,f)=1250$	9.4 10.6 ± 1.6 17 ± 2 21 ± 4 15 ± 3 13.2 ± 0.9 15 12.3 ± 0.5 12.0 ± 0.7 12.2 ± 0.4 11.4 9.3 8.45 ± 0.85 12.3 10.9 ± 0.9 10.6 ± 0.7 12.5 ± 0.7 13.0 ± 1 12.5 ± 0.9	<u>12.5+0.9</u>

					<u> </u>
Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} \pmod{mb}$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} \text{ (mb)}$	Recommended values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$
47 _{Ti(n,p)} 47 _{Sc}	ME 58	0.21	32s(n,p)=30	0.48	
	DU 62	18 <u>+</u> 15%	238 U(n,f)=310	19 <u>+</u> 3	
	NI63	18 <u>+</u> 3	$58_{Ni(n,p)=92}$	22 <u>+</u> 4	
	ко66/1	13.2 <u>+</u> 1	32s(n,p)=66	13.8+1.3	
	DS 67	18.2 <u>+</u> 2.6	unknown		
	B064	22 <u>+</u> 1.5	$32_{S(n,p)=60}$	25.6 <u>+</u> 1.7	
	к171	17.3 <u>+</u> 0.90	(4)	19•3 <u>+</u> 1	
	но62	15	$^{27}\text{Al}(n, \approx)=0.57$	19.2	
	ns68	26 <u>+</u> 3.1	(5)	30.5 <u>+</u> 3.6	
	SC 69	19.8 <u>+</u> 1.2	$27_{A1}(n, \sim)=0.767$	19.2 <u>+</u> 1.1	
	KI71	19.0 <u>+</u> 1.2	(4)	21.2 <u>+</u> 1.3	
	<u>FA72</u>	20 <u>+</u> 2	²³⁵ U(n,f)=1250	20+2.3 -	20+2.3
$48_{\rm Ti}(n_{\rm p}p)^{48}{\rm Sc}$	ME58	0.077	32S(n,p)=30	0.18	
	DU 62	0•53 <u>+</u> 15%	²³⁸ U(n,f)=310	0.56 <u>+</u> 0.09	
	NI 63	0•44 <u>+</u> 0•08	⁵⁸ Ni(n,p)=92	0.54 <u>+</u> 0.10	
	k066/1	3.3 <u>+</u> 0.2	³² S(n,p)=66	3•45 <u>+</u> 0•3	
	DS 67	0.11 <u>+</u> 0.01	unknown	ļ	
	B 064	0.21 <u>+</u> 0.016	32S(n,p)=60	0.245 <u>+</u> 0.002	
	KI71	0.272 <u>+</u> 0.052	(4)	0.303 <u>+</u> 0.058	
	H062	0.25	²⁷ A1(n ,A)= 0.57	0.32	
	NS 68	0.240 <u>+</u> 0.054	(5)	0.282 <u>+</u> 0.063	
	SC 69	0 . 334 <u>+</u> 0.02	²⁷ Al(n ,0)=0.767	0 . 324 <u>+</u> 0 . 02	
	KI71	0 . 294 <u>+</u> 0.025	(4)	0.328 <u>+</u> 0.028	
	<u>FA72</u>	0.315 <u>+</u> 0.02	²³⁵ U(n,f)=1250	0 . 315 <u>+</u> 0 . 027 –	0.315+_0.027
51 V (n,p)51 _{Ti}	ns68	0•74 <u>+</u> 0 •0 8	(5)	0.87 <u>+</u> 0.11	0.87 <u>+</u> 0.11
5 ² Cr(n,p)52y	RA67/1	0 .92<u>+</u>0.0 37	58 _{Ni(n,p)=95}	1.09 <u>+</u> 0.08	1.09 <u>+</u> 0.08
					· · · · · · · · · · · · · · · · · · ·

Reactions	References	Original values る±ムō (mb)	Standards (mb)	Renormalized values す± ムす(mb)	Recommended values $\overline{\sigma} \pm \Delta \widehat{\sigma} (mb)$
53Cr(n,p)53y	RA67/1	0 . 37 <u>+</u> 0.026	⁵⁸ Ni(n,p)=95	0•44 <u>+</u> 0•04	0•44 <u>+</u> 0•04
54 _{Cr} (n,p) ⁵⁴ v	ra67/1	(4•9 <u>+</u> 0•8)10 ⁻³	⁵⁸ Ni(n,p)=95	(5•8 <u>+</u> 1•0)10 ⁻³	0.0058 <u>+</u> 0.001
54Fe(n,p) 54 Mn	SC 57	15	(10)	46	
	ME 58	23	$3^{2}S(n_{p})=30$	53	
	RC59	56	$^{2}(A1(n_{o})=0.6)$	68	
	DU 62	59 <u>+</u> 15%	²³⁰ U(n,f)=310	62 <u>+</u> 10	
	BA68	59•8 <u>+</u> 14%	unknown		
	ST70	<u>63+1</u>	$2^{\circ}Ni(n,p)=105$	68 <u>+</u> 4	
	B064	66 <u>+</u> 3.5	$5^{2}S(n,p)=60$	77 <u>+</u> 4	
	BR67,70	76•5 <u>+</u> 3•0	(3)	81.5 <u>+</u> 3.2	
	FA72	89 <u>+</u> 5	27.1(n,f)=1335(7)	$-\frac{83.5+2.5}{}$	
	PA61	54	$^{27}A1(n_{,ol})=0.60$	73	
	H062	65	2 (A1 (n, α)=0.57	83	
	MA04/3	(0 <u>+</u> 3	/s)	03•3 <u>+</u> 3•3	
	N500	61 <u>+</u> 9	(5)	81 5±4 5	
	FA72	82,5+2	$235\pi(n,f)=1250$	82-5+5	82-5+5
		A			
$56_{\text{Fe}(n,p)}56_{\text{Mn}}$	ME58	0.44	³² s(n,p)=30	1.0	
(see also next	DU 62	1.2 <u>+</u> 15%	²³⁸ U(n,f)=310	1.3 <u>+</u> 0.2	
page)	B064	0.90 <u>+</u> 0.05	$3^{2}s(n,p)=60$	1.05 <u>+</u> 0.06	
	gr68	(a)	(8)	1.07 <u>+</u> 0.07	
	BR67,70	1.06 <u>+</u> 0.04	(3)	1 . 13 <u>+</u> 0.043	
	NJ 70	0.85 <u>+</u> 0.05	²⁷ A1(n, A)=0.61	1.025 <u>+</u> 0.06	
	FA72	1.15 <u>+</u> 0.04	235 u(n,f) = 1335 (7)	1.08 <u>+</u> 0.035	

	1	T	1	+	1
Reactions	References	Original values $\bar{\sigma} \pm \Delta \bar{\sigma}$ (mb)	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values $\overline{\sigma} \pm \Delta \overline{\sigma}$ (mb)
$56_{\text{Fe}(n,p)}56_{\text{Mn}}$	PA61	0.82	$27_{A1}(n_{a})=0.60$	1.03	
(cont'd)	1062	0.71	$27_{A1}(n_{a})=0.57$		
	NS68		(5)	1 12:0 11	
	MC72	(6)		1.29+0.10	
	FA72	1.07+0.06	$235_{11}(n-r) = 1250$	1.07+0.08	1.07.0.08
	TAI2	1.0/±0.00		1.0/ <u>+</u> 0.00 -	1.0/+0.00
	9057	0.25	(10)	0.77	<u> </u>
	100) 10058	5.7	$\frac{10}{32g(n-n)-30}$	12	
	ME 90	2•1	$27_{12}(r_{1}p)=30$	13	
	mu jy	~0.3	$238r(n_{\phi}x)=0.0$		
	1002	1•4 <u>+</u> 15%	$(n_{p}r) = 310$	1.5 <u>+</u> 0.2 -	1)
	WA63	0.5	unknown		1.42 <u>+</u> 0.14
	BA68	1.46 <u>+</u> 23%	unknown		
	NS68	1.15 <u>+</u> 0.15	(5)	1.35 <u>+</u> 0.2 -	μ
⁵⁸ Ni(n,p) ⁵⁸ Co	ME 58	45	32s(n,p)=30	103.5	
(see also next	RB59	225	³² s(n,p)=30	517. 5	
page)	RC 59	140	$27_{A1}(n,\alpha)=0.60$	169	
	DU 62	97 <u>+</u> 15%	²³⁸ U(n,f)=310	103 <u>+</u> 16	
	ZJ63	120	²⁷ A1(n,~)=0.608	143	
	BA 68	75•7 <u>+</u> 12%	unknown		
	в064	105 <u>+</u> 5	$3^{32}s(n,p)=60$	122.5 <u>+</u> 6	
	BR67,70	104•5 <u>+</u> 4•0	(3)	113•3 <u>+</u> 4•3	
	KI71	(104)*	(4)	116	
	FA72	120 <u>+</u> 6	²³⁵ U(n,f)=1335 (7)	112•5 <u>+</u> 3•5	
	PA51	92	$27_{A1}(n, x)=0.60$	115.5	
	H062	90	²⁷ Al(n ,~)= 0.57	115	
	MA64/1	107 (17)	³² s(n,p)=65	113	
	RA67/1	(95)*	⁵⁸ Ni(n,p)=95	111	
	f				
[l			·	

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values 중 ± △중 (mb)	Recommended values <u>す</u> ±ムす(mb)
58 _{Ni(n,p})58 _{Co} (cont'd)	NS68 SC69 KI71 MC72 FA72	96 <u>+</u> 13 114 <u>+</u> 7 (104)* (6) 113 <u>+</u> 2.5	(5) $27_{A1}(n, \prec)=0.767$ (4) $235_{U}(n, f)=1250$	113 <u>+</u> 15 110.5 <u>+</u> 7 116 110 <u>+</u> 5.7 113 <u>+</u> 7	<u>113+7</u>
⁵⁸ Ni(n,p) ^{58m} Co	ME58 B064 BR67,70 FA72 PA61 H062 FA72	$ \begin{array}{c} 13 \\ 30 \pm 7 \\ 33.7 \pm 1.1 \\ 37.5 \pm 5 \\ 28 \\ 30.5 \\ 35.4 \pm 1.0 \\ \end{array} $	$\frac{3^{2}S(n,p)=30}{3^{2}S(n,p)=60}$ (3) $\frac{235U(n,f)=1335(7)}{27A1(n,d)=0.60}$ $\frac{2^{7}A1(n,d)=0.57}{235U(n,f)=1250}$	30 35 ± 8 $35\cdot8\pm1\cdot2$ $35\cdot1\pm1\cdot1$ 35 39 $35\cdot4\pm2\cdot2$	<u>35•4+2•2</u>
⁶⁰ Ni(n,p) ⁶⁰ Co	RB59 SC57 ME58 RC59 DU62 H062 NS68 HA72	<4.5 0.56 3-7 <2 3.2 <u>+</u> 15% <0.5 1.69 <u>+</u> 0.18 4.4 <u>+</u> 1.0	$3^{2}s(n,p)=30$ (10) $3^{2}s(n,p)=30$ $2^{7}A1(n,d)=0.60$ $2^{38}U(n,f)=310$ $2^{7}A1(n,d)=0.57$ (5) $5^{8}Ni(n,p)=105$	1.72 3.4 <u>+</u> 0.5 - 2.0 <u>+</u> 0.2 - 4.7 <u>+</u> 1.1 -	2.3 <u>+</u> 0.4
60 _{Ni(n,p)} 60m _{Co}	HA72 SC69 HA72	1.98 <u>+</u> 0.20 1.3 <u>+</u> 0.1 1.63 <u>+</u> 0.12	$58_{Ni(n,p)=105}$ $27_{A1(n,\alpha)=0.767}$ $58_{Ni(n,p)=105}$	2.1 <u>+</u> 0.3 1.23 <u>+</u> 0.12 - 1.75 <u>+</u> 0.17 -	2.1 <u>+</u> 0.3

Reactions 62Ni(n,p)62Co	secues Lefer HA72	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$ $(9\pm3)10-3$	Standards (mb) 58 _{N1} (n,p)=105	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$ $(9.7\pm3.4)10^{-3}$	Recommended values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$ 0.0097±0.0034
^O Cu(n,p) ^O Ni	PA61 NS68	0.36 0.52 <u>+</u> 0.05	Al(n,ح)=0.6 (5)	0.435(<u>+</u> 10%) - 0.61 <u>+</u> 0.07 -) 0.48 <u>+</u> 0.08
64 _{Zn(n,p})64 _{Cu}	ME58 RC59 DU62 B064 NJ70 KI71 FA72 PA61 H062 RA67/1 NS68 SC69 KI71 BA72	22 35 $31\pm15\%$ 27 ±1.6 25.2 ±1.3 37.4 ±3.0 32 ± 1.7 28 25 26.9 ±1.2 27.0 ±4.1 32 ± 2 35.5 ±2.8 31 ± 1.5	$3^{2}S(n,p)=30$ $2^{7}A1(n,c)=0.60$ $2^{3}8U(n,f)=310$ $3^{2}S(n,p)=60$ $2^{7}A1(n,c)=0.61$ (4) $2^{3}5U(n,f)=1335(7)$ $2^{7}A1(n,c)=0.60$ $2^{7}A1(n,c)=0.57$ $5^{8}Ni(n,p)=95$ (5) $2^{7}A1(n,c)=0.767$ (4) $2^{3}5U(n,f)=1250$	51 42 33 ± 5 31.5 ± 1.9 30.4 ± 1.6 41.7 ± 3.3 30 ± 1.2 35 32 31.4 ± 1.3 31.7 ± 4.8 31 ± 2 39.6 ± 3.1 $31\pm 2\cdot 3$	<u>31+2-3</u>
66 _{Zn(n,p)} 66 _{Cu}	RA 67/1 NS 68	0•56 <u>+</u> 0•034 0•32 <u>+</u> 0•11	⁵⁸ Ni(n,p)=95 (5)	0.67 <u>+</u> 0.06 - 0.38 <u>+</u> 0.13 -	}0.62 <u>+</u> 0.11
67 _{Zn(n,p})67 _{Cu} (see also next page)	ME58 PA61 DU62 B064	0.27 0.57 0.88 <u>+</u> 1 <i>5</i> % 0.9 <u>+</u> 0.1	$3^{2}S(n,p)=30$ $2^{7}A1(n,c)=0.60$ $2^{38}U(n,f)=310$ $3^{2}S(n,p)=60$	0.62 0.69 0.93 <u>+</u> 0.14 - 1.04 <u>+</u> 0.13 -	

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma}$ (mb)	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$
67 _{Zn(n,p)} 67 _{Cu} (cont'd)	NI65/2 RA67/1 OB69 HP69 SC69	0.88 <u>+</u> 0.11 0.96 <u>+</u> 0.067 0.82 <u>+</u> 0.04 0.8 1.11 <u>+</u> 0.08	5^{8} Ni(n,p)=92 5^{8} Ni(n,p)=95 5^{4} Fe(n,p)=61 unknown $27_{A1}(n, \mathcal{A})=0.767$	1.08 <u>+</u> 0.15 - 1.14 <u>+</u> 0.11 - 1.11 <u>+</u> 0.09 - 1.05 <u>+</u> 0.10 -	<u>1.07±0.04</u>
$68_{Zn}(n,p)68_{Cu}$	RA67/1	(13.1 <u>+</u> 1.9)10 ⁻³	⁵⁸ N1(n,p)=95	0.0156 <u>+</u> 0.0025	0.0156 <u>+</u> 0.0025
69 _{Ga(n,p)} 69m _{Zn}	н р 69	0.496 <u>+</u> 0.073	unknown	-	0.496 <u>+</u> 0.073 +
⁷² Ge(n,p) ⁷² Ga	RC59 RA67/1	< 0.01 0.0218	²⁷ A1(n≠)=0.6 (24)	-	0.022(<u>+</u> 0.006)+
$75_{As(n,p)}75_{Ge}$	ns68	0.45 (cal.val)	(19)		0.45(<u>+</u> 0.15) +
$74_{Se}(n,p)^{74}_{AS}$	GI66	6.6	unknown		6.6(<u>+</u> 3.3) +
⁸¹ Br(n,p) ⁸¹ g _{Se}	ST67	0.020 <u>+</u> 0.004	$27_{A1}(n, \alpha) = 0.6$	0.024 <u>+</u> 0.005	0.024 <u>+</u> 0.005
⁸¹ Br(n,p) ^{81m} Se	ST67	0.012 <u>+</u> 0.003	$27_{A1}(n, A)=0.6$	0.0145 <u>+</u> 0.004	0.0145 <u>+</u> 0.004
88 Sr(n,p) 88 Rb	NS 68	0.01 (cal. Val)	(19)		0.01(<u>+</u> 0.003) +
⁸⁹ Y(n,p) ⁸⁹ Sr	BA 68	0.31 <u>+</u> 19 %	unknown		0.31 <u>+</u> 0.06 +
⁹⁰ Zr(n,p) ⁹⁰ Y	NS68	0.18 (cal.Val)	(19)		0.18(<u>+</u> 0.06) +
92Mo(n,p)92mNb (see also next page)	ME58 G062	1.3 3.64 <u>+</u> 10%	³² S(n,p)=30 5 ⁸ Ni(n,p)=105	3 3•92 <u>+</u> 0•05	
Posstions	80 0 0	Oniginal values	Standanda	Popernolized	Peoormende d
--	--------------	-------------------------------------	------------------------------	-------------------------------------	------------------------
Neac (10118	eren	original values	Standarus	values	values
	Ref	みキム を(mb)	(mb)	σ±Δσ(mb)	<u></u> (mp)
92 _{Mo(n,p})92m _{Nb}	B064	6.2 <u>+</u> 0.4	$3^{2}S(n,p)=60$	7.23 <u>+</u> 0.5	
(cont'd)	BR67,70	6•57 <u>+</u> 0•28	(3)	7.00 <u>+</u> 0.30	
	к171	6.04 <u>+</u> 0.45	(4)	6.73 <u>+</u> 0.05	
	FA72	7•7 <u>+</u> 0•5	$235_{U(n,f)=1335}$ (7)	7.2 <u>+</u> 0.3	
	но62	6.0	$27_{A1}(n,\alpha)=0.57$	7.65	
	RA67/1	6•74 <u>+</u> 0•27	46 _{Ti} (n,p)=12.6	6•58 <u>+</u> 0•26	
	ns68	6 . 70 <u>+</u> 0.63	(5)	7•87 <u>+</u> 0•74	
	к171	6.00 <u>+</u> 0.43	(4)	6.70 <u>+</u> 0.47	
	<u>FA72</u>	7.0 <u>+</u> 0.4	²³⁵ U(n,f)=1250	7.0 <u>+</u> 0.6 –	<u>7.0+0.6</u>
0.5 4 505					
95Mo(n,p)95Nb	ME58	<0.1	$^{32}S(n_{p})=30$		
	GO62	0 . 12 <u>+</u> 10%	$9^{2}Mo(n,p)=3.64$	0.23 <u>+</u> 0.03	
	H062	<0.1	2 (A1 (n ρ ()=0.57		
	B064	0 . 13 <u>+</u> 0.02	$^{3^{2}}S(n_{p}p)=60$	0 . 150 <u>+</u> 0.02 -	0.14 <u>+</u> 0.01
	RA67/1	0 . 138 <u>+</u> 0.006	⁴⁰ Ti(n,p)=12.6	0 . 137 <u>+</u> 0.012 -	J
⁹⁶ Mo(n,p) ⁹⁶ Nb	GO 62	0.03 <u>+</u> 10%	92 _{Mo(n,p)=3.64}	0•058 <u>+</u> 0•008	0.058 <u>+</u> 0.008 +
¹⁰³ Rh(n,p) ¹⁰³ Ru	FR67	0 .0 93 <u>+</u> 0.001	³² S(n,p)=60	0 . 107 <u>+</u> 0.006	0.107 <u>+</u> 0.006
¹⁰⁹ Ag(n,p) ¹⁰⁹ Pd	ns68	0.06 (cal.val.)	(19)		0.06(<u>+</u> 0.02) +
106 _{Cd(n,p)} 106 _{Ag}	ST 67	2•7 <u>+</u> 0•2	²⁷ A1(n,~)=0.6	3•3 <u>+</u> 0•3	3•3 <u>+</u> 0•3
¹¹⁰ Cd(n,p) ¹¹⁰ Ag	RC59	~0.1	²⁷ A1(n,≪)=0.6		0.1(<u>+</u> 0.05) +
127 _{1(n,p})127m _{Te}	RG68/1	(11.1 <u>+</u> 0.2)10 ⁻³	$3^{2}s(n,p)=60$	(12.8 <u>+</u> 0.8)10 ⁻³	0.0128 <u>+</u> 0.0008
					<u> </u>

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{O} \pm \Delta \overline{O}$ (mb)	Recommended values $\overline{\underline{\sigma}} \pm \Delta \overline{\underline{\sigma}} (mb)$
¹²⁷ I(n,p) ¹²⁷ g _{Te}	RG68/1	(7.62 <u>+</u> 0.11)10 ⁻³	³² S(n,p)≈60	(8.8 <u>+</u> 0.5)10 ⁻³	0.0088 <u>+</u> 0.0005
¹³² Ba(n,p) ¹³² Cs	RB59	5•3	³² S(n,p)=30	12	12(<u>+</u> 6) +
¹³⁶ Ba(n,p) ¹³⁶ Cs	RB59	0.0015	³² S(n,p)≈30	0.0035	••••••••••••••••••••••••••••••••••••••
¹⁴⁰ Ce(n,p) ¹⁴⁰ La	DS 68	3•5 <u>+</u> 0•9	58 _{N1 (n,2n)=0.004}	4•3 <u>+</u> 1•6	4.3 <u>+</u> 1.6 +
¹⁴¹ Pr(n,p) ¹⁴¹ Ce	0В67	0.12	unknown		0.12(<u>+</u> 0.06) +
¹⁸² W(n,p) ¹⁸² Ta	RV67	(3.8 <u>+</u> 0.6)10 ⁻³	(11)	(4.0 <u>+</u> 0.7)10 ⁻³	0.004 <u>+</u> 0.0007
¹⁸³ W(n,p) ¹⁸³ Ta	RV 67	(2.8 <u>+</u> 0.5)10 ^{~3}	(11)	(3.0 <u>+</u> 0.6)10 ⁻³	0 .003<u>+</u>0.000 6
²⁰³ Tl(n,p) ²⁰³ Hg	ME58	0.004	³² S(n,p)=30	0.009	0.009(<u>+</u> 0.004)+

Table III Integral (n

Integral (n, ∞) cross-sections averaged in the uranium-235 thermal fission neutron spectrum

	• • • • • • • • • • • • • • • • • • • •	A	A	*
References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values ♂±∆♂(mb)
hu53 gn68	10 38•2 <u>+</u> 3•8	(1) (15)	16	32 .8<u>+</u>3.8
HU53	0.0 85	(1)	0.14	0 . 14(<u>+</u> 0 . 07) +
HU53 SA 59	4•5 4•5	(1) ³¹ P(n,p)=19	7•2 - 8•5 -	7.85 <u>+</u> 0.9
HU53 SA 59	0•4 0•47	(1) ³¹ P(n,p)=19	0.64 - 0.89 -	0.765 <u>+</u> 0.17
HU53 SA 59 ME60 DE62 DU62 FH64 B064	0.6 0.44 0.48 0.63 <u>+</u> 0.03 0.85 <u>+</u> 15% 0.62 <u>+</u> 0.03 0.60 <u>+</u> 0.03	(1) ${}^{31}P(n,p)=19$ ${}^{32}S(n,p)=60$ (9) ${}^{238}U(n,f)=310$ unknown ${}^{32}S(n,p)=60$	0.96 0.83 0.55 0.90 <u>+</u> 0.14 0.70 <u>+</u> 0.035	
GR68 BR67,70 NJ70 KI71 FA72 RI57 PA61 H062 RA67/1 NS68	0.695 ± 0.03 (0.61)* (0.63)* 0.78 ± 0.03 0.60 (0.60)* (0.57)* 0.61 ± 0.028 0.58 ± 0.07	(8) (3) $^{27}A1(n,\alpha)=0.61$ (4) $^{235}U(n,f)=1335 (7)$ $^{238}U(n,f)=304$ $^{27}A1(n,\alpha)=0.60$ $^{27}A1(n,\alpha)=57$ $^{58}N1(n,p)=95$ (5)	0.75 ± 0.035 0.75 ± 0.0045 0.74 ± 0.02 0.735 0.70 0.73 ± 0.02 0.71 0.755 0.73 0.71 ± 0.03 0.68 ± 0.08	
	See HU53 GN68 HU53 SA59 ME60 DE62 JU62 FH64 B064 GR68 BR67,70 NJ70 KI71 FA72 RI57 PA61 H062 RA67/1 NS68	$\frac{8}{24}$ Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$ HU5310 38.2 ± 3.8 HU530.085HU534.5 $5A59$ HU530.4 0.47 HU530.4 0.47 HU530.4 0.47 HU530.6 0.47 HU530.6 0.47 HU530.6 0.47 HU530.6 0.47 HU530.6 0.47 HU530.6 0.47 HU530.6 0.47 HU530.6 0.47 HU530.6 0.63 ± 0.03 DE62 0.63 ± 0.03 DE62 0.63 ± 0.03 DE62 0.69 ± 0.02 NJ70 $(0.61)\pm0.02$ NJ70 $(0.61)\pm0.02$ NJ70 $(0.61)\pm0.02$ NJ70 $(0.60)\pm0.03$ R157 0.78 ± 0.03 R157 0.60 PA61 $(0.60)\pm10.028$ NS68 0.58 ± 0.07	SectionOriginal valuesStandards (mb)HU5310(1)GN68 38.2 ± 3.8 (15)HU530.085(1)HU530.085(1)HU53 4.5 (1)SA59 4.5 $3^{1}p(n,p)=19$ HU530.4(1)SA590.47 $3^{1}p(n,p)=19$ HU530.6(1)SA590.44 $3^{1}p(n,p)=19$ HU530.6(1)SA590.44 $3^{2}s(n,p)=60$ DE620.63 ± 0.03 (9)DU62 $0.85\pm 15\%$ $2^{38}U(n,f)=310$ FH64 0.62 ± 0.03 unknownBO64 0.60 ± 0.03 $3^{2}s(n,p)=60$ GR68(8)BR67,70 0.695 ± 0.02 (3)NJ70 $(0.61)^{*}$ $2^{7}A1(n,\alpha)=0.61$ KI71 $(0.63)^{*}$ (Λ)FA72 0.78 ± 0.03 $2^{35}U(n,f)=1335$ (7)R157 0.60 $2^{7}A1(n,\alpha)=0.60$ H052 $(0.57)^{*}$ $5^{8}mi(n,p)=95$ NS68 0.58 ± 0.07 (5)	Sec e e e eOriginal values $\overline{\sigma} \pm \Delta \overline{\sigma}$ (mb)Standards (mb)Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma}$ (mb)HU5310(1)16GN6838.2 \pm 3.8(15)-HU530.085(1)0.14HU534.5(1)7.2SA594.531p(n,p)=198.5HU530.4(1)0.64SA590.4731p(n,p)=190.89HU530.6(1)0.96SA590.4431p(n,p)=190.83B0600.483 ² S(n,p)=600.55DB620.63 \pm 0.03(9)0.90 \pm 0.14PH640.66 \pm 0.033 ² S(n,p)=600.70 \pm 0.035GR68(8)0.75 \pm 0.0045BR67,700.695 \pm 0.02(3)0.74 \pm 0.02NJ70(0.61)*2 ⁷ A1(n,\alpha)=0.610.735KI71(0.63)*(\triangle)0.71PA61(0.60)*2 ⁷ A1(n,c)=570.73RA67/10.61 \pm 0.0285 ⁸ N1(n,p)=950.71 \pm 0.03NS680.58 \pm 0.07(5)0.68 \pm 0.08

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values $\overline{\underline{\sigma}} \pm \Delta \overline{\underline{\sigma}} (mb)$
²⁷ Al(n ,d) ²⁴ Na (cont'd)	SC 69 KI71 MC72 FA72	(0.767)* (0.63)* (6) 0.725 <u>+</u> 0.02	$27_{A1}(n_{f})=767$ (4) $235_{U(n,f)=1250}$	0.744 <u>+</u> 0.045 0.70 0.73 <u>+</u> 0.015 0.725 <u>+</u> 0.045 -	0.725 <u>+</u> 0.045
³⁰ Si(n,~) ²⁷ Mg	NI64 KI71	0.15 <u>+</u> 0.02 0.130 <u>+</u> 0.020	²⁷ Al(n,p)=3.43 (4)	0.175 <u>+</u> 0.03 - 0.144 <u>+</u> 0.023 -	0.155 <u>+</u> 0.02
³¹ P(n, x) ²⁸ Al	HU53 SA 59	1•43 0•75	(1) 31p(n,p)=19	2.29 1.44	}1.9 <u>+</u> 0.6
³⁴ S(n, x) ³¹ Si	HU53 SA 59 BL65	3.0 1.2 2.23 (calc.)	(1) 31p(n,p)=19 (18)	4.8 2.3	2 . 2(<u>+</u> 0.2)
³⁵ Cl(n, x) ³² P	HU53 SA59 DU59 NI65/1 LW66,68	3.0 4.1 15 12.4 32	(1) 31p(n,p)=19 unknown 32s(n,p)=62 54Fe(n,p)=60	4.8 - 7.8 - 13.8 - 44	8.8 <u>+</u> 4.6
³⁶ Cl(n,x) ³³ P	LW66,68	52	⁵⁴ Fe(n,p)=60	72	72(<u>+</u> 36) +
³⁹ K(n,≪) ³⁶ Cl	NS 68	8.0 (calc.)	(19)		8.0(<u>+</u> 0.3) +
⁴¹ K(n, x) ³⁸ C1	ra67/1 j068	0.61 <u>+</u> 0.032 0.68 <u>+</u> 0.05	⁵⁸ Ni(n,p)=95 ²⁷ Al(n, c)=0.6	0.73 <u>+</u> 0.06 0.82 <u>+</u> 0.08	0.76 <u>+</u> 0.05

			1	1	•
Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} \ (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$
40 _{Ca(n,x)} 42 _K	GI66.	13.2	unknown		13(<u>+</u> 6) +
⁴⁴ Ca(n, X) ⁴¹ Ar	LA 65	(61.1 <u>+</u> 9.2)10 ⁻³	unknown		0.0611 <u>+</u> 0.0092+
⁴⁵ Sc(n , x) ⁴² K	RC59 RC68/2	< 5 0.158 <u>+</u> 0.004	$27_{A1}(n_{,p})=0.6$ $32_{S}(n_{,p})=60$	0.182 <u>+</u> 0.012	0.182 <u>+</u> 0.012
⁴⁸ Ti(n, ∝) ⁴⁵ Ca	ME 58	0.0055	³² S(n,p)=30	0.013	0.013(<u>+</u> 0.006)+
⁵⁰ Ti(n ,x) ⁴⁷ Ca	ME 58	0.0002	³² S(n,p)=30	0.00046	(4.6(<u>+</u> 2.3))10,
⁵¹ v(n,∝) ⁴⁸ Sc	HU53 SA59 NS68 KI71	0.08 0.0099 (15.3 <u>+</u> 2.7)10 ⁻³ 0.0217 <u>+</u> 0.0015	(1) $3^{1}P(n,p)=19$ (5) (4)	0.13 0.0187 0.018 <u>+</u> 0.003 - 0.024 <u>+</u> 0.002 -	} 0.022 <u>+</u> 0.003
⁵⁵ Mn (n, 0) ⁵² v	n56 8	0.11 (calc.)	(19)		0.11(<u>+</u> 0.03) +
⁵⁴ Fe(n,∝) ⁵¹ Cr	ME58 BA68 NS68	0.37 0.79 <u>+</u> 15% 0.50 <u>+</u> 0.15	³² S(n,p)=30 unknown (5)	0.85 0.6 <u>+</u> 0.2 -	0.6 <u>+</u> 0.2
56 _{Fe} (n,x) ⁵³ Cr	B¥65	0 . 397 <u>+</u> 0.12	unknown		0.397 <u>+</u> 0.12 +
⁵⁹ Co(n, x) ⁵⁶ Min (see also next page)	SA 59 BA 68 NS 68	0.14 0.32 <u>+</u> 18% 0.131 <u>+</u> 0.011	³¹ P(n,p) unknown (5)	0.265 0.154 <u>+</u> 0.016 -	

Reactions	References	Original values $\vec{\sigma} \stackrel{\star}{=} \Delta \vec{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values $\overline{\mathbf{\sigma}} \pm \Delta \overline{\mathbf{\sigma}} (mb)$
59 _{Co} (n,x) ⁵⁶ Mn (cont'd)	BR70 FA72	0.147 <u>+</u> 0.005 0.156 <u>+</u> 0.006	(3) ²³⁵ U(n,f)≈1250	0.156 <u>+</u> 0.006 0.156 <u>+</u> 0.011 –	0.156 <u>+</u> 0.009
⁵⁸ Ni(n,∝) ⁵⁵ Fe	Sc 57 BA 68	0 . 17 2 . 95 <u>+</u> 32%	(10) unknown	0.52 -	3 <u>+</u> 0.9 +
⁶² Ni(n,0) ⁵⁹ Fe	SC 57 ME 58 RC 59	0.013 0.025 0.14	(10) ${}^{32}S(n,p)=30$ ${}^{27}A1(n,A)=0.6$	0.04 – 0.0575 – 0.17 –	}0.09 <u>+</u> 0.07 +
63 _{Cu(n,∝})60 _{Co}	RC59 NL63 LL65 N165/2 FA72 H062 MA64/4 NS68 MC72 FA72 FA72	0.72 0.54 <u>+</u> 0.07 0.44 0.9 0.66 <u>+</u> 0.06 0.42 0.45 <u>+</u> 0.05 0.382 <u>+</u> 0.036 (6) 0.50 <u>+</u> 0.05	$27_{A1}(n, o) = 0.6$ $58_{Ni}(n, p) = 101$ unknown $58_{Ni}(n, p) = 92$ $235_{U}(n, f) = 1335 (7)$ $27_{A1}(n, o) = 0.57$ $54_{Fe}(n, p) = 76$ (5) $235_{U}(n, f) = 1250$	0.87 0.60 ± 0.09 1.1 0.62 ± 0.04 $\overline{0.535}$ 0.475 ± 0.05 0.449 ± 0.042 0.495 ± 0.05 0.50 ± 0.06	<u>0.50+0.06</u>
⁶⁸ Zn(n,~) ⁶⁵ Ni	SA 59 RA 67/1 SC 69	0.020 (6.3 <u>+</u> 0.4)10 ⁻² 0.077 <u>+</u> 0.01	$31_{p(n,p)=19}$ $58_{Ni(n,p)=95}$ $27_{A1(n,p)=0.767}$	0.038 0.075 <u>+</u> 0.007 - 0.073 <u>+</u> 0.011 -) 0.074 <u>+</u> 0.006

والمراجع وال			والمراجع والمراجع المترك فترك فللمتنا ومعالم وتعالم ومعارك والمراجع		
Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values $\overline{\mathbf{\sigma}} \pm \Delta \overline{\mathbf{\sigma}}$ (mb)
72 _{Ge} (n,x) ^{69m} Zn	RC59 NI63	<1 0.020 <u>+</u> 0.005	31p(n,p)=19 58 _{Ni(n,p)=92}	0.025 <u>+</u> 0.006 -	0.025 <u>+</u> 0.006 +
74 Ge(n, α) 71m Zn	NI63	0.002 <u>+</u> 0.001	⁵⁸ Ni(n,p)=92	0.0025 <u>+</u> 0.0013	0.0025 <u>+</u> 0.0013+
$79_{\mathrm{Br}(n,\alpha)}76_{\mathrm{AS}}$	NS68	0.02 (cal.)	(19)		0.02(<u>+</u> 0.006) +
⁸⁹ Y(n, x) ⁸⁹ Sr	BA 68	0.002 <u>+</u> 27%	unknown		0.002 <u>+</u> 0.0006 +
⁹² Zr(n, x) ⁸⁹ Sk	NS68	0.014 (calc.)	(19)		0.014(<u>+</u> 0.004)+
93 _{ND(n, x)} 90gy	RG72	0.0585 <u>+</u> 0.0022	²⁷ Al(n, ~()=0.6	0.0707 <u>+</u> 0.0051	0.0707 <u>+</u> 0.0051
93Nb(n, x)90my	RG72	0.0221 <u>+</u> 0.0003	²⁷ Al(n, A)=0.6	0.0267 <u>+</u> 0.0017	0.0267 <u>+</u> 0.0017
⁹² Mo(n,x) ⁸⁹ Zr	ME 58	0.017	³² S(n,p)=30	0.04	0.04(<u>+</u> 0.02) +
⁹⁸ Mo(n, x) ⁹⁵ Zr	RA67/1	(14.0 <u>+</u> 1.3)10 ⁻³	46 _{Ti(n,p})=12.6	0.0139 <u>+</u> 0.0016	0.0139 <u>+</u> 0.0016
¹³³ Cs(n, x) ¹³⁰ I	SA 59 ME58 ST67	2.4x10 ⁻⁴ 0.0005 0.0027 <u>+</u> 0.0006	$31_{P(n,p)=19}$ $3^{2}s(n,p)=30$ $27_{A1(n,q)=0.6}$	0.00045 0.0012 0.0033 <u>+</u> 0.0008 -	0 .00 33 <u>+</u> 0.0008
$^{138}\text{Ba}(n, \alpha)^{135}\text{Xe}$	LA 65	(1•9 <u>+</u> 0•3)10 ⁻³	unknown		0.0019 <u>+</u> 0.0003+
¹⁸¹ Ta(n, x) ¹⁷⁸ Lu	SA 59	8.5x10 ⁻⁵	³¹ P(n,p)=19	1.6x10-4	(1.6(<u>+</u> 0.8)) ⁻⁴
¹⁸⁴ W(n _P) ¹⁸¹ Hf	₽ ¥67	(0.19 <u>+</u> 0.04)10 ⁻³	(11)	(0.20 <u>+</u> 0.05)10 ³	(2 <u>+</u> 0•5)10 ⁻⁴

Table IV

Integral (n, 2n) cross-sections averaged in the uranium-235 thermal fission neutron spectrum

			and the second		
Reactions	rences	Original values	Standards	Renormalized values	Recommended values
	Refe	₹± △ ₹ (mb)	(mb)	₹±∆₹ (mb)	र्ट±∆ र (mb)
⁹ Be(n,2n) ⁸ Be	DB57 ZH63 FE66 GN68	73 <u>+</u> 20 70–140 116.2 <u>+</u> 139 144 <u>+</u> 6	(12) (13) (14) (15)	148 <u>+</u> 19 -	}144 <u>+</u> 6
¹² C(n,2n) ¹¹ C	r060 ns68	3x10 ⁻⁶ (3.6 <u>+</u> 1.2)10 ⁻⁷	³² s(n,p)=60 (5)	3.5x10 ⁻⁶ (4.2 <u>+</u> 1.4)10 ⁻⁷ -	(4.2 <u>+</u> 1.4)10 ⁻⁷
$16_{0(n,2n)}15_{0}$	NS68	(4.5 <u>+</u> 2.0)10 ⁻⁶	(5)	(5•3 <u>+</u> 2•4)10 ⁻⁶	(5•3 <u>+</u> 2•4)10 ⁻⁶
¹⁹ F(n,2n) ¹⁸ F	LE63 RE67 NS68 NJ70	$(8.6\pm1.3)10^{-3}$ 7.10x10 ⁻³ ±20% $(7.2\pm1.0)10^{-3}$ $(5.3\pm0.5)10^{-3}$	$3^{2}s(n,p)=69$ $5^{8}Ni(n,p)=85$ (5) $2^{7}A1(n,a)=0.61$	$(8.6\pm1.4)10^{-3}$ - $(9.4\pm2.0)10^{-3}$ - $(8.5\pm1.3)10^{-3}$ - $(6.3\pm0.7)10^{-3}$ -	$\left.\right\rangle \frac{(7.3\pm0.7)10^{-3}}{}$
²³ Na(n,2n) ²² Na	BE57 WA 62 NS68 ST70	6.10 ⁻³ 0.0012 (2.7 <u>+</u> 0.7)10 ⁻³ (2.0 <u>+</u> 0.1)10 ⁻³	unknown unknown (5) ⁵⁸ Ni(n,p)=105	(3.2 <u>+</u> 0.8)10 ⁻³ - (2.15 <u>+</u> 0.2)10 ⁻³ -	(2•2 <u>+</u> 0•2)10 ⁻³
⁴⁸ Ca(n,2n) ⁴⁷ Ca	KU65	0.3 <u>+</u> 0.03	²⁷ Al(n, <i>«</i>)=0.6	0•36 <u>+</u> 0•04	0•36 <u>+</u> 0•04
⁴⁶ Ti(n,2n) ⁴⁵ Ti	R060 SC69	0.0063 0.0087 <u>+</u> 0.001	³² s(n,p)=60 ²⁷ A1(n,d)=0.767	0.0072(<u>+</u> 20%) 0.0082 <u>+</u> 0.0011	0.0078 <u>+</u> 0.0009
⁵⁰ Cr(n,2n) ⁴⁹ Cr	Q A 71	0 .00 54 <u>+</u> 0.0008	(20)	0.006 <u>+</u> 0.001	0 .006<u>+</u>0.00 1

Reactions	erences	Original values	Standards	Renormalized values	Recommended values
	Ref	〒±△♂ (mb)	(mb)	〒±△〒 (mb)	<i>₸±∆₸</i> (mb)
$55_{Min}(n, 2n)^{54}_{Min}$	SC57	0.05	(10)	0.15	
	R060	0.19	³² s(n,p)=60	0.22	
	но62	0.18	²⁷ Al(n ,~)= 0.57	0.23	
	NS6 8	0.202 <u>+</u> 0.018	(5)	0.24 <u>+</u> 0.025 -	h
	ST70	0.26 <u>+</u> 0.02	⁵⁸ Ni(n,p)=105	0.28 <u>+</u> 0.03 -	
	QA71	0.258 <u>+</u> 0.03	(20)	0.285 <u>+</u> 0.04 -	0.258+0.013
	FA72	0.27 <u>+</u> 0.015	²³⁵ U(n,f)=1335(7)	0.253 <u>+</u> 0.01	
	<u>FA72</u>	0.253 <u>+</u> 0.01	²³⁵ U(n,f)=1250	0.253 <u>+</u> 0.02 -	
⁵⁴ Fe(n,2n) ⁵³ Fe	HU53	0.0032	(1)	0.005	0.005(<u>+</u> 0.0025)+
	BE57	0 . 1 <u>+</u> 0 . 02	unknown		
59Co(n,2n) ⁵⁸ Co	NS68	0•340 <u>+</u> 0•0030	(5)	0•40 <u>+</u> 0•04	0.40 <u>+</u> 0.04
⁵⁸ Ni(n,2n) ⁵⁷ Ni	SC57	0.0012	(10)	0.0037	
	R060	0.006	³² S(n,p)=60	0.007(<u>+</u> 20%)	0.00/9+0.001/
	BA 68	0.004 <u>+</u> 0.0009	unknown	_	
⁶³ Cu(n,2n) ⁶² Cu	GR68		(8)	0 . 124 <u>+</u> 0 . 009	
	<u>FA72</u>	0 . 124 <u>+</u> 0 . 009	²³⁵ U(n,f)=1250	0 . 124 <u>+</u> 0.011 -	0 . 124 <u>+</u> 0.011
$66_{Zn(n,2n)}65_{Zn}$	H062	<4	²⁷ A1(n,d)=0.57	< 5	< 5 +
⁷⁰ Ge(n,2n) ⁶⁹ Ge	RC59	1.5	²⁷ A1(n,x)=0.6	1.8	1.8(<u>+</u> 0.9) +
75 _{As(n,2n)} 74 _{As}	R060	0.29	³² S(n,p)=60	0.33(<u>+</u> 20%) -	h
	ns68	0 . 304 <u>+</u> 0.036	(5)	0.36 <u>+</u> 0.05 –	0.33+0.02
	S T 70	0.30 <u>+</u> 0.01	⁵⁸ Ni(n,p)=105	0.32 <u>+</u> 0.02 —	/
⁷⁸ Se(n,2n) ^{77m} Se	KR65	<1	(21)	<]	<] +

Reactions	References	Original values $\overline{\sigma} \perp \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values G <u>+</u> ム気(mb)
⁸⁰ Se(n,2n) ^{79m} Se	kr65	<10	(21)	≺ 10	<10 +
⁸⁵ Rb(n,2n) ⁸⁴ Rb	RN 66	0.2	unknown		0.2(<u>+</u> 0.1) +
⁸⁸ Sr(n,2n) ^{87m} Sr	KR65	<10	(21)	<10	<10 +
⁸⁹ Y(n,2n) ⁸⁸ Y	R060 BA68 RA67/2 ST70 QA71	0.12 0.22 <u>+</u> 23% 0.2 <u>+</u> 0.01 0.137 <u>+</u> 0.005 0.144 <u>+</u> 0.02	$3^{2}S(n,p)=60$ unknown $4^{6}Ti(n,p)=12.6$ $5^{8}Ni(n,p)=105$ (20)	0.14 <u>+(20%)</u> - 0.20 <u>+</u> 0.02 - 0.147 <u>+</u> 0.010 - 0.16 <u>+</u> 0.024 -	> <u>0.156+0.011</u>
90 _{Zr} (n,2n) ⁸⁹ Zr	६А 71	0.0687 <u>+</u> 0.01	(20)	0.076 <u>+</u> 0.01	0.076 <u>+</u> 0.01
93 _{Nb} (n,2n) ^{92m} Nb	HG66 KI71 FA72 NS68 KI71 FA72 RG72	~0.4 0.402±0.034 0.52±0.03 0.370±0.030 0.432±0.033 0.47±0.03 0.420±0.007	unknown (4) 235U(n,f)=1335 (7) (5) (4) ²³⁵ U(n,f)=1250 27A1(n, x)=0.6	0.448 <u>+</u> 0.038 - 0.487 <u>+</u> 0.02 - 0.435 <u>+</u> 0.035 - 0.482 <u>+</u> 0.037 - 0.47 <u>+</u> 0.04 0.51 <u>+</u> 0.03 -	0.18 <u>+</u> 0.04
¹⁰⁷ Ag(n,2n) ^{106m} Ag	NS6 8	0•39 <u>+</u> 0•07	(5)	0.46 <u>+</u> 0.09	0•46 <u>+</u> 0•09
¹¹² Cd(n,2n) ^{111m} Cd	KR 65	0•35 <u>+</u> 0•4	(21)	0.42 <u>+</u> 0.06	0.42 <u>+</u> 0.06

		+	·	+	
Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Recommended values 5 ± 5 (mb)
$127_{I(n,2n)}$ 126 _I	R060	1.7	32S(n,p)=60	2.0(<u>+</u> 20%)	
	MC72	(6)		1.09 <u>+</u> 0.05	
	<u>FA72</u>	1.09 <u>+</u> 0.05	²³⁵ U(n,f)=1250	1.09 <u>+</u> 0.08	0.9+0.1
	NS68	1.62 <u>+</u> 0.24	(5)	1.9 <u>+</u> 0.3	
	RG68/1	0.647 <u>+</u> 0.010	32s(n,p)=60	0.744 <u>+</u> 0.044	ł
	ST70	1.02 <u>+</u> 0.01	⁵⁸ Ni(n,p)=105	1.10 <u>+</u> 0.07	
¹³⁸ Ba(n,2n) ^{137m} Ba	KR 65	2.0 <u>+</u> 10%	(21)	2•4 <u>+</u> 0•3	2 .4<u>+</u>0. 3
¹⁸⁶ W(n,2n) ¹⁸⁵ W	DR66	10.0 <u>+</u> 0.7	197Au(n ,7)= 133 <u>+</u> 10 (22)		10.0 <u>+</u> 0.7 +
¹⁸⁵ Re(n,2n) ¹⁸⁴ Re	ST70	4•3 <u>+</u> 0•3	5 ⁸ Ni(n,p)=105	4 .6<u>+</u>0. 4	4.6 <u>+</u> 0.4
¹⁸⁵ Re(n,2n) ^{184m} Re	ST70	0•58 <u>+</u> 0•03	⁵⁸ Ni(n,p)=105	0.62 <u>+</u> 0.05	0.62 <u>+</u> 0.05
¹⁸⁷ Re(n,2n) ¹⁸⁶ Re	DR67	10 <u>+</u> 6	197 Au(n,))=190<u>+</u>19 (22)		10 <u>+</u> 6 +
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au	SC 69	3 . 14 <u>+</u> 0.2	²⁷ Al(n,X)=0.767	2 . 97 <u>+</u> 0.26	3.0 <u>+</u> 3
$203_{\text{Tl}}(n,2n)^{202}_{\text{Tl}}$	R060	4.0	$3^{2}S(n,p)=60$	4.6 <u>+(</u> 20%) -)
	NS 68	2•75 <u>+</u> 0•55	(5)	3.23+0.67 -	3.0+0.5
	QA71	2•41 <u>+</u> 0•35	(20)	2.64 <u>+</u> 0.42 –	

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalızed values ō±'∆ō (mb)	Recommended values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$
²⁰⁴ Pb(n,2n) ²⁰³ Pb	R060 DU62 KI71 QA71	3.3 5.0 <u>+</u> 15% 1.90 <u>+</u> 0.18 2.19 <u>+</u> 0.30	$3^{2}S(n,p)=60$ $238_{U}(n,f)=310$ (4) (20)	3.8 <u>+(</u> 20%) - 5.3 <u>+</u> 0.8 - 2.11 <u>+</u> 0.23 - 2.41 <u>+</u> 0.36 -	> 2•45 <u>+</u> 0•4
²³² Th(n,2n) ²³¹ Th	рн58 SC 69	12.4 <u>+</u> 0.6 ~10	³² s(n,p)=60.3 ²⁷ A1(n,A)=0.767	14.2 <u>+</u> 1.1 -	14.2 <u>+</u> 1.1

Table VIntegral (n,n') cross-sections averaged in theuranium-235 thermal fission neutron spectrum

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalized values で± ムマ(mb)	Recommended values ♂±∆⊙(mb)
77 _{Se(n,n')} 77m _{Se}	KR65 K067	600 <u>+</u> 60 652 <u>+</u> 30	(21) Ni(n,p)=100	725 <u>+</u> 86 – 737 <u>+</u> 57 –	}733 <u>+</u> 46
⁸⁷ Sr(n,n') ^{87m} Sr	KR65 K067	120 <u>+</u> 12 91 <u>+</u> 5	(21) ⁵⁸ Ni(n,p)=100 v	145 <u>+</u> 17 – 103 <u>+</u> 9 –) }112 <u>+</u> 17
⁸⁹ Y(n,n') ^{89m} Y	D I68	128.4 <u>+</u> 25%	(25)		128 <u>+</u> 32
93 _{Nb} (n,n') ^{93m} Nb	HG71	97 <u>+</u> 35 (calc.)	103 _{Rh(n,n} *)=595 <u>+</u> 150(26	87 <u>+</u> 14	87 <u>+</u> 14
103 _{Rh(n,n} ,)103m _{Rh}	R064 K067 BT68 K169 HG71	535.8 (calc.) 403 <u>+</u> 40 716 <u>+</u> 40 (calc.) 558 <u>+</u> 32 (calc.) 595 <u>+</u> 150(calc.)	(27) 5 ⁸ Ni(n,p)=100 (28) (29) (26)	455 <u>+</u> 53 -	\$533 <u>+</u> 33
lll _{Cd(n,n')} lllm _{Cd}	KR65 K067	140 <u>+</u> 14 289 <u>+</u> 15	(21) ⁵⁸ Ni(n,p)=100	169 <u>+</u> 20 - 327 <u>+</u> 26 -	228 <u>+</u> 76
115 _{In(n,n')} 115m _{In}	K067 BR67,70 NJ70 FA72 FA72	181 <u>+</u> 10 177 <u>+</u> 6.0 156 <u>+</u> 5 200 <u>+</u> 8 188 <u>+</u> 4	$58_{Ni(n,p)=100}$ (3) $27_{A1(n,\alpha)=61}$ $235_{U(n,f)=1335}(7)$ $235_{U(n,f)=1250}$	205 <u>+</u> 15 188.5 <u>+</u> 6.4 188 <u>+</u> 6 <u>187.5+6</u> 188 <u>+</u> 11	<u>188+11</u>
137 _{Ba(n,n')} 137m _{Ba}	KR65 K067	220 <u>+</u> 22 189 <u>+</u> 10	(21) ⁵⁸ Ni(n,p)=100	266 <u>+</u> 32 - 214 <u>+</u> 17 -	225 <u>+</u> 22

Reactions	References	Original values $\overline{\sigma} \pm \Delta \overline{\sigma} (mb)$	Standards (mb)	Renormalızed values ゔ± ム중(mb)	Recommended values C ± AC (mb)
197 _{Au(n,n')} 197 _{mAu}	DI 68	379•8 <u>+</u> 25%	(25)		380 <u>+</u> 95
²⁰⁴ Pb(n,n') ^{204m} Pb	DU62 K067 K171	22 <u>+</u> 15% 15•3 <u>+</u> 0•7 18•9 <u>+</u> 2•0	²³⁸ U(n,f)=310 ⁵⁸ Nı(n,p)≈100 (4)	23.3 <u>+</u> 3.5 - 17.3 <u>+</u> 1.3 - 21.0 <u>+</u> 2.5 -	}18.6 <u>+</u> 1.5

FOOTNOTES TO THE TABLES II, III, IV AND V

(1) The fission flux was determined by comparison with another fission flux produced in a simpler geometry such as a converter. Hughes old data set could not be ignored since some of his measurements are still unique or among the few. It was then necessary to perform an empirical renormalization. This was performed by comparing Hughes values with well established ones whenever the comparison was possible. Hughes data were found to be consistently too low by an average factor of 1.6.

(2) The fission flux was deduced from the power generated in the uranium rod. This power was calculated from the flow and temperature rise of the cooling water. No renormalization was performed.

(3) Bresesti's data were first reported relative to a value of 0.61 mb for ${}^{27}\text{Al}(n,\infty){}^{24}\text{Na}$ (BR67). After comparison with data obtained by integration of excitation functions over various spectral representations for the fission spectrum, these data were rescaled by a factor of 1.14. The values for ${}^{46}\text{Ti}$ $(n,p){}^{46}\text{Sc}$, ${}^{58}\text{Ni}(n,p){}^{58}\text{mCo}$, ${}^{92}\text{Mo}(n,p){}^{92}\text{Nb}$ which do not appear in BR70 were multiplied by 1.14 by Fabry (FA72) and included in his evaluation.

(4) The fast neutron flux was monitored using the following standards: 104 mb, 1.4 mb and 0.63 mb for ${}^{58}Ni(n,p){}^{58}Co$, ${}^{24}Mg(n,p){}^{24}Na$ and ${}^{27}Al(n,d){}^{24}Na$ respectively. New values for these standards (see table I) lead to an average renormalization factor of 1.11.

(5) The fission spectrum averaged cross-sections $\overline{\mathbf{o}}$ were found by correcting the average cross-sections $\overline{\mathbf{o}}$ measured in a critical assembly of enriched uranium. In this case, our renormalized values are obtained by multiplying Nasyrov's data by Fabry's rescaling factor which is 1.175 for these data. (6) The core center reaction rate measurements of McElroy have been transformed by Fabry (see FA72) into fission spectrum averaged cross-sections. Fabry's scaling is relative to a value of 0.73 ± 0.015 for the 27 Al(n, \checkmark) crosssection.

(7) Fabry's data were directly quoted from FA72, although practically all of them were reported in FA70/1. Although they result from absolute measurements, using the technique described in FA67 (see footnote (9) for description of a similar technique) they are all consistently scaled to the uranium-235 average fission cross-section value of 1335 mb, which can therefore rightly be considered as the standard.

(8) The double ratio measurements of Grundl (GR67, GR68) have been converted to fission spectrum average cross-sections by Fabry. All details are to be found in FA72.

(9) Depuydt et al. have used the converter technique for their measurements. The absolute value of the fast flux Φ_f was determined from the absolute value of the thermal flux Φ_{th} by means of the relation:

$$\Phi_{f} = \mathcal{V} \Sigma_{f} \Phi_{th^{G}} f_{cor}$$
 where

- $\mathcal{V} = 2.43 \pm 0.02$ is the mean number of neutrons emitted per thermal fission of uranium-235.
- Σ_{f} = 23.8 ± 0.2 cm⁻¹ is the macroscopic fission cross-section of the converter, computed for a microscopic thermal fission cross-section of (587 ± 6) b for uranium-235.

G is a geometrical factor.

 f_{cor} takes into account the secondary processes in the facility Φ_{th} is determined using (98.8 ± 0.3) b for the thermal capture crosssection of gold-197. We have not renormalized in this case. (10) Data based on assumption that fission-neutron flux inside uranium receptable slug equals thermal neutron flux outside slug. Renormalized by multiplying by $\frac{69}{22.5}$ as shown by Mellish (see ME60).

(11) Two standards were used for the neutron flux determination: 0.54 mb and 10.6 mb for ${}^{63}Cu(n, \alpha)$ and ${}^{46}Ti(n,p)$ cross-sections respectively.

(12) Neutron multiplication was measured in beryllium spheres. The quantity $\overline{\sigma}_{n,2n} - \overline{\epsilon}_{n,\infty}$ was determinated and $\overline{\sigma}_{n,2n}$ was deduced taking lOmb for the ⁹Be(n, \ll) cross-section. No renormalization.

(13) The same method as above was used with the same value of 10 mb for the ${}^{9}\text{Be}(n, \checkmark)$ cross-section. No renormalization.

(14) Three standards were used for the neutron flux determination: 95 \pm 6 mb, 61 \pm 8 mb and 9.8 \pm 1.1 mb for the 58Ni(n,p), 54Fe(n,p) and 46Ti(n,p) cross-sections respectively.

(15) Green has used a manganese sulphate bath technique to make an accurate measurement of the ${}^{9}\text{Be}(n,2n)$ cross-section averaged over a pure ${}^{252}\text{Cf}$ fission neutron spectrum. The technique measures neutron multiplication and therefore eliminates completely the need for a flux measurement. Correction for the ${}^{9}\text{Be}(n,\alpha)$ reaction was performed using a calculated average cross-section 38.2 ± 3.8 mb. Fission neutron spectra of ${}^{252}\text{Cf}$ and ${}^{235}\text{U}$ are similar enough to average Green's and Feller's (n,2n) cross-section values.

(16) The original value of 65 mb has been corrected by Fabry (see FA72).

(17) Data communicated by S.B. Wright to Martin and Clare.

(18) The original value was computed by integration of an evaluated excitation function $\sigma(E)$ over a Watt spectrum. It is clearly our recommended value in this case. Whenever a check is possible, agreement between our recommended values and Barrall's computed values is generally good, therefore we can arbitrarily use a 10% relative error.

(19) Naryrov's computed values are based on the relation

$$\overline{\sigma} = \sigma_{\text{eff}} \int_{\text{Eeff}}^{\infty} \chi(E) dE \qquad \left(\int_{0}^{\infty} \chi(E) dE = 1\right) \text{ where } \chi(E) N_{\text{e}} -0.766E$$

The calculation was performed whenever it was possible to choose \int_{eff} among experimental or evaluated data. When no other data are available, Nasyrov's calculated data become our recommended values with an arbitrary relative error of 30%.

(20) Two standards were used for the neutron flux determination: 72.6 mb and 0.307 mb for 5^{4} Fe(n,p) and 7^{5} As(n,2n) cross-sections respectively.

(21) Four standards were used for the neutron flux determination: 92 mb, 3.4 mb, 1.2 mb and 0.63 mb for ${}^{58}Ni(n,p)$, ${}^{27}Al(n,p)$, ${}^{24}Mg(n,p)$ and ${}^{27}Al(n,d)$ cross-sections respectively.

(22) The standard chosen depends too much upon the shape of the fission spectrum to allow a renormalization.

(23) Ricabarra et al. have measured the following ratio: $\overline{\sigma}[^{31}P(n,p)^{31}Si] / \overline{\sigma}[^{32}S(n,p)^{32}P] = 0.51\pm0.03$

(24) Value calculated from an empirical formula valid for $8 \leq Z \leq 2$. This value becomes our recommended value for which we estimate a 30% relative error.

(25) Cross-section averaged over a reactor spectrum from 0.1 MeV to infinity. The standard reaction used was ${}^{28}Si(n,p)$ for which an average cross-section of (10.4 ± 2.4) mb computed over the same energy range has been accepted. No renormalization.

(26) Hegedűs has measured the excitation function of 9^{3} Nb (n,n') 9^{3m} Nb which he integrated over a Watt spectrum (WT 52) to obtain = 97 ± 35 mb. He used a standard value of 595 ± 150 mb for 10^{3} Rh(n,n') 10^{3m} Rh. This value was computed from Butler's excitation curve (BT68) using a larger conversion coefficient ratio d_{k} for 10^{3m} Rh (0.131 instead of 0.099). This explains the lower value of 595 mb instead of 716 mb obtained by Butler et al. The error on the 9^{3} Nb(n,n') 9^{3m} Nb cross-section includes the uncertainty on the standard.

(27) Obtained by integration of a Vogt and Cross (VC64) excitation function over a Cranberg spectrum (CR56). No renormalization.

(28) The measured excitation function was integrated over a Cranberg spectrum (CR56). Value not retained for the average (see footnote 26). No renormalization.

(29) Kimura et al. measured the excitation curve up to 4.6 MeV. Above this value, they used Vogt and Cross (VC64) calculated curve to compute $\bar{\sigma}$ using a Cranberg spectrum (CR56).

Sa	Samples (n,p)reactions						(n	, <i>«</i>) r e a	ction	1 5	(n, 21	n) react	lons
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	♂(mb)	<u>55</u> (%)	E _T (MeV)	Eeff(MeV)	5 (mb)	<u>\ 7</u> (%)	$\mathbf{E}_{\mathbf{T}}$ (MeV)	$ar{m{\sigma}}^{(mb)}$	<u> </u>
3	Li	6	3.18	3.8	39•	+35,-25	-1.78				6.41	2.1	+70,-40
		7	11.91	12.5	<0.0001		6.13		-		8.29	0.37	
4	Be	9	14.26	15.1	<0.0001		0.67	2.1	33•	+80,-45	1.85	250.	
		10	24.15	21.9	<0.0001		8.64	10.3	0.029		7•49	1.0	
5	в	10	-0.23	0.7			-2.79	-0.8			9.28	0.18	
		11	11.70	12.6	<0.0001		7.24	9•2	0.15		12.50	0.008	v
6	r,	12	13.64	14.7	< 0.0001		6.18	8.6	0.37		20. 28	< 0.0001	
		13	13.63	14.8	<0.0001		4.13	6.5	3•3		5•33	10.	+70,-40
7	N	14	-0. 63	0.7			0.17	3.1	25.		11.31	0.030	1
		15	9•59	11.0	0.001	+150 ,- 60	8.13	11.1	0.012		11.56	0.024	
8	o	16	10.24	11.8	0.0005	11	2.35	5•7	6.0		16.65	0.0002	
		17	8. 36	9•9	0.0006	+150 ,- 60	-1.82	1.6			4.39	31.	
		18	14.01	15.5	< 0.0001		5.29	8.7	0.42		8.49	0.56	
9	F -	19	4.25	5•9	0.23	+150 ,- 60	1.60	5.4	8.0	V	10.98	0.050	↓

TABLE VI Estimated average cross-sections for (n,p), (n,q) and (n,2n) reactions in a fission neutron spectrum

TABLE VI (cont'd)

Sa	mples	3	(n,p) reactions					,«) r e a	ction	8	(n, 21	n) reac	tions
Z	Element	Mass	£ _T (MeV)	Eeff(MeV)	₹ (mb)	<u> 27</u> 7 (%)	E _T (MeV)	Eeff(MeV)	F(mb)	<u>∆</u> 7 7 (%)	E _T (MeV)	ā (mb)	<u> </u>
10	Ne	20	6.56	8.5	0.078	+100.,-50	0.62	4.8	12.	+80,- 45	17.71	0.0001	+70,-40
		21	5.14	7.0	Q . 049	+150 ,- 60	-0.70	3.5	26.	1	7.08	2.5	1
		22	10.53	12.4	0.0003	μ	5•97	10.2	0.056		10.84	0.064	
11	Na	23	3.75	5.8	0.31	11	4.03	8.7	0.49		12.96	0.008	
12	Mg	24	4.93	7.2	0.62	+100 ,- 50	2.66	7.8	1.8		17.22	0.0001	
		25	3.17	5•4	0.58	+150 ,- 60	-0.48	4.7	14.		7.63	1.6	
		26	8.22	10.5	0.005	n	5.63	10.8	0.027		11.52	0.036	
13	Al	27	1.90	4-3	3.1	п	3.25	8.8	0.48		13.54	0.005	
14	Si	28	4.00	6.5	2.0	+60,-40	2.75	8.7	0.56		17.79	0.0001	
		29	3.00	5•5	0.56	+150 ,- 60	0.03	5•9	7•9		8.77	0•59	
		30	8.02	10.5	0.005	u	4-34	10.2	0.069		10.96	0.0070	
15	Р	31	0.73	3•5	11.	H	2.01	8.3	1.1		12.70	0.013	
16	s	32	0.96	3.9	100.	+35 ,- 25	-1. 53	5.1	13.		15.56	0.0008	
		33	-0.53	2.4	58.	+150 ,- 60	-3•49	3.2	41.		8.91	0.56	

TABLE VI (cont'd)

Sa	mples	3		(n,p) r e	action	S	(n	, ¢) r e a	ction	S	(n, 21	n) reac	tions
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	æ(mb)	<u>∆₹</u> ₹ (%)	E _T (MeV)	Eeff(MeV)	₩(mb)	<u>∆</u> ∂ • (%)	E _T (MeV)	ā (mb)	<u>∆</u> → (%)
16	s	34	4.45	7•4	0.58	+100,-50	1.37	8.0	1.7	+80 ,- 45	11.75	0.035	+70,-40
		36	10.44	13.4	0.0001	+150,-60	4.23	10.9	0.029		10.17	0.17	1
17	C1	35	-0.62	2.5	52.0	11	-0. 94	6.1	8.0		13.01	0.010	
		36	-1. 93	1.1			-2.46	4.6	19.		8.82	0.65	
		37	4.18	7•3	0.046	4	1.32	8.3	1.2		10.59	0.12	
18	A	36	-0.07	3.2	320.	+35,-25	-2.00	5•4	12.		15.68	0.0008	
		38	4.24	7.5	0.54	+100,-50	0.23	7.7	2.9		12.15	0.025	
		40	6.89	10.2	0.010	+150 ,- 60	2.55	10.0	0.11		10.12	0.19	
19	к	39	-0.22	3.2	20.	u	-1.36	5•4	13.		13.42	0.007	
		40	-2.29	1.2			-3.87	3.9	31.		8.00	1.6	
		41	1.75	5.2	1.1	u	0.11	7.8	2.6		10.34	0.16	
20	Ca	40	0.54	4.2	77•	+35,-25	-1.75	6.3	7.8		16.02	0.0006	
		42	2.80	6.5	2.6	+60,-40	-0.35	7.8	2•7		11.75	0.040	
		43	1.06	4•7	2.3	+150 ,- 60	-2.29	5•9	10.		8.12	1.5	
		44	4•99	8.6	0.11	+100,-50	2.81	10.9	0.033	\checkmark	11.39	0.059	
		46	7.08	10.7	0.005	+150 ,- 60	6.05	14.2	0.0003		10.63	0.13	

mples			(n,p) r e	action	8	(n	,«) r e a	ction	8	(n, 21	n) react	ions
Element	Mass	E _T (MeV)	Eeff(MeV)	₹(mb)	<u> 15</u> (%)	E_{T} (MeV)	Eeff(MeV)	a (mb)	<u> </u>	E_{T} (MeV)	ā ^(mb)	<u>Δ</u> - - - - (%)
Ca	48	13.22	16.8	< 0.0001		8.81	16.9	<0.0001		10.16	0.21	+70,-40
Sc	45	0. 53	3.2	22.	+150,-60	0•40	8.8	0.67	+80 ,- 45	11.57	0.050	
Ti	46	1.62	5•5	12.	+60,-40	0.08	8.9	0.59	1	13.48	0.008	
	47	-0.18	3•7	11.	+150,-60	-2.18	6.6	7•3		9.06	0.61	
	48	3.27	7.2	0.98	+100,-50	2.07	10.9	0.035		11.87	0.039	
	49	1.25	5.1	1.4	+150,-60	-0.23	9.0	0.53		8.31	1.3	
	50	6.23	10.1	0.013	u	3.51	12.3	0.005		11.17	0 .079	
v	50	-3.00	1.0			-0.76	8.3	1.5		9•52	0.40	
	51	1.71	5•7	0.60	10	2.10	11.2	0.024		11.27	0.073	
Cr	50	0.26	4•5	57.	+35,-25	-0.32	9.1	0.47		13.20	0.011	
	52	3.26	7•5	0.66	+100,-50	1.23	10.6	0.057		12.27	0.028	
	53	2.69	6.8	0.12	+150,-60	-1.80	7.6	4.1		8.09	1.7	
	54	6.34	10.5	0.008	n	1.57	11.0	0.033		9.90	0.29	
Man	55	1.84	6.2	0.30	u	0.64	10.3	0.090	\downarrow	10.41	0.18	
-					1							
	-											
	Element Ca Sc Ti V Cr	Element Mass Ca 48 Sc 45 Ti 46 47 48 49 50 50 50 51 Cr 50 51 Cr 50 52 53 54 Man 55	Image: Piece set Mass ET (MeV) Ca 48 13.22 Sc 45 -0.53 Ti 46 1.62 47 -0.18 48 3.27 49 1.25 50 6.23 V 50 -3.00 51 1.71 Cr 50 0.26 53 2.69 54 6.34 Mn 55 1.84	I p l e s(n,p) r eElementMass E_T (MeV)Eeff(MeV)Ca4813.2216.8So45-0.533.2Ti461.625.547-0.183.7483.277.2491.255.1506.2310.1V50-3.001.0511.715.7Cr500.264.5523.267.5532.696.8546.3410.5Mn551.846.2	Image: state sta	Image: height of the product of th	Inples (n,p) reactions (n Element Mass E_T (MeV) $eff(MeV)$ $ef(mb)$ $\Delta eff(f)$ E_T (MeV) Ca 48 13.22 16.8 < 0.0001	(n,p) reactions (n,c) rea Element Mass E_T (MeV) $Eeff(MeV)$ $\vec{\sigma}$ (mb) $\Delta \vec{\sigma}$ E_T (MeV) $Eeff(MeV)$ Ca 48 13.22 16.8 < 0.0001	Lip 1 e 8(n,p) reactions(n, α) reactionElementMass E_{T} (MeV) $Eeff(MeV)$ $\overline{\sigma}^{-}$ (mb) $\Delta \overline{\sigma}^{-}$ (β) E_{T} (MeV) $Eeff(MeV)$ $\overline{\sigma}^{-}$ (mb)Ca4813.2216.8< 0.0001	a p l e s (n,p) r e a c t i o n s (n, d) r e a c t i o n s Element Mass En (MeV) Seft(MeV) $\overline{\sigma}$ (mb) $\Delta \overline{\sigma}^{-}$ (f) En (MeV) Eeft(MeV) $\overline{\sigma}$ (mb) $\Delta \overline{\sigma}^{-}$ (f) Ca 48 13.22 16.8 < 0.0001	a p l e s (n,p) r e a c t i o n s (n, x) r e a c t i o n s (n, x) r e a c t i o n s (n, x) Element Mass E_T (MeV) Deff(MeV) $\overline{\sigma}'(mb)$ $\Delta \overline{\sigma}''(x)$ E_T (MeV) $\overline{E_T}(meV)$ <t< td=""><td>Inples (n, 2n) reactions (n, 4n) reactions (n, 2n) reactions (n, 2n) reactions Element Mass E_T (MeV) $Eeff(MeV)$ $\vec{\sigma}$ (mb) $\Delta \vec{\sigma}$ $\Delta \vec{\sigma}$ (meV) $\vec{\sigma}$ (mb) $\Delta \vec{\sigma}$ (meV) $\vec{\sigma}$ $\vec{\sigma}$ (meV) $\vec{\sigma}$ (meV) $\vec{\sigma}$ (meV) $\vec{\sigma}$</td></t<>	Inples (n, 2n) reactions (n, 4n) reactions (n, 2n) reactions (n, 2n) reactions Element Mass E_T (MeV) $Eeff(MeV)$ $\vec{\sigma}$ (mb) $\Delta \vec{\sigma}$ $\Delta \vec{\sigma}$ (meV) $\vec{\sigma}$ (mb) $\Delta \vec{\sigma}$ (meV) $\vec{\sigma}$ $\vec{\sigma}$ (meV) $\vec{\sigma}$ (meV) $\vec{\sigma}$ (meV) $\vec{\sigma}$

TABLE VI (cont'd)

Sa	mplea	3		(n,p) r e	action	8	(n	,«)rea	ction	1 8	(n, 21	n)reac	tions
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	₩(mb)	<u> 5</u> (%)	E _T (MeV)	Eeff(MeV)	F (mb)	<u> </u>	E_{T} (MeV)	ā (mb)	<u> </u>
26	Fe	54	-0.09	4.1	70.	+35,-25	-0.8/	9.1	0.49	+80,-45	13.63	0.007	+70,-40
		56	2•97	7•4	0.81	+100,-50	-0.32	9.6	0.25	1	11.40	0.068	}
		57	1.81	6.3	0.27	+150,-60	-2.40	7.5	5.0		7•78	2.5	
		58	5.41	9•8	0.023	u,	1.41	11.4	0.019		10.22	0.22	
27	Co	59	0.80	5•4	1.0	u	-0.32	9 .9	0.17		10.61	0.15	
28	Nı	58	-0.39	4•3	85.	+35,-25	-2.89	7.6	4.4		12.41	0.026	
		59	-1.86	2.9	Al.	+150,-60	-5.09	5•4	17.		9•15	0.65	
		60	2.08	6.8	2.1	+60,-40	-1. 35	9.2	0.46		11.58	0.060	
		61	0.53	5•2	1.4	+150,-60	-3•57	6.9	7.3		7•95	2.2	
		62	4•51	9•2	0.058		0•44	11.0	0.036		10.77	0.14	
		63	2.92	7.6	0.043		-1.56	9.0	0.63		6.95	5•9	
		64	6.32	11.1	0.004		2.47	13.0	0.002		9.81	0.36	
29	Cu	63	-0.72	1.2	6.3		-1.71	9.1	0.55		11.03	0.11	
		65	1.37	6.2	0.34		0.09	10.9	0.043		10.06	0.28	
30	Zn	64	-0.21	4.8	43•	+35,-25	-3.87	7.3	6.0		12.04	0.040	
		66	1.88	6.8	2.2	+60,-40	-2.27	8.8	0.86	-	11.22	0.091	

T	A	в	L	Έ	VI	(cont'	'd)
---	---	---	---	---	----	--------	-----

S	Samples			(n,p) reactions				, «) r e a	ction	8	(n, 2n) reactions		
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	₹(mb)	<u> </u>	\mathbb{E}_{T} (MeV)	Eeff(MeV)	₩(mb)	<u> </u>	E _T (MeV)	ā ^(mb)	<u>Δ</u> 5 (%)
3	D 511	67	-0.21	4.8	2.7	+150,-60	-4.88	6.2	12.	+80,-45	7.16	5.0	+70,-40
		68	3.86	8.9	0.098	+100`,-50	-0.78	10.3	0.10	1	10.35	0.22	
		70	6.3	11.3	0.003	+150,-60	0.72	11.8	0.012		9•35	0.60	
3	l Ga	69	0.13	5.2	1.5	H	-2.58	9.0	0.67		10.46	0.20	
		71	2.05	7.2	0.083	n	-0.93	10.4	0.092		9•43	0.56	
3	2 Ge	70	0.88	6.1	6.5	+60,-40	-2.96	8.7	1.0		11.70	0.059	
		72	3.26	8.5	0.18	+100,-50	-1.48	10.2	0.12		10.90	0.13	
		73	0.78	6.0	0.49	+150,-60	-3.91	7•7	4.4		6.88	7.0	
		74	4.78	10.0	0.020		0.45	12.1	0.008		10.34	0.23	
		76	6.72	11.9	0.001		2.4	14.0	0.0006		9•57	0.51	
3	3 AS	75	0.41	5.8	0.67	\downarrow	-1.20	10.7	0.0063		10.38	0.23	
5	4 Se	74	0.58	6.0	7.9	+60,-40	-3.34	9•3	0.46		12.23	0.036	
		76	2.21	7.7	0.63	+100,-50	-1.69	10.5	0.084		11.31	0.091	
		77	-0.10	5•3	1.4	+150,-60	-4.47	7.7	4.6		7.51	3.9	
		78	3•53	9.0	0.092		-0.46	11.8	0.013		10.63	0.18	
		80	5.29	10.7	0.007	u	0.96	13.0	0.002	-	10.02	0.34	

TABLE VI (cont'd)

Sa	mples	3		(n,p) r e	action	8	(n	,«) rea	ction	8	(n, 21	n) reac	tions
Z	Element	Mass	E _{rr} (MeV)	Eeff(MeV)	♂(mb)	<u>5</u> (%)	E _T (MeV)	Eeff(MeV)	a(mb)	<u>∆</u> , 7 , (%)	E _T (MeV)	ā (mb)	<u>∆</u>
34	Se	82	7.17	12.6	0.0004	+150 ,- 60	2.58	14.7	0.0002	+80,-45	9•39	0.64	+7040
3 5	Br	79	-0.64	5.0	2.3	¥	-1.86	10.6	0.075		10.83	0.15	
		81	0.81	6.4	0.29	•	-0.43	12.0	0.010		10.29	0.26	
36	Kr	78	-0.09	5.6	15.	+60,-40	-3.67	9.0	0.72		12.13	0.041	
		80	1.24	6.9	2.2	u	- 2•35	10.4	0.10		11.67	0.066	
		82	2.33	8.0	0.42	+100,-50	-0. 99	11.8	0.014		11.11	0.12	
		83	0.19	5•9	0.62	+150,-60	-3.42	9.1	0.66		7•56	3•9	
	{	84	3.97	9.6	0.039		0.40	13.1	0.002		10.64	0.19	
		86	6.60	12.3	0.0007		2.20	14.9	0.0002		9•97	0.37	
37	Rb	85	-0.10	5•7	0.85		-0.99	12.0	0.011		10.60	0.20	
		87	3.15	9.0	0.007		1.22	14.3	0.0004		10.04	0.35	
38	Sr	84	0.11	6.0	8.6	+60,-40	-2.69	10.6	0.078		12.16	0.042	
		86	1.00	7.0	2.0		-1.12	12.2	0.0081		11.62	0.073	
		87	-0.51	5•4	1.3	+150,-60	-3.21	10.1	0.16		8.53	1.6	
		88	4•57	10.5	0.011	u	0.80	14.1	0.0006	v	11.24	0.11	v
							1						
							ĺ						
							[

TABLE VI (cont'd)

Sar	nples	3		(n,p) r e	action	S	(n	,«) r e a	ction	8	(n, 21	n) reac	tions
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	₩(mb)	<u> 45</u> (%)	E _T (MeV)	Eeff(MeV)	₽(mb)	<u>∆</u> , , (%)	E_{T} (MeV)	ā (mb)	<u> </u>
39	Y	89	0.72	6.8	0.17	+150 ,- 60	-0.70	12.9	0.003	+80 ,- 45	11.60	0.076	+70,-40
40	Zr	90	1.52	7.7	0.71	+100 ,- 50	-1.75	12.1	0.010		12.07	0.048	1
		91	0•77	7.0	0.13	+150 ,- 60	-5.66	8.3	2.2		7.28	5•5	
		92	2.87	9.0	0.10		-3.39	10.5	0.096		8.73	1.3	
		94	4.26	10.5	0.011		-2.07	11.8	0.015		8,28	2.1	
		96	6.08	12.2	0.0009		-0.17	13.8	0.0009		7.91	3.1	
41	ND	93	-0.72	5.6	1.0		-4.91	9•2	0.61		8.92	1.1	
		94	-1.68	4.6	75.	$\mathbf{\nabla}$	-5.63	8.6	1.5		7.31	5•4	
42	Мо	92	-0.43	6.0	9.1	+60,-40	-3.69	10.7	0.072		12.83	0.023	
		94	1.28	7•7	0•73	+100 ,- 50	-5.13	9•3	0.54		9•78	0.48	
		95	0.14	6.6	0.24	+150 ,- 60	-6.39	8.0	3•4		7•45	4.8	
		96	243	8.9	0.12	+100,-50	-3•99	10.4	0.11		9•25	0.81	
		97	1.16	7.6	0.057	+150 ,- 60	-5•37	9.0	0.84		6.89	8.4	
		98	3.86	10.3	0.015	1	-3.20	11.2	0.037		8.73	1.4	
		100	5•27	11.7	0.002		-2.39	12.0	0.012		8.38	2.0	
43	тс	97	-1.13	5•4	1.4	\checkmark	-4.81	9•9	0.23	↓	9.51	0.63	

т	A	В	L	Ε	VI	(cont'd)
---	---	---	---	---	----	---------	---

Sa	mples	3		(n,p) r e	action	8	(n	,«) r e a	ction	18	(n, 2	n) r e a c	tions
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	₹(mb)	<u> </u>	E _T (MeV)	Eeff(MeV)	₩(mb)	<u> </u>	E _T (MeV)	ā (mb)	<u>∆</u>
43	тс	98	-2.37	4.1	160.	+35,-25	-5.91	8.8	1.1	+80,-45	7•47	4.8	+70,-40
		99	0.60	7.2	0.10	+150 ,-6 0	-3.92	10.8	0.065		8.97	1.1	
44	Ru	96	-0.57	6.1	8.1	+60,-40	-6.38	8.5	1.7		10.81	0.17	
		98	0.93	7.6	0.87	+100,-50	-5.14	9.8	0.27		10.35	0.28	
		99	-0.49	6.2	0.45	+150,-60	-6.82	8.1	3.1		7•54	4•5	
		100	2.62	9•3	0.069		-3•97	10.9	0.057		9•77	0.50	
		101	0.86	7•5	0.067		-5.80	9.1	0.75		6.87	8.8	
		102	3.76	10.5	0.012		-2.50	12.4	0.007		9.31	0.80	
		104	4•56	11.2	0.004		-1.06	13.8	0.0009		9.00	1.1	
45	Rh	103	-0.02	6.7	0.22		-3.48	11.8	0.016		9.40	0.74	
46	Pa	102	0.37	7.2	1.6	+100,-50	-5•34	10.1	0.18		10.69	0.20	
		104	1.70	8.6	0.20	u	-4.19	11.3	0.033		10.12	0.36	
		105	-0.22	6.7	0.22	+150,-60	-6.33	9.1	0.77		7.14	6.9	
		106	2.78	9•7	0.040		-3.00	12.4	0.007		9.65	0.59	
		107	0.73	7.6	0.061		-5•37	10.0	0.22		6.59	12.	
		108	3.75	10.6	0.010		-2.05	13.6	0.001		9.31	0.83	
		110	4.66	11.6	0.002		-1.02	14.5	0.0004		8.89	1.3	

TABLE VI (cont'd)

Sa	Samples (n,p)reactions					8	(n	,«) r e a	ction	8	(n, 21	n) react	ions
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	∂ (mb)	<u> 15</u> (%)	E _T (MeV)	Eeff(MeV)	5 (mb)	<u>∆</u> <u>–</u> (%)	E _T (MeV)	ā (mb)	<u>Δ</u> σ (%)
47	Ag	107	-0.75	6.2	0•47	+150 ,- 60	-4.18	11.5	0.025	+80 ,- 45	9.64	0.60	+70,-40
		109	0.34	7•3	0 .09 5	s t.	-3.29	12.4	0.007	1	9•27	0.87	
48	Ca	106	-0.58	6.5	4•7	+60 ,- 40	-5.98	10.3	0.14		11.02	0.15	
		108	0.87	8.0	0.51	+100 ,- 50	-4.81	11.2	0.039		10.42	0.28	
		110	2.13	9.2	0.086	+150,-60	-3.67	12.3	0.008		9•97	0.44	
		111	0.25	7•4	0.083		- 5•92	10.1	0.19		7.04	7•9	
		112	3•25	10.4	0.014		-2.68	13•7	0.001		9•48	0.72	
		113	1.24	8.3	0.022		-4-94	11.1	0•046		6 .60	12.	
		114	4.26	11.4	0.003		-1.66	14.3	0.0005		9.12	1.0	
		116	5•57	12.7	0.0005		-0.19	15.8	0.0001		8.77	1.5	
49	In	113	-0.49	6.7	0.24		-3.76	12.4	0.007		9.51	0.70	
		115	0.67	7•9	0.041	¥	-2.68	13.6	0.001		9.11	1.1	
50	Sn	112	-0.12	7•2	1.7	+100,-50	-5•54	11.1	0.046		10.90	0.18	
		114	1.21	8.6	0.22	u	-4.33	12.2	0.010		10.41	0.29	
		115	-0.30	7.1	0.13	+150 ,- 60	-6.20	10.3	0.15		7.60	4•7	
		116	2,51	9•9	0.031	M	-3.17	13.4	0.002		9.64	0.63	
		117	0.69	8.0	0.036	n	-5.27	11.2	0.041	\mathbf{v}	7.00	8.5	V
						ĺ							
			l i			1	I						1

TABLE VI (cont'd)

Sa	mplea	3	(n,p) reactions $E_m (MeV) = (mh)$ $\Delta \overline{\sigma}$			8	(n	,«) r e a	ction	s	(n, 21	n) react	lons
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	₹ (mb)	<u>∆</u> 6 16 (%)	E _T (MeV)	Eeff(MeV)	F (mb)	<u>∆</u> ∂ 100 (%)	E _T (MeV)	ā (mb)	<u> </u>
50	Sn	118	3•45	10.8	0.008	+150 , 60	-2.09	14.4	0.0004	+80 ,- 45	9.11	0.80	+70,-40
		119	1.58	8.9	0.009		-4.30	11.9	0.015	μ	6.54	14.	
		120	4.86	12.2	0.001		-0.96	15.6	0.0001	u	9.18	1.0	
		122	5•97	13.3	0.0002		0.08	16.5	<0.0001		8.88	1.4	
		124	6.67	14.0	0.0001		1.98	18.5	<0.0001		8.56	1.9	
51	Sb	121	0.40	7.0	0.16	\checkmark	-3.51	14.5	0.0004	+80 ,- 45	9•32	0.89	
		123	0.63	8.2	0.032		-1.92	14.8	0.0003	1	9.04	1.2	
52	Те	120	0.21	7.7	0.86	+100 ,- 50	-6.64	10.4	0.13		10.37	0.31	
		122	1.21	8.8	0.17	u	-5.40	11.6	0.024		9.87	0.52	
		123	-0.84	6.7	0.25	+150 ,- 60	-7.58	9•4	0.56		6.99	8.9	
		124	2.13	9•7	0.044	1	-4.34	12.6	0.006		9.50	0.76	
		125	-0.02	7•5	0.078		-6.56	10.4	0.13		6.64	13.	
		126	2.97	10.5	0.013		-3.39	13.6	0.001		9.18	1.0	
		128	3•53	11.0	0.006		-2.55	14.5	0.0004		8.84	1.5	
		130	4.25	11.8	0.002		-1.81	15.1	0.0002		8.48	2.1	
53	I	127	-0.09	7.6	0.068		-4.28	13.0	0.003		9.21	1.0	
		129	0.72	8.4	0.021	\checkmark	-3•47	13.8	0.001	¥	8.91	1.4	
					1								

TABLE VI (cont'd)

Sa	mplee	3	(n,p) reactions ass E_T (MeV) $Eeff(MeV)$ $\overline{\sigma}(mb)$ $(\Delta \overline{\sigma} \overline{\sigma})$				(n	,«) rea	ction	B	(n, 21	n) reac	tions
Z	Element	Mass	\mathbf{E}_{T} (MeV)	Eeff(MeV)	æ(mb)	<u> 17</u> (%)	E _T (MeV)	Eeff(MeV)	S(mb)	<u>∆</u> , (%)	E _T (MeV)	ā (mb)	<u>∆</u> ₹ ₹ (%)
54	Xe	124	-0.69	7.0	2.5	+60,-40	-6.79	10.8	0.076	+80,-45	10.31	0.34	+70,-40
		126	0.47	8.2	0.42	+100,-50	-5.64	11.8	0.018	1	10.17	0.39	
		128	1.35	9.1	0.11	+150,-60	-4.81	12.6	0.006		9.69	0.64	
		129	-0.59	7.2	0.12		-7.02	10.5	0.12		6.96	9•5	
		130	2.23	10.0	0.029		-4.06	13.4	0.002		9•33	0.92	
		131	0.19	8.0	0.038		-6.22	11.2	0.044		6.66	13.	
		132	2.82	10.6	0.012		-3.37	14.1	0.0007		9.00	1.3	
	1	134	3.40	11.2	0.005		-2.72	14.8	0.0003		8.60	1.9	
		136	6.27	14.0	0.0001		-2.12	15.3	0.0001		8.05	3•4	
55	Св	133	-0.36	7•5	0.081		-4.45	13.3	0.002		9.0 5	1.2	
		135	0.38	8.3	0.025		-3.67	14.1	0.0007		8.89	1.5	
		137	3•59	11.5	0.0002	•	-3.06	14.7	0.0003		8.34	2.5	
56	Ba	130	0.34	7.6	1.0	+100,-50	-6.67	11.4	0.033		10.30	0.35	
		132	0•49	8.5	0.28	14	-5.89	12.1	0.012		9.88	0•54	
		134	1.29	9•3	0.084	+150 ,- 60	-5.10	12.9	0.004		9•54	0.76	
		135	-0.57	7•4	0.095		-7.06	11.0	0.06		7.03	9.1	
		136	1.78	9.8	0.040		-4.40	13.6	0.0015		9•17	1.1	
		137	0.39	8.4	0.022		-6.04	12.0	0.015		6.95	10.	

TABLE VI (cont'd)

5 a	mples	3	(n,p) reactions s E_{T} (MeV) $Eeff(MeV)$ $\overline{\sigma}(mb)$ $\Delta \overline{\sigma}$				(n	,ø) rea	ction	8	(n, 2n) reactions		
Z	Element	Mass	E_{T} (MeV)	Eeff(MeV)	₹(mb)	<u>∆</u> (%)	E _T (MeV)	Eeff(MeV)	S(mb)	<u> </u>	E _T (MeV)	ā ^(mb)	<u>∆</u> 15 (%
56	Ba	138	4.65	12.7	0.0005	+150,-60	-3.88	14.2	0.0006	+80,-45	8.67	1.8	+70,-4
57	La	138	-2.58	5 •5	25.	+60,-40	-6.83	11.5	0.030		7.37	6.6	
		139	1.49	9.6	0.004	+150,-60	-4.82	13.5	0.002		8.84	1.6	
58	Ce	136	-0.36	7.8	0.80	+100,-50	-6.76	11.8	0.019		10.08	0.45	
		138	0.28	8.5	0.28	si	-5.98	12.5	0.007		9.64	0.71	
		140	3.01	11.2	0.005	+150,-60	-5-34	13.1	0.003		9•27	1.0	
		142	3.76	11.9	0.002		-6.09	12.4	800.0		7.21	7•9	
59	Pr	141	-0.20	8.1	0.035		-6.15	12.5	0.007		9.16	0.86	
60	Nd	142	1.39	9.8	0.042		-6.64	12.3	0.010		9.88	0.57	
		143	0.15	8.6	0.017		-9.72	9•3	0.71		6.17	22.	
		144	2.23	10.6	0.013		-7.33	11.6	0.027		7.87	4.2	
		145	1.03	9.4	0.005		-8.73	10.2	0.20		5.80	32.	
		146	3.32	11.7	0.002		-6.34	12.7	0.006		7.62	5•4	
		148	4.15	12.5	8000.0		-5.37	13.5	0.002		7•37	6.9	
		150	4.25	12.7	0.0006	•	-4.21	14.7	0.0003		7.41	6.7	

TABLE VI (cont'd)

Sai	mples	3		(n,p) r e	action	8	(n	,«)rea	ction	8	(n, 21	n) reac	tlons
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	₹(mb)	<u>∆</u> 777 777 777 778)	E _T (MeV)	Eeff(MeV)	₩(mb)	<u>∆</u> ∂ , (%)	E _T (MeV)	a (mb)	<u> </u>
62	Sm	144	-0.22	8.3	0•39	+100,-50	-7.92	11.5	0.031	+80 ,- 45	10.63	0.27	+70,-40
		147	-0.56	7.9	0.048	+150 ,- 60	-10.11	9•4	0.63	1	6.42	18.	
		148	1.69	10.2	0.023		-7•73	11.7	0.024		8.20	3.1	
		149	0.29	8.8	0.013		-9. 43	10.2	0.20		5.91	29.	
		150	2•74	11.3	0.005		-6.74	12.8	0.005		8.04	3.6	
		152	2.64	11.2	0.005		-5.28	14.1	0.0008		8.32	2.8	
		154	3.24	11.7	0.003		-4.10	15.4	0.0001		8.03	3•7	
63	En	151	-0.71	7•9	0.049		-7.87	11.8	0.021		8.03	3•7	
		153	0.02	8.7	0.015		-5.83	13.8	0.001		8.61	2.1	
64	Ga	152	1.05	9•7	0.050		-8.07	11.9	0.018		8.65	2.0	
		154	1.20	9•9	0.038		-6.51	13.4	0.002		8.71	1.9	
		155	-0.54	8.2	0.032		-8.33	11.7	0.024		6.49	17.	
		156	1.68	10.3	0.021		-5.67	14.3	0.0006		8.59	2.2	
		157	0.58	9•3	0.006		-7.28	12.7	0.006		6.41	19.	
		158	2.67	11.4	0 .0 04		-5.16	14.8	0.0003		7.98	4.0	
		160	3.64	12.4	0.0009		-3•5	16.9	<0.0001		7.50	6.4	
65	ТЪ	159	0.17	9.0	0.010	V	-6.22	14.1	0.0008	+80 ,- 45	8.19	3.2	
	[l

TABLE VI (cont'd)

Sar	nplea	3		(n,p) reactions E_{m} (MeV) Eeff(MeV) $=$ (mb) $\Delta \overline{\sigma}$			(n	,¤) rea	ction	8	(n, 21	n) react	ions
Z	Element	Mass	\mathbf{E}_{T} (MeV)	Eeff(MeV)	œ(mb)	<u>∆₹</u> ₹	E _T (MeV)	Eeff(MeV)	₩(mb)	<u>∆</u> ∂] (%)	E_{T} (MeV)	o (mb)	<u> </u>
66	Dy	156	-0.52	8.3	0.42	+100,-50	-8.26	12.3	0.010	+80,-45	9•50	0.88	+70,-40
		158	0.16	9.1	0.13	+150 ,- 60	-7-33	13.3	0.003		9.12	1.3	
		160	1.06	9•9	0.039		-6.82	13.7	0.001		8.64	2.1	
		161	-0.20	8.7	0.016		-8.30	12.2	0.012		6.49	17.	
		162	1.69	10.6	0.014		-6.05	14.5	0.0005		8.25	3.1	
		163	0.91	9.8	0.003		-7.23	13•3	0.003		6.31	21.	
	[]	164	2.58	11.6	0.003		-5.21	15•3	0.0002		7.70	5•4	
67	Но	165	0.52	9.6	0.004		-6•46	14.3	0.0006		8.04	3•9	
68	Er	162	-0.46	8.7	0.23	+100,-50	-8.49	12.5	0.008		9•27	1.1	
		164	0.18	9•4	0.083	+150,-60	-7.76	13.3	0.003		8.91	1.6	
		166	1.08	10.3	0.022		-7.09	13.9	0.001		8.53	2.4	
		167	0.19	9•1	0.006		-8.31	12.7	0.006		6.47	18.	
		168	2.00	11.2	0.006		-6.26	14.7	0.0004	\checkmark	7.82	4.8	
		170	2•94	12.1	0.002		-4.58	16.4	<0.0001		7•31	8.1	
69	Tm	169	-0.43	8.8	0.014	\downarrow	-7•44	13.8	0.001	+80,-45	8.11	3.7	
70	Υъ	168	-0.50	8.9	0.18	+100,-50	-8.60	12.9	0.005	ų	9.11	1.4	
						1			}	I			1

TABLE VI (cont'd)

Sa	mplea	3		(n,p) r e	action	8	(n	,ø) rea	ction	8	(n, 2n) reactions		
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	æ(mb)	<u> </u>	Ē _T (MeV)	Eeff(MeV)	₽(mb)	<u>∆</u> ∂ → → (%)	\mathbf{E}_{T} (MeV)	ā (mb)	<u> </u>
70	Υъ	170	0.19	9.6	0.063	+150 ,- 60	-8.17	13.3	0.003	+80,-45	8.52	2.1	+70,-40
		171	-0.69	8.7	0.016		-9.33	12.2	0.013	I	6.66	15.	
		172	1.09	10.5	0.017		-7.31	11.2	0.0007		8.07	3.8	
		173	0.54	10.0	0.002		-8.20	13.3	0.003		6.40	20•	
		174	2.29	11.7	0.003		-6.41	15.1	0.0002		7.51	6.7	
		176	3.38	12.8	0.0005		-5•58	15.9	0.0001		6.92	12.	
71	Lu	175	-0.31	9.2	0.008	\checkmark	-7.87	13.8	0.001		7.70	5.6	
		176	-0.90	8.5	0.33	+100 ,- 50	-8.49	13.2	0.003		6.33	22.	
72	Hf	174	-0. 58	9•0	0.16	R	-9.17	12.8	0.005		8.61	2.2	
		176	0.41	10.0	0.036	+150 ,- 60	-8.62	13.1	0.002		8.13	3•7	
		177	-0.29	9•3	0.007		-9.71	12.3	0.011		6.12	20.	
		178	1.48	11.1	0.007		-7.91	14.1	0.0009		7.67	5.8	
		179	0•57	10.1	0.002		- 8 .6 8	13.3	0.003		6.13	27.	
		180	2•53	12.2	0.001	\checkmark	-6.86	15.2	0.0002		7•43	7•4	
73	Та	180	-1.71	8.0	0.72	+100,-50	-9.18	13.0	0.004	\downarrow	6.62	17.	
		181	0.24	10.0	0.003	+150,-60	-7.41	14.8	0.0003		7.69	5.8	v
					i								
	1				1				1				

Т	A	В	L	Е	VI	(cont'd)	
---	---	---	---	---	----	----------	--

Sa	Samples Z Element Mass			(n,p) r e	action	ß	(n	, ¤) r e a	ction	ß	(n, 21	n) reac	tions
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	€(mb)	<u>5</u> (%)	E _T (MeV)	Eeff(MeV)	a (mb)	<u>∆</u> ∂ ``` (%)	E _T (MeV)	ā (mb)	<u> </u>
74	W	180	0.03	9.8	0.049	+150 ,- 60	-8.86	13.6	0.002	+80,-45	8.54	2•5	+70,-40
		182	1.03	10.9	0.009		-7.89	14.9	0.0003		8.10	3.9	
		183	0.29	10.1	0.002		-9.09	13.6	0.002		6.23	25.	
		184	2.26	12.1	0.002		-7.37	15.4	0.0001	¥	7. 45	7•4	
		186	3.14	13.0	0.0004		-6.39	16.4	<0.0001		7.24	9.2	
75	Re	185	-0.35	9.4	0.006		-8.28	14.2	0.0006	+80,-45	7.83	5.1	
		187	0.53	10.2	0.002		-7.10	15.8	0.0001		7.11	7.8	
76	Os	184	-0.68	10.4	0.020		-9.71	13.2	0.003		8.91	1.8	
		186	0.30	10.3	0.02/		-9.0 2	13.9	0.001		8.31	3.2	
		187	-0. 78	9.2	0.008		-10. 13	12.7	0.007		6.33	23.	
		188	1.34	11.3	0.005		-7.89	15.0	0.0003		8.03	4.2	
		189	0.23	10.2	0.002		-9.17	13.7	0.002		5•95	33.	
		190	2.41	12.4	0.001		-6.84	16.0	0.0001	·	7.83	5.2	
		192	3•19	13.2	0.0003		-5.24	17.7	<0.0001		7.60	6.6	
77	In	191	-0.17	9.6	0.005		-7.96	15.5	0.0001	+80,-45	8.16	3.8	
		1 93	0.35	10.4	0.001	V	-6.64	16.5	<0.0001		7.81	5•1	, v
TABLE VI (cont'd)

Samples				(n,p) r e	action	8	(n	,¢) rea	ction	(n, 2n) reactions			
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	⊊ (mb)	<u>∆</u> ₩ ₩ ₩	E _T (MeV)	Eeff(MeV)	∂(mb)	<u>∆</u> ₹ ₹ (%)	E _T (MeV)	ā (mb)	<u>∆</u> ₹ ₹ (%)
78	Pt	190	-0.11	10.1	0.032	+150,-60	-9.54	13.9	0.001	+80 ,- 45	8.86	1.9	+70,-/0
		192	0.68	10.9	0.010		-8.34	15.1	0.0002		8.70	2.2	
		194	1.46	11.6	0.003		-7.28	16.1	0.0001		8.11	3.0	
		195	0.15	1 0.3	0.002		-8.71	14.7	0.0004	¥	6.16	28.	
		196	2.40	12.6	0.0008		-6.38	17.1	< 0.0001		7.96	4.7	
		198	3.64	13.8	0.0001		-5•59	17.8	<0.0001		7.60	6.7	
79	Au	197	-0.04	10.2	0.002		6.98	16.1	<0.0001		8.12	4.0	
80	Hg	196	-0.10	10.3	0.024		-8.25	15.0	0.0003	+80 ,- 45	8.79	2.1	
		198	0.59	11.0	0.009		-7.16	16.3	<0.0001		8.34	3.2	
		199	-0.33	10.0	0.003		-8.73	15.0	0.0003	+80 ,- 45	6.68	17.	
		200	1.43	11.8	0.003		-6.55	17.3	< 0.0001		8.07	4.3	
		201	0.72	11.1	0.0005		-7.89	15.9	<0.0001		6.26	25.	
		2 0 2	2.73	13.1	0.0004		-5.71	18.0	<0.0001		7•79	5.6	
		204	3.74	11.1	0.0001		-1.46	19.2	<0.0001		7•53	7.3	
81	Tl	203	-0.29	10.2	0.002		-7.20	16.8	<0.0001		7.76	5.8	
		204	-1.13	9•1	0.096		-7.46	16.2	0.0001	+80 ,- 45	6.69	17.	
		205	0.75	11.2	0.0005	V	5.68	18.0	<0.0001	ti	7•58	7.0	
						1		ĺ	1	l I	l 1		1

TABLE VI (cont'd)

Samples			(n,p) reactions				(r.	,ø) rea	ction	(n, 2n) reactions			
Z	Element	Mass	E _T (MeV)	Eeff(MeV)	₹(mb)	<u>5</u> (%)	E _T (MeV)	Eeff(MeV)	6 (mb)	<u>\ 7</u> (%)	E _T (MeV)	ā (mb)	<u>\</u>
82	Pb	201	-0.02	10.5	0.019	+150,-60	-8.20	16.1	0.0001	+80,-45	8.44	3.0	+70,-40
		206	0.75	11.3	0.006	u	-7.14	17.1	<0.0001		8.12	4.1	
		207	0.65	11.2	0.0005		-7.89	16.4	<0.0001		6.77	16.	
		208	4.23	14.8	<0.0001		- 6.19	18.2	< 0.0001		7.40	8.5	
83	Bi	208	-3.65	7•3	2.2	+100,-50	-10.58	14.1	0.001	+80,-45	6.94	13.	
		209	-0.14	10.5	0.001	+150,-60	-9.63	14.9	0.0003	*	7•49	7.8	
		210	-0.72	9. 9	0.046	ų	-11.88	12.6	0.008	F	4.62	130.	W

Fig. 1 - E_{eff} is defined in such a way that area A = area B

Fig. 2 - (n,p) cross-sections averaged in a fission neutron spectrum.

Fig. 4 - (n, 2n) cross-sections averaged in a fission neutron spectrum.