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STATUS OP HEUTRCN CROSS SECTIONS
FOR REACTOR DOSIMETRY z

M. F. Vlasov, A. Fabry, and H. H. McElroy

I. IHTROUJCTIOH

Reactor dosimetry is aimed at providing the capability to
properly correlate, interpolate and/or extrapolate integral quanti-
ties, such as flux and fluence, fission rates, burn up, damage
rates, doses, heating rates, etc. [1""5J

The determination of flux-fluence neutron spectra is not a
primary objective of reactor neutron dosimetry, but a necessary
intermediate step in a more general correlation scheme between
different, independent integral quantities; i.e., the damage rate
in a given material exposed at a given temperature in a test
reactor to the damage rate of the same material under other ex-
posure conditions. The reaction rates and total number of reactions
observed in neutron dosimeters are the basic correlation para-
meters in this scheme, and the flux—fluence neutron spectra are
the corresponding transfer functions.

Goal accuracies for determining such transfer functions are
in the range of 2-5J& (lo) for integral and 2-1^6 (la) for diffe-
rential results.[1-5J This in turn requires the development and
use of a consistent set of differential-energy dependent cross
sections for dosimetry nuclear reactions that have good relative
and integral accuracy in the range of a few percent. The concept
and the role of reference neutron fields in determining and vali-
dating the accuracy of cross sections and transfer functions are
best illustrated (Fig. l) by considering the crucial issue of
applying high flux test reactor materials property-change data to
commercial power plants.

Fluence neutron spectra for high flux test reactors are usually
unfolded from a set of measured reaction rates R±. Properly changes
observed in a series of such fluence neutron spectra are correlated
by adjustment of theoretically based damage functions so as to
provide consistent life time predictions for materials and compo-
nents for commercial plants. Such an adjustment procedure will be
biased if the unfolded fluence neutron spectra are not consistent
with the ones resulting from design computations.

x The paper was presented at the International Conference on the
Interactions of Neutrons with Huclei, Lowell,Mass.,USA, July 1976*

* International Atomic Energy Agency (IAEA), Vienna, Austria
** Centre d,Etude de l*Snergie Huclgaire (CES-SCK), Mol, Belgium
+ Hanford Engineering Development Laboratory (HKDL), Richland,

Washington, USA.



-2-

The most practical and accurate way to avoid such "bias is to
adjust the differential-energy dependent cross sections of dosimetry
reactions within their assigned uncertainties so as to reproduce
the reaction rates observed in a set of benchmark reference neutron
fields. This is possible provided that:

1) the reference neutron fields span a relevant range of
spectral hardness and shape,

2) the neutron spectrum characterization of these reference
neutron fields is complete and accurate, and that

3) the available integral reaction rate data are sufficiently
accurate.

The status of current international efforts to develop standardized
sets of evaluated energy-dependent (differential) neutron cross sections
for reactor dosimetry is reviewed in subsequent sections of this paper.
The status and availability of differential data are considered first,
some recent results of the data testing of the ENDF/B-IV dosimetry file
using ̂ 52cf and 235u benchmark reference neutron fields are presented,
and finally a brief review is given of the current efforts to character-
ize and identify dosimetry benchmark radiation fields.

II. DIFFERENTIAL-ENERGT DEPENDENT CROSS SECTIONS

International recognition of the need to develop standardized
and consistent sets of evaluated energy-dependent dosimetry cross
sections is evident in the recommendations of the IAEA Consultants*
Meeting on Nuclear Data for Reactor Dosimetry [l], in the report on
the U.S. Interlaboratory LMFBR Reaction Rate (ILRR) programme L̂ -i,
in the proceedings of the First ASTM-Euratom Symposium on Reactor
Dosimetry [4j and elsewhere 1.2»5J.

An important step in establishing better consistency and accuracy
will be the continued development of the ENDF/B file for dosimetry
applications [3j. Version IV of this file Ĉ J is now available through
the four neutron data centres at CCDN Saclay, Obninsk, Brookhaven and
IAEA.

Other files that are available are: SAND-II and DETAN-74.CTL
UKL8], KEDAKL9], Chalk RiverLlOJ, Argonne National Laboratory LHJ,
USSR[i2], Lawrence Livermore Laboratory L 1^].
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The field of the differential data for reactor dosimetry has
recently been reviewed "by A. Paulsen and B. Magurno L4J. They
indicated, in particular, that the situation in the field of fast
neutron activation reactions is unsatisfactory and there has been
little progress. The reasons for this unsatisfactory situation
are the following L^J:

a) The lack of agreement for a limited set of reactions
on which all measuring efforts are concentrated.

b) The failure to concentrate the differential measurement
efforts on the most sensitive energy region for dosimetry
purposes. In the case of (n,p), (n,cc) and (n,2n) reactions
this region extends from threshold to 5*5 - 6*5 MeV
above threshold. It comprises 90 - 95 % °f "the total
response in the fission neutron spectrum.

c) The lack of a sufficient number of laboratories equipped
with accelerators which can produce monoenergetic neutrons
in the 6-12 MeV region and which are used for neutron
measurement s.

In this section the status of this category of the data
(threshold reactions) will be discussed briefly. In Appendix 1
excitation functions (energy-dependent cross-sections) are
plotted for some threshold reactions commonly used for neutron
spectra unfolding by the foil-activation technique. All published
experimental data are plotted together with the available evalu-
ations.

Many measurements in the past were performed with monoenergetic
neutrons from inexpensive low—voltage Cockcroft—Walton neutron
generators and electrostatic generators with a maximum energy of
the accelerated protons (or deuterons) up to 3 MeV, using D (d,n)^He,
T(d,n)4He and T(p,npHe reactions.

As a result of this historical development, three general
observations can be made concerning the present status of knowledge
of the excitation functions for many threshold reactions:

a) the gap between 6 and 12 MeV mentioned above could be
covered with such accelerators;

b) shortage (or low quality) of the data near threshold
where a high intensity of monoenergetic neutrons is
needed due to the low values of the cross sections;

c) relatively many measurements of different quality between
13 and 15 MeV.
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Measurements covering the total energy range of interest
have "been performed, e.g. at Chalk River (D.C. Santry, J .P. Butler),
CENM Geel (H. Liskien, A* Paulsen), Los Alamos (R.S. Prestwood,
B.P. Bayhurst et a l . ) and more recently at Argonne (D.L. Smith.
J.U. Meadows), and Bruyeres-le-Chatel (J . Frghaut, G. Mosinski).

The Geel group which is equipped with an ordinary electro-
static generator has obtained i t s results by such reactions as
9Be (oc,n)12C (6-8 MeV neutrons) 14c(d,n) 15M? (8.5 - 10 MeV),
and 15u (d,n) l60S (10-11.5 MeV). However, the progress in this
field is closely connected with "big machines such as the Tandem
accelerators in Chalk River and Bruyeres-le-Chatel and especially
with the Argonne Tandem Ifynamitron accelerator which can pro-
vide high intensity monoenergetic neutrons in a wide energy range.

In the following we shall briefly consider some of the im-
portant reactions for which large discrepancies between measured
and calculated integral results exist (Table l ) :
48Ti(n,p)48Sc, Ti(n,x)46Sc, 47Ti(n,p)47Sc, 63Cu(n,cc)6°Co,
63Cu(n,2n)62Cu, 9°Zr(n,2n)89Zr and 58M(n,2n)57ITi.

The status of the excitation functions of some other
reactions can be seen from Appendix 1.

4 Ti(n tp) So, Fifi. 8; This reaction is a good example of the
importance of integral measurements. I ts effective threshold

.6 MeV) is close to that of the standard reactions
Al(n,oc)24Na (?.2 MeV) and 56Fe(nfp)56jfa (6 MeV).

For these two reactions the excitation functions are established
with an accuracy of about + 5$ and good agreement exists between the
measured and calculated integral cross section <o> (Table l ) .
This means that the neutron spectra used for the calculation of <o>
are reasonably well determined in the response range of these de-
tectors. 90$ response of the 4&Pi(n|p)48sc detector to these spectra
i s in about the same energy range as that of" the two above mentioned
standard reactions (^4*7 - H MeV, using the "preliminary evaluation"
curve, Fig. 8).

Integral measurements of u?i(n,p) Sc in the Û thermal
ission spectrum are accurate to + 6% (recommended value 0.300+0.018 mb
14J. (Precision measurement in the 252cf spontaneous fission spec-

trum yields 0.42 + 0.01 mb L^] (Accuracy +2



-5-

The evaluation of this reaction for ENBF/B-IV has "been done when
no experimental data were available between 6 and 12*5 MeV. The <ofe
calculated from this evaluation are 70$ lower than the measured in te-
gral values given above. Later accurate differential measurements
performed at Argonne in the energy—range 6-10 MeV [ Smith 751 Fig. 81
show much higher values.

The curve "preliminary evaluation" based on the new Argonne
measurements gives Cα ^ values of 0.265 rob* 0.264 nrt> and 0.396 mb
for the fission spectra of 235u (HBS evaluation), 235u (SAND-II ad-
justed) and of 252Cf (NBS evaluation) respectively which are in
much better agreement with the integral values (bias factors are
1.132, I.I36 and 1.061 for the above mentioned spectra). Consider-
ation of the later renormalization of the Argonne data to the new
ENEF/B-IV 2 35U and 23°U fission cross section data L 1 1 ] , especially
between 5*5 and 7 MeV will s t i l l improve th i s situation*

Ti(n tp) Sc, Fi^. 6: For -fa fission neutron spectrum this
reaction i s practically equal to Ti(n,x)46sc: contribution to the
tota l production of 46gc i n natural titanium i s ~99$» The
effective threshold i s at 3«9 MeV and 90$ response in fission
spectrum covers the energy range between 3»4 and 9«1 MeV.

Between 6 and 8.5 MeV recent Argonne data [Smith 751 are s l ight-
ly higher than ENEF/B-IV cross sections and lower between 8.5 - 10 MeV.
No experimental data are available from threshold to 3»67 MeV and
from 10 to 12.5 MeV. Both these energy intervals are important for
determination of the excitation function with better accuracy in
order to clarify the existing discrepancies between measured and
calculated integral<o>( ~15 - 18 $, Table l ) .

47 / \47

Ti(n,p) Sc» Fig. 7* This is an exoergic reaction with the effective
threshold at ~2.2 MeV. The 90$ response in the fission spectrum is
in the 2.1 - 7 MeV energy range. The contribution of 48ri (n,np)47sc
reaction to the production of 47s

c
 is important above 12 MeV, but is

negligible ( <0.1$) in the case of the fission spectrum.

The EHEF/B-IV evaluation based on [Smith 731 data from threshold
to 6 MeV i s in good agreement with the recent LSmith 751 measurements
(especially after renormalization, see section on4tPTi (n,p)48Sc.

Attention should be paid to the value of the β-branch to the
O.159 MeV level in 47Ti. This quantity has been measured by many
authors, e.g. Z.T. Bak (1968), S.C. Misra (1964), W.S. Lyon (1955),
L. Marquez (1953) e tc . [16], and i s scattered between 66$ and 74$.
The value, recommended by Lederer et a l . [17] i s 73$ and that used
by the Argonne group i s 68.5$ [ l l ]» If the Lederer value i s accep-
ted, then the Argonne results should be decreased by ~6$.
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At present < o > calculated from the Argonne differential data
is about 12 - 15 fo higher than the value recommended from integral
measurements (Table l)«

Cu(n,oc) Co, Fig. 16; The effective threshold ~6.2 MeV, and
response in the fission spectrum is in the 6.1 - 11.3 MeV energy-
range. This reaction represents a classical example for the diffe-
rential-integral discrepancies: <d> obtained from integral measure-
ments is systematically about ^Cffo higher than the calculated value.
The excitation function is determined by only one set of measurements.
[Paulsen 671« The ENDP/B-IV evaluation is practically an eye-guide
curve through these experimental points. The Czapp 60, Barrall 69,
Maslov 72 measurements between 14 and 15 MeV give higher values than
Paulsen 67. The measurements are performed by activation technique.

A discussion of the possible reasons for differential-integral
discrepancies (subthreshold contribution, underestimation of the
Co impurities and thermal neutron flux in integral experiments, etc.)
can be found elsewhere [l,l8,19]» Theoretical considerations! how-
ever, indicate higher cross section values near threshold [Benzi 74t
Fig. 16~1« New differential measurements, especially near threshold and
in the 9Qfo response energy range, are needed to solve the present
discrepancies.

63Cu(n,2n)62Cu, 9°Zr(n,2n)89Zr, Fig. 15, 17, 13:

The effective thresholds of these reactions are at ̂ 12.4 MeV, 13 MeV
and 13»5 MeV and the 90$ responses in the 235u fission spectrum are
between ~11.9 - I6.4 MeV, 12.5 - 16.7 MeV and 13.2 - 17 MeV re-
spectively. In the case of these high threshold reactions the large
discrepancies between calculated and measured integral values depend
strongly upon the representation of the fission spectrum used for
the calculation (Table l).

/•j en

Cu (n,2n) Cu, Fig. 15: The shape of the excitation function
is established well "by [Liskien 651 measurements; the slope
between 13»5 - 15 MeV is supported by [Csikai 65I and fCuzzocrea 681
data. In spite of the spread of experimental results in this energy
range the value of the cross section is determined reasonably well.
Only a few old measurements are available near threshold, where all
evaluations are in disagreement. Theoretical calculations [Benzi 7.4]
indicate higher values than the experiment.

Zr(n,2n) "zrm+g, Fig. 17? Practically no data are available near
threshold. The new [Bayhurst 75] measurements covering a wide energy
range (from 13 to 28 MeV) are slightly lower than his previous data
at lower energies [Prestwood 6l]« They are in agreement with fSigg 751
measurement at 14.8 MeV, performed with an enriched isotope sample.
Data of [Kanda 72], [Araminowicz 73] and recent [Bapen 75] are strongly
scattered and do not agree with those of Bayhurst and Sigg, while
[Nethaway 12] data are systematically slightly higher (~5 %>)
Bayhurst and Sigg results.
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The pSapen 75~] absolute measurement at 14»8 MeV gives the
cross section 50% higher than the available evaluations. The
< o > measured is at present 70 "to 200 'fa higher than calculated

from differential data (SAHD-II, Fig. 17).

Accurate measurements between threshold and 15 MeV are
needed to improve the reliability of this excitation function,
especially to close the gap "between threshold and 13*5 MeV.

Ni, ffig* 13» The four available measurements
tFeronymo 63 is probably wrong) cover a large siergy range and
are strongly scattered above 15 MeV. Below this energy the
shape of the excitation function seems to be rather well
established.

The new [Bayhurst 751 data suggest a possible trend which
is much higher than all other data and could possibly explain
part of the differential-integral discrepancy. Confirmation
of Bayhurst*s results would therefore be very desirable, parti-
cularly as very recent preliminary measurements by Marcinkowski
et al. [20] support the earlier lower data.

Because of the strong fission spectrum dependence of the
calculated integral values for these high threshold reactions
it is not expected that the differential-integral discrepancies
are due to the unsatisfactory knowledge of the excitation functions
alone.

Other reactions:

There are no measurements in a wide aiergy range near threshold
for 55Mn(n,2n)54Mn. Much worse is the situation for many other
reactions not considered here. (cf. Fig. 9 ). Only several isolated
measurements are available for ̂ Wo{n^p^mF^ 199Hg(n,n« )199Hgm etc.

In Section III, the consistency and accuracy of a number of
high energy neutron reaction cross sections in the ENDF/B-IV file
are studied using the 252cf and 235u fission spectra reference
benchmark fields.
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III. DOSIMETHT CROSS SECTIONS VALIDATION AND ADJUSTMENT

Microscopic cross sections averaged over fundamental energy-
distributed neutron spectra provide an important way to check and
eventually improve differential-energy cross sections, because the
convolution of the energy-dependent functions must reproduce (with-
in uncertainties) the measured integral quantities. The measure-
ment of microscopic integral cross sections does not involve the
definition of an absolute flux as a function of neutron energy nor
the establishment of an accurate energy calibration scale; but, to
be useful, it must be performed in a well-known neutron spectral
shape and the total absolute flux must be determined. Microscopic
differential-energy and integral cross section measurements require
both the accurate determination of absolute reaction rates and/or
the total number of reactions as well as a number of corrections
which must be thoroughly investigated. There are two main reasons
for which integral data play a major role in terms of defining
acceptable dosimetry cross section files:

1) The requirement of overall integral consistency, as out-
lined in Section I.

2) The fact that, as shown in Section II, differential-energy
cross sections for many nuclear reactions of relevance to
dosimetry are poorly established; e.g., they either display
untolerable discrepancies in shape and magnitude from one
experiment to another, or are characterized by a serious
lack of data in significant energy ranges. [4|6 — 13]•

By contrast, microscopic integral cross sections not only con-
stitute the needed information for a number of engineering applications
but also are often very reliable in terras of the agreement between
experimenters:. one reason for this lies in the relatively less
sophisticated nature of an integral measurement; the other one is
probably to be found in the more systematic amount of effort devoted
internationally to such type of work in the field of reactor dosimetry
(an example is the widely recognized U.S. Interlaboratory ILRR program
[3]).

As already mentioned, the crucial requirement for an integral
cross section result to be successfully used for the testing and/or
improvement of differential-energy cross section files is that the
neutron field in which measurements are obtained must be well charac-
terized. Ideally, such a field should be a standard as defined in
Section IV.
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In practice, this is seldomly realized, "but there exists a number
of "benchmark1, neutron fields - - categorized more specifically as
standard, reference or controlled environments [4] -- for which the
neutron spectral characterization is rather accurate (or will be),
over at least most of the relevant energy range; outside of this
range, and sometimes even within this range, some spectral adjustments
are necessary and can be done by means of appropriate computer codes,
provided they are accomplished with caution and with a serious amount
of physical judgment L3J. in this section, the SAND-II Monte Carlo
error analysis code L^lj is applied to demonstrate the value of an
integral approach to the validation and adjustment of neutron fields
and dosimetry cross section files. The need and recommendations for
such validation and adjustment are considered in more detail in re-
ferences [l to 5].

Consider the relationship

CO

/

0 . —

CO

J 0 (E) O. (E) dE j= l...n (l)
0

between a set of measured integral cross sections o . , in a benchmark
neutron field of normalized spectral distribution JZ^(E), and their
corresponding differential-energy cross sections o - (E) . Given a
physically reasonable representation for the neutron spectrum f> (E ) ,
the SAND-II code iteratively modifies the input shape fP (E) until
an adjusted shape /T(E) is obtained such that the above relationship
is satisfied for all reactions in the set j=1...n. The SAND-II
Monte Carlo code is used to generate uncertainties for /£'(E) in a
15 group structure, based on a Monte Carlo propagation of the errors
affecting the measured integral quantities as well as the cross
sections o,- ( E ) . U3, 22]

j

Similarly, considering one nuclear reaction for which integral
cross sections have been measured in a set of well-known neutron
spectra fa ( E ) , k = 1...K. the code will adjust a reasonable input
cross section shape o° (E) until a solution O*(E) is found that
satisfies the set of equations [l9]

J 0 k (E) o (E) dE. k = 1...K (2)

0

In reference 1, nuclear reactions are divided into two categories:

Category I: Those for which O(E) is considered to be well estab-
lished.

Category II: Those for which O(E) is less well known.
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A set of neutron spectra fa (E) can "be adjusted and assigned errors
"by reference to the Category I reactions using Equation (l); imposing
the constraint that the adjusted solutions must match all features
of fik (E) which can "be considered well established "by:
1) Differential spectrum measurement results in the energy range where
they are reliable and
2) theoretically based data.

Once the neutron spectral shapes j& (E) have been validated and/or
improved and assigned errors, a set of Category II differential-energy
cross sections can be adjusted, and, with appropriate constraints,
can be validated and/or improved.

Such an approach, which was recommended to the IAEA by the
1973 Consultants, Meeting on Nuclear Data for Reaction Dosimetry!-1J,
has been adopted for the present study. In this paper, however,
attention will be limited to cross sections in the energy range above
*j 0.1 MeV and the emphasis will primarily be on threshold reactions.

Furthermore, and although microscopic integral cross sections are
available in a number of benchmark neutron fields L3»4j, only the
two most fundamental fields are considered here: the spontaneous
fission neutron spectrum of califomium-252, denoted by ^82» axi^i

the thermal neutron—induced fission neutron spectrum of uranium—235i

The ^Q2 an(^ ^25 neutron fields have been historically the
most extensively studied since the eve of atomic power. A number of
differential measurements of their spectral shapes have been per-
formed and they have been recently evaluated [23] with great care
at the U.S. National Bureau of Standards. Over the energy range,
where most fission neutrons are emitted, these spectra are reason-
ably well described by Maxwellian functions [23j with average ener-
gies of 1.97 and 2.13 MeV for %25 an(^ ^82» respectively.
Departures from the Maxwellian reference shapes, however, are evident
and the final NBS evaluated data are therefore presented as Maxwellian
functions multiplied by segment-adjusted linear or exponential
corrections specified in an energy grid involving a few discrete
groups; group uncertainties are also given.

The *82 evaluated differential data are extremely reliable
from ^250 keV up to -v»8 MeV. With regard to ^251 however,
corrections for neutron scattering and absorption within the
generally thick fission source samples have been neglected by most
experimenters and were not accounted for in the NBS evaluation.
Recent and comprehensive time—of—flight measurements have examined
this effect L24j and the correction in terms of the spectral
averaged energy is of the order of +0.02 MeV, which corresponds to
a 4 to 10$ flux decrease below and 4 to 20$ increase above " 1»5 MeV,
depending on the energy.
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On the integral sidei on the other hand, the bulk of the
international efforts has "been on measurements in ^25» with *"ewt
but some recent and careful measurements in X 82* ^ o r ^^e present
study, the evaluated measured^microscopic integral cross sections
recommended by Fabry, et al. 1-14 J have been accepted. Thus, the
work in reference 1.14J was used as the starting point of a
systematic sensitivity study by means of the latest version
of the SANK-II Monte Carlo error analysis code, with solution
weighting. The EEDP-B-IV dosimetry cross section file L.6J was
used as the reference set of differential-energy cross sections.
The reference Maxwellian functions for ^25 axv^ ^82 a s defined
above were accepted as input spectra and deviations from these
forms as unfolded by the code were compared with the NBS evalua-
tions. The sensitivity of the unfolded solution to a given re-
action was established, simultaneously, in the two neutron fields
by comparing successive computer runs in which the reaction was
either withdrawn from the initial set or its cross section was
rescaled by some fixed percent fraction. Monte Carlo error propaga-
tion was explicitly considered in each case. "

A study was made of which combination of reactions could be
assigned the label of "Category I" in terms of integral consistency.
The guideline was that the KBS evaluation for T^82 had to be well
reproduced within uncertainties; however, certain deviations were
accepted for %25 provided they were consistent with the shape
biases expected from the neglect of the fission source sample finite
size. In this manner, it was established that the reactions
239pu(nff), 237Fp(n,f), 238u(n,f), 56pe(n,p), and 27Al(n,cc)
could be assigned the "Category I" label.

The addition of the %(n,f) reaction to the above set gene-
rated spectral distortions in the SAND-II adjusted solutions that
were systematic and unacceptable, both for z<25 and ^82» especially
in the energy range 100-600 keV. The distortions could be removed
if offj(E) in the range 0.1-1 MeV were decreased by at least 5$
with respect to the present ENBF/B-IV evaluation.

The •'TfiCnjp)-, Co reaction, a Category I candidate, was also
used but its use supports the above concerns regarding the correct-
ness of the, ^25 spectral shape. Indeed, if it is added to the
set identified above, it preserves more or less the consistency
for -*82» 1°a^ induces a shape difference for "X 25 that is outside
of uncertainties with respect to the NBS evaluation.
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The uranium-235 fission spectrum averaged cross section for

the 5%i(n,p)58co reaction has "been extensively measured and is well

established, in particular with respect to the basic fission cross

sections [14]; further, it is backed by the data obtained in the

CFRMF benchmark. L3J The same quantity in the californium-252

fission spectrum has been determined carefully, but so far by only

one experimental group. [4J If it is assumed that their measure-

ment of (118+3) mb is too high by 3.5$, the SAND-II adjusted

spectral shape then agrees extremely well with the NBS evaluation,

as illustrated in Figure 2.

The same conclusion is reached of course, if instead, the

(n,p)5oCo energy-dependent cross section were increased uniformly

by 3.5$. *
n
 this case, the SAND-II adjusted ^25 spectral shape —

dotted line in Figure 3 - using the higher nickel cross section

agrees more closely with the NBS ^25 evaluation than the solution

- solid line in Figure 3 - obtained with the unmodified ENDF/B-IV

cross section.

It is worth noting that the spectral data shown in Figures 2

and 3 are expressed as ratios to the reference Maxwellian shapes

and that the dashed lines represent the NBS evaluations. Further,

the data are presented in the 15 group format used for SAND-II

error propagation: the numerator is the adjusted or evaluated total

flux in group g, ~X&, while the denominator is the integrated

reference Maxwellian flux J ^JJ (E) dE; the exact expressions

accepted for the Maxwellian shapes ^JJ(E) "* ̂ β ^
w 0
 fields are

explicitly written on the ordinate of each figure.

The SAND-II uncertainties associated with the adjusted spectra

are shown as error bars*, while for the BBS evaluations, they are

displayed as shaded areas corresponding to the original NBS evaluated

group segmentation.

At neutron energies above 13 MeV, differential spectroscopy data

for t-25
 an<

i ^82
 a r e

 extremely inaccurate. Consequently, previous

integral measurements for the (n,2n) reactions for °3cu and 58HI

have been used in the present study for adjustment of the ^25 high-

energy tail (Fig. 3).

A number of previously observed trends in other dosimetry

benchmark fields and in fast reactor physics critical assemblies

are consistent with the harder X
2
^ fission spectrum, the solid

line in Figure 3, for which the average energy is 2.01 MeV with

an assigned Monte Carlo uncertainty of + 0.08 MeV. Also, the

deviations from the reference Maxwellian appear to be compatible,

within uncertainties with Islam and Knitter's suggested corrections

for finite fission source effects. [24 J All of these conclusions

are tentative, however, and depend on further study and to a large

gree upon future interlaboratory integral measurements of the

85 (n,p)58co average cross section in the 252cf fission neutron

spectrum. The goal accuracy for this measurement should be 2$ or

better at the Iα confidence level.

The input integral and differential cross section errors used here are

essentially those defined in references 3, 22 and 14.
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On the basis of the unfolded spectral shapes, Mas factors can
be derived for all dosimetry reactions. They are defined as ratios
between measured and computed integral reaction rates. If, for a
given nuclear reaction, these bias factors are independent of the
benchmark fields considered (within uncertainties), their values
averaged over the fields can be applied as normalization or scaling
factors for correcting differential energy cross sections. This
will be the case if three conditions are satisfied:

1) The spectral shapes are properly characterized,

2) The integral data are sufficiently accurate, and

3) The differential-energy cross sections are well established
in shape and are mostly inaccurate in magnitude.

The judicious adjustments of neutron spectra on the basis of
Category I reactions for the energy range considered here will satis-
fy condition ( l ) , at least in principle. An important demonstration
of the value of such adjustments can be given for the CFRMF benchmark:
previous [3] as well as more recent adjusted spectra [14] depart
significantly from the initial recommended spectral shape, L3J but
agree well with subsequent neutronics computations using the ENBF/B-IV
general cross section file; current ANC studies suggest that the
previous differences are essentially traceable to improved uranium-238
inelastic scattering data.

It is not as yet clear that condition (2) is adequately ful-
filled for all dosimetry reactions for the "̂ 82 benchmark neutron
field. As shown in reference [14], for both the BNDP/B-IV and SAND-II
files, the bias factors for important dosimetry reactions are different
in ^25 sa^L ^82 i^ ^ e B̂S evaluations of their spectral shapes are
accepted. As already stressed, the ^25 integral data are well estab-
lished. If such is also the case for most "/t-82 integral measurements,
two possibilities remain:

(a) Either condition (3) is not satisfied; in particular,
unresolved energy scale calibration errors are present,
which is of critical concern near a reaction's threshold,
or

(b) the spectral shape inadequacies for ^25 suggested here as
well as in reference 114 J are real; in this context, i t is
important to note that bias factors based on SAND-II adjusted
spectral shapes are indeed remarkably consistent for X

%25» CPRMP and S t .
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Condition (3) is however likely to be unfulfilled for a number of
reactions. The 4oTi(n,p)4°Sc is a straightforward example as discussed
in Section II. The case of the °̂ Cu (n,oc)o0Co reaction is, perhapst
the most illustrative of why caution is needed and why interdisciplinary
cooperation is important when dealing with nuclear cross section data.
Integral versus differential data discrepancies for this reaction. --
which is a crucial fluence monitor for fuels and materials dosimetry --
have long been puzzling. It has been thought that, because of its
negative Q value and/or 59co impurity, that this reaction would have
some significant response to thermal and/or epijfchermal neutrons in
softer spectra; but previous SAND-II analysis L̂ -9J and more recent
measurements in the fast reactor TAPIRO L4J do not support such a
conclusion. Differential measurements by CBNM were linked to integral
ones at CEN-SCK without resolving this problem. The TAPIRO work plus
that reported by McElroy, et al.L19J, indicate the need for some near
threshold cross section enhancement. This is further supported by
the recent nuclear model computations of Mann and Schenter using the
computer code Hauser-4 L26j and the analysis of radial traverse mea-
surements in EBR-II by Lippincott, et al. L.27J.

The most complete array of international integral data at present
has been obtained in ^25* Table I gathers bias factors for this bench-
mark for 27 dosimetry reactions, arranged in order of increasing
energy response as specified in terms of effective thresholds [28,29],
The bias factors are given both for the NBS evaluated spectral shape
and for the one adjusted by SAND-II on the basis of the Category I
cross section set identified in this paper. Table I largely reflects
the state-of-the-art of integral data testing of the ENDF/B-IV dosi-
metry cross section file in the energy range above 0.1 MeV.

IV. DOSIMETRY BENCHMARK NEUTRON FIELDS: STATUS AND PERSPECTIVES

A number of fast reactor reference dosimetry benchmark neutron
fields were identified for a study by the ILRR program in 1971 L3J.
Additional thermal, fast and fusion reactor neutron fields were
identified by the IAEA in 1973 L1-!. The IAEA listing was updated
in 1975 a* "the First ASTM-Euratom Symposium on reactor dosimetry [4J
and the workshop on "Reactor Dosimetry Benchmarks" focused its
attention essentially on delineating the concept, role and use of
benchmark radiation fields for reactor dosimetry.

In recent years, most efforts in the area of dosimetry bench-
marks have focused on fuels and materials development for fast
breeder reactors (generally the LMFBR) L3], but there is a growing
and justified emphasis on problems related to other types of reactors;
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such as pressure vessel surveillance in light water (LWR) power
reactors L5J, dosimetry for controlled thermonuclear reactor
(CTR) [4] research, and dosimetry of shielding experiments. This
enlarged interest calls for a tetter definition and classification
of dosimetry benchmarks and this means, furthermore, that both the
neutron and gamma ray components of the radiation field must be
taken into consideration when discussing benchmarks and associated
programmes.

The word benchmark refers to at least three distinct types
of radiation fields which may be termed respectively: standard
and reference radiation fields, and controlled radiation environ-
ments. There is no universally accepted definition of a benchmark
radiation field. Still, the three types mentioned above may be
distinguished as follows: L4]

- Standard radiation field: a permanent, stable and repro-
ducible radiation field (neutron or gamma or mixed) that is charac-
terized to state-of-the-art accuracy in terms of flux intensity
and energy spectra, and spatial and angular flux distribution.
Important field quantities must be verified by interlaboratory
measurement.

- Reference radiation field: a permanent and reproducible
radiation field reasonably well characterized in the above terms
and accepted as a reference by a community of users.

- Controlled radiation environment: a radiation field em-
ployed for a restricted set of well-defined experiments.

To be of use today, a measurement performed in any of these
"benchmark" fields must be well documented and its accuracy thoroughly
assessed [3»4J. Officially, there exist only a few standard radiation
fields relevant for dosimetry; e.g., thermal neutron density stand-
ards, and Ra(Be) primary source strength standards. However, a
number of neutron fields in various stages of development and use
could become standards L4J. These include (l) the californium-252
and uranium-235 fission source fields; (2) thei .-type secondary
standard radiation field [3J; (3) the Intermediate-Energy Standard
Neutron Field (iSKP) [23J; and (4) reactor neutron beams of known
flux, gradient and energy spectrum (e.g., thermal beams, filtered
beams, etc.)
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Por the present investigation, the discussion has teen limited
to the 252cf and 2^5u "benchmark neutron fields; however, preliminary
results of data testing using a number of other neutron fields are
currently available and are under study L3,4J. The status of these
efforts and recommendations for future direction will be the subject
of the IAEA "Consultants' Meeting on Integral Cross Section Measure-
ments in Standard Neutron Fields for Reactor Dosimetry,,**to be con-
vened at Vienna, November 15-19» 1976, and supported by the Inter-
national Working Group on Reactor Radiation Measurement (IWGRRM)
and the International Nuclear Data Committee (INDC).

V. CONCLUSIONS

Reactor dosimetry is an international undertaking aimed at
providing the capability to properly correlate and apply irradia-
tion effects data. Goal accuracies for such correlation and
application are in the range of a few percent. This requires
the development and'standardization of evaluated energy-dependent
dosimetry cross section files and their validation in benchmark
neutron fields. The results reported herein demonstrate the value
of the dosimetry data testing approach recommended by the 1973
IAEA "Consultants1 Meeting on Nuclear Data for Reactor Neutron
Dosimetry" and adopted earlier by the ILRR program.

It is apparent, that interlaboratory integral reaction rate
measurements in benchmark neutron fields play a crucial role in
establishing consistent differential dosimetry cross section files.
The present work has shown that the consistency of one of these fi-
les, ENDP/B-IV, in the MeV energy range is good to within 5 $ for
many reactions, but for some - particularly the very high energy
reactions, there are inconsistencies up to as high as 100$ , de-
pending on the accepted benchmark spectral shapes. These results,
as well as others, justify recent initiatives of the IAEA to
organize an international work program in this field.

The Summary Report of this Meeting is being published as
INDC(NDS)-8l/L+Mf the Proceedings will be issued as an
IAEA Technical Report in June 1977.
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TABLE I. INTEGRAL TESTING OF DOSIMETRY CROSS SECTION F I L E S ^ IN THE
URANIUM-235 THERMAL FISSION SPECTRUM NEUTRON FIELD, x 2 5

REACTION (b)
EFFECTIVE
THRESHOLD

(MeV)

BIAS FACTORV%-

NBS EVALUATION
(E = 1.98 MeV)

0.990

0.987

0.846

0.969

1.017

0.994

1.037

1.174

1.031

0.888

[1.092]

1.068

1.042

1.026

1.181

0.937

0.983

0.966

1.420

[0.977]

1.017

1.734

0.885

0.996

[1.407]

[2.951]

2.050

' FOR X 2 5 ( E ) :

SAND-11 ADJUSTED
(E = 2.01 MeV)

0.996

0.972

0.834

0.968

1.017

1.000

1.019

1.149

1.010

0.852

[1.041]

1.020

0.987

0.977

1.155

0.917

1.004

0.973

1.445

[0.993]

1.022

1.714

0.778

0.803

[0.897]

[1.715]

1.120

RELIABILITY

X

?

X

X

X

X

X

X

X

X

X

X

(d)

U 5 In (n ,Y) 1 1 $ m In
197Au(n,Y)l98Au
63Cu(n,Y)e,,Cu
235U(n,f)
239Pu(n,f)
237Np(n,f)

23iTh(n,f)
238U(n,f)
" H ( n , p ) " S c
3lP(n,p)31Si
5eNi(n,p)5eCo
32S(n,p)32P
sl,Fe(n,p)5,,Mn
Ti(n,xf"6Sc
27Al(n,p)27Mg
56Fe(n,p)56Mn
59Co(n,a)56Mn
S3Cu(n,a)60Co
2*Mg(n,p)2,,Na
"A1(n,cO2l>Na
*eTi(n,p),,eSc
127I(n,2n)126I
5sMn(n,2n)51,Mn
63Cu(n,2n)62Cu
90Zr(n,2n)89Zr
5_8Ni(n,2n)57Ni

0.6

1.2

1.4

1.5

2.2

2.4

2.8

2.9
3.1

3.9
4.4
6.0
6.8
6.8
6.8
7.2
7.6

10.5

11.6

12.4

13

13.5

a)
b)

IS!

ENDF/B-IV, except f o r bias fac to rs w i t h i n brackets where the SAND-II f i l e was used.
Underlined react ions are considered Category I and form the basis f o r XOK spect ra l
shape adjustments.
Measured/computed i n teg ra l cross sect ions.
Crosses (x) i f a(E) in f i l e i s deemed ser ious ly un re l i ab le f o r the energy response
range of the react ion in x 2c-
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-25- APPENDIX I.I

EXCITATION FUNCTIONS

(Status as of November 1976)

Reaction Figure

27Al (n,a)24Na 1A, IB, 1C, ID

31P (n,p)31Si 2,3

32S (n,p)32P • 4,5

46Ti (n,p)46Sc 6

47Ti (n,p)47Sc 7

48Ti (n,p)48Sc 8

55Mn (n,2n)54Mh 9

56Fe (n,p)56tfei 10, 11, 12

58Ni (n,2n)57N 13

59Co (n,a)56Mh 14

63Cu (n,2n)62Cu 15

63Cu (n,a)6°Co 16

90Zr (n,2n)89Zrm+S 17

18
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