

INTERNATIONAL NUCLEAR DATA COMMITTEE

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilations/evaluations of fission product nuclear data (FPND)

collected

by

G. Lammer

Nuclear Data Section International Atomic Energy Agency

Vienna, Austria

No. 3 May 1977

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11, A-1010 VIENNA

Reproduced by the IAEA in Austria May 1977 77-4809

INDC(NDS)-86/G+P

PROGRESS IN FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilations/evaluations of fission product nuclear data (FPND)

collected

Ъу

G. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

No. 3 May 1977

NOT FOR PUBLICATION

Information from this document should not be quoted except with permission of the authors. TABLE OF CONTENTS

		page
Foreword	• •	v
How to submit contributions	• •	VI
Subject index: 1. Measurements		
1.1. Fission product yields	• •	VII
1.2. Neutron cross sections	• •	VIII,IX
1.3. Decay data		X, XI
1.4. Delayed neutron data	• •	XI
1.5. Decay heat		XII
2. Compilations and evaluations		
2.1. Fission product yields		XIII
2.2. Neutron cross sections		XIII
2.3. Decay data		XIV
2.4. Delayed neutron data		XIV
2.5. Decay heat		XIV
	•••	
I. Measurement activities		
CEC Belgium: CBNM/Geel		3 - 7
France: CEN/Grenoble		8,21-23
Germany, F.R: GSF, Neuherberg		9
IKK, Geesthacht		10
PTB, Braunschweig		11 - 12
Univ. Mainz		13 - 23
Hungary: Kossuth Lajos University, Debrecen		24 - 25
India: Bhabha Atomic Research Centre		26 - 20
Israel: Israel Inst. of Technology, Haifa		29 - 30
Italy: CNEN, Bologna		6,31
Japan: Kyoto University		32
Sweden: AB Atomenergi, Studsvik		33
Chalmers University of Technology		34 - 35
Swedish Research Council's Lab, Studsvil	k.	29 - 30;
		36 - 37
Switzerland: EIR, Würenlingen		38
U.K.: AEE Winfrith		39
AERE Harwell		40 - 44
AWRE Aldermaston		45 - 46

		page
	DERE, Thurso	47 - 48
	NPL, Teddington	49
U.S.A.:	Argonne National Laboratory	50
	Bettis Atomic Power Laboratory	51 - 55
	Battelle, Pacific Northwest Laboratory	56 - 57
	Idaho National Engineering Laboratory	58 - 63,77
	Los Alamos Scientific Laboratory	64 - 66
	Lawrence Livermore Laboratory	67 - 71
	Oak Ridge National Laboratory	72 - 74
	Nuclear Radiation Lab., Univ. of Illinois .	75 - 75

II. Compilations and Evaluations

.

France:	CEN/Cadarache	
Germany, F.R.	:Max Planck Inst.für Kernphysik, Heidelberg . 88	
India:	Bhabha Atomic Research Centre	
Italy:	CNEN, Bologna 92	
Japan:	JNDC, JAERI	
	JNDC, Decay Heat N.D. Working Group 95	
Netherlands:	ECN, Petten	
U.K.:	AERE Harwell	5
U.S.A.:	Argonne National Laboratory 101	
	General Electric, Vallecitos Nuclear Center. 102	
	Idaho National Engineering Laboratory 103	
	Los Alamos Scientific Laboratory 104 - 105	5
	Washington University, St. Louis 106	

FOREWORD

This is the third issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this seriec is to inform scientists working on FFND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed.

This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information.

The types of activities being included in this report are measurements, compilations and evaluations of:

Fission product yields; Neutron cross-section data of fission products; Data related to β -, γ -decay of fission products; Delayed neutron data; and Fission product decay-heat.

The first two issues have been published in November 1975 as INDC(NDS)-70/G+P and in May 1976 as INDC(NDS)-75/G+P respectively. The present issue includes contributions which were received by NDS <u>between 1 June 1976 and 15 May 1977</u>.

The next issue of this report seires is envisaged to be published in May 1978.

How to submit contributions:

The next issue is expected to be published in May 197δ . All scientists who are presently working - or have recently completed work - in the field of FPND and who want to contribute to the 3rd issue of this series, are kindly asked to send contributions to me between now and the end of April 197 δ , so that they reach NDS before 30 April 197 δ .

Those scientists or groups who have already contributed to the present issue and who want to leave their contribution(s) unchanged or who wish to suggest only slight changes, should write an appropriate note to me before the above deadline.

Format of the contributions:

Generally, the size of one contribution should preferably not exceed one page. Of course, the number of contributions per working group or laboratory is not restricted. Similar experiments (or calculations, evaluations, etc.) performed by one person or group should preferably be combined to one contribution, if this is possible without loss of clarity.

1

The headings suggested for the 3 types of contributions are, for

Measurements:	Compilations:	Evaluations:
Laboratory and address: Names: Facilities:	Laboratory and address: Names:	Laboratory and address: Names:
Experiment:	<u>Compilation</u> :	Evaluation:
Accuracy:	major sources of	method:
Completion data:	information:	major sources of
Discrepancies to other	deadline of literature	information:
reported data:	cooperation:	deadline of literature
Publications:	other relevant details:	status:
	computer file:	cooperation:
	completion date:	other relevant details:
	Publications:	computer file of compiled data:
		computer file of evaluated data:
		discrepancies encountered:
		completion date:
		Publications:

1. Measurements

1.1. Fission Yields

Figgi anabla	pages					
isotope	Thermal reactor neutrons	fast reactor neutrons	$E_n \cong 14 \text{ MeV}$	E _n pointwise		
232 _{Th}	76	76	67			
233 _U	(8), <u>32,38,65,66</u> , 75,76	58, <u>65,66</u> ,76	<u>65,66</u> ,76,24			
235 _U	(8),11 <u>,14,15,17</u> , <u>26,32,38</u> ,60,75, 76, <u>64,65,66</u>	(40), <u>41</u> ,(48), 58 <u>,64,65,66</u> ,11 76	<u>64,65,66</u> ,76.24			
2 <u>3</u> 8 _U	<u>64,65,66</u> ,76	11,(40), <u>41</u> ,(48), 58, <u>64,65,66</u> ,76	24, <u>64,65,66</u> ,76	42,50,spont.:62		
U-isotopes: T3-yields	<u>44</u>	<u>44</u>				
236 _{Np}	71					
237 _{Np}		58				
239 _{Pu}	(8), <u>16,32,38</u> ,60, <u>64,65,66</u> ,75,76	(40) <u>,41</u> ,(48), 58 <u>,64,65,66</u> ,76	<u>64,65,66</u> ,76,24	43		
240 _{Pu}	<u>64</u>	(48),58, <u>64</u> ,69	68	<u>64</u>		
241 _{Pu} 242 _{Pu}	(8), <u>28</u>	(48),58 58				
Pu-isotopes: T3-yields	<u>44</u>	<u>44</u>				
241 _{Am}		(58)	<u>70</u>			
242m Am	<u>66</u>	<u>66</u>	<u>66</u>			
243 _{Am}		58				
245 _{Cm}	<u>27</u>					
249 _{Cf}	<u>13,38</u>					

a) as compared to INDC(NDS)-75:

____, underlined page-numbers refer to new contributions,

(), page-numbers in brackets refer to unchanged contributions, others refer to revised contributions.

Isotopes	pages	type of c.s., neutron-energy
кг ⁸⁵	10	transmission, $E = 1eV-1.5keV$
Rb ⁸⁷	17	(n,γ) integ, $E = fast$
sr ⁸⁶⁻⁸⁸	72	$(n, \gamma), E = 2.6-500 \text{keV}$
x ⁸⁹	72	77 17 17
{	77	(n, γ) integ, $E = fast$
zr ⁹⁰	(72)	$(n, \gamma), E = 2.6-500 \text{keV}$
Zr ⁹¹	6	(n, γ) . Res-int.total.E = 150eV-3keV
	31	res. pars. $E \leq 15 \text{keV}$
(72	(n, γ) , $E = 2.6-500 \text{ keV}$
zr ^{92,94}	72	
zr ⁹⁶	6	(n, x), Res-int, total, $E = 150$ eV-3keV
	21	respars. $E \leq 15$ keV
_{Nb} 93		(n x) Respire scatt total E - 30eV-7keV
	(72) 77	(n, v) $E = 2.6-500 keV$ into E -fact
M ₂ 92,94,96,97	72	(1, 1), b = 2.0-)ookev; integ, b=last
M-98	72	11 17 17
PIO		(n w) inter E - Seat
Mo 100		(n, γ) integ, $E = 135$
МО	(<u> </u>	$(n, \gamma), E = 2.6 - 900 \text{keV}$
m_99		(n,γ) integ, $E = iast$
10	<u> </u>	
100, 101	10	transmission, $E = 10V - 1.0 \text{ keV}$
, 102, 104		$(n,\gamma), E = 2.6 - 000 \text{ keV}$
hu '	<u>12</u>	
103		(n,γ) integ, $E = fast$
Rn		
104-106	(72)	$(n, \gamma), E = 2.6-500 \text{keV}$
Pa^{-100}	(72)	
Palloc	<u>72</u>	17 17 17 4 \
107 - 109	17	(n,γ) integ, $E = fast$
$Ag^{(0)}$, 109 106 108 110-114 116		17 17 17
Cd Cd 115	(72)	$(n, \gamma), E = 2.6-500 \text{keV}$
In'' ^y 121 123	11	(n,γ) integ, $E = fast$
Sb 10 10 10 10 100	11	99 99 99
$Te^{122-120}$, 120, 130	(72)	$(n,\gamma), E = 2.6-500 \text{keV}$
I'''	3	(n,γ) , res-int, total, $E = 20eV-5keV$
	11	(n,γ) integ, $E = fast$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Isotopes	pages	type of c.s., neutron-energy
Unseparated fissions 53 absorption, reactor neutrons products	I 129 $Xe^{132, 134}$ Xe^{135} Cs^{133} $Cs^{133+135+137}$ $Ba^{134-138}$ La^{139} Ce^{140} Ce^{142} Pr^{141} $Nd^{142-145}$ $Nd^{146, 148}$ Nd^{150} Pm^{147} Pm^{149} Sm^{152} Eu^{151} $Eu^{151+\dots+155}$ Eu^{153} Cd^{156} $Cd^{158, 160}$ Tb^{159} Ho^{165} Tm^{169} Unseparated fissions products	$\begin{array}{c} 11\\ 11\\ 53\\ 11\\ 10\\ 72\\ 72\\ 11\\ (12)\\ 11\\ (72)\\ 11\\ (72)\\ 11\\ (72)\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 71\\ 11\\ 53\\ 11\\ 71\\ 53\\ 11\\ 71\\ (10)\\ 11\\ 31\\ 11\\ 72\\ (72)\\ 72, 71\\ 53\end{array}$	(n, γ) integ, E = fast """"""""""""""""""""""""""""""""""""

.

IX

X <u>1.3. Decay data</u>

		Pages	
Isotopes or Mass Chains	^T 1/2	y-data	β-data, Q-values
$A = 75-96$ Zn^{75-78} Ga^{76-79} $Ge^{79,80}$ $As^{80,81,83}$ Se^{85-88} $Br^{85,86}$ Br^{87-89} $A = 90-106$ Y^{96-100} $Zr^{101-104}$ $Nb^{101-106}$ $Mo^{103-108}$ Ru^{103}	19 36 9 20 18 13 18 12	36 36 9 20 18 18 18 18 18 18	36 36 36 36 36 36 36
A = 116-146 In 120-129 Sn 127-133 Sb 125 Sb 128, 130-132, 13	<u>12</u> <u>36</u>	36 36 12	36 36 36
Te ¹³² Te ¹³⁴ Te ¹³⁵ Te ¹³⁶ , 137 I ¹³¹	<u>12</u> 12	12,63 19 19 12	- <u>10</u> - <u>36</u> - <u>36</u>
1 ¹³⁴ 1 ¹³⁷⁻¹³⁹ Xe ^{133m} 2- ¹³⁴	<u>36</u>	<u>63</u> <u>36</u> (49)	36
Ba 139 Ba 140 La 141 La 141	12 12 12 12	<u>63</u> 12 12 <u>63</u>	

	^T 1/2	γ-data	β-data, Q-values
La 143-148 Ce 145-150 Pr 145, 146 Pr 147-150	34 34 34	. સ્વ ક્ય ક્ય સ્વ	

ХI

<u>1.4. Delayed neutron data</u> a)

	Pages			Pages	
Precursors	Pn-value	neutron-energy spectrum	Precursors	Pn-value	neutron-energy spectrum
$A = 79-83$ Zn^{79} $Ga^{80},81$ As^{85} $A = 85$ $A = 87-96$ $Br^{87},88$ Br^{89-91} Rb Rb^{93} Rb^{94-97} Rb^{98} $A = 123-146$ In In ¹²⁹ , 130	36 21 36 36 21 21 21 36	29 29 23 23,29 29 56 23,29 23 23	Sn^{134} Sb^{135} Te^{136} $I^{137,138}$ $I^{139,140}$ $Xe^{142}+Cs^{142}$ Cs^{141} Cs^{142} $Cs^{143,144}$ $Cs^{145,146}$ $U^{235,238}Pu^{239}$ fast fission	<u>21</u> 6 groups	29 23,29 23,29 23,29 29 29 56 23,29 23 23,29 23 23,29 23 4 total yield: 45

a) Half-lives of d.n. precursors are included in "decay data" (item 1.3.)

1.5. Decay heat

	Pages			
Fissioned Isotope	β-heat	therma γ-heat	l total	fast β-heat
Th ²³² U ²³³ U ²³⁵ Pu ²³⁹	<u>33,74</u> 74	<u>33,74</u> 74	51 51 51 51	<u>39</u> <u>39</u>

Χħ

-

2. Compilations evaluations a)

(c compilation e evaluation)

2.1. Fission yields

Fissionable element	neutron energy	pages
235 _U Th,U,Np,Pu,Cf All All	fast spectrum, 14 MeV thermal, fast spectrum, 14 MeV thermal thermal to 15 MeV	ŏ9 (c) 102 (c) <u>106</u> (c + e) (97) (c), 9ö (e), <u>104</u> (e)

2.2. Neutron cross sections

		pages	
type of c.s.	с	e	group c.s.
elastic	93	92,93,96	92,96, <u>104</u>
inelastic	93	87,92,93,96	92,96, <u>104</u>
(n, y)	93	07 , 92,93,96	92,96, <u>104</u>
(n,2n)		92,96	92,96, <u>104</u>
(n, p)		92	92, <u>104</u>
(n,α)		92	92, <u>104</u>
total	93	92,93,96	92,96 <u>,104</u>

a) as compared to INDC(NDS)-75

-----, under-lined page-numbers refer to new contributions,

(), page-numbers in brackets refer to unchanged contributions, others refer to revised contributions.

XIV

2.3. Decay data

	Pag	ges
data type	С	е
half-life decay-scheme Q-value radiation spectra (energies+intens.) β-strength	99 , 103, 104 95 99 , 103, 104 99 , 103, 104	99 100 99 95,99 <u>,104</u> <u>88</u>

2.4. Delayed neutron data

Page

spectra of 6	groups	from Th ²³²	, v ^{233, 235, 238}	, Pn ^{239,241}	<u>101</u> (e)
--------------	--------	------------------------	------------------------------	-------------------------	--------------	----

2.5. Decay heat

Pages β,γ-heat 95,<u>104</u> I. MEASUREMENT ACTIVITIES

C.E.C., Belgium

```
Laboratory and address: CBNM, Euratom, Geel, Belgium
Names:
                               G. Rohr and R. Shelley
                               Neutron time-of-flight spectrometer at the
Facilities:
                               60 MeV Linac (pulse width 23 nsec; flight path
                               length 60 m)
                              Resonance parameters of <sup>127</sup>I
Experiment:
                               1) Capture cross section measurements.
                                   Energy range: 20 eV - 5 keV.
                                   Experiments completed, analysis completed in energy
                                                               range 20-2020 eV
                               2) Selfindication ratio measurements.
                                   See capture.
                               3) Total cross section measurements.
                                   Energy range: 10 eV - 5 keV
                                   Experiments completed, analysis completed in
                                                               energy range 20 - 900 eV
                               1) Capture cross section measurements.
Method:
                                   Detector: C<sub>6</sub>F<sub>6</sub> detectors using Maier-Leibnitz method.
Sample material: PbI<sub>2</sub> -3
                                   Sample thickness: 2.485 \cdot 10^{-3} at/barn
Neutron flux measurement: C_{6}F_{6} detectors
                                   with a boron slab.
                                   Normalization: Ag using black resonance technique.
                               2) Selfindication ratio measurement.
                                   Detector: C6F6 detectors
                                   Sample material: PbI2
                                   Sample material: rD12
Sample thicknesses: 7.438.10<sup>-3</sup> at/barn and
1.236.10<sup>-2</sup> at/barn.
                               3) Total cross section measurements.
                                   Transmission measurements using C6F6
                                   detectors with a boron slab.
                                  Sample material: PbI_2.
Sample thicknesses: 2.485 \cdot 10^{-3}, 7.438 \cdot 10^{-3}
and 1.236 \cdot 10^{-2} at/barn.
Accuracy:
                               g\Gamma_n, \Gamma_\gamma between 7% and 20% depending on the
                               energy range and on the strength of the resonances.
Expected completion date:
                                   Measurement completed. Results have been submitted for
                                   publication.
```

C.E.C.	Belgi	ш
--------	-------	---

Laboratory and address:	CBNM, Euratom, Geel, Belgium SCK/CEN, Mol, Belgium RUCA, University Antwerp, Belgium
Names:	J. Winter, A. Brusegan, L. Mewissen, F. Poortmans, G. Rohr, R. Shelley, T. van der Veen and G. Vanpraet
Facilities:	Neutron time-of-flight spectrometers at the 60 MeV Linac (Pulse width: 23 nsec).
Experiment:	Resonance parameters for ⁹³ Nb between 30 eV - 7 keV
	1) Capture γ -ray experiments
	Energy range: 30 eV - 3 keV Analysis completed.
	2) Capture cross section measurements
	Energy range: 30 eV - 8 keV Analysis completed.
	3) Selfindication ratio
	Analysis up to I keV completed.
	4) Total cross-section measurements
	Energy range: 30 eV - 7.2 keV Analysis completed.
	5) Scattering cross-section measurements
	Energy range: 100 eV - 4 keV Analysis in progress.
Method:	1) Capture γ -ray spectra measurements.
	Low level population method to determine J and, or l values for resonances. Detector: GeLi gamma ray spectrometer. Flightpath length: 15 m. Sample thickness: 2.235.10 ⁻² at/barn.
	2) Capture cross section measurements.
	Detector: C ₆ F ₆ -detectors using Mayer- Leibnitz method. Flightpath length: 60 m Sample thickness: 5.463·10 ⁻³ at/barn. Neutron flux measurement: C ₆ F ₆ detectors with a boron slab. Normalization: Ag using black resonance technique.

3) Selfindication ratio measurements. Detector: C₆F₆ detector Flightpath 16.igth: 60 m Sample thickness: 2.235.10⁻² at/barn. 4) Total cross section measurements. Detector: ³He gaseous scintillators. Flightpath length: 60 m. Cooled samples at liquid nitrogen temperature. Sample thicknesses: 4.232·10⁻³ at/barn 1.268·10⁻² at/barn 2.533·10⁻² at/barn 5) Scattering cross section measurements. Detector: ³He gaseous scintillators Flightpath: 30 m Normalization: relative to the scattering cross section of Pb. Accuracy: Expected on final resonance parameters $g\Gamma_n,\ \Gamma_\gamma$ between 5% and 20% depending on the energy range and on the strength of the resonances. s-wave strength function: 10% Mean capture width: 7%.

Expected completion date: end of 1977.

contd.

Laboratory and address:	CBN CNE	M, Euratom, Geel, Belgium N, Bologna, Italy
Names:	A. P. and	Brusegan, C. Coceva, F. Corvi, Giacobbe, G. Rohr, T. van der Veen G. Vanpraet.
Facilities:	Neu the	tron time-of-flight spectrometers at 60 MeV Linac (pulse width: 23 nsec).
Experiment:	Res	sonance parameters for ⁹¹ Zr and ⁹⁶ Zr.
	Ser 57%	parated isotopes: 89% enriched 9^{1} Zr and 8^{90} Zr.
	1)	Capture γ -ray measurements.
		Energy range: 150 eV - 3200 eV. Analysis completed, spin and parity assigned for 13 resonances.
	2)	Capture measurement.
		Energy range: 150 eV - 20 keV. Analysis completed up to 3 keV.
	3)	Selfindication ratio measurements.
		See capture.
	4)	Total cross section measurements.
		Energy range: 9^{7} Zr: 930 eV - 14.8 keV 96Zr: 150 eV - 130 keV.
		Experiments completed, analysis in progress.
Method:	1)	High and low energy γ -ray spectra measurements.
		Detector: GeLi gamma ray spectrometer. Flightpath: 13 m Sample thickness: 14.4.10 ⁻³ at/barn.
	2)	Capture cross section measurements.
		Detector: C_6F_6 detectors using Maier- Leibnitz method. Flightpath: 60m Sample material: ZrO Sample thicknesses: 2 91Zr 7.310·10 ⁻³ at/barn 96Zr 4.780·10 ⁻³ at/barn. Neutron flux: boron slab with C_6F_6 detectors. Normalization: Ag using black resonance technique.
	3)	Selfindication ratio measurements.
		Detectors: C ₆ F ₆ detectors. Flightpath: 60 m. Sample material: nat. Zr (metal). Sample thickness: ⁹¹ Zr 6.222·10 ⁻³ at/barn.

.

dentd.	C.E.C. Belgium
	7
Method:	4) Total cross section measurements.
	Detectors: NaI(T1) crystals with a boron slab. Flightpath: 100 m. Sample material: $2rO_2$ enriched to 57% 96 and 89% 91 Zr. Sample thicknesses: 91 Zr $0.8 \cdot 10^{-3}$ at/barn $2.4 \cdot 10^{-3}$ at/barn $14.4 \cdot 10^{-3}$ at/barn 96 Zr $0.8 \cdot 10^{-3}$ at/barn $3.5 \cdot 10^{-3}$ at/barn $4.3 \cdot 10^{-3}$ at/barn
Accuracy:	Expected on final resonance parameters
	97 Zr g Γ_n , Γ_γ between 7% and 20%
	96 Zr g $\Gamma_{ m n}$, Γ_{γ} between 10% and 20%
	depending on the energy range and the strength of the resonances.
Expected completion date:	91 _{Zr: end of 1977} 96 _{Zr: end of 1978}

FRANCE

Laboratory and address :	Département de Recherche Fondamentale Laboratoire de Chimie Physique Nucléaire Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX - France
Names :	R. BR'SSOT, J. CRANÇON, Ch. RISTORI, J.P. BOCQUET et A. MOUSSA.
Facilities :	On line isotopic separation of fission products (Ariel facility) conncected with swimming pool reactor.
Experiment :	Independent and cumulative yields of rare gas isotopes have been measured in thermal fission of 233 U, 235 U, 239Pu and 241 Pu (from A = 87 to A = 93 for Krypton and 137 to 142 for xenon).
	From our measurements, cumulative yields for Bromine
	and lodine isotopes can be obtained and independent
	yields can be deduced.
<u>Method</u> :	Cumulative yields are measured by $4\pi\beta$ counting (see publication 2).
Accuracy :	The average relative uncertainty of our measurements is typically 4 %.
Publications :	1/ Distributions isotopiques des gaz rares dans la fission par neutrons thermiques de ²³⁵ U et ²³³ U. Nuclear Physics A 255 (1975) p. 461-471.
	2/ On line measurements of rare gas fission yields in 14 MeV neutron fission. Nuclear Physics A 189 (1972) p. 556-576.
	3/ Distributions isotopiques des gaz rares dans 1ª fission par neutrons thermiques de ²³⁹ Pu et ²⁴¹ Pu. To be published.

GERMANY, FED, REP.

Laboratory and address:

GSF, Forschungsreaktor Neuherberg Ingolstädter Landstraße 1 D-8042 Neuherberg bei München

Names: H.-J. Kreiner and P. Schlechte

Facilities: Pulsed TRIGA reactor Mark III, Ultrafast Conveyor Tube System (URS)

Experiment: Growth-and-decay curves, Ey, $T_{1/2}$ of shortlived light fission products (0.05 s < $T_{1/2}$ < 15 s) of 235 U, 239 Pu (and 247 Cm) with 90 < A < 106.

Method: The thin actinide-target is irradiated by the reactor puls (HW: 11 ms), the FP's were partly separated by mass absorption in thin foils and the catcher with the light FP is shot in measuring position within a transport time of 50 ms. The γ -energy spectra are measured with a GeLi-detector and recorded in multispectrum mode by a ND 812 multichannel analyser in time steps of 0.2 and 2 s.

Discrepancies The primary formation of ¹⁰⁰Zr, ¹⁰¹Nb and ¹⁰³Nb was measured to other reported data: $T_{1/2}$: ⁹⁹Y, ¹⁰³Nb, ⁹⁸Y, ⁹⁹Zr Publication: H.-J. Kreiner, Nucl. Instr. Meth. 141 (1977) 119

Laboratory and address:

Institut für Reine und Angewandt: Kernphysik der Universität Kiel (IKK), D-2054 Geesthacht, Reaktorstation

Names:

K. Freitag, U. Harz, P. Podewils, H.G. Priesmeyer

Facility:

Fast Chopper Neutron Time-of-Flight Spectrometer, 42 m flight path in front of beam hole of 5 MW FRG-1 reactor. 15 ns/m nominal resolution, with special equipment for transmission measurements on highly radioactive samples; 11 Li-6 glass-scintillation detectors; max. rotor speed 15 000 upm; min. burst width 0.64 μ s; min. time channel width 100 ns.

Experiments:

Neutron resonance investigations by transmission measurements between 1 eV and 1.5 keV on separated stable or radioactive isotopes of special interest to reactor physics (especially fission products), gross fission products. Possibility of extending energy range to thermal region with crystal spectrometer, which can be made available.

Tc 99 transmission with different sample thickness to
clear up discrepancies in Γ_{γ} of first resonance;
low energy transmission of gross fission product
mixture;
Cs 133/135/137 FP mixture for isotope identification
of 42.8 eV and 880 eV resonances;
Pu 240 precision measurement for resonance parameter
determination of 1.056 eV resonance.

Planned: EuO isotope mixture from fast reactor control rod (transmission & resonance identification); Kr transmission (stable isotopes), in order to prepare Kr 85 measurement.

Method:

Sample-in-beam, sample-out-of-beam transmission measurement; black resonance or boron filter background determination technique.

Accuracy:

For resonance parameters: about 5 % or better, depending on statistical accuracy desired.

Recent publications: K. Freitag, U. Harz, H.G. Priesmeyer: ICINN Conf., Lowell/Mass. 1976 K. Freitag: Diplomarbeit, Kiel 1977 U. Harz, H.G. Priesmeyer: Frühjahrstagung DPG - Kernphysik - Konstanz 1977

GERMANY, FED. REP.

•

Laboratory	Physikalisch-Technische Bundesanstalt II
and address:	D - 33 Braunschweig, Buno⊴sallee 100
Name:	K. Debertin
Facilities:	²⁵² Cf-source;
	thermal reactor FMRB;
	calibrated Ge(Li)-spectrometer
Experiment:	Determination of 235 U- and 238 U-fission yields in the fast neutron spectrum of a 252 Cf-
	source and, for ²³⁵ U, in a thermal neutron
	spectrum. Measurements are completed,
	evaluation is in progress.
Method:	The ²⁵² Cf-source is mounted 15 m above
	ground in the open air. Uranium-samples,
	are irradiated in a 1 cm distance. Fission
	product activities are determined by measuring
	the γ -ray spectrum with a calibrated Ge(Li)-
	spectrometer.
Accuracy:	$\frac{+}{1}$ 1 % to $\frac{+}{2}$ 2 % (10 uncertainty) for 235 U
	fast to thermal yield ratios, $\frac{+}{2}$ 2 % to $\frac{+}{5}$ %
	for ²³⁸ U relative yields
Completion date:	²³⁵ U: completed ²³⁸ U: 1977
Publication:	Contribution to Review Paper 10 of the Second
	Advisory Group Meeting on Fission Product
	Nuclear Data, organized by IAEA, Petten,
	5 - 9 September 1977 (preprints available)

12	<u>GERMANY, FED. REP</u> .
Laboratory	Physikalisch~Technische Bundesanstalt,
and address:	D - 33 Braunschweig, Bundesallee 100
Names:	K. Debertin, U. Schötzig, K.F. Walz
	and H.M. Weiß
Facilities:	l) 4πβ-γ-coincidence systems
	(normal and high pressure proportional-
	counters, NaI(Tl)-crystals);
	2) calibrated Ge(Li)- and Ge-spectrometers
Experiment:	Determination of absolute Y-ray emission
	probabilities for ¹⁰³ Ru, ¹²⁵ Sb, ¹³¹ I,
	132Te/ 132 I, 134 Cs, 140 Ba/ 140 La;
	Determination of half-lives for ¹⁰³ Ru,
	106 Ru, ¹³¹ I, ¹³² Te, ¹⁴⁰ Ba and ¹⁴⁰ La
Method:	The decay rates are determined by facilities
	1) using the extrapolation method; γ -ray emission
	rates are determined by facilities 2), the efficiency
	of which was calibrated in the energy range of
	interest to an accuracy of -1 % or less (10).
Accuracy:	$\frac{+}{1}$ 1 % to $\frac{+}{2}$ 2 % (1 σ uncertainty) for emission
•	probabilities and less than \pm 0,1 % for half-
	lives
Completion date:	1977
Publication:	Contribution to Review Paper 12 of the Second
	Advisory Group Meeting on Fission Product
	Nuclear Data, organized by IAEA, Petten,
	5 - 9 September 1977 (Preprints available)

Laboratory:	Institut für Kernchemie
	Universität Mainz
	Postfach 1980
	D-6500 Mainz, Germany
Names:	H. Meixler, K. Wolfsberg (LASL), H.O. Denschlag
Facilities:	TRIGA Mark II Reactor
Experiment:	Fractional cumulative fission yields of Kr-89, -91, -92 and Xe-139 to -142 for ²⁴⁹ Cf(n _{th,f}) and Kr-91, -92 and Xe-139 for ²⁵⁰ Cf(sp,f) have been determined.
Method:	Radiochemical: Fission fragments from a thin layer of the fission material are stopped in Mg-stearate. Fission rare gases are diffusing through the stearate layer into an evacuated chamber. Fractional yields are calculated from the ratio of long lived descendants in the stearate and on the walls of chamber.
Accuracy:	\sim 10 % (relative to value)
Completion date:	Completed
Publications:	Jahresberichte 1975 and 1976, Institut für Kernchemie Universität Mainz

Laboratory:	Instituț für Kernchemie Universität Mainz D-6500 Mainz, Germany and Institut Laue Langevin 38 Grenoble, France
Names: ,	H.O. Denschlag, Z. Alfassi (U. Beershava, Israel), J. Blachot (CENG, Grenoble), H. Braun, W. Faubel, T. Izak-Biran (SOREQ, Israel), H. Meixler, G. Paffrath, H. Schrader, G. Siegert, T. Tamai (KURRI, Japan) K. Wolfsberg (LASL, USA).
Facilities:	LOHENGRIN Mass-separator for unslowed fission products at ILL, Grenoble.
Experiment:	The charge distribution in the heavy-mass-peak fission products from 235 U($n_{th,f}$) is being measured at various well defined kinetic energies (excitation energies) of the fission fragments.
Method:	Fission fragments separated according to mass (Resolution $\frac{M}{\Delta M}$ = 400) and kinetic energy (resolution ~2 MeV) are intercepted on a moving transport tape, transported continuously or discontinuously in front of a Ge(Li) γ -ray dectector, and counted via the γ -rays emitted in their β -decay.
Accuracy:	Varying.
Completion:	1979
Publication:	Progress reports are appearing since 1975 in Jahres- berichte, Institut für Kernchemie, Universität Mainz and Annex to the Annual Reports, Institut Laue Langevin, Grenoble.

Laboratory:	Institut für Kernchemie	
	Universität Mainz	
	Postfach 3980	
	D-6500 Mainz, Germany	
Names:	M. Weis, H.O. Denschlag	
Facilities:	TRIGA Mark II Reactor	
Experiment:	The fractional independent or fractional cumulative (FC) yields of the following nuclides were determined in the fission of ²³⁵ U by thermal neutrons: Y-99 (FC), Zr-99, Nb-99m, Nb-99g, Zr-101 (FC), Nb-101, Mo-101, Zr-102 (FC), Nb-102m, Nb-102g, Nb-104 (FC), Nb-105 (FC). Measurements on Nb-96, Nb-97 (m+g) and Nb-98 (m+g) are in progress.	
Method:	Fast radiochemical separation of Nb or Zr after pulsed irradiation.	
Accuracy:	Generally <u>+</u> 5 % (relative to value).	
Completion date:	1978	
Publications:	Jahresberichte 1975 and 1976, Institut für Kernchemie Universität Mainz	

Laboratory:	Institut für Kernchemie Universität Mainz Postfach 3980 D-6500 Mainz, Germany
Names:	G. Paffrath, H.O. Denschlag
Facilities:	TRIGA Mark II Reactor
Experiment:	Independent (IN), cumulative (CU) and fractional independent (FI) or fractional cumulative (FC) yields of the following nuclides were determined in 239 Pu(n _{th,f}): Sn-131 (CU), Sn-132 (FC), Sb-132m (FI), Sb-132g (FI), Te-132 (FI), Sb-133 (CU), Sb-134 (CU) and in 249 Cf(n _{th,f}): Sn-132 (CU), Sb-132m (IN), Sb-132g (IN), Sb-133 (CU), Sb-134 (CU).
Method:	Fast radiochemical separation by hydride volatilization of Sb, Sn and/or Te fission products and direct γ -ray spectroscopic measurement and/or indirect measurements via daughter nuclides.
Accuracy:	Error margins varying between ± 3 % and ± 60 % of the resulting value.
Completion date:	Completed
Publications:	G. Paffrath, Dissertation Mainz 1976

Laboratory: Institut für Kernchemie Universität Mainz Postfach 3980 D-6500 Mainz, Germany G. Fischbach, H.O. Denschlag Names: Facilities: TRIGA Mark II Reactor The fractional cumulative yields of the following isotopes were measured in $^{235}U(n_{th,f})$: Experiment: Ba-144, La-145, La-146, Ce-146, Ce-148 and Ce-149 Method: Fast radiochemical separations and direct y-ray spectroscopic measurement and/or indirect measurements via daughter nuclides. Varying Accuracy: Completion date: 1977 Publications: Jahresberichte 1975 and 1976, Institut für Kernchemie Universität Mainz

Laboratory and address:	Institut für Kernchemie
	Universität Mainz, Postfach 3990
	D-6500 Mainz
Names [×] :	N. Kaffrell, G. Tittel, N. Trautmann
	$\mathbf{x}_{\text{This work is a collaboration between}}$
	this laboratory and:
	- H. Ahrens, GSI, D-6100 Darmstadt
	- Institut Laue-Langevin
	F-38042 Grenoble.
Facilities:	Recoil focussing parabola type mass
	separator for fission products "LOHENGRIN"
	installed at the Grenoble high flux reactor.
Experiment:	E_{χ} , $T_{1/2}$ and partial decay schemes have
	been determined for the nuclides
	$101-104_{\rm Zr}$, $101-106_{\rm Nb}$ and $103-108_{\rm Mo}$.
Method:	The fission products have been handled
	with an air jet device combined with a
	tape transport system. The Y-ray singles
	and 🖓 coincidence spectra have been
	measured simultaneously with different
	Ge(Li) detectors.

Laboratory and address:	Institut für Kernchemie Universität Mainz Postfach 3980 D-6500 Mainz, Germany
Names:	M. Zendel, E. Stender, N. Trautmann and G. Herrmann
Facilities:	TRIGA Mark II reactor
Experiment:	Development of on-line separation procedures. Studies on short-lived isotopes of tellurium and selenium- Recently studied are the decays of $^{135-137}$ Te and $^{85-88}$ Se.
Method:	Combination of a gas jet recoil transport system with a separation method in the gaseous phase. γ -singles and γ - γ -coincidence measurements in the energy range 0.1-4 MeV.
Expected completion date:	1977/1978

GERMANY, FED. REP.

Laboratory and address:	Institut für Kernchemie Universität Mainz Postfach 3980 D-6500 Mainz, Germany
Names:	G. Klein, N. Kaffrell, E. Stender, N. Trautmann and G. Herrmann
Facilities:	TRIGA Mark II reactor
Experiment:	Determination of $T_{1/2}$ and E_{γ} for the nuclides 96-100 γ ; some partial decay schemes.
Method:	Fast chemical separation procedure. γ -singles and γ - γ -coincidence measurements on chemically separated samples.
Expected completion date:	1977
Publications:	G. Klein, N. Kaffrell, N. Trautmann and G. Herrmann, Inorg. Nucl. Chem. Letters <u>11</u> , 511 (1975)

	21
Laboratory and address:	Institut für Kernchemie Universität Mainz Postfach 3980
	D-6500 Mainz, Germany
Names [*] :	H. Ohm, W. Rudolph, KL. Kratz (Kernchemie Mainz), K.D. Wünsch, R. Decker, H. Wollnik (Univ. Giessen/ ILL Grenoble) C. Ristori, J. Crançon (CEN Grenoble) M. Asghar (ILL Grenoble)
	*This work is a collaboration between Kernchemie Mainz and: - Institut Laue-Langevin-BP 156 - 3842 Grenoble - II. Physikal. Institut der Univ. Giessen -
	D-6300 Giessen - Laboratoire de Chimie Physique Nucléaire - DRF - CENG-38041 Grenoble
Facilities:	Mass separator for unslowed fission products LOHENGRIN and alkaline isotope separator OSTIS installed at the Grenoble high-flux reactor.
Experiment:	Partial neutron emission probabilities to excited states and total P_n -values have been measured via γ -ray spectroscopy for the following precursors: ${}^{85}As$, ${}^{93-98}Rb$, ${}^{135}Sb$. Work is progressing on additional precursors.
Method:	According to the definition of the total neutron emission probability, the partial probabilities to certain levels in the neutron final nucleus can be defined as: $P_n^i = Y_n^i (A)/Y_f (A)$ where $Y_f (A)$ is the fission yield of the neutron precursor and Y_n^i (A) is the absolute yield of neutrons feeding the ith level in the final nucleus. Y_n^i (A) was determined by comparison of γ -ray intensities in
the decay of excited states in the final nucleus observed in the mass chain containing the neutron emitter (mass A) with those observed in the chain containing the β -decay parent (mass A-1). In a similar way, the total P_n - feeding of excited states plus the ground state - can be determined via the intensity ratio of identical γ -lines in a daughter nucleus of the neutron final nucleus. Another possibility to determine P_n^i and P_n results from the normalization of the intensities of γ lines from the $\beta_{n\gamma}$ -decay to the known absolute intensities of Y-rays of long-lived daughter products. Publications: H. Franz et al., Angew. Chem. 83 (1971) 902. H. Gunther et al., Nucl. Phys. A242 (1975) 56. K.-L. Kratz et al., CERN-Report 76-13 (1976) 304. K.-L. Kratz et al., Phys. Lett. 65B (1976) 231. K.-L. Kratz et al., Proc. Int. Workshop, Hirschegg, Austria, AED-Conf. 77-017-001 to 77-017-043 (1977) 208.

GERMANY, FED. REP.

Laboratery and address:	Institut für Kernchemie Universität Mainz Postfach 3980 D-6500 Mainz, Germany
Names:*	H. Ohm, W. Rudolph, M. Zendel, K. Sümmerer, KL. Kratz (Kernchemie Mainz), F.M. Nuh, S.G. Prussin (Univ. of Calif., Berkeley) K.D. Wünsch, G. Jung (Univ. Giessen/ILL Grenoble) C. Ristori, J. Crançon (CEN Grenoble)
	*This work is a collaboration between
	Kernchemie Mainz and:
	 Department of Nuclear Energineering - Univ. of California Berkeley Calif 94720
	- Institut Laue-Langevin - BP 156 - 38042 Grenoble.
	- II. Physikal. Institut der Univ. Giessen - D-6300 Giessen.
	- Laboratoire de Chimie Physique Nucléaire - DRF - CENG - 38041 Grenoble.
Facilities:	Triga Mark II reactor (Kernchemie Mainz). OSTIS on-line separator installed at the Grenoble high- flux reactor.
Experiment:	The energy spectra of delayed neutrons have been
	measured in the energy range 10-3500 keV with high
	resolution for the following precursors: ${}^{35}_{As}$, 87 , ${}^{88}_{Br}$, ${}^{93-97}_{Rb}$, ${}^{135}_{Sb}$, ${}^{136}_{Te}$, 137 , ${}^{138}_{I}$, ${}^{141-146}_{Cs}$.
	In the case of ⁹⁵ Rb decay the delayed neutron
	spectrum was measured in coincidence with _Y -rays
	depopulating excited states in the neutron final
	nucleus or. Neutron-gamma coincidence work is progressing
	neutron-gamma connertaence work is progressing.

HUNGARY

<u> </u>
Laboretory and address: Institute of Experimental Physics,
Kossuth Lajos University, H-4026 Debrecen, Bem tér 18/A
P.O.Box 105, 4001 Debrecen, Hungary.
Names: S.Daróczy, S.Nagy, P.Raics.
Facilities: Neutron Generator with analysed deuteron beam / 0.5 mA/ and wobble tritium target, 0.3 mg 252Cf source.
GeLi detector of 40 cm with ATOMKI /Hungary/ electronics, 4000 chennel DIDAC analyser and Multi 20-Plurimat N minicomputer-
analyser system /France/.
Ang-counter, ilssion champers.
Experiment: Fission yield measurements at 14 MeV. Completed: mass distribution of ²³⁸ U/n,f/ reaction. Oncoing: ²³⁵ U/n.f/, for products with half-life greater than
10 hours only.
Planned: /for 1978-79/ ²³³ U/n,f/ or ²³⁹ Pu/n,f/.
<u>Liethod: Measurement of direct gamma spectra of a thick sample</u> with an absolutely calibrated GeLi spectrometer and determination
of partial fission cross sections /cumulative yields/. The neutron flux is measured by the ²⁷ Al/n,alpha/, ⁶³ Cu/n,2n/ and ²³⁸ U/n,f/ reactions.
Accuracy: Generally 2 - 5 % random and about 3 % systematic error.
Expected completion date: ²³⁵ U/n,f/:1977, ²³³ U/n,f/ or ²³⁹ Pu/n,f/: 1979-80.
Discrepancies to other reported data: Pronounced left-right
symmetry to A ₀ =117.3 was found in the mass distribution of the ²³⁸ U/n,f/ reaction; there are no indications for fine structure. The measured yields in the valley region are about 20 % higher
than that of compilated by Meek and Rider /in 1974/.
Remarks: 47 cumulative yields for 37 mass chains in 238U/n,f/
have been measured using 65 Lamma lines. The lowest measured par-
tial fination emerge anation is 2 when and the bighted and in 170 wh

tial fission cross section is 3 mb and the highest one is 70 mb. The shortest half-life investigated is about 3 minutes and the longest one is 30 years. The sum of the mass yields amounts the two-thirds of the total fission cross section.

HUNGARY

<u>Publications:</u> Results have been presented at the Symposium on Fast Neutron Interactions and on Problems of High Current Neutron Generators /27-30 August 1975, Debrecen Hungary/, ATOMKI Közl., <u>18</u>,/2/ 1976, p.317.

INDIA

Laboratory and Address	:	Rediochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085.
Numes	:	Remaswomi A., Sampet Kumer R., Cheudhuri N.K., Srivestave B.K., Natarajan V., and Iyer R.H.
Facilities	:	$H_{1,j}$ Resolution Ge(Li) detector, multichannel analyser, solid state track detector, and Optical microscope.
Experiment	:	Measurement of absolute fission yields in the neutron induced fission of actinide isotopes.
Method	:	Absolute fission yields in the thermal neutron fission of 2350 were determined using high resolution camma spectrometry. The total number of fissions in the sample was determined by track etch technique using Mica as the track detector.
Accuracy	:	1 to 5% for the asymmetric fission products.
Completion data	:	Twelve asymmetric fission product yields are completed. Similar more extensive studies on other fissile isotopes are in progress.
Remarks	:	In this technique errors arising out of inaccuracies in the estimation of fission cross section due to variation of neutron energy spectrum, flux determination and in the estimation of the fissile atoms are eliminated.
Publications	:	To be published.
References	:	Iyer R.H., Sampat Kumar R., and Chaudhuri N.K., Nucl. Inst. Methods <u>115</u> , 23 (1974).
		Scrokina A.V., Skovorodkin N.V., Soviet Atomic Energy <u>31</u> , 99(1971).
		Larsen R.P., Dudly N.D., Heinrich H.K., OldhamaR.D., Armanj R.J., Popek R.J., Gold R., Nucl. Sci. Engg. <u>54</u> , 263 (1974).

INDIA

Laboratory and Address	:	Nadiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085.
Names	:	Ramaswami A., Dange S.P., SatyaPrakash and Ramaniah M.V.
Facilities	:	High Resolution Ge(Li) detector, multichannel analyser, beta proportional counters and low background counters.
Experiment	:	Determination of fission yields in thermal neutron fission 245 cm.
Method	:	Fission yields in the thermal neutron fission of curium-245 were determined using high resolution gamma spectrometry and radiochemical techniques. Yields were determined compared to ²³⁵ U fission yields by using comparison technique.
Accuracy	:	About 5%.
Completion date	:	Already completed.
Publications	:	Ramaswami A., Dange S.P., Kannabiran R., Satya Prakash and Ramaniah M.V. Presented in Nuclear Physics and solid state Physics Symposium" December1975 held in Calcutta, India.
References	:	 Harbour R.M. and MacMurdo K.W., J. Inorg. Nucl. Chem. <u>34</u>, 2109 (1972).
		 VonGuten H.R., Flynn K.F. and Glendenin L.E. Physics. Rev., <u>161</u>, 1192(1967).

INDIA

Labora tory	Radiochemistry Division Bhabha Atomic Research Centre Trombay, Bombay 400 085, India
Name s	C.K. Mathews, S.A. Chitambar, H.C. Jain
Facilities	Reactors, Mass Spectrometry Laboratory
Experiment	Yields of stable and long-lived isotopes in the fission 241Pu
Method	Mass spectrometry
Accuracy	1-2%
Expected completion date	Mid 1978

...

ISRAEL (+ SWEDEN)

THE ENERGY DISTRIBUTION OF DELAYED NEUTRONS EMITTED

FROM MASS-SEPARATED FISSION PRODUCTS

G.	RUDSTAM	The Swedish Research Councils' Laboratory Studsvik, Nyköping, Sweden
s.	SHALEV	Department of Nuclear Engineering Technion - Israel Institute of Technology Haifa, Israel

Facilities

The OSIRIS on-line isotope separator has been used to extract selected delayed neutron precursors from thermallyfissioned 235 U. Delayed neutron energy spectra have been measured with a very high resolution ³He neutron spectrometer, developed and marketed by the Technion Research and Development Foundation.

Experiment

The energy distribution of delayed neutrons has been determined over the energy range 100 - 1600 keV for the following precursors:

 79 _{Zn}, $^{80-81}$ _{Ga}, $^{87-91}$ _{Br}, 93 _{Rb}, $^{129-130}$ _{In}, 134 _{Sn}, 135 _{Sb}, 136 _{Te}, $^{137-140}$ _I, 141 (I + Cs), 142 (Xe + Cs), $^{143-144}$ _{Cs}.

Many of the spectra exhibit discrete structure and wellspaced peaks, which are attributed to neutron emission from individual nuclear levels populated by β -decay from the precursor. Work is progressing on additional precursors.

Method

A small quantity of 235 U is located in the ion source of the OSIRIS isotope separator, and exposed to a beam of thermal neutrons from a 1 MW reactor. Fission products are extracted, formed into an ion beam and separated into isobaric beams by electromagnetic deflection. One selected

- cont'd -

30

- cont'd -

beam passes through a collimation system to impinge on an aluminized mylar tape in close proximity to the neutron spectrometer. The tape is continuously advanced to remove long-lived decay products. No detectable contamination exists from adjacent mass beams. In most cases the neutron-emitting isobar is positively identified by decaytime considerations, although for the mass numbers 141 and 142 at least two isobars contribute to the measured neutron spectrum.

The energy resolution of the spectrometer was determined experimentally, and shown to be in the range 16 - 35 keV for neutrons with energy up to 1 MeV. Corrections were applied for the finite resolution of the spectrometer, the energy-dependent detection efficiency and the background neutron energy distribution.

Publications

- LF-54, LF-55, LF-56, LF-57, LF-60, LF-61, LF-64 The Swedish Research Councils' Laboratory, Studsvik.
- (2) Nuclear Instruments and Methods 120 (1974) 333-344.
- (3) Nuclear Physics A230 (1974) 153-172.
- (4) Nuclear Physics A235 (1974) 397-409.
- (5) Nuclear Physics <u>A275</u> (1977) 76-92.

ITALY

	Laboratory and address:	CNEN, Centro di Calcolo Via Mazzini, 2 - 40138 Bologna, Italy
1.	Names:	C. Coceva, A. Mauri, M. Stefanon
	Facilities:	Neutron time-of-flight at the electron Linac of CBNM Euratom, Geel, Belgium.
	Experiment:	Measurement of S-wave neutron resonances of ¹⁵⁶ Gd up to 3 keV. Aim of the experiment is to study the applicability of Mehta-Dyson statistics to practical cases, to obtain reliable confidence limits for the level spacing and estimate the s-wave and p-wave neutron strengtn functions. The measurement is completed; the data analysis is completed up to 2 keV.
	Method:	Montecarlo simulation of samples of experimental sequences, i.e. affected by missed and spurious levels, and comparison with the measurement for ¹⁵⁶ Gd.
	Expected completion date	: 1977.
2.	Names:	C. Coceva, P. Giacobbe, M. Magnani, A. Mauri
	Facilities:	Electron Linac of CBNM Euratom, Geel, Belgium.
	Experiment:	Time-of-flight neutron transmission experiment with ⁹¹ Zr and ⁹⁶ Zr enriched targets. Energy range O-15 keV. Experiment completed. Determination of ⁹¹ Zr resonance parameters, Γ_n below 5 keV, Γ_γ below 3 keV, J and π when possible, accomplished. Further refinements to take into account crystalline effects in progress.
	Method:	Zr0 targets from 0.9×10^{-3} to 1.6×10^{-2} at/barn, 89.3% 91 Zr-enriched. to 6×10^{-3} at/barn, 57.4% 96 Zr-enriched.

Expected completion date: 1977.

JAPAN

Laboratory and	address: Institute of Atomic Energy, Kyoto University,
	Uji, Kyoto 611, Japan
Names:	Tomota Nishi, Ichiro Fujiwara and Nobutsugu Imanishi
Facilities:	5 MW research reactor [Research Reactor Institute, Kyoto University]
Experiment:	Cumulative and independent fission-yields of some fission products
	in the thermal-neutron induced fission of 233 U, 235 U and 239 Pu.
Method:	Radiochemical for fission yields; Instrumental with GeLi detectors
Accuracy:	Errors range from 7 % to 20 % with different combinations of the
	fission products and the fissile isotopes.
[Expected] com	pletion date:)
Publication:) see Table I

Table I

Nuclides	<u> </u>	Completion date	Publication
128,130,132 _{Sn} , ¹³³ St 128,130,132 _{Ch} m,g	5 [Cum.]		N.Imanishi, I.Fujiwara and
¹³¹ Sb, ^{131,133} Te ^{m,g}	[Ind.]	Sep. 1975	yields of Sb and Te isotopes
			in thermal-neutron fission of ²³³ U, ²³⁵ U and ²³⁹ Pu",
			Nucl. Phys. <u>A263</u> ,141(1976)
135 ₁ 131,133 ₁	[Cum.]		
132,134,136 ₁ m,g	[Ind.]	Dec. 1976	
90 _{Rb} m,g, ¹³⁸ Cs ^m ,g	[Ind.]	End of 1977	

Laboratory and address:	Neutron Physics Laboratory AB Atomenergi Fack S-611 O1 NYKÖPING Sweden	33
Names:	P-I. Johansson and G. Nilsson	
Facilities:	6 MeV VdG accelerator PDP-15 Computer 24 k memory (on line) NaI(T1) and Ge(Li) spectrometers, β-spectrometer CDC-CYBER 73 Computer (off line)	
Experiment:	The objective of the experiment is to improve on the accuracy of currently available <u>fission product decheat</u> data by means of radiometric study of small un specimens at cooling times longer than 3 seconds at irradiation with thermal neutrons.	e a <u>ay</u> aaium Her
	The residual power of gamma radiation from thermal of 235 U has been obtained with an accuracy at $^{\pm}7$ % time interval 10 sec to 25 min after fission. Measure in progress for studying also the residual power emission.	fission in the urcroats r due to β-
Me thod :	A facility for thermal neutron irradiation of fissi using a VdG accelerator has been built. Specimens transported between the neutron source and a spectr means of a pneumatic system.	le specimens are rometer by
	The absolute number of fissions in the sample is de two independent methods: a) by utilizing an absolut fission chamber with an active volume of about the the samples, b) by counting the number of gamma qua from fission products with known yields and decay p	termined by ely calibrated same size as inta emitted properties.
	The gamma radiation was measured with a NaI(T1) cry diameter and length 12.5 cm. A 4096 channel malyze recording the spectra. Sample transportation, irra counting times are handled by a PDP-15 computer. S automatically stored on magnetic tape for off-line i.e. the transformation from measured pulse height energy spectra.	stal of r is used for diation and pectra are data analysis, spectra to
Accuracy:	Better accuracy than \pm 10 Z is expected for the tot released as β or γ -radiation from the fission produ- between a few seconds and 30 minutes after fission.	al energy acts at any time
Completion date:	Measurements on ganma-radiation were completed in I and the study on beta emission will be finished at 1977.	becember 1976 the end of

34					
Laboratories:	Department of Nuclear Chemistry Chalmers University of Technology Fact				
	Fack S-402 20 Göteborg 5 Sweden				
	Depa Univ Oslo Norw	rtment of Nuclear Chemistry ersity of Oslo 3 ay			
	lnst Joha Post D-65 Germ	itut für Kernchemie nnes Gutenberg Universität fach 3980 00 Mainz any			
Names:	The	SISAK Collaboration:			
	G. S	karnemark and K. Brodén (Göteborg)			
	т. в	jörnstad (Oslo)			
	N. K	affrell, E. Stender and N. Trautmann (Mainz)			
Facilities:	Тwo	SISAK systems for studies of radionuclides with half-lives			
>0.5 s.		S.			
Experiments:	$T_{1/2}$ -determinations, γ -singles, γ - γ coincidence and γ - γ angular correlation measurements in the energy range 0 - 4 MeV, at present on $143-148_{142}$, $145-150_{142}$ ce and $147-150_{142}$ Pr.				
Method:	Fast	chemical on-line separations. The measurements are carried			
	out	on flow cells or ion exchange columns. Ge(Li)-detectors are			
	used	•			
Discrepancies	Ther	e are very few data available in this region			
Publications:	1)	P.O. Aronsson, E. Ehn and J. Rydberg, Phys. Rev. Lett.			
	2)	P.O. Aronsson, G. Skarnemark and M. Skarestad, J. inorg. nucl. Chem. 36 (1974) 1689			
	3)	P.O. Aronsson, B.E. Johansson, J. Rydberg, G. Skarnemark, J. Alstad, B. Bergersen, E. Kvåle and M. Skarestad, J. inorg. nucl. Chem. <u>36</u> (1974) 2397			
	4)	P.O. Aronsson, G. Skarnemark and M. Skarestad, Inorg. nucl. chem. Lett. <u>10</u> (1974) 499			
	5)	P.O. Aronsson, G. Skarnemark, E. Kvåle and M. Skarestad, Inorg. nucl. chem. Lett. <u>10</u> (1974) 753			
	6)	N. Trautmann, P.O. Aronsson, T. Björnstad, N. Kaffrell, E. Kvåle, M. Skarestad, G. Skarnemark and E. Stender, Inorg. nucl. chem. Lett. <u>11</u> (1975) 729			
	7)	T. Björnstad, E. Kvåle, G. Skarnemark, P.O. Aronsson, N. Kaffrell, N. Trautmann and E. Stender, J. inorg. nucl. Chem. In print.			
	8)	G. Skarnemark, E. Stender, N. Trautmann, P.O. Aronsson, T. Björnstad, N. Kaffrell, E. Kvåle and M. Skarestad, Radiochim. Acta <u>23</u> (1976) 98			

- 9) G. Skarnemark, P.O. Aronsson, T. Björnstad, E. Kvåle, N. Kaffrell, E. Stender and N. Trautmann, J. inorg. nucl. Chem. In print
- 10) T. Björnstad, E. Kvåle, G. Skarnemark and P.O. Aronsson, Submitted to J. inorg. nucl. Chem.
- 11) G. Skarnemark, A Study of Some Neutron-rich Isotopes of Lanthanum, Cerium and Praseodymium by means of the Fast Chemical On-line Separation Technique SISAK. Thesis, Chalmers University of Technology, Göteborg 1977.

· 35

	Laboratory and address:	The Swedish Research Councils' Laboratory, Studsvik, S-611 O1 Nyköping, Sweden
	Facility:	The OSIRIS on-line isotope separator has been used to extract selected nuclei from thermally fissioned ²³⁵ U.
1.	Names:	K Aleklett, E Lund and G Rudstam
	Experiment:	Total beta decay energies and atomic masses have been deduced for the following nuclides:
		75–78 _{Zn} , 76–79 _{Ga} , 79,80 _{Ge} , 80,81,83 _{As} , 85–87 _{Br} , 120–129 _{In} , 127–132 _{Sn} , 128,130–132,134 _{Sb and} ^{134,135} Te.
	Method:	Beta particles were recorded in coincidence with gamma rays that depopulated known levels in the daughter nuclei. The end-points of the beta-spectra were determined, and by adding the level energy the total beta-decay energies were obtained. The beta-particles were recorded in a Si(Li)-detector while the gamma-rays were recorded in a Ge(Li)- or two NaI(TL)- detectors.
	Publications:	(1) LF-73, LF-74, LF-75, LF-76, The Swedish Research Councils' Laboratory Reports. (2) Ph. Thesis, K Aleklett (3) Ph. Thesis, E Lund
2.	Names:	K Aleklett and G Rudstam
	Experiment:	Determination of the average energy of the beta particles that are emitted in the decay of individual fission products in the mass regions A=75–96 and 116–146.
	Method:	One selected mass beam from the isotope separator passes through a collimation system to impinge on an aluminized mylar tape. By a proper timing of a multispectrum experiment it is possible to assing beta spectra to individual isobars. The average energy of these spectra is then determined. The beta-spectra is recorded with a Si(Li)-detector system.
	Completion date:	Expected at the end of 1977.
3.	Names:	K Aleklett, O Glomset, E Lund and G Rudstam
	Experiment:	Pvalues measurements of the ²³⁵ U(n _{th} ,f) produced precursors in the mass chains 79-83,85,87-96, 123, 123-146.
	Method:	Neutron and beta activities are measured simultaneously in MCA mode. The neutron counter consists of 29 ³ He detectors while the beta particles are detected with a 2 mm plastic detector.
	Completion date:	1978
4.	Names:	K Aleklett, P-I Johansson, G Nilsson and G Rudstam
	Experiment:	Determination of the average energy released as gamma radiation per decay of individual fission products in the mass regions A = 75–96 and 116–146.
	Method:	For each nuclide the distribution of gamma-rays are measured with a NaI-detector. Normalization is achieved by means of beta- counting.

	Completion date:	1978 37		
5.	Names:	B Fogelberg, P Hoff and H Tovenial		
	Experiment:	Nuclear spectroscopic studies of the beta-decays of fission product nuclei		
		At present the decays of the following nuclei are under study: 87,88,89 _{Br} , 122,124,126,128 _{In} , 137,138,139 _I .		
	Completion date:	1978		
	Discrepancies to other reported data:	The neutron binding energy of ¹³⁷ Xe reported by us ¹⁾ is markedly higher than the lower ²⁾ of the two previously reported ^{2,3)} values.		
	Publications:	1. B Fogelberg and W Mampe, Determination of the neutropinding energy of the delayed neutron emitter 137 Xe, Z Phys A281, 89 (1977).	חנ	
		2. E Monnand and B Fogelberg, Beta- and gamma-ray studi of 144Cs, 144Ba and ¹⁴⁴ La, CERN-76-13 (1976) 503.	ies	
	References:	1. same as 1 under Publications		
		 P A Moore, P J Riley, C M Jones, M D Mancuse, J L Foster Jr., Phys Rev <u>175</u> (1968) 1516. 		
		3. E J Schneid, B Rosner, Phys Rev <u>148</u> (1966) 1241.		

SWI TZERLAND

38	
Laboratory and address:	Eidg. Institut für Reaktorforschung, CH-5303 Würenlingen Institut für anorganische, analytische und physikalische Chemie, Universität Bern, CH-3012 Bern, Switzerland
Names:	H.R. von Gunten, H. Gäggeler and T. Kaiser
Facilities:	- Swimming-pool type reactor (SAPHIR)
	- Heavy-water reactor (DIORIT)
Experiments:	- Independent yields of ⁹⁶ Nb and ^{98g} Nb in the thermal neutron-induced fission of 233U, 235U and 239Pu.
	- Yields of ⁹¹ Sr, ¹¹¹ Ag, ¹¹² Ag, ¹¹³ Ag, 115Cd, 117Cd and ^{117m} Cd in the 0.3 eV neutron resonance in the fission of 239Pu.
	- Cumulative yields of rare earth elements in the thermal neutron-induced fission of 249Cf.
	- Independent and fractional cumulative yields of isotopes of Nb, I and Cs in the thermal neutron-induced fission of 249Cf.
Method:	- Radiochemical and instrumental (GeLi).
	- Irradiations for measurements in the 0.3 eV neutron resonance in Gd and Cd neutron filters.
Accuracy:	5 - 10 %
Measurements completed:	End of 1976
Publications:	Cumulative Yields of Rare Earth Elements in the Thermal Neutron-Induced Fission of ²⁴⁹ Cf, J. Inorg. Nucl. Chem., in press.

(Editor: I.C. McKean, Secretary UK Chemical Nuclear Data Committee) 39

Laboratory and Address:	AEE Winfrith	UKAEA Atomic Energy Establishment Winfrith Dorchester, Dorset DT2 8DH
Names:	M.F. Murphy, W.H. Taylor	
Experiment	Measurement of gross beta-dec of ²³⁹ Pu and ²³⁵ U fission in Irradiation period 10 ⁵ second up to 3.10 ⁷ seconds after sho completed.	cay power from products a fast reactor. ds, detection continued utdown. Experiment
Method:	Thin deposits of ²³⁹ Pu and ² catcher foils at centre of Z energy spectrum close to tha Fissions monitored by absolu counters. Catcher foils trans scintillation detector, curr multiplier being measure of using standard Sr-90/Y-90 so subsidiary experiments have the experimental method and corrections.	³⁵ U irradiated with ebra core with neutron t of fast power reactor. to (Alpha-calibrated) nsferred rapidly to ent output from photo- beta power. Calibrated urce. Results of various confirmed the validity of determined the necessary
Accuracy:	Target accuracy is ± 7% (sta beta power as function of ti 1 year after irradiation.	ndard error) on absolute me from 30 seconds to

Expected Completion Date: The final report is presently being written.

Laboratory and Address:	AERE Harwell	UKAEA, AERE, Harwell, Oxfordshire OX11 ORA
Names:	E.A.C. Crouch, I.C. McKean	
Facilities:	D.F.R.	
Experiment.	Absolute yields of 95 Nb/3r, 106 Ru, 137 Cs and perhaps other isotopes, from the fiss and 239 Pu in DFR.	, ¹⁴⁴ Ce, Nd isotopes, sion of ²³⁵ U, ²³⁸ U
Method:	Samples of ²³⁵ U as enriched uranium dioxide pleted uranium dioxide and ²³⁹ Pu as plu were irradiated at various positions in U Four samples of ²³⁵ U have been disso separated and analysed using a mass specific separated and enalysed using a mass specific the results are being calculated. It is expected that ²³⁸ U and ²³⁹ Pu sample separated and analysed during the next years.	ide, ²³⁸ U as utonium dioxide DFR. lved, chemically trometer and the s is complete and es will be dissolved, ear.
Accuracy:	Expected $\stackrel{+}{=}$ 2% (16°)	
Completion date:	Delayed due to lack of effort,	

•

٠

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire OX11 OR	!A
Names:	J.G. Cuninghame, Mrs J.A. Goodall, I.C. McKean, A.L. Nichols, H.H. Willis		
Facilities:	P.F.R.		
Experiment:	To measure the effect of change of reacto spectrum on fission yields	r neutron	
Method:	Samples of 235 U, 238 U and 239 Pu will be i at four different positions in PFR during run. Radio-chemical analysis of the samp by β counting. A method of γ -spectrum an a PDP11 computer is being developed. The measured by fission chambers.	rradiated a low power les will be alysis using flux will be	
Accuracy:	Expected ± 10%		
Completion date:	Expected mid-1978		

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire OX11 ORA
Names:	J.G. Cuninghame, H.H. Willis	
Facilities:	IBIS (Intense Bunched Ion Source)	
Experiment:	To determine absolute fission yields in the by mono-energetic neutrons of energies in 900-1700 KeV. In progress.	ne fission of ²³⁸ U n the range
Method:	Radio-chemical analysis of the targets with of the selected fission products. Flux measured by solid state track detection	ith β -counting
Accuracy:	<u>+</u> 5%	
Completion date:	Expected mid-1978	

.

43

•

Laboratory and Address:	AERE, Harwell	UKAEA AERE, Harwell, Oxfordshire, OX11 ORA
Name:	J.G. Cuninghame, H.H. Willis	
Facilities:	IBIS (Intense Bunched Ion Source)	
Experiment:	To measure absolute fission yields ²³⁹ Pu by mono-energetic neutrons of range 900-1700 Kev.	in the fission of energies in the
Method:	Radio-chemical analysis of the targ of selected fission products.	yets with β -counting
Accuracy:	+ 5-10% absolute	
Completion date:	Completed	
Publications:	JINC 39, (1977) P.383	

Laboratory: and Address:	ALRE Harwell	UKAEA AERE, Harwell Oxfordshire, OX11 ORA
Names.	I.C. McKean and E.A.C. Crouch	
Experiment:	³ H yield in thermal and fast fission s and Pu isotopes	pectra for U
Facilities:	DIDO and 'ZEBRA' Reactors	
Method:	Samples of the fissile nuclides of abo in about 0.2 ml dil. Nitric acid irra in'Dido' and by manual loading in 'Zeb is converted to ³ H ₂ O and counted by li at the N.P. Division Low background La	ut 1 mg dissolved diated by "Rabbit" ra'. The ³ H produced quid scintillation boratory.
Accuracy:	<u>+</u> 10%	
Completion date:	End of 1977	

MOD (PF)

Laboratory and Address:	AWRE Aldermaston	MOD(PE) AWRE Aldermaston Reading RG7 4PR	45 •
Names:	C.B. Besant*, P.J. Challen ⁺ , M.H. McTagga P. Tavoularidis* and J.G. Williams*	±rt ⁺ .	
	•Imperial College, University of London		
	+MOD(PE) AWRE Aldermaston, Berkshire		
Facilities:	Pulsed reactor VIPER		

Absolute Yields and Group Constants of Delayed Neutrons in the Fast Fission of $^{235}\rm{U}$, $^{238}\rm{U}$ and $^{239}\rm{Pu}$ Experiment:

Absolute yields and group constants of the delayed neutrons from the fast fission of 235 U, 238 U and 239 Pu have been measured. Method: The method was based on irradiating a sample in the fast pulsed reactor VIPER and transferring it pneumatically to the neutron detector, outside the biological shield of the reactor. The neutron efficiency of the detector was measured by a number of calibrated neutron sources and account was taken of its energy response function.

> The fissions in the sample were measured by an activation technique. The 1596 Kev gamma activity, emitted by ¹⁴⁰La, of the sample was measured using a high resolution detector. The necessary conversion factor of activity into the number of fissions was determined by a calibration experiment where a thin deposit of known mass was irradiated within a fission chamber, along with a thick foil which was subsequently gamma counted.

The delayed neutron decay curve was approximated by six groups, using the least squares technique.

Results:

The absolute delayed neutron yields were found to be

 235 U 0.0164 $\stackrel{+}{-}$ 0.0006 (n/F) 238 U 0.0432 \pm 0.0017 (n/F) 239 Pu C.00598 ± 0.0022 (n/F)

The reactivity (dollars) -period relationship, using the present group constants, is in agreement with the currently used values to within 3% for any isotope and practically used period.

5

The measured and corrected values are compared with recently evaluated data from Tuttle and with Keepin's values below:

ISOTOPE	235 ₀	238 _U	239 _{Pu}
Present Experiments	0.0164 ⁺ 0.0006	0.0432 [±] 0.0017	0.00598 ⁺ 0.00022
	(3.6)	(4.0)	(3.7)
Keepin	0.0165 ⁺ 0.0007	0.0412 [±] 0.0025	0.0063 ⁺ 0.00045
	(4.2)	(6.1)	(7.1)
Plateau Values Corrected for Spetrum of Measurement Facility			
Present Experiments	0.0164 [±] 0.0006	0.0439 ⁺ 0.0017	0.00598 [±] 0.00022
	(3.6)	(4.0)	(3.7)
Keepin	0.0167 [±] 0.0007	0.0421 [±] 0.0025	0.00636 ⁺ 0.00045
	(4.2)	(5.9)	(7.1)
Tuttle	0.01714 ⁺ 0.00022	00.04510 ⁺ 0.00061	0.00664 [±] 0.00013
	(1.3)	(1.4)	(1.9)

figure in brackets is % error

Publication:

A full account of this work is in process of publication in Journal of British Nuclear Energy Society. (Expected to be published early 1977).

Laboratory and Address:	DERE	UKAEA, DERE, Thurso, Caithness, Scotland KW14 7TZ
Names:	W. Davies, V.M. Sinclair	
Facilities:	DFR	
Experiment:	The measurement of the absolute y 143, 145, 146, 148, 1 ⁵⁰ Nd and per from the fission of ²³⁵ U, ²³⁹ Pu a	yield of ⁹⁰ Sr, ¹³⁷ Cs, ¹⁴⁴ Ce, rhaps other fission products and ²⁴⁰ Pu.
Completion date:	Changes of emphasis in this prog proceed with this experiment, and March 1977.	ram made it unnecessary to d this work on it ceased in

•

.

•

40		
Laboratory and Address:	DERE	UKAEA, DERE, Thurso, Gaithness, Scotlard KW14 7TZ
Names:	W Davies, V M Sinclair	
Facilities:	PFR	
Experiment:	The measurement of the absolute $143, 145, 146, 148, 150$ Nd and perhather fission of 235 U, 238 U, 239 P	yields of ⁹⁰ Sr, ¹³⁷ Cs, ¹⁴⁴ Ce, ps other fission products, from u, ²⁴⁰ Pu and ²⁴¹ Pu
	In progress	
Method:	Twelve sealed stainless steel c Of these,	apsules are to be irradiated.
	3 capsules contain 235U as high 3 capsules contain 239Pu as low 2 capsules contain 238U as depl isotopic analysis of 99.7% 238U 1 capsule contains 240Pu as a d with an isotopic analysis of 99 1 capsule sontains 241Pu as a d with an isotopic analysis of 93 2 capsules contain no added fis	ly enriched uranium dioxide, 240Fu content plutonium dioxide, eted oranium dioxide with an , ried aqueous solution of plutonium % 240Pu, ried aquecus solution of plutonium % 241Pu, and sile material.
	The 235U and $239Pu$ capsules con with the fissile material dioxi	tain stainless-steel powder mixed de for heat transfer reasons.
	It is expected that the ²³⁵ U an irradiation corresponding to ab material, the ²³⁸ U capsule to a capsule to about 4% burn-up and burn-up.	d ²³⁹ Pu capsules will receive out 16% burn-up of the fissile bout 0.7% burn-up, the 240Pu the 241Pu capsule to about 23%
	A set of capsules identical to irradiation in the reactor will side the irradiated set, the ob reliability of the analyses.	the irradiated set except for be dissolved and analysed along- jective being to improve the
	The aim is to correlate loss of with the amounts of fission pro (except ²³⁸ U) to enable absolut to be obtained.	fissile material during irradiation ducts formed, for each capsule, e measurements of fission yields
Accuracy:	± 2% for 235U and 239Pu fi ± 6% for 238U, 240Pu and 2	ssion yields ⁴¹ Pu fission yields
Expected completion date:	Mid-1979	

Laboratory and Address:	National Physical Laboratory	N.P.L. Teddington. Middlesex.
Names:	P. Christmas, P. Cross	
Facilities:	$\widetilde{11}$ $\sqrt{2}$ Beta-ray spectrometer, iso separator	tope
Experiment:	Determination of K and L internal coefficients of ^{133m} Xe	conversion
Method:	Peak-to-Beta-Spectrum (PBS) Preliminary experiments in progres eliminate instrumental distortions beta spectrum.	ss aim to s of the
Accuracy:	Target is - 1 per cent	
Completion date:	1977	

<u>U. S. A.</u>

Laboratory and address:	Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 USA
Names:	L. E. Glendenin, J. E. Gindler, J. W. Meadows, Jr.
Facilities:	Fast-neutron generator facility (FNGF)
Experiment:	Fission yields as a function of incident neutron energy
Method:	Yields determined (1) radiochemically with either β - or γ -counting and (2) by γ -counting irradiated foils of fissionable material. Neutrons produced by Li-p or D-d reaction. Flux monitored with fission chamber utilizing as the fission source the same material as that being irradiated. Absolute yields determined from flux measurements and/or 200% normalization of mass-yield distribution.
Accuracy:	Yields > 1% determined by γ -counting: 3-5% Yields < 1% determined by γ -counting: 5-20% Yields determined radiochemically with β -counting: 10-20%
Completion date:	Measurements of 238 U(n,f) for 1.5, 2.0, 3.9, 5.5, 6.9 and 7.7-MeV neutrons completed for \sim 46 masses (March, 1977). Continuing program for other fissile and fertile materials.
Publications:	"Monoenergetic neutron fission of ²³⁸ U", K. F. Flynn, S. Nagy, L. E. Glendenin, J. E. Gindler and J. W. Meadows, Amer. Nucl. Soc. Transact. <u>22</u> , 677 (1975).

IAEA FPND CONTRIBUTION

USA

Laboratory and Address:

Bettis Atomic Power Laboratory Westinghouse Electric Corporation West Mifflin, Pennsylvania 15122 United States of America

Names:

S. B. Gunst, D. E. Conway, J. C. Connor*

Facilities:

Materials Testing Reactor, Advanced Test Reactor, and Advanced Reactivity Measurement Facility at the Idaho National Engineering Laboratory

Experiment:

Measured and calculated rates of decay heat in irradiated 232 Th, 233 U, 235 U, and 239 Pu.

Method:

Samples of ${}^{232}_{14}$ Th, ${}^{233}_{23}$ U, 235 U, and 239 Pu were irradiated in high neutron fluxes [> 10 n/(cm sec)] and their decay heat was measured as a function of cooling time ranging from 14 to 4500 h after removal from the high flux. To measure the rate of heat emission from the highly radioactive samples, an underwater calorimeter was developed. For the measured exposure histories, decay heat was also calculated (using a procedure called COMBO). The calculations provided the concentrations of 190 fission products, all significant heavy isotopes, and structural nuclides. Account was taken of the energy carried by gamma rays that escaped the calorimeter.

*

Present address: Westinghouse Electric Corporation Nuclear Energy Systems Pittsburgh, Pennsylvania 15230 United States of America

- cont'd-

52

- cont*d -

Accuracy:

Measurements and calculations of the decay heat captured within the calorimeter agree within two standard deviations of the measurements for all samples and cooling times and, in general, agree within 2%. For the ²³⁵U samples, calculations based on the Proposed ANS Standard ANS-5.1 (ANSI N18.6) agree with the measurements within 3% rms deviation.

Completion Date:

1975

Discrepancies to Other Reported Data:

As indicated above, all the measurements and calculations for the four nuclear fuels are in substantial agreement.

Publications:

- "Measured and Calculated Rates of Decay Heat in Irradiated ²³⁵U, 233U, 239Pu, and 232Th," Nuclear Science and Engineering: <u>56</u>, 241-262 (1975).
- "Decay Heating Measurements and Calculations for Four Irradiated Reactor Fuels," Transactions of the American Nuclear Society, <u>19</u>, 406 (October 1974).
- "Decay Heating Measurements and Calculations for Irradiated ²³⁵U, 233U, 239Pu, and 232Th," (LWBR Development Program), WAPD-TM-1183, July 1974.

Available from National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22151, U. S. A.

USA

IAEA FPND CONTRIBUTION

Laboratory and Address:

Bettis Atomic Power Laboratory Westinghouse Electric Corporation West Mifflin, Pennsylvania 15122 United States of America

Names:

S. B. Gunst, J. C. Connor,* D. E. Conway

Facilities

Materials Testing Reactor, Advanced Test Reactor, and Advanced Reactivity Measurement Facility at the Idaho National Engineering Laboratory

Experiment:

Measured and calculated fission-product poisoning in neutron-irradiated uranium-233.

Method:

Samples of ²³³U and of natural thorium were irradiated in high neutronflux facilities [> 10^{14} n/(cm² sec)], in both soft and hard neutron spectra, and for both short and long exposure times. Included were exposures resulting in depletions of more than 90% of the 233U in the fissile material and burnups of more than 30,000 MWd/MT in the fertile material. Postirradiation mass analyses of the total and the isotopic uranium, of 137Cs, and of the neodymium isotopes were compared with corresponding calculations based on measured exposure histories. Reactivity measurements between irradiation cycles provided experimental results for the fissile content and fission-product poisoning (summed over all fission products) as functions of both irradiation and cooling time.

Present address: Westinghouse Electric Corporation Nuclear Energy Systems Pittsburgh, Pennsylvania 15230 United States of America

- cont'd -

Reactivity measurements as a function of cooling time also provided experimental information on transient absorbers in fission-product chains of mass 149 and 135. Information was also presented concerning such matters as fission yields and neutron absorption of neodymium isotopes, the existence of significant transient fission-product poisons other than 135Xe and 149Sm, and the shielding of 233U by 232Th.

Results and Accuracy:

The post-irradiation mass analyses of the total isotopic uranium, of 13^7 Cs, and of the neodymium isotopes generally agreed within a few percent with the corresponding calculations based on measured exposure histories. The primary results obtained from reactivity measurements gave the thermal neutron absorption cross section, summed over all fission products, to 5% accuracy, and the absorption resonance integral of the total fission products to 7% accuracy. The corresponding one-group absorption cross section was accurate to 3%. The calculated thermal cross section for all fission products is on the order of 10% higher than that determined by reactivity measurement, while the calculated epithermal cross section is about 20% lower than measurement. Such behavior is expected because some fission products probably have significant resonances, but were assumed (for want of other information) to vary as 1/v. The measured and calculated one-group effective cross sections generally agree within 3%.

In addition to the primary results, experimental results for transient absorbers in 233 U gave a lower limit of 20,000 b for the neutron absorption resonance integral of 149Pm. This is a factor of 15 higher than that obtained by a 1/v extrapolation of the thermal cross section. For transient 135 Xe, the measured absorption is 7.5% higher than that calculated using ENDF/B-IV data for the mass 135 chain. Relative to the shielding of 233 U by 232 Th, the experimental results suggest the need for a change in the energy dependence of the 232 Th thermal-neutron cross section.

Completion Date:

1974

- cont'd -

Discrepancies to Other Reported Data:

No other integral measurements are available for the neutron absorption of the total fission products in 233 U samples as functions of their irradiation or cooling time. Differences between the measurements and the calculations are discussed in the section on results.

Publications:

- "Measured and Calculated Fission-Product Poisoning in Neutron-Irradiated Uranium-233," Nuclear Science and Engineering: <u>58</u>, 387-413 (1975).
- "Measured and Calculated Heavy-Isotope Concentrations and Fission-Product Poisoning in Irradiated 233U," Transactions of the American Nuclear Society: <u>18</u>, 330-331 (1974).
- "Measurements and Calculations of Heavy Isotopes in Irradiated Fuels and of 233U Fission-Product Poisoning," (LWBR Development Program), WAPD-TM-1182, Bettis Atomic Power Laboratory (1974).

Available from National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22151, U.S.A.

<u>U. S. A</u>.

Contribution to "Progress in Fission Product Nuclear Data"

IAEA - April 1977

Laboratory and Address:

Battelle Pacific Northwest Laboratories P. O. Box 999 Richland, Washington 99352

Names: P. L. Reeder, L. J. Alquist, and N. E. Ballou

Facilities: SOLAR - Spectrometer for On-Line Analysis of Radionuclides. This is an on-line mass spectrometer which incorporates a ²³⁵U target in a surface ionization source located in the thermal column of a 1 MW TRIGA reactor at Washington State University, Pullman, Washington.

Experiment: Neutron and gamma spectroscopy of delayed neutron precursors is currently under investigation.

- Method: Mass separated beams of Rb, In, or Cs delayed neutron precursors obtained from the on-line mass spectrometer are deposited on a moving tape collector. Delayed neutron spectra are measured with a ³He ionization chamber and proton recoil detectors (in collaboration with Professor Gene Woodruff, University of Washington). Gamma ray spectra are obtained with a large Ge(Li) detector. Multispectral scaling has been used to identify parent and daughter gammas. Special emphasis has been on the identification of gammas following neutron decay to excited states of the final nucleus.
- Accuracy: The absolute efficiency of the Ge(Li) detector has been determined by counting NBS standard sources. Response functions for the 3 He ionization chamber have been measured with monoenergetic neutrons from a Van de Graaff accelerator.

<u>U.S.A</u>.

Results: This work is still in progress. Previous work on delayedneutron emission probabilities and the average energies of delayed neutron spectra from separated precursors has been accepted for publication as given below.

Publications:

P. L. Reeder, J. F. Wright, and L. J. Alquist, "Average Neutron Energies from Separated Delayed-Neutron Precursors," BNWL-SA-5890 Rev., Dec. 1976, to be published Phys. Rev. C, June 1977.

P. L. Reeder, J. F. Wright, and L. J. Alquist, "Delayed Neutron
Emission Probabilities of Separated Isotopes of Br, Rb, I, and Cs,"
BNWL-SA-5900 Rev., Dec. 1976, to be published, Phys. Rev. C, June 1977.
FPND NEWSLETTER CONTRIBUTION - I

 Laboratory:
 Idaho National Engineering Laboratory

 Address:
 Allied Chemical Corporation

 S50 Second Street
 Idaho Falls, Idaho 83401

 United States
 William J. Maeck

Experiment: Fast Reactor Fission Yields and Determination of Burnup to Fast Reactor Fuels

A program is in progress to measure the major fraction of the mass yield curve for the fast fission of 233 U, 235 U, 238 U, 237 Np, 239 Pu, 240 Pu, 241 Pu, 241 Am and 243 Am. All irradiations have been completed and the analytical measurements completed for 233 U, 235 U, 238 U, 237 Np, 240 Pu, 241 Fu, and 242 Pu. Data reduction and yield calculations have been completed for 233 U, 235 U, 238 U, 239 Pu, and 241 Pu.

<u>Method</u>: The principal measurement technique is isotope dilution mass spectrometry for the isotopes of Kr, Rb, Sr, Zr, Mo, Ru, Xe, Ce, Ba, La, Ce, Nd, and Sm. The number of fissions is established by the summation of the total atoms in the heavy mass peak.

<u>Accuracy</u>: In general, the errors associated with the 233 U, 235 U, 239 Pu, and 241 Pu yields are $\sim 1.5\%$. For 238 U, the uncertainty in the reported yields is $\sim 3\%$. It is estimated that the uncertainties for the 237 Np and 242 Pu yields will be about $\sim 2\%$, and for 240 Pu, 3-5\%.

<u>Future Work</u>: Data reduction of the experimental results and calculation of the fast fission yields for ^{237}Np should be completed by July 1977, and for ^{240}Pu and ^{242}Pu by about September 1977. Analysis of the dissolved ^{241}Am capsules is in progress.

Measurement of fast reactor fission yields for another set of 235 U, 239 Pu, and 241 Pu capsules irradiated to high burnup in row 4 of EBR-II should start \sim September 1977.

58

- cont'd -

<u>Special Comments</u>: All yields reported from this work are associated with a known neutron spectrum. The study to correlate fast reactor fission yields with neutron energy is continuing.

<u>Publications</u>: Maeck, W. J., Editor, "Fast Reactor Fission Yields for ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu and Recommendations for the Determination of Burnup on FBR Mixed-Oxide Fuels: An Interim Project Report", U.S. ERDA Rept. ICP-1050-I, January 1975.

Available from National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Road, Springfield, Virginia, 22161, USA.

The following is an abstract of this report.

Fast Fission yield data are presented for over 40 stable and long-lived nuclides for 233 U, 235 U, and 238 U irradiated in EBR-II. Also reported are preliminary fast fission yield data for 239 Pu. Capture-fo-fission ratio measurements are reported for 233 U, 235 U, 238 U, 237 Np, 239 Pu, 240 Pu, 241 Pu, and 242 Pu irradiated in the same assembly. The neutron environment for the irradiation is described. Monitors and their fast fission yield values are recommended for the determination of burnup on uranium-plutonium mixedoxide FBR fuels.

Maeck, W. J., Editor, "Fast Reactor Fission Yields for ²³⁹Pu and ²⁴¹Pu", U.S. ERDA Rept. ICP-1050-II, in preparation, expected July 1977.

FPND NEWSLETTER CONTRIBUTION - II

Laboratory:	Idaho National Engineering Laboratory
Address:	Allied Chemical Corporation 550 Second Street Idaho Falls, Idaho 83401 United States
Name:	William J. Maeck
Experiment:	Thermal Fission Yields for ²³⁵ U and ²³⁹ Pu

An existing experiment has been extended to remeasure the major fraction of the mass yield curve for the thermal fission of 235 U and 239 Pu. The need for this program resulted from serious discrepancies in some measured relative isotopic ratios for certain isotopes in the thermal fission of 239 Pu. (See Summary of reported data under Publications).

<u>Method</u>: The principal measurement technique is isotope dilution mass spectrometry for the isotopes of Kr, Rb, Sr, Zr, Mo, Ru, Xe, Cs, Ba, La, Ce, Nd, and Sm. The number of fission will be established by two methods: 1) the summation of the total atoms in the heavy mass peak, and 2) the heavy element difference technique.

<u>Accuracy</u>: The error to be associated with these new results is estimated to be $\sim 1.5\%$.

<u>Future Work</u>: Analysis of four irradiated capsules of ²³⁵U should be completed by about October 1977, and for four capsules of ²³⁹Pu by about July 1978.

<u>Data Discrepancies</u>: Maeck, W. J., Emel, W. A., Delmore, J. E., Duce, F. A., Dickerson, L. L., Keller, J. H., Tromp, R. L., "Discrepancies and Comments Regarding ²³⁵U and ²³⁹Pu Thermal Fission Yields and the Use of ¹⁴⁸Nd as a Burnup Monitor", U.S. ERDA Rept., ICP-1092, December 1976.

- cont'd -

U. S. A.

The following is a summary of this report.

Relative thermal fission yields measured on thermally irradiated samples of ²³⁵U and ²³⁹Pu for Kr, Rb, Cs, Xe, Ba, and Nd show large differences for several isotopes compared to previous measurements made in this laboratory¹ and compared to data in current fission yield compilations². Particularly significant are 14% higher values for ¹³⁸Ba and 8.5% higher values for the Xe isotopes for ²³⁹Pu thermal fission. A major impact is that all of the ²³⁹Pu fission yields will have to be adjusted to preserve mass balance. Small differences obtained for the Xe isotopes for ²³⁵U cause only a slight effect on the mass yield curve.

Differences also were obtained for the isotopic distribution of Nd, in particular, an increase in ¹⁴⁸Nd abundance with increasing neutron flux. This results from a large neutron capture cross section for ¹⁴⁷Nd. Previously measured ¹⁴⁸Nd fission yields tend, therefore, to be high relative to the nearly instantaneous fission yields measured in this work. Thus, burnup values based on ¹⁴⁸Nd and measured on fuels exposed to a low flux could be biased low and for fuels exposed to a high flux biased high.

The primary purpose of this preliminary report is to draw attention to the observed differences and their effect on fission yields, especially for 239 Pu, and to caution chemists who are measuring burnup of thermal irradiated fuels by techniques using 148 Nd as the burnup monitor.

¹ F. L. Lisman, R. M. Abernathey, W. J. Maeck, J. E. Rein, Nucl. Sci. Eng. <u>42</u>, 191-214 (1970).

² IAEA Fission Product Nuclear Data Conference, Bologna, Italy, Nov. (1973), IAEA-169.

FPND NEWSLETTER CONTRIBUTION - III

Laboratory:	Idaho National Engineering Laboratory		
Address:	Allied Chemical Corporation 550 Second Street Idaho Falls, Idaho 83401 United States		
Name:	William J. Maeck		
Experiment:	Natural Fission Reactor Studies: Yields	238 _U Spontaneous Fission	

In the process of analyzing approximately 25 rich uranium ore samples for fissiogenic ruthenium, a preliminary estimate of the 238 U spontaneous fission yields for 99 Ru, 101 Ru, 102 Ru, and 104 Ru has been obtained. The measurement technique was mass spectrometry.

After correction for the natural Ru component and the fissiogenic component resulting from 235 U induced fission, the best estimate for the isotopic composition of 238 U spontaneous fission Ru is:

99	0.2397
101	0.2837
102	0.3124
104	0.1642

Using a value of 6.0% for the 238 U spontaneous fission yield of 99 Mo, the preliminary 238 U spontaneous fission yields for the Ru isotopes are:

99 _{Ru}	6.0%	(relative	to	⁹⁹ Mo)
101 _{Ru}	7.09			
102 _{Ru}	7.81			
104 _{Ru}	4.11			

No rigorous error analysis has been completed to date.

;	<u>U. S. A</u> . 63
Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P. O. Box 1625 Idaho Falls, Idaho 73401 USA
Names:	R. J. Gehrke, R. G. Helmer
Facilities:	1) 4π β-γ coincidence counting system 2) Calibrated Ge(Li) spectrometers
Experiment:	Determination of absolute _Y -ray emission probabilities for: ¹³⁹ Ba, and ¹³⁴ I ongoing ¹⁴⁶ Pr, ¹⁴⁵ Pr, ¹³² Te and ¹⁴¹ La planned
<u>Method</u> :	The decay rates are determined by the $4\pi \beta_{-\gamma}$ coincidence counting system, which has two separate pulse-processing systems. One system is based on fixed pulse widths. The other is based on veriable pulse widths and an overlap coincidence circuit. The dead time of the beta, gamma and coincidence channels is measured by counting the pulses from a 10 MHZ clock. The variable pulse width system is useful in measuring the γ -ray emission probabilities of short-lived (< 30 m) fission products, where high count rates are needed. The γ -ray emission rates are determined by Ge(Li) spectrometers whose efficiencies have been measured to an accuracy of $\pm 1\frac{1}{2}\%$ (1 σ) between 0.3 and 2 MeV.
Accuracy:	\pm 1% to \pm 5% (1 σ uncertainty)
Completion date:	Dec. 1977.

.

.

Laboratory: Los Alamos Scientific Laboratory, Group CNC-11, Los Alamos, NM 87545, USA B. R. Erdal, G. W. Butler, D. W. Barr Names: Absolute fission chamber; Big-10 critical assembly; Facilities: Omega-West reactor; Cockroft-Walton accelerator; radiochemical laboratory; calibrated Ge(Li) and β-proportional detectors Measurement of true radiometric fission yields for Experiment: several primary fission monitors from ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴⁰Pu with thermal-, fission-specturm-, and 14-MeV neutrons Determination of the number of fissions in sample Method: by use of an NBS fission chamber followed by standard radiochemistry and nuclear measurement techniques Typical uncertainty in the yields is 1-2% relative Accuracy: to ²³⁵U thermal-neutron fission Completion date: Early 1977 Publications: A. E. Norris and G. P. Ford, Los Alamos Scientific Laboratory Report No. LA-6129 (1976)

Laboratory:	Los AJamos Scientific Laboratory, Group CNC-11 Los Alamos, NM 87545, USA
Names:	B. R. Erdal, G. P. Ford, K. Wolfsberg, D. C. Hoffman
Facilities:	Godiva-IV fast burst reactor; Omega West reactor; Cockroft-Walton accelerator; radiochemical laboratory; calibrated Ge(Li) detectors
Experiment:	Measurement of absolute cumulative yields of 85m Kr, 87 Kr, 88 Kr, 133g Xe and 135g Xe from thermal-, fission-spectrum-, and 14-MeV-neutron fission of 235 U, 239 Pu, and 233 U
Method:	Delayed removal of Kr and Xe from irradiated stearates followed by gamma-ray spectrometry of Ge(Li) detectors
Completion date:	End of 1977

Laboratory:	Los Alamos Scientific Laboratory, Group CNC-11 Los Alamos, NM 87545, USA
Names:	K. Wolfsberg, G. P. Ford, B. R. Erdal, D. C. Hoffman
<u>Facilities</u> :	Godiva-IV fast burst reactor; Omega West reactor; Cockroft-Walton accelerator; radiochemical laboratory; calibrated Ge(Li) detectors
Experiment:	Fractional independent yields of ^{133m}Xe , ^{133g}Xe , ^{135m}Xe and ^{135g}Xe from thermal-, fission-spectrum-, and 14-MeV-neutron fission of ^{235}U , ^{238}U , ^{239}Pu , ^{242m}Am , and ^{233}U
Method:	Quick removal of Xe from irradiated stearates followed by gamma-ray spectrometry on Ge(Li) detectors
Completion date:	Early 1977

U.S.A.

CONTRIBUTION I

LABORATORY	Lawrence Livermore Laboratory University of California P.O. Box 808 Livermore, CA 94550, U.S.A.
NAMES	D. R. Nethaway A. L. Prindle N. L. Smith
FACILITY	Livermore ICT Facility (14-MeV neutron source)
EXPERIMENT	Measure fission yields (both total chain yields and independent yields) for fission of Th-232 with 14.8- MeV neutrons
METHOD	The Th-232 target foil is covered with U-238 foils so that the fission yields can be measured relative to the fission of U-238. Measurements are made both by doing chemical separations and by direct counting with Ge(Li) detectors. The accuracy of the measurements is about \pm 5%.
COMPLETION DATE	The experimental measurements have been completed. No definite plans have been made for publishing the final results.
DISCREPANCIES TO OTHER REPORTED DATA	The independent yields of Nb-96 and Cs-136 previously

•

The independent yields of Nb-96 and Cs-136 previously reported by S. A. Rao (Phys. Rev. C 5, 171 (1972)) were found to be in serious error.

CONTRIBUTION 2

LABORATORY	Lawrence Livermore Laboratory Univeristy of California P.O. Box 808 Livermore, CA 94550, U.S.A.		
NAME S	D. R. Nethaway A. L. Prindle W. A. Myers W. C. Fuqua M. V. Kantelo		
FACILITY	Livermore ICT Facility (14-MeV neutron source)		
EXPERIMENT	Measure fission yields (both total chain yields and independent yields) for fission of Pu-240 with 14.8- MeV neutrons.		
METHOD	The Pu-240 target material is covered with U-238 foils so that the fission yields can be measured relative to the fission of U-238. Measurements are made both by doing chemical separations and by direct counting with Ge(Li) detectors. The accuracy of the measurements is about $\pm 4\%$.		
COMPLETION DATE	The experimental measurements are complete. The final results should be available by Aug. 1977 as a UCRL report, and will also be submitted to <u>The Physical</u> <u>Review</u> .		

U. S. A.

CONTRIBUTION 3

LABORATORY Lawrence Livermore Laboratory University of California P.O. Box 808 Livermore, CA 94550, U.S.A. NAMES D. R. Nethaway A. L. Prindle W. A. Myers M. V. Kantelo FLATTOP Critical Assembly (Pu), Los Alamos Scientific FACILITY Laboratory. EXPERIMENT Measure fission yields (both total chain yields and independent yields) for fission of Pu-240 induced by fission-spectrum neutrons. METHOD Measurements were made both by doing chemical separations and by direct counting with Ge(Li) detectors. The accuracy of the measurements is about \pm 5%. Absolute yields are based on a comparison with U-238 fission yields and on a normalization of the mass-yield curve. COMPLETION DATE The experimental measurements are complete, and we are in the process of preparing a report for publication.

CONTRIBUTION 4

LABORATORY	Lawrence Livermore Laboratory University of California P.O. Box 808 Livermore, CA 94550
<u>NAMES</u>	D. H. Sisson A. L. Prindle D. R. Nethaway M. V. Kantelo L. L. Nolen R. A. Sigg
FACILITY	Livermore ICT Facility (14-MeV neutron source)
EXPERIMENT	Measure fission yields for fission of Am-241 induced by 14.8-MeV neutrons.
METHOD	Measurements will be made both by doing chemical separations on irradiated targets and by using the recoil-catcher method.
COMPLETION DATE	The measurements have been started, but the completion date is uncertain.

CONTRIBUTION 5

LABORATORY	Lawrence Livermore Laboratory P.O. Box 808, Livermore CA 94550, U.S.A.	
NAMES	Manfred Lindner and David W. Seegmiller	
FACILITY	Livermore Pool Type Reactor (LPTR) and Germanium (Li) Detector Measurements	
CXPERIMENT	Fission-product mass yield measurements in the thermal- neutron induced fission of the long-lived isomer of ²³⁶	
<u>MCTHOD</u>	235 U and 236 Np were irradiated simultaneously in the core (high-flux region) of the LPTR. Ge(Li) gamma-ray spectra on both specimens were recorded and analyzed over a period of approximately one year at fixed intervals. When complete, the analysis will give the mass-yield curve for 236 Np by two independent means: (1) by comparison with the 235 U thermal fission (R-value method), and (2) from the absolute yields of the fission products derived from the Ge(Li) data. About 30 fission-product mass-yields have been measured. No chemical separations were performed.	

ACCURACY 5-10% or better

COMPLETION DATE Late 1977

U.S.A.

Laboratory: Oak Ridge National Laboratory, Bldg. 6010, P. O. Box X, Oak Ridge, TN 37830

Names: R. L. Macklin, J. Halperin

Facilities: Oak Ridge Electron Linear Accelerator (ORELA) Flight Path 7

- Experiment: Fast Neutron (n, γ) Cross Sections $E_n = 2.6 \sqrt{500}$ keV Target-isotopes: see Table 1
- Method: Total Prompt Photon Energy Detectors, Neutron Time-of-Flight. Nucl. Instr. & Meth. 91, 565-571 (1971), Phys. Rev. <u>C11</u>, 1270-1279 (1975).

Accuracy: 2-5% in cross section, $\stackrel{>}{\sim}$ 0.2% resolution (FWHM)

[Expected] completion date:))) See <u>Table 1</u>)

Publications:

Table I

Isotopes	Completion date	Publications
86,87,88 _{Sr}	indefinite	'Valence Neutron Capture in ⁸⁸ Sr", J. W. Boldeman, B. J. Allen, A. R. de L. Musgrove and R. L. Macklin, Nucl. Phys.
89 _Y	1976	A269, 397 (1976). Data taken, analysis at Lucas Heights, Australia, J. Boldeman et al, submitted
90,91,92,94 _{Zr}	1976	 to Nuclear Science and Engineering. "The 192.4 eV Neutron Resonance Parameters of 212r", R. L. Macklin, et al, Nucl. Sci. Eng 62, 174 (1977). "keV Neutron Capture in Zirconium-91", J. W. Boldeman et al, AAEC/E 367. "The Neutron Total and Capture Cross Sections of 92,942r", J. W. Boldeman, et al., Nucl. Phys. A263, 389 (1976). "Valence Component in the Neutron Capture Cross Section of 902r", J. W. Boldeman, et at., Nucl. Phys. A246, 1 (1975). "High Resolution Neutron Transmission and Capture for 912r", A. R. de L. Musgrove, et
93 _{ND}	Jan. 1976	al., Nucl. Phys. R. L. Macklin, Neutron Capture Cross Section of Niobium from 2.6 to 700 keV.
92,94,95,96,97,98,100 _{Mo} 1976		Nuclear Sci. & Eng. <u>59</u> , 12-20 (1976). O. A. Wasson et al., Neutron Resonance Parameters of ⁹² Mo, Phys. Rev. Revw. <u>C7</u> , 1532-1541 (1973).

	<u>U. S. A</u> .	
Isotopes	Completion Date	73 Publications "Average Neutron Resonance Parameters
		and Radiative Capture Cross Sections for the Isotopes of Molybdenum", A. R. de L. Musgrove, et al., Nucl. Phys. A270,
100,101,102,104 _{Ru}	indefinite	108 (1976). Data taken for 100,101,102,104 _{Ru} scheduled
103 _{Rh} 104,105,106,108,110 _{Pd}	indefinite indefinite	Data taken, analyst needed. Data taking completed 1974, 105Pd prelim- inary analysis (Rlm) distributed to
106,108,110,111,112,		Tequestors. Maryst needed.
113,114,116 _{Cd}	indefinite	 Data taken, analysis being undertaken at Lucas Heights. O. S. Wasson and B. J. Allen, "P-Wave Resonances in ¹¹¹Cd(n,γ)", Phys. Rev. <u>C7</u>, 780-787 (1973).
122,123,124,125, 126,128,130 _{Te}	1977	R. R. Winters (Denison Univ., ORNL consul-
1 34,135,136,137,1 38 _{Ba}	1976	tant) analyzing the data. Data taken, analysis in progress at Lucas Heights Australia
170		A. R. Musgrove, B. J. Allen, R. L. Macklin, "keV Neutron Resonance Capture in 135Ba", AAEC/E327 (12/74) (INDC(AUL)-23/L) "keV Neutron Resonance Capture in Barium-137", A. R. de L. Musgrove, et al., Aust. J. Phys. "keV Neutron Capture Cross Sections of 134Ba and 150Ba", Nucl. Phys. A256, 173 (1976). A. R. de L. Musgrove et al. "Neutron Resonance Capture in 138Ba", A. R. de L. Musgrove et al., Nucl. Phys. A252, 1975).
139 _{La}	1977	"Resonant Neutron Capture in ¹³⁹ La", A. R. de L. Musgrove, B. J. Allen and R. L. Macklin, Preprint available.
140 _{Ce}	1977	Data taken, analysis at Lucas Heights.
142,143,144,145,146,148	Nd	"Non-Statistical Effects in the Radiative Capture Cross Sections of the Neodymium Isotopes", A. R. de L. Musgrove, et al., AAEC/E 401.
159 _{Tb}	indefinite	Data taken, analysis in progress, M. Mitzumoto, JAERI-ORNI, (4/77)
165 _{Ho}	1976	R. L. Macklin, "The $165Ho(n,\gamma)$ Standard Cross Sections from 3 to 450 keV", Nucl.
160		oct. 4 Eligt. 33, 231-230 (13/0).

U.	<u> </u>	Α.

Laboratory and add	ress:	Oak Ridge National Laboratory P. O. Box X, Building 6010 Oak Ridge, Tennessee 37830
Names:		J. K. Dickens and R. W. Peelle
Facilities:		Fast Rabbit Transport Station at Oak Ridge Research Reactor (ORR)
Experiment:		Total Beta and Gamma Energy Release for Thermal- Neutron Fission of ²³⁵ U and ²³⁹ Pu for Cooling Times of 2 to 14400 secs.
Method: Microgram with then area. Be have been rays and the time different grated to rays (sep total ene The same	sampl mal ne ta- an obtai NaI fo range ial pr obtai aratel rgy re experi	es of 235 U have been irradiated for short periods utrons, and returned pneumatically to a counting d gamma-ray energy spectra of moderate resolution ned using scintillation detectors (NE110 for beta r gamma rays) for selected time intervals within of interest. The spectra have been reduced to oduction cross sections dJ/dE and have been inte- n total energy release rates for beta and gamma y). These data have been summed to obtain the lease. mental program has been initiated for 239 Pu.
Accuracy:		3% (1σ) for ²³⁵ U, < 5% for ²³⁹ Pu
(Expected) Complet Date:	ion	May 1977 for ²³⁵ U, December 1977 for ²³⁹ Pu
Discrepancies to (Reported Dat	ther a:	Data are in good agreement with other recent experiments and with results of summation calculations.
Publications:		J. K. Dickens, T. A. Love, J. W. McConnell, R. M. Freestone, J. F. Emery, and R. W. Peelle, "Fission Product Beta and Gamma Energy Release Quarterly Progress Report for July-September 1976," ORNL/NUREG/TM-65, (December 1976).

Laboratory and address: Nuclear Radiation Laboratory Nuclear Engineering Program University of Illinois at Urbana-Champaign Urbana, Illinois 61801 U.S.A.

Names: Bernard W. Wehring

Facilities: Illinois Advanced TRIGA 1.5-MW Nuclear Reactor, HIAWATHA Fission-Fragment Mass Spectrometer.

Experiment: Direct Physical Measurement of the Primary Postneutron-Emission Nuclide Yields in Thermal-Neutron Fission of U-235, Pu-239, and U-233

Method: The fission-fragment recoil mass spectrometer HIAWATHA, consisting of a cylindrical focusing electrostatic analyzer and time-offlight system, will be used to determine fragment masses while fragment energy loss will be used to identify fragment atomic numbers in a multiparameter experiment. All fragment velocities and charge states will be measured.

Accuracy: 0.5-amu mass resolution achieved, about 1-Z atomic-number resolution achieved, 1% standard error in largest mass yield achieved, 5% standard error in largest nuclide yield, goal.

Completion date: 1979

Publications:

- R. G. Bucher, "An Experimental Study of Stopping Powers for Ions of Intermediate Atomic Numbers," Ph.D. thesis, University of Illinois at Urbana-Champaign, 1975.
- B. W. Wehring and R. G. Bucher, "Stopping Power for Ions of Intermediate Atomic Numbers, "Proc. Fourth International Conf. Beam-Foil Spectroscopy and Heavy-Ion Atomic Physics Symposium, Sept. 15-19, 1975, Gatlinburg, Tennessee, pp. 679-686, Plenum Publishing Corp., 1976.
- Gino Dilorio and B. W. Wehring, "Performance of HIAWATHA, A Fission-Fragment Mass Spectrometer," Trans. Am. Nucl. Soc. 23, 523 (1976).
- Gino Dilorio and B. W. Wehring, "Direct Physical Measurement of Mass Yields for ²³⁵U(nth, f), Trans. Am. Nucl. Soc. 24, 459 (1976).
- R. B. Strittmatter, R. G. Bucher, and B. W. Wehring, "Atomic-Number Dependence of Fission-Fragment Energy Loss: Evidence for Z₁ Oscillations (accepted for publication in Phys. Rev. A, June 1977 issue).

Laboratory and address: Nuclear Radiation Laboratory Nuclear Engineering Program University of Illinois at Urbana-Champaign Urbana, Illinois 61801 U.S.A.

Names: Bernard W. Wehring

Facilities: Illinois Advanced TRIGA 1.5-MW Nuclear Reactor, 5-µg Cf-252 Fast-Neutron Source, 150-kV Neutron Generator.

Experiment: Determination of Element Yields in Thermal-, Fast-, and 14-MeV-Neutron and Spontaneous Fission from Measured X-Ray Multiplicities

Method: Primary element yields are determined by measuring multiple characteristic x-ray emission rates for each Z split, extrapolating to the case where neither fragment emitted an x ray, and summing over all possibilities for multiple x-ray emission.

Accuracy: 10% standard error in absolute element yields in spontaneous fission of Cf-252 achieved, 5% standard error in absolute element yields in fissions of U-235, Pu-239, U-233, Th-232, and U-238, goal.

Completion date:

Publications:

- R. J. Lipinski, Measured X-Ray Multiplicities and Element Yields in the Spontaneous Fission of Californium-252," Ph.D. thesis, University of Illinois at Urbana-Champaign, 1976.
- R. J. Lipinski and B. W. Wehring, "Element Yields in Cf-252 Spontaneous Fission Determined from Measured X-Ray Multiplicities," Phys. Letters 66B, 326 (1977).

Laboratory and address	Idaho National Engineering Laboratory EG&G Idaho, Inc. P. O. Box 1615 Idaho Falls, Idaho 83401 USA
Name:	Y. D. Harker
Experiment:	Integral cross section measurements in the fast-reactor-type neutron environments.
<u>Method</u> :	A program is in progress to measure integral cross sections of fission-product-class 1 nuclides using Couple Fast Reactivity Measurement Facility (CFRMF) and Experimental Breeder Reactor II (EBRII). Three methods of measurement are being utilized 1) neutron activation/gamma spectrometry 2) reactivity worth and 3) transmutation/isotope dilution mass spectrometry.
Accuracy:	<u>Activation Measurements</u> 2% - 20% depending on the quality of decay data available for the activation products.
	Reactivity North Measurements $\sim 5\%$ for total worth
	Transmutation Measurements 5%-15%
<u>Measurements Completed</u> :	Integral capture cross sections have been completed for ~ 50 reactions and results are summarized and compared with ENDF/BIV calculated results in Table I. A comprehensive set or reactivity worth measurements have been completed and will be reported by October 1977. Transmu- tation measurements are in progress and results are expected by August 1977.
Publications:	- Y. D. Harker, "Fast-Neutron Capture Integral Measurements of ⁹⁹ Tc, ¹⁰⁹ Ag and Other Fission Products" <u>Proceedings of the Third Conference</u> <u>Neutron Cross Sections and Technology, Knoxville,</u> Tenn., March 15-17, 1971, USAEC CONF. Report No. CONF-710301, August 1971, pp113-119.

.

Т

TABLE I

FISSION PRODUCT REACTION RATE

			σ̂ _c (A,Z) / σ̂ _f (
Reaction	Sample Description	Sample Mass	Measured ^[a]	Calculated ^[b]	Measured/Calculated
⁸⁷ Rb(n,y) ⁸⁸ Rb	RbCl powder in a disk shape 1 cm diameter x 1.6 mm thick	62.6 mg	8.50 x 10 ⁻³ (± 12%)	7.45 x 10 ⁻³	1.14
⁸⁹ Y(n, _Y) ⁹⁰ MY	Metal chips		2.23 x 10 ⁻⁴ (± 7.7%)		
⁹³ Nb(n,γ) ^{94m} Nb	Nb Metal foil .79 cm square x .13 mm thick	69 mg	$1.15 \times 10^{-1} (\pm 50\%)$	7.65 x 10 ⁻²	1.50
⁹⁹ Tc(n,y) ¹⁰⁰ Tc	Tc powder in a disk shape 1 cm diameter x 1.6 mm thick	99.2 mg	1.72 x 10 ⁻¹ (± 11%)	1.74 x 10 ⁻¹	. 99
⁹⁸ Мо(n, _Y) ⁹⁹ Мо	Mo metal foil%1 cm dia- meter x 0.13 mm thick	99.0 mg	3.81 x 10 ⁻² (± 11%)	4.36 x 10 ⁻²	.87
¹⁰⁰ Mo(n,γ) ¹⁰¹ Mo	Mo metal foil≈1 cm dia- meter x 0.13 mn thick	99.0 mg	2.24 x 10 ⁻² (± 8.7%)	3.11 x 10 ⁻²	.72
¹⁰² Ru(n,y) ¹⁰³ Ru	Ru powder in a disk shape 1 cm diameter x 1.6 mm thick	87.5 mg	5.55 x 10 ⁻² (± 8.1%)	7.84 x 10 ⁻²	.71
¹⁰⁴ Ru(n,y) ¹⁰⁵ Ru	Ru powder in a disk shape 1 cm diameter x 1.6 mm thick	75.4 mg	5.13 x 10 ⁻² (± 6.3%)	5.50 x 10 ⁻²	.94
¹⁰³ Rh(n,y) ^{104m} Rh	Rh wire 0.254 mm dia- meter	6.3 mg per cm length	2.02 x 10 ⁻² (± 12%)		

<u>U.S.A</u>

Т

TABLE I (Continued)

			σ _c (A,Z) / σ _f (235,92)	
Reaction	Sample Description	Sample Mass	Measured ^[a]	Calculated ^[b]	Measured/Calculated
103Rh(n,y)1049Rh	Rh wire 0.254 mm dia- meter	6.3 mg per cm length	2.15 x 10 ⁻¹ (± 26%)		~
¹⁰³ Rh(n,y) ¹⁰⁴ Rh		<u>_</u> =	2.35 x 10 ⁻¹ (± 24%)	2.64 x 10 ⁻¹	.89
¹⁰⁷ Ag(n,y) ^{108g} Ag	Ag metal foil ${\mathcal R}$ 1 cm diameter x .13 mm thick	100 mg	2.75 x 10 ⁻¹ (± 15%)	2.65 x 10 ⁻¹	1.04
¹⁰⁹ Ag(n, _Y) ^{110g} Ag	Ag metal foil % 1 cm diameter x .13 mm thick	100 mg	3.11 x 10 ⁻¹ (± 12%)	*	
¹⁰⁹ Ag(n, _Y) ^{110m} Ag	Ag metal foil % 1 cm diameter x .13 mm thick	100 mg	$1.80 \times 10^{-2} (\pm 6.6\%)$		
¹⁰⁹ Ag(n,y) ¹¹⁰ Ag		<u> </u>	3.29 x 10 ⁻¹ (± 11%)	1.92×10^{-1}	1.71
¹⁰⁸ Pd(n, _Y) ¹⁰⁹ Pd	Pd metal foil $\stackrel{\sim}{\sim} 1$ cm diameter x .13 mm thick	98.1 mg	7.81 x 10 ⁻² (± 25%)		
110pd(n,y)111pd	Pd metal foil & 1 cm diameter x .13 mm thick	98.1 mg	3.06 x 10 ⁻³ (± 10%)		
¹¹⁵ In(n,y) ^{116m} In	In metal foil .13 mm thick	63.7 mg	1.67 x 10 ⁻¹ (± 7.9%)	1.92 x 10 ⁻¹	.94
121Sb(n,y)122Sb	Sb powder in a disk shape 1 cm diameter x 1.6 mm thick	132.1 mg	1.74 x 10 ⁻¹ (± 6.3%)	1.93 x 10 ⁻¹	.90

U.S.A.

INEL (continued)

•

I.

TABLE I (Continued)

	r	
÷		
	l	
	2	2

• •

			ි _c (A,Z) / ි _f (2	235,92)		
Reaction	Sample Description	Sample Mass	Measured ^[a]	Calculated ^[b]	Measured/Calculated	
¹²³ Sb(n, _Y) ¹²⁴ Sb	Sb powder in a disk shape 1 cm diameter x 1.6 nm thick	132.1 mg	9.65 x 10 ⁻² (± 8.9%)	1.05 x 10 ⁻¹	.92	
¹²⁷ I (n, _Y) ¹²⁸ I	AgI powder evenly dis- tributed over 1 cm x 1.5 cm area	(¹²⁷ I) 5.51 mg	1.85 x 10 ⁻¹ (± 19%)	2.14 x 10 ⁻¹	.86	
¹²⁹ I (n,y) ¹³⁰ I	Ag ¹²⁹ I powder evenly distributed over 1 cm x 1.5 cm area	(¹²⁹ I) 5.29 mg	1.14 x 10 ⁻¹ (± 8.6%)	1.46 x 10 ⁻¹	.78	u s
¹³² Xe(n, _Y) ^{133M} Xe	¹³² Xe implanted in Al foil over area 13.1 cm x 5 cm	(¹³² Xe) 286.8 µg	1.52 x 10 ⁻³ (± 15%)			A -
¹³² Xe(n,y) ¹³³⁹ Xe	¹³² Xe implanted in Al foil over area 13.1 cm x 5 cm	(¹³² Xe) 286.8 µg	2.45 x 10 ⁻² (± 8.0%)			
¹³² Xe(n,y) ¹³³ Xe		∑=	2.60 x 10 ⁻² (± 7.6%)			
¹³⁴ Xe(n, _Y) ¹³⁵ Xe	¹³⁴ Xe implanted in Al foil over area 13.2 cm x 5 cm	(¹³⁴ Xe) 106.0 µg	9.29 x 10 ⁻³ (± 6.6%)	1.51 x 10 ⁻²	.61	
¹³³ Cs(n, _Y) ^{134M} Cs	Cs_SO_ powder in a disk 1 cm diameter x 1.6 mm thick	69.6 mg	3.47 x 10 ⁻² (± 16%)			
133Cs(n, _Y)134Cs	CsNO ₃ powder in bottom of quartz vial-hemi- spherical 6.4 mm dia- meter	9.01 mg	1.72 x 10 ⁻¹ (± 6.4%)	1.89 × 10 ⁻¹	.91	

International Atomic Energy Agency

Second Advisory Group Meeting on Fission Product Nuclear Data

Petten, Netherlands, 5 - 9 September 1977

INFORMATION SHEET

1. Introduction

Fission product nuclear data (FPND) play an important role in the calculation and control of the effects of fission products in all stages of the nuclear fuel cycle, in considerations of environmental safety and waste management, and in industrial and other application areas. Recognizing this importance, the International Atomic Energy Agency (IAEA) had convened a Panel Meeting on FPND in Bologna, Italy, in November 1973, which was the first one to review the requirements and status of FPND on an international level. Many technical recommendations aiming at the improvement of the knowledge and accuracy of FPND resulted from this meeting which helped to strengthen, coordinate and focus the research work on FPND in the ensuing years. In the foresight of this development the Bologna Panel had recommended, with the later concurrence of the International Nuclear Data Committee (INDC). to convene another specialists meeting on FPND after an appropriate elapse of time.

The present Advisory Group Meeting on FPND convened by the IAEA represents thus a follow-up of the Bologna Panel with the principal objective to review the present stage of requirements of FPND, the progress and achievements in FPND research since that Panel, and to work out recommendations for future work on FPND. The expected number of scientists participating in this meeting is about 50.

2. Objectives

The detailed objectives of the meeting will be as follows:

- to bring together users, measurers and evaluators of FPND;
- to review the progress in international cooperation and coordination of FPND activities achieved since the Bologna Panel;
- to review the user requirements for improved FPND needed in practical applications, starting from the conclusions drawn at the Bologna Panel. This Panel had strongly recommended that all future requirements for more accurate data should be well supported by sensitivity studies and take into account the latest status of the available data;
- to review the status of available compilations and evaluations;
- to review the status of microscopic FPND requested by users and its improvement since the Bologna Panel. Results of new experiments, calculations or evaluations should be reported and critically discussed;
- to discuss FPND user needs and issue conclusions about the priority and urgency of the requirements;
- to identify further measurements, calculations, compilations and evaluations required to satisfy the needs of FPND users; and
- to issue specific recommendations for future work.

The data types to be covered by the meeting will be the same as those of the Bologna Panel, namely:

- FP yields;
- FP neutron cross sections;
- FP decay data;
- delayed neutron data; and
- FP integral data.

3. Organization

In order to meet the objectives, the organization of the meeting is proposed to be as follows:

The first part of the meeting (two to three days) will be devoted to the presentation of 15 comprehensive review papers covering the full scope of the meeting, followed by general discussions on the open problems.

The proposed titles of the review papers together with some specifications of their contents are listed in Annex I. For each of these papers a suitable expert has been selected and proposed as reviewer (see Annex I). Apart from his own contribution, his paper should incorporate a broad variety of views and results from different authors and laboratories which will be submitted to him in the form of oral or written contributions. The review papers should thus supply the participants of the meeting with all information they need for critical considerations and fruitful discussions.

After the general discussions working groups will be formed, which should summarize the results of the meeting in each subject area and draft conclusions and recommendations (one to two days).

A plenary session on the last day of the meeting will discuss and approve the working group reports including the conclusions and recommendations. The summary of the meeting's conclusions and recommendations as well as the proceedings of the meeting will be published by the IAEA and given a wide distribution.

4. Participation

The nomination of a participant will be accepted only if it is presented by the Government of a Member State of the International Atomic Energy Agency or by an international organization invited to participate.

Participants will receive official invitations from the scientific secretaries of the meeting, G. Lammer and J.J. Schmidt.

Annex I

List of review papers (RP) and suggested reviewers

- RP 1 Introductory paper
 - G. Lammer, IAEA Vienna, Austria
- <u>RP 2 Needs and accuracy requirements for FPND of impact to</u> the environment
 - D. Beninson, UNSCEAR (UN Scientific Committee on Effects of Atomic Radiation), Vienna, Austria
- <u>RP 3 Needs and accuracy requirements for FPND in the physics</u> design of power reactor cores
 - J.L. Rowlands, AEE Winfrith, UK
- <u>RP 4 Needs and accuracy requirements in the engineering design</u> and operation of reactors
 - C. Devillers, CEN/Saclay, France
- <u>RP 5</u> Needs and accuracy requirements for FPND in the out-of-pile fuel cycle

H.A.C. McKay, AERE Harwell, UK

RP 6 FPND requirements for investigations on irradiated nuclear fuel material: burnup, neutron dosimetry, safeguards

W.J. Maeck, Allied Chemical Corp., Idaho Falls, USA

 RP_7
 Status of neutron reaction cross sections of fission products

 in the energy ranges of resolved and unresolved resonances

E. Fort, CEN/Cadarache, France

<u>RP 8</u> Impact of integral measurements on the capture cross-section evaluations of individual fission product isotopes

H. Gruppelaar, ECN Petten, Netherlands

RP 9 Status of fast neutron reaction cross-sections of fission products

÷

S. Iijima, NAIG Nuclear Research Lab., Japan

RP 10 Status of fission product yield data

J.G. Cuninghame, AERE Harwell, UK

<u>RP 11</u> Prediction of unmeasured fission yields by nuclear theory or systematics

> J.O. Denschlag, Institut für Kernchemie, Universität Mainz, FRG.

RP 12 Status of decay data of fission products

J. Blachot, CEN/Grenoble, France

- RP 13 Status of delayed neutron data
 - G. Rudstam, Swedish Research Council's Laboratory, Sweden
- RP 14 Integral determination of FP neutron cross-sections

M. Bustraan, ECN Petten, Netherlands

<u>RP 15</u> Integral determination of fission product inventory and decay power

R.E. Schenter, HEDL, Richland, USA

INEL (continued)

TABLE I (Continued)

			ଟି _c (A,Z) /ଟି _f (2	35,92)	
Reaction	Sample Description	Sample Mass	Measured ^[a]	Calculated ^[b]	Measured/Calculated
¹³⁹ La(n, _Y) ¹⁴⁰ La	La_2O_3 powder in a disk 1.27 cm diameter x 3.2 mm thick	416 mg	1.14 x 10 ⁻² (± 6.3%)		
¹⁴⁰ Ce(n, _Y) ¹⁴¹ Ce	CeO ₂ powder in a disk 1.27 cm diameter x 3.2 nm thick	431 mg	5.45 x 10 ⁻⁴ (± 8.7%)	8.71 x 10 ⁻³	.063
¹⁴² Ce(n, _Y) ¹⁴³ Ce	CeO ₂ powder in a disk 1.27 cm diameter x 3.2 mm thick	431 mg	1.16 x 10 ⁻² (± 11%)	1.56 x 10 ⁻²	.74
¹⁴¹ Pr(n, _Y) ¹⁴² Pr	Pr powder in a disk 1 cm diameter x 1.6 mm thick	79.8 mg	4.75 x 10 ⁻² (± 10%)	6.39 x 10 ⁻²	.74
¹⁴⁷ Pm(n, _Y) ^{148M} Pm	¹⁴⁷ pm ₂ O ₃ powder evenly distributed over 1 cm diameter area	13.6 mg	2.21 x 10 ⁻¹ (± 13%)		
¹⁴⁷ Pm(n, _Y) ¹⁴⁸⁹ Pm	¹⁴⁷ Pm ₂ O ₃ powder evenly distributed over 1 cm diameter area	13.6 mg	2.69 x 10 ⁻¹ (± 18%)		
¹⁴⁷ Pm(n,y) ¹⁴⁸ Pm		<u> </u>	4.90 × 10 ⁻¹ (±.12%)	4.87 x 10 ⁻¹	1.01
¹⁴⁶ Nd(n, _Y) ¹⁴⁷ Nd	Nd ₂ O ₃ powder in a disk 1.25 cm diameter x 1.7 mm thick	84.63 mg	4.15 x 10 ⁻² (± 14%)	5.72 x 10 ⁻²	.72
¹⁴⁸ Nd(n, _Y) ¹⁴⁹ Nd	Nd ₂ O ₃ powder in a disk 1 Cm diameter x 1.6 mm thick	60.82 mg	6.67 x 10 ⁻² (± 9.1%)	1.02 x 10 ⁻¹	.66 <u>∞</u>

ŀ

U.S.A.

TABLE I (Continued)

<u>,,.,.</u> ,	<u></u>		σ _c (A,Z) / σ _f ((235,92)	
Reaction	Sample Description	Sample <u>Mass</u>	Measured[a]	Calculated[b]	Measured/Calculated
¹⁵⁰ Nd(n,y) ¹⁵¹ Nd	Nd ₂ O ₃ powder in a disk 1 cm diameter x 1.6 mm thick	60.82 mg	6.02 x 10 ⁻² (± 21%)	9.15 x 10 ⁻¹	.66
¹⁵² Sm(n,y) ¹⁵³ Sm	Sm O powder in a disk 1 cm diameter x 1.6 mm thick	87.39 mg	7.33 x 10 ⁻¹ (± 4.5%)	9.78 x 10 ⁻¹	.75
¹⁵¹ £u(n,γ) ^{152M1} Eu (I ₁₂ = 9.3h)	¹⁵¹ Eu O, powder in hemispherical bottom of quartz vial (6.4 mm dia- meter) 4 mm deep	15.33 mg	6.75 x 10 ⁻¹ (± 8.4%)		
$^{151}Eu(n,\gamma)^{152}m_{2}Eu(1_{1_{5}} = 96 m)$	¹⁵¹ Eu ₂ O ₃ powder in poly- ethylene container	15.49 mg	1.39 x 10 ⁻³ (± 9.5%)		
¹⁵¹ Eu(n, _Y) ¹⁵²⁹ Eu	¹⁵¹ Eu ₂ 0 ₃ powder in hemispherical bottom of quartz vial (6.4 mm dia- meter)4 mm deep				
¹⁵¹ Eu(n, _Y) ¹⁵² Eu	· · · · · ·	<u></u> =	1.64 (± 6.3%)	1.43	1.15
¹⁵³ Eu(n, _Y) ¹⁵⁴ Eu	¹⁵³ Eu ₂ O ₃ powder in hemispherical bottom of quartz vial (6.4 mm dia- meter) 4 mm deep	14.87 mg	9.49 x 10 ⁻¹ (± 7.9%)	8.90 × 10 ⁻¹	1.07
¹⁵⁸ Gd(n,y) ¹⁵⁹ Gd	Gd metal foil 1 cm dia- meter x 0.051 mm thick	30 mg	1.12 x 10 ⁻¹ (±12%)	1.15 × 10 ⁻¹	.98

82

U. S. A.

INEL (continued)

TABLE I (Continued)

		·····	<pre></pre>	(235,92)	
Reaction	Sample Description	Sample Mass	Measured ^[a]	Calculated ^[b]	Measured/Calculated
¹⁶⁰ Gd(n,y) ¹⁶¹ Gd	Gd metal foil 1 cm dia- meter x 0.051 mm thick	30 mg	5.75 x 10 ⁻² (± 8.5%)	8.97 x 10 ⁻²	.64
¹⁶⁹ Ṭm(n,γ) ¹⁷⁰ Ţm	Tm metal foil .13 mm thick	78 mg	2.93 x 10 ⁻¹ (± 12%)		
¹⁸¹ Ta(n, _Y) ^{182M} Ta	Ta metal foil .05 mm thick	142.05mg	4.70 x 10 ⁻⁴ (± 22%)		
¹⁸¹ Ta(n,y) ^{182g} Ta	Ta metal foil .05 mm thick	142.05mg	3.29 x 10 ⁻¹ (± 9.0%)		
¹⁸¹ Ta(n,y) ¹⁸² Ta		<u></u> =	3.29 x 10 ⁻¹ (± 9.0%)	3.46 x 10 ⁻¹	.95
¹⁸⁶ W (n,y) ¹⁸⁷ W	W metal foil .127 mm thick	258 mg	9.00 x 10 ⁻² (± 13%)		

[a] $\phi \hat{\sigma}_{f}(235,92)$ was measured using NBS fission chamber, run to run normalization based on gold flux monitors included with each irradiation run.

[b] Calculated ratios are based on ENDF/B IV cross section data. Neutron spectrum used in obtaining spectral averages was derived from one-dimension transport theory (SCAMP-72/271) from ENDF/B IV data.

 $[\hat{\sigma}_{f}(235,92)]$ calc. = 1.595 barn/atom

.

II. COMPILATIONS AND EVALUATIONS

FRANCE

LABORATORY AND ADRESS : DRE/SPNR - CEN/CADARACHE B.P. N° 1 13115 - SAINT-PAUL-LEZ-DURANCE -

NAMES : E. FORT, TRAN QUOC THUONG, J. BLUET

EVALUATIONS :

Purpose : Evaluation of capture and inelastic cross sections for the fast neutron reactor programme.

Method: Selection of resonance parameters - Calculation by
BW single and multi-level formalism
Criticism of the experimental data
Adjustments on these data using statistical and
optical model.
Elaboration of local or total systematics for the
mean parameters.

Major sources of information : Neutron physics literature, BNL 325, Nuclear Data Sheets (level scheme), ENDF/B files, CINDA, NEUDADA library.

Deadline of litterature coverage : None

<u>Status</u> : Participation to 40 fission products evaluation (list given in INDC (NDS) - 75/G+P in CNEN-Bologna contribution) and to revision of the 22 P.F. evaluation completed in 1975 (magnetic tape - available at CCDN SACLAY).

Cooperation : CNEN/BOLOGNA

Computer file of evaluated data : Evaluation of 62 F.P. (22 revised) on magnetic tape (ENDF/B format) will be available at CCDN SACLAY

Compilation date : 1978

<u>Publication</u> : Common publication CNEN/CEA at the IV National Soviet Conference on Neutron Physics. KIEV 18-22 Avril 1977. "Neutron Cross Sections for 22 most important fission products" E. FORT, J. KREBS, P. RIBON, Tran QUOC THUONG - CEA E. MENAPACE, M. MOTTA, G. REFFO - CNEN/BOLOGNA

GERMANY

Laboratory and address:	Max-Planck-Institut für Kernphysik Postfach 103980, 6900 Heidelberg, Germany			
Name:	H.V. Klapdor			
Evaluation:	Shape of beta-strength function S_{β} in β -decay of neutron-rich fission products.			
Purpose:	Knowledge of S _{β} is important for calculation of β -decay half-lives, of β -delayed neutron yield and of production rates for heavy nuclides by astrophysical processes and thermo-nuclear explosions.			
Method:	Information on the relevant part of $S_{\beta}(E^{*})$, i.e. the structure in the lower tail of the Gamow- Teller giant resonance (GTGR), is obtained from the strengths of the MI- γ -decay of isobaric analogue states (in nuclei near the β -stability line) to anti-analogue, core-polarized and spin-flip con- figurations.			
Deadline of literature coverage:	April 1977			
Status and results:	The results are of qualitative nature, clearly indi- cating, however, existence, rough energy position, and importance of a resonance – like shape of S_{β} in the low-energy tail of the GTGR. Agreement of the predictions is found with recent experimental data ¹ , ²).			
Cooperation:	with Institut für Kernchemie, Mainz			
Discrepancies encountered:	To assumptions S_{β} = const, or ~ g (E) or of structure- less GTGR, as used, e.g. in refs. ²⁻⁵).			
Completion date:	August 1976			
Publications:	H.V. Klapdor, CERN-Report CERN 76-13 (1976) 311 H.V. Klapdor, Phys. Lett. <u>65B</u> (1976) 35			
References:	 KL. Kratz et al., Phys.Lett. <u>65B</u> (1976) 231 and Proceed. Int. Workshop V on Gross Properties of Nuclei, Hirschegg (1977) 208 			
	2) B. Jonson et al., CERN-Report 76-13 (1976) 277			
	3) S. Shalev, G. Rudstam, Nucl. Phys. <u>A230</u> (1974) 153			
	4) J.C. Hardy, CERN-Report 76-13 (1976) 277			
	5) T. Kodama and K. Takahashi, Nucl. Phys. <u>A239</u> (1975) 489			

INDIA

Laboratory and address: Health Physics Division, Bhabha Atomic Research Centre, Bombay 400 085, India.

Names : D.H.Starma, M.R.Iyer and A.K.Gangaly.

- A. THEORETICAL COMPILATION
 - <u>Type of data</u>: Pission product independent yields for higher energy fission. (Fast and 14.7 MeV neutron fission of ²³⁵U)
 - (2) <u>Purpose</u> ² To predict fission product independent yields for higher energy fission using a fission model because experimentally determined data for these yields are very rare.
 - (3) <u>Major sources of information</u>: The Order-Disorder Model (OIN)^(1,2) developed for thermal fission has been extended to higher energy fission case by evolving a scheme for the distribution of the extra excitation energy between the impending fragments. The experimental data on product mass yields and charge distribution parameters for thermal neutron induced fission comoiled by Meek and Rider⁽³⁾ have been used as input values for the computational procedure.
 - (4) <u>Regults and discriponoiss</u>: The experimental⁽³⁾ and predicted values as independent and cumulative yields of fission products do not agree very well in all cases. But generally speaking agreement seems to be better in higher yield region. In view of the large variations in the recommended values of Meek and Rider^(3,4) and the range of experimental uncertainties quoted for experimental values, it can be stated that the present approach predicts the independent and

- cont'd -

cumulative yields within reasonable limits of error.

- (5) <u>Relevant details</u>: The predicted total charge yield distribution shows a small peak in the vicinity of Z = 28. This can be attributed to the proton magic shell effect of Z = 28. Similar conclusion has been drawn after observing experimentally, a shoulder around Z = 28 by Iver et al^(5,6) of this research centre.
- (6) <u>Completion date</u> : March 1975.
- (7) Publications :
 - (i) Sharma, D.N., Charge Distribution, Neutron Evaporation and Energy Distribution in Higher Energy Binary Fission, M.Sc. Thesis, Borbay University, Borbay, India (1975).
 - (ii) Sharma, D.H., Iyer, M.R. and Ganguly, A.K., Charge Distribution, Heutron Evaporation and Energy Distribution in Fast Binary Fission, Phys. Rev. C 40 (1976), 181.
- B. EVALUATION
 - (1) <u>Type of data</u> : Experimental data on fission product mass yields and charge distribution parameters.
 - (2) <u>Purpose and method</u>: The equality of yields of complementary charges is a built-in and necessary condition but not sufficient condition for a fission process. As the evaporation of neutrons from fragments does not shift the charge line of the fragment, the total charge yield distribution remains same for fragment and products. Based upon the above criterian various parameters have been derived to test the consistency of a given set of data on product mass yields and charge distribution parameters.
INDIA

- cont'd -

- (3) <u>Regults</u>: The latest set of data compiled by Mech and Bider⁽³⁾ has been evaluated. In general it is found that fast and high energy (14.7 MeV) data sets are not consistent but the thermal fission data are comparably more consistent except ²³⁵U (Thermal) data which also falls in the category of less consistent one.
- (4) Completion date : March, 1975.
- (5) Publication :
 - (i) Sharma, D.N., Charge Distribution, Neutron Evaporation and
 - Energy Distribution in Higher Energy Binary Pission,

```
M.Sc. Thesis, Bombay University, India (1975).
```

(ii) Sharma, D.N., Iyer, M.R., and Ganguly. A.K., Charge Distribution, Neutron Evaporation and Energy Distribution in Fast Binary Fission. B.A.R.C./I-408 (1976).

HIST SHIE CES

- 1. Iyer, M.R., Gangaly, A.K., Huolear Chargo Distribution in Fission Fragments, Phys. Rev. <u>C</u> 3 (1971) 785.
- Iyer, N.R., Ganguly, A.K., Neutron Evaporation and Energy Distribution in Individual Fission Fragments, Phys. Rev. <u>C</u> 5 (1972) 1410.
- Meek, M.E., Rider, B.F., Compilation of Fission Products Yields, Rep. HEDO-12154-1 (1974).
- Meek, N.E., Rider, B.F., Compilation of Fission Products Yields, Rep. NEDO-12154 (1972).
- 5. Reo, V.K., Bhargava, V.K., Marathe, S.G., Sahakundu, S.M. and Iyer, R.H., Search for low-yield products in the neutron induced highly asymmetric fission of Uranium, Phys. Rev. <u>C</u> 9 (1974) 1506.
- Marathe,S.G., Sahakundu,S.M., Bhargava,V.K., Bao,V.K. and Iyer,R.H., Possible Influence of the 28 Proton Shall on Fission Mass Distribution Muclear Physics and Solid State Physics Symposium Indian Institute of Science, Bangalere (Proc. Symp. Bangalore, 1973) Bangalore, India (1973) 21.

92

ITALY

Laboratory and address: CNEN, Centro di Calcolo Via Mazzini, 2 - 40138 Bologna, Italy

- Names: F. Fabbri, T. Martinelli, E. Menapace, A. Montaguti, M. Motta, G.C. Panini, G. Reffo, M. Vaccari, A. Ventura.
- Evaluation: The complete evaluation and compilation in ENDF/B format of the 40 FP, listed in the last progress report (No. 2,INDC(NDS)75/G+P) continues.
- Purpose: Estimate of long term reactivity changes and FP accumulation in fast reactor.
- Method: Calculations by BW-single and -multilevel for malism (resonance region) and by statistical and optical models.
- Major sources of information: NEUDADA, CINDA.
- Deadline of literature coverage: December 1976.
- Status: The evaluation and file compilation of 30 isotopes of the above mentioned list has been completed at the date April 30, 1977.
- Cooperation: CEA Cadarache and Saclay and ECN Petten.
- Other relevant details: 25 group cross sections at infinite dilution and O°K temperature have been generated for each eval uated isotope.

Computer file of evaluated data: ENDF/B format.

Expected completion date: 1977 for the evaluation of the 40 isotopes.

JAPAN

```
Laboratory and adress : Japanese Nuclear Data Committee/ FPND W.G.,
                        Japan Atomic Energy Research Institute,
                        Tokai-mura, Naka-gun, Ibaraki-ken, Japan.
Names : S. Iijima, M. Kawai, T. Yoshida, T. Murata (Nippon Atomic
        Industry Group Co.)
        S. Igarasi, T. Nakagawa, Y. Kikuchi, Z. Matsumoto (JAERI)
        H. Matsunobu (Sumitomo Atomic Industries)
        H. Sasaki (Mitsubishi Atomic Industries, Inc.)
        T. Aoki (Fuji Electric Co.)
        K. Maki (Hitachi Ltd.)
        T. Watanabe (Kawasaki Heavy Industries)
        I. Otake (PNC)
        R. Nakasima (Hosei Univ.)
1. Compilation : Level scheme and neutron cross section.
                 Se-82, Br-81, Kr-(83,84,85,86), Rb-(85,87), Sr-(88,89,90),
                 Y-(89,91), Zr-(90,91,92,93,94,95,96), Nb-(93,95),
                 MO-(95,96,97,98,100), Tc-99, Ru-(100,101,102,103,104,106),
                 Rh-(103,105), Pd-(104,105,106,107,108,110),
                 Ag-(107,109,110m), Cd-(110,111,112,113), Te-(127m,128,129m,
                 130), I-(127,129,131), Xe-(131,132,133,134,135,136),
                 Cs-(133,134,135,137), Ba-(138,140), La-139,
                 Ce-(140,141,142,144), Pr-(141,143), Nd-(142,143,144,
                 145,146,147,148,150), Pm-(147,148m,148g), Sm-(147,148,
                 149,150,151,152,154), Eu-(151,153,154,155), Gd-(155,156,157).
   Purpose:
                 For evaluation of neutron cross sections.
                 Recent reference list and Nuclear Data Sheet (level scheme).
   Source:
                 CINDA and NEUDADA (neutron cross section).
   Deadline of literature coverage: Mid 1976
   Computer file of compiled data:
                 A modified file based on ORNL nuclear structure data
                 file (level scheme, under test).
                 NESTOR file (cross section).
```

JAPAN

cont'd

Completion date: May 1977

Publication: JAERI-M5752(1974) for 28 isotopes.

Report is in preparation for other isotopes. (Level scheme by Matsumoto, Murata, Nakasima. Cross sections by Matsunobu, Watanabe.)

2. Evaluation : Neutron cross sections of the 100 isotopes listed above.

Purpose: For entry to JENDL-2.

Method: Calculation with optical model and statistical theory, adjusted by capture data. Strengthifunction model in unresolved resonance region. Single- and multilevel BW formula in thermal and resolved resonance regions.

Source: Present compilation (level scheme, capture and inelastic cross sections). BNL-325, 3rd edition(resonance parameter).

Deadline of literature coverage: Mid 1976

Status: Evaluation was completed for 27 isotopes in April 1975. Evaluation is in progress for other 63 isotopes. Capture data are being re-examined.

Computer file of evaluated data: JENDL (ENDF/B-4 format).

Expected completion date: June 1977

Publication: JAERI-M5752(1974), S. Igarasi et al. S. Iijima et al., J. Nucl. Sci. and Technol. <u>14</u> 161 (1977). JAPAN

Japanese Nuclear Data Committee / Decay Heat Nuclear Data Working Group R. Nakasima (Hosei University) group leader M. Yamada (Waseda University) T. Tamai (Kyoto University) I. Otake and A. Zukeran (Power Reactor and Nuclear Fuel Development Corp.) S. Iijima, T. Murata and T. Yoshida (Nippon Atomic Industry Group Co.) T. Hojuyama (Mitsubishi Atomic Power Industry) K. Umezawa, T. Tasaka, Z. Matumoto and T. Tamura (JAERI) 1. Compilation : Decay data and delayed neutron data Purpose : For summention calculation of decay heat Major Sources of Information : Journals and Nuclear Data Sheets Deadline of Literature Converge : None Cooperation : None Computer File : Nuclear structure data file NDFILE for decay information and level scheme data; Retrieval program ABEG is used with NDF ILE. Expected Compilation Date : Continuous compilation Publication : T. Hojuyama, K. Tasaka, Z. Matumoto, and R. Nakasima, "JNDC Nuclear Structure Data File - NDFILE", JAERI-M 6846 (1976), (in Japanese) 2. Evaluation : Estimation of decay heat nuclear data Purpose : Making more reliable estimation of the released beta and gamma energies for short-lived fission products, for which experimental data are scarce Method : Application of gross theory of beta decay Major Sources of Information : Several Works of K. Takahashi and M. Yamada, for example, Atom. Data and Nucl. Data Tables, 12, (1973) 101; Several compilations of half-lives and Q-values Deadline of Literature Coverage : Early 1976 Status : Estimation of released beta and gamma energies completed; Study on the gamma spectra is in plan. Cooperation : Yamada's group at Waseda University at the early stage of the work Computer File of Evaluated Data : in plan Discrepancy Encountered : Some problems found in 1 odd-odd nuclides Publications : T. Yoshida, tobe published in Nucl. Sci. Eng. T. Yoshida, JAERI-M 6313 (1976), (code manual, in Japanese)

NETHERLANDS

Laboratory and address	Netherlands Energy Research Foundation (ECN) (formerly: Reactor Centrum Nederland) Petten (N.H.), The Netherlands. telephone: (02246) - 6262, telex: 57211 reacp nl		
Names	J.W.M. Dekker, H. Gruppelaar, R.J. Heyboer and A.J. Janssen		
Evaluation	(1) RCN-2 evaluation of neutron cross sections $(\sigma_t, \sigma_e, \sigma_{n\gamma}, \sigma_{nn}, -matrix, \sigma_{n2n})$ for about 60 fission products in the energy range of 10^{-3} eV to 15 MeV, in KEDAK type format, for the follo- wing elements, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Te, I, Xe, Cs, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb.		
	 (2) Generation of group cross sections for fast reactor calculations based on RCN-2 evaluation in the 26 group ABBN scheme with a fast reactor flux weighting spectrum and error files for capture group constants, including 26×26 co- variance matrices. (3) Adjustment of capture group constants based on (2) and integral STEK measurements. (4) Generation of an adjusted point cross section library based on STEK integral data. 		
Purpose	Fast breeder power reactor data needs.		
Method	Calculation with multilevel Breit-Wigner formula, optical model and revised statistical model, taking into account all available experimental information.		
Major sources of information	BNL-325, NEUDADA, CINDA, Nuclear Data Sheets, recent literature, integral data from STEK.		
Status	 (1-3) Completed and published for 24 isotopes; new results obtained for ¹⁰³Rh, ¹⁰⁷, ¹⁰⁹Ag, ¹²⁷, ¹²⁹I; nearly finished: Sm isotopes; planned for 1977: ¹⁴⁷Pm, Nd-isotopes, ¹³⁷Cs; planned for 1978: 20 other isotopes. (4) Planned for 1978. 		
Computer file	(1) KEDAK type format, will be sent to NEA Saclay.		
Completion date	1978/1979.		
Recent publications	 H. Gruppelaar, Tables of RCN-2 fission-product cross section evaluation, part <u>1</u> (24 nuclides), ECN-13 (1976). 		
	 H. Gruppelaar, A.J. Janssen and J.W.M. Dekker, Intercomparison of recent evaluations for the capture cross sections of some fission-product nuclides, ECN-12 (1976). J.W.M. Dekker, Tables and figures of adjusted and unadjusted capture group cross sections based on the RCN-2 evaluation and integral measurements in STEK, part 1, ECN-14 (1977). 		

÷

UNITED KINGDOM

•

(Editor: J.C. McKean, Secretary UK Chemical Nuclear Data Committee)

Laboratory and Address:	ÆRE Harwell	UKAEA AERE, Harwell, Oxfordshire, OX11 ORA
Name:	E.A.C. Crouch	
Compilation:	Chain, Cumulative and Independent fi for all neutron induced fission reac of energy up to 14 MeV, including so Ongoing compilation.	ssion product yields tions with neutrons ontaneous fission.
Purpose:	Basic data for fission yield evaluat	ion.
Sources:	Journals, Proceedings of Learned Soc open literature, Project reports if complete but unlikely to be publishe	ieties, or other the work is d.
Deadline:	No results prior to 1950 are collect	ed.
Cooperation:	We are prepared to exchange files wi	th other groups.
Computer File:	Information held in standard forms o	on Computer Files.
Completion Date:	Continuous compilation	
Publications:	AERE R6642 'A library of neutron ind yields maintained and interrogated b 'Part I: The establishment of the l E.A.C. Crouch, December 1970.	luced fission product by computer methods'. ibrary'.
	AERE R7207 'A library of neutron ind yields maintained and interrogated b 'Part II: The interrogation of the E.A.C. Crouch August 1972.	luced fission product by computer methods'. library'.

UNITED KINGDOM

Laboratory and Address:	AERE	Harwell	UKAEA AERE Harwell Oxfordshire OX11 ORA
Name:	E.A.	C. Crouch	
Evaluation:	(1)	Neutron induced fission product nuclides at neutron energies up and indepent yields.	t yields for all fissile o to 15 MeV; chain yields
	(2)	Adjustments of the chain yields independent yields to force age conservation laws i.e. to form	s and the calculated reement with the a 'consistent set'.
Purpose:	UKND	File to be used in Reactor des	ign and operation.
Method:	(1)	The individual yields for a give and independent), are examined calculated together with the ex	en reaction (both chain , weighted and the means rrors.
	(2.	The evaluated yields are augment fill missing values or in the of by calculation based on parametry values. The results are fitted conservation conditions to give yields and independent yields.	nted by interpolation to case of independent yields ters estimated from known d by least squares to the e adjustments for chain
Sources:	Comp	ilation mentioned above.	
Deadline:	No r to b	esults prior to 1950 are collec e complete up to end 1975,some	ted. Compilations believed 1976 results included.
Status:	(1) Janu	and (2) Evaluation and Consist ary 1977.	ent set complete at
Co-operation:	We a	re prepared to exchange files w	ith other groups.
Computer Files of Compiled Data:	Comp	ilation as above.	
Computer File of Evaluated data:	Magn ENDF	etic tape or punched cards of t /BIV format.	he consistent set in
Discrepancies found:	To b FPND	e discussed by J.G. Cuninghame Panel.	at the Petten 1977
Publication:	It i Tabl	s hoped to publish in "Atomic D es" during 1977.	ata and Nuclear Data

			UKAEA
Laboratory and Address:	AERE Harwell	;	AERE, Harwell, Oxfordshire OX11 ORA

Working Group: B.S.J. Davies) A. Tobias) CEGB Berkeley V. Barnes) J.R. Parkinson) BNFL Windscale M.F. James AEE Winfrith A.L. Nichols AERE Harwell D.G. Vallis Aldermaston

Ongoing and planned activities

1) Compilation and evaluation

Fission Product decay data .

- purpose: to provide a comprehensive, updated data file of radioactive decay data, including half-lives, Q-values, branching ratios, mean α , β and γ energies, α , β and γ energies and intensities, with associated uncertainties.
- progress: the FPND of A. Tobias (partially reported in CEGB RD/B/M2669) has been used to produce a reasonably comprehensive decay data file of 561 nuclides in ENDF/B4 format, but without any associated uncertainties. An updating of this data (1973) has not been possible, but is in hand. This data has been merged with the equivalent U.S. ENDF/B4 decay data file to produce an enlarged FP data set containing over 800 FP nuclides.
- major sources of information : the recent literature and NDS (particularly the mass-chain evaluation file in ENSDF format) are being surveyed in preparation for a series of updatings of the UK decay data file.
- Cooperation: comparisons may be made between the U.K. file and the French file (J. Blachot), pinpointing anomalies and data errors in both files.
- relevant details: the decay data can be produced in ENDF/B4 format using a computer program, with some effort being made to produce ENDF/B5 formatted data. This program calculates the mean beta energies of the individual transitions, Auger electrons, internal conversion electrons and X-ray emission contributions.

Although the first priority continues to be FPND, the decay data for specific activation products are also available in ENDF/B4 format.

expected completion date: a U.K. data file in ENDF/B4 format is now a reality. It is difficult to estimate when a comprehensively <u>updated</u> file will be available. The updating is being done in stages, and the aim is for a <u>complete</u> updating by June 1978.

UNITED KINGDOM

(continued)

2) Decay scheme calculations

- purpose: to compare experimental data with decay data calculated from a more basic data set (e.g. U.S. ENSDF file), and to produce mutually consistent catalogues of emission data for different radiation types.
- progress: the CASCADE code has been modified to handle any number of decay levels, up to the maximum allowed by the core limitation imposed by the computer system used. Modifications are underway for inclusion of neutron and proton emission and spontaneous fission.

The procedure for cataloging the output data from CASCADE has been set up using a merging facility. These are listed in terms of energy and nuclide mass for each radiation type. A similar step will shortly be added to produce a listing in terms of half-life of each radiation type.

A code for converting ENSDF and NSDF data into CASCADE input data format has been written and is under test.

- Major sources of information : ORNL (U.S. ENSDF file) data containing the various parameters of decay levels. Theoretical internal conversion coefficient data of Trusov, and Hager and Saltzer are being used.
- Cooperation: Department of Nuclear Technology, Imperial College, London

Expected completion date : late 1977

<u>U.S.A.</u>

LABORATORY: Argonne National Laboratory Argonne, Illinois 60439, USA and SOREQ Nuclear Research Centre Yavneh, Israel

NAMES: D. Saphier, D. Ilberg, S. Shalev, and S. Yiftah

- EVALUATION: The Delayed Neutron (DN) emission spectra from thermal-neutron fission of ²³³U, ²³⁵U, ²³⁹Pu and ²⁴¹Pu, from fast-neutron fission of ²³²Th, ²³⁵U, ²³⁸U and ²³⁹PU and from high-energy neutron (14,7-MeV) fission of ²³⁵U and ²³⁸U for six groups of delayed neutrons were evaluated,
- METHOD: The evaluation is based on the measured DN spectra of the following individual fission products ⁸⁵As, ⁸⁷Br, ⁸⁸Br, ⁸⁹Br, ⁹⁰Br, ⁹¹Br, ⁹³Rb, ⁹⁴Rb, ⁹⁵Rb, ¹³⁴Sn, ¹³⁵Sb, ¹³⁶Te, ¹³⁷I, ¹³⁸I, ¹³⁹I, ¹⁴⁰I, ¹⁴¹Cs, ¹⁴²(Xe+Cs), ¹⁴³Cs and ¹⁴⁴Cs. By combining the spectra of the above isotopes, and using a least square method to fit the isotope Pn values and fission yields, DN spectra for the various fissile isotopes were obtained. The spectra were evaluated for six delayed neutron groups. Continuous spectra as well as a 54 energy group tabulation are available.

MAJOR SOURCES OF INFORMATION:

- 1. S. Shalev and G. Rudstam, Phys. Rev. Lett., 28, 687 (1972).
- 2. S. Shalev and G. Rudstam, Nucl. Phys. <u>A230</u>, 153 (1974).
- 3. S. Shalev and G. Rudstam, Nucl. Phys. A235, 397 (1974).
- 4. M. E. Meek and B. F. Rider, "Compilation of Fission Product Yields", NEDO-12154 (1972), and NEDO-12154-1 (1974), General Electric Company.

DEADLINE OF LITERATURE COVERAGE: 1976

STATUS: Compilation and Evaluation Terminated.

PUBLICATION: Nuclear Science Engineering, <u>62</u>, 660 (1977).

U.S.A.

Laboratory and address	:	General Electric Company Vallecitos Nuclear Center P. O. Box 460 Pleasanton, California 94566
Name	:	B. F. Rider
Compilation	:	Fission Product Yields (from thermal, fast, 14 MeV neutron induced fission in U, Pu, Th, Np, and Cf nuclides).
Purpose	:	For burnup and fission rate and decay heat calculations. Basis for ENDF/B-V FP yields.
Major sources of information	:	CINDA, Nuclear Science Abstracts, INIS Atom Index, correspondence.
Deadline of Literature Coverag	ge:	Ongoing
Cooperation	:	Brookhaven National Laboratory, Cross-Section Working Evaluation Group (CSWEG), Evaluated Nuclear Data File (ENDF/B-V), Fission Product Decay Heat Task Force, Fission Yield Subcommittee
Other relevent details	:	Approximately 18,000 entries from 1030 references.
Computer File	:	Tape available as ENDF/B-V from the USA National Nuclear Data Center, Brookhaven National Lab., Upton, New York 11973, USA
Expected completion date	:	June, 1977
Publications	:	"Compilation of Fission Product Yields", NEDO-12154-2 (1977) available from General Electric Company, P. O. Box 460, Pleasanton, California 94566, USA, Attention: B. F. Rider

<u>U.S.A.</u>

Laboratory and address:	Idaho National Engineering Liboratory 103 EG&G Idaho, Inc. P. O. Box 1625 Idaho Falls, Idaho 83401 USA
Names:	C. W. Reich, R. L. Bunting, R. G. Helmer
<u>Compilation</u> :	Decay data for fission products. quantities treated include: T_{2} ; QB; branching fractions for the various decay modes; energies and intensities of all emitted radiations (e.g., β , γ , c.e., x-ray); K-, L- and total ICC; delayed-neutron energy spectra for individual precursors; uncertainties in all measured values.
Purpose:	Decay data file for ENDF/B.
Major sources of information:	Nuclear Data Sheets, journals and preprints of recent work.
<u>Deadline of literature</u> coverage:	Ongoing. For Version V of ENDF/B, cut-off date is Sept. 1977.
<u>Computer File</u> :	Decay data are included in ENDF/B Fission Product File. Tapes available through normal ENDF/B procedures.
Publications:	C. W. Reich, R. G. Helmer and M. H. Putnam, "Radioactive-Nuclide Decay Data for ENDF/B", U. S. AEC Report ANCR-1157 (ENDF/210), (1974).

<u>U.S.A.</u>

Laboratory and Address:

University of California Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico 87545

Names:

T. R. England
R. J. LaBauve
D. G. Madland
M. G. Stamatelatos
W. B. Wilson

Compilations:

A) Nuclide Parameter Evaluated Compilations

1) β and γ decay energies, branching fractions [decay and (n,γ)], halflives, Q-values and cross sections for 824 fission products are tabulated in Ref. 1. This is a basic data set that includes the major types of parameters, with corrections, from ENDF/B-IV, except for yields and the energy dependence of cross sections.

This reference data was compiled in cooperation with R. E. Schenter of the Hanford Engineering Development Laboratory, P. O. Box 1970, Richland, Washington 99352.

2) Multigroup β and γ spectra are tabulated in Ref. (2) for 180 fission product nuclides. The β spectra are given in 75 groups and the γ spectra in 150 groups. These data are based on ENDF/B-IV.

3) Multigroup cross sections are compiled in Ref. 11.

B) Evaluations

1) Yield distribution (pairing effects) and branching to isomeric states are evaluated and modeled in Ref. 3 and 4. Estimated values from the modeling are also included in these references.

2) Ternary fission is evaluated and compiled in Ref. (5).

3) β and γ spectra, decay heating and absorption buildup are evaluated by comparison with experiment in Ref. 6-11.

C) Purpose

Research by the Los Alamos nuclear data group (t-2) is directed at improvement in the national data file ENDF/B and at the use of these data in, e.g., determining a new decay heat standard.

U.S.A.

References

- T. R. England and R. E. Schenter, "ENDF/B-IV Fission Product Files: Summary of Major Nuclide Parameters," Los Alamos Scientific Laboratory report LA-6116-MS [ENDF-223] (Oct. 1975).
- T. R. England and M. G. Stamatelatos, "Multigroup Beta and Gamma Spectra of Individual ENDF/B-IV Fission-Product Nuclides," Los Alamos Scientific Laboratory report LA-NUREG-6622-MS (Dec. 1976).
- D. G. Madland and T. R. England, "The Influence of Pairing on the Distribution of Independent Yield Strengths in Neutron-Induced Fission," Los Alamos Scientific Laboratory report LA-6430-MS [ENDF-240] (July 1976).
- D. G. Madland and T. R. England, "Distribution of Independent Fission-Product Yields to Isomeric States," Los Alamos Scientific Laboratory report LA-6596-MS [ENDF-241] (Nov. 1976).
- D. G. Madland and Leona Stewart, "Light Ternary Fission Products: Probabilities and Charge Distributions," Los Alamos Scientific Laboratory report LA-6783-MS [ENDF-247) (April 1977).
- D. G. Foster, Jr. and T. R. England, "Time-Dependent Spectra of Photons and Spontaneous-Fission Neutrons for Applied Problems," <u>Invited Paper</u>, Trans. Am. Nucl. Soc. 23, 551 (1976).
- T. R. England and M. G. Stamatelatos, "Beta and Gamma Spectra and Total Decay Energies from Fission Products," Trans. Am. Nucl. Soc. <u>23</u>, 493 (1976).
- M. G. Stamatelatos and T. R. England, "Fission-Product Gamma-Ray and Photoneutron Spectra and Energy-Integrated Sources," NUREG-0155 [LA-NUREG-6345-MS] (Issued Dec. 1976) (See also Addendum 1, March 1977).
- 9. R. J. LaBauve, T. R. England, M. G. Stamatelatos, and D. G. George, "Approximations to Summation Calculations of Delayed Energy and Spectra," Los Alamos Scientific Laboratory report LA-6684-MS (Jan. 1977).
- M. G. Stamatelatos and T. R. England, "Short Irradiation Fission-Product Beta Spectra and Total Energy: Calculations Versus Experiment," (ANS Summary accepted for ANS Annual Meeting June 12-17, 1977).
- 11. T. R. England, W. P. Wilson, and M. G. Stamatelatos, "Fission-Product Data for Thermal Reactors Part 1 A Data Set for EPRI-CINDER Using ENDF/B-IV Part 2

Users Manual for EPRI-CINDER Code and Data" Los Alamos Scientific Laboratory reports LA-6745-MS and LA-6746-MS (Dec. 1975) [To be issued by EPRI ~ March 1977].

106	U.S.A.
Laboratories	Washington University, Dept. of Chemistry, St. Louis, MO., USA
	LOS Alamos Scientific Laboratory, Group UNC-II, Los Alamos, NM USA
Names	A. C. Wahl and K. Wolfsberg
Compilation and Evaluation	Independent yields and other data related to nuclear charge distribution in fission are being compiled and evaluated for low-energy fission processes (excitation energies up to \sim 20 MeV).
Purpose	Development of systematics that will allow reliable estimates to be made for unmeasured independent yields and that will in- crease understanding of the fission mechanism.
Sources	Journals, reports, preprints, and personal communications
Method	Data from various types of measurements are compared for eval- uation of the reliability of the newer methods.
Cooperation	We are prepared to exchange files with other groups.
Computer File	Information is held in standard forms on computer files.
Completions	Continuous compilation
Publications	A. C. Wahl, A. E. Norris, R. A. Rouse, and J. C. Williams, in Proceedings of the Second International Atomic Energy Symposium on Physics and Chemistry of Fission, Vienna, Austria, 1969 (I.A.E.A.), p. 813.
	K. Wolfsberg, Los Alamos Scientific Laboratory Report No. LA-5553-MS (1974).

The following discrepancies have been reported in this issue.

- Zp of primary fragments with masses 100, 101, 103 in fission of p. 9: U235 is smaller than expected from systematics ($Zp \gtrsim Z_{HCD}$); Half-life of Y⁹⁹, Nb¹⁰³, Y⁹⁸, Zr⁹⁹. p. 24: mass distribution in U^{230} (n_{14MeV}, f), yields in the valley are about 20% higher than those given in NEDO-12154-1 (Meek and Rider, 1974). Strong symmetry with respect to $A_{2} = 117.3$, no fine structure. neutron binding energy of Xe¹³⁷ was found to be considerably P• 37: higher than the value reported in Phy. Rev. 175 (1968) 1516, P.A. Moore et al. absolute delayed neutron yield from $Pu^{239}(n_{fast}^{}, f)$ is by 10% p. 45: lower than the datum evaluated by Tuttle (0.00598 \pm 3.7% against 0.00664 \pm 1.9% del. neutrons/fission). p. 53: lower limit of resonance integral of Pm¹⁴⁹ as determined from reactivity experiments is 20 000 b, which is a factor of 15 higher than present estimates; neutron-absorption resulting from transient Xe¹³⁵ was found to be 7.5% higher than that resulting from calculation with ENDF/B-IV data. p. 60: fission product yields from U^{235} and Pu^{239} $(n_{th}^{}, f)$; Pu^{239} : Ba¹³⁸ yield is 14% higher than the presently recommended value. Xe yields are 8.5% " U^{235} and Pu^{239} : Nd¹⁴⁸ yield is lower than the presently recommended p. 67: independent yields of Nb⁹⁶ and Cs¹³⁶ from Th²³² (n_{14MeV}, f) are in serious disagreement with the values reported by S.A. Rao (Phys. Rev. (5, 171(1972)).
- p. 77: a comparison of integral fast capture cross section measurements

for many fission products with the values calculated from ENDF/B-IV data is given in a table (Table I, pp. 78-83).