Proposed Recommended List
of Transactinium Isotope Decay Data
Part I. Half-lives (September 1979 Edition)

A. Lorenz, editor

Compiled by Members of the IAEA
Coordinated Research Programme on the
Measurement and Evaluation of Transactinium
Isotope Decay Data

September 1979
Proposed Recommended List
of Transactinium Isotope Decay Data
Part I. Half-lives (September 1979 Edition)

A. Lorenz, editor

Compiled by Members of the IAEA
Coordinated Research Programme on the
Measurement and Evaluation of Transactinium
Isotope Decay Data

September 1979
Abstract

A proposed list of recommended values of transactinium isotope half-lives and branching fractions, compiled by members of the IAEA Coordinated Research Programme on the Measurement and Evaluation of Transactinium Isotope Decay Data is presented.
Introduction

The objective of the IAEA Coordinated Research Programme (CRP) on the Measurement and Evaluation of Transactinium Isotope Nuclear Decay Data, is to arrive at a consistent set of transactinium isotope decay data and their uncertainties (including half-lives, branching fractions and gamma-ray and alpha emission spectra) which would satisfy the requirements identified by the community of data users.

In this context, the participants in this CRP have initiated this task by preparing the enclosed list of half-lives and branching fractions for the more important transactinium nuclides. An extension to this list, including data for the minor actinides and heavy element isotopes produced by the decay of the major actinides, is in preparation.

In its present form, the enclosed list should be regarded as containing tentatively proposed values. The group recognizes that considerable expertise in the area of half-life measurement and evaluation exists within research groups not directly involved in the preparation of this list. Consequently, this group wishes to elicit as wide a range of comments and criticism as possible on this list of proposed values.

To avoid any misunderstanding regarding the purpose of these tabulations the members of this CRP have prepared the following statement:

"It appears that some confusion has arisen over the purpose of the recommended list of half lives proposed after the last Coordinated Research Programme meeting on Measurement and Evaluation of Transactinium Isotope Decay Data. The listing has been seen by some people as a definitive evaluation which is being recommended for international acceptance. The members of this group would like to make it clear that the intention of producing this list was as a current statement of the status of half life values for the transactinium nuclides. These values together with the uncertainties associated with them are then available to other experts such as evaluators and measurers of data, who are not represented on the CRP. From this and subsequent listings and the comments received, the CRP hopes to be able to assess and monitor the progress being made in the field of transactinium isotope decay data. These listings should eventually serve as the initial part of an international reference list of transactinium isotope nuclear decay data".

This group has also started an initial review of alpha and gamma-ray emission spectra for the major transactinium isotopes, for their eventual inclusion in the final compilation. The initial proposed list of these values is to be published in INDC(NDS)-109/N, and will be submitted subsequently for "open refereeing" in the same manner as the list included in this report.

The members of this Coordinated Research Programme and those who participated in the critical review of the data are listed in Appendix 1.
Table Content

The list of decay data included in this report is the result of a critical appraisal of the current status of transactinium isotope half-lives and branching fractions. The data compiled in this list have been drawn from the following existing decay data files:

- ENSDF, the Evaluated Nuclear Structure and Decay Data File. Compiled by the Nuclear Data Project at Oak Ridge,
- the Actinide data file of the Idaho National Engineering Laboratory (INEL) which serves as the source file for the decay data part of the ENDF/B compilation,
- the UK Chemical Nuclear Data Committee Heavy Element Decay Data File, compiled at the AERE Winfrith laboratory.

Whenever warranted, the data have been supplemented or superseded by the latest known measured and/or evaluated values. For completion, the basic list compiled by the group was supplemented by data (marked by an asterisk in the Table) obtained from the Seventh Edition (1979) of the Table of Isotopes.

In ascribing uncertainties to the recommended half-life values, the group adopted the following criteria:

- the total uncertainty be defined as "1 sigma random error plus 1/3 the linear sum of the systematic errors based on a statistical confidence level of 68.3 \%", and that
- the total uncertainty be in no case lower than 0.1 \%.

SF = Spontaneous Fission, EC = Electron Capture, IT = Isomeric Transition

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Total half-life</th>
<th>Decay Mode</th>
<th>Branching Fraction</th>
<th>Partial half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th 228</td>
<td>(1.913 ± 0.002) y</td>
<td>α</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Th 230</td>
<td>(7.7 ± 0.3) x 10^4 y</td>
<td>α</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Th 232</td>
<td>(1.405 ± 0.006) x 10^10 y</td>
<td>α</td>
<td>1</td>
<td>> 1 x 10^21 y *</td>
</tr>
<tr>
<td>Pa 231</td>
<td>(3.276 ± 0.11) x 10^4 y</td>
<td>α</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Pa 232</td>
<td>(1.31 ± 0.02) d</td>
<td>β^-</td>
<td>1</td>
<td>2.11 x 10^16 y *</td>
</tr>
<tr>
<td>Pa 233</td>
<td>(2.70 ± 0.01) x 10^1 d</td>
<td>β^-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>U 232</td>
<td>(7.2 ± 0.1) x 10^1 y</td>
<td>α</td>
<td>(0.9 ± 0.7) x 10^-12</td>
<td>(8.0 ± 6.2) x 10^13 y</td>
</tr>
<tr>
<td>U 233</td>
<td>(1.592 ± 0.002) x 10^5 y</td>
<td>α</td>
<td>(1.3 ± 0.3) x 10^-12</td>
<td>(1.22 ± 0.28) x 10^17 y</td>
</tr>
<tr>
<td>U 234</td>
<td>(2.446 ± 0.007) x 10^5 y</td>
<td>α</td>
<td>(1.2 ± 0.6) x 10^-11</td>
<td>(2.04 ± 1.02) x 10^16 y</td>
</tr>
<tr>
<td>U 235</td>
<td>(7.036 ± 0.007) x 10^8 y</td>
<td>α</td>
<td>(2 ± 1) x 10^-7</td>
<td>(3.5 ± 0.9) x 10^17 y *</td>
</tr>
<tr>
<td>U 236</td>
<td>(2.342 ± 0.004) x 10^7 y</td>
<td>α</td>
<td>(1.2 ± 0.6) x 10^-9</td>
<td>(2.0 ± 1.0) x 10^16 y</td>
</tr>
<tr>
<td>U 237</td>
<td>(6.75 ± 0.01) d</td>
<td>β^-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>U 238</td>
<td>(4.468 ± 0.004) x 10^9 y</td>
<td>α</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>U 239</td>
<td>(2.350 ± 0.005) x 10^1 m</td>
<td>β^-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Np 236</td>
<td>(1.15 ± 0.12) x 10^5 y</td>
<td>β^-</td>
<td>0.089 ± 0.020</td>
<td>-</td>
</tr>
<tr>
<td>Np 236m</td>
<td>(2.25 ± 0.04) x 10^1 h</td>
<td>β^-</td>
<td>0.48 ± 0.01</td>
<td>0.911 ± 0.020</td>
</tr>
<tr>
<td>Np 237</td>
<td>(2.14 ± 0.01) x 10^6 y</td>
<td>α</td>
<td>0.52 ± 0.01</td>
<td>-</td>
</tr>
<tr>
<td>Np 238</td>
<td>(2.117 ± 0.002) d</td>
<td>β^-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Np 239</td>
<td>(2.354 ± 0.006) d</td>
<td>β^-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Pu 236</td>
<td>(2.851 ± 0.008) y</td>
<td>α</td>
<td>1</td>
<td>(3.52 ± 1.00) x 10^9 y *</td>
</tr>
<tr>
<td>Pu 237</td>
<td>(4.54 ± 0.02) x 10^1 d</td>
<td>α</td>
<td>> 0.99</td>
<td>(8.1 ± 2.3) x 10^-10</td>
</tr>
<tr>
<td>Pu 238</td>
<td>(8.774 ± 0.009) x 10^1 y</td>
<td>α</td>
<td>< 0.000033</td>
<td>(1.84 ± 0.05) x 10^-9</td>
</tr>
</tbody>
</table>

* Denotes data with uncertainties exceeding reported values.
<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Total half-life</th>
<th>Decay Mode</th>
<th>Branching Fraction</th>
<th>Partial half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu 239</td>
<td>$(2.411 \pm 0.03) \times 10^4$ y</td>
<td>α</td>
<td>1</td>
<td>$(5.5 \pm 0.5) \times 10^{15}$ y</td>
</tr>
<tr>
<td>Pu 240</td>
<td>$(6.55 \pm 0.02) \times 10^3$ y</td>
<td>α</td>
<td>1</td>
<td>$(1.31 \pm 0.05) \times 10^{11}$ y</td>
</tr>
<tr>
<td>Pu 241</td>
<td>$(1.47 \pm 0.04) \times 10^1$ y</td>
<td>β^-</td>
<td>> 0.99</td>
<td></td>
</tr>
<tr>
<td>Pu 242</td>
<td>$(3.76 \pm 0.02) \times 10^5$ y</td>
<td>α</td>
<td>1</td>
<td>$(2.45 \pm 0.08) \times 10^{-5}$ *</td>
</tr>
<tr>
<td>Pu 244</td>
<td>$(8.2 \pm 0.1) \times 10^7$ y</td>
<td>α</td>
<td>1</td>
<td>$(2.25 \pm 0.06) \times 10^{-3}$</td>
</tr>
<tr>
<td>Am 241</td>
<td>$(4.326 \pm 0.006) \times 10^2$ y</td>
<td>α</td>
<td>1</td>
<td>$(1.06 \pm 0.03) \times 10^{14}$ y</td>
</tr>
<tr>
<td>Am 242</td>
<td>$(1.601 \pm 0.002) \times 10^1$ h</td>
<td>β^-</td>
<td>0.827 ± 0.003 *</td>
<td></td>
</tr>
<tr>
<td>Am 242m</td>
<td>$(1.52 \pm 0.07) \times 10^2$ y</td>
<td>α</td>
<td>1</td>
<td>$(4.76 \pm 0.14) \times 10^{-3}$ *</td>
</tr>
<tr>
<td>Am 243</td>
<td>$(7.38 \pm 0.04) \times 10^3$ y</td>
<td>α</td>
<td>1</td>
<td>$(9.5 \pm 3.6) \times 10^{11}$ y</td>
</tr>
<tr>
<td>Cm 242</td>
<td>$(1.628 \pm 0.004) \times 10^2$ d</td>
<td>α</td>
<td>1</td>
<td>$(6.0 \pm 0.6) \times 10^6$ y</td>
</tr>
<tr>
<td>Cm 244</td>
<td>$(1.811 \pm 0.002) \times 10^1$ y</td>
<td>α</td>
<td>1</td>
<td>$(1.344 \pm 0.002) \times 10^7$ y</td>
</tr>
<tr>
<td>Cm 246</td>
<td>$(4.73 \pm 0.10) \times 10^3$ y</td>
<td>α</td>
<td>1</td>
<td>$(2.614 \pm 0.005) \times 10^4$</td>
</tr>
<tr>
<td>Cm 248</td>
<td>$(3.397 \pm 0.032) \times 10^5$ y</td>
<td>α</td>
<td>1</td>
<td>$(9.174 \pm 0.0003) \times 10^{-2}$ *</td>
</tr>
<tr>
<td>Bk 249</td>
<td>$(3.20 \pm 0.06) \times 10^2$ d</td>
<td>β^-</td>
<td>> 0.99</td>
<td>~ 333 days *</td>
</tr>
<tr>
<td>Cf 249</td>
<td>$(3.506 \pm 0.021) \times 10^2$ y</td>
<td>α</td>
<td>1</td>
<td>$(4.14 \pm 0.08) \times 10^{-5}$ *</td>
</tr>
<tr>
<td>Cf 250</td>
<td>$(1.308 \pm 0.009) \times 10^1$ y</td>
<td>α</td>
<td>1</td>
<td>$(2.72 \pm 0.01) \times 10^{-7}$</td>
</tr>
<tr>
<td>Cf 252</td>
<td>$(2.64 \pm 0.01) \times 10^1$ y</td>
<td>α</td>
<td>1</td>
<td>$(3.092 \pm 0.008) \times 10^{-2}$ *</td>
</tr>
<tr>
<td>Es 253</td>
<td>$(2.047 \pm 0.002) \times 10^1$ d</td>
<td>α</td>
<td>1</td>
<td>$(8.7 \pm 0.3) \times 10^{-8}$</td>
</tr>
</tbody>
</table>

Footnote: data marked by an asterisk were obtained from the Table of Isotopes (1979) Seventh Edition.
Participants in the Coordinated Research Programme are indicated by an asterisk.

Debertin, K.
Physikalisch Technische Bundesanstalt
Abteilung 6
Bundesallee 100
D-3300 Braunschweig
Fed. Rep. of Germany

Ewbank, B.
Nuclear Data Project
Oak Ridge National Laboratory
P. O. Box X
Oak Ridge, Tennessee 37830
U.S.A.

* Fudge, A.J.
Actinide Analysis Group
Chemistry Division
Building 220
AEERE Harwell, Didcot OX11 ORA
U.K.

Kulakov, V.
Institut Atomnui Energii
I.V. Kurchatova
46 Ulitsa Kurchatova
Moscow D-182
USSR

Lorenz, A.
(project officer)
Nuclear Data Section
IAEA, Vienna

* Malet, G.
Laboratoire de Metrologie des Rayonnements Ionisants
CEN-Saclay
B.P. No. 2
F-91190 Gif-sur-Yvette
France

Nichols, A.L.
Technology Branch, Bldg. 08/A50
AEE Winfrith
Dorchester, Dorset DT11 8DH
U.K.

* Reich, C.W.
Idaho National Engineering Laboratory
EG & G Idaho, Inc.
Idaho Falls, Idaho
U.S.A.

* Umezawa, H.
Division of Chemistry
JAERI
Tokai-Mura, Naka-Gun
Ibaraki Ken 319-11
Japan

* Vaninbrouckx, R.
Central Bureau for Nuclear Measurements
Steenweg naar Retie
B-2440 Geel
Belgium