

INTERNATIONAL NUCLEAR DATA COMMITTEE

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilation/evaluations of fission product nuclear data (FPND)

collected by G. and M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

No. 6 June 1980

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria 80-3394

PROCRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilation/evaluations of fission product nuclear data (FPND)

collected

Ъy

G. and M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

No. 6 June 1980

NOT FOR PUBLICATION

Information from this document should not be quoted except with permission of the authors.

FOREWORD

This is the sixth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed.

The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted.

The types of activities being included in this report are measurements, compilations and evaluations of:

Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and Lumped fission product data (decay heat, absorption etc.)

The fifth issue of this series has been published in June 1979 as INDC(NDS)-102/C+P. The present issue includes contributions which were received by NDS between 1 August 1979 and 25 May 1980.

The next issue of this report series is envisaged to be published in June 1981.

TABLE OF CONTENTS

																			Page
Forew	ord	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i
Table	of Co	onte	nts		•	•	•	٠	•	•	•	•	•	•	•	•	•	•	iii
Submi	tting	con	tri	bu-	tio	18	•	•	•	•	•	•	•	•	•	•	٠	•	vi
Subje	ct Ind	lex	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	♥iii
I.	Measu	reme	nts	¥)	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	Austra	alia			:	A. .	A.E.	.C. Jni	, Li V. (acas of N	s He Nort	igh h G	its Juee	(Ja ens]	and	s Co 1)	ook •	•	3
	Belgiu	um			2	C.] Un:	E.N. ive	. Me rsi	ol t y (• of (Gent	•	•	•	•	•	•	•	4,8,9 5,6
	E.E.C.	Be	lgi	um	B	C• :	B . N .	. M.	Geo	el	•	•	•	•	•	•	•	•	7-9
	Canada	3			1	Un:	i v.	of	Tor	ront	to	•	•	•	•	•	•	•	10
	France	e			1	C.] C.] In Un:	E.N. E.N. st. iv.	B C La Ni	ruy ren ue-j ce	ères oble Lang	s—le e gevi	-Ch • •	âte • Gre •	el • • •	• • •	• • •	• • •	• • •	11 5,6,12,(22,26) 5,20–22,(26) 13–14
	German	ч у ,	F. R	•	:	IK KF KF Te Un: Un:	K G A J K, J ch. iv. iv.	Ses Ili Kar Un: Gi Ma:	tha ch lsm iv. ess inz	cht uhe Bra en		schw	• • •	•	• • • •	• • • •	• • • •	• • • •	15 16 17–18 19 20–21,(26) 6,22–28,46
	India				:	В	A. R	• C•	, В	omba	Ŋ	•	•	•	•	•	•	•	29-31
	[srae]	L			1	Un:	iv.	Be	eral	heve	£	•	•	•	•	•	•	•	(22)
	Italy				:	CNI Po	EN, lite	Bo: ecn:	logn ico	na di	Nil	anc	• ar	nd H	NEI	• ;0	• •nt:	• ro	32
							(li 1	Rico	erca	a Te	rmi	.ca	e 1	luc:	lea	r e	•	33-34
	Japan				1	J. Kyr Kyr Nag Tol Tol Un:	A.E. oto ushu goya huku kyo iv.	R. Un: Un: Un: Un: Of	I. iv. niv. niv. st. Tol	ar Tec	nd F	ikk	• • •	Uni	• • • •	• • • •	• • • • • •	• • • •	35-38 39,40 (36-38) 41-42 (36-38) 43 44
	Romani	ia			:	In	st.	Nu	cl.	Pov	ver	Rea	icto	ors,	, B	icai	re s	t	45

^{*)} Page numbers in brackets refer to collaborations, which are not listed under "Laboratory and address".

Table	e of Contents (con	t °d)	Page
	Sweden	:	Chalmers Univ. of Technol. Göteborg. Studsvik Sci. Res. Lab Univ. of Lund	46 47 48 49
	Switzerland	1	Eidgen. Inst. f. Reaktorforschung, Würenlingen and Univ. Bern	50
	United Kingdom	8	A.E.R.E. Harwell	51,52,(55) 53 (27–28),54 55–56
	U. S. A.	8	ANL, Argonne EG & G Idaho, Idaho Falls Exxon Nucl. Idaho Co., Idaho Falls LLL, Livermore McClellan Central Lab. New Mexico State Univ. ORNL, Oak Ridge Pacific Northwest Lab., Richland. Univ. of Illinois.	57-60 61-63 64-68 69-70 69 (70) (3),71-74 (27),75,76 77 78
	U. S. S. R.	8	Inst. Mucl. Res., Kiev	79 80 81 - 84
II.	Compilations a	ad 1	Evaluations	85
	Belgium	:	Univ. of Gent	87
	France	:	C.E.N. Cadarache	88,(89,96–97) 89 (89),90,(96–97)
	Germany, D.R.	:	ZFK Rossendorf • • • • • • •	91
	Germany, F.R.	:	Philips Univ., Marburg and GSI, Darmstadt	92
	Hungary	:	Kossuth Univ., Debrecen	93
	India	:	B. A. R. C., Trombay	94–95
	Italy	:	CNEN, Bologna	96–97
	Japan	:	JNDC (several Institutes)	98–100
	Netherlands	:	ECN, Petten	(96–97),101–103
	United Kingdom	8	A.E.R.E. Harwell	10 4–1 06
			incl. 4 other institutes) Univ. of Birmingham	107 108

Page Table of Contents (cont'd) U. S. A. : NNDC/BNL, Brookhaven . 109 EG&G Idaho, Idaho Falls 110 GE Vallecitos . 111 HEDL, Richland 112 • 113-117,118 LASL, Los Alamos • • 118 Washington Univ. U. S. S. R. 119 : Moscow Phys. Engg. Inst. -• III. Recent publications related to FPND. 120 IV. Meetings IV.1. Special meetings on FPND 125 Consultants' Meeting on Delayed Neutron Properties, Vienna, March 1979 125 • • • • • • • • Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei, Bologna, Dec. 1979 125 . IV.2. Some other meetings which include papers on FPND 130 Int. Symposium on Physics and Chemistry of Fission, Julich, May 1979 130 ٠ ٠ ٠ . ٠ • Meeting of the Nucl. Physics Div. of the American Nuclear Society, Knoxville, Oct. 1979 . 134 ٠ • . Int. Conf. on Nuclear Cross Sections for Technology, Knoxville, Oct. 1979 . 134 . .

SUBMITTING CONTRIBUTIONS

The next issue is expected to be published in June 1981. All scientists who are presently working — or have recently completed work — in the field of FPND and who want to contribute to the 7th issue of this series, are kindly asked to send contributions to me between now and 20 May 1981, so that they reach NDS before the end of May 1981.

Those scientists or groups who have already contributed to the present issue and who want to leave their contribution(s) unchanged or who wish to suggest only slight changes, should write an appropriate note to me before the above deadline.

Format:

The size of one contribution should preferably not exceed one page. Of course, the number of contributions per working group or laboratory is not restricted. Similar experiments (or calculations, evaluations, etc.) performed by one person or group should preferably be combined to one contribution, if this is possible without loss of clarity.

The headings suggested for the 3 types of contributions are, for

Measurements:	Compilations:	Evaluations:		
Laboratory and address: Names: Facilities:	Laboratory and address: Names:	Laboratory and address: Names:		
Experiment:	Compilation:	Evaluation:		
Method:	purpose:	purpose:		
Accuracy:	major sources of	method:		
Completion date:	information:	major sources of		
Discrepancies to other	deadline of literature	information: deadline of literature		
reported data:	cooperation:			
Publications:	othen relevant details.			
	other felevant details.			
	computer life:	cooperation:		
	completion date:	other relevant details:		
	Publications:	computer file of compiled data:		
		computer file of e va lu at ed d ata:		
		discrepancies encountered:		
		completion date:		
		Publications:		

For the sake of consistency it is requested that the suggested headings be used as far as appropriate.

Compilation and evaluations: If applicable, the availability of numerical data from computer files could be indicated either under the headings "Computer files..." or under a separate heading "Availability..."

Editing: It would be a great help for producing an edited report if a margin of 2 cm is left on each side of the text and a 5 cm space is left at the top of each page (or 3 cm, if the name of the country is included).

Comments or suggestions concerning the format, content and layout of this report series are most welcome and should be directed to me in time before the next issue.

I would like to thank the contributors for their cooperation.

G. and M. Lammer

SUBJECT INDEX a)

1. MEASUREMENTS

1.1. Fission yields

fission nuclide	inc. neutron energy	further specifications	page
Tn-232	pile 0.1 - 8 MeV 3 MeV 15 MeV	absolute yields, Mica + Ge(Li) 1) indep.+cumul. yields; 2) chain yields rad.chem., Ge(Li), normaliz. 200% element yields: Br,Kr,Rb,Te,I,Xe,Cs Xe isotopes, mass-spec	31 50 57 <u>12</u> 80
U - 232	thermal	R-values rel U-235	(29)
U - 233	thermal fast fission spec. 15 MeV	<pre>mass-spec., 20 mass chains absolute yields, Ge(Li) + Mica cumul. + indep., rad.chem. + Ge(Li) fission fragments, physical, all A indep. yields, rad.chem. + Ge(Li) EBR-II, i.d. mass-spec FFTF, i.d. mass-spec cumul. chain, 13 FP, Ge(Li)</pre>	(29) 31 39 50 (77) <u>78</u> 64 <u>65</u> 11
U -2 35	thermal fast fission spec. 3 MeV 15 MeV	ratio Se-83 m/g, rad.chem. + Ge(Li) element yields: Br,Kr,Rb,Te,I,Xe,Cs direct yields A=138-148,on-line mass-spec A=133, rad.chem. and mass-spec fract. yields, 7 FP (Ba, La, Ce) Ga-77 fract. cum. yield, rad.chem. fract. yields of 14 FP, rad.chem. 20 mass chains, mass-spec absolute yields, Ge(Li) + Mica cumul. + indep., rad.chem. + Ge(Li) 	$\begin{array}{c} 4\\ 12\\ 22\\ 23\\ 24\\ \hline 25\\ (29)\\ 31\\ 39\\ (50)\\ (52)\\ (66)\\ 75\\ (77)\\ 12\\ 51\\ (52)\\ (66)\\ 75\\ (77)\\ 12\\ 51\\ (52)\\ (53)\\ 64\\ 65\\ (11)\\ 12\\ (11)\\ 70\\ 80\\ \end{array}$

a) with respect to the earlier issues, underlined page numbers refer to new work, page numbers in brackets refer to unchanged contributions, and others refer to revised contributions.

1.1. Fission yields (cont'd)

fission nuclide	inc. neutron energy	further specifications	page
U -23 8	spontaneous fası fission spec. 0.1 - 8 MeV 3 MeV 15 MeV	Hu isotopes (+ others?), mass-spec 2 spectra, direct (Li) + rad.chem. PFR, chain yields, mass-spec EBR-II, i.d. mass-spec cumul. \approx chain, 13FP, Ge(Li) rad.chem., Ge(Li), normaliz. 200% element yields: Br,Kr,Rb,Te,I,Xe,Cs cumul. \approx chain, 13 FP, Ge(Li) fract.indep.yields, 148,150Pm, rad.chem.	68 51 (53) (64) (11) (57) <u>12</u> (11) <u>70</u>
Np-237	thermal fast 15 MeV	mass yields from FP γ-spectra EBR-II, i.d. mass-spec Xe-isotopes, mass-spec	(64) <u>80</u>
Pu-239	thermal fast fission spec. 15 MeV	20 mass chains, mass-spec absolute yields, Ge(Li) + Mica cumul. + indep., rad.chem. + Ge(Li) He-3 yield chain yields, i.d. mass-spec 49 FP=36 chains, at 1550-10 ⁶ sec, Ge(Li) 29 FP=23 chains, at 35-1115 sec, Ge(Li) fission fragments, physical, all A 2 spectra, direct Ge(Li) + rad.chem. He-3 yield PFR, chain yields, mass-spec EBR-II, i.d. mass-spec FFTF, i.d. mass-spec cumul.≈chain, 13 FP, Ge(Li) Xe-isotopes, mass-spec	
Pu -24 0	fast	He-3 yield PFR, chain yields, mass-spec EBR-II, i.d. mass-spec	5 <u>2</u> (53) (64)
Pu-241	thermal fast	20 mass chains, mass-spec He-3 yield 17 FP=16 chains, Ge(Li) He-3 yield PFR, chain yields, mass-spec EBR-II, i.d. mass-spec FFTF, i.d. mass-spec	(29) <u>52</u> 71 52 (53) 64 65
Pu - 242	fast	EBR-II, i.d. mass-spec	(64)
Am-241	fast fission spec. 15 MeV	EBR-II, i.d. mass-spec rad.chem., recoil, normaliz. 200%	(64) (69) 69
Am-243	fast	EBR-II, i.d. mass-spec	(64)

1.1. Fission yields (cont'd)

fission nuclide	inc. neutron energy	further specifications	page
Cm-245	thermal	fract.cum. I-135, Ba-140, Ge(Li) R-value (Mo-99), all A, Ge(Li) 95 FP=51 chains, direct Ge(Li)	<u>30</u> <u>30</u> 74
Cf-24 9	thermal	indep.yields, rad.chem. + Ge(Li)	78
many*)	thermal 0.1 - 8 MeV unspecified	indep.+cumul., rad.chem. + Ge(Li) rad.chem., Ge(Li), normaliz. 200% indep.yields, on-line mass-spec	<u>50</u> (57) <u>48</u>

*) several fissioning nuclides which are not yet specified (generally referring to future work)

1.2. Neutron reaction cross sections

FP	reaction	incident neutron energy	page
Br-79 Br-81 }	res. pars.	{below 10 keV } {below 15 keV }	37
Kr Kr-80 }	(n,γ) , total	3 - 250 keV	<u>17</u>
Kr-82	res. pars. (transmission) (n,γ), total	1 eV — 1.5 keV 3 — 250 keV	15 <u>17</u>
Kr-8 3	res. pars. (transmission) (n,γ), total	1 eV - 1.5 keV 3 - 250 keV	15 <u>17</u>
Kr-84	res. pars. (transmission) (n,γ), total	1 eV - 1.5 keV 3 - 250 keV	15 <u>17</u>
Kr-8 6	res. pars. (transmission)	1 eV - 1.5 keV	15
Sr-86 Sr-87 Sr-88	(n,γ), res. pars.	3 — 200 keV	3
Y-8 9	(n,γ) , res. pars. (n,γ) total	3 – 200 kxeV 14.7 MxeV 50 kxeV – 4.5 MxeV	3 49 59
Zr	total	50 keV - 4.5 NeV	59
Zr-90 Zr-91 Zr-92 Zr-94	(n,γ), res. pars.	3 - 200 keV	3
Z r-9 6	(n,γ), res. pars.	0 . 15 - 130 ke ▼	32

FP	reaction	incident neutron energy	page
ND 93	(n,γ) total	3 80 kceV 50 kceV 4.5 MeV	43 59
Хо	total	50 keV - 4.5 NeV	<u>59</u>
Mo-95 Mo-96 Mo-97 Mo-98	(n,γ), res. pars.	3 - 200 keV	3
Tc -9 9	res. pars. (transmission)	1 eV — 1.5 keV	15
$\left. \begin{array}{c} \text{Rh-103} \\ \text{Pd} \end{array} \right\}$	$\begin{cases} (n,\gamma) \\ total \end{cases}$	0•5 - 4•0 MeV 50 keV - 4•5 NeV	<u>58</u> 59
Pd-104 } Pd-106 }	(n,γ) , res. pars. (n,γ) , total, res. pars.	3 - 200 keV below 40 keV	. <u>3</u> 8
Pa-105	(n,γ) , res. pars. (n,γ) , total, scat., res. pars.	3 - 200 keV below 40 keV	(<u>3</u>)
Pd-108	(n,γ) , res. pars. (n,γ) , total, res. pars.	3 - 200 keV below 40 keV	(<u>3</u>)
Pd-110	(n,γ) , res. pars. (n,γ) , total, scatt., res. pars.	3 - 200 keV below 40 keV	. <u>3</u> 8
Ag	tot a l	50 keV - 4.5 MeV	<u>59</u>
Ag-1 09	$(\mathbf{n}, \boldsymbol{\gamma})$ to Ag-110m	thermal	<u>45</u>
Ca	total	50 keV - 4∙5 MeV	<u>59</u>
Cd-110 Cd-111 Cd-112 Cd-113 Cd-114	(n,γ), res. pars.	3 - 200 keV	3
In	total	50 keV - 4.5 MeV	<u>59</u>
In-115	(n, y)	14 . 7 Mie⊽	<u>49</u>
Sn Sb	total	50 keV - 4.5 MeV	<u>59</u>
Sb-124	(n, y)	thermal reactor	<u>35</u>
Te	total	50 keV - 4.5 MeV	<u>59</u>
I -12 7	(n, y) (n, y)	3 — 80 kce⊽ 14•7 Mie⊽	43 <u>49</u>
I 12 9	res. pars. (transmission)	1 eV — 1.5 keV	<u>15</u>
Xe	(n,γ) , total	3 - 250 keV	17
C в —133	res. pars. (transmission) (n,γ) res. pars. res. inter. (transm.)	1 eV - 1.5 keV 3 - 270 keV 5.9 - 400 eV	15 43 82
C s —134	res. pars., res. integ. (transm.)	12 - 171 eV	<u>92</u> <u>82</u>

1.2. Neutron reaction cross section (cont'd)

₽₽	reaction	incident neutron energy	page
Cs-135 Cs-137	res. pars. (transmission)	1 eV - 1.5 keV	15
Ba-134 Ba-135 Ba-136 Ba-137	(n,γ), res. pars.	3 - 200 keV	<u>3</u>
Ba-13 8	(n,γ) , res. pars. (n,γ) (n,γ)	3 – 200 kceV 30 kceV 14.7 MeV	3 17 49
L a 139	(n,γ), res. pars. res. pars.	3 - 200 keV below 2.5 keV	3 38
C e14 0	(n,γ) , res. pars. (n,γ)	3 - 200 keV 30 keV	<u>3</u> 17
Ce-142	(n,y)	30 ke V	<u>17</u>
Pr-141	(n,γ), res. pars.	3 – 200 kme∛	3
Nd	(n, y)	0.5 - 4.0 MeV	<u>58</u>
Nd-142	(n,γ), res. pars.	3 - 200 kmeV	3
Nd-143	(n,γ) , res. pars. (n,γ) integral $\sigma(n,\gamma)$	3 - 200 keV 5 - 300 keV fast (EBR-II)	36 36 61
Nd-144	(n,γ) , res. pars. integral $\sigma(n,\gamma)$	3 - 200 keV fast (EBR-II)	<u>3</u> 61
Nd-145 Nd-146 Nd-148	$\begin{cases} (n,\gamma), \text{ res. pars.} \\ (n,\gamma) \\ \text{integral } \sigma(n,\gamma) \end{cases}$	3 - 200 keV 5 - 300 keV fast (EBR-II)	36 36 61
Nd-150	integral $\sigma(n,\gamma)$	fast (EBR-II)	61
Pm-147	res. pars., total, res.int.(transm.)	-1. 5 - 178 eV	<u>81</u>
San	(n, y)	0 .5 - 4.0 №	<u>58</u>
Sm-147 Sm-149 }	$\begin{cases} (n,\gamma) \\ res. pars. \\ integral \sigma(n,\gamma) \end{cases}$	3.3 - 300 keV 1.5 eV - 1.2 keV fast (EBR-II)	36 <u>37</u> 61
Sma⊶150) Sma⊶151)	res. pars.	20.6 - 381 eV 1.1 - 17.3 eV	<u>81</u>
Sm-152) Sm-154)	(n, y)	30 keV	<u>17</u>
Eu	(n, y)	3 – 100 kme∛	37
Eu-151	(n,γ) to 9.3 min. Isomer (n,γ) integral $\sigma(n,\gamma)$ total, (n,γ) , res. pars.	30 keV 3 - 100 keV fast (EBR-II) 0.02 - 110 eV	<u>17</u> 37 61 <u>79</u>
Eu 152	integral $\sigma(n,\gamma)$ total, (n,γ) , res. pars.	fast (EBR-II) 0.02 - 20 eV	61 <u>79</u>

1.2. Neutron reaction cross section (cont'd)

FP	reaction	incident neutron energy	page
Eu-153	(n,γ)	3 - 100 keV	37
	integral $\sigma(n,\gamma)$	fast (EBR-II)	61
	total, (n,γ) , res. pars.	0.02 - 600 eV	<u>79</u>
	res. pars. (transmission)	1.7 - 31 eV	82
Eu-154	(n,γ)	thermal	55
	integral $\sigma(n,\gamma)$	fast (EBR-II)	61
	total, (n,γ) , res. pars.	0.02 - 20 eV	79
	res. pars., res. integ. (transm.)	0.2 - 27 eV	82
Eu-155	total, (n,γ), res. pars.	0.02 - 20 eV	<u>79</u>
	res. pars., res. integ. (transm.)	0.6 - 33 eV	83
Gd-152) Gd-158)	(n, y)	30 keV	<u>17</u>
FP *)	res. pars. (transmission)	1 eV - 1.5 keV	<u>15</u>
many +)	integral $\sigma(n,\gamma)$	fast (EBR-II)	61

1.2. Neutron reaction cross sections (cont'd)

*) gross FP-mixtures

+) several reactions not specified in detail

1.3.	Decay	data
------	-------	------

FP	data t ype	page	FP	data type	page
Ga-79 Ga-80 Ga-81			Kr85m	decay branching	<u>60</u>
Ga-82 Ge-79 Ge-80	γ-spectroscopy (no details)	<u>48</u>	Kr-90 Kr-92 Kr-93	Q β	<u>19</u>
Ge-81			Rb 88	Ϙβ	<u>20</u>
Ge-02 /			Rb 89	QB Bestmensth funct	<u>20</u> 26
Se-86	Ϙ β	<u>19</u>	Rh-QO		19.20
Br-85	QS	(47)	no-jo	β -strength funct.	26
Br-87 Br-87	Qβ	(47)	Rd-91	Q_{β} β -strength funct.	<u>20</u> 26
	γ-,ce-spectroscopy	(48)	Rb-92	9 8	<u>19,20</u>
Br-88	Qβ Ev. Iv	<u>19</u> , (47) 48	-	β -strength funct.	<u>26</u>
Br-89	QB	(47)	R0-93		<u>19,20</u> 26
	γ-spectroscopy	<u>48</u>	Rb-94)	∫ 9 β	20
Br-90		<u>19,47</u>	Rb 95∮	β -strength funct.	26
	f-shee moscoh	40			

- xiii -

1.3. Decay data (cont'd)

FP	data t ype	page	FP	data type	page
Rd-96 Rd-97	Qβ β-strength funct. Q8 β-strength funct.	20 26 20 26	Pd-113 Pd-114 Pd-115 Ag-113	Τ1/2, Ε_γ, Ι_γ	<u>63</u>
Rb 98	β -strength funct.	2 6	Ag-114 Ag-115		
Sr-91	ିକ୍ୟ	20	In120)		
Sr-93	Q 8	19	In-122	$E_{\gamma}, I_{\gamma}, E_{ce}, I_{ce}, \gamma - \gamma$	(48)
Sr-94	Q B	20	In-126		
Sr-95	କ୍ୱ	<u>19</u>	In-127	y-spectroscopy	<u>48</u>
Sr-9 6	Ϙβ	<u>19,20</u>	In-128	$E_{\gamma}, I_{\gamma}, E_{ce}, I_{ce}, \gamma - \gamma$	(48)
Sr-97 Sr-98 }	Qβ	<u>19</u>	In-129) In-130)	y-spec troscopy	<u>48</u>
Y-94 }	Qa	20	In-132	β-,γ-spectroscopy	<u>16</u>
I-95) V 06		10.20	A= 133	decay properties	23
1-90 v_97)	₩ β	19,20	Sn-131	Qβ	<u>19</u>
Y−97∎ }	Q _β	<u>19</u>	Sn-132	β -, γ -spectroscopy	<u>16</u>
Y-9 8	β-,γ-spectroscopy Qg (also Y-98m)	<u>16</u> <u>19</u>	Sb134	β-,γ-spectroscopy Qβ	<u>16</u> <u>19</u>
Y-99 } Y-100}	β -, γ -spectroscopy	<u>16</u>	Te135 Te136	Qβ	<u>19</u>
Zr - 99	β -, γ -spectroscopy	<u>16</u>	I-1 36	β -, γ -spectroscopy	<u>16</u>
- 400 \	Ϙ β	<u>19</u>	I-137	γ-,ce-spectroscopy	48
2r-100 ND-98 ND-100 ND-101 ND-102	Qβ	<u>19</u>	I-138 I-139) I-140) Cs-138)	E _γ ,I _γ ,γ-γ {Qβ (γ-spectroscopy	48 <u>47</u> <u>48</u>
ND-103) ND-104	T1/2,β-,γ-spectr.	<u>16</u>	Cs-139 Cs-140 Cs-141	₠	<u>20</u>
X o-102	Ε _γ , Ι _γ , γ-γ	<u>6</u>	Cs-142)		
то99∎	T1/2 (chem.effect)	<u>40</u>	Cs-143	$\mathbf{Q}_{\mathbf{B}}$	<u>20</u>
Tc-103	Ϙ β	19	(m_144)	τ γ (ret)	<u> 4</u>
A=104) A=105)	Ϙ β	<u>19</u>	Cs-145 Cs-145 Cs-146	ଢ଼ ୄଌ	<u>20</u>
Tc-106 Tc-107 Tc-108	Τ1/2, Ε_γ, Ι_γ, γ- γ	46	Ba-139	Q8 T1/2,I, (absol.)	<u>20</u> 62
,			Ba-140	I _y (absol.)	55
			Ba~141	Ϙβ	<u>20</u>

1.3. Decay data (cont'd)

₽P	data type	page
Ba-143	${}^{Q_{\beta}}_{I_{\gamma}}$, (rel)	19, <u>20</u> 24
Ba-144 Ba-145	} φ _β	<u>19</u>
Ba-14 6	Qβ	19,20
La-138	Τ1/2, Εγ, Ιγ	<u>10</u>
La-140	$T1/2, I_{\gamma}$ (absol.)	55
La-141 La-142	I_{γ} (absol.)	<u>62</u>
La-143	I _γ (rel)	24
La-144	Q _β T1/2,Q _β ,E _γ ,I _γ	<u>19</u> <u>41</u>
La-145	Ϙβ	<u>19</u>
La-146	Ϙ	19 , 20
La-147	Qβ	<u>19</u>
Ce-141	$\beta, \gamma, ce, X: en. + intens.$	I
Ce-143	I_{γ} (rel)	<u>24</u>
Ce-145	τ1/2,εγ,Ιγ 9 ₈	<u>10</u> <u>19</u>

FP	data type	page
Ce-147 Ce-148 A=149 A=150 A=151	Qβ	<u>19</u>
Pr-144	E_{γ}, I_{γ} (rel.)	<u>13</u>
Pr-145 Pr-146	I_{γ} (absol.)	6 2
Pr-148	T1/2, Eγ, Iγ Qβ T1/2, Q8, Eγ, Iγ	10 19 42
Sm-1 57 Sm-1 58	} T1/2, E _y , I _y	<u>63</u>
Eu-154	T1/2	<u>55</u>
Eu-157 Eu-158	} T1/2, E _y , I _y	<u>63</u>
many *)	T1/2, Ε _γ , Ι _γ , γ-γ	4 6

*) several unspecified FP with T1/2 > 0.5 s

1.4. Delayed neutron (del-n) data

FP	data t ype	page
Ga-79 Ga-80 Ga-81 Ga-82 Ga-83	P _n	(47)
A6- 75	E-spec., avg. E	27
Br-87	E-spec., avg. E P _n	27 (47)
Br-8 8	Pn	(47),48
Br-89	Pn	47
Br-90) Br-91 }	Pn	47
Rb-89 Rb-90 Rb-91	E-spec.	26 <u>26</u> 26

PT	data type	page
Rb-92	E-spec. E-spec., avg. E P _n spec.:avg.E + width	26 27 (47) 76
Rb-93 Rb-94 Rb-95	E-spec. E-spec., avg.E Pn spec.: avg.E + width	26 <u>27</u> (47) <u>76</u>
Rb9 6	E-spec. E-spec. avg. E P _n spec.: avg.E + width	<u>26</u> 27 (47) <u>76</u>
Rb~ 97	E-spec. E-spec. avg.E spec.: avg.E + width	26 <u>27</u> <u>76</u>

ed neutron (del-n) d	tata (c	on
data type	page	
E-spec. E-spec., avg. E spec.:avg.E + width P _n (Y-isotopes)	26 27 76 47	

FP	data type	page
Cs-141 Cs-142 Cs-142 Cs-143 Cs-144 Cs-145	$\begin{cases} E-spec., avg. E \\ P_n \\ spec.: avg.E + width \end{cases}$	27 (47) <u>76</u>
Св—146) Св—147)	E-spec., avg. E spec.: avg.E + width	<u>27</u> 76
La	P _n (Lanthanides)	<u>47</u>
U-2 33	tot al d el-n y ield	<u>33</u>
U-2 35	group spec. (time) equil. spectra	<u>27</u> 54
Np-237 Pu-238 Pu-240 Pu-241 Am-241	total del—n y ield	<u>33</u>
many*)	group spec. (time)	<u>27</u>

*) Further measurements with other fissioning nuclides planned.

1.5. Decay heat

fissioning muclide	inc. neutron energy	radiation	page
Th -2 32 U-235	fast thermal	Ť	44 72
U-23 8	fast fast	β, γ, total	44 44
Pu-239	thermal fast		72 44
Pa-241	thermal	Y	(72)

FP

Rb-98

Y

In-127 In-128 In-129

In-130

In-131 In-132 Sb-134

Sb-135

Te-136

I-137

I-138

I-139

I-140

I-141

Pn

Pn

Pn

Pn

 P_n

 P_n

E-spec., avg. E

E-spec., avg. E

E-spec., avg. E

E-spec., avg. E

del-n branch

(47)

(<u>27</u> (<u>47</u>)

<u>27</u>

(<u>27</u> (47)

<u>27</u>

(47)

48

47

47

2. COMPILATIONS AND EVALUATIONS

data category	further specifications	page
fission yields	U-238 at different neutron energies theoret. prediction, spont. fission selected compil. f. neutron dosimetry compilation (Crouch) complete evaluation (Crouch) complete evaluation (Rider, ENDF/B-V) evaluated file (ENDF/B-V) compilation (ENDF/B-V) eval.: idep., isomer, ternary yields indep. yields, charge distribution charge distribution	93 (94) 103 (104) (105) 111 112 (113) (113) (115) (118) <u>119</u>
cross sections	resonance parameters (CEA) Cs-133 eff. reson. integral group constants (CNEN-CEA-RCN) differential (JENDL), integral test RCN-2 eval., integral tests resonance parameters (BNL-325) eval. and file (ENDF/B-IV,V) group cross sections (ENDF/B-IV) compil. and eval. (ENDF/B-V)	88 91 96 99 101 109 112 (114) (115)
decay data	Nucl. Data Sheets, A=102 complete eval. (CEA, Blachot) T1/2, decay scheme data (35 FP) y-ray catalog (compil.) compilation (JNDC) complete file (UK working group) complete file (ENDF/B-V)	87 89 90 92 (98) 107 110
del ay ed neutrons	compilation (INDC) T1/2, P _n , del-n yield (UK file) equilibrium spectra eval. del-n spectra (ENDF/B-V)	(98) (106) 108 <u>112</u>
decay heat	evaluation (JNDC working group compil. and eval. (ENDF/B-V)	98 (115)

I. MEASUREMENTS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.

AUSTRALIA

	Laboratory and address:	Australian Atomic Energy Commission Lucas Heights, 2234, NSW, Australia
1.	Names:	R.B. Taylor ¹⁾ , B.J. Allen, A.R. de L. Musgrove, R.L. Macklin ²)
	Experiment:	keV Neutron Capture in ¹⁴¹ Pr.
	Method:	C_6F_6 detector at 40m flight path at ORELA; 6Li monitor
	Accuracy:	11%
	Completion date:	18/12/79
	Descrepancies:	Generally good agreement in resonance energies and s-wave neutron widths with total cross section results. Good agreement with capture cross section curve in BNL-325, Vol.11, 1976, in the range 4-100 keV.
	Publications:	Austrl. J. Physics <u>32</u> , 551 (1979)
2.	Names:	A.R. de L. Musgrove, B.J. Allen, J.W. Boldeman, R.L. Macklin ²)
	Experiment:	Recent measurements of neutron capture cross sections in the fission product mass region. Measurements of: $\frac{86-88}{104-106}$, $\frac{89}{109}$, $\frac{90-92}{942}$, $\frac{95-98}{104-138}$, $\frac{104-106}{108}$, $\frac{110-114}{100}$, $\frac{134-138}{139}$, $\frac{139}{124}$, $\frac{140}{26}$, $\frac{141}{19}$, $\frac{142-146}{148}$, $\frac{148}{148}$, $\frac{139}{124}$, $\frac{140}{26}$, $\frac{141}{19}$, $\frac{142-146}{148}$, $\frac{148}{148}$, 1
	Method:	as above
	Accuracy:	10–20%
	Completion date:	25/9/78
	Discrepancies:	see publication
	Publication:	Proc. Int. Conf. on Neutron Physics and Nuclear Data for Reactors and other Applied Purposes, Harwell, 1978, OECD-NEA, proceedings page 449.
3.	Names:	G. Hicks, B.J. Allen, A.R. de L. Musgrove, R.L. Macklin ²)
	Experiment:	keV Neutron Capture in 86 Sr and 87 Sr
	Method:	as above
	Accuracy:	15%
	Completion date:	July 1980
	_	

- 1) Department of Physics, James Cook University of North Queensland, Townsville, Qld 4811
- 2) Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

BELGIUM

Laboratory:	Centre d'Etude de l'energie Nucléaire CEN/SCK B-2400 MOL (Belgium)
Names:	P. del Marmol, P. Fettweis
Facilities:	BR1 Reactor
Experiment:	The independent isomeric yield ratio of $83mse/83gse$ is being determined in thermal neutron fission of $235U$.
Method:	Fast radiochemical separation of Se followed by γ -counting of the resulting activities.
Completion date:	work provisionally halted, will be resumed when possible.

BELGIUM

Laboratory and address : Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 Gent, Belgium Département de Recherche Fondamentale, CEN-Grenoble, France¹) Institut Laue Langevin, B.P. no.156X, 38042 Grenoble Cedex, France²)

Names : H. Thierens, E. Jacobs, P. D'hondt, D. De Frenne, A. De Clercq, P. De Gelder and A.J. Deruytter J. Blachot ¹⁾ P. Perrin ²⁾

Facilities : High Flux Reactor, Institut Laue Langevin, Grenoble

Experiment : The thermal neutron sub-barrier fission of ^{237}Np

Method : measured : fission product γ-ray spectra; deduced : post neutron mass distribution, neutron emission curve

Completion date : February 1980

Discrepancies to other reported data : The peak-to-valley ratio was determined to be 510 ± 50 , instead of P/V = 151 as given by Asghar et al Nucl. Phys. A292 (1977) 225

Publications : H. Thierens et al, to be published in Nucl. Phys. A

BELGIUM

Laboratory and address : Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 Gent, Belgium Institut für Kernchemie, Universität Mainz, D-6500 Mainz, Germany¹⁾ Département de Recherche Fondamentale, Centre d'études nucléaires, F-38042 Grenoble, France²⁾ Names : P. De Gelder, D. De Frenne, E. Jacobs, H. Thierens, A. De Clercq, P. D'hondt, K. Heyde and A.J. Deruytter G. Tittel, N. Kaffrell and N. Trautmann 1) F. Schussler²⁾ Facilities : Linear Electron Accelerator, Gent Triga-reactor, Mainz High Flux reactor and Mass Separator Lohengrin, Grenoble Experiment : The β -decay of ¹⁰²Mo Method : 235 U(n_{th},f) and nat U(γ ,f); chemical and mass separation; measured : E_{γ} , I_{γ} , $\gamma\gamma$ -coin, Ge(Li) detectors Completion date : July 1979 Publications : P. De Gelder et al, Nucl. Phys. A337 (1980) 285 P. De Gelder et al, Proc. Int. Workshop on Nuclear Spectroscopy of fission products, Inst. Phys. Conference Series Nr51 (1980) 297

E.E.C. BELGIUM

Laboratory and address	:	CEC-JRC, Central Bureau for Nuclear Measurements, Geel, Belgium
Names	:	H.H. Hansen, E. Celen, G. Grosse, D. Mouchel, A. Nylandsted Larsen, R. Vaninbroukx
Facilities	:	$4\pi\beta -\gamma$ coincidence device; double focusing magnetic β -spectrometer; solid state detectors
<u>Experiments</u>	:	Determination of decay properties of 141 Ce: β intensities, maximum energies and shape factors; γ -ray and KX-ray intensities; internal conversion coefficients and ratios
Methods	:	 disintegration rate of the sources and the total internal conversion coefficient: efficiency extrapolation technique applied to 4πβ-γ coincidence measurements; γ-ray and KX-ray intensities: efficiency calibrated Si(Li) and intrinsic germanium detectors; relative intensities, maximum energies and shape factors of the two β transitions and internal conversion ratios: magnetic β spectrometer spectrum scanning; K-shell internal conversion probability: electron/K X-ray coincidence technique
Accuracies	:	0.6% and 1.2% for the γ -ray and K X-ray intensity, respectively; 2.1% for the internal conversion coefficients; between 0.9 and 3.1% for the relative electron intensities; about 15% for the β spectrum shape factors
Publication	:	H.H. Hansen, E. Celen, G. Grosse, D. Mouchel, A. Nylandsted Larsen, and R. Vaninbroukx, Z. Phys. <u>A290</u> , 113 (1979).

E.E.C., Belgium

	D .C.R./C.B.R., NOI, bergrum
Names :	<pre>*P.Staveloz, *E.Cornelis, *L.Mewissen, *F.POOrt- mans,G.Rohr,R.Shelley,T.van der Veen</pre>
Facilities :	Neutron time-of-flight spectrometers at the 150 MeV Linac (pulse width : 4 nsec)
Experiments	Resonance parameters for ^{104,105,105,108,110} Pd below 40 keV
	1)Capture cross-section measurements :
	Experiments completed for all isotopes.
	^{108,105} Pd : analysis completed
	¹¹⁰ Pd : analysis in progress
	2) Total cross-section measurements :
	Experiments and analysis completed for all isotopes
	3) Scattering cross-section measurements :
	105,108 _{pd} , experiments and applysis
	completed - Not planned on other isotopes
	[4)Parity assignment of resonances
	Experiments and analysis completed for all even isotopes 105 Not planned on Pd.
Method :	1) Capture cross section measurements.
	Detector : C ₆ D ₆ -detectors using Maier Leibnitz method. Flight path length : 60 m.
	2) Total cross section measurements.
	Detector : ³ He gaseous scintillàtors. Flight path length : 30 m and 60 m. Cooled samples at liquid nitrogen temperature.
	3) Scattering cross section measurements.
	Detector : ³ He gaseous scintillators.
	Flight path length : 30 m.
	 4) Parity assignment of resonances is made on the basis of low-bias to high bias ratios deduced from capture gamma ray spectra measured with a NaI crystal. Flight path length : 30 m.
Accuracy :	Expected on final resonance parameters $g\Gamma_n, \Gamma_\gamma$ between 5 % and 20 % depending on the energy range and on the strength of the resonances.
Expected comple- : tion date	^{105,108} Pd : completed ¹¹⁰ Pd June 1980 Other isotopes : end 1980.

E.E.C., Belgium (cont'd)

	105				
Publications	 1)Neutron Resonances parameters of ¹⁰⁵Pd and ¹⁰⁸Pd, P.Staveloz,E.Cornelis,L.Mewissen, F.Poortmans,G.Rohr,R.Shelley,T. van der Veen, Proc.Int.Conf. on Neutron Physics and Neutron Data for Reactors, Harwell,September 1978, 				
	p. 701.				
	2) Neutron Resonance Parameters for Palladium Isotopes.				
	P.Staveloz,E.Cornelis,L.Mewissen, F.Poortmans, G. Rohr,R. Shelley, T. van der Veen,				
	International Conference on Nuclear Cross-Sections for Technology. October 1979,Knoxville (to be published).				
	3) Neutron Resonance Parameters for Palladium Isotopes.				
	P.Staveloz,E:Cornelis, L.Mewissen,F.Poortmans,				
	G.Rohr,R.Shelley,T. van der Veen.				
	Specialist Meeting on Fission Product Cross-				
	<pre>Isections. Dec. 1979, Bologna (to be published).</pre>				

- 10 -

CANADA

Laboratory and

address:

University of Toronto Erindale College

		3359 Mississauga Road N. Mississauga, Ontario Canada L5L 1C6			
	Names:	H.W. Taylor			
Facilities:		14 MeV neutron generator producing 2 \times 10^{10} n/s through the (d,T) reaction.			
1.	Experiment:	Study of the decay of 145 Ce and 148 Pr			
	Method:	Gamma radiations studied with Ge spectrometers, $\gamma-\gamma$ coincidence measurements; T_{l_2} measured.			
	Accuracy:	Energy levels in 145 Pr determined to \leq 0.4 keV, in 148 Nd to \leq 0.5 keV; half-life of 145 Ce determined to \pm 0.08 m, of 148 Pr to \pm 0.05 m.			
	Completion date:	October 1978.			
	Discrepancies to other	r reported data:			
	i) in addition ((Table of Iso suggested lev to be confirm	to improved energies for levels and transitions otopes, 1978), the decay scheme of ¹⁴⁵ Ce has vels at 783.1, 845.8, 1110.9 keV which have yet med;			
	ii) a number of m are not conta 1978); a numb	new levels have been suggested for ¹⁴⁸ Nd which ained in the established scheme (Table of Isotopes ber of tentative levels remain to be confirmed.			
	Publications:	H.W. Taylor and B. Singh "The Decay of 2.8 min 145 Ce and 2.3 min. 148 Pr", J. Phys. G: Nuclear Physics <u>5</u> , 1445 (1979).			
2.	Experiment:	Study of gamma rays emitted by ¹³⁸ La.			
	Method:	Gamma radiation studies with Ge spectrometer; T_{l_2} measured.			
	Accuracy:	Gamma ray energies to ± 0.07 keV; $T_{\frac{1}{2}}$ to $\pm 10\%$.			
	Completion date:	February 1979.			
	Discrepancies to other	reported data:			
	Publications:	H.W. Taylor and R.J. Bauer "A Note on the Decay of ¹³⁸ La", J. Phys. Soc. Japan <u>47</u> , 1395 (1979).			

FRANCE

Laboratory : Service RADIOCHIMIE ET PHENOMENOLOGIE Centre d'Etudes de BRUYERES-LE-CHATEL B.P. n° 561 - 92542 MONTROUGE CEDEX - FRANCE.

Names : J. LAUREC - A. ADAM.

- Facilities : PROSPERO Critical assembly and LANCELOT 14 Mev neutrons generator (S.E.C.R./C.E. VALDUC) Radiochimical Laboratory Calibrated Ge-Li spectrometers.
- $\frac{Experiments}{Experiments}: Determination of cumulative yields of some fission products$ $<math>\binom{95}{2r}$, $\binom{97}{2r}$, $\binom{99}{NO}$, $\binom{103}{Ru}$, $\binom{105}{Rh}$, $\binom{127}{Sb}$, $\binom{131}{I}$, $\binom{132}{Te}$, $\binom{140}{Ba}$, $\binom{141}{Ce}$, $\binom{143}{Ce}$, $\binom{144}{Ce}$, $\binom{147}{Nd}$ for $\binom{233}{U}$, $\binom{235}{U}$, $\binom{238}{U}$ and $\binom{239}{Pu}$, with fission spectrum and 14,7 Mev neutrons.

Method : The fission number is measured by a fission chamber. The fission products activities of fissile target nuclides are determined by gamma direct spectrometry measurements with calibrated Ge-Li spectrometers. The targets and chamber deposits masses are determined by alpha and mass spectrometries.

- Accuracy: 3 to 5 %; the branching ratio error is not included; this last error is variable from one isotope to the other (1 % to 5 %).
- Completion : | work completed in 1979, except for 233U at 14.7 MeV (end of 1980)
- Publication : internal reports ; C.E.A. report to be published.

FRANCE

Laboratory and address :	Département de Recherche Fondamentale Laboratoire de Chimie Physique Nucléaire Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX - France.
Names :	J. BLACHOT, J. CRANÇON, Ch. HAMELIN, G. LHOSPICE
Facilities :	Melusine reactor (thermal neutron and caramel system for fast neutrons) 3 MeV neutrons generator and high flux reactor of I.L.L.
Experiment :	The element yields of Bromine, Krypton, Rubidium, Tellurium, Iodine, Xenon, Caesium, have been measured for : 235 U(n _{th} ,f), 235 U(n _f ,f), 235 (n _{3MeV} ,f), 232 Th(3MeV,f) 238 U(n _{3MeV} ,f). Values for the odd even effects in Z for all these systems has been deduced.
Method :	Direct growth and decay activities are measured with a Ge/Li detector and recorder in a multispectrum mode by a 4K multichannel analyser.
Accuracy :	The average relative uncertainty of our measurements is between 5 and 10%.
Completion date :	December 1980.
Publication :	International Symposium on Physics and Chemistry of Fission - 14/18 May 1979 - Jülich (IAEA-SM/241 - F29)

FRANCE

Laboratory and address:	Laboratoire de Chimie Physique et Radiochimie Faculté des Sciences 28, av. Valrose 06034 Nice Cédex, France					
Names:	G. Ardisson, C. Ardisson					
Experiment:	Energies and intensities of γ -rays following the decay of 144Prm+g in equilibrium with 144Ce.					
Method:	A sample of 144 Ce- 144 Pr ^{g+m} separated from other fission products of 235 U was obtained from the Radiochemical Centre Amersham. It was purified from residual conta- minants by extraction in a solution of bis(2 ethyl- hexyl) phosphoric acid in heptane by a procedure des- cribed elsewhere ¹ . The spectra of the equilibrium mixture were measured with the aid of a coaxial Ge(Li) detector of 100 cm ³ which has a resolution of 2.0 keV (FWHM) for 60 Co.					
Measurements and accuracy:	Energies and intensities following the decay of $^{144}P_{r}g_{+m}$ were recorded with the aid of a TRACOR 8192-channel analyzer. A series of 4 measurements was performed and the uncertainties of the energies quoted in the Table correspond to the observed standard deviations. The precise energies of the intense 1489 and 2185 kev γ -rays were determined with the aid of the full energy, the single and the double escape peak. The precision of the intensity measurements was determined as 4% for the more intense γ -rays and as 10% for the others.					
Discrepancies to other authors:	The results of the present measurements are in good agreement with the data of Behar et al. ² , Tuli ³ , as well as with those of Heath ⁴ . The mean values of energies and intensities shown in the Table below were calculated by averaging our results with those of ref. 2 and 4, taking as weight $W_{j} = E_{j}^{-1}$ and I_{j}^{-1} respectively, as was used elsewhere 5.					
	which were not reported in previous studies 2-4. These transitions can be interpreted in a level scheme of 144Nd requiring 4 new excited states ¹ .					
Publications:	See ref. 1 and 5.					
References:	 M.S. PRAVIKOFF, G. BARCI-FUNEL, G. ARDISSON, Radiochem. Radioanal. Letters, <u>40</u>, No 2 (1979) 123. M. BEHAR, Z.W. GRABOWSKY, S. RAMAN, Nucl. Phys. <u>A219</u> (1974) 516. J.K. TULI, Nuclear Data Sheets, <u>27</u>, No. 1 (1979) 124. R.L. HEATH, Gamma ray spectrum Catalogue. USAEC Rep- ANCR 1000-2. G. ARDISSON, Nucl. Instr. and Neth., <u>151</u> (1978) 505. 					

Intensities

Energies(keV)

our measurements	Heath ⁴	Behar et.al. ²	mean	our measurements	Heath 4	Behar et.al. ²	mean
618.2 5				0.15 7			
624.89 20	624.84 20	624.66 20	624.80 11	0.92 9	0.7 4	0.85 15	0.87 8
6 75.02 10		675.02 20	675.02 9	1.95 20		2.07 15	2.02 12
696 . 50 2	696.49 2 19	696.49 2	696.494 11	1000 1	1000	1000 1	000
814.03 10	814.15 15	814.15 15	814.09 7	2.31 25	1.8 3	2.45 13	2.27 11
864.44 10	864.28 18	864.53 15	864.43 8	1.97 20	2.1 3	1.93 12	1.98 10
1376.31 30				0.29 3			
1388.20 10	1387.92 18	1388.00 15	1388.07 8	5.06 20	5.7 7	4.45 16	4.83 14
1489.16 5	1489.124 32	1489.15 5	1489.141 24	218 9	214 12	20 3 7	211 5
1561.0 5		1562 2	1561.2 6				
1978 .67 10				0.71 7			
2046.6 5				0.21 4			
2072 .7 7				0.16 4			
2185.601 50	2185.608 46	2185.70 6	2185.632 30	557 22	570 30	522 20	547 13
2368.4 1				0.03 1			
2654 . 1 5		2654.6 7	2654 .3 4	0.16 2		0.14 2	0.15 2
2842.9 1				0.08 2			

Energies and intensities of photons following the decay of 144 PrS+m. The intensities are normalized to a value of 1000 for the 696.5 keV γ -ray. The uncertainties indicated after the energies and intensities correspond to the last digits of the respective numbers.

FRANCE (cont'd)
GERMANY FED. REP.

Laboratory and address:

Institut für Reine und Angewandte Kernphysik der Universität Kiel (IKK), D-2054 Geesthacht, Reaktorstation

Names:

P. Fischer, U. Harz, H.G. Priesmeyer

Facility:

Fast Chopper Neutron Time-of-Flight Spectrometer, 42 m flight path in front of beam hole of 5 MW FRG-1 reactor. 15 ns/m nominal resolution, with special equipment for transmission measurements on highly radioactive samples; 11 Li-6 glass-scintillation detectors; max. rotor speed 12 000 upm; min. burst width 0.64 µs; min. time channel width 100 ns.

Experiments:

Neutron resonance investigations by transmission measurements between 1 eV and 1.5 keV on separated stable or radioactive isotopes of special interest to reactor physics (especially fission products), gross fission products. Possibility of extending energy range to thermal region with crystal spectrometer, which can be made available.

Completed: Transmission of ⁹⁹Tc below 50 eV. Resonance parameters determined to be in agreement with those at higher energies.

Cs-fission product mixture (133:135:137) transmission measurement below 1.2 keV. Four resonances assigned to either radioactive isotope. Analysis in progress.

- Ongoing: Comparative measurement on stable ¹³³Cs as Cs Cl.
- Planned: Transmission experiments on ¹²⁹I, Krypton isotopes and gross fission product mixtures.

Method:

Sample-in-beam, sample-out-of-beam transmission measurement; black resonance background determination technique.

Accuracy:

For resonance parameters: about 5 % or better, depending on statistical accuracy desired.

Recent publications:

P. Fischer, Diplomarbeit, Kiel 1980. H.G. Priesmeyer, Low-energy Neutron Cross Section Measurements of Radioactive FP Nuclides, IAEA Specialist Meeting, Bologna 1979.

GERMANY, F.R.

Laboratory and address:

Institut für Kernphysik, Kernforschungsanlage Jülich, D-5170 Jülich, F.R.Germany

Names:

G. Battistuzzi, K. Kawade⁺, B.D. Kern⁺⁺, T.A. Khan⁺⁺⁺, W.D. Lauppe^{*}, H. Lawin, H.A. Selič^{**}, K. Sistemich, A. Wolf^{***}

Experiment:

Studies at the Fission Product Separator JOSEF

Method:

The separator JOSEF at the research reactor FRJ-2 "DIDO" of the Kernforschungsanlage Jülich is used for nuclear spectroscopic investigations on fission products. Presently the main aims are the study of the onset of nuclear deformations around A=100 and of the nuclear shell structure near 132 Sn. In 98 Zr [1], 99 Zr [2], 100 Zr [3,4,5], 99 Nb [2], 132 Sn [6,7], 134 Te [8] and 136 Xe [8] the properties of special levels (like spin, parity and life-time) have been studied through γ , γ angular correlation- und through delayed β , γ coincidence measurements. For 104 Mo [9,10] a detailed level scheme has been established, which indicates a permanent deformation of this nucleus. The properties of new levels in 132 Te [11] support the interpretation, that 132 Sn is a good closed shell nucleus.

Publications:

- 1 1 K. Kawade et al, Ann. rep. 1979 of the Inst. f. Kernphysik, KFA Jülich, p. 62
- 2 H.A. Selič et al., Z. Physik A289 (1979) 197
- | 3| T.A. Khan et al., Z. Physik A284 (1978) 313
- | 4| H.A. Selič et al., Z. Physik A 286 (1978) 123
- 1 5| A. Wolf et al., Ann. rep. 1979 of the Inst. f. Kernphysik, KFA Jülich, p. 63
- 6 K. Sistemich et al., Intern. Winter Meeting on Nucl. Phys., Bormio/Italy, ed. I. Jori, p. 224
- 7 K. Kawade et al., Ann. rep. 1979 of the Inst. f. Kernphysik, KFA Jülich, p. 65
- | 8| K. Kawade et al., Ann. rep. 1979 of the Inst. f. Kernphysik, KFA Jülich, p. 67
- 9 B.D. Kern et al., Ann. rep. 1978 of the Inst. f. Kernphysik, KFA Jülich, p. 42
- [10] K. Sistemich et al., Z. Physik A 289 (1979) 225
- [11] K. Sistemich et al., Z. Physik A 292 (1979) 145

+ On leave from Nagoya University, Japan

- ++ Permanent address Dept. of Phys. and Astron., University of Kentucky, USA
- +++ Now at the Tandem Laboratory, McMasters University, Hamilton, Canada
- * Now at the Programmgruppe Kernenergie und Umwelt, KFA Jülich, Germany
- ** Presently at the Weizmann Institute of Science, Rehovot, Israel
- *** Permanent address Negev Nuclear Research Centre, Beer Sheva, Israel

CERMANY, FED. REP.

	LABORATORY:	Kernforschungszentrum Karlsruhe
		Institut für Angewandte Kernphysik
1.	NAMES:	H. Beer, F. Käppeler
	FACILITIES:	 pulsed 3 MV Van de Graaff, kinematically collimated neutron beam, 25 keV above the ⁷Li(p,n) reaction threshold Ge(Li) detector (rel. efficiency for ⁶⁰Co: 7 %; energy resolution at 1.33 MeV: 2 keV)
	EXPERIMENT:	30 keV capture cross section of 138 Ba, 140,142 Ce, 152,154 Sm, 152,158 Gd and capture cross section of 151 Eu to the 9.3 h isomeric state in 152 Eu at 48.5 keV
	METHOD:	activation technique
	ACCURACY:	5-6 %
	COMPLETION DATE:	Results on 138 Ba, 140,142 Ce are published. Data analysis started for 152,154 Sm, 152,158 Cd and 151 Eu.
	DISCREPANCIES TO OTHER DATA:	¹³⁸ Ba: 8-160 %, ¹⁴⁰ Ce: 30-100 %, ¹⁴² Ce: 180 %
	PUBLICATIONS:	Neutron Capture Cross Sections on ¹³⁸ Ba, ^{140,142} Ce, ^{175,176} Lu and ¹⁸¹ Ta at 30 keV: a prerequisite to investigate the ¹⁷⁶ Lu Cosmic Clock H. Beer, F. Käppeler, Phys. Rev. C21, 534 (1980) ⁺)
2.	NAMES:	F. Käppeler, B. Leugers
	FACILITIES:	pulsed 3 MV Van de Graaff
	EXPERIMENT:	Capture and Total Cross Section Measurements on Natural Xenon, Natural Krypton and on Various Krypton Isotopes *) Between 3 and 250 keV Neutron Energy.

+) Erratum in Phys. Rev. C21, 2139 (1980)

METHOD: continuous neutron energy spectrum from 'Li(p,n) reaction; high pressure gas samples (300 bar in stainless steel spheres of 20 mm diameter and 0.5 mm wall thickness); capture events detected by 2 C_6D_6 -detectors of 1 1 volume with pulse height weighting; neutron energy determination by time-of-flight with a resolution of 1.5 ns/m; ^{197}Au -sample used as a standard.

ACCURACY: Statistical uncertainty typically 5 % for energy intervals corresponding to the experimental resolution. Systematic uncertainties between 4 and 15 % dependent on the isotopic composition of the samples.

COMPLETION DATE: summer 1980

DISCREPANCIES TO No such data available

OTHER REPORTED DATA:

- PUBLICATIONS: Preliminary data given in contributions to the following conferences:
 - B. Leugers, F. Käppeler, KfK Karlsruhe and
 F. Fabbri, G. Reffo, CNEN Bologna
 "KeV Neutron Capture Cross Sections for the s-Process Isotopes of Se, Br and Kr and the Abundance of Krypton in the Solar System".
 Int. Conf. on Nuclear Cross Sections for Technology, Knoxville, Tennessee, 22.-26.10.1979
 - F. Käppeler, B. Leugers
 "Capture Cross Section Measurements on Natural Xenon, Natural Krypton and on Various Krypton Isotopes Between 3 and 250 keV Neutron Energy" *)
 Specialists Meeting on Neutron Coss Sections of Fission Product Nuclei, Bologna, Italy, 12.-14.12.1979

*) 80,82,83,84_{Kr}

GERMANY, FED. REP.

Laboratory and address: Kernspektroskopie, Institut A für Physik, Technische Universität, Mendelssohnstr. 1A D-33 Braunschweig, Germany Names: U.Keyser, F.Münnich Facilities: On-line mass separators LOHENGRIN and OSTIS, installed at the high-flux reactor of the ILL, Grenoble, France Experiments:Determination of beta-decay energies of neutron-rich short-lived fission products in the mass range $85 \le A \le 105$ and $131 \le A \le 151$ Method: β_{γ} -coincidence measurements with a plastic-scintillator telescope, β -singles measurements with a high-purity Ge detector Accuracy: Δ E between 70 keV and 150 keV, depending upon the complexity of the decay scheme

Publications: Zeitschrift für Physik A 284(1978)95¹) A 285(1978)287²) A 288(1978)59³) A 289(1979)40⁷⁴) Proc. Int. Conf. Atomic Masses and Fundamental Constants VI p. 443 and p. 485 (1979)

¹) 88_{Br} , $90,92_{Kr}$, $90,92,93_{Rb}$, $93,95-98_{Sr}$, $96-98_{Y}$, $99,100_{Zr}$, $98,100-102_{Nb}$ ²) $144,145_{Ba}$, $144,145,147_{La}$, $145,147,148_{Ce}$, 148_{Pr} ³) $85,86_{Se}$, 90_{Br} , 93_{Kr} , 103_{Nb} , 103_{Te} ⁱ) 131_{Sn} , 134_{Sb} , $135,136_{Te}$, $143,146_{Ba}$, 146_{La}

GERMANY, FED. REP.

Laboratory and address:	 II. Physikalisches Institut, University of Giessen Arndtstrasse 2, D-6300 Giessen, Fed. Rep. of Germany 				
	and				
	2) Institut Max von Laue-Paul Langevin, X 56 Centre de Tri, F-38042 Grenoble-Cédex, France				
Names:	1) Decker, R., Wuensch, K.D., Wollnik, H. 2) Koglin, E., Siegert, G., Jung, G.				
Facilities:	on-line mass separator OSTIS, Mattauch-Herzog type magnetic separator, intrinsic Ge-detector, Ge(Li) detector.				
Experiment:	${\tt Q}_{\!eta}$ values of some neutron-rich fission products.				
Me thod :	Alkaline fission products were generated by thermal fission of U235 and separated from non-alcaline atoms by diffusion in 1700 K hot graphite slabs, and by selective ionization at the hot Rhenium surface of the ion source of the on-line fission product separator OSTIS, which is currently installed at the Institut Max von Laue-Paul Langevin in Grenoble, France. The alkaline ions were mass separated by means of a Mattauch Herzog type magnetic separator, yielding a neighboring- mass contamination of only 1 part in 10 ⁵ . The ions were collected on a moving tape system, and their decay observed with an Intrinsic Germanium Detector (for gamma-rays). Beta-single spectra and beta-gamma coincidence spectra were taken simultaneously. Data evaluation was done using an interactive graphics computer program, taking into account the previously measured response function of the beta detector. Beta endpoints were determined, and if possible combined with results from beta-gamma coincidence measurements to deduce the Q-value of the nuclei.				
Accuracy:	Unprecedented accuracy and reliability of the endpoint measurement was achieved due to				
	 high detector resolution of 10-20 keV (as compared with several 100 keV with conventional Plastic scin- tillation detectors) 				
	2. excellent stability of electronics (temperature sta- bilized) and built-in check against drift (gamma lines superimposed to the beta continuum)				
	3. simultaneous measurement of all electron energies (as compared with magnetic spectrometers)				
	4. stability of energy calibration maintained to approx. 2 keV up to a beta energy of 6 MeV by daily recali- bration with gamma lines of Rb90				

(cont'd)

5. pulse pile-up was avoided by an electronic pile-up rejection circuit and by repetitive measurements set up with differing beta count rates.

The experimental results are given in the Table below.

Completion date: Last experiment done in October, 1977 Data evaluation completed in April, 1979

Discrepancies to other reported data: Most of previous measurements agree reasonably well with our data, taking into account the (mostly larger) experimental errors. Larger discrepancies between our data and those measured by the Ames group have been resolved by recalibration and recalculation of their experimental data.

- Publications: 1. Decker, R., Wuensch, K.D., Wollnik, H., Koglin, E., Siegert, G., Jung, G.: Z. Physik A 294, 35-49 (1979) 2. Decker, R., Wuensch, K.D., Wollnik, H., Koglin, E.,
 - Siegert, G., Jung, G.: in preparation, to be submitted to Z. Physik
 - 3. Wuensch, K.D., Decker, R., Wollnik, H., Jung, G., Siegert, G., Koglin, E.: in preparation, to be submitted to Nucl. Instrum. Methods.

fission product	Qβ (keV)	fission product	Q_{β} (keV)	fission product	Q _β (keV)
Rb-88 Rb-89 Rb-90 Rb-91 Sr-91 Rb-92 Rb-93 Rb-94 Sr-94 Y-94	5318 ± 4 4510 ± 8 6578 ± 15 5857 ± 8 2704.5 ± 3 8111 ± 15 7485 ± 15 10304 ± 30 3512 ± 5 4920 ± 5	Rb-95 Y-95 Rb-96 Sr-96 Y-96 Rb-97 Cs-138 Cs-139 Ba-139 Cs-140	$>8947 \pm 100$ 4445 ± 5 $>11303 \pm 250$ 5413 ± 20 7120 ± 50 $>10020 \pm 50$ 5388 ± 25 4213 ± 5 2336 ± 25 6220 ± 15	Cs-141 Ba-141 Cs-142 Cs-143 Ba-143 Cs-144 Cs-145 Cs-146 Ba-146 La-146	5252 + 15 3208 + 35 7329 + 20 6287 - 250 4259 + 40 8451 + 200 8451 - 30 7358 + 70 9300 + 900 4280 + 100 6175 + 100

Table:

GERMANY, FED. REP.

Laboratory:	Institut für Kernchemie
	Universität Mainz
	D-6500 Mainz, Germany and
	Institut Laue-Langevin
	38 Grenoble, France
Names:	H.O. Denschlag, Z. Alfassi, (U. Beersheva, Israel),
	J. Blachot (CENG, Grenoble), H. Braun, W. Pörsch,
	H. Schrader, R. Sehr, B. Sohnius
Facilities:	LOHENGRIN Mass-separator for unslowed fission
	products at ILL, Grenoble
Experiment:	The charge distribution among heavy-mass-peak
1	fission products (A=138-146) from ²³⁵ U(n _{th} ,f)
	is being measured at various well defined kinetic
	energies (excitation energies) of the fission
	fragments
Method:	Fission fragments separated according to mass
	(resolution $\frac{M}{m}$ = 400) and kinetic energy (reso-
	ΔM lution $\sqrt{2}$ MeV) are intercepted on a moving
	transport tape, transported continuously or
	discontinuously in front of a Ge(Li) y-ray de-
	tector, and counted via the v-rays emitted in
	their β -decay
Accuracy:	Varying
Completion:	Mass chains 132-137 completed, 138-146 in 1980/81
Publication:	H.O. Denschlag, H. Braun, W. Faubel, G. Fischbach, H. Meixler, G. Paffrath, W. Pörsch, M. Weis, H.
	Schrader, G. Siegert, J. Blachot, Z.B. Alfassi,
	H.N. Erten, T. Izak-Biran, T. Tamai, A.C. Wahl, K. Wolfsberg, in Physics and Chemistry of Fission
	(Proceedings Symp. Jülich, 1979), IAEA, Vienna
i	(1980), in press, and progress reports in Jahres-
	Mainz and Annex to the Annual Report, Institut
	Laue-Langevin, Grenoble (1979)

GERMANY, FED. REP.

	Laboratory:	Institut für Kernchemie
		Universität Mainz
		Postfach 3980
		D-6500 Mainz, Germany
	Facilities:	TRIGA Mark II Reactor
1.	Names:	H. Braun, H.O. Denschlag
	Experiment:	Yields and decay properties of the fission product chain with mass number A = 133 are being redetermined
	Method:	Radiochemical and by mass-spectrometry
	Completion date:	completed
	Publications:	Jahresbericht 1977
		Institut für Kernchemie
		Universität Mainz,
	1	H. Braun, Dissertation, in preparation
2.	Names:	G. Fischbach, H.O. Denschlag
	Experiment:	The fractional cumulative (*independent) yields
		of the following isotopes were measured in
		$^{235}U(n_{th}, f)$: Ba-141 [*] , Ba-143 to Ba-146, La-146,
		Ce-146, Ce-148 and Ce-149
	Method:	Fast radiochemical separations and direct γ -ray
		spectroscopic measurement and/or indirect
		measurements via daughter nuclides
	Accuracy:	Varying
	Completion date:	completed

GERMANY, FED. REP. (cont'd)

	Publications:	Jahresberichte 1975, 1976 and 1977
		Institut für Kernchemie
		Universität Mainz,
		G. Fischbach, Dissertation, Mainz 1980
3.	Names:	R. Sehr, H.O. Denschlag
	Experiment:	Fractional cumulative fission yield of 77 Ga shall be redetermined in the fission of 235 U by thermal neutrons
	Method:	Fast radiochemical separation
	Accuracy:	σ<10%
	Completion date:	1980 ?
4.	Names:	B. Sohnius, H.O. Denschlag
	Experiment:	Gamma-ray line intensities of 143 Cs, 143 Ba, 143 La and 143 Ce shall be redetermined relative to each other
	Method:	Fast radiochemical separations
	Accuracy:	σ<10%
	Completion date:	1980 ?
	Publications:	_

GERMANY, FED. REP.

(cont'd)

	Laboratory:	Institut für Kernchemie
		Universität Mainz
		Postfach 3980
		D-6500 Mainz, Germany
5.	Names:	M. Weis, H.O. Denschlag
	Facilities:	TRIGA Mark II Reactor
	Experiment:	The fractional independent or fractional
		cumulative (FC) yields of the following
		235. A theread a transformed in the fission of
		U by thermal neutrons:
		ND-96, $ND-97$ (m+g), $ND-98m$, $Y-99$ (FC), $Zr-99$,
		ND-99m, $ND-99g$, $Zr-101$ (FC), $ND-101$, $MO-101$,
		Zr = 102 (FC), Nb=102(m+g), Nb=104 (FC), Nb=105
		(FC)
	Method:	Fast radiochemical separation of Nb or Zr after
		pulsed irradiation
	Completion date:	completed
	Publications:	Jahresberichte 1975, 1976 and 1977
		Institut für Kernchemie
		Universität Mainz,
		M. Weis, Dissertation, Mainz 1979

Laboratory:	Institut für Kernchemie
	Universität Mainz
	Postfach 3980
	D-6500 Mainz, Germany

1. Names: H. Ohm, A. Schröder, W. Ziegert, K.-L. Kratz (Kernchemie Mainz), B. Pfeiffer, G. Jung (Universität Giessen/ILL Grenoble), C. Ristori, J. Crancon (CEN Grenoble)

Facilities: Alkali isotope separator OSTIS installed at the Grenoble high-flux reactor

Experiment: Energy spectra of β⁻delayed neutrons have been measured in coincidence with γ-rays depopulating excited states in the respective neutron final nucleus. With these data and the information from neutron

singles and γ -ray spectra β -strength functions (S_{β}) which extend to near Q_{β} of ten Rb isotopes have been constructed (A = 89-98). As expected from shell model calculations, the experimental strength below about 9 MeV differs considerably from that predicted by the gross theory of β -decay. The particular importance of these investigations lies in the fact that the shape of S_{β} is decisive not only in predictions of β -decay half-lives and β -delayed neutron emission probabilities, but also for radioactive decay heat analyses.

Publications: K.-L. Kratz, INDC (NDS)-107/G + Special, p. 103 (1979), K.-L. Kratz et al., Proc. Int. Workshop, Grenoble, France, Inst. of Physics Conf. Ser. No.51, p.142 (1979), K.-L. Kratz et al., Phys. Lett. 86B, p.21 (1979) and 90B, p.57 (1980)

Completion date:

GERMANY, FED. REP. (cont'd)

with response
with response
with with It 13-35 keV. response
with 1t 13-35 keV. response
am, U.K.)
:her es are
Kratz
Te, Ization deduced
: (Batelle, of neutron h at 3 ters of

GERMANY, FED. REP. (cont'd)

b) Comparison of \bar{E}_{n} for calibration of the SOLAR neutron counting rate ratio system

Publications: Proc. of the Consultants' Meeting on Delayed Neutron Properties, Vienna, March 1979, INDC (NDS)-107/G + Special

INDIA

	Laboratory & Address		Radiochemistry Division Bhabha Atomic Research Centre Trombay, Bombay 400 085.
1.	Names (same as INDC(NDS)-102)		: S.A. Chitambar, S.N. Acharya H.C. Jain, C.K. Mathews and M.V. Ramaniah.
	Facilities		: CH-5 Mass spectrometer with thermoienic source assembly.
	Experiment		: Determination of fission yield in thermal neutron induced fission of 233U, 235U, 239pu and 241pu.
	Mathod		Fission yields in thermal neutron induced fission of 233U, 235U, 239Pu and 241Pu have been determined for about 20 mass nos.in each of the fissioning system by employing mass spectrometric techniques for the determination of relative yields.
	Accuracy		: About 2-3 percent for asymmetric masses.
	Completion date		: March 1980.
2.	Names (same as INDC(NDS)-102)	1	S.B. Manehar, P.P. Venkatesan, S.M. Deshmukh Setya Prakash and M.V. Ramaniah
	Facilities	2	High Resolution Go(Li) gamma spectrometric system, beta proportional counters and low back ground counters.
	Experiment	1	Determination of fission yield in the neutron induced fission of ²³² U.
	Nethed	8	232 Fiseion yields in neutron fiseion of were determined employing direct counting of catchers on Ge(Li) as well as using redischemical techniques. Yields wers determined by comparison method using 235U and 99Mo as internal standard.
	Accuracy	2	About 4-8% for asymmetric masses
			12-15% for symmetric maesee
	Completion dete	1	Already completed
	Publications	1	Phys.Rev. C 19, 1827 (May 1979)

INDIA

(cont'd)

3.	Names (new)	:	T. Datta, S.P. Dange, S.B. Manohar, A.G.C. Nair, Satya Prakash and M.V. Ramaniah
	Facilities	:	1. Ge(Li) detector with 4 K Multi channel enalyser
			2. Class A Radiochemical laboratory
	Experiment	:	Charge distribution in the thermal neutron induced fission of ²⁴⁵ Cm : Fractional cumulative yields of ¹ 35I and 1408a
	Method	:	Fractional cumulative yields of I and Ba have been determined by counting catcher foil directly over Ge(Li).
	Accuracy	:	<u>+</u> 1-2%.
	Completion date	1	March 1979
	Discrepancies to other reported data	:	Significant discrepancy exists between FCY walue of ¹³⁵ I determined by us compared to value reported by R.M. Harbour, D.E. Troutner and K.W. MacMurdo, Phys. Rev. C-10, 769 (1979)
	Publications	:	Phys. Rev. C. 21(1), 1411 (1980)
4.	Names (new)	А. М.	"Ramaswami, S.P. Dange, Satya Prakash and "V. Ramaniah
	Facilities	1.	, Ge(Li) detector with multichannel analyser
		2.	. Beta proportional counters, low background beta proportional counter
		3.	. Class A Radioactive laboratory
	Experiment	ዋቀ	245 Ass Yield from Thermal Neutron Induced fission of Cm
	Method	1	Fisaion yields in thermal neutron induced fission of ²⁴⁵ Cm determined using comparison method using 99Mo as internal standard. Countings were dons either of catcher foils directly on Ge(Li) or using Ge(Li) and beta counters after rediochemical separation.

INDIA

(cont'd)

- Completion date: October 1978Accuracy: <u>+</u> 5-10% for asymmetric fission product<u>+</u> 10-15% for symmetric fission product
 - Discrepancies to other reported data : Our data is, in general, in good agreement with values published by Harbour and Mac Murdo (J. Inorg. Nucl. Chem. <u>24</u>, 2109 (1972) but not in good agreement with values of Von Gunten et al (Phys. Rev. <u>161</u>, 1192 (1967).
- Publications : The work has been published in J. Inorg. Nucl. Chem. <u>41</u>, 1649 (1979)
- 5. NAMES : A. Ramaswami, V. Natarajan, B.K. Srivastava (update) and R.H. Iyer

Facilities : 60 c.c. Ge(Li), 4 K Analyser

- Experiment : Absolute yields of the fission products in the neutron induced fission of ²³²Th and ²³³U
- Method : Track etch cum gamma ray spectrometry. The total no. of fissions are obtained from the track registered in a mice detector while the fission product activity was measured using a pre-calibrated 60 c.c Ge(Li) coupled to a 4096 channel analyser.

Accuracy : ± 5%

Completion date : Completed

- Discrepancies to : In general yield values are higher than the other reported quoted value by Meek and Rider data
- Publications A part of this work has been presented in the "Nuclear Physics and Solid State Physics Symposium" held at Madres, December 1979. Results from last years entry on fission yields from ²³⁵U and ²³⁹Pu (completed) were published in J. Inorg. Nucl. Chem. <u>41</u>, 1531 (Nov. 1979)

- 31 -

<u>Italy</u>

(revised; previously under E.E.C. Belgium, see p.2 of INDC(NDS)-102)

Laboratory and address :	Laboratorio Dati Nucleari CNEN, via Mazzini 2 40138 Bologna, Italy
Names:	C. Coceva, P. Giacobbe, M. Magnani
Facility:	Neutron time-of-flight spectrometers at the CBNM Euratom electron Linac, Geel, Belgium
Experiment:	96 Zr resonance parameters by neutron total cross section measurement
Method:	Zr O, enriched samples. Enrichment from 61 to 85 percent
	Pulse width 22 ns. Flight path 100 m. Resolution $\Delta T/T \sim 5x 10^{-4}$
	Energy range 150 eV-130 keV. Analysis below 40 keV
	Detector: 1.5 cm ¹⁰ B plug viewed by two 10x10 cm NaI(T [£]) crystals
	Shape analysis by computing programme treating simultaneously several spectra with different thickness and enrichment. Exact shape of the resolution function introduced
Results and accuracy:	E_r , J, II, $g\Gamma_n$ for 14 resonances. Γ_γ for the E_r =301 eV resonance
I	Errors on $g_n^r < 7\%$ except for one resonance
Completion date:	August 1979
Discrepancies with other reported data:	g_{n}^{Γ} values, systematically higher than reported by other laboratories
Publication:	C. Coceva, P. Giacobbe, M. Magnani, "Resonance Parameters of ⁹⁶ Zr below 40 keV", Proceedings of the International Conference on Nuclear Cross Sections and Technology, Knoxville, October 1979

- 33 -

ITALY

- Laboratory and Address : Istituto di Ingegneria Nucleare Politecnico di Milano Via Ponzio 34/3 20133 MILANO,ITALY
 - * ENEL-Centro di Ricerca Termica e Nucleare Bastioni Porta Volta 10 20121 MILANO,ITALY

Names : A.Cesana, G.Sandrelli⁺, V.Sangiust, M.Terrani

- Facilities: L54 reactor, neutron long counter, high resolution Ge-Li detector.
- Experiment : Absolute total yields of delayed neutrons in the fission $of^{233}U$, ^{237}Np , $^{238/240/241}Pu$, ^{241}Am .

(work performed under contract CRTN/33-ENEL)

Method : The samples were few milligrams of highly enriched isotopes(oxides) encapsulated in stainless steel or zircaloy vials. Their characteristics were as follows:

Target	mass	impurities
233 237 ⁰	(mg) 3.35	222
238 ^{Np} 238 ^{Pu}	30.2 2.82	$234_{U(5\%)}^{===}, 237_{Np(1.2\%)}^{239}, Pu(0.7\%), 240_{Pu(1\%)}^{240}$
240 _{Pu}	4.6	²³⁹ Pu(1%), ²⁴¹ Pu(0.5%), ²⁴² Pu(0.7%),
241 _{Du}	1 5 4	$\frac{241}{\text{Am}(0.2\%)} = 239_{\text{Div}(0.1\%)} = 240_{\text{Div}(0.2\%)}$
Pu	1.04	²⁴¹ Am(21%)
241 _{Am}	5.36	$237_{Np}(2\$), 239_{Pu}(0.8\$)$

Samples were irradiated in a B_4C filtered flux at the edge of L54 reactor core (1). After irradiation they were transferred pneumatically to the neutron counter and delayed neutron decay was followed with a 100 channel multiscaler. The neutron efficiency was measured by counting the delayed neutron emission from a^{235} U target for which the fission rate in the irradiation position had been accurately determined. The fission rates in all the samples were determined by measuring with a high resolution Ge-Li detector the absolute activities of some fission products: ¹⁰³Ru,¹³¹I and ¹⁴⁰La. Fission yields were derived from ref. (2). Both delayed neutron intensities and fission product activities were corrected for the presence of impurities. The samples transfer time was about 0.6 sec, so that halflives of less than 0.5 sec could not be seen. The delayed neutron decay curves were approximated by five groups (with half lives of about 55,22,6,2,0.5 sec) using a least square unfolding technique. Total delayed neutron yields were obtained as a sum of the yields of the groups listed above and the yield of a sixth group(with half life of about 0.2 sec) obtained by an empirical correlation(3) between the yields and the values of Z and A of each fissioning nuclide; for the determination of the fitting parameters the yields reported in ref.(3) were used. The results are listed below and compared, when possible with the values reported in the literature.

	ITAL	Y	
(cont	'd)

Accuracy: Errors are quoted in the second column of the table below. They are intended as standard errors $(+ 1 \sigma)$ and are obtained combining in the usual way the errors on the neutron intensities with those on the fission rates in the samples.

Completion date: Completed

Publications: to be published

Results:

Nuclide	total de	layed neutron	yield
	present work	ref. (3)	ref. (4)
233 _U	0.00779 <u>+</u> 0.00026	0.00698 ± 0.00013	0.0074 <u>+</u> 0.0004
237 _{Np}	0.0122 <u>+</u> 0.0002		
238 _{Pu}	0.00406 <u>+</u> 0.00015	0.00456 <u>+</u> 0.00051	
240 _{Pu}	0.0091 <u>+</u> 0.0003	0.0096 ± 0.0011	0.0090 <u>+</u> 0.0009
241 _{Pu}	0.0160 <u>+</u> 0.0007	0.0160 ± 0.0016	0.0157 <u>+</u> 0.0015
241 _{Am}	0.00394 ± 0.00015		

References:

1) P. Barbucci et al., En. Nucleare, <u>26</u>, 11, (1979), 542.
2) B.F. Rider, NEDO-12154-3(A), (1979).
3) R.J. Tuttle, Nucl. Sci. Eng. <u>56</u>, (1975), 37.
4) S.A. Cox, ANL/NDM-5, (1974).

Laboratory and address:	Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Names:	Kazuaki NISHIMURA, Sigeru OGAWA and Toshio TSUTIYA
Facilities:	JRR-3 (Japan Research Reactor No.3), and a 50 cc coaxial type Ge(li) detector.
Experiment:	Reactor neutron capture cross section of $60.3-day$ ¹²⁴ Sb.
Me thod:	The radioactive nuclides $124 \operatorname{Sb}(T_{1/2}=60.3 \text{ d})$ and $125 \operatorname{Sb}(T_{1/2}=2.77 \text{ yr})$ were produced from natural antimony by JRR-3 reactor irradiation of 283.5 h through the single and double neutron capture processes. After cooling of 3.50 yr, the γ -ray spectrum of the antimony sample irradiated was meausred by a 50 cc coaxial type Ge(li) detector, and the photo-peak yield ratio of $125 \operatorname{Sb}(E_{\gamma}=428 \text{ keV})$ to $124 \operatorname{Sb}(E_{\gamma}=1.691 \text{ MeV})$ was obtained. By using a relation between this photo-peak yield ratio and the $124 \operatorname{Sb}(n,\gamma) 125 \operatorname{Sb}$ cross section, the reactor neutron capture cross section of 60.3 -day $124 \operatorname{Sb}$ was obtained.
Accuracy:	$\sigma(n,\gamma)$ of ¹²⁴ Sb = 17.4 $\pm 2.8 \\ 2.5$ barns
Completion date:	February, 1979
Discrepancies to other	2,000 barns: Murin et al.(1)
reported data:	6.5 \pm 1.5 barns: Courtemanche et al. (2) 2,990 \pm 260 barns: Elgart ⁽³⁾
Publication:	K. Nishimura, S. Ogawa and T. Tsutiya: Journal of Nuclear Science and Technology, <u>16</u> , 546 (1979).
References:	 (1) Murin et al.: J. Nucl. Energy, <u>7</u>, 265 (1957) (2) Courtemanche et al.: Can. J. Phys., <u>44</u> 2956 (1966) (3) Elgart: DA/B 32, 3245 (1971)

Labo	orat	ory	and address:	Nuclear Physics II Japan Atomic Energy Tokai-mura, Naka-gu	Laboratory, ⁄Research Institute, ın, Ibaraki-ken, Japan.
Name	e:			A. Asami, Y. Nakaji Y. Kawarasaki, Y. F M. Sugimoto (Tohoku Y. Kanda, N. Ohnish	ma, M. Mizumoto, M. Ohkubo, Turuta (JAERI) u Univ.) ni (Kyushu Univ.)
Fac	ilit	ies		Neutron time-of-fli 120 MeV linac (mini	ght spectrometers at the mum pulse width 30 nsec)
1. <u>I</u>	Expe	rime	ent	Neutron Capture Cro keV region.	oss Section Measurements in the
١	Meth	od [Detector:	3500 l liquid scint ⁶ Li-glass and ¹⁰ B-N and transmission me	cillator tank for capture yield WaI detectors for neutron flux easurements.
		F	light path:	52 m for capture me 56 m for flux and t	easurements. cransmission measurements.
		١	Normalization:	Saturated resonance	e method.
((1)	Samp	oles:	143,145,146, ¹⁴⁸ Nd, isotope, Nd ₂ O ₃ in c	enriched to over 91 % for each chemical form, loaned from ORNL.
		Ē	Energy region:		5 to 300 kev.
		ŀ	Accuracy:		8 to 30 %.
		E	Expected comple	etion date:	Oct. 1980.
		Publ	ication:	Y. Nakajima et al. measurements of Nd- Int. Conf. on Neutr Harwell, 1978, p438	, Neutron capture cross section 143, Nd-145, Nd-146 and Nd-148, on Physic and Nuclear Data,
((2)	Samp	oles:	¹⁴⁷ Sm, ¹⁴⁹ Sm (enric resp e ctively.)	hed to 98.34 and 97.72 %,
		E	Energy region:		3.3 to 300 keV.
		F	Accuracy:		5 to 15 %.
		E	Expected comple	etion date:	May. 1980.
		Publ	ication:	M. Mizumoto et al., Transmission Measur Conf. on Nuclear Cr Knoxvill e (1979)	Neutron Radiative Capture and rements of ¹⁴⁷ Sm and ¹⁴⁹ Sm. Int. ross Sections for Technology,

<u>JAPAN</u>

(cont'd)

	(3)	Samples:	Eu, 151 Eu and 153 Eu 98.76 % respectivel	(enriched to 96.83 and y)
		Energy region:		3 to 100 keV.
		Accuracy:		5 to 13 %.
		Completion dat	e:	Sep. 1979.
		Publications:	M. Mizumoto et al., Sections of ¹⁵¹ Eu a J. Nucl. Sci. Techn	Average Neutron Capture Cross nd ¹⁵³ Eu from 3 to 100 KeV ol. 16 (1979) 711.
			N. Yamamuro and A. cross sections in t Meeting on Neutron Product Nuclei, CNE	Asami, Measurements of capture he FP region, NEANDC Specialist Cross Sections of Fission N, Blolgna Italy (1979)
2.	Exp	eriment:	Neutron resonance p	arameters.
	2-1	Method:	A ⁶ Li-glass neutron detector at 47 m fl	detector and a Moxon-Rae ight path.
		Analysis:	Atta-Harvey code ar	d Monte Carlo code CAFIT.
	(1)	Samples:	⁷⁹ Br, ⁸¹ Br.	
		Results:	Isotopic Identifica Resonance Parameter ⁷⁹ Br ⁸¹ Br Strength functions,	tion. s 156 levels below 10 KeV. 100 levels below 15 KeV. Average level spacings.
		Publication:	M. Ohkubo. Y. Kawar Resonance Parameter KeV. Presented to t Section s for Technol	rasaki and M. Mizumoto. Neutron rs of ⁷⁹ Br and ⁸¹ Br up to 15 the Int. Conf. Nuclear Cross ogy, Knoxville (1979), BB10.
	2-2	Method:	3500 l liquid scint yield. ⁶ Li-glass ar flux and transmissi analyzed with a mul Atta-Harvey and GAC	tillator tank for capture d ¹⁰ B-NaI detectors for neutron on measurements. Data are tilevel Breit-Wigner code S10B, A area aralysis codes.
		Flight path:	52 m for capture ex 56 m for transmissi	on experiments.
	(2)	Samp les:	¹⁴⁷ Sm and ¹⁴⁹ Sm (er respectively.)	nriched to 98.34 and 97.72 %,
		Energy region:		1.5–1200 eV for ¹⁴⁷ Sm. 1.5–520 eV for ¹⁴⁹ Sm.
		Expected compl	etion date:	May. 1980.

(cont'd)

Publication:	M. Mizumoto et al., Neutron Radiative Capture and Transmission Measurements of ¹⁴⁷ Sm and ¹⁴⁹ Sm. Int. Conf. on Nuclear Cross Sections for Technology, Knoxville (1979)
(3) Sample:	La
Status:	Total radiation widths were obtained by the code TACASI for the s-wave resonances below 2.5 keV and the analysis for p- wave resonances is in progress.
Expected comp	letion date: Oct. 1980.

<u>JAFAN</u>

Laboratory and address:	Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Names:	Tomota Nishi, Ichiro Fujiwara and Nobutsugu Imanishi
Facilities:	5 MW research reactor [Research Reactor Institute, Kyoto University]
Experiment:	Cumulative and independent fission-yields of some fission products in the thermal-neutron induced fission of 233 U, 235 U and 239 Pu.
Method:	Radiochemical for fission yields; Instrumental with GeLi detectors.
Accuracy:	Errors range from 7% to 20% with different combinations of the fission products and the fissile isotopes.
[Expected] comple	etion date:)
Publication:) See lable l

Table I

Nuclides		Completion date	Publication
^{128,130,132} Sn, ¹³³ Sb [Cum.] ^{128,130,132} Sb ^m ,g, ¹³¹ Sb, ^{131,133} Te ^{m,g} [Ind.]		Sep. 1975	N.Imanishi, I.Fujiwara and T.Nishi, Nucl. Phys. <u>A263</u> , 141(1976)
135 _I 131,133 _I , 132,134,136 _m ,g I	[Cum.] [Ind.]	Dec. 1976	T.Nishi, I.Fujiwara and N.Imanishi, Inter. Conf. on Nucl Structure,Tokyo, Sep. 1977 *)
133,135 _{Xe} m,g	[Ind.]	Dec. 1976	ibid. *)
138 _{Cs} m,g	[Ind.]	May. 1978	*)
90 _{Rb} ^m ,g	[Ind.]	End of 1981	
148 _{Pm} m,g	[Ind.]	End of 1981	

*) Final data to be published soon

- 39 -

	Laboratory and address:	Laboratory of Nuclear Radiation Institute of Chemical Research Kyoto University Yoshida, Sakyoku Kyoto 606, Japan
1.	Names:	H. Mazaki, S. Kakiuchi, T. Mukoyama and M. Matsui
	Experiment:	Effect of chemical state on the decay constant of Tc-99m
	Method:	Differential method
	Accuracy and result:	$\frac{\lambda(\text{Te}0_4^-) - \lambda(\text{Te}_2\text{S}_7)}{\lambda(\text{Te}_2\text{S}_7)} = (31.8 \pm 0.7) \times 10^{-4}$
		$\frac{\lambda(\text{Tc}_2\text{S}_7) - \lambda(\text{metal})}{\lambda(\text{metal})} = (5.6 \pm 0.3) \times 10^{-4}$
	Completion date:	April 1979
	Publication:	Phys. Rev. <u>C21</u> (1980) 344
2.	Names:	S. Kakiuchi, H. Mazaki, R. Katano, S. Shimizu and R. Sellam
	Experiment:	Effect of superconductivity on the decay constant of Tc-99m
	Mehtod:	Differential method
	Accuracy and result:	λ (superconducting) - λ (normal)
		$\lambda (\text{normal}) = (0.2 \pm 0.5) \times 10^{-1}$
	Completion date:	August 1978
	Publication:	Nucl. Instr. Meth. <u>158</u> (1979) 435

Laboratory : 1. Department of Nuclear Engineering,	
Nagoya University	
2. Institute for Atomic Energy, Rikkyo Uni	iversity
Address : 1. Furo-cho, Chikusa, Nagoya, Japan	
2. Nagasaka, Yokosuka, Kanagawa, Japan	
Names : Y. Ikeda $^{1)}$, H. Yamamoto $^{1)}$, K. Kawade $^{1)}$, T. Kato	oh ¹⁾ and
T. Nagahara ²⁾	
Facilities : TRIGA-II reactor of Rikkyo University, Pne	eumatic
transport system, Apparatus for electropho	oresis,
Ge(Li) detector, plastic detector, 4096-cl	nannel
pulse height analyzer	
Experiment : Decay property of ¹⁴⁴ La	
Method : By using the rapid paper electrophoretic metho	od, sources
of 144 La was separated from fission products α	of ²³⁵ U
irradiated at the TRIGA-II reactor. Energies	and
intensities of $\gamma\text{-ray}\text{, }Q_{\beta}^{}$ value of $\beta\text{-ray}\text{ and a}$	half-life
of 144 La were measured and a decay scheme was	proposed
Accuracy : Less than 0.6 keV for gamma-ray lower than 3	2052.5 keV,
40.6 ± 1.0 sec for half-life, 4.3 ± 0.1 MeV for	or Q value.
Completion date : May 1, 1979	
Discrepancy to other reported data : Seventeen new gamm	ma-rays were
detected, 11 new levels of 144 Ce were propos	sed. The
Q_{β} value was confirmed.	
Publication : This work is reported in J. Phys. Soc. Ja	apan
Vol. 47, p. 1389 (1979)	

(cont'd)

Laboratory : 1. Department of Nuclear Engineering,
Nagoya University
2. Institute for Atomic Energy, Rikkyo University
Address : 1. Furo-cho, Chikusa, Nagoya, Japan
2. Nagasaka, Yokosuka, Kanagawa, Japan
Names : Y. Ikeda ¹⁾ , H. Yamamoto ¹⁾ , K. Kawade ¹⁾ , T. Katoh ¹⁾ and
T. Nagahara ²⁾
Facilities : TRIGA-II reactor of Rikkyo University, Pneumatic
transport system, Apparatus for electrophoresis,
Ge(Li) detector, plastic detector, 4096-channel
pulse height analyzer
Experiment : Decay property of ¹⁴⁸ Pr isomers
Method : By using the rapid paper electrophoretic method, sources of 148 Pr was separated from fission products of 235 U
irradiated at the TRIGA- Π reactor. Energies and
intensities of γ -rays, Q $_{\beta}$ value of β -ray and half-lives
of 148 Pr isomers were measured and decay schemes were
proposed.
Accuracy : Less than 0.6 keV for gamma-ray energy, 2.27 ± 0.04 and
2.0 \pm 0.1 min for half-lives, 4.8 \pm 0.2 MeV for Q _β
value.
Completion date : March 14, 1979
Discrepancies to other reported data : Existence of $^{ m 148}$ Pr isomers
became clear, 6 new levels of 148 Nd were proposed.

Publication : This work is reported in J. Phys. Soc. Japan

Vol. 47, p. 1039 (1979)

Laboratory and address:	Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
	2-12-1, O-okayama, Meguro-ku, Tokyo
Names:	N. Yamamuro, M. Igashira, T. Sekiya (TIT) Y. Fujita, K. Kobayashi (Research Reactor Institute, Kyoto University)
Facilities:	46-MeV Electron Linear Accelerator (Research Reactor Institute, Kyoto University)
Experiment:	Capture Cross Section Measurements of 133 Cs from 3 to 270-keV using time-of-flight method
Method:	Gamma-rays from the neutron capture processes were detected by a pair of C_6D_6 liquid scintillation detectors. Neutron flux impinging on the sample was measured by ${}^{10}B$ (93%) disk placed at the sample position. The absolute value of cross section was determined by normalizing to the 24-keV cross section measured with Fe-filtered method. Corrections for self-shielding and multiple scattering were performed using resonance parameters.
Accuracy:	Error of absolute cross section at 24-keV is about 5% Statistical error of measured cross sections is 2 to 4%
(Expected) Completion Date:	Sept., 1980 for ¹³³ Cs
Publications:	 N. Yamamuro et al., J. Nucl. Sci. Technol. <u>15</u> 637 (1978) N. Yamamuro et al., Proc. Inter. Conf. Neutron Physics and Nuclear Data for Reactors and other Applied Purposes AERE Harwell Sept., 1978, page 432 *) N. Yamamuro, A. Asami, NEANDC Specialists' meeting on neutron cross sections of fission product nuclei, CNEN Bologna Dec. 1979 *)

*) Including 93Nb and ¹²⁷I from 3.2 to 80 keV (see INDC(NDS)-102, page 22). Final results of these 2 nuclides will be published in J.At.En.Soc. of Japan.

JAPAN

Laboratory and adress:	Nuclear Engineering Research Laboratory Faculty of Engineering University of Tokyo 2-22 Shirane Shirakata, Tokai-mura Naka-gun Ibaraki, Japan
Names:	M. Akiyama and S. An
Facilities:	Fast Neutron Source Reactor "YAYOI"
Experiment:	Fission Product Decay Heat for Fast-Neutron Fission of ²³⁵ U, ²³⁸ U, ²³⁹ Pu and ²³² Th for cooling Times

of 20 to 24000 seconds.

Method: Samples have been irradiated for short periods with fast neutrons, and returned pneumatically to a counting area. Gamma-ray energy spectra have been measured using NaI detector and beta-ray energy spectra have been obtained using plastic scintillation detector combined with $\Delta E/\Delta x$ type proportional counter to eliminate gamma-ray effects. Counting times have been chosen to provide good statistics within the time range of interest. Total energy release rates for beta and gamma-rays have been obtained to integrated beta and gamma-energy spectra respectively and summed to obtain the fission product decay heat.

Accuracy: 5% to 10% (1σ)

(Expected) Completion Measurements of gamma-ray energy release rates are Dat : finished, and we plan to start writing a report for publication soon. Measurements of beta-ray decay heat will be completed by end of 1980.

Discrepancies to other	Data of gamma-ray energy release rates are in	
Reported Data :	reasonable agreement with results of summatio	n
	calculations.	

ROMANIA

Laboratory and address:	Institute of Nuclear Power Reactors Section 1 7000 Bucharest, P.O.B. 5204, Romania
Names:	I. Garlea, C. Miron
Facility:	$\Sigma \Sigma$ -IRNE system
Experiment:	Integral neutron cross section for $109 \text{Ag}(n,\gamma)^{110\text{m}}\text{Ag}$ in $\Sigma\Sigma$ -spectrum. The absolute 109Ag capture cross section measured in $\Sigma\Sigma$ -spectrum is 24.3 ± 1.0 mb.
Method:	Target: Ag foils, purity: 99.98%, diameter: 20mm, thickness: 135 mg/cm ² . The samples have been exposed in the $\Sigma\Sigma$ -facility centre, at fluences about 10 ¹⁵ n/cm ² . The flux monitoring was performed by fission chambers, type Saclay. Monitor: ²³⁵ U(n,f) cross section in $\Sigma\Sigma$ - spectrum: 1512 ± 53 mb. Absolute measurements have been performed by high resolution Ge(Li) spectrometry (crystal: 100 cm ³). The absolute efficiency was determined by means of a 15 ² Eu gamma source supplied by PTB-Braunschweig, FRG. The measured value was not corrected for neutron self- shielding in the $\Sigma\Sigma$ -spectrum. The absolute gamma activity was obtained by using the SAMPO code.
Accuracy:	 The absolute efficiency calibration error was 2.0% Error in flux monitoring 1.0% Statistical error 0.5%
Completion date:	Completed
Publication:	I. Garlea, C. Miron, F. Popa, Revue Roumaine de Physique, Tome 25, No. 2, 1980, p. 107-110.

- 46 -

SWEDEN

Laboratories:	Department of Nuclear Chemistry Chalmers University of Technology S-412 96 GÖTEBORG Sweden	
	Department of Nuclear Chemistry University of Oslo Oslo 3 Norway	
	Institut für Kernchemie Johannes Gutenberg Universität Postfach 3980 D-6500 MAINZ Germany	
Names:	The SISAK Collaboration:	
	G. Skarnemark and K. Brodén (Göteborg)	
	D. Eriksen (Oslo)	
	N. Kaffrell and N. Trautmann (Mainz)	
Facilities:	SISAK system for studies of radionuclides with half-lives >0.5 s	
Experiments:	$T_{1/2}^{-determinations}$, γ -singles, γ - γ coincidence	
	and γ - γ angular correlation measurements	
Method:	Fast chemical on-line separations. The measuremants are carried out on flow cells or ion exchange columns. Ge(Li)-detectors are used.	
Publications:	1) The Decay of 107 Tc to Levels in 107 Ru.	
	Radiochim. Acta <u>26</u> , 127 (1979)	
	2) Levels in 106 Ru and 108 Ru	
	Nucl. Phys. <u>A339</u> , 74 (1980)	

SWE DEN

Laboratory and address:	The Studsvik Science Research Laboratory S-611 82 Nyköping, Sweden.
Facility:	The OSIRIS on-line mass separator is used to extract selected nuclei from thermally fissioned 235U. The extraction method has been extended in the sense that Al or CF ₄ is added to the ion source to facilitate separation of halogenes or lanthanides, respectively.
1. Names:	K Aleklett, P Hoff, E Lund and G Rudstam
Experiment:	Delayed neutron emission probabilities, P_n -values, have in 1979 been deduced for the following precursors: $89-91_{Br}$, $139-141_{I}$.
Method:	Simultaneous measurement of neutron and beta ac- tivities in a multiscaling mode. Neutron counter consisting of 29 ³ He counters imbedded in paraffine, beta counter being a 2 mm plastic scintillator. Separation as AlBr ⁺ and AlI ⁺ molecular ions. The P_n -values have been determined with an accuracy of 5 - 10 %.
Completion	
date:	Indefinite for the P _n studies as such
Publications:	K Aleklett, P Hoff, E Lund and G Rudstam: Delayed neutron emission probabilities of the precursors ^{89,90,91} Br and ^{139,140,141} I, Z Physik A (in print). E Lund, P Hoff, K Aleklett, O Glomset and G Rudstam:
	Z Physik <u>A294</u> (1980) 233. *)
2. Names:	K Aleklett, P Hoff, E Lund and G Rudstam
Experiment:	Characterization of and P_n values for delayed neutron precursors of yttrium and lanthanides.
Method:	Detection as described for exp. 1. Separation of fluoride ions with CF_4 addition to the ion-source.
Completion date:	Indefinite
3. Names:	K Aleklett, E Lund and G Rudstam
Experiment:	Total beta decay energies and atomic masses have been deduced for the following nuclides during 1979: 139,140I, 89,90Br. The evaluation of the experiments is still in an early stage.
Method:	Beta particles were recorded in coincidence with gamma rays depopulating known levels in the daughter nucleus. The end-point energies of the beta- spectra were determined, and by adding the level energy the total beta-decay energies were obtained.
*) Pn-values for precurs improved half-lives	sors: $79-83_{\text{Ga}}$, $87-89_{\text{Br}}$, $92-96_{\text{Rb}}$, $127-132_{\text{In}}$ $134,135_{\text{Sb}}$, $137-139_{\text{I and}}$ $141-145_{\text{Cs}}$. for : $127,129,132_{\text{In}}$

SWEDEN

(cont'd)

	The beta-particles were recorded in a Si(Li) de- tector and the gamma-rays in a Ge(Li) detector or two NaI(Tl) crystals. In the future the expe- rimental arrangement will be improved by using two Ge(Li) detectors for the gamma registration.
Completion date:	Indefinite for the experiment as such.
Publication:	K Aleklett, E Lund and G Rudstam: Total beta-decay energies and masses of 85-89Br, Z Phys <u>A290</u> (1979) 173.
4. Names:	K Aleklett, P Hoff and E Lund
Experiment:	Nuclear spectroscopic studies of the decays of 139,140 I, 89,90Br. The studies aim at level scheme determinations to be combined with the Q_{β} -studies.
5. Names:	P Hoff, B Fogelberg
Experiment:	Nuclear spectroscopic studies of $^{79-82}$ Ga and $^{79-82}$ Ge.
Completion date:	1980
6. Name:	B Fogelberg
Experiment:	Nuclear spectroscopic studies in the Sn-region. The decays of $127-130$ In have been studied during 1979. Studies also of 87 Br, 137 I.
Publications:	B Fogelberg and P Carlé: Levels and transition pro- babilities in $120-128$ Sn, Nucl Phys <u>A 323</u> (1979) 205. B Fogelberg and H Tovedal: Energy levels in 137 Xe populated in the decay of the delayed neutron pre- cursor 137 I, submitted for publication.
7. Names:	P Aagaard, G Rudstam and H U Zwicky
Experiment:	Determinations of independent fission yields.
Method:	The OSIRIS mass separator is used as a source of separated fission products. It is in principle possible to determine the fission yields of all the separated nuclei, if a function describing the delay between production and collection of fission products can be determined for all the pertinent elements. The studies made up to now have been intended to de- velop the procedure for future measurements, and to study the delay function for selected cases.

Final publication from last year's entry: "Levels of ¹³⁷Xe and ¹³⁸Xe Populated in the β-Decay of ¹³⁸I" P. Hoff, J. inorg. mucl. Chem. <u>41</u> (1979) 1523 "The decay of ⁸⁸Br", P. Hoff, Phys. Scr. <u>21</u>, 129 (1980)

SWEDEN

Laboratory and address:

Department of Nuclear Physics, University of Lund, Sölvegatan 14, 223 62 Lund, Sweden. Names: G. Magnusson, P. Andersson, R. Zorro and I. Bergqwist. Experiment: Neutron capture cross-section measurements. Experimental and theoretical determination of corrections due to background low energy neutrons produced in reactions like (n,n') and (n,2n). <u>Concluded</u>: Measurements at the neutron energy 14.7 ± 0.3 MeV for the nuclei 23 Na, 55 Mn, 89 Y, 127 I, 138 Ba, 186 W and 197 Au. <u>ln_progress</u>: Measurements in the neutron range 1-10 MeV for ¹¹⁵In and 197 Au. Method: The activation technique Accuracy: 10-30% Discrepancies to other reported data: The present results agree well with the results of the spectrum method. Most of previous activation results do not. Publications: G. Magnusson and I. Bergqvist, 14.7 MeV Neutron Capture Cross-Section Measurements with Improved Activation Technique, Nucl. Technol., 34, 114 (1977). G. Magnusson, P. Andersson and I. Bergqvist, 14.7 MeV Neutron Capture Cross-Section Measurements with Activation Technique, Physica Scripta, 21, 21 (1980)

SWITZERLAND

......

Laboratory and address:	Eidg. Institut für Reaktorforschung, CH-5303 Würenlingen, Switzerland	
	Institut für anorganische, analytische und physikalische Chemie, Universität Bern, CH-3012 Bern, Switzerland	
Name:	H.R. von Gunten, H.N. Erten	
Facility:	Swimming-pool type reactor (SAPHIR)	
Experiments:	Determination of independent and cumulative yields in the fission of ²³² Th, ²³³ U, ²³⁵ U, ²³⁹ Pu, and other nuclides	
	Absolute yields in reactor neutron fission of ²³² Th	
Method:	Absolute fission counting Radiochemical and instrumental (GeLi)	
Accuracy:	5 -10 %	
Measurements completed:	<pre>148Pm: completed 232Th: completion date 1981</pre>	
Publications:	H.U. Zwicky and H.R. von Gunten Independent yields of ^{148m} Pm and ¹⁴⁸⁹ Pm in the thermal-neutron-induced fission of ²³³ U and ²³⁹ Pu Radiochimica Acta, in press	
Laboratory and Address	AERE Harwell	UKAEA, AERE. Harwell, Oxfordshire OX11 ORA U.K.
---------------------------	---	--
Names:	J.G. Cuninghame, H.H. Wil	lis
Facilities:	ZEBRA - BIZET	
Experiment:	To measure the effect of neutron spectrum on fissi	change of reactor on yields.
Method:	Four irradiations, each or ²³⁸ U and two ²³⁹ Pu metal 100mg. weight have been m the inner breeder island outer core. One of the of the fissile materials directly on a calibrated while the other was disso prepare purified samples products of very low yiel As, Ag, Cd, Sn, Sb and Ra The irradiations are comp data are being assessed.	f two ²³⁵ U, two beads of approx. ade; two were in and two in the samples of each was counted Ge(Li) detector, lived and used to of certain fission d, viz. are Earths.
Accuracy:	Expected ± 10%	
Completion date:	Expected end 1980	

- 52 -

UNITED KINGDOM

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire, OX11 ORA
Names:	I.C. McKean and E.A.C. Crouch	
Experiment:	³ H yield in thermal and fast fis U and Pu isotopes	sion spectra for
Facilities:	GLEEP and 'ZEBRA' Reactors	
Method:	The tritium produced in fission tritiated water, separated from oproducts and measured by liquid counting. A preliminary experime completed in which solutions of irradiated in a thermal flux. S irradiated in GLEEP (235U + 239p in ZEBRA (235U + 239pu metal) an Samples of 240pu and 241pu have further experiments.	is converted to other fission scintillation ent has been ²³⁵ U were amples have been u in solution) and d await analysis. been obtained for
Accurac y:	+ 10%	

- 53 -

UNITED KINGDOM

(same as in INDC(NDS)-102, except for completion date)

Laboratory and Address:	DNPDE	Dounreay Nuclear Power Development Establishment, UKAEA, Northern Division, Thurso, Caithness, Scotland KW14 7TZ
Names:	W. Davies, V.M. Sinclair	
Facilities:	PFR	
Experiment:	The measurement of the ab 144_{Ce} , 143 , 145 , 146 , 148 , 15 products, from the fission and ^{241}Pu	solute yields of ⁹⁰ Sr, 137Cs, ^O Nd and perhaps other fission n of ²³⁵ U, ²³⁶ U, ²³⁹ Pu, ²⁴⁰ Pu
	In progress	
Method:	Twelve sealed stainless s irradiated. Of these,	teel capsules are to be
	3 capsules contain ²³⁵ U a dioxide, 3 capsules contain ²³⁹ Pu plutonium dioxide, 2 capsules contain ²³⁸ U a with an isotopic analysis 1 capsule contains ²⁴⁰ Pu of plutonium with an isot 1 capsule contains ²⁴¹ Pu of plutonium with an isot 2 capsules contain no add The ²³⁵ U and ²³⁹ Pu capsul powder mixed with the fis heat transfer reasons. It is expected that the ²	as highly enriched uranium as low ²⁴⁰ Pu content as depleted uranium dioxide of 99.7% ²³⁰ U, as a dried aqueous solution opic analysis of 99% ²⁴⁰ Pu, as a dried aqueous solution opic analysis of 93% ²⁴¹ Pu, and ded fissile material. es contain stainless-steel sile material dioxide for
	receive irradiation corre up of the fissile materia 0.7% burn-up, the ²⁴⁰ Pu c and the ²⁴¹ Pu capsule to	sponding to about 16% burn- 1, the ²³⁸ U capsule to about apsule to about 4% burn-up about 23% burn-up.
	A set of capsules identic except for irradiation in and analysed alongside th being to improve the reli	al to the irradiated set a the reactor will be dis solved a irradiated set, the objective ability of the analyses.
	The aim is to correlate l irradiation with the amou formed, for each capsule, absolute measurements of obtained.	oss of fissile material during ints of fission products (except ²³⁰ U) to enable fission yields to be
Accuracy:	⁺ 2% for 235U and 23 ⁺ 6% for 238U, 240Pu	39Pu fission yields 1 and ²⁴¹ Pu fission yields

Expected completion date: | 1982

Laboratory and address:	Birmingham Radiation Centre	University of Birmingham P.O. Box 363 Birmingham B15 2TT United Kingdom
Names:	J.G. Owen, J. Walker, D.R. Weave	er
Facilities:	3MV Dynamitron accelerator (Birmin Tandem Van de Graaff and IBIS (Harv	ngham) and the well)
Experiments:	Delayed neutron spectrum measureme monoenergetic fast neutron induced and ²³⁹ Pu	ents following d fission in ²³⁵ U
	Spectrum measurement of an Am/Li s by the March 1979 Vienna Consultar Delayed Neutron Properties	source as recommended nts' Meeting on
Method:	³ He spectrometers; for delayed ne cyclic irradiation and counting to equilibrium contributions from all groups	eutron measurements o give near- l delayed neutron
Accuracy:	A full covariance matrix is being	calculated
Publication:	A paper describing the Am/Li measu of obtaining the covariance matrix	rement and the method k is in preparation

Laboratory and address	:	University of London Reactor Centre, Silwood Park, Ascot, Berkshire, SL5 7PY, England.
Names	:	J.B. Olomo, T.D. Mac Mahon
Facilities	:	$4\pi\beta-\gamma$ coincidence system, Ge(Li) detectors.
Experiment 1	:	Measurement of half-lives and absolute gamma ray emission probabilities in fission products.
Method	:	Thin sources prepared from solutions of the radioisotope.
		Total disintegration rate measured in $4\pi\beta\text{-}\gamma$ coincidence system.
		Gamma-ray emission rates determined using calibrated Ge(Li) detectors.
		Combination of results gives number of gamma rays emitted per disintegration (P). γ
Accuracy	:	Target accuracy is 1% (lʊ) for P , accuracies achieved within range 0.8 - 1.2%, limited mainly by efficiency calibration of Ge(Li) detectors.
Results	:	¹⁴⁰ La, $t_{\frac{1}{2}} = 40.295 \pm 0.005$ h. P for 6 gamma rays of ¹⁴⁰ Ba and 15 gamma rays of ¹⁴⁰ La have been determined, and are listed in ref. 1, and will be published in open literature.
Discrepancies to other reported data	:	There is good agreement with results of Debertin et al. (2) for most P_{γ} . ¹⁴⁰ La half-life is most precise so far measured.
Experiment 2	:	A measurement of the half-life and thermal neutron cross-section of ¹⁵⁴ Eu is commencing in collabora- tion with Dr. B.W. Hooton, A.E.R.E. Harwell.
Method	:	Two 154 Eu sources have been produced, one by the 154 Sm(p,n) 154 Eu reaction and one by the 153 Eu(n, γ) 154 Eu reaction. Each source has had added to it some 60 Co. The decay of the 154 Eu 1274 keV gamma will be measured relative to the decay of the 60 Co gamma rays.
		The 154 Eu thermal neutron capture cross-section will be determined by measuring the rate of double neutron capture in 153 Eu leading to 155 Eu.
Accuracy	:	It is estimated that the 154 Eu half-life could be determined to within 2% (ls) after 1 year of decay.
Completion date	:	mid-1981.

(cont'd)

Publications	:	J.B. Olomo and T.D. Mac Mahon, "Half-lives of ⁴⁶ Sc and ¹⁴⁰ La", J. Phys. G : Nucl. Phys. 6 (1980) 367-368.
		J.B. Olomo and T.D. Mac Mahon, "Gamma-Ray Emission Probabilities in the Decay of ¹⁴⁴ Ce and ¹⁴⁴ Pr", submitted to Journal of the British Nuclear Energy Society.
References	:	 J.B. Olomo, Thesis, University of London, 1979.
		2. K. Debertin, U. Schotzig, K.F. Walz, Nucl. Sci. & Eng. 64 (1977) 784.

Laboratory and address:	Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 USA
Names:	L. E. Glendenin, J. E. Gindler, J. W. Meadows
Facilities:	Fast-neutron generator facility (FNGF)
Experiment:	Determination of fission yields for mono- energetic neutron-induced fission as a function of incident neutron energy over the range 0.1 to 8 MeV.
Method:	Yields determined (1) radiochemically with either β - or γ -counting (RC) and (2) by γ -counting irradiated foils of fissionable material (γ). Neutrons produced by Li-p or D-d reaction. Flux monitored with fission chamber utilizing as the fission source the same material as that being irradiated. Absolute yields determined from flux mea- surements and/or 200% normalization of mass-yield distribution.
Accuracy:	Yields > 1% determined by γ -counting: 3-5% Yields < 1% determined by γ -counting: 5-20% Yields determined radiochemically with β -counting: 10-20%
Completion date:	Measurements of ²³⁸ U(n,f) for 1.5, 2.0, 3.9, 5.5, 6.9, and 7.7 MeV neutrons (published January 1978). ²³² Th(n,f) completed; sub- mitted to Phys. Rev. C., February 1980. ²³⁵ U(n,f) in progress. Continuing program for other fissile and fertile nuclides.
Publications:	"Mass distributions in monoenergetic-neutron- induced fission of ²³⁸ U" S. Nagy, K. F. Flynn, J. E. Gindler, J. W. Meadows, and L. E. Glendenin, Phys. Rev. <u>C17</u> , 163 (1978).
	"Fission yields for fast-neutron fission of uranium-238", J. E. Gindler, L. E. Glendenin, J. W. Meadows, and K. F. Flynn, Nucl. Sci. Eng. <u>70</u> , 101 (1979).

U. S. A.

Laboratory and address:

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois, 60439 USA

1. Measurement of fast-neutron capture cross sections of fission-product nuclei.

Authors:

W. P. Poenitz

Facilities:

Fast-neutron monoenergetic source capability based upon a tandem accelerator. Large liquid-scintillation detector.

Experiment:

Measurements of the fast-neutron capture cross sections of elemental rhodium, palladium, neodymium, and samarium were carried out in the energy range from 0.5-4.0 MeV. A large liquid scintillator and the time-of-flight technique were used in these measurements. The capture cross section of gold was used as a reference. The capture detection efficiency was in the range of 65-85% and is the major limiting factor for the uncertainty of the data which is $\sim 10-15\%$.

Isotopes of the elements measured in the present work are among the 20 most important fission product nuclei. Data are rare or nonexistent in this energy range and evaluated data sets based upon nuclear model calculations differ substantially, with factors of 5 being common. The present results should provide a useful constraint for the evaluation of these cross sections. Extensive nuclear model calculations were carried out with the nuclear model code ABAREX. Parameter dependence was investigated and it was concluded that optical model parameters are insufficiently established in this mass region due to a lack of accurate total neutorn cross sections and scattering data.

A paper dealing with the above was contributed to the NEANDC Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei held in Bologna, December 12-14, 1979.

<u>U.S.A.</u> (cont'd)

2. Measurement of neutron total cross sections in the fission-product region.

Authors:

W. P. Poenitz, J. Whalen, A. Smith and P. Guenther

Facilities:

Fast-neutron monoenergetic source capability based upon a tandem accelerator.

Experiment:

Accurate total-neutron-cross-section data are needed in the fission product mass region in order to establish reliable optical model parameter sets to be used in nuclear model calculations of capture cross sections. A perusal of existing data reveals a substantial lack of such data and/or the existence of discrepancies. Measurements were carried out in the energy range from 50 keV to 4.5 MeV for Y, Zr, Mo, Cd, Sn, Te, Ag, Nb, Rh, Pd, In, and Sb. These data await corrections for resonance self-shielding and will then be used together with scattering data for establishing optical model parameters.

U. S. A.

Laboratory and address: Argonne National Laboratory Chemistry Division 9700 South Cass Avenue Argonne, Illinois 60439, U.S.A.

Names: A. H. Jaffey, E. P. Steinberg, J. E. Gindler, J. Gray E. P. Horwitz, J. P. Hughes and F. J. Schmitz

EXPERIMENT: BRANCHING FRACTION IN THE RADIOACTIVE DECAY OF ^{85m}Kr

Method:

Two samples of highly enriched ²³⁵U were irradiated, one to 1.7% and the other to 42% burnup. For each sample, the ⁸⁵Kr gas was diluted with a known amount of carrier krypton, extracted, purified, and quantitatively diluted to a level suitable for counting. The ⁸⁵Kr was counted in GM counters whose efficiency was calibrated with a ⁸⁵Kr sample whose absolute counting rate had been measured to \sim 1%. The ⁸⁵Rb content of the dissolver solution was measured by mass spectrometric isotope dilution. The ratio of total ⁸⁵Kr to total ⁸⁵Rb, when corrected for decay of ⁸⁵Kr, yields the branching fraction value 0.2160.

Accuracy:

1% (standard error).

Completion Date:

May, 1979

Discrepancies with Other Reports:

Other Values	References
0.211 ± .005	L. D. McIsaac, et al., Aerojet Report ANCR-1088, pp. 387-8 (October, 1972)
(γ-ray, conversion electron measurement)	F. K. Wohn, et al., Nucl. Phys. A152, 561 (1970) R. A. Meyer, et al., Livermore Report UCRL (80088), October, 1977
0.2176 ± 0.0024	F. L. Lisman, et al., J. Inorg. Nucl. Chem. <u>33</u> , 643 (1971)
0.2194 ± .0008	W. J. Maeck, et al., Allied Chemical Report ICP-1142 (1978)

Publication:

Argonne National Laboratory Report ANL-79-107, February, 1980

<u>U. S. A.</u>

Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415 USA
Name:	R. A. Anderl and Y. D. Harker
Experiment:	Integral cross-section measurements in fast- reactor-type environments.
Method:	Enriched isotopes of fission-product-class materials are irradiated in the fast neutron fields of the Coupled Fast Reactivity Measurements Facility (CFRMF) and of the Experimental Breeder Reactor-II (EBR-II). The integral capture cross sections are derived from measurements which utilize gamma spectrometry and/or mass spectrometry. The neutron fields are characterized by means of transport calculations, active neutron dosimetry or passive neutron dosimetry. The integral data are suitable for integral testing of multigroup cross sections by least squares adjustment techniques.
Accuracy:	3% - 10% (1σ uncertainty)
Measurements Completed:	Integral capture cross sections have been measured for ~50 reactions for fission-product samples irradiated in the CFRMF. These earlier measurements have been re-evaluated and re-analyzed and the integral data are now based on ENDF/B-V decay data. Integral data measured for irradiation of Nd, Sm and Eu samples in EBR-II have been used in cross-section adjustments.
Publications:	Y. D. Harker and R. A. Anderl, "Integral Cross- Section Measurements on Fission Products in Fast Neutron Fields", invited paper presented at the NEANDC Specialist Meeting on Neutron Cross Sections of Fission-Product Nuclei, Dec. 12-14, 1979, Bologna, Italy. R. A. Anderl <u>et al</u> . "Neodymium, Samarium and Europium Capture Cross-Section Adjustments Based on EBR-II Integral Data", contributed paper presented at the International Conference on Nuclear Cross Sections for Technology, Oct. 22-26, 1979, Knoxville, Tennessee, USA.

U. S. A.

	Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415 USA
1.	Names:	R. J. Gehrke, R. G. Helmer
	Facilities:	 4π β-γ coincidence counting system Calibrated Ge(Li) spectrometers
	Experiment:	Determination of absolute $\gamma\text{-ray}$ emission probabilities for important fission-product isotopes.
	Method:	The decay rates are determined by the 4π β - γ coincidence counting system, which has two separate pulse-processing systems. One system is based on fixed pulse widths. The other is based on variable pulse widths and an overlap coincidence circuit. The dead time of the beta, gamma and coincidence channels is measured by counting the pulses from a 10 MHz clock. The variable pulse width system is useful in measuring the γ -ray emission probabilities of short-lived (<30 m) fission products, where high count rates are needed. The γ -ray emission rates are determined by Ge(Li) spectrometers whose efficiencies have been measured to an accuracy of $\pm 1-1/2\%$ (1 σ) between 0.3 and 2 MeV.
	Accuracy:	\pm 1% to \pm 5% (1 σ uncertainty)
	Measurement Completed:	Emission probability of the prominent 748-keV γ ray from ¹⁴⁵ Pr has been measured to a precision of 1.7% (1σ level) and the half-life has been remeasured with a precision of 0.17%. The relative intensities of the more intense γ rays were also measured. The emission probability of the 453-keV γ -ray from ¹⁴⁶ Pr was also measured to a precision of $\sim 3\%$ and its half-life was measured to a precision of $\sim 0.7\%$.
	Completion Date:	Measurement activity is an on-going effort. ¹⁴¹ La measurement in progress. ¹⁴² La measurement in progress.
	Publications:	R. J. Gehrke "Gamma-ray Emission Probabilities and Half-life of ¹³⁹ Ba", Int. J. Appl. Radiat. and Isotopes, <u>31</u> , 37 (1980).

U. S. A.

(cont'd)

R. J. Gehrke and J. D. Baker "Absolute Intensities of the γ Rays Emitted in the Decay of ¹⁴⁵Pr", Int. J. Appl. Radiat. and Isotopes (in press). R. J. Gehrke and J. D. Baker "Emission Probability of the 453-keV γ Ray Emitted in the Decay of ¹⁴⁶Pr", Int. J. Appl. Radiat. and Isotopes (in press).

2.	Name:	R. C. Greenwood, R. J. Gehrke, J. D. Baker, D. H. Meikrantz, and V. J. Novick
	Experiment:	Nuclear decay properties $(T_{l_2}, \gamma$ -branching, β -branching) of short-lived fission products
	Facility:	2-100 μ g ²⁵² Cf fission-product sources coupled via He-gas jet transport to a chemical separation laboratory
	Method:	Fast on-line chemical separations using continuous centrifugal contactors and high pressure liquid chromatography followed by γ - and β -ray measurements
	Measurements Completed:	The T _L and γ-ray energies and intensities for the following fission products: ¹¹³ Pd- ¹¹³ Ag, ¹¹⁴ Pd- ¹¹⁴ Ag, ¹¹⁵ Pd- ¹¹⁵ Ag, ¹⁵⁷ Sm- ¹⁵⁷ Eu, ¹⁵⁸ Sm- ¹⁵⁸ Eu.
	Publications:	J. D. Baker, R. J. Gehrke, R. C. Greenwood, D. H. Meikrantz and V. J. Novick, "A New Isotope ¹⁵⁸ Sm; Comments on the Decay of ¹⁵⁷ Sm" J. Inorganic Nucl. Chem. (in press). J. D. Baker, R. J. Gehrke, R. C. Greenwood and D. H. Meikrantz, "Rapid Separation of Individual Rare-Earth Elements from Fission Products" Radiochim. Acta. (in press).

<u>U. S. A.</u>

Laboratory:Idaho National Engineering LaboratoryAddress:Exxon Nuclear Idaho Co., Inc.
P. 0. Box 2800
Idaho Falls, Idaho 83401
United States1. Name:William J. Maeck
Experiment:Experiment:Fast Reactor Fission Yields and Determination of Burnup

for Fast Reactor Fuels (update)

A program is in progress at the Idaho Chemical Processing Plant (ICPP) laboratories to accurately measure absolute fast reactor fission yields for ²³³U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, and ²⁴³Am. The irradiations were conducted in EBR-II, Row-8. Reports have been issued giving fast reactor yield data for ²³³U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, and ²⁴²Pu.

<u>Method:</u> The principal measurement technique was isotope dilution mass spectrometry for the isotopes of Kr, Rb, Sr, Zr, Mo, Ru, Xe, Ce, Ba, La, Ce, Nd, and Sm. The number of fissions was established by summing the total number of atoms in the heavy mass peak.

<u>Accuracy:</u> In general, the uncertainties assoicated with 233 U, 235 U, 237 Np, 239 Pu, 241 Pu, and 242 Pu yields range from 1.0-1.5% relative, and for 238 U and 240 Pu yields, the uncertainties range from 1.5-3.0% relative.

<u>Future Work:</u> To augment the fast yield data obtained from the irradiation in Row-8 of EBR-II, samples of ²³³U, ²³⁵U, ²³⁹Pu, and ²⁴¹Pu which were irradiated in Row-4 of EBR-II have been analyzed. These data will provide more information relative to the effect of neutron energy on fission yields. A report giving fast reactor fission yields for samples of ²³³U and ²³⁵U irradiated in Row-4 of EBR-II has been issued. A similar report for ²³⁹Pu and ²⁴¹Pu will be issued in the summer of 1980.

<u>Special Comments:</u> All yield data reported from this work are associated with a measured or calculated neutron spectrum. The study to correlate yields with neutron energy is continuing.

<u>Publications:</u> The results of this measurement program have been published in the reports listed below. These reports are available from the National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Road, Springfield, Virginia, 22161, USA.

- 64 -

(cont'd)

- W. J. Maeck, Editor, "Fast Reactor Fission Yields for ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu and Recommendations for the Determination of Burnup on FBR Mixed-Oxide Fuels: An Interim Project Report," Allied Chemical Corporation - Idaho Chemical Programs Rept., ICP-1050-I (January 1975).
- W. J. Maeck, Editor, "Fast Reactor Fission Yields for ²³⁹Pu and ²⁴¹Pu," Allied Chemical Corporation - Idaho Chemical Programs Rept., ICP-1050-II (August 1977).
- W. J. Maeck, W. A. Emel, A. L. Erikson, J. E. Delmore, J. W. Meteer, "Fast Reactor Fission Yields for ²³⁷Np," Allied Chemical Corporation -Idaho Chemical Programs Rept., ICP-1050-III (September 1977).
- W. J. Maeck, R. L. Eggleston, A. L. Erikson, R. L. Tromp, "Fast Reactor Fission Yields for ²⁴⁰Pu and ²⁴²Pu," Allied Chemical Corporation - Idaho Chemical Programs Rept., ICP-1050-IV (February 1979).
- W. J. Maeck, A. L. Erikson, R. L. Tromp, "Fast Reactor Fission Yields for ²³³U and ²³⁵U Irradiated in Row-4 of EBR-II, Exxon Nuclear Idaho Co., Inc., Rept., ENICO-1028 (February 1980).

2. Name: William J. Maeck, R. L. Tromp

Experiment: Fast Reactor Fission Yield Measurements in FFTF. (new)

For many years, personnel at the Idaho Chemical Processing Plant (now operated by Exxon Nuclear Idaho Company, Inc.) at the Idaho National Engineering Laboratory, have been involved in the accurate measurement of absolute fission yields for use in the determination of burnup in fast reactor fuels. As a continuing effort of this program, an irradiation of heavy element nuclides (²³³U, ²³⁵U, ²³⁹Pu, and ²⁴¹Pu) is planned for the eight-day full-power run associated with the FFTF Reactor Characterization Experiment at Hanford, Washington.

The primary purpose is to generate a group of heavy element reference standards for which the number of fissions and burnup are well known. By combining this experiment with others of a similar nature, these samples will serve as reference and comparison standards. A secondary purpose is to verify the fast reactor fission yields measured in EBR-II

<u>U. S. A.</u> (cont'd)

and to assess the validity of using EBR-II values for irradiations conducted in FFTF.

For this experiment, ten samples each of highly-enriched ²³³U, ²³⁵U, ²³⁹Pu, and ²⁴¹Pu (as oxides), sealed in high-purity nickel capsules will be irradiated. Eight capsules (two each of ²³³U, ²³⁵U, ²³⁹Pu, and ²⁴¹Pu) will be placed axially in one of the removable pins in Rows 1, 2, 4, 5, and 6. Each pin will be located immediately adjacent to an ILLR dosimetry package pin. The amount of material in each sample capsule has been adjusted such that each individual sample will give about 10¹⁹ fissions. The irradiation is scheduled for late 1980.

After completion of the irradiation, the samples will be returned to Idaho for analysis. The samples in Rows 1 and 6 will be dissolved and analyzed for the following fission product elements using isotope dilution mass spectrometry: Kr, Rb, Sr, Zr, Mo, Ru, Xe, Cs, Ba, La, Ce, Nd, and Sm. The absolute number of fissions will be established by summing the number of fission product atoms in the heavy mass peak. The samples in Rows 2, 4, and 5 will only be partially analyzed, principally for Nd, Cs, Kr, and Xe, to establish relative fission yield values for the intermediate reactor positions. Extensive correlation of the isotopic composition and fission yields of several of the fission product elements as a function of neutron energy will be made.

3. Name: William J. Maeck

Experiment: Thermal Fission Yields for ²³⁵U and ²³⁹Pu (update)

An existing experiment has been extended to remeasure the major fraction of the mass yield curve for the thermal fission of 235 U and 239 Pu. The need for this program resulted from serious discrepancies in some measured relative isotopic ratios for certain isotopes in the thermal fission of 239 Pu. New yield values, based on the analysis of six 235 U samples (three at 1 a/oF and three at \sim 35 a/oF) and seven 239 Pu samples (three at 1 a/oF and four at 50 a/oF) have been published.

<u>U. S. A.</u>

(cont'd)

<u>Method</u>: The principal measurement technique was isotope dilution mass spectrometry for the isotopes of Kr, Rb, Sr, Zr, Mo, Ru, Xe, Cs, Ba, La, Ce, Nd, and Sm. For the ²³⁵U samples, the number of fissions was established by two methods: 1) the summation of the total atoms in the heavy mass peak; and 2) the heavy element difference technique. For the ²³⁹Pu samples, the number of fissions was established using the summation method.

<u>Accuracy</u>: The uncertainties associated with these new ^{235}U and ^{239}Pu yields range from 0.5 - 1.5% relative. A comparison of the number of fission determined by the summation technique and the heavy element difference technique show an agreement of + 0.5% relative.

Data Discrepancies: See Publications.

Publications:

- J. E. Delmore, L. L. Dickerson, F. A. Duce, W. A. Emel, J. H. Keller, W. J. Maeck, R. L. Tromp, "Discrepancies and Comments Regarding ²³⁵ U and ²³⁹Pu Thermal Fission Yields and the Use of ¹⁴⁸Nd as a Burnup Monitor," Allied Chemical Corporation - Idaho Chemical Programs Report ICP-1092 (December 1976).
- F. A. Duce, W. A. Emel, W. J. Maeck, J. W. Meteer, R. L. Tromp, "Absolute Thermal Fission Yields for ²³⁵U," Allied Chemical Corporation -Idaho Chemical Programs Report ICP-1142 (September 1978).
- F. A. Duce, R. L. Eggleston, W. A. Emel, W. J. Maeck, J. W. Meteer, R. L. Tromp, "Absolute Thermal Fission Yields for ²³⁹Pu," Exxon Nuclear Idaho Company Report ENICO-1001 (September 1979).

<u>U. S. A.</u>

(cont'd)

4. Name: William J. Maeck

Experiment: Natural Fission Reactor Studies: ²³⁸U Spontaneous Fission Yields (update)

In the process of analyzing approximately 25 rich uranium ore samples for fissiogenic ruthenium, a preliminary estimate of the 238 U spontaneous fission yields for 99 Ru, 101 Ru, 102 Ru, and 104 Ru has been obtained. The measurement technique was mass spectrometry.

After correction for the natural Ru component and the fissiogenic component resulting from 235 U induced fission, the best estimate for the isotopic composition of 238 U spontaneous fission Ru is:

99	0.236
101	0.285
102	0.314
104	0.165

Using a value of 6.0% for the 238 U spontaneous fission yield of 99 Mo, the preliminary 238 U spontaneous fission yields for the Ru isotopes are:

⁹⁹ Ru	6.0%	(relative	to	⁹⁹ Mo)
¹⁰¹ Ru	7.25			
¹⁰² Ru	8.0			
¹⁰⁴ Ru	4.2			

These values have been updated and supersede those reported in INDC (NDS)-86.

A new ore sample, believed to have a very high fraction of spontaneous fission is being hi-graded and will be analyzed to give improved ^{238}U spontaneous fission data for ruthenium. Mass spectrometric techniques are being investigated for the possibility of measuring the ^{238}U SF yields for ^{107}Pd , ^{135}Cs , and ^{129}I .

U. S. A.

	LABORATORY	Lawrence Livermore Laboratory University of California P.O. Box 808 Livermore, CA 94550, U.S.A.	 McClellan Central Laboratory 1155th Technical Operations Squadron McClellan AFB, CA 95652
1.	NAMES	D. R. Nethaway A. L. Prindle D. H. Sisson	+ M. V. Kantelo + R. A. Sigg
	FACILITY	FLATTOP Critical Assembly (Pu), Los	Alamos Scientific Laboratory
	EXPERIMENT	Measure fission yields for fission spectrum neutrons.	of Am-241 induced by fission-
	METHOD	Measurements were made by doing che irradiated Am-241 samples and by us technique. Absolute yields are bas mass-yield curve.	mical separations on the ing the recoil catcher-foil ed on a normalization of the
	COMPLETION DATE	The measurements are finished, and for publication is being prepared.	a rough draft of a report
2.	NAMES	D. R. Nethaway A. L. Prindle D. H. Sisson	+ M. V. Kantelo + R. A. Sigg
	FACILITY	Livermore ICT Facility (14-MeV neut	cron source)
	EXPERIMENT	Measure fission yields for fission neutrons.	of Am-241 induced by 14.8-MeV
	METHOD	Measurements were made by doing che irradiated Am-241 samples, and by u foil technique. The accuracy of th + 5%. Absolute yields are based on mass-yield curve.	emical separations on the using the recoil catcher- ne measurements is about a normalization of the
	COMPLETION DATE	The experiment is finished.	
	PUBLICATION	Phys. Rev. C 20, 1824 (1979), (Repo	ort UCRL-82601)

A. A. Car

U. S. A.	-
(cont'd)	1)

3.	NAMES	D. R. Nethaway A. E. Richardson*
	FACILITY	Livermore ICT Facility (14-MeV neutron source)
	EXPERIMENT	Measure independent fractional chain yields of ^{148m}Pm , ^{148}gPm , and ^{150}Pm for fission of ^{235}U and ^{238}U induced by 14.8-MeV neutrons
	METHOD	Measurements were made with Ge(Li) detectors on chemically- separated promethium and neodymium samples. The yields of 148 Pm and 150 Pm were measured relative to the mass 147, 149, and 151 chain yields with an accuracy of about \pm 10%.
	COMPLETION DATE	The experiment is finished.
	PUBLICATION	The manuscript has been sent to J. Inorg. Nucl. Chem. A preprint is available as UCRL-84054 (Mar. 1980).

*Permanent address: Department of Chemistry, New Mexico State University, Las Cruces, NM 88003, U.S.A.

- 70 -

U.S.A.

	Laborator	ry and Address:	Oak Ridge National Laboratory P. O. Box X, Building 6010 Oak Ridge, Tennessee 37830, USA
1.	Names:		J. K. Dickens and J. W. McConnell
	Facilitie	es:	Fast Rabbit Transport Station at the Oak Ridge Research Reactor (ORR).
	Experimer (revised)	nt:)	Absolute yields of forty-nine fission products, representing thirty-six mass chains created by thermal-neutron fission of ²³⁹ Pu have been determined.
Method: A one neutro counti using betwee		A one microgram neutrons. Follo counting area. using a large-vo between 1550 and	sample of 239 Pu was irradiated for 100 sec with thermal owing irradiation the sample was moved to a low-background Gross fission product gamma-ray spectra were obtained olume Ge(Li) detector. Counting intervals were initiated d 2.6 x 10 ⁶ sec following the end of the irradiation.
	Accuracy:	:	Absolute 10 uncertainties range between 2.5 and 25%, made up of 2.0% uncertainty assigned to detector efficiency, 1.3% uncertainty in determining the number of fissions created in the sample, and uncertainties in peak extraction and in branching ratios and lifetimes given in the literature.
	Completio	on Date:	January 1979
	Discrepar	ncies to Other Report Data:	Cumulative fission yields agree well with previous measurements and recommended evaluations except for mass chains 101 and 105, for which the present results are larger than previously determined.
	Publicati	ions:	J. K. Dickens and J. W. McConnell, "Fission-product Yields for Thermal-neutron Fission of ²³⁹ Pu," Nucl. Sci. Eng. <u>73</u> , 42 (1980).
2.	Names:		J. K. Dickens
	Facilitie	25:	Fast Rabbit Transport Station at Oak Ridge Research Reactor (ORR).
	Experiment (revised)	nt:	Absolute yields of seventeen fission products, representing sixteen mass chains created by thermal-neutron fission of ²⁴¹ Pu have been determined.
	Method:	A one microgram neutrons, Follo counting area. using a large vo	sample of ²⁴¹ Pu was irradiated for 50 sec with thermal owing irradiation the sample was moved to a low-background Gross fission-product gamma-ray spectra were obtained olume Ge(Li) detector. Six counting measurements were

made between 17 and 210 hours after the irradiation.

U.S.A.

(cont'd)

	Accuracy	:	Between 4% and 15% (1 σ), made up of 2.5% uncertainty assigned to detector efficiency, 2.8% uncertainty in determining the number of fissions created in the sample, and the remainder due to uncertainties in peak extraction and in branching ratios and lifetimes given in the literature. Uncertainties assigned to nine of the measured yields are smaller than existing evaluated uncertainties for these yields.
	Completi	on Date:	September 1978
	Discrepa	ncies to Other Report Data:	Data agree with evaluation of Crouch (E.A.C. Crouch, Atomic Data and Nucl. Data Tables <u>19</u> , 419 (1977)) for fifteen of the measured values.
	Publicat	ions:	J. K. Dickens, "Fission Yields for Thermal-Neutron Fission of ²⁴¹ Pu," Nucl. Sci. Eng. <u>70</u> , 177 (1979).
3.	Names:		J. K. Dickens and R. W. Peelle
	Faciliti	es:	Fast Rabbit Transport Station at Oak Ridge Research Reactor (ORR).
	Experiment	<u>nt:</u>)	Total Beta and Gamma Energy Release for Thermal- Neutron Fission of 235 U, 239 Pu, and 241 Pu for Cooling Times of 2 to 14000 sec.
	Method:	Microgram sampl short periods w counting area. tion have been rays and NaI for time range of i production cross energy release have been summe	Les of 235 U, 239 Pu, and 241 Pu have been irradiated for with thermal neutrons, and returned pneumatically to a Beta- and gamma-ray energy spectra of moderate resolu- obtained using scintillation detectors (NE110 for beta or gamma rays) for selected time intervals within the interest. The spectra have been reduced to differential as sections $d\sigma/dE$ and have been integrated to obtain total rates for beta and gamma rays (separately). These data ed to obtain the total energy release.
	Accuracy	:	3% (10) for 235 U and 239 Pu, 4% for 241 Pu.
	Completi	on Date:	May 1977 for 235 U, December 1977 for 239 Pu, and August 1978 for 241 Pu.
	Discrepa	ncies to Other Report Data:	Data are in reasonable agreement with other recent experiments and with results of summation calculations. However, present results are up to 15% smaller than recent data from Los Alamos; these discrepancies have not been resolved.
	Publicat	ions:	J. K. Dickens, J. F. Emery, T. A. Love, J. W. McConnell, K. J. Northcutt, R. W. Peelle, and H. Weaver, "Fission- Product Energy Release for Times Following Thermal- Neutron Fission of ²³⁵ U Between 2 and 14000 Seconds," ORNL/NUREG-14 (October 1977).

	<u>U.S.A.</u> (cont'd)
Publications: -continued-	J. K. Dickens, J. F. Emery, T. A. Love, J. W. McConnell, K. J. Northcutt, R. W. Peelle, and H. Weaver, "Fission- Product Energy Release for Times Following Thermal- Neutron Fission of ²³⁹ Pu Between 2 and 14000 Seconds," ORNL/NUREG-34 (April 1978).
	J. K. Dickens, T. A. Love, J. W. McConnell, J. F. Emery, K. J. Northcutt, R. W. Peelle, and H. Weaver, "Delayed Beta- and Gamma-Ray Production Due to Thermal-Neutron Fission of ²³⁵ U, Spectral Distributions for Times After Fission Between 2 and 14000 Sec: Tabular and Graphical Data," NUREG/CR-0162, ORNL/NUREG-39 (August 1978).
	J. K. Dickens, T. R. England, T. A. Love, J. W. McConnell, J. F. Emery, K. J. Northcutt, and R. W. Peelle, "Delayed Beta- and Gamma-Ray Production Due to Thermal-Neutron Fission of ²³⁹ Pu: Tabular and Graphical Spectral Distributions for Times After Fission Between 2 and 14000 Sec," NUREG/CR-1172, ORNL/NUREG-66 (January 1980).
	J. K. Dickens, T. A. Love, J. W. McConnell, and R. W. Peelle, "Fission-Product Energy Release for Times Following Thermal-Neutron Fission of ²³⁵ U Between 2 and 14000 Seconds," Nucl. Sci. Eng. <u>74</u> , 106 (1980).
Names:	J. K. Dickens, J. W. McConnell, and K. J. Northcutt
Facilities:	Fast Rabbit Transport Station at the Oak Ridge Research Reactor (ORR).
Experiment: (new)	Absolute yields of twenty-nine fission products having half-lives between 30 and 1100 sec, representing twenty-three mass chains created by thermal-neutron fission of ^{2 39} Pu have been determined.
Method: A one microgram neutrons. Unse using a large-v initiated betwe	sample of ²³⁹ Pu was irradiated for 5 sec with thermal parated fission product gamma-ray spectra were obtained olume Ge(Li) detector. Counting intervals were en 35 and 1115 sec following the end of the irradiation.
Accuracy:	Absolute 10 uncertainties range between 6 and 25%, including 2.0% uncertainty assigned to detector efficiency, 1.2% uncertainty in determining the number of fissions created in the sample, and uncertainties in peak extraction and in branching ratios and lifetimes given in the literature.
Completion Date:	March 1980

4.

Discrepancies to Other Report Data: Cumulative fission yields are in fair agreement with previous measurements and recommended evaluations.

<u>U. S. A.</u>

(cont'd)

	Publicatio	ons:	J. K. Dickens, J. W. McConnell, and K. J. Northcutt, "Yields of Short-Lived Fission Products Created During Thermal-Neutron Fission of ²³⁹ Pu," (preprint available May 1980).
5.	Names:	<u></u>	J. K. Dickens and J. W. McConnell
	Facilities	:	Fast Rabbit Transport Station at Oak Ridge Research Reactor (ORR)
	Experiment (new)	:	Absolute yields of fifty-one mass chains created by thermal-neutron fission of ²⁴⁵ Cm have been determined from data obtained for 105 gamma rays following decay of 95 fission products.
	Method: A F a U U 1 m	one microgram periods: 4 sec un irradiation Inseparated fis arge volume Ge ments were made	sample of ²⁴⁵ Cm was irradiated for three irradiation , 40 sec, and 6 min with thermal neutrons. Following the sample was moved to a gamma-ray counting area. sion-product gamma-ray spectra were obtained using a (Li) detector. One hundred fifteen counting measure- between 30 sec and 0.3 yr after irradiation.
	Accuracy:		Between 8% and 50% (1 σ), made up of 8% uncertainty in determining the number of fissions created in the sample, and the remainder due to uncertainties in peak extraction and in branching ratios and lifetimes given in the literature. Relative uncertainties range between 3% and 50% .
	Completion	Date:	January 1980
	Discrepanc R	ies to Other Report Data:	Data agree with most prior measurements (von Gunten et al., Phys. Rev. <u>161</u> , 1192 (1967); Harbour and MacMurdo, J. Inorg. Nucl. Chem. <u>34</u> , 2109 (1972); Ramaswami, et al., J. Inorg. Nucl. Chem. <u>41</u> , 1649 (1979); Troutner and Harbour, Phys. Rev. <u>C4</u> , 505 (1971); and Harbour et al., Phys. Rev. <u>C10</u> , 769 (1974). Data disagree with measurements of Datta et al., Phys. Rev. <u>C21</u> , 1411 (1980).
	Publicatio	ons:	J. K. Dickens and J. W. McConnell, "Yields of Fission Products Created by Thermal-Neutron Fission of ²⁴⁵ Cm," preprint available June 1980.

Laboratory and Address:

Pacific Northwest Laboratory P. O. Box 999 Richland, WA 99352 USA

Names: P. L. Reeder and R. A. Warner

Facilities: SOLAR - Spectrometer for On-Line Analysis of Radionuclides. This is an on-line mass spectrometer which incorporates a 235U target in a surface ionization source located in the thermal column of a 1 MW TRIGA reactor at Washington State University, Pullman, WA.

Experiment: Isomer yield ratios for $235_{U} + n_{th}$.

- Method: Ratios of independent yields of fission product isomers are being measured for thermal neutron fission of 235U by use of an on-line mass spectrometric technique. A short burst of neutrons from the TRIGA reactor is used to produce various isomers of Br, Rb, In, I and Cs fission products within the surface ionization source. Selective ionization performs the rapid chemical separations and magnetic analysis performs the mass separation to give the desired nuclides as a beam of ions. Ions are collected on a moving tape collector system for a short time interval during and after the neutron pulse. The radioactive decay of the two isomers is followed by beta and gamma counting to determine the relative yield of each isomer.
- Accuracy: The final accuracy will probably depend more on how well the decay schemes are known for particular cases than on statistical uncertainties.

Completion Date: Work is continuing.

<u>U.S.A.</u> (cont'd)

- 76 -

Laboratory and Address: Pacific Northwest Laboratory P. O. Box 999 Richland, WA 99352

Names: P. L. Reeder and R. A. Warner

Facilities: SOLAR - This is an on-line mass spectrometer which incorporates a ²³⁵U target in a surface ionization source located in the thermal column of a 1 MW TRIGA reactor at Washington State University, Pullman, WA.

> TRISTAN - This is an on-line isotope separator located at the High Flux Beam Reactor at Brookhaven National Laboratory, Upton, NY.

- Experiment: Average neutron energy and width of the neuton spectrum are being measured for separated delayed-neutron precursors.
- Method: Delayed neutrons from separated precursors are counted in a polyethylene moderated counter containing 3 rings of counter tubes. The ratio of counts in one ring compared to counts in another ring has been determined for several standard sources and the calibration of ring ratio versus average energy is known. The previously published technique¹ has been modified to give a more accurate calibration curve and the technique has been extended to measure the width of the neutron energy spectrum as well.
- Accuracy: The average energies are being measured by this ring ratio technique as a check on delayed neutron spectra measured by various types of neutron spectrometers.²
- Discrepancies: Comparisons of average energies measured by different techniques are given in Ref. 3. However, the ring ratio data reported there will be modified by the improved calibration technique presently in use.

Publications:

- P.L. Reeder, J. F. Wright and L. J. Alquist, Phys. Rev. C <u>15</u>, 2198 (1977), "Average Neutron Energies from Separated Delayed Neutron Precursors,"
- P. L. Reeder, L. J. Alquist, R. L. Kiefer, F. H. Ruddy and R. A. Warner, "Energy Spectra of Delayed Neutrons from Separated Precursors - ⁹³Rb, ⁹⁴Rb, ⁹⁵Rb and ¹⁴³CS," Nucl. Sci. Eng. (to be published).
- P. L. Reeder and R. A. Warner, "Measurement of Average Neutron Energies by a Counting Rate Ratio Technique," in Proceedings of the Consultants' Meeting on Delayed Neutron Properties, Vienna, 26-30, March 1979, International Atomic Energy Agency, INDC (NDS)-107/G + Special, page 239*).
- *) Data for $92-98_{Rb}$ and $141-147_{Cs}$

U. S. A.

Laboratory and address: University of Illinois Nuclear Radiation Laboratory Nuclear Engineering Program Urbana, Illinois 61801 U.S.A.

Names: Bernard W. Wehring

- Facilities: Illinois Advanced TRIGA 1.5-MW Nuclear Reactor, HIAWATHA Fission-Fragment Mass Spectrometer.
- Experiment: Direct Physical Measurement of the Primary Postneutron-Emission Nuclide Yields in Thermal-neutron Fission of U-235, Pu-239, and U-233
- Method: The fission-fragment recoil mass spectrometer HIAWATHA, consisting of a cylindrical focusing electrostatic analyzer and time-offlight system, is used to determine fragment masses while fragment energy loss is used to identify fragment atomic numbers in multiparameter experiment. All fragment velocities and charge states are measured.
- Accuracy: 0.5-amu mass resolution, achieved, about 1-Z atomic-number resolution, achieved, 1% standard error (relative error) in largest mass yield, achieved, 0.02-0.1% standard error (absolute error) in nuclide yields, achieved.

Completion date:

Publications:

- Gino Dilorio, "Direct Physical Measurement of Mass Yields in Thermal Fission of Uranium 235," Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1976.
- Gino DiIorio and B.W. Wehring, "Direct Physical Measurement of Mass Yields for ²³⁵U(n_{th},f)," Trans. Am. Nucl. Soc. <u>24</u>, 459 (1976).
- Gino DiIorio and B.W. Wehring, "HIAWATHA, A Fission-Fragment Recoil Mass Spectrometer," Nucl. Instr. Methods 147, 487 (1977).
- R.B. Strittmatter, "Nuclide Yields for Thermal Fission of Uranium 235," Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1978.
- R.B. Strittmatter and B.W. Wehring, "Direct Measurement of Nuclide Yields in Thermal-Neutron Fission Using HIAWATHA," Proceedings of the International Conference on Neutron Physics and Nuclear Data for Reactor and other Applied Purposes, Harwell, September 25-29, 1978.
- R.B. Strittmatter and B.W. Wehring, "Fragment Atomic-Number Identification Using a Gas Ionization Chamber in Fission Yield Measurements," Nucl. Instr. Methods 166, 473 (1979).

- 77 -

<u>U. S. A.</u>

Laboratory and address:	University of Missouri Research Reactor Facility Columbia, Missouri 65211, USA
Name:	David E. Troutner
Facility:	10-megawatt research reactor. Fluxes up to 7 x 10^{14} n cm ⁻² S ⁻¹ . Pneumatic transfer tubes terminating in flux of 10^{14} n cm ⁻² S ⁻¹ .
Experiment:	Primary yields of products from neutron-induced fission.
Method:	Fission products are separated and purified by radio- chemical methods and radioactivity determined by $Ge(Li)$ detectors. Current facilities limit experiments to those which require separation times of about 1 minute or longer. Emphasis is on comparison of primary yields from fission of Cf-249 to those of fission of U-233. Yields from Cf-249 fission appear to be consistent with the charge distribution wider than that found for fission of U-233 and U-235.
Publications:	M.A. Monzyk and D.E. Troutner, "Fractional independent yields of Ba-139 and La-142 from the thermal-neutron- induced fission of Cf-249", Phys. Rev. <u>C20</u> , 212 (1979).
	D.K. Pal and D.E. Troutner, "Fractional independent yields of La-141 and La-142 from thermal-neutron-induced fission of U-233", submitted to J. Inorg. Nucl. Chem.

- 79 -

U. S. S. R.

Laboratory and address:	Institute for Nuclear Research, Ukr. SSR Academy of Sciences, Prospekt Nauki 119, Kiev-28, USSR		
Names:	V.P. Vertebnyi, P.N. Vorona, A.I. Kalchenko, V.G. Krivenko, V.Y. Pshenichnyi		
Facilities:	Atomic Reactor WWR-M, Liev Fast chopper		
Experiments:	Study of radioactive and stable Europium isotopes:		
	Resonance parameters, total cross sections $\sigma_t(E_n)$, neutron capture cross sections of the following Europium isotopes have been obtained:		
	isotope : 151_{Eu} 152_{Eu} 153_{Eu} 154_{Eu} 155_{Eu}		
	neutron energy 0.02-110 0.02-20 0.02-600 0.02-20 0.02-20 range eV		
Method:	Time-of-flight spectrometry		
Accuracy:	2 - 20%		
Completion date:	partially completed (see publications)		
Discrepancies to other reported data:	Total cross sections σ_t of stable isotopes of Europium 151, 153 for neutron energy $E_n=0,0253$ disagree with those of N.J. Pattenden (Second Geneva Conf., vol.16, p.43, paper p/II, 1958), G.J. Sims et al. (Nucl. Chem., <u>29</u> , 2671, 1967) and for Europium 153 with L.H. Widder (Nucl. Sci. Eng., <u>60</u> , N1, 53, 1976).		
Publications:	 "Research interaction of slow neutrons with radioactive 152Eu", Proc. II All-Union Conf. on Neutron Physics, Kiev, v.2, p.85, Moscow (1973). 		
	2) "Energy dependence determination of the total neutron cross section of the radioactive nucleus Eu-152g ($T_{1/2} =$ 12,4 y) for thermal neutrons". Report KINI-75-14, Kiev, 1975.		
	3) "Neutron resonances of radioactive Eu-152 with half-life 12,4 years". Report KINI-76-16, Kiev, 1976.		
	4) "Neutron resonances of radioactive isotope $^{152}Eu(T_{1/2} = 12,4 \text{ years})$ " International Conference on the Interactions of Neutrons with Nuclei, Lowell, USA, 6-8 July 1976 (contributed paper PG 1/B8).		
	5) "Study of neutron resonances of radioactive isotope ¹⁵² gEu", Yad.Fiz. <u>26</u> , 1137(1977); English Sov.Nucl.Phys. <u>26</u> ,601 (1977).		
	Note: Look also CINDA-76/77 and Supplement 5 CINDA-78 (by the IAEA, Vienna)		

<u>U. S. S. R.</u>

Laboratory and address:	Lensovjet Institut of Technology Leningrad 198013, USSR
Names:	V.F. Teplykh, E.V. Platygina, K.A. Petrzhak
Facilities:	Mass-spectrometer
Experiments:	Measurement of relative yields of Xenon isotopes for the fission of Th-232, U-235, Np-237, Pu-239 induced by 14.7 MeV neutrons and for the photofission of U-235, Np-237, Pu-239 by 15 and 20 MeV bremsstrahlung.
Method:	After irradiation and cooling, Xenon isotopes were isolated from targets by thermal means. Relative isotopic yields were measured on the mass-spectro- meter. Cumulative (chain) yields were calculated from the absolute I-131 yield. The absolute I-131 yield was measured by radiochemical methods.
Accuracy:	The accuracy achieved for relative yields is within $0.6-2\%$ (1 σ), with a mean accuracy of 1%, with the exception of 15 MeV photofission of Np-237. The accuracy of the radiochemical method is within 4-6%.
Completion date:	Np-237(γ,f) : completed October 1975 Th-232(n,f) : November 1976 U-235(n,f),(γ,f) : November 1976 Pu-239(n,f),(γ,f) : July 1978
Results:	Fissionable Energy Yields, % nucleus MeV Xe-131 Xe-132 Xe-134 Xe-136
	$\begin{array}{rllllllllllllllllllllllllllllllllllll$
	U-235+n14.720.75+.325.05+.428.35+.425.85+.44.034.865.515.02
	Pu-239+n $14.7 \ 20.5 + 3 \ 3.77$ $24.9 + 3 \ 28.5 + 3 \ 5.24$ $25.75 + 3 \ 4.74$ 3.77 4.58 5.24 4.74
	U=235+ γ 1517.65+.3523.1+.4531.45+.627.8+.552020.0+.224.2+.328.5+.227.3+.2
	Np-237+ γ 15 19.7 ±1.2 21.4 ±1.5 31.8 ±1.1 27.1 ±.9 20 21.5 ±.6 23.0 ±.7 29.1 ±.5 26.4 ±.4
	Pu=239+ γ 1521.85+.1525.65+.1027.3+.1525.2+.152020.75+.1525.00+.2529.2+.424.15+.2
Publications:	Atomnaja Energija (USSR), <u>41</u> , 44-45 (1976) Atomnaja Energija (USSR), <u>42</u> , 337-338 (1977) Yadernaya Fizika (USSR), <u>29</u> , 293-295 (1979)

<u>U. S. S. R.</u>

- Laboratory: Nauchno-Issledovatel'skij Inst. Atomnykh Reactorov V.I. Lenina (V.I. Lenin Scientific Research Institute for Atomic Reactors)
- Address: Dimitovgrad, Ulyanovskaya Oblast, USSR

Names: Valerij Aleksandrovich Anufriev

- Facilities: Neutron time-of-flight spectrometer located in the horizontal channel of the SM-2 reactor with four synchronous rotors suspended in a magnetic field. The recording system consists of CNM-17 ³He proportional counters and a 4096-channel time analyser. The better resolution was 70 nsec/m. The resonance level parameters were calculated by the "area" and "shape" methods on the basis of the Breit-Wigner single-level formula on a BEhSM-6 computer.
- Method: The resonance parameters and total neutron cross-sections of the samples were studied by measuring transmission with the use of the time-of-flight technique [2,1].
- 1. Experiment: NEUTRON RESONANCE PARAMETERS OF 147 Pm (T_{1/2} = 2.6 a) IN THE 5.37 - 177.7 eV REGION

Deduced: \overline{D} , σ_{tot} at 2200 m/s, capture resonance integral I_{v} .

Accuracy: Statistical accuracy of the transmission measurement <2%. Accuracy of the resonance parameter determination 3-15%.

Completion date: Completed. The final results have been published in Ref.[3].

- Comparison with On the whole the measurements of the resonance parameters other data: other data: eV levels were found for the first time. In comparison with the data in Ref.[4] a difference was found in parameters $2g\Gamma_n$ and Γ for the $E_0 = 5.37$ eV level.
- 2. Experiment: NEUTRON RESONANCE PARAMETERS OF ¹⁵⁰sm IN THE 20.64-380.6 eV REGION
- Accuracy: Statistical accuracy of the transmission measurement <2%. Accuracy of the resonance parameter determination 10-15%.
- Completion data: Completed. The final results have been published in Ref. [5].
- Comparison with The results agree within measurement errors with those other data: recommended in Ref. [6].
- 3. Experiment: NEUTRON RESONANCE PARAMETERS OF 151 Sm (T_{1/2} = 87 a) IN THE 1.088-17.33 eV REGION
- Sample: Irradiated ¹⁵⁰Sm sample.
- Accuracy: Statistical accuracy of the transmission measurement <2%. Accuracy of the resonance parameter determination 8-20%.

<u>U.S.S.R.</u> (cont'd)

Completion date:	Completed; The final results have been published in Ref.[5].
Comparison with other data:	The results agree within measurement errors with the data published in Ref.[7] in the energy region studied.
4. Experiment:	NEUTRON RESONANCE PARAMETERS OF ¹³³ Cs IN THE 5.88-397.7 eV REGION
	Deduced: \overline{D} , Capture resonance integral I_{γ} .
Accuracy:	Statistical error of the transmission measurement $\langle 2\%$. Error of the resonance parameter determination 10-15%.
Completion date:	Completed. 'The final results have been published in Ref.[8].
Comparison with other data:	The $E_0 = 9.5$, 59.7, 132.6 and 373 eV neutron levels are given for the first time; the resonance parameters for the remaining levels agree with the data in Ref.[6].
5. Experiment:	NEUTRON RESONANCE PARAMETERS OF 134 Cs (T _{1/2} = 2.2a) IN THE 12.27-171 eV REGION
	Deduced: \overline{D} and capture resonance Integral I_{γ} .
Sample:	Irradiated ¹³³ Cs.
Accuracy:	Statistical accuracy of the transmission measurement $< 3\%$. Accuracy of the resonance parameter determination 15-30%.
Completion date:	Completed. The final results have been published in Ref.[8].
Comparison with other data:	Measurements of the resonance parameters of 134 Cs were obtained for six levels for the first time. The E ₀ = 42.1 eV level possibly relates to the 135 Cs isotope.
6. Experiment:	NEUTRON RESONANCE PARAMETERS OF ¹⁵³ Eu in the 1.728-31.2 eV REGION
Accuracy:	Statistical accuracy of the transmission measurement <2%. Error in resonance parameters 5-20%.
Completion date:	Completed. The final results have been published in Ref.[9].
Comparison with other data:	On the whole, the resonance parameters in the region investi- gated agree with those recommended in Ref.[6]. In the case of the $E_0 = 4.77$, 15.25 and 22.5 eV levels, noticeable differences are observed in $2g\Gamma_n^{\circ}$ parameters.
7. Experiment:	NEUTRON RESONANCE PARAMETERS OF 154 Eu (T _{1/2} = 8.6a) IN THE 0.188-27.3 eV REGION
	Deduced: \overline{D} , capture resonance integral I_{γ} .
Sample:	Irradiated ¹⁵³ Eu.

U.S.S.R. (cont'd)

Accuracy:	Statistical accuracy of the transmission measurement $\langle 2 / .$ Accuracy of the resonance parameter determination 10-20//.
Completion date:	Completed. The final results have been published in Ref.[9].
Comparison with other data:	The resonance parameters for the $\mathbb{H}_0 = 1.37$ eV levels differ from those given in Ref.[10]; data are given for the first time in the region above 1.37 eV. The $\mathbb{H}_0 = 0.602$ eV level given in Ref.[10] is attributed to the 155Eu isotope.
8. Experiment:	NEUTRON RESONANCE PARAMETERS OF 155_{Eu} ($\mathbb{T}_{1/2} = 4.72$) IN THE 0.602-33.1 eV REGION
	leduced: \overline{D} , capture resonance integral I_{γ} .
Sample:	Irradiated ¹⁵³ Eu.
Accuracy:	Statistical accuracy of the transmission measurement <2%. Accuracy of the resonance parameter determination 15-30%.
Completion date:	Completed. The final results have been published in Ref. [9].
Comparison with other data:	The values of resonance parameters for sevel levels of $155_{\rm Eu}$ are being communicated for the first time.

REFERENCES

- 1. Belanova, T.S., et al., The Neutron Time-of-Flight Spectrometer in the Sm-2 Reactor, NIIAR Report, P-6(272), Dimitrovgrad (in Russian).
- Anufriev, V.A., et al., The Facility for Measurements of Neutron Cross-Sections of Radioactive Nuclei Using the Neutron Spectrometer of the SM-2 Reactor, NIIAR Report, P-II (345), Dimitrovgrad (1976) (in Russian).
- 3. Anufriev, V.A., et al., "Measurement of total neutron cross-sections and resonance parameters of 147 Pm (T_{1/2} = 2.6a)", At. Ehnerg. <u>45</u> (1978) 453 (English: Soviet At. En. <u>45</u> (1979) 1189)
- 4. Kirouace, J., et al., Nucl. Sci. and Engn., <u>52</u> (1973) 310
- 5. Anufriev, V.A., et al., "Neutron resonances of the 150 Sm and 151 Sm isotopes (T_{1/2} = 87 a)" in: Proceedings of the Fourth All-Union Conference on Neutron Physics, Kiev, 18-22 April(1977) (in Russian)
- 6. BNL-325, Third Edition (1973)
- 7. Kirouace, J., et al., Phys. Rev. C 6, <u>11</u> (1975) 895
- 8. Anufriev, V.A., et al., "Resonance parameters of the 133Cs and 134Cs isotopes (T_{1/2} = 2.2a) in the energy region up to 400 eV", At. Ehnerg. <u>43</u> (1977) 201 (English: Soviet At. En. <u>43</u> (1978) 828)

U.S.S.R. (cont'd)

- 9. Anufriev, V.A., et al., "Measurement of total neutron cross-sections of 153Eu, 154Eu ($T_{1/2} = 8.6 a$) and 155Eu ($T_{1/2} = 4.7a$)", At. Ehnerg. <u>46</u> (1978) 158 (English: Soviet At. En. <u>46</u> (1979) 182)
- 10. Vertebnyi, V.P., et al., "The level density, average widths and power function of the stable and radioactive isotopes of Europium" in:: Proceedings of the Conference on Neutron Physics, TsNIIatominform, Moscow, part 2 (1977) 267 (in Russian)
- Note: The full contribution containing all experimental results is available in Russian and English from the editor upon request.

II. COMPILATIONS AND EVALUATIONS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.
BELGIUN

Laboratory and address : Nuclear Physics Laboratory Proeftuinstraat 86 B-9000 Gent, Belgium

Names : P. De Gelder, D. De Frenne, E. Jacobs

Evaluation : Nuclear Data Sheets for A = 102

Method : cfr. Nuclear Data Project

Major sources of information : Recent References of NDP

Deadline of literature coverage : end 1980

Status : about 75 % of the data sets is reevaluated

Computer file of evaluated data : ENSDF

Completion date : end 1980

Publications : to be published as a Nuclear Data Sheets issue

- 88 -

FRANCE

Laboratory and address:	DRNR/SPNR C.E.N. Cadarache F-13115 St. Paul-Lez-Durance
Names:	E. Fort, D. Lafond
Evaluation:	Revision of resonance parameters
Purpo se :	Update for new experimental data in the resolved and unresolved resonance region in order to control and eventually revise the evaluations already made. Determination of average parameters with the purpose to establish "local systematics".
Method:	- Criticism and renormalization of experimental data
	- Use of maximum likelihood method applied to neutron widths - distribution - (ESTIMA method).
Major source of information:	Neutron Physics Literature, BNL 325
Deadline of literature coverage:	None
Cooperation:	Partly with CNEN/Bologna, ECN/Petten
Expected completion date:	continuing effort

FRANCE

Laboratory and address :	Département de Recherche Fondamentale Laboratoire de Chimie Physique Nucléaire Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX - France.
Name :	J. BLACHOT
Cooperation :	C. FICHE ^{***} for developping the file and J.C. NIMAL [*] ; B. DUCHEMIN [*] ; for the applications in summation calculation.
Compilation and Evaluation :	Radionuclide decay data : - to provide a comprehensive data bank of radioactive decay data with : half lives, Q-values, branching ratios, nuclear and spectra α , β , γ , energies and intensities with associated uncertainties.
Purpose :	 Decay data file for summation calculation of decay heat (Pepin code). Data bank for all people using decay data parameters.
Sources :	ENSDF file mostly and new recent works on short lived F.P. not yet evaluated in ENSDF.
Computer file and programs :	- Magnetic tape available on line for those using the French CISI Network. - Off line from the NEA Data bank (Saclay).
Publication :	AT. Data and Nucl. Dat. Tab. Vol. 20 (1977) p.241.

CEN/CADARACHE -C.E.A - BP.1 - 13115 St-PAUL LES DURANCE

CEN/SACLAY-C.E.A - BP.2 - 91190 GIF SUR YVETTE -

FRANCE

Laboratory and address:	Laboratoire de Métrologie des Rayonnements Ionisants C.E.N. de Saclay B.P. No. 2, F-91190 Gif sur Yvette
Names:	J. Legrand, N. Coursol, F. Lagoutine
Evaluation:	Radionuclide decay data
Purpose:	Preparation of a document providing recommended values of the principle decay scheme parameters: half-life, energies and intensities of various radiations emitted (e.g. β , γ , c.e., X-rays)
Method:	- critical analysis of published results
	- determination of mean values and associated uncertainties
Source of information:	Nuclear Data Sheets, INIS-Atomindex, other recent publications
Publications:	Table de radionucléides, edition CEA-LMRI, containing among other radionuclides, the following fission products:
	- Vol.1: Kr-85, Sr-89, Mo-99, Tc-99, Ru-103 + Rh-103m, Sb-125 + Te-125m, Xe-133, Xe-133m, Ce-144 + Pr-144
	- Vol.2: Rb-86, Sr-90 + Y-90, Y-91, Zr-95 + Nb-95, Ru-106 + Rh-106, Te-127m + Te-127, Te-131m + Te-131, I-131, Xe-131m, Cs-137 + Ba-137m, Ba-140 + La-140.
	- in preparation: Rb-88, I-129, Pr-143, Nd-147, Pm-147 (publication 1980)

GERMANY, DEM. REP.

Laboratory and address: Name:	Zentralinstitut für Kernforschung Rossendorf DDR 8051 Dresden Postfach 19 Deutsche Demokratische Republik HC. Mehner
Evaluation:	Effecti v e resonance integral of ¹³³ Cs in reactor fuel elements
Purpose:	To clear differences between experimen- tal and calculated fission product concentrations of ¹³⁴ Cs observed in investigations of burnt fuel elements
Wethod:	Calculation of effective resonance integral of ¹³³ Cs taking into account shielding by ²³⁸ U resonances and self-shielding using Breit-Wigner formalism with Doppler broadening
Major sources of informa	ation: BNL - 325, 3rd. ed., 1973
Status:	Completed
Publication:	Radiochem. Radioanal. Letters 43(1980)77

CERMANY, FED. REP.

Laboratory and address:	Inst. for Nuclear Chemistry, Philipps-University Marburg, Lahnberge, D-3550 Marburg/Lahn	
	* Gesellschaft für Schwerionenforschung mbH Postfach 110541, D-6100 Darmstadt	
Names:	U. Reus, W. Westmeier and *I. Warnecke \S	
Compilation:	Gamma-Ray Catalog +	

- Type of data: Compilation of energies and intensities of gammarays originating from the radioactive decay of nuclides, as well as other important decay properties of these nuclides.
- <u>Arrangement:</u> Part I is a listing of ca. 20,000 gamma-rays ordered by increasing energy with the corresponding nuclei and other information needed for identification purposes. <u>Part II</u> is ordered by nuclides (A,Z) and contains the complete data sets for ca. 2300 nuclides and isomers (i.e. ca. 35,000 gamma-energies), decay data, references, comments etc.
- <u>Purpose:</u> Identification of gamma-rays, data for cross-section calculations, activation analysis etc.
- <u>Major sources of information:</u> Nuclear Data Sheets and almost all important journals in nuclear physics and chemistry.
- Deadline of literature coverage: 30.6.1978 (existing version), updating to cutoff date 1.1.1980 is in progress.
- Other relevant details: The updated version will include the most important information on X-rays and an additional section ordered by energy also, but containing only the three strongest gamma-rays of each nuclide (for fast analyses).
- <u>Completion date:</u> Feb. 1979 (existing version), appearance of the revised version is planned for the end of 1980.
- <u>Availability and publications:</u> The existing version is no longer available; 250 copies have been distributed. Reprinting is not possible at the moment (1 copy = 800 pages!). The revised version shall be published in an appropriate journal and will thereby be available commercially.
- * Work performed with the support of GSI (Gesellschaft für Schwerionenforschung mbH, Darmstadt).
- § Present address: Physikalisch-Technische Bundesanstalt, Abteilung SE, Bundesallee 100, D-3300 Braunschweig

- 92 -

HUNGARY

LABORATORY AND ADDRESS: Institute of Experimental Physics, Kossuth University Debrecen P.O. Box 105 H-4001 NAMES: G.Nagy, S.Daróczy, P.Raics, I.Matajsz, I.Boda 1. Compilation: Mass yields of products from the monoenergetic neutron induced fission of 233U at neutron energies other than 14 MeV. Purpose: Najor source of information: B.F. Rider, M.E. Neek, NEDO. 12154-20 /1977/ General Electric Co; INIS Atomindex, Journals Deadline of Literature Coverage: 1979. Other relevant details: absolutisation of relative data, updating if the necessary reference nuclear data are given. Computer file: none Expected completion date: completed Publication: not planned, it is used in our evaluation 2. Evaluation: Investigation of the gross and fine structure 238 U fission product mass distributions at different neutron energies Purpose: Study the energy dependence of the gross and fine structures of mass distribution Method: Fitting of the summ of five gaussian function The gross structure is described by the fitting of the summ of fine gaussian functions to the mass distributions, the energy dependence of the fitted parameters is investigated. The significant differen-ces of the measured yields from the fitted smooth curves are interpreted as fine structures. Computer files: none Completion date: 1980. Publication: to be published

- 94 -

<u>INDIA</u> (same as INDC(NDS)-102)

Laboratory and	d address:	Health Physics Division	
		Bhabha Atomic Research Centre	
		Bombay 400 085, India.	
Names:		P.P.Chakraborty, D.N.Sharma, M.R.Iyer	
			and A.K.Ganguly.

THEORETICAL COMPILATION

- (1) <u>Type of data</u>: Mass yield and Elemental yield prediction of fragments for spontaneous fission of various fissioning nuclides.
- (2) <u>Purpose</u>: To predict mass and elemental yield of fragments from various fissioning nuclei using a model which is independent of any input fission data.
- (3) <u>Major source of information</u>: The stable neutron numbers as a function of Z of nuclei obtained from the Nuclear Mass Tables is the only input required for the calculations. Using this input data the Order Disorder Model is applied to the fissioning nucleus to predict yield values.
- (4) <u>Results and discreponcies</u>: The various characteritics of the mass yield distribution, viz., peak-to-valley ratios, bunching of higher mass peaks etc. agree well with those of experimental data. The absolute values have some discreponcies with experimental values, though an improvement in the right direction has been noticed by using the later data on nuclear stability. This leads to the conclusion that the accuracy of the predictions depend on the accuracy of the only input data used in the calculations viz., the stable

<u>INDIA</u> (cont'd)

neutron number values. The yield distribution predicted for trans-californium nuclei show the onset of symmetric division for fission of higher mass number nuclei. (5) <u>Completion date</u>: The first stage of the computation is completed by February 1977 and further improvement of the predictions is under progress using the improved stability data of nuclei.

(6) Publications: (i) Chakraborty P.P.

Asymmetry of Mass and Charge Distribution in Low Energy Fission and Fissile Material Identification Techniques

Ph D Thesis, Gujarat University, India 1977

(ii) Chakraborty P.P., Sharma D.N., Iyer M.R. and Ganguly A.K.

Asymmetry of Mass and Charge Division | Pramana <u>13</u>, 495 (Nov. 1979)

ITALY

Laboratory and address:	CNEN, Centro Studi e Ricerche "E. Clementel" Via Mazzini 2 – 40138 Bologna, Italy
Names:	F. Fabbri, G. Maino, T. Martinelli, E. Menapace, M. Motta, G.C. Panini, G. Reffo, M. Vaccari, A. Ventura
<u>Evaluation</u> :	Revised evaluation and group constant library for Pd-105, Nd-143, Sm-149, Sm-151 on the basis of recent experimental microscopic and integral data. Statistical analysis of resonance data in the mass region $40 < A < 180$ mainly for average s-wave level spacing estimate for comparison with theoretical calculation of level density. n, γ cross section evaluation of Kr-78,80,81,82,83,84,85; Se-76,78,79,80; Br-79,81 in keV-MeV region and Ir-191,193 evaluation 1 keV up to 20 MeV were performed.
Purpose:	Estimate of long term reactivity changes and FP accumulation in fast reactor.
Method:	Calculations by BW-single and -multilevel formalism (resonance region) and by statistical and optical models. Theoretical estimate of level density are based on microscopic model in the BCS approximation with pairing interactions. Collective effect for vibrational and rotational nuclei are included. "Missing level estimator method" (G.A. Keyworth, M.S. Moore and I.D. Moses in NEANDC(US)199/L) and a method based on "maximum likelihood" criterion (C. Coceva, M. Stefanon NPA135(1979)1 and M. Stefanon Nucl.Instr.Meth. to be published) have been applied in the resonance statistical analysis.
Major sources of information:	NEUDADA, CINDA, Nuclear Data Sheets.
Deadline of literature covera;	ge: December 1979
Status:	The full evaluation, file compilation and group constant library are completed. First results concerning statistical analysis of resonances and theoretical estimate of level density were presented at the NEANDC Spec. Meeting on FP Data, Bologna (1979)
Cooperation:	CEA - Cadarache and Saclay, and ECN - Petten
Other relevant details:	25-group constants were calculated at infinite dilution
Computer file of evaluated da	ta: ENDF/B format

ITALY (cont'd)

Publications:	 G. Maino, E. Menapace and A. Ventura, Nuovo Cimento 50 A, 1 (1979). G. Maino, E. Menapace and A. Ventura, CNEN Rep. RT/FI(78)24, 1978. G. Maino, E. Menapace, M. Motta and A. Ventura, contr. to Int. Conf. on Neutron Cross Sect. and Techn., Knoxville (1979).
	 V. Benzi, G. Maino, E. Menapace and A. Ventura, contr. to NEANDC Spec. Meet. on Fission Product Data, Bologna (1979). B. Leugers, F. Käppeler, F. Fabbri, G. Reffo, Second Conf. on Nuclear Reaction, Varenna (1979). F. Fabbri, G. Reffo, M. Herman, A. Marcinkowski, Second Int. Symp. on Neutron Induced Reactions, Smolenice (1979). G. Reffo, Int. Conf. on Theory and Applications of Moment Methods in Many Fermion Systems, Ames, Iowa (1979). B. Leugers, F. Käppeler, F. Fabbri, G. Reffo, Int. Conf. on Nucl. Cross Sections for Technology, Knoxville (1979). I.M. Akkermans, H. Gruppelaar, G. Reffo, submitted for publication in Phys. Rev. C.

JA PAN

Japanese Nuclear Data Committee, Secretariat address: Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan Decay Heat Nuclear Data Working Group: R. Nakasima (Hosei University) M. Yamada (Waseda University) T. Tamai (Kyoto University) M. Akiyama (University of Tokyo) I. Otake (Power Reactor and Nuclear Fuel Development Corp.) T. Hojuyama (Mitsubishi Atomic Power Industry) A. Zukeran (Hitachi Ltd.) S. Iijina, T. Murata, T. Yoshida (Nippon Atomic Industry Group Co.) K. Umezawa, T. Tasaka, Z. Matumoto, T. Tamura, K. Ihara (JAERI) 1. Compilation: Decay data and delayed neutron data Purpose: Making FF decay data library for summation calculation of decay heat Najor Sources of Information: Journals, Nuclear Data Sheets and ENSDF Deadline of Literature Coverage: None Status: It is difficult to scan all journals Cooperation: None Computer File: Nuclear structure data file NDFILE and retrieval program ABEG. ENSDF Expected Completion Date: Continuous compilation 2. Evaluation: (1) Preparation of input data for summation calculation (2) Estimation of released beta and gamma energies for short-lived FP (3) Evaluation of delayed neutron emission probability Making FP decay data library for summation calculation of Purpose: decay heat Sensitivity study for decay heat Method: Gross theory of beta decay and systematics are used in estimating the released energy Major Sources of Information: Own compiled data Status: | Released beta and gamma energies have been calculated for about 630 nuclides based on experimental information, and estimated for more than 100 nuclides by means of gross theory of beta decay. Calculation of cumulative yield from independent yield given by Rider and Meak is now in progress Computer File of Evaluated Data: | PROFP output file, which makes the table of half-life, decay constant, Q-beta, Q-EC, mean energies of beta, gamma and conversion electron, and branching ratio Expected Completion Date: | FP decay data library (1-st version); in 1980 Summation calculation; in 1980 Sensitivity study; mid 1981 Publication: in plan

JAPAN

Laboratory and address :	Japanese Nuclear Data Committee/FPND W.G., Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki, Japan
Names :	S. Iijima, M. Kawai, T. Yoshida(i), S. Igarasi, Y. Kikuchi, T. Nakagawa, Y. Nakajima(ii), H. Matsunobu(iii), T. Aoki(iv), A. Zukeran(v), T. Watanabe(vi), I. Otake, M. Sasaki(vii).
Evaluation :	 Neutron cross sections of about 80 FP nuclides (Z=35 to 64). Integral test of JENDL FP library.
Purpose :	Fast breeder reactor and thermal reactor calculation.
Method :	(1) Calculation with spherical optical model and statistical theory. Single and muti-level BW formula in thermal and resonance regions. Optical model parameters are determined by SPRT method. Level density parameters are re-evaluated, deriving systematics of parameters.
	(2) Calculation using JAERI-FAST type 70-group cross sections with resonance self-shielding factors, and the neutron spectrum data from STEK and CFRMF data.
Major sources of information :	EXFOR library, CINDA, BNL-325 and recent literature, integral data from STEK and CFRMF.
Status :	(1) Re-evaluation of smooth cross sections for Nd and Sm isotopes was completed in fall 1979. New evaluation for about 80 FP nuclides was started in May, 1980.
	(2) Analyses of STEK reactivity and CFRMF activation data were completed in Sept., 1979. Intercomparison of integral and differential data was completed in Dec., 1979.
Other relvant details :	The evaluation of 68 nuclides was completed in Aug., 1977, and the file is available from NEA Data Bank.
Computer file of compiled data :	NESTOR-2 file and the domestic file of integral data.
Computer file of of evaluated data :	JENDL (ENDF/B-IV Format).

(i) Nippon Atomic Industry Group Co., Ltd.
(ii) JAERI
(iii) Sumitomo Atomic Energy Industries, Ltd.
(iv) Fuji Electric Co.
(v) Hitachi Ltd.
(vi) Kawasaki Heavy Industries
(vii) PNC

- 100 -

JAPAN

(cont'd)

Discrepancy encountered :	From intercomparison of integral and differential data, the following discrepancies may be noted.
	Tc-99 : STEK results (C/E = 0.85 - 0.9) and CFRMF result (C/E = 1.21) are not mutually consistent. RPI capture data seem to support STEK data.
	Pd-108: STEK data indicate smaller cross section than ENDF/B-4. CFRMF data indicate slightly opposite direction. Substantially high capture cross section at ORELA are probably not in agreement with either of integral data.
	I-127 : STEK resuts (C/E = 0.85 - 1.0) and CFRMF result (C/E = 1.23) are not consistent.
· · · · · · · · · · · · · · · · · · ·	Sm-149: Recent capture data at FEI and JAERI are significantly higher than that expected from STEK measurements.
Expected completion dat	e : Dec., 1980.

Publications :

- (1) H. Nishimura et al., Integral test of the JENDL-FP data file (in Japanese), JAERI-M 8163, p.136 (1979).
 (2) S. Iijima et al., Fission product neutron cross
- (2) S. HJIMa et al., Fission product heation cross section evaluations for JENDL and the integral test, NEA Specialists' Meet. on FP Nuclear Data, CNEN, Bologna, 12th - 14th Nov., 1979, Paper no. 22.

NETHERLANDS

Laboratory and adress	Netherlands Energy Research Foundation (ECN) Postbus 1, 1755 ZG Petten, The Netherlands. Telephone: (02246) - 6262, telex: 57211 reacp nl
Names	J.W.M. Dekker, H. Gruppelaar, R.J. Heijboer and A.J. Janssen
Evaluation	(1) RCN-2 evaluation of neutron cross sections (σ_t , σ_e , $\sigma_{n\gamma}$, $\sigma_{n'}$ -matrix, σ_{n2n}) for about 60 fission products in the energy range of 10^{-3} eV to 15 MeV, in KEDAK type format, for the following elements, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Te, I, Xe, Cs, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Th.
	 (2) Generation of group cross sections for fast reactor calculations based on RCN-2 evaluation in the 26-group ABBN scheme with a fast reactor flux weighting spectrum and error files for capture group constants, including 26x26 covariance matrices.
	 (3) Adjustment of capture group constants based on (2) and integral STEK+CFRMF measurements. (4) Generation of an adjusted point cross sections library
	based on STEK+CFRMF integral data. (5) Calculation of pseudo-fission-product cross sections.
Purpose	Fast breeder power-reactor data needs.
Method	Calculation with multilevel Breit-Wigner formula, optical model and revised statistical model, taking into account all available experimental information.
Major sources of information	BNL-325, NEUDADA, CINDA, Nuclear Data Sheets, recent liter- ature, integral data mainly from STEK and CFRMF.
Status	 (1-3) Completed and reported for 43 isotopes; planned for 1980: new evaluations for Eu-isotopes, revisions for important fission products; planned for 1981: 22 other isotopes. (4) In progress, completed 1981. (5) Updating in 1981.
Computer file	 KEDECN, KEDAK type format (co-operation with Dr. B. Goel, KfK, Karlsruhe), has been sent to NEA Data Bank at Saclay.
Completion date	1981.
Recent publi- cations	 H. Gruppelaar, Tables of RCN-2 fission-product cross section evaluation, part 1, ECN-13 (1976), part 2, ECN-33 (1977), and part 3, ECN-65 (1979). G. Delfini and H. Gruppelaar, Maximum likelihood analysis of resolved resonance parameters for 18 fission product nuclides, ECN-82 (1980).

NETHERLANDS

(cont'd)

- (2,3) J.W.M. Dekker, Tables and figures of adjusted and unadjusted capture group cross sections based on the RCN-2 evaluation and integral measurements in STEK, part 1, ECN-14 (1977), part 2, ECN-30 (1977), and part 3, ECN-54 (1979).
- (2,3) J.W.M. Dekker and H.Ch. Rieffe, Adjusted capture cross sections of fission-product nuclides from STEK reactivity worths and CFRMF activation data, ECN-28 (1977) and part 2, ECN-55 (1979).
- R.J. Heijboer, Pseudo fission-product cross sections for a 1300 Mwe fast breeder reactor (status July 1978), ECN-52 (1978).
- (5) H. Gruppelaar and B.P.J. van den Bos, The contributions of (n,p) and (n,α) reactions to fission-product capture cross sections, ECN-78 (1979).

NE THE RLANDS

Laboratory	: Netherlands Energy Research Foundation ECN, Postbus 1, 1755 ZG Petten, The Netherlands.
Names	: Willem L. Zijp and J.H. Baard.
Compilation	: Selected fission yields and fission product decay data for reactor neutron metrology application.
purpose	: Creation of a common data set for all laboratories working in the field of reactor neutron metrology. The guide was prepared on behalf of the Euratom Working Group on Reactor Dosimetry.
Major sources of information	 : Cuninghame, J.G., Technical Report IAEA-213 (IAEA, Vienna, 1978); Gilliam, D.M., et al., Report NUREG/CP-004 (NRC, Washington D.C., 1978); Data supplied by the computer program MEDLIST from the Evaluated Nuclear Structure Data File (ENSDF); Data supplied by the Physikalisch Technische Bundesanstalt, Braunschweig.
Deadline of literature coverage	e: Spring 1979.
Cooperation	: Members of Euratom Working Group on Reactor Dosimetry.
Other relevant details	: Fission yields and decay data and decay schemes are given for the following fission products: ⁹⁵ Zr, ⁹⁷ Zr, ¹⁰³ Ru, ¹³¹ I, ¹³² Te, ¹³⁷ Cs and ¹⁴⁰ Ba. The fissionable isotopes considered are: ²³⁵ U, ²³⁸ U, ²³⁹ Pu, ²³⁷ Np.
Computer file	: Not present.
Completion date	: August 1979.
Publications	: Report ECN-71.

- 104 -

UNITED KINGDOM

(same as INDC(NDS)-102)

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire, Oxll ORA
Name:	E.A.C. Crouch	
Compilation:	Chain, Cumulative and Independent yields for all neutron induced with neutrons of energy up to a spontaneous fission. Ongoing of	ent fission product fission reactions 14 MeV, including compilation.
Purpose:	Basic data for fission yield e	valuation.
Sources:	Journals, Proceedings of Learne other open literature, Project work is complete but unlikely	ed Societies, or reports if the to be published.
Deadline:	No results prior to 1950 are co	ollected.
Cooperation:	We are prepared to exchange fi	les with other groups.
Computer File:	Information held in standard for	orms on Computer Files.
Completion Date:	Continuous compilation.	
Publications:	AERE R6642 'A library of neutroproduct yields maintained and computer methods'. 'Part I: The establishment of E.A.C. Crouch, December 1970.	on induced fission interrogated by the library'.
	AERE R7207 'A library of neutroproduct yields maintained and computer methods'. 'Part II: The interrogation of E.A.C. Crouch, August 1972.	on induced fission interrogated by the library'.
	Fission Product Yields from Ner E.A.C. Crouch. Atomic Data and Nuclear Data T May, 1977. Contains experimental values as after fitting to conservation	utron-Induced Fission - ables, Vol. 19, 5, nd adjusted values laws .

UNITED KINGDOM

(same as INDC(NDS)-102)

	Laboratory and Address:	AERE	Harwell	UKAEA AERE Harwell Oxfordshire OXll ORA
	Name:	E.A.(C. Crouch	
1.	Evaluation	(1)	Neutron induced fission pro fissile nuclides at neutron MeV; chain yields and indep	duct yields for all energies up to 15 endent yields.
		(2)	Adjustments of the chain yi independent yields to force conservation laws i.e. to f	elds and the calculated agreement with the orm a 'consistent set'.
	Purpose:	UKND	File to be used in Reactor	design and operation.
	Method:	(1)	The individual yields for a chain and independent), are and the means calculated to	given reaction (both examined, weighted gether with the errors.
		(2)	The evaluated yields are au ation to fill missing value independent yields by calcu meters estimated from known are fitted by least squares conditions to give adjustme and independent yields.	gmented by interpol- s or in the case of lation based on para- values. The results to the conservation ents for chain yields
		I	Complete - the fitting of c equality of yields of compl set will be tested for its estimate of after heat from experimental values than pr	conservation laws and the ementary elements. The ability to produce an a ²³⁹ Pu Fission nearer to revious sets.
	Sources:	Comp	ilation mentioned above.	
	Deadline:	No r beli resu	esults prior to 1950 are col eved to be complete up to er lts included.	lected. Compilations ad 1975, some 1976
	Status:	Eval 1977	uation and Consistent set co . Further development conti	omplete at January .nuing.
	Cooperation:	We a	re prepared to exchange file	es with other groups.

- 106 -

UNITED KINGDOM

(cont'd)

- Computer Files of Compilation as above. Compiled Data: Computer File of Magnetic tape or punched cards of the consistent Evaluated data: set in ENDF/BIV format. Discrepancies Files are compared with those of B.F. Rider and found: discrepancies found are resolved. Publication: Fission Product Yields from Neutron-Induced Fission. E.A.C. Crouch. Atomic Data and Nuclear Data Tables, vol. 19, 5, May 1977.
- 2. Evaluation: Compilation and evaluation of the half lives of delayed neutron emitter precursors and emission probabilities of the delayed neutron emitters. Hence, using the fission product consistent sets, calculation of the delayed neutron yields ... Proceeding.
 - Purpose: UK Nuclear Data File for use in Reactor design and operation calculations.
 - Sources: The open literature

Deadline: Continuous compilation.

Status: Compilation of delayed neutron data proceeding.

- Cooperation: We are prepared to exchange information with other groups.
- Computer files: Not yet implemented.

UNITED KINGDOM

Laboratory CEGB Berkeley Berkeley Nuclear Laboratories and Address **Berkeley** Gloucestershire GL13 9PB υ.к. B. Aldred BNFL, Windscale Working Group: B.S.J. Davies CEGB, BNL. A. Tobias CEGB, BNL. M.F. James AEE, Winfrith. A.L. Nichols AEE, Winfrith. D.G . Vallis AWRE, Aldermaston. Mrs. K.M. Glover AERE, Harwell.

1. Compilation and Evaluation:

Radionuclide decay data

purpose: to provide a comprehensive, updated data file of radioactive decay data, including half lives, Q-values branching ratios, mean α , β and γ energies and intensities with associated uncertainties.

progress: updating of the data set has continued. Theoretical half-life values for 75 short-lived nuclides have been replaced with measured values. Decay schemes for about 200 nuclides have been revised, and for a further 70 nuclides theoretical decay energies have been replaced with measured values. These data require final testing before the existing recommended set for UK use (UKFPDD-1) is replaced by the updated set.

2. Decay scheme calculations - the CASCADE Programme

purpose:	to compare experimental data with decay data calculated from a more basic data set (e.g. US ENSDF file) and to produce mutually consistent catalogues of emission data for different radiation types.
progress:	the CASCADE code development is nearing completion. CASCADE and its suite of programmes are being tested in all of the possible options to eliminate any bugs.
	The major γ – γ and γ – x and other coincidence data sets can now be evaluated automatically.
	The results can be reproduced in standard ENDF/B IV and/ or V format. Decay data information not previously included in ENDF/B IV or V but evaluated by CASCADE can be included in an ENDF/B IV or V type format (e.g. inclusion of $\gamma - \gamma$ coincidence data tables). This is now being tested.
completion date:	expected complete by end of 1980.
Publications:	Tobias, A. "Decay Heat" Report RD/B/N4611 and Prog. in Nuc. En., 1980. Vol [.] 5 No. 1 PP 1-93. Tobias, A. "U235 Fission Product Gamma Spectra: A comparison between experiment and calculation" Report RD/B/N4667.

UNITED KINGDOM

Laboratory and address:	Birmingham Radiation Centre	University of Birmingham P.O. Box 363 Birmingham B15 2TT United Kingdom
Name:	D.R. Weaver	
Evaluation:	Equilibrium and near-equilibrium of spectra	delayed neutron
Purpose:	For reactor physics calculations a delayed neutron yield measurements evaluation was recommended by the Vienna Consultants' Meeting on Del Properties	and analysis of s. The March 1979 layed Neutron
Method:	Calculation of a full covariance n spectra	matrix for the
Deadline of		
literature coverage:	None. Raw experimental data from used either ³ He or proton recoil of obtained. Further data would be	m laboratories who counters has been welcomed
Status:	A method of obtaining a full covar been derived based upon the sensit spectra obtained from unfolding to calibration parameters of the dete describing the technique and measu Am/Li spectrum using a ³ He counter	riance matrix has tivity of the o changes in the ector. A paper urement of the r is in preparation

U. S. A. Laboratory and address: National Nuclear Data Center, Bldg. 197D Brookhaven National Laboratory Upton, L.I., N.Y. 11973, U.S.A. Names: S.F. Mughabghab, M. Divadeenam, N.E. Holden Evaluation: BNL-325 Neutron Cross Sections Vol. I. Resonance Parameters Purpose: Update resonance parameter evaluations Major Sources of Information: CSISRS Data File, CINDA, Private Communications and Personal Files Status: Part I for Z=1-60 evaluation nearly complete and proof pages for Z=20-60 are ready to be sent for review. Part II for Z=61-98 evaluation will begin as soon as Part I

Other Relevant Details:

Any other details may be obtained from S.F. Mughabghab

Completion Date:

goes to press.

Projected Publication Dates:

Part I (Z=1-60) goes to press July 1980 Part II (Z=61-98) goes to press June 1981

- 109 -

Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415 USA
Names:	C. W. Reich, R. L. Bunting, M. A. Lee
Compilation:	Decay data for fission products. Quantities treated include: T_{y} ; QB; branching fractions for the various decay modes; energies and intensities of all emitted radiations (e.g., β , γ , c.e., x-ray); K-, L- and total ICC; delayed-neutron energy spectra for individual precursors; uncertainties in all measured values.
Purpose:	Decay data file for ENDF/B.
Major sources of information:	Nuclear Data Sheets, Table of Isotopes (7th. Ed.), preprints of recent work.
Deadline of literature coverage:	Ongoing. For Version V of ENDF/B, cut-off date is approximately September, 1978.
Computer File:	Decay data are included in ENDF/B Fission Product File. Tapes available through normal ENDF/B procedures. Evaluated decay data sets for 318 fission- product nuclides (and isomeric states) have been prepared for inclusion in the ENDF/B-V Fission-Product File. Release of the Version-V Fission-Product File is scheduled for May, 1980.
Publications:	C. W. Reich, "Applications of Fission-Product Decay Data", in Proceedings of the Isotope Separator On-Line Workshop, U. S. DOE Report BNL 50847 (July, 1978) pp. 109-148.

- 111 -

U. S. A.

Laboratory and address	General Electric Company Vallecitos Nuclear Center P. O. Box 460 Pleasanton, California 94566 U.S.A.			
Name	B. F. Rider			
Compilation	Fission Product Yields for 40 neutron induced fissioning syste			on induced fissioning systems:
	U235T U235F U235HE U238F U238HE Pu239T Pu239F Pu241T U233T Th232F	U233F U233HE U236F Pu239H Pu240F Pu241F Pu242F Th232H Np237F Cf 252S	U234F U237F Pu240H U234HE U236HE Pu238F Am241F Am243F Np238F Cm242F	Th 227T Th 229T Pa 231F Am 241T Am 241H Am 242MT Cm 245T Cf 249T Cf 251T Es 254T
	where T = The: S = Spontaneou	rmal, F = F us.	ast, H = Hi	gh Energy (14 MeV), and
Purpose	For burnup, and fission rate and decay heat calculations. The basis for ENDF/B-V fission product yields.			
Sources	Open literature, CINDA, INIS ATOMINDEX, correspondence.			
Coverage	Literature through June 1980			
Cooperation	U.S. National Nuclear Data Center, CSEWG, Fission Product Decay Heat Task Force, Fission Yield Subcommittee.			
Details	About 25,000 entries from 1200 references. Complete set of recommended independent and cumulative yields for all F.P. nuclides.			
Computer File	Tape available as ENDF/B-V from U.S. National Nuclear Data Center, Brookhaven National Laboratory, Upton, N.Y. 11973 U.S.A.			
Completion Date	September 1980	0		
Publications	"Compilation of Fission Product Yields," NEDO-12154-3B (1980). Available on Fiche from General Electric Co., P. O. Box 460, Pleasanton, California 94566, U.S.A., Attn: B. F. Rider			

Laboratory and address:

Hanford Engineering Development Laboratory P.O. Box 1970 Richland, WA 99352

Names:

RE Schenter, FM Mann, DL Johnson, and F Schmittroth

Evaluation:

ENDF/B-V, Mods to ENDF/B-V, and ENDF/B-VI Fission Product Data File and Fission Yield Files

- A. Coordinate generation and testing of complete ENDF/B-FP files which will contain cross sections, decay data and fission yields for approximately 900 fission product nuclei and 20 fissionable nuclei. Coordination is part of the responsibility as Chairman of CSEWG (Cross Section Evaluation Working Group) Fission Product and Actinide Data Subcommittee. Two subcommittees related and contributing to this subcommittee are chaired by TR England (LASL) and CW Reich (INEL) and cover the areas of fission yields and experimental decay data, respectively. Evaluations to these files will be contributed by essentially all CSEWG member laboratories.
- B. Evaluate important FP cross sections for fast and thermal reactor application. These will mainly involve updating about 180 cross section evaluations from ENDF/B-V with emphasis on capture. Use will be made of combining recent integral and differential data results from CFRMF, STEK, RPI and ORNL.
- C. Evaluate decay data parameters \overline{E}_{β} , \overline{E}_{γ} for "Theoretical" ("no line data") FP nuclides using extrapolated "fits" to known data and integral testing of recent decay heat measurements.
- D. Evaluate delayed neutron spectra using summation method from individual precursors in cooperation with TR England (LASL) and CW Reich (INEL)

Purpose:

Update ENDF/B Fission Product Data Files

Completion dates:

ENDF/B-V FP file will be issued May 1980. ENDF/B-V Fission Yield Files issued April/May 1979. Mods to ENDF/B-V expected to be released May 1981 and May 1982.

References:

References related to this work may be obtained from R.E.Schenter.

(same as INDC(NDS)-102)

Laboratory and Address:

University of California Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico 87545 (U.S.A.)

Names:

T. R. England (LASL)
R. E. Schenter (HEDL)
B. F. Rider (G.E.)
J. Liaw (U. of Oklahoma)

Compilation:

Library of evaluated fission product yields for Version V of the Evaluated Nuclear Data Files (ENDF/B-V).

Deadline of Literature Coverage:

Mid-1978, including recent unpublished data.

Cooperation:

Subcommittee consisting of members from major U.S.A. commercial and government laboratories.

Other Relevant Details:

Twenty yield sets for 11 fissionable nuclides $(^{233,235,236,238}_{U}, ^{239,240,241,242}_{Pu}, ^{237}_{Np}, ^{232}_{Th}$, and $^{252}_{Cf}$). Each set contains ~ 1100 yields and uncertainties; independent yields before delayed neutron emission and cumulative yields (by A and Z) after delayed neutron emission are given. Yield distributions account for isobaric states, Z and N pairing effects, ternary fission and delayed neutron branching.

Completion Date:

August 1978 for compilation. Phase I testing completed. Phase II testing in progress.

Publications:

Report on Phase I testing, and other relevant details in progress.

Computer File:

Distributed by the National Nuclear Data Center at the Brookhaven National Laboratory.

(same as INDC(NDS)-102)

LABORATORY AND ADDRESS:

University of California Los Alamos Scientific Laboratory P O Box 1663 Los Alamos, New Mexico 87545 (USA)

NAMES:

T. R. England R. J. LaBauve W. B. Wilson

COMPILATION:

Library of processed 154-group ENDF/B-IV fission_product reaction cross sections.

PURPOSE:

Data file of multigroup values $(10^{-5} \text{eV}-20 \text{ MeV})$ for use in collapsing to few-group values.

MAIN SOURCE OF INFORMATION:

ENDF/B-IV Fission-Product Data File

OTHER RELEVANT DETAILS:

Cross sections were processed into the Power Reactor Studies (PRS) 154-group structure described in Ref. 1 and 2, using the PRS Neutron Flux Weighting Function described in Ref. 1. Cross sections were processed at 900 or 1000 K at infinite dilution. A total of 181 nuclides are described with total, elastic, total inelastic, and radiative capture multigroup values. Additional neutron absorption reaction cross-section tabulations are given for 36 of the nuclides. A total of 960 multigroup cross-section tabulations are included in the data file, which is issued with a companion collapsing code TOAFEW.

COMPUTER FILE:

The data file and collapsing code are available from the Radiation Shielding Information Center, Oak Ridge National LAboratory, P O Box X, Oak Ridge, Tennessee 37830 (USA).

REFERENCES:

- W. B. Wilson, T. R. England, and R. J. Labauve, "Multigroup and Few-Group Cross Sections for ENDF/B-IV Fission Products; the TOAFEW Collapsing Code and Data File of 154-Group Fission-Product Cross Sections," Los Alamos Scientific LAboratory report LA-7174-MS (March 1978).
- R. J. LaBauve and W. B. Wilson, "Proposal to Extend CSEWG Neutron and Photon Multigroup Structures for Wider Applications," Los Alamos Scientific Laboratory report LA-6240-P (February 1976).

(same as INDC(NDS)-102 except for additional publications)

Laboratory and Address:

University of California Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico 87545

Names:

T. R. England R. J. LaBauve D. G. Madland W. B. Wilson

Cooperation:

R. E. Schenter, chairman of the ENDF/B actinide and fission product subcommittee, and F. Schmittroth of the Hanford Engineering Development Laboratory, P. O. Box 1970, Richland, Washington 93352.

Compilations:

A) Nuclide Parameter Evaluated Compilations

1) β and γ decay energies, branching fractions [decay and (n,γ)], half-lives, Q-values and cross sections for 824 fission products are tabulated in Ref. 1. This is a basic data set that includes the major types of parameters, with corrections, from ENDF/B-IV, except for yields and the energy dependence of cross sections.

2) Multigroup β and γ spectra are tabulated in Ref. 2 for 180 fission product nuclides. The β spectra are given in 75 groups and the γ spectra in 150 groups. These data are based on ENDF/B-IV.

3) Multigroup cross sections are compiled in Ref. 11, processed from ENDF/B-IV.

4) Few group fitted spectral functions available in Ref. 9.

5) Comparisons with experiment and a new decay heat standard are presented in Ref. 14. Reference 15 is a code incorporating the pulse function data of the new ANS Decay Heat Standard.

<u>B) Evaluations</u>

1) Yield distribution (pairing effects) and branching to isomeric states are evaluated and modeled in Refs. 3 and 4. Estimated values from the modeling are also included in these references.

2) Ternary fission is evaluated and compiled in Ref. 5.

3) β and γ spectra, decay heating and absorption buildup are evaluated by comparison with experiment in Refs. 6-13.

<u>U.S.A</u>.

(cont'd)

Purpose:

Research by the Los Alamos nuclear data group (T-2) is directed at improvement in the national data file ENDF/B and at the use of these data in, e.g., determining a new decay heat standard, absorption buildup, etc.

References

- T. R. England and R. E. Schenter, "ENDF/B-IV Fission Product Files: Summary of Major Nuclide Parameters," Los Alamos Scientific Laboratory report LA-6116-MS [ENDF-223] (October 1975).
- 2. T. R. England and M. G. Stamatelatos, "Multigroup Beta and Gamma Spectra of Individual ENDF/B-IV Fission-Product Nuclides," Los Alamos Scientific Laboratory report LA-NUREG-6622-MS (Decamber 1976).
- 3. D. G. Madland and T. R. England, "The Influence of Pairing on the Distribution of Independent Yield Strengths in Neutron-Induced Fission," Los Alamos Scientific Laboratory report LA-6430-MS [ENDF-240] (July 1976).
- D. G. Madland and T. R. England, "Distribution of Independent Fission-Product Yields to Isomeric States," Los Alamos Scientific Laboratory report LA-6596-MS [ENDF-241] (November 1976).
- D. G. Madland and Leona Stewart, "Light Ternary Fission Products: Probabilities and Charge Distributions," Los Alamos Scientific Laboratory report LA-6783-MS [ENDF-247] (April 1977).
- D. G. Foster, Jr. and T. R. England, "Time-Dependent Spectra of Photons and Spontaneous-Fission Neutrons for Applied Problems," <u>Invited Paper</u>, Trans. Am. Nucl. Soc. <u>23</u>, 551 (1976).
- T. R. England and M. G. Stamatelatos, "Beta and Gamma Spectra and Total Decay Energies from Fission Products," Trans. Am. Nucl. Soc. <u>23</u>, 493 (1976).
- M. G. Stamatelatos and T. R. England, "Fission-Product Gamma-Ray and Photoneutron Spectra and Energy-Integrated Sources," NUREG-0155 [LA-NUREG-6345-MS] (Issued December 1976) (See also Addendum 1, March 1977).
- 9. R. J. LaBauve, et al., "The Application of a Library of Processed ENDF/B-IV Fission-Product Aggregate Decay Data in the Calculation of Decay-Spectra," LA-7483-MS (September 1978).
- M. G. Stamatelatos and T. R. England, "Short Irradiation Fission-Product Beta Spectra and Total Energy: Calculations Versus Experiment," (ANS Summary accepted for ANS Annual Meeting June 12-17, 1977).
- 11. T. R. England, W. B. Wilson, and M. G. Stamatelatos, "Fission-Product Data for Thermal Reactors

Part 1 A Data Set for EPRI-CINDER Using ENDF/B-IV Part 2

Users Manual for EPRI-CINDER Code and Data," Los Alamos Scientific Laboratory reports LA-6745-MS and LA-6746-MS (December 1975) [To be issued by EPRI \sim March 1977].

<u>U.S.A.</u>

(cont'd)

- 12. W. B. Wilson and T. R. England, "Status of Fission-Product Data for Absorption Calculations," LA-UR-78-1452, (May 1978).
- E. T. Jurney, P. J. Bendt, and T. R. England, "Fission Product Gamma Spectra," LA-7620-MS (January 1979).
- 14. T. R. England, R. E. Schenter, and F. Schmittroth," Integral Decay-Heat Measurements and Comparisons to ENDF/B-IV and V," NUREG/CR-0305 [LA-7422-MS] (August 1978).
- 15. W. B. Wilson, T. R. England, and R. J. LaBauve," DKPOWR: A Code for Calculating Fission-Product Decay Power (report in preparation).
- 16. T. R. England, W. B. Wilson, "TMI-2 decay power: LASL fission-product and Actinide decay power calculations for the president's commission on the accident at Three Miles Island " LA-8041-MS, Revised (March 1980).
- 17. "Generation of Pulse Functions for Beta and Gamma Decay Spectra " LA-8277-MS.
- 18. "Comparisons of Calculated and Measured Pu-239 Beta and Gamma Spectra " NUREG/CR-1172 (ORNL/NURGE-66).
- 19. "Status of ENDF/B-5 Yields " Third ASTM Euratom Symposium, Ispra, Italy, Oct. 1979.

U.S.A.

(same as in INDC(NDS)-102)

Laboratories Washington University, Dept. of Chemistry, St. Louis, MO., USA Los Alamos Scientific Laboratory, Group CNC-11, Los Alamos, NM USA

Names A. C. Wahl and K. Wolfsberg

Purpose Development of systematics that will allow reliable estimates to be made for unmeasured independent yields and that will increase understanding of the fission mechanism.

Sources Journals, reports, preprints, and personal communications

- Method Data from various types of measurements are compared for evaluation of the reliability of the newer methods.
- Cooperation We are prepared to exchange files with other groups.
- Computer File Information is held in standard forms on computer files.
- Completions Continuous compilation

Publications A. C. Wahl, A. E. Norris, R. A. Rouse, and J. C. Williams, in Proceedings of the Second International Atomic Energy Symposium on Physics and Chemistry of Fission, Vienna, Austria, 1969 (I.A.E.A.), p. 813.

K. Wolfsberg, Los Alamos Scientific Laboratory Report No. LA-5553-MS (1974).

A. C. Wahl, "Nuclear-Charge Distribution in Fission - Investigation of Systematics and Methods of Estimation of Independent Yields," Contribution to IAEA Petten Panel on Fission Product Nuclear Data - Sept., 1977. Published in: INDC(NDS)-87 (1978), 215.

A. C. Wahl, "Systematics of Nuclear Charge Distribution in Fission - The Z Model," J. Radioanal. Chem. <u>55</u>, 111 (1980).

<u>U. S. S. R.</u>

Laboratory:	Moscow Physical Engineering Institute, Moscow, USSR
Names:	Byalko A.A., Zhivun V.M., Kovalenko V.V., Koldobski A.B.
Evaluation:	Evaluation of pairing effects on charge distribution of fission product yields.
Method:	Charge distribution parameters were determined by fitting to experimental data.
Major sources of information:	Journals and reports
Deadline of literature coverage:	1975
Publication:	"Accounting for Pairing Effects in the Analitical Representation of Isobaric Charge Distribution of Uranium-235 Products of Fission by Thermal Neutrons" "Atomnaya Energija" v. 43(1), (1977), 51-52.

III. RECENT FUBLICATIONS RELATED TO FPND

The publications listed below refer to activities related to FPND which are not covered by the contributions contained in this issue. They are sorted according to

- 1. Fission yields and charge distribution
- 2. Neutron reaction cross sections
- 3. Decay data
- 4. Delayed neutron data
- 5. FP decay heat
- 6. Reviews and summaries

Completeness of this Section has not yet been attempted. For papers presented at meetings see section IV.

III.1. Fission yields and charge distribution

(For fission yields of delayed neutron precursors see also "delayed neutrons")

Light-charged-particle emission in keV neutron-induced fission of $239\,P\!u$

B.Krishnarajulu, S. Sen, G.K. Mehta, J. Phys. G 5, 319 (Feb. 1979)

[yields and energy spectra; $E_n = 100 \text{ keV} - 1 \text{ MeV}$]

A detailed investigation of the thermal neutron induced ternary fission of $235 \mathrm{U}$

C. Guet, C. Signarbieux, P. Perrin, H. Nifenecker, M. Asghar, F. Caitucolli, B. Leroux, Nucl. Phys. A314, 1 (1979)

[energy and angular distribution of long-range α)

Independent yields of Rb and Cs isotopes from thermal-neutron induced fission of 235U

S.J. Balestrini, R. Decker, H. Wollnik, K.D. Wünsch, G. Jung, E. Koglin, G. Siegert, Phys. Rev. C <u>20</u>, 2244 (December 1979)

[deduced: charge dispersion, odd-even Z effect]

Fission fragment energy correlation measurements for the sub-barrier $(n_{\rm th},f)$ of ^{241}Am and ^{243}Am

M. Asghar, F. Caitucolli, P. Perrin, G. Barreau, B. Leroux, Nucl. Phys. <u>A334</u>, **32**7 (1980)

Fragment mass and kinetic energy distribution

Nuclear charge distribution in fission products

J.H. Baik, H.-I. Bak, J. of the Korean Nuclear Society <u>11</u>, 295 (December 1979)

[calc. charge distribution in ²³⁵U thermal fission compared to experiments]

Charge distribution in the spontaneous fission of 252Cf

H.N. Erten and N.K. Aras, J.Inorg.Nucl.Chem. <u>41</u>, 149 (1979) [experimental Z_p-values compared to UCD, ECD; odd-even and magic number effects investigated]

III.2. Neutron reaction cross sections

Note on the energy dependence of the absoption cross-section of the fission-product aggregate

A. Radkowsky, A. Galperin, Annals of Nucl. En. <u>6</u>, 249 (1979)

[Reference case (BWR) calculation of FP -absorption: non-1/v behaviour must be taken into account]

The thermal-neutron capture cross section for the production of 108m_{Ag}

T.B. Ryves, Nucl. Sci. Engg. 72, 357 (1979)

[also Cd-ratios and RI/ σ_0 for production of 108m, 110mAg)

Level structure of odd-mass nuclei and the unified model II: etc see decay data, Phys. Rev. C 20, 2370 (December 1979)

[also measured: thermal neutron cross sections for production of 117g, 117mCd]

Neutron resonances in ¹⁰⁰Mo and valence neutron capture

Weigmann, S. Raman, J.A. Harvey, R.L. Macklin, G.G. Slaughter Phys.Rev. C 20, 115 (July 1979)

[total and capture cross section, $E_n = 0.1-26$ keV; gamma spectrum 0.1-8 keV; deduced: resonance parameters, levels]

104,105,106,108,110 $Pd(n,\gamma)$ cross sections above 26 keV

R.L. Macklin, J. Halperin, R.R. Winters, Nucl. Sci. Engg. <u>71</u>, 182 (1979)

100,101,102,104 $\operatorname{Ru}(n,\gamma)$ and 103 $\operatorname{Rh}(n,\gamma)$ cross sections above 26 keV R.L. Macklin, H. Halperin, Nucl. Sci. Engg. 73, 174 (Feb. 1980)

III.3. Decay data

(for delayed neutron precursor decay data see also "delayed neutrons")
γ-ray energies for ⁸⁸Rb decay
R.G. Helmer, Nucl.Instr.Meth. <u>158</u>, 489 (January 1979)
Total β-decay energies and the mass-energy surface of very neutron-rich nuclei near mass 100
P. Peuser, H. Otto, N. Kaffrell, A. Nymen, E. Röckl, Nucl. Phys. <u>A332</u>, 95 (1979)

[96,98_{Rb}, 96,98_{Sr}, 98_gY: Q₆; 96,98_{Rb}: E_y, I_y]

Determination of Q_R values from endpoint energies of beta spectra H. Otto, P. Peuser, G. Nyman, E. Röckl, Nucl. Instr. Meth. 166, 507 (1979) [144Pr] Beta decay of ⁹⁹Tc^m D.E. Alburger, P. Richards, Phys. Rev. C 21, 705 (Feb. 1980) Beta-decay of 99mTc and dose calculations C.W.E. van Eijk, J. Wijnhorst, B.J. Glenn, V. van Nooijen, A. V. Ramayya, J. H. Hamilton, Int. J. Appl. Radiat. Isot. <u>31</u>, 313 (May 1980) $[\beta^-$ -branch to 89,36 keV level of 99 Ru and I_y to ground state relative to respective radiations to and from 140.5 keV level] Selective on-line gas phase separation methods for Tc and Ru V. Matschoß, K. Bächmann, J. Inorg. Nucl. Chem. <u>41</u>, 141 (1979) [methods, y-ray spectra, half-lives] Half-life of ¹³²Te J.K. Dickens, Radiochem.Radioanal. Letters <u>39</u>, 107 (1979) Decays of mass-separated ¹³⁹Xe and ¹³⁹Cs M.A. Lee, W.L. Talbert, Jr., Phys.Rev. C 21, 328 (Jan. 1980) $[139x_{e}, 139c_{s}: E_{y}, I_{y}, Q_{B}]$ Level structure of odd-mass In nuclei and the unified model. II. ¹¹⁷In levels populated in the decay of 117Cd isomers M.D. Glascock, E.W. Schneider, W.B. Walters, S.V. Jackson, R.A. Meyer, Phys. Rev. C 20, 2370 (December 1979) $\begin{bmatrix} 117g, mCd \colon E_{\gamma}, I_{\gamma} \end{bmatrix}$ Radioactive decay of 1.7-h ¹⁴⁹Nd to levels of transitional ¹⁴⁹Pm E.W. Schneider, M.D. Glascock, W.B. Walters, R.A. Meyer, Z. Phys. A 291, 77 (1979) Energy levels and γ -ray transitions in 147 Pm T. Seo, T. Hayashi, Y. Miyatake, Nucl. Phys. <u>A321</u>, 341 (1979) [147Nd decay: Ey, I_{γ}] The γ -rays following the β -decay of ¹⁴⁹Pm Y. Miyatake, S. Yamada, Annual Reports of the Research Reactor Inst., Kyoto Univ., <u>12</u>, 114 (1979) Level scheme of ¹⁴⁹Pm T. Seo, S. Yamada, Y. Miyatake, T. Hayashi, Annual Report of the Research Reactor Inst., Kyoto Univ., <u>12</u>, 152 (1979) [149Nd decay: $\gamma - \gamma$ coinc., ¹⁴⁹Pm levels deduced]
On the decay of 155Eu to 155Gd
Z. Awwad, M. A. Farouk, M. Morsy, T. Bayomy, A. M. Mousa, Atomki Közlem. (Hungary), 21, 335 (1979)
[155Eu decay: E_γ, I_γ of 17 γ-lines, conversion coeff.]
Half-lives of 35 radionuclides
H. Houtermans, O. Milosevic, F. Reichel, Int. J. Appl. Rad. Isot. 31, 153 (March 1980)
[among others the following FP: 95Zr, 95Nb, 99Mo, 99mTc, 103Ru, 106Ru, 110mAg, 125Sb, 131I, 134,137Cs, 140La, 144Ce]
High precision γ-ray energy measurements of fission products
A. G. Börner, W.F. Davidson, J. Almeida, J. Blachot, J. A. Pinston, P.H.M. van Assche, Nucl.Instr.Meth. <u>164</u>, 579 (Sept. 1979)
[79Ce, 85,87-95Kr, 91-93,95,98Rb, 92,93,96,98Sr,92,94,96-100Y, 97,99-101Zr, 99-104Nb, 99,101,103-105,108Mo, 99,101-106Tc, 105,109Ru, 105,109Rh, 109Pd, 121cd, 125,128,130-132Sn, 127,128,130,132-134Sb, 131-136Te, 131-136,138,140I, 138-143Xe, 138,140-146Cs, 139-146Ba, 140-142,144-148La, 143,144,146-148Ce, 146-148Pr]

III.4. Delayed neutrons

Half-lives and delayed neutron emission probabilities of short-lived Rb and Cs precursors

C. Ristori, J. Crançon, K.D. Wünsch, G. Jung, R. Decker, K.-L. Kratz, Z. Physik A <u>290</u>, 311 (1979) [94-98_{Rb}, 143-147_{Cs}]

Half-lives, neutron emission probabilities and Fission Yields of neutron-rich Rubidium isotopes in the mass region A=96 to A=100

P. Peuser, H. Otto, M. Weis, G. Nyman, E. Röckl, J. Bonn, L. von Reisky, C. Spath, Z. Phys. A <u>289</u>, 219 (1979)

[identification of 100 Rb, half-lives of 96-100 Rb, P_n-value of 99 Rb, fission yields of 97-99 Rb]

III.5. Decay heat

(experiments and calculations)

Theoretical beta spectrum from Uranium-235 fission fragments in secular equilibrium

F.T. Avignone III, L.P. Hopkins, Z.D. Greenwood, Nucl.Sci. Engg. <u>72</u>, 216 (1979)

[semi-empirical β -decay data used for unknown FP; calculated total β -spectra compared to experiments]

Decay spectra of fission products from Uranium-235 thermal fission: comparison of calculations with experiments

M.G. Stamatelatos, T.R. England, Nucl. Technol. <u>45</u>, 219 (October 1979)

A revised ANS standard for decay heat from fission products V.E. Schrock, Nucl. Technol. <u>46</u>, 323 (December 1979) [description of the 1978 ANS standard]

III.6. Reviews and summaries

Nuclei far away from the line of beta stability: studies by on-line mass separation

P.G. Hansen, Ann. Rev. Nucl. Part. Sci. <u>29</u>, 69 (1979)

[experimental techniques and examples: nuclear masses, spectroscopy, half-lives, delayed neutrons, etc]

Standard cross sections used in measurements of (n,γ) cross section for fission product nuclides

H. Matsunobu, J.At.En.Soc. Japan, <u>21</u>, 637 (1979)

[experimental values for standards and discrepancies among them are examined; renormalization attempted; in Japanese]

Compilations and evaluations of nuclear structure and decay data, Issue No. 5

Compiled by A. Lorenz, report INDC(NDS)-112 (1980) [list of references]

Evaluation of decay heating in shutdown reactors

V.E. Schrock, Progr. in Nucl. En. 3, 125 (1979)

[review of decay heat research: background, recent developments, revision of ANS standard] IV. MEETINGS

IV.1. Special meetings on FPND

Consultants' Meeting on Delayed Neutron Properties

Vienna, 26-30 March 1979

Following a recommendation by the International Nuclear Data Committee (INDC) a Consultants' Meeting on Delayed Neutron Properties was convened by the IAEA Nuclear Data Section in Vienna from 26-30 March 1979. It was attended by 13 scientists from 7 member states.

The main objectives of the meeting were to review the current requirements for delayed neutron data with special emphasis on energy applications, to review the status of delayed neutron data and try to resolve the existing discrepancies in experimental data, and to formulate specific recommendations for necessary future work and its coordination.

In order to achieve these objectives, four review papers and several contributed papers were presented in the first part of the meeting, followed by extensive plenary discussions on the delayed neutron data requirements and status in the second part of the meeting.

Specific conclusions and recommendations were formulated referring to the following subjects:

- Requirements for delayed neutron data (for reactor design, power reactor operation, critical experiment operation and interpretation, reactor dynamics and safety;
- Delayed neutron yields;
- Delayed neutron branching ratios;
- Delayed neutron energy spectra (including equilibrium and near-equilibrium spectra, decay-group spectra, separated precursor spectra and theoretical spectra).

A number of new measurements, compilations and evaluations were recommended in areas where no or only few data exist or where existing data are discrepant and were assigned different priorities.

The proceedings are published as INDC(NDS)-107/G+Special (August 1979)

Specialists' Meeting on Neutron Cross Sections of Fission

Product Nuclei

CNEN, Bologna, Italy 12th - 14th December 1979

The Nuclear Energy Agency Nuclear Data Committee (NEANDC) held a Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei at CNEN, Bologna, Italy, from 12-14 December 1979.

The following topics were dealt with at the meeting:

- Measurements of neutron cross sections
- Problems in the analysis of measured data and in evaluations (average spacings, strength-functions, etc.)
- Measurements of integral data and their use
- Application of theory to meet the requirements and to fit experimental data
- Intercomparison of measured and evaluated data

On the first two days of the meeting, invited and contributed papers were presented in three sessions:

SESSION I: Measurements of differential and integral data and experimental techniques

Integral cross section measurements on fission-product nuclides in fast neutron fields

Y. D. Harker, R. A. Anderl

Measurements of capture cross sections in the FP mass region

N. Yamamuro, A. Asami

Techniques for the determination of capture cross sections of radioactive fission product nuclides

M.S. Moore, G.F. Auchampaugh

Neutron resonance parameters for Pd isotopes

- E. Cornelis, L. Mewissen, F. Poortmans, G. Rohr,
- R. Shelley, P. Staveloz, T. Van der Veen

Neutron capture cross sections of Rubidium, Yttrium, Niobium, Cesium, Cerium and Gadolinium between 0.5 and 3.0 MeV

J. Voignier, S. Joly, G. Grenier

Capture cross section measurements on natural Xenon, natural Krypton and on various Krypton isotopes between 3 and 250 keV neutron energy

B. Leugers, F. Käppeler

Low energy neutron cross section measurements of radioactive FP nuclides

H.G. Priesmeyer

Fast neutron capture cross section measurements, evaluation and model calculation of fission product nuclei

W.P. Poenitz

SESSION 2: Resonance parameters: average values and systematics

Review of the different methods to derive average spacing from resolved resonance parameter sets

E. Fort, H. Derrien, D. Lafond

Efficient estimation of strength functions and average level spacings from resonance parameters

F.H. Fröhner

Statistical analysis of neutron resonance parameters

M. Stefanon

Maximum likelihood analysis of resolved resonance parameters for some fission product nuclides

G. Delfini, H. Gruppelaar

Status of radiative widths, neutron strength functions and improved evaluations using Lane-Lynn theory

S. Mughabghab

Phenomenological and theoretical basis for the parameterization of nuclear models used in reactor data evaluation

G. Reffo

Evaluation of average level spacings and S-wave strength functions performed for more than 240 nuclei

G. Rohr, L. Maisano

The level density systematics applied to fission product nuclei

G. Rohr, L. Maisano, R. Shelley

BCS level density calculations and consistent estimate of radiative widths by meas of a thermodynamic model

V. Benzi, G. Maino, E. Menapace, A. Ventura

SESSION 3: Neutron cross sections: theory and evaluations

On optical model calculations in the mass region A=80 to A=170

Ch. L. Lagrange

ENDF/B-5 fission product cross section evaluations

R.E. Schenter, T.R. England

Few group cross sections and sensitivities for LWR's

T.R. England, W.B. Wilson

The contribution of (n,p) and (n,α) reactions to fissionproduct capture cross sections

H. Gruppelaar, B.P.J. Van den Bos

Intercomparison of adjusted data sets for capture cross sections of fission products

H. Gruppelaar, P. Hammer, L. Martin-Deidier

Fission product neutron cross section evaluations for JENDL and the integral tests

S. Iijima, T. Watanabe, T. Yoshida, Y. Kikuchi

Fission product nuclear data at the NEA data bank

P.D. Johnston, W.W. Osterhage

Neodymium, Samarium and Europium capture cross section adjustments based on EBR-II integral measurements

R.A. Anderl, Y.D. Harker, F. Schmittroth

Status of pseudo fission-product cross sections for fast reactors; sensitivity studies for sodium void effects

R.J. Heijboer, A.J. Janssen, F. Lekkerkerk

Plenary discussion on the proposed international intercomparison of procedures in evaluating average spacings of neutron resonances.

On the third and last day of the meeting, two working groups were formed to deal with the following topics:

Working group 1: Status of the capture cross sections for the most important fission product nuclei.

Working group 2: Status of evaluation of and theory on $\langle D \rangle$, Γ_{γ} and the neutron and gamma strength functions.

For the assessment of the present status of fission product capture cross sections by Working Group 1, the conclusions and recommendations issued by the 2nd IAEA Advisory Group Meeting on Fission Product Nuclear Data, Petten, Netherlands, 1977, were used as starting point. It was noted that the accuracy requirements for fast reactor calculations (which is the main area of application for fission product cross sections) have essentially remained unchanged. Only for a few nuclides, the target accuracy of spectrum averaged (="integral") cross sections should be tightened from 7% to about 5% in order to account for future requirements arising with the further development of fast breeder reactors.

As regards experiments, a great number of new differential capture cross sections have been measured, many of which are not yet included in the most recent evaluated data files. However, the measurement of total cross sections and inelastic scattering data had been rather neglected in the past years. As such data are needed for model calculations and evaluations, the meeting recommended to devote more experiments to the determination of total and inelastic scattering cross sections.

Measurements of "integral" cross sections (i.e. cross sections averaged over a fast reactor neutron spectrum) are presently being carried out in France and in the USA. Such data are required for the comparison of evaluated data files with experimental results, but also for direct use in fast breeder reactor calculations. The discrepancies between different experiments were mainly attributed to inaccurate account for selfshielding. A recommendation in this respect was issued.

The four current evaluated data files for fission products, CNEN/CEA, ENDF/B, JENDL-1 and RCN-2 were compared among each other and against experimental integral data. Of these, ENDF/B-4 showed the most prominent discrepancies compared to the other files as well as to experimental data. It is expected, however, that the agreement of the new updated version, ENDF/B-5 with experiments and other evaluations will be greatly improved.

<u>Working Group 2</u> considered the requirements for and the status of average resonance parameters, as determined from experiments and deduced from theory or systematics.

As regards the requirements, it was agreed that the neutron strength functions of important nuclides should be known to 10-15%, which is equivalent to an accuracy of about 7% for the gamma widths and the average level density.

The meeting was not able to issue a comprehensive list of accuracies presently achieved, but the prevalent impression of the participants was that most of the requirements were still not satisfied. Especially the long-lived unstable nuclides require many more experimental data, which are lacking at present due to the technical difficulties in handling of radioactive materials. Therefore, the improvement of present techniques and the development of new ones are strongly recommended.

The use of nuclear model calculations and systematics for the determination of average resonance parameters was also discussed. It was agreed that the theoretical interpolation between nuclides with well-known data was in general accurate enough. However, when global systematics are used, the uncertainties rise to about a factor of 2. The meeting recommended therefore to study and delimit the range of application and validity of the different models and formulae in use. It was also agreed that an improvement of the strength function systematics was required.

This working group devoted a great part of its time to the discussion of the international comparison of methods for the derivation of average parameters, particularly level densities, from measured resolved resonance data. P. Ribon from CEN Saclay, France, had presented a paper in which he suggested the detailed procedure for such intercomparison: he would supply artificially generated "experimental" data to all participating laboratories by about February 1980. Each laboratory would use its own method to derive average parameters from these data and would send the results to P. Ribon before July 1980. All the results together with a detailed analysis by P. Ribon would then be distributed to all participating laboratories. After long discussions, this suggestion found large interest among the participants. The possible participation of about twelve laboratories (including three from non-OECD countries) was either confirmed or envisaged already at the meeting. It was agreed that the participation of non-OECD countries in this comparison should be invited by the IAEA Nuclear Data Section.

IV.2. Some other meetings which include papers on FPND

International Symposium on Physics and Chemistry of Fission Julich, FRG, 14-18 May 1979

F2 Detailed Study of the Nuclide Yields in $^{235}U(n_{th}, f)$ and their Relation to the Properties of the Scission Configuration and the Dynamics of the Fission Process

> H.-G. Clerc, W. Lang, H. Wohlfarth, H. Schrader, K.-H. Schmidt

F3 Fission Fragment Energy Correlation Measurements for 241Am(nth,f), and Shell Effects in Thermal Neutron Induced Fission

M. Asghar, F. Caitucoli, P. Perrin, C. Barreau, C. Guet B. Leroux and C. Signarbieux

F5 Possible Viscosity Effects in Neutron-Induced Fission of 232_{Th and} 238_U

J.E. Gindler, L.E. Glendenin, B.D. Wilkins

(Mass-yield distributions for the fission of 238 U and 232 Th with essentially monoenergetic neutrons from approximately 2 to 8 MeV. See also contribution on page 57)

F6 Viscosity Effects at Low Excitation in the Neutron Fission of 239Pu

R.L. Walsh, J.W. Boldeman and M.M. Elcombe

(Fragment kinetic energies and mass yields for $^{239}Pu(n,f)$ for $E_n = 0.296$, 0.081 and 0.033 eV)

F7 Fission Fragment Mass- and Energy-Distribution for the Neutron Induced Fission of ²³⁹Pu in Function of the Resonance Spins

C. Wagemans, G. Wegener-Penning, H. Weigmann and R. Barthelemy

F9 Distribution of Nuclear Charge and Angular Momentum in Chains 132-137, 99, and 102 of $^{235}U(n_{th},f)$ at Various Kinetic Energies and Charge States of the Fragments

H.O. Denschlag, H. Braun, W. Faubel, G. Fischbach, H. Meixler, G. Paffrath, W. Pörsch, M. Weis, H. Schrader G. Siegert, J. Blachot, Z.B. Alfassi, H.N. Erten, T. Izak-Biran, T. Tamai, A.C. Wahl, K. Wolfsberg

(See also contribution on page 22)

F10 Influence de l'Energie Cinétique des Fragments sur l'Alimentation d'Etats Isomeriques dans la Fission de U²³⁶

J.P. Bocquet, F. Schussler, E. Monnand, K. Sistemich

 $\binom{88}{Br}$, $\binom{95}{Y}$, $\binom{97}{Y}$, $\binom{98}{Y}$, $\binom{131}{Sn}$, $\binom{132}{Sn}$, $\binom{132}{Te}$

F16 Evidence for the Occurrence of New Shoulders in Low Energy Fission Mass Distribution

> R.H. Iyer, V.K. Bhargava, V.K. Rao, S.G. Marathe, S.M. Sahakundu

(Cumulative fission yields of 12 mass chains -A = 66, 67, 72, 73, 77 on the lighter region and A = 161, 167, 171, 172, 173, 175 and 177 on the heavier mass region - were measured relative to 99Mo)

F18 Fission Fragment Mass Distribution of Th-229

R. Zaghloul

F21 Yields of Products in the Spontaneous Fission of ²⁵²Cf by Direct Gamma-Ray Spectroscopy

L. Toppare, H.N. Erten, N.K. Aras

(Mass chains studied: 101, 104, 106, 109, 116, 131, 133, 135, 137, 138, 141, 144, 146, 149 and 151)

F23 Fission Yield Measurements Far From the Center of the Isotopic Distributions in $^{235U(n_{th},f)}$

M. Simid, Y. Nir-El, G. Engler, S. Amiel

(yields of 92-99Rb, 94-100Sr, 142-148Cs and 143-149Ba were measured)

F26 Persistence of Even-Odd Effects for Fission Induced by 14 MeV Neutrons

> Feu Alvim C.A., J.P. Bocquet, R. Brissot, J. Crançon, A. Noussa

(Evaluation of even-odd effect for 14.7 MeV neutron induced fission of ²³⁸U and ²³²Th, using experimental fractional yield data)

F29 Effet Pai-Impair de la Charge des Fragments de la Fission Induite par des Neutrons de 3 MeV, de Fission, Thermiques pour Differents Systèmes Fissiles

J. Blachot, J. Crançon, Cg. Hamelin, A. Moussa

(Thermal neutron induced fission of 233,235U, fission of 233,234,235,238U, 232Th, 237Np by fission spectrum neutrons and spontaneous fission of 252Cf; see also contribution on page 12)

F36 Nuclide Yields for Thermal Fission of Uranium-235

R.B. Strittmatter, B.W. Wehring (See also contribution on page 77)

Meeting of the Nuclear Physics Division of the American Physical Society Knoxville, Tennessee, 18-20 October 1979 GC8 Study of Resonances and Level Schemes in $Se(n, \gamma)$ Experiments G. Engler, R.E. Chrien and H.I. Liou Studies of Neutron-Rich Nuclei with ISOL Facilities GA1 F.K. Wohn Decay of 9.5-h 91 Sr and 50-m 91 Ym BC14 H.C. Griffin, E.C. Kao, W.D. Ruhter International Conference on Nuclear Cross Sections for Technology Knoxville, Tennessee, 22-26 October 1979 BB10 Neutron Resonance Parameters of ⁷⁹Br and ⁸¹Br up to 15 keV M. Ohkubo, Y Kawarasaki, M. Mizumoto (See contribution on page 37) Cross Sections for Fast Neutron Capture on Se, Cd, and Os CC1 Isotopes M. Herman and A. Marcinkowski (Activation cross sections for fast neutron capture at 0.53 MeV, 0.86 MeV, 1.20 MeV, and 1.31 MeV on 78,80,82Se, 114,116cd) CC2 Optical model calculations of nucleon interactions with 93Nb, from 10 keV up to 50 MeV Ch. Lagrange CC3 Neutron Resonance Parameters for Pd Isotopes P. Staveloz, E. Cornelis, L. Mewissen, F. Poortmans, G. Rohr, R. Shelley, T. Van der Veen (See contribution on page 8) CC4 Resonance Parameters of 96Zr below 37 keV C. Coceva, P. Glacobbe, M. Magnani (See contribution on page 32) Neutron capture cross sections of Y, Nb, Gd, W and Au between CC5 0.5 MeV and 3.0. MeV G. Grenier, J.P. Delaroche, S. Joly, Ch. Lagrange, J. Voignier (Absolute neutron capture cross section measurements for Y, Nb, Gd, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd, in the 0.5 MeV - 3.0 MeV energy range)

- 132 -

CC6 Neutron Radiative Capture and Transmission Measurements of 147Sm and 149Sm

> M. Mizumoto, M. Sugitomo, Y. Nakajima, Y. Kawarasaki, Y. Furuta and A. Asami

(See contribution on page 37)

CC11 The Measurement of Maxwellian Averaged Capture Cross Sections for 138_{Ba} , 140Ce, 175Lu and 176Lu with a Special Activation Technique

H. Beer, F. Käppeler

(See contribution on page 17)

DB6 Gamma-Ray Production Cross Sections for Fast Neutron Interactions with Al, Ni, Cu and Nb

Y. Hino, T. Yamamoto, S. Itagaki and K. Sugiyama

(At neutron energies of 5.3, 5.9, 6.4 and 7.0 MeV)

ED4 Neodymium, Samarium and Europium Capture Cross-Section Adjustments Based on EBR-II Integral Measurements

R.A. Anderl and Y.D. Harker

(See contribution on page 61; Preliminary results indicate a need for a significant upward adjustment of the capture cross sections for 143Nd, 145Nd, 147Sm and 149Sm as much as a factor of 2 for 149Sm in the energy range from 1 keV to 100 keV.)

FB5 Evaluations of Fission Product Capture Cross Sections for ENDF/B-V

R.E. Schenter, D.L. Johnson, F.M. Mann, F. Schmittroth, H. Gruppelaar

(See contribution on page 112)

FB6 Beta and Gamma Decay Heat Evaluation for the Thermal Fission of 235U

G.K. Schenter and F. Schmittroth

(See contribution on page 112)

GD1 keV Neutron Capture Cross Sections for the s-Process Isotopes of Se, Br and Kr and the Abundance of Krypton in the Solar System

B. Ludgers, F. Käppeler, F. Fabbri, G. Reffo

(See contribution on page 17)

GD5 The Measurement of the Total ¹⁴⁵Nd Neutron Cross Section V.A. Anufriev, A.G. Kolesov, S.I. Babich, V.A. Safonov

(Cf. contribution on page 81)

GD6 Fast Neutron Radiative Capture Cross Sections and Average Resonance Parameters for Rare Earth Nuclei

V.N. Kononov, E.D. Poletaev, D.D. Yurlov

(From the experimental cross section curves for ^{115}In , 142,144,146,148,150_{Nd}, 144,147,148,149,150,152,154_{Sm}, 151,153_{Eu}, 156,158,160_{Gd}, 166,168,170_{Er}, ^{181}Ta , 197_{Au} the s-, p-, d-wave neutron and radiative strength functions were determined).

GD7 Neutron Resonances of Odd-Odd Radioactive Isotopes

V.P. Vertebnyi, P.N. Vorona, A.I. Kaltchenko and V.G. Krivenko

(See contribution on page 79)

Non-microscopic FP nuclear data, but of interest to applied fields (full abstract given):

BC12 Effect of Resonance interference Between U-238 and Cs-133 on Isotopic Correlation of Fission Product

H. Takano, Y. Ishiguro, S. Matsuura

Interference effect between resonances of U-238 and Cs-133 was calculated for the spent fuel rod of Japan Power Demonstration Reactor 1 (JPDR-1). The resonance interference effect reduces resonance integral of Cs-133 by 6-14 percent. The main reduction is caused by the resonance interference between 5.9 eV of Cs-133 and 6.67 eV of U-238. The interference effect depends considerably on both the concentration of Cs-133 and the void fraction of coolant water, but its dependence on temperature variation of fuel rod is small. The effective resonance integral of Cs-133 becomes small by about 5 percent when the void fraction of coolant water is changed from zero to 45 percent. It is concluded that the value of five percent is very important correction factor which proves a linear correlation between activity ratio Cs-134/ Cs-137, neutron capture product to direct fission product, and burnup. The effect of uncertainty in nuclear data of Cs-133 on effective resonance integrals of Cs-133 is studied and more accurate information for 5.9 eV resonance of Cs-133 is required from calculational standpoint for non-destructive burnup measurement.