

INTERNATIONAL NUCLEAR DATA COMMITTEE

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilation/evaluations of fission product nuclear data (FPND)

collected

by

M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

> No. 8 July 1982

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria July 1982 82-3966

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilation/evaluations of fission product nuclear data (FPND)

collected

by

M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

> No. 8 July 1982

NOT FOR PUBLICATION

Information from this document should not be quoted except with permission of the authors.

FOREWORD

This is the eighth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed.

The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted.

The types of activities being included in this report are measurements, compilations and evaluations of:

Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.).

The seventh issue of this series has been published in July 1981 as INDC(NDS)-116. The present issue includes contributions which were received by NDS between 1 August 1981 and 15 June 1982.

The next issue of this report series is envisaged to be published in June 1983.

The still increasing interest in this report series is reflected by the recent development in contributions as illustrated by the table below: the number of pages, contributing countries and institutes have more than doubled since the first issue.

issue no.	numbo total	er of p exp.	oages eval.	number total		ntries eval.	number total	of ins exp.	titutes eval.
							~~~~~~~	<u>س سر دی می بی ب</u> ه به	
1	71	47	21	12	12	6	32	25	12
2	57	37	17	12	10	7	26	19	9
3	107	81	20	13	12	8	35	28	13
4	99	57	23	13	11	9	35	27	14
5	91	54	26	12	10	7	37	26	15
6	134	82	33	19	16	12	62	48	21
7	166	107	41	20	17	12	78	64	27
8	186	130	38	30	27	12	93	83	25

### TABLE OF CONTENTS

			Page *)
For	eword		i
Tab	le of Contents		1 <b>1</b> 1
Sub	mitting contrib	utions	vii
Sub	ject Index		ix
ı.	Measurements		1
	Algeria	: CSTN Alger	(28)
	Argentina	: Com. Nac'l En. At., Buenos Aires	3-4
	Australia	: AEEC, Lucas Heights James Cook Univ., Queensland Univ. of Wollongong, NSW Western Austral. Inst. Technol	5-7,13 (5) (6) (6)
	Belgium	: CEN Mol	10-12 (5),13 8-11
	EEC Belgium	: CBNM Geel	(5),12-15
	Brazil	: Inst. Eng. Nucl., Rio de Janeiro	16
	Bulgaria	: Inst. Nucl. Res. Nucl. En., Sofia Univ. of Sofia	(17) 17,18
	Canada	: Chalk River Nucl. Labs	19,20 21 22
	Chile	: Comision de En. Nuclear, Santiago	23
	C.S.S.R.	: Charles University, Prague	24 24
	Egypt	: AEE, Cairo	25,26

΄.

.

^{*)} Page numbers in brackets refer to collaborations, which are not listed under "Laboratory and address"

Table of contents (cont'd)

France	: CEN Bruyères-le-Chatel
Germany, F.R.	: IKK Geesthacht
CEC Germany	: Eur. Inst. Transurane, Karlsruhe 48,49
Hungary	: KFKI Budapest
India	: BARC, Trombay
Israel	: Soreq Nucl. Res. Centre, Yavne 62,63
Italy	: ENEL-Cent. Ric. Term. e Nucl., Milano 64-66 Politecnico di Milano 64-66
Ivory Coast	: Inst. Recherches En. Nouv., Abidjan 33
Japan	: Hiroshima Univ
Kuweit	: Univ. of Kuweit (22)
Sweden	: Chalmers U. of Technol., Goeteborg 81 Studsvik Energiteknik AB 82 Studsvik Sci. Res. Lab
Switzerland	: Eidgen. Inst. f. Reaktorforschung 88 Univ. Bern 88
CERN Switzerl.	: ISOLDE collab., CERN, Geneva 89-90

.

Table of contents (cont'd)

	United Kingdom :	AEE Winfrith	91-93
	enreed Kingdom .	AERE Harwell	(92,93),
		• • • • • • • • • • • • • • • • • • • •	94,95
		Dounreay N.P.D.E., Scotland	96
		Nat'l Physical Lab., Teddington	97,98
		Univ. of Birmingham	(46,93),99
		Univ. of Glasgow, Kelvin Lab	(45),100
			(10),200
	U. S. A. :	Ames Lab., Iowa State Univ	(105,106)
		ANL, Argonne	101-104
		BNL, Brookhaven	105-107
		Clark Univ	(105,106)
		Cornell Univ	(105,106)
		INEL, EG&G Idaho	(105,106),
		•	
		• • • • • • • • • • • • • • • • • • • •	108-111
		INEL, Exxon Nuclear Idaho Co	112-114
		Los Alamos National Lab	(105,106)
		LLL, Livermore	(105,106),
			115,116
		Louisiana State Univ	(105,106)
		McClellan Central Lab.	115
		McGill Univ	(105,106)
		ORNL, Oak Ridge	(5),117-120
		Pacific Northwest Lab., Richland	(47),121,122
		Swarthmore Colloege	(105,106)
		Univ. of Illinois	123
		Univ. of Lowell, Mass	124
		Univ. of Maryland	(105,106)
		Univ. of Missouri, Columbia	125
		Univ. of Oklahoma	(105,106)
		Washington Univ., St. Louis	126
	U.S.S.R. :	FEI, Obninsk	127,128
	0. D. D. K	÷	•
		Lensovjet Inst. Technol., Leningrad	129,130
II.	Compilations and	Evaluations	131
	competante and		
	Belgium :	Univ. of Gent	133
	France	CEN Cadarache	(134,139,141)
	France :		(134,139,141)
		CEN Grenoble	
		CEN Saclay	(134),135
	German D. R. :	ZfK Rossendorf, Dresden	136
	Germany, F.R. :	KFK, Karlsruhe	(139)
		Philips-Univ. Marburg/Lahn	137
		PTB Braunschweig	137
		5	

*) see page iii

,

- v -

Table of contents (cont'd)	Page *)
CEC Germany : Eur. Inst. Transurane, Karlsruhe	138,139
India : Panjab Univ., Chandigarh	140
Italy : CNEN, Bologna	141
Japan : Japanese Nuclear Data Committee • • • • •	142-144
Netherlands : ECN Petten	(141),145-147
Turkey : Ege University	148
United Kingdom : AERE Harwell	149-151 152 153
U. S. A. : ANL, Argonne	156,157,(162, 164-166,168) (156,157),158 159-161 (156,157) 162-168
III.Recent publications related to FPND	172
IV. Meetings	179
4th international conference on nuclei far from stability	179
International conference on nuclear data for science and technology	182

- vi -

*) see page iii

•

#### SUBMITTING CONTRIBUTIONS

The next issue is expected to be published in June 1983. All scientists who are presently working — or have recently completed work — in the field of FPND and who want to contribute to the 9th issue of this series, are kindly asked to send contributions to me between now and 1 May 1983, so that they reach NDS before 15 May 1983.

Those scientists or groups who have already contributed to the present issue and who want to leave their contribution(s) unchanged or who wish to suggest only slight changes, should write an appropriate note to me before the above deadline.

#### Format:

The size of one contribution should preferably not exceed one page. Of course, the number of contributions per working group or laboratory is not restricted. Similar experiments (or calculations, evaluations, etc.) performed by one person or group should preferably be combined to one contribution, if this is possible without loss of clarity.

The headings suggested for the 3 types of contributions can be found on page viii. For the sake of consistency it is requested that the suggested headings be used as far as appropriate.

<u>Compilation and evaluations</u>: If applicable, the <u>availability of</u> <u>numerical data</u> from computer files could be indicated either under the headings "Computer files ..." or under a separate heading "Availability...".

Editing: Since contributions received are generally used directly for publication, it is important that typed <u>originals</u> are sent and not just carbon- or photocopies. It would be a great help for producing an edited report if a margin of 2 cm (or 1 inch for North American paper format) is left on each side of the text and a 5 cm space is left at the top of each page (or 3 cm, if the name of the country is included).

<u>Comments or suggestions</u> concerning the format, content and layout of this report series are most welcome and should be directed to me in time before the next issue.

I would like to thank the contributors for their cooperation.

M. Lammer

Measurements:	Compilations:	Evaluations:
Measurements: Laboratory and address: Names: Facilities: Experiment: Method: Accuracy: Completion date: Descrepancies to other reported data: Publications:	Compilations: Laboratory and address: Names: Compilation: Purpose: Major sources of information: Deadline of literature coverage: Cooperation: Other relevant details: Computer file: Completion date: Publications:	Laboratory and address: Names: Evaluation: Purpose: Method: Major sources of information: Deadline of literature coverage: Status: Cooperation: Other relevant details: Computer file of compiled data: Computer file of
		evaluated data: Discrepancies encountered: Completion date: Publications:

### 1. MEASUREMENTS

### 1.1. Fission yields

-

nuclide	neutron energy	further specifications	page
Th-229	thermal thermal thermal thermal thermal thermal	element yields Br,Kr,Rb,Te,I,Xe,Cs fract. cumul. I-135, Ba-140; Ge(Li) mass yields, R-value rel. U-235 (Sr-91) 39 FP=30 chains, T _{1/2} =15-4600 s, Ge(Li) 37 FP=25 chains, T _{1/2} =7m - 65d, Ge(Li) fragment mass yields, physical, all A	28 (52) (53) 118 119 123
Th-230	unspecified	mass yields	6
Th-232	pile reactor-spec. 0.1-8 MeV 2.0-5.2 MeV 3 MeV	absolute yields, mica + Ge(Li) det. indep., cumul. and chain yields rad.chem., Ge(Li), normalized to 200% fragment mass distribution, kin. energy element yields Br,Kr,Rb,Te,I,Xe,Cs	(51) 88 (101) 21 28
U-232	thermal	element yields Br,Kr,Rb,Te,I,Xe,Cs	<u>28</u>
U-233	spontaneous thermal thermal thermal thermal thermal thermal thermal fast fast fast fast fission spec. 14.7 MeV	<pre>indep. isomer ratio, Nb-95, I-132 Te isotope yields, mass-spec. light charged particles, absol. yields element yields Br,Kr,Rb,Te,I,Xe,Cs mass-spec, 20 mass chains absolute yields, mica + Ge(Li) det. cumul. + indep., rad. chem. + Ge(Li) indep. cumul. yields, rad. chem. + Ge(Li) fragment mass yields, physical, all A indep. yields, rad chem. + Ge(Li) RAPSODIE, mass-spec., normalization EBR-II. i.d. mass-spectrometry FFTF, i.d. mass-spectrometry cumulative (chain) yields, 13 FP, Ge(Li)</pre>	57           6           11           28           (51)           74           88           (123)           125           48           112           113           27           27
U-235	photofission thermal thermal thermal thermal thermal thermal thermal	<pre>fragment charge + isotopic distribution Te isotope yields, mass-spec. light charged particles, absol. yields element yields Br,Kr,Rb,Te,I,Xe,Cs Rh-101g,Rh-102g,m independent yields I-129 independent yield, rad. chem. direct ylds, A=130-147, on-line mass-spec. A=133 charge disp.,rad.chem.+ mass-spec. Ga-77 fract. cumul. yield, rad.chem.</pre>	9 11 28 37 <u>39</u> 42 (43) (43)

a) with respect to the earlier issues, underlined page numbers refer to new work, page numbers in brackets refer to unchanged contributions, and others refer to revised contributions.

## 1.1. Fission yields (cont'd)

nuclide	neutron energy	further specifications	page
U-235	thermal	mass-spec., 20 mass chains	(51)
	thermal	polar LCP absolute yields, angular distr.	59
	therm., 600keV	H-1,3, He-4 rel. yields, polar+equator'l	(60)
	thermal	cumul. + indep., rad.chem. + Ge(Li)	74
	thermal	most important FPs	85
	thermal	indep.+ cumul. yields, rad.chem + Ge(Li)	88
	thermal	tritium yield	95
	thermal	isomer yield ratios, on-line mass-spec	(121)
	thermal	fragment mass yields, physical, all A	(123)
	thermal	Pd,Ag,Cd,In fract. yields, SISAK-2 system	(126)
	thermal	Tc-104,105 fract. indep. yields	(126)
	fast	element yields Br,Kr,Rb,Te,I,Xe,Cs	28
	fast	RAPSODIE, mass-spec., normalization	48
	fast	2 fast spectra, direct Ge(Li) + rad.chem.	94
	fast	tritium yield	95
i .	fast	PFR, chain yields, mass-spec.	96
	fast	EBR-II, i.d. mass-spectrometry	112
: :	fast	FFTF, i.d. mass-spectrometry	113
	fission spec.	cumulative (chain) yields, 13 FP, Ge(Li)	27
	120-550 keV	H-1,3, He-4 yields rel. thermal	(61)
1	0.1-8 MeV	rad.chem., Ge(Li), normalized to 200%	101
	3 MeV	element yields Br,Kr,Rb,Te,I,Xe,Cs	28
	14.7 MeV	cumulative (chain) yields, 13 FP, Ge(Li)	27
	14-15 MeV	direct Ge(Li), yields rel. Zr-95 etc.	116
	14 MeV	Pd,Ag,Cd,In fract. yields, SISAK-2 system	(126)
U-236	fast	RAPSODIE, mass-spec., normalization	<u>28</u>
U-238	photofission	fragment charge + isotopic distribution	9 '
	spontaneous	Ru yields (+ others?), mass-spec.	114
1	epicadmium	cumul.= fract. yields, A=131-134	17
	fast	RAPSODIE, mass-spec., normalization	48
	fast	2 fast spectra, direct Ge(Li) + rad.chem.	94
	fast	PFR, chain yields, mass-spec.	96
	fast	EBR-II, i.d. mass-spectrometry	112
	fission spec.	cumul. yields, rad. chem. + $\gamma$ -spectr.	16
	fission spec.	cumulative (chain) yields, 13 FP, Ge(Li)	27
	0.1-8 MeV	rad.chem., Ge(Li), normalized to 200%	(101)
	1.6,3.1,5.2MeV		(21)
:	3 MeV	element yields Br,Kr,Rb,Te,I,Xe,Cs	28
t f	14.7 MeV	cumulative (chain) yields, 13 FP, Ge(Li)	27
;	14-15 MeV	direct Ge(Li), yields rel. Zr-95 etc.	<u>116</u>
Np-237	thermal	light charged particles, absol. yields	11
	fast	RAPSODIE, mass-spec., normalization	48
	fast	EBR-II, i.d. mass-spectrometry	(112)
Pu-238	unspecified	element yields Br,Kr,Rb,Te,I,Xe,Cs	28
	spontaneous	mass yields, kin. energy	7
	thermal	mass yields, kin. energy	7
	fast	cumul. yields 15 FP, Ge(Li)	66

## 1.1. Fission yields (cont'd)

nuclide	neutron energy	further specifications	page
Pu-239	photofission	34 cumulative + 5 independent yields	129
	spontaneous	mass yields, kin. energy	7
	thermal	mass yields, kin. energy	7
	therma1	light charged particles, absol. yields	11
	thermal	fragment mass distribution	8
	thermal	mass-spec., 20 mass chains	(51)
	thermal	cumul. + indep., rad. chem. + Ge(Li)	74
	thermal	<pre>indep.+ cumul. yields, rad.chem. + Ge(Li)</pre>	88
	thermal	tritium yield	95
	thermal	fragment mass yields, physical, all A	(123)
1	thermal	Tc-104,105 fract. indep. yields	(126)
	fast	RAPSODIE, mass-spec., normalization	48
	fast	2 fast spectra, direct Ge(Li)+rad.chem.	94
	fast	tritium yield	95
	fast	PFR, chain yields, mass-spec.	96
	fast	EBR-II, i.d. mass-spectrometry	(112)
	fast	FFTF, i.d. mass-spectrometry	113
	fission spec.	cumulative (chain) yields, 13 FP, Ge(Li)	27
	0.1-8 MeV	rad. chem., Ge(Li), normalised to 200%	101
,	14.7 MeV	cumulative (chain) yields, 13 FP, Ge(Li)	27
1	14-15 MeV	direct Ge(Li), yields rel. Zr-95 etc.	116
Pu-240	photofission	fragment mass distribution	8
1 - 1 - 1	spontaneous	mass yields, kin. energy	7
;	spontaneous	fragment mass distribution	8
l.	fast	RAPSODIE, mass-spec., normalization	48
1	fast	cumul. yields 15 FP, Ge(Li)	66
	fast	tritium yield	95
	fast	PFR, chain yields, mass-spec.	96
	fast	EBR-II, i.d. mass-spectrometry	(112)
Pu-241	spontaneous	mass yields, kin. energy	7
3	thermal	mass yields, kin. energy	7
	thermal	fragment mass distribution	8
	thermal	fragment kin. energy and mass distrib.	17
i	thermal	mass-spec, 20 mass chains	(51)
	thermal	tritium yield	95
	fast	RAPSODIE, mass-spec., normalization	48
	fast	tritium yield	95
	fast	PFR, chain yields, mass-spec.	96
	fast	EBR-II, i.d. mass-spectrometry	(112)
	fast	FFTF, i.d. mass-spectrometry	113
Pu-242	spontaneous	mass yields, kin. energy	7
Į	spontaneous	fragment kin. energy and mass distrib.	12
[	fast	RAPSODIE, mass-spec., normalization	48
	fast	EBR-II, i.d. mass-spectrometry	$(1\overline{12})$
	14.8 MeV	65 FP=45 chains, rad.chem.+ direct Ge(Li)	38
D. 242	spontaneous	mass yields, kin. energy	7
Pu-243	spontaneous j	mass grands, while energy	7

## 1.1. Fission yields (cont'd)

nuclide	neutron energy	further specifications	page
Pu-244	photofission spontaneous spontaneous spontaneous	fragment mass distribution mass yields, kin. energy fragment mass distribution fragment kin. energy and mass distrib.	8 7 8 12
Am-241	thermal fast fission spec.	light charged particles, absol. yields RAPSODIE, mass-spec., normalization rad.chem., normaliz. and rel U-235,238	11 48 (115)
Cm-243	thermal	23 FP=16 chains, T _{1/2} =6h - 65d, Ge(Li)	<u>120</u>
Cm-244	spontaneous	absolute yields of Mo-99, Ba-140	<u>58</u>
Cm-245	thermal	absol. mass yields, mica + Ge(Li) det.	54
Cf-249	thermal thermal	97 FP=51 chains, at 45 s to 0.3 y, Ge(Li) indep. yields, rad.chem. + Ge(Li)	118 125
Cf-252	spontaneous spontaneous spontaneous spontaneous spontaneous	light particle yields rel. α yield fract. cumul. Xe-138, Cs-139; Ge(Li) indep. isomer ratio, Cd-117, I-134 indep. isomer ratio, Te-133, I-134 indep yields of I isotopes	24 55 55 56 56
Many*)	thermal	unspecified fissioning nuclei	85

*) several fissioning nuclides which are not yet specified (generally referring to future work)

### 1.2. Neutron reaction cross sections

nuclide	neutron energy	reaction	page
Se-74	therm., res.	thermal and resonance capture $\gamma$ 's	<u>107</u>
Se-76	therm., res.	thermal and resonance capture $\gamma$ 's	<u>107</u>
Se-77	therm., res.	thermal and resonance capture $\gamma$ 's	<u>107</u>
Se-78	therm., res.	thermal and resonance capture $\gamma$ 's	<u>107</u>
Se-80	therm., res.	thermal and resonance capture $\gamma$ 's	<u>107</u>
Br-79	below 10 keV	res. pars.	71

nuclide neutron energy reaction page Br-81 below 15 keV res. pars. 71 Kr-80 4-300 keV  $(n, \gamma)$ , total 35 Kr-82 1 eV-1.5 keVres. pars. (transmission) (34)Kr-83 1 eV-1.5 keV(34) res. pars. (transmission) Kr-84 1 eV-1.5 keVres. pars. (transmission) (34) (34) Kr-86 1 eV-1.5 keVres. pars. (transmission) 35 4-300 keV  $(n, \gamma)$ , total 85 up to 400 keV neutron cross section study Rb-85 below 17 keV 71 res. pars. 71 Rb-87 below 100 keV res. pars. Sr-86 3-200 keV  $(n,\gamma)$ , res. pars. 5 Sr-88 fast capture  $\gamma$ -spectrum 6 5 3-200 keV  $(n,\gamma)$ , res. pars. up to 300 keV 5 res. pars. 13 up to 300 keV res. pars. Y-89 3-200 keV 5  $(n,\gamma)$ , res. pars. 50keV-4.5MeV total (103)keV-MeV range elastic. inelastic scat. (104)14.7 MeV (87)  $(n, \gamma)$ 50 keV - 4.5 MeV(103)Zr total keV-MeV range elastic scat. (104)Zr-90 3-200 keV  $(n,\gamma)$ , res. pars. 5 Zr-91 3-200 keV  $(n,\gamma)$ , res. pars. 5 Zr-92 3-200 keV  $(n,\gamma)$ , res. pars. 5 Zr-94 3-200 keV  $(n,\gamma)$ , res. pars. 5 (102)30 keV (n, y) Zr-96 up to 35 keV res. pars. 5 13 up to 35 keV res. pars. 30 keV (102)(n, y) Nb-93 differential (n,n') 93 monoenergetic 26 2.3 meV-2 eV total (transmission) 10-70 keV 36  $(n,\gamma)$ , capture  $\gamma$  spectrum (102) 30+500 keV (n, y)

nuclide reaction neutron energy page Nb-93 50keV-4.5MeV total (103)keV-MeV range elastic, inelastic scat. (104)400 keV capture  $\gamma$  spectrum 79 Мо 50 keV - 4.5 MeVtotal (103)keV-MeV range elastic scat. (104)400 keV capture  $\gamma$  spectrum 79 Mo-95 fast RAPSODIE, mass-spec., absorption 49 3-200 keV 5  $(n,\gamma)$ , res. pars. Mo-96 3-200 keV  $(n,\gamma)$ , res. pars. 5 Mo-97 RAPSODIE, mass-spec., absorption 49 fast 5 3-200 keV  $(n,\gamma)$ , res. pars. RAPSODIE, mass-spec., absorption 49 Mo-98 fast 5 3-200 keV  $(n,\gamma)$ , res. pars. 30 keV (102)(n, y) Mo-100 30 keV (n, Y) (102)CFRMF, EBR-II, integral  $(n, \gamma)$ (108)Tc-99 fast 4.5-24 eV res. pars. (transmission) (34) (117) 2.6-2000 keV (n, Y) (104)Ru keV-MeV range elastic scat. Ru-100 RAPSODIE, mass-spec., absorption 49 fast Ru-101 RAPSODIE, mass-spec., absorption 49 fast 49 RAPSODIE, mass-spec., absorption Ru-102 fast Ru-104 fast RAPSODIE, mass-spec., absorption 49 CFRMF, EBR-II, integral  $(n, \gamma)$ (108)fast CFRMF, EBR-II, integral  $(n, \gamma)$ Rh-103 (108)fast 10-70 keV  $(n,\gamma)$ , capture  $\gamma$  spectrum 36 (102)30+500 keV (n, y) 50 keV - 4.5 MeV(103)total keV-MeV range elastic scat. (104) 0.4-4.0 MeV (n, y) (102)Pd 3-80 capture  $\gamma$  spectrum 78 30 + 500 keV(n, y) (102)50keV-4.5MeV total (103)keV-MeV range elastic scat. (104)(102)0.4-4.0 MeV (n, y) Pd-104 3-200 keV  $(n,\gamma)$ , res. pars. 5 (13)up to 500 keV (n, y)

nuclide	neutron energy	reaction	page
Pd-105	3-200 keV	(n,γ), res. pars.	5
	up to 500 keV	(n,γ)	(13)
Pd-106	fast 3–200 keV up to 500 keV	RAPSODIE, mass-spec., absorption $(n,\gamma)$ , res. pars. $(n,\gamma)$	$\frac{49}{5}$ (13)
Pd-108	fast 3-200 keV up to 500 keV	RAPSODIE, mass-spec., absorption $(n,\gamma)$ , res. pars. $(n,\gamma)$	<u>49</u> 5 13
Pd-110	fast 3-200 keV up to 500 keV	RAPSODIE, mass-spec., absorption $(n,\gamma)$ , res. pars. $(n,\gamma)$	$\frac{49}{5}$ (13)
Ag	50keV-4.5MeV	total	(103)
	keV-MeV range	elastic scat.	(104)
Ag-107	1.5 eV-7 keV	res. pars.	71
	3.3-700 keV	(n,γ)	70
	2.6-2000 keV	(n,γ)	(117)
Ag-109	fast	CFRMF, EBR-II, integral (n,ץ)	(108)
	1.5 eV-7 keV	res. pars.	<u>71</u>
	3.3-700 keV	(n,ץ)	70
	2.6-2000 keV	(n,ץ)	(117)
Cd	50keV-4.5MeV	total	(103)
	keV-MeV range	elastic scat.	(104)
Cd-110	3–200 keV	$(n,\gamma)$ , res. pars.	5
	30 keV	$(n,\gamma)$ to Cd-111m	(102)
Cd-114	3–200 keV	(n, _Y ), res. pars.	5
	30 keV	(n, _Y ) to Cd-115g	(102)
Cd-116	30 keV	(n, _Y ) to Cd-117m,g,m+g	(102)
In	50keV-4.5MeV	total	(103)
	keV-MeV range	elastic scat.	(104)
In-113	fission spec.	Cf-252 source, (n,n')In-113m	<u>73</u>
In-115	fission spec.	Cf-252 source, (n,n')In-115m	73
	5-500 keV	(n,γ) rel. Au-197 at 30 keV	(127)
	30 keV	(n,γ) to In-116m	(102)
	2-10 MeV	(n,γ)	87
Sn	50keV-4.5MeV	total	(103)
	keV-MeV range	elastic scat.	(104)
	400 keV	capture y spectrum	<u>79</u>

1.2 Neutron reaction cross	sections	(cont'd)
----------------------------	----------	----------

nuclide	neutron energy	reaction	page
Sb	50keV-4.5MeV keV-MeV range	total elastic scat.	(103) (104)
Sb-123	unspecified	transmission and capture	<u>71</u>
Те	50keV-4.5MeV keV-MeV range	total elastic scat.	(103) (104)
Te-125	fast	RAPSODIE, mass-spec., absorption	<u>49</u>
Te-126	fast	RAPSODIE, mass-spec., absorption	<u>49</u>
Te-128	fast	RAPSODIE, mass-spec., absorption	<u>49</u>
I <b>–1</b> 27	fast 2.6–2000 keV 14.7 MeV	CFRMF, EBR-II, integral (n,ץ) (n,ץ) (n,ץ)	(108) <u>117</u> (87)
I–129	1 eV-1.5 keV 2.6-2000 keV	res. pars. (transmission) (n, _Y )	(34) <u>117</u>
Xe-124	30 keV	(n, _Y )	<u>35</u>
Xe-132	30 keV	(n, _Y )	<u>35</u>
Xe-134	30 keV	(n, _Y )	<u>35</u>
Xe-136	2.6-2000 keV	(n, _Y )	<u>117</u>
Cs-133	fast 3-80 keV 2.6-2000 keV	RAPSODIE, mass-spec., absorption capture $\gamma$ spectrum (n, $\gamma$ )	<u>49</u> 78 <u>117</u>
Ba-134	3–200 keV	(n, _Y ), res. pars.	5
Ba-135	2 and 24 keV	capture _Y 's	<u>105</u>
Ba-137	1.5 eV-100 keV	(n, _Y )	<u>70</u>
Ba-138	3–200 keV 14.7 MeV	(n, _Y ), res. pars. (n, _Y )	5 (87)
La-139	fast fast below 2.5 keV 3-200 keV	capture y spectrum RAPSODIE, mass-spec., absorption res. pars. (n,y), res. pars.	6 49 70 5
Ce-140	3–200 keV	(n,γ), res. pars.	5
Pr-141	fast fast 3-200 keV	capture $\gamma$ -spectrum RAPSODIE, mass-spec., absorption (n, $\gamma$ ), res. pars.	6 <u>49</u> 5

nuclide	neutron energy	reaction	page
Nd	0.4-4.0 MeV	(n, _Y )	(102)
Nd-142	3–200 keV 5–500 keV	(n,γ), res. pars. (n,γ) rel. Au-197 at 30 keV	5 (127)
Nd-143	fast fast	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral $(n,\gamma)$	49 108
Nd-144	fast fast 5-500 KeV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral $(n,\gamma)$ (n, $\gamma$ ) rel. Au-197 at 30 keV	<u>49</u> 108 (127)
Nd-145	fast	CFRMF, EBR-II, integral $(n, \gamma)$	108
Nd-146	fast fast 3–200 keV 5–500 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral $(n,\gamma)$ $(n,\gamma)$ , res. pars. $(n,\gamma)$ rel. Au-197 at 30 keV	49 108 5 (127)
Nd-148	fast fast 3–200 keV 5–500 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral $(n,\gamma)$ $(n,\gamma)$ , res. pars. $(n,\gamma)$ rel. Au-197 at 30 keV	<u>49</u> 108 5 (127)
Nd-150	fast 5-500 keV	CFRMF, EBR-II, integral (n,ץ) (n,ץ) rel. Au-197 at 30 keV	108 (127)
Pm-147	fast	CFRMF, EBR-II, integral (n, _Y )	(108)
Sm	0.4-4.0 MeV	(n, _Y )	(102)
Sm—147	fast fast 5-500 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral $(n,\gamma)$ $(n,\gamma)$ rel. Au-197 at 30 keV	<u>49</u> 108 127
Sm-148	5-500 keV	(n, _Y ) rel. Au-197 at 30 keV	(127)
Sm-149	fast fast up to 500 keV 5-500 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral $(n,\gamma)$ $(n,\gamma)$ $(n,\gamma)$ rel. Au-197 at 30 keV	<u>49</u> 108 <u>13</u> 127
Sm-150	5-500 keV	(n, _Y ) rel. Au-197 at 30 keV	(127)
Sm-151	5-500 keV	(n, _Y ) rel. Au-197 at 30 keV	<u>127</u>
Sm-152	5–500 keV 30 keV	(n,γ) rel. Au-197 at 30 keV (n,γ)	(127) 35
Sm-154	5-500 keV 30 keV	(n,γ) re]. Au-197 at 30 keV (n,γ)	(127) 35

## 1.2 Neutron reaction cross sections (cont'd)

nuclide	neutron energy	reaction	page
Eu	2 meV-1 eV	total (transmission)	25
Eu-151	fast 2 meV-1 eV 5-500 keV 48.5 keV	CFRMF, EBR-II, integral $(n,\gamma)$ total (transmission) $(n,\gamma)$ rel. Au-197 at 30 keV $(n,\gamma)$ to 9.3 h isomer	108 25 127 35
Eu–152	fast	CFRMF, EBR-II, integral (n, _Y )	108
Eu153	fast 2 meV-1 eV 5-500 keV	CFRMF, EBR-II, integral (n,ץ) total (transmission) (n,ץ) rel. Au-197 at 30 keV	108 25 127
Eu154	fast	CFRMF, EBR-II, integral (n, _Y )	108
Eu-155	5–500 keV	(n, _Y ) rel. Au-197 at 30 keV	<u>127</u>
Gd-152	30 keV	(n, _Y )	35
Gd-156	5-500 keV	(n, _Y ) rel. Au-197 at 30 keV	(127)
Gd-158	5–500 keV 30 keV	(n, _Y ) rel. Au-197 at 30 keV (n, _Y )	(127) 35
Gd-160	5–500 keV	(n, _Y ) rel. Au-197 at 30 keV	(127)
Dy-160	5-500 keV	(n,γ) rel. Au-197 at 30 keV	<u>127</u>
Dy-161	5-500 keV	(n, _Y ) rel. Au-197 at 30 keV	<u>127</u>
Dy-162	5–500 keV	(n, _Y ) rel. Au-197 at 30 keV	<u>127</u>
Dy-163	5–500 keV	(n, _Y ) rel. Au-197 at 30 keV	<u>127</u>
Dy-164	5-500 keV	(n, _Y ) rel. Au-197 at 30 keV	<u>127</u>
FP *)	unspecified 1 eV-1.5keV	comparative measurements res. pars. (transmission)	(34) (34)
Many +)	thermal thermal 30 + 500 keV MeV range 14 MeV	$(n,\alpha)$ , systematic study $(n,\gamma)$ . some isotopes of Zr,Mo,Cd,In $(n,\gamma)$ , planned inelastic scat., some among Z=40-52 activation, some rare earth isotopes	10 (102) (102) (104) <u>18</u>

- *) gross FP-mixtures
- +) several reactions not specified in detail

,

page

<u>69</u>

<u>40</u>

 $\frac{40}{84}$  $\frac{40}{45}$ 

 $\frac{40}{45}$ 

 $\frac{40}{84}$  $\frac{40}{45}$ 

 $\frac{40}{84}$ 

 $\frac{63}{40}$  $\frac{63}{84}$  $\frac{45}{45}$ 

 $\begin{array}{r} 63 \\ \overline{40} \\ \overline{84} \\ \overline{45} \end{array}$ 

63 40 45

 $\frac{41}{63}
 \frac{41}{40}
 \frac{41}{45}$ 

 $\frac{63}{40}$ 

<u>105</u>

## 1.3. Decay data

FP	data type	page	FP	data type
Zn-75	nucl. spectroscopy	(86)	Rb-87	T _{1/2}
Zn-77	nucl. spectroscopy	(86)	Rb88	Q _B
Ga-80	Q _B	84	Rb-89	Q _B
Ga-81	Q _B	84		average E _B B-strength funct.
Ge-79	Q _B	84	Rb-90	Q _B B-strength funct.
Ge-81	Q _B	84	Rb-91	
Ge-82	Q _B	84	ND-91	Q _B average E _B ß-strength funct.
As-77	E _γ , I _γ , I _{KX} (absol.)	33	Rb-92	Q ₈
As-78	E _y , I _y , decay-scheme	22	NO-52	average E _B B-strength funct.
Br-82	_	20	Rb-93	
	$T_{1/2}$		10-95	$T_{1/2}$ Q ₈
Br-86	average E _B	<u>84</u>		average E _ß ß-strength funct.
Br-87	average E _ß	<u>84</u>	Rb-94	T _{1/2}
Br-88	average E _ß	<u>84</u>		$Q_{B}^{1/2}$ average E _B
Br-89	Q _g average E _g nucl. spectroscopy	84 <u>84</u> 86	Rb-95	B-strength funct.
Br-90	Q _B	84		11/2 Q _β
	nucl. spectroscopy	86		B-strength funct.
Kr-85	Ι _γ (absolute)	<u>20</u>	Rb-96	T _{1/2} Q ₈
Kr-89	average E _ß	<u>84</u>		$\vec{B}$ -strength funct.
Kr-91	average E _ß	<u>84</u>	Rb-97	T _{1/2} , γ-, ce-spec. T _{1/2}
Kr-92	average E _B	<u>84</u>		$Q_{B}^{1/2}$ B-strength funct.
Kr-93	average E _B	<u>84</u>	Rb98	-
Rb	Q _g , в-spec., Rb isotopes	<u>105</u>	0-30	^T 1/2 Q _B B-strength funct.
Rb-86	T _{1/2} ,I _γ (1077 keV)	<u>75</u>	Rb-99	T _{1/2} , γ-spec.

## 1.3. Decay data (cont'd)

FP	data type	page
Sr-89	I _γ (909 keV)	<u>19</u>
Sr-90	в-spectr., Е _в	<u>97</u>
Sr-93	average E _B	<u>84</u>
Sr-94	average E _B	<u>84</u>
Sr-95	T _{1/2} , γ-, ce-spec. average E _B	<u>41</u> <u>84</u>
Sr-97	T _{1/2} , γ-, ce-spec. T _{1/2}	$\frac{41}{63}$
Sr-98	T _{1/2}	<u>63</u>
Sr-99	T _{1/2} ,γ-, ce-spec. T _{1/2} , γ-spec.	<u>41</u> 105
Y-90	в-spec., Е _в	<u>97</u>
Y-94	average E _B	<u>84</u>
Y95	average E _B	<u>84</u>
Y-96	average E _B	<u>84</u>
Y–97	T _{1/2}	<u>63</u>
Y-98	T _{1/2}	<u>63</u>
Zr-95	E _γ , I _γ , I _{KX} (absol.)	<u>33</u>
Nb-95	T _{1/2}	<u>20</u>
Mo-99	140.5 keV: I _y (absol.) E _y	50 111
Тс	T _{1/2} , γ-spec., short lived isotopes	<u>81</u>
Tc-99m	T _{1/2} , I _v (absol.)	<u>20</u>
Ru	T _{1/2} , γ-spec., short lived isotopes	<u>81</u>
Ru–103	^T 1/2 ^T 1/2,I _γ (497 keV) β+ce spec.	$\frac{\frac{14}{75}}{\frac{72}{72}}$

E I Ivy (absol)	
E _γ , I _γ , I _{KX} (absol.)	<u>33</u>
T _{1/2} , γ-spec., short lived isotopes	<u>81</u>
T1/2 Ι _{KX} (absolute)	$\frac{14}{15}$
Ε _γ , Ι _γ , Ι _{ΚΧ} (absol.)	<u>33</u>
T1/2, y-spec., short lived isotopes	<u>81</u>
T _{1/2}	<u>20</u>
Τ _{1/2} , Ε _γ , Ι _γ	109
T _{1/2} , E _γ , I _γ	109
T _{1/2} , E _γ , I _γ	109
E _y ,I _y (absol.) E _y , İ _y , I _{KX} (absol.)	32 <u>33</u>
Ε _γ , Ι _γ , Ι _{ΚΧ} (absol.)	<u>33</u>
γ singles + coinc. E _γ , I _γ , I _{KX} (absol.)	29 <u>33</u>
γ singles + coinc. Ε _γ , Ι _γ , Ι _{ΚΧ} (absol.)	29 <u>33</u>
nucl. spectroscopy	<u>85</u>
Q ₈ nucl. spectroscopy	84 <u>85</u>
Q _B nucl. spectroscopy	84 <u>85</u>
Q _B	84
Q ₆	84
Q _B	84
Q _B	84
Q _B nucl. spectroscopy	84 <u>85</u>
	lived isotopes $T_{1/2}$ $I_{KX}$ (absolute) $E_{\gamma}$ , $I_{\gamma}$ , $I_{KX}$ (absol.) $T_{1/2}$ , $\gamma$ -spec., short $T_{1/2}$ , $\gamma$ -spec., short $T_{1/2}$ , $T_{\gamma}$ , $I_{\gamma}$ $T_{1/2}$ , $E_{\gamma}$ , $I_{\gamma}$ $T_{1/2}$ , $E_{\gamma}$ , $I_{\gamma}$ $T_{1/2}$ , $E_{\gamma}$ , $I_{\gamma}$ $T_{1/2}$ , $E_{\gamma}$ , $I_{\gamma}$ $T_{\gamma}$ , $I_{\chi\chi}$ (absol.) $E_{\gamma}$ , $I_{\gamma}$ , $I_{KX}$ (absol.) Y singles + coinc. $E_{\gamma}$ , $I_{\gamma}$ , $I_{KX}$ (absol.) $\gamma$ singles + coinc. $E_{\gamma}$ , $I_{\gamma}$ , $I_{KX}$ (absol.) nucl. spectroscopy $Q_{g}$ nucl. spectroscopy $Q_{g}$ nucl. spectroscopy $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ $Q_{g}$ Q

# 1.3. Decay data (cont'd)

FP	data type	page
Cd-119	Q _B	84
Cd-120	Q _B	84
Cd-121	Q _B nucl. spectroscopy	84 <u>85</u>
In-115m	T _{1/2} , I _Y (absol.)	<u>20</u>
In-127	T _{1/2}	<u>63</u>
In-128	T _{1/2}	<u>63</u>
In-129	T _{1/2}	<u>63</u>
In-130	T _{1/2}	<u>63</u>
In-131	T _{1/2} nucl. spectroscopy	<u>63</u> <u>85</u>
Sn-129	T _{1/2} ,γ-spectroscopy	<u>4</u>
Sn-131	T _{1/2} , _Y -spectroscopy	<u>3</u>
A=133	decay properties	(43)
Sn-133	nucl. spectroscopy	<u>85</u>
Sb-125	E _γ , I _γ , X-rays E _γ , I _γ , I _{KX} (absol.) I _γ	(31) <u>33</u> <u>67</u>
Sb-129	T _{1/2} , _Y -spectroscopy	<u>4</u>
Sb-131	γ-spectroscopy	<u>3</u>
Sb-134	average E _ß	<u>84</u>
I-131	E _γ , I _γ , I _{KX} (absol.)	<u>33</u>
I-132	E _y , I _y , I _{KX} (absol.)	<u>33</u>
I-136	average E _ß	<u>84</u>
I–137	average E _B	<u>84</u>
I <b>-1</b> 38	average E _B	<u>84</u>
I <b>-1</b> 39	average E _ß nucl. spectroscopy	<u>84</u> 86

FP	data type	page
I-140	nucl. spectroscopy	86
Xe-133	T _{1/2}	<u>20</u>
Xe-137	average E _B	<u>84</u>
Xe-138	average E _B	<u>84</u>
Xe-139	average E _B	<u>84</u>
Xe-140	average E _B	<u>84</u>
Xe-141	average E _B	<u>84</u>
A=142	I,(rel.), short lived isobars	44
A=143	I,(rel.), short lived isobars	44
A=144	I,(rel.), short lived isobars	44
Cs	Q _в , в-spectr., Cs isotopes	<u>105</u>
Cs-134m	T _{1/2}	<u>20</u>
Cs-134	T _{1/2}	<u>20</u>
Cs-137	T _{1/2} ,I _γ (absol.) E _γ , I _γ , I _{KX} (absol.)	<u>20</u> <u>33</u>
Cs-138	Q _B average E _B	40 <u>84</u>
Cs-139	Q _B average E _B	$\frac{40}{84}$
Cs-140	Q _B average E _B	$\frac{40}{84}$
Cs-141	Q _B average E _B _Y -singles, coinc.	$     \frac{40}{84}     105 $
Cs-142	T _{1/2} Q _B average E _B	63 40 84

# 1.3. Decay data (cont'd)

FP	data type	page
Cs-143	^T 1/2 Q _β	$\frac{63}{40}$
Cs-144	^T 1/2 Q _β	$\frac{63}{40}$
Cs-145	T _{1/2} Q _β ce+γ decay scheme	$\frac{\frac{63}{40}}{\frac{62}{62}}$
Cs-146	T _{1/2} Q ₈	$\frac{63}{40}$
Cs-147	T _{1/2} , γ-spec.	<u>105</u>
A=146	$I_{\gamma}(rel.), short lived$	44
A=147	$I_{\gamma}(rel.), short lived$	44
Ba <b>-1</b> 37m	T _{1/2}	<u>20</u>
Ba-140	E _Y , I _Y , I _{KX} (absol.)	<u>33</u>
Ba-146	β-,γ-singles,coinc.	<u>105</u>
Ba-147	T _{1/2} T _{1/2} , γ-spec.	$\frac{63}{105}$
Ba-148	T _{1/2} β-,γ-singles,coinc.	$\frac{63}{105}$
La-140	$E_{\gamma}$ , $I_{\gamma}$ , $I_{KX}$ (absol.)	<u>33</u>
La-141	T _{1/2} , I _Y (absol.)	110
La-142	T _{1/2} , I _γ (absol.) β-,γ-singles,coinc.	110 <u>105</u>
La-143	$T_{1/2}, Q_{B}, E_{\gamma}, I_{\gamma}$ (77)	1
La-144	β-,γ-singles,coinc.	<u>105</u>
La-146	β-,γ-singles,coinc.	<u>105</u>
La-147	T _{1/2} γ-singles, coinc.	$\frac{\underline{63}}{\underline{105}}$

FP	data type	page
La-148	β-,γ-singles,coinc.	105
Ce-141	T _{1/2} , I _v (absol.)	20
Ce-143	I _γ (absolute)	110
Ce-144	E _Y , I _Y , I _{KX} (absol.)	<u>33</u>
Ce-145	$T_{1/2}$ , $Q_{\beta}$ , $E_{\gamma}$ , $I_{\gamma}$	(77)
Ce-146	$T_{1/2}$ , $Q_{B}$ , $E_{\gamma}$ , $I_{\gamma}$ $I_{\gamma}$ (absolute)	(77) <u>110</u>
Ce-147	T _{1/2} , E _γ , I _γ	<u>76</u>
Pr-144	E _γ , E _γ , I _{KX} (absol.)	<u>33</u>
Pr-147	$T_{1/2}$ , $Q_B$ , $E_{\gamma}$ , $I_{\gamma}$	(77)
Pr-148	β-,γ-singles,coinc.	<u>105</u>
Nd-147	Ι _γ (absolute)	(110)
Pm-155	⊺ _{1/2} , E _γ , I _γ	109
Sm-157	T _{1/2} , E _γ , I _γ	109
Sm-158	T _{1/2} , E _γ , I _γ	109
Eu-152	T1/2 T1/2 I _Y (absol.), inter- lab. comparison	20 (98) (52)
Eu-154	T _{1/2}	98
Eu-156	Ι _γ	<u>68</u>
Gd-162	comments on decay	<u>109</u>
Gd-163	decay properties	<u>109</u>
Tb-165	T _{1/2} , E _γ , I _γ	<u>109</u>
Dy-168	T _{1/2} , E _γ , I _γ	<u>109</u>
Many	γ branching, important FP	<u>85</u>

FP	data type	page	FP	data type	page
_i-9	P _n (standard)	90	Rb-98	E-spec. E-spec., avg. En	45 (47)
s-85	E-spec., avg. E _n	(47)		2 neutron emission Pn	$\frac{122}{63}$
-87	E-spec., avg. E _n	(47)	Rb-100	uclear spectroscopy	90
-89	E-spec., avg. E _n	<u>47</u>		P _n , 2-n emission	<u>89</u>
5r-90	E-spec., avg. E _n	<u>47</u>	Sr-97	T _{1/2} , P _n , avg. E P _n	122 63
lr-91	E-spec., avg. E _n	<u>47</u>	Sr-98	T _{1/2} , P _n ,avg. E	122
8r-92	E-spec., avg. E _n	<u>47</u>		Pn ^{Pn}	<u>63</u>
Rb-89	E-spec.	45	Sr-99	T _{1/2} , P _n , avg. E	122
Rb-90	E-spec.	45	Y	P _n (Yttrium isotopes)	(83)
kb-91	E-spec.	45	Y-97	T _{1/2} , P _n , avg. E P _n	122 63
8 <b>–</b> 92	E-spec. E-spec., avg. E _n	45 (47)	Y–98	T _{1/2} , P _n , avg. E Pn	122 63
b-93	E-spec. E-spec., avg. E _n E-spec.	45 (47) (100)	Y-99	T _{1/2} , P _n , avg. E	122
	E-spec.	$\frac{105}{63}$		`Р _п	<u>63</u>
)-94	E-spec.	45	In-128	Pn	<u>63</u>
	E-spec., avg. E _n E-spec.	(47) (100)	In-129	Pn	<u>63</u>
	E-spec. Pn	$\frac{105}{63}$	In-130	Pn	<u>63</u>
b95	E-spec.	45	In-131	Pn	<u>63</u>
	E-spec., avg. E _n E-spec.	(47) (100)	Sb-135	E-spec., avg. E _n	(47)
	E-spec. Pn	<u>105</u> 63	Te-136	E-spec., avg. E _n	(47)
b-96	E-spec.	45	I–137	E-spec., avg. E _n	(47)
	E-spec., avg. E _n	(47) <u>63</u>	I <b>-13</b> 8	E-spec., avg. E _n	(47)
lb-97	E-spec.	45	Cs-141	E-spec., avg. E _n	(47)
	E-spec., avg. E _n P _n	(47) <u>63</u>	Cs-142	E-spec., avg. E _n P _n	(47) <u>63</u>

#### 1.4. Delayed neutron (del-n) data

FP	data type	page	FP	data type
Cs-143	E-spec., avg. E _n ^P n	(47) <u>63</u>	Ba-148	T _{1/2} , P _n , avg. E P _n
Cs-144	E-spec., avg. E _n P _n	(47) <u>63</u>	La-146 La-147	T _{1/2} , P _n , avg. E T _{1/2} , P _n , avg. E
Cs-145	E-spec., avg. E _n P _n	(47) <u>63</u>	24 117	P _n P _n
Cs-146	E-spec., avg. E _n P _n	(47) <u>63</u>	La-148	T _{1/2} , P _n , avg. E
Cs-147	E-spec., avg. E _n	(47)	Ce-147 Ce-149	P _n P _n
Ba-146	T _{1/2} , P _n , avg. E	122	Pr-147	'n P _n
Ba-147	T _{1/2} , P _n . avg. E Pn	122 <u>63</u>	Pr-149	Pn

nuclide	neutron energy	data type	page
Th-232	fast	group spectra	<u>83</u>
U-233	thermal fast	group spectra total del-n yield	<u>83</u> 64
U-235	thermal thermal monoenergetic O – 3.6 MeV	group spec.(time) group spectra equil. spectra energy spec.(time)	46 <u>83</u> 99 <u>124</u>
U-236	fast	group spectra	<u>83</u>
U-238	fast	group spectra	<u>83</u>
Np-237	fast fast	total del-n yield group spectra	64 <u>83</u>
Pu-238	fast	total del-n yield	<u>64</u>
Pu-239	thermal monoenergetic O – 3.6 MeV	group spectra equil. spectra energy spec.(time)	83 99 124

## 1.4. Delayed neutron (del-n) data (cont'd)

page

122 <u>63</u>

122

122 <u>63</u> <u>83</u>

122

<u>83</u>

<u>83</u>

<u>83</u>

<u>83</u>

nuclide	neutron energy	data type	page
Pu-240	fast fast	total del-n yield group spectra	64 <u>83</u>
Pu-241	thermal fast	group spectra total del-n yield	<u>83</u> 64
Pu-242	fast	group spectra	<u>83</u>
Am-241	fast	total del-n yield	64
Cf-252	spontaneous	group spectra	<u>83</u>
Many		group spec.(time)	(46)

1.4. Delayed neutron (del-n) data (cont'd)

1.5. Decay heat

nuclide	neutron energy	reaction	page
Th-232	fast	β, γ, total	(80)
U-233	fast	β, γ, total	(80)
U-235	thermal fast fast fast fast	total B, Y, total gross B gross Y	23 (80) 91 92
U-238	fast fast	ß, y, total y, 5 sec to 30 min	(80) (80)
Pu-239	fast fast fast	β, γ, total gross β gross γ	(80) 91 92

## 2. COMPILATIONS AND EVALUATIONS

data category	further specifications	page
fission yields	fast yield systematics, 10 actinides charge distr., U-236, Cf-252 spont. fission selected compil. f. reactor dosimetry fragment yield, prompt gammas, Pu-239, 241 compilation (Crouch for UKND-file) complete eval. (Crouch for UKND-file) evaluated file (ENDF/B-V,VI) correl. with neutron energy, U-235, Pu-239 compilation and evaluation for ENDF/B-V eval.: indep., isomeric, ternary yields eval. file (ENDF/B-VI, formerly Rider) indep. yields, charge distrib.	$     \begin{array}{r}         138 \\         \overline{140} \\         \overline{145} \\         148 \\         \overline{(149)} \\         (150) \\         156, 157 \\         159-161 \\         (162) \\         (164-166) \\         \underline{168} \\         \overline{(171)}     \end{array} $
cross sections	Cs-133 eff. reson. integral integral fast capture, calc. + measured intercomparison of evaluations, 21 FPs systematic level density calcs., A=40-160 new evaluation of Pd-105, 107 integral test of JENDL-2 FP library evaluation: 80 FP (Z=35-60) for JENDL-2 RCN-2, RCN-3 evaluation, integral tests pseudo-FP 26 group cross sections resonance parameters, thermal (n,gamma) evaluated file (ENDF/B-V,VI) 154-group data (ENDF/B-IV) compilation and evaluation for ENDF/B-V 154-group data ENDF/B-V	$(136) \\ \frac{139}{141} \\ \frac{141}{141} \\ \frac{142}{142}, 143 \\ 142, 143 \\ 146, 147 \\ 146, 147 \\ 154 \\ 156, 157 \\ (163) \\ (164-166) \\ 167 \\ $
decay data	Nuclear Data Sheets for A=102, 110 compil. + eval., all data, French file T _{1/2} , decay scheme data (42 FP) compilation, gamma-ray catalog compil. + eval. (JNDC) for decay heat calc. selected compil. f. reactor dosimetry complete file (UK working group) eval. nucl. structure data file (ENSDF) evaluated file (ENDF/B-V,VI) all data, compilation for ENDF/B-V compilation and evaluation for ENDF/B eval. of beta radiation data, 536 FP compil. of gamma radiation data, 536 nucl.	133 134 135 137 144 145 152 (155) 156,157 158 (164–166) <u>169</u> <u>169–170</u>
delayed neutrons	compilation (JNDC) for decay heat calc. T _{1/2} , P _n , del-n yield (UKND-file) eval., equilibrium spectra total spectra from precursor data group + spectral calc. from precursors	(144) (151) 153 (156,157) <u>164–166</u>
decay heat	evaluation (JNDC working group) fitted functions for U-235, 238, Pu-239 compilation and evaluation for ENDF/B	144 <u>152</u> (164–166)

### I. MEASUREMENTS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.

#### ARGENTINE

- Laboratory: Departamento de Física Comisión Nacional de Energía Atómica Av. del Libertador 8250 1429 Buenos Aires, Argentina
- Facilities: On-line electromagnetic isotope separator coupled with a neutron generator for ²³⁵U(n_{+h},f) products studies (IALE facility).
- 1. Names: H.Huck, M.L.Pérez, J.J.Rossi and H.M.Sofía
  - Experiment: Decay schemes for ¹³¹Sb, ¹³¹Sn isotopes has been built on the basis of Ge(Li) gamma-ray spectroscopy and gamma-gamma coincidences.
  - 235_U thermal fission Method: The products were electromagnetically separated and mass 131 collected on a movable tape collector for on gamma-spectroscopy studies. With line different collection-counting times positive assignments were made for the gamma-rays according the half lives present in mass-131 chain. Gamma-ray energies and intensities as well as gamma-gamma coincidences were used to construct the decay schemes.

Accuracy: Varying

Completion date: Completed

Publications: Phys. Rev. <u>C24</u> (1981) 2227-34. CNEA NT 5/82 pag. b.47, Progress Report 1980-1981, Department of Physics CNEA, Buenos Aires, Argentina.

### ARGENTINE

(cont'd)

2. H.Huck, M.L.Pérez and J.J.Rossi Names: Half lives and partial decay schemes for the Experiment:  129 Sn (2.4 min) and  129 Sn (6.9 min) and  129 Sb isotopes were established. The  235 U thermal fission products were Method: electromagnetically separated and mass 129 collected on a movable tape collector. Half lives determinations were performed by multiscaling the gamma-spectra. Growing-decay curves were taken in order to assign a new half-life no previously reported. Gamma-ray energies and intensities as well as gammagamma coincidences were used to construct the decay schemes. Accuracy: Varying Completion date: Completed

Publications: Sended for publication to Phys. Rev. C. CNEA NT 5/82 pag b.49, Progress Report 1980-1981, Department of Physics CNEA, Buenos Aires, Argentina.

## AUSTRALIA

-

.

	Laboratory and address:	Australian Atomic Energy Commission, Research Establishment, Lucas Heights Research Laboratories, Lucas Heights, NSW 2234, Australia.
	Names:	J.W. Boldeman, B.J. Allen, A.R. de L. Musgrove, R.L. Walsh.
	Facilities:	3 MeV Van de Graaff accelerator, HIFAR and Moata reactors.
1.	Experiment:	Collaborative measurements with ORNL of neutron capture cross sections in the fission product mass region. Measurements of: ${}^{86}, {}^{88}\text{Sr}, {}^{89}\text{Y}, {}^{90-92}, {}^{94}\text{Zr}, {}^{95-98}\text{Mo}, {}_{104-106,108,110}\text{Pd}, {}^{110}, {}^{110}, {}^{114}\text{Cd}, {}_{134,138}\text{Ba}, {}^{139}\text{La}, {}^{140}\text{Ce}, {}^{141}\text{Pr}, {}_{142,146,148}\text{Nd}$
	Method:	$C_6F_6$ detector at 40 m flight path at ORELA; ⁶ Li monitor
	Accuracy:	10-20%
	Publications:	"Recent Measurements of Neutron Capture Cross Sections in the Fission Product Region". A.R. de L. Musgrove, B.J. Allen, J.W. Boldeman, R.L. Macklin ^(a) . Proc. Int. Conf. Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes, Harwell, 1978, OECD-NEA proceedings, p. 449, and references therein.
		"Resonance Neutron Capture in 138 Ba and 140 Ce and the Prompt Neutron Correction to $\gamma$ -ray Detectors". A.R. de L. Musgrove, B.J. Allen, R.L. Macklin. ^(a) Aust.J.Phys. 32 (1979) 213.
		"KeV Neutron Capture in ¹⁴¹ Pr R.B. Taylor ^(b) B.J. Allen, A.R. de L. Musgrove, R.L. Macklin ^(a) . Aust.J.Phys. 32 (1979) 551.
		"Non Statistical Neutron Capture Mechanisms in ¹³⁹ La and ¹⁴¹ Pr". B.J. Allen and A.R. de L. Musgrove. "Neutron Capture Gamma Ray Spectroscopy (1979), Ed. R.E. Chrien & W.R. Kane, Plenum, N.Y. p. 538.
		"Resonance Neutron Capture in ^{86,87} Sr". G.C. Hicks ^(b) , B.J. Allen, A.R. de L. Musgrove, R.L. Macklin ^(a) . Aust.J.Phys.(1982) in press.
2.	Experiment:	Collaborative Measurements with C.B.N.M. of High Resolution Neutron Capture Cross Sections.
	Method:	$C_6D_6, C_6F_6$ detector at 30,60 m flight path at GELINA.
	Publications:	"Failure of Valence Neutron Capture in ⁹⁶ Zr". A. Brusegan ^(C) , F. Corvi ^(C) , G. Rohr ^(C) , B.J. Allen. Fourth Int.Symp. on Neutron Capture Gamma-Ray Spectroscopy and Related Topics (1981), Grenoble Ed.T. Von Egidy and F. Gonnenwein - Adam Hilger.

### AUSTRALIA

```
(cont'd)
```

Publications (cont.): "Search for Valence Effects in p-Wave Capture in ⁸⁸Sr". B.J. Allen, R. Shelley^(C), T. van der Veen^(C), A. Brusegan^(C), G. Vanpraet^(d) - ibid.

 3. Experiment: Method: Publications:
 Measurement of fast neutron capture γ-ray spectra. NaF detector and pulsed Van de Graaff accelerator.
 Publications: "Fast Neutron Capture γ-Ray Spectra in ⁸⁸Sr. B.J. Allen and F.Z. Company^(e). Fourth Int.Symp. on Neutron Capture Gamma-ray Spectroscopy and Related Topics (1981), Grenoble. Ed. T. von Egidy and F. Gonnenwein - Adam Hilger. "Average Neutron Capture γ-ray Spectra in ¹³⁹La and ¹⁴¹Pr". B.J. Allen and F.Z. Company^(e), ibid.

4. Experiment: Relative yields of stable tellurium isotopes in neutron induced fission. Measurements of ²³³U, ²³⁵U.

Method: Mass spectrometer; reactor HIFAR.

Accuracy: 1-5% (relative).

Completion date: 1982

Publication:

J.R. de Laeter^(f), K.J.R. Rosman^(f) and J.W. Boldeman, submitted to Aust.J.Phys., (1982).

5.	Experiment:	Mass yields in neutron fission of ²³⁰ Th.
	Method:	3 MeV Van de Graaff accelerator; surface barrier detectors.
	Completion date:	December 1982.
	Publication:	J.W. Boldeman and R.L. Walsh, 9th Aust.Inst.Nucl.Science and Eng.Conf., Melbourne, February 1982.
#### AUSTRALIA

(cont'd)

6. Experiment: Mass yields and kinetic energies for spontaneous fission and thermal neutron fission of plutonium isotopes (in collaboration with J. Trochon et al., Bruyères-le-Châtel). Measurements of: ²³⁸⁻²⁴⁴Pu.
Method: Surface barrier detectors.
Completion date: March 1983.
Publication: H. Abou Yehia^(g), J.W. Boldeman, Y. Pranal^(g), and J. Trochon^(g).
4th Aust.Inst.Physics Congress, Melbourne, 1980.

- (a) Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
- (b) James Cook University, Queensland, Australia
- (c) Central Bureau for Nuclear Measurements, Geel, Belgium
- (d) Rijksuniversitair Centrum, Antwerp, Belgium
- (e) University of Wollongong, NSW, Australia
- (f) Western Australian Institute of Technology, South Bentley, W.A.
- (g) Bruyères-le-Châtel, France.

#### BELGIUM

Laboratory and address :

Nuclear Physics Laboratory Proeftuinstraat 42 B-9000 Gent, Belgium

Names : H.Thierens, A.De Clercq, E.Jacobs, D.De Frenne, P.D'hondt, P.De Gelder and A.J.Deruytter.

Facilities : Linear Electron Accelerator, Gent Reactor BR1, SCK/CEN Mol

 $\frac{\text{Experiment}}{239} : \text{Kinetic energy and fragment mass distributions for}^{240} \text{Pu s.f.}, \\ \begin{vmatrix} 239 \\ \text{Pu(n}_{\text{th}}, f \end{pmatrix} \text{ and } \begin{vmatrix} 240 \\ \text{Pu}(\gamma, f) \end{pmatrix}, \text{ and for}^{244} \text{Pu s.f.}, \begin{vmatrix} 240 \\ \text{Pu}(\gamma, f) \end{vmatrix} \\ \text{and}^{241} \frac{\text{Pu(n}_{\text{th}}, f)}{241} \\ \begin{vmatrix} 241 \\ \text{Pu(n}_{\text{th}}, f \end{pmatrix}. \end{vmatrix}$ 

Method : Measured : photofission yields, fragment kinetic energies ; deduced :  $\sigma(\gamma, f)$ , kinetic energy- and provisional mass distributions with changing excitation energy of the compound system.

Completion date : 239,240 Pu : November 1980 241,244 Pu : probably September 1982

Publications : - H.Thierens, A.De Clercq, E.Jacobs, D.De Frenne, P.D'hondt, P.De Gelder and A.J.Deruytter, Phys.Rev. <u>C23</u>, 2104 (1981) - H.Thierens et al, to be published in Phys.Rev.C.

- 8 -

## (cont'd)

- Laboratory and adress : Nuclear Physics Laboratory, Proeftuinstraat 42 B-9000 Gent, Belgium - Physikalische Chemie, Philipps-Universität D-3550 Marburg, W-Germany^{a)}
- Names : D.De Frenne, H.Thierens, B.Proot, E.Jacobs, P.De Gelder, A.De Clercq and W.Westmeier^{a)}.

Facilities : Linear Electron Accelerator, Gent.

- $\frac{\text{Experiment}}{\text{fragment spins for the photofission of }} \text{ someric ratios and initial}$
- Method : Measured : fission product γ-ray spectra ; deduced : fractional independent and cumulative yields.

Completion date : beginning 1983.

- Publications : H.Thierens, B.Proot, D.De Frenne and E.Jacobs, Phys.Rev. <u>C25</u>, (1982) **1546** 
  - D.De Frenne, H.Thierens, B.Proot, E.Jacobs, P.De Gelder, A.De Clercq, W.Westmeier, Phys.Rev.C, to be published.

## BELGIUM

•

Laboratory and	:	Nuclear Physics Laboratory, Proeftuinstraat 86,
adress		B-9000 GENT, Belgium
		SCK/CEN, B-2400 MOL, Belgium
		Institut de Physique Nucléaire, 69622 VILLEURBANNE,
		France
		Institut Laue-Langevin, BPN156X, 38042 GRENOBLE,
		France
Names	:	C. Wagemans, E. Allaert, P. D'Hondt, A. Emsallem,
	[	R. Brissot
Facilities	:	High Flux Reactor, Institut Laue-Langevin, GRENOBLE
Experiments	:	Thermal neutron induced $(n, x)$ reactions on fission
		products.
Method	:	Charged particle detection with surface barrier
		detectors
Completion date	:	Systematic study in progress
Publications	:	P. D'Hondt et al., Proc. Int. Conf. on Nuclear
		Data for Science and Technology, Antwerp 1982

## BELGIUM

Laboratory and	:	Nuclear Physics Laboratory, Proeftuinstraat 86,
adress		B-9000 GENT, Belgium
		SCK/CEN, B-2400 MOL, Belgium
		Institut Laue-Langevin, B.P. N.156X GRENOBLE,
		France
Names	:	P. D'Hondt, C. Wagemans, A. De Clercq, E. Allaert,
		R. Brissot
Facilities	:	High Flux Reactor, Institut Laue Langevin, GRENOBLE
Experiments	:	Absolute yields and energy distributions of the
		charged light particles emitted during the thermal
		neutron induced fission of ²³³ U, ²³⁵ U, ²³⁷ Np,
		239 Pu and 241 Am
Method	:	The charged particles are identified with surface
		barrier ( $\Delta$ E-E) telescope detectors
Completion date	:	²³⁵ U completed; other isotopes in progress
Publications	:	1) C. Wagemans et al., Report BLG 539 (1980)
		2) P. D'Hondt et al., Nucl. Phys. <u>A 346</u> (1980) 461
		3) C. Wagemans et al., Nucl. Phys. <u>A 369</u> (1981) 1

E.E.C. BELGIUM

i

Laboratory and	:	CEC - JRC, Central Bureau for Nuclear Measurements,
adress		B-2440 GEEL, Belgium
	. 1	SCK/CEN, B-2400 MOL, Belgium
Names	:	C. Wagemans, E. Allaert, G. Wegener-Penning,
		A.J. Deruytter
Facilities	:	Neutron time-of-flight spectrometer at the 150 MeV
	1	Linac
Experiments	:	Fission fragments kinetic energy and mass distribution
		for 241 Pu (n _{th} ,f), 242 Pu (s.f.) and 244 Pu (s.f.)
Method	:	Coincident fission fragments detected with surface
		barrier detectors. Deduced fragment mass and
		energy distributions
Publications	:	E. Allaert et al., Nucl. Phys. <u>A 380</u> (1982) 61

# E.E.G. Belgium

Laboratory and		JRC, CBNM, Geel, Belgium
address	:	* Rijksuniversitair Centrum, Antwerpen, Belgium
		* AAEC, Lucas Heights, Australia
		B.J. Allen ⁺ , C. Bastian, A. Brusegan, E. Cornelis [*] ,
Names	:	• -
		F. Corvi, G. Rohr, R. Shelley, T. van der Veen,
		G. Vanpraet [*]
Facilities	:	Neutron time-of-flight spectrometer at the 150 MeV
		Linac (pulse width : 4nsec)
		binac (pube with : Andee)
		Noutron capture cross sections for 104, 105, 106,
Experiments	:	Neutron capture cross sections for
		108, 110 Pd and ¹⁴⁹ Sm up to 500 keV
		Neutron capture : Resonance parameters for ⁸⁸ Sr
		•
		up to 300 keV
Methods	:	Capture detectors : $C_6 D_6^-$ , $C_6 F_6^-$ detectors using
		Maier-Leibnitz method
		Neutron flux detectors : 6 Li-glass and 10 B-slab
Accuracy	:	5 - 10 % in the cross section
neouracy	•	
Comulation late		Group costion for Di instance and of 1000
Completion date	:	Cross section for Pd isotopes end of 1982
		96
Publication	:	Failure of valence-neutron capture in ⁹⁶ Zr.
		A. Brusegan, F. Corvi, G. Rohr and B.J. Allen
		Neutron Capture Gamma-Ray Spectroscopy and Related
		Topics, Grenoble (1981), p. 406
		Search of valence effects in p-wave capture in ⁸⁸ Sr
		B.J. Allen, R. Shelley, T. van der Veen, A. Brusegan
		and G. Vanpraet
		ibid., p. 404
		Average capture cross section of the fission product
		nuclei ¹⁰⁵ Pd and ¹⁰⁸ Pd
		G. Rohr, C. Bastian, E. Cornelis, R. Shelley, T. van
		der Veen and G. Vanpraet
		Specialist's Meeting on Fast-Neutron Capture Cross
	-	Sections, Argonne, 1982
	-	

.

.

- 13 -

# E.E.C. BELGIUM

Laboratory and address	:	CEC-JRC, Central Bureau for Nuclear Measurements, Geel, Belgium
Names	:	R. Vaninbroukx, G. Grosse, W. Zehner
Facilities	:	X-ray and $\gamma$ -ray detectors : NaI(T1), solid state detectors
Experiments	:	Determination of half lives of 103 Ru, 103m Rh
Methods	•	Remeasurement at regular intervals, over a period of 2 to 3 half lives, of sources prepared from materials of different origin; determination of the radionuclidic purity of the materials used; calculation of the half lives by least-square fittings.
Accuracies	:	Accuracies corresponding to a $1 \sigma$ confidence level and taking into account random and systematic uncertainties: $103Ru: \pm 0.05 \%$ ; $103mRh: \pm 0.04 \%$
Publication	:	R. Vaninbroukx, G. Grosse and W. Zehner, Int. J. Appl. Radiat. Isot. <u>32</u> , 589 (1981)

## E.E.C. BELGIUM

(cont'd)

Laboratory and address	. CEC-JRC, Central Bureau for Nuclear Measurements, Geel, Belgium
Names	: R. Vaninbroukx, W. Zehner
Facilities	<pre>: 4 π Liquid scintillation counting device; calibrated Si(Li) photon detectors</pre>
Experiments	: Determination of the KX-ray emission probability in the decay of $103 \ensuremath{\text{m}_{Rh}}$
Methods	: Separation of the ^{103m} _{Rh} from ¹⁰³ _{Pd} samples by anion exchange; determination of the ^{103m} _{Rh} disintegration rates by liquid scintillation counting techniques; determination of the remaining 103Pd in the ^{103m} _{Rh} samples; determination of the KX-ray emission rates using calibrated Si(Li) detectors
Accuracies	: Accuracy corresponding to a 1 σ confidence level and taking into account random and systematic uncertainties: <u>+</u> 1.5 %
Publication	: R. Vaninbroukx and W. Zehner, Int. J. Appl. Radiat. Isot. <u>32</u> , 850 (1981)

# BRASIL

Laboratory and	Instituto de Engenharia Nuclear
address:	Comissão Nacional de Energia Nuclear
	C.P. 2186
	20001 Rio de Janeiro, Brasil.
Names:	A.V. Bellido, I.G. Nicoli
Facilities:	Argonaut Reactor
Experiment:	Measurement of fission product yields for ²³⁸ U fission induced by fission spectrum
	neutrons.
Method:	Separation of the irradiated samples in
	lanthanide and non-lanthanide fractions.
	Identification and activity measurements
	of the fission products by X- ray spec-
	trometry. Calculation of cumulative
	yields by substraction the ²³⁵ U fission
	contribution and relation of the satura-
	tion activities for each nuclide, in de-
	pleted and natural uranium, with the ac-
	tivities of reference nuclides. (Yields
	of reference nuclides: $^{142}La = 4.95$ and $^{92}Sr = 4.10$ ).
Accuracy:	Better than 10%
Completion date:	1983

## BULGARIA

Laboratory and	University of Sofia, Faculty of Physics,
address :	Department of Atomic Physics, 1126 Sofia,
	Bulgaria
1.Names :	E. Dobreva, N. Nenoff
	M. Iovtshev (Institute for Nuclear Research
	and Nuclear Energy, Sofia)
Facility :	Experimental reactor of the Institute for
	Nuclear Research and Nuclear Energy
Experiment :	Measured yields of ¹³¹ I, ¹³² I, ¹³³ I and
	¹³⁴ I for the epicadmium reactor neutron
	induced fission of ²³⁸ U. Deduced fractional
	independent yields for 132 I, 133 I and 134 I;
	most probable charge for the isobaric
	chains 132, 133 and 134; yields of precur-
	sor nuclides and chain yields for mass
	131, 132, 133 and 134 relative to the
	cumulative yield of $135I$ .
Method :	Radiochemical separation of I, Ge(Li) X-ray
	counting. Five independent runs with equal

Accuracy: Between 5 and 10 %; 28 % for the lowest yield isotope (¹³²I).

irradiation and different separation time.

Completion date : November 1979

## BULGARIA

# (cont'd)

Publications :	1.	E. Dobreva, V. Gadjokov, M. Iovtshev,
		N. Nenoff. Annu. Univ. Sofia <u>70-71</u>
		(1979/80), in press.
	2.	E. Dobreva, N. Nenoff. Radiochem. Radio-
		anal. Letters (submitted).
2. Names:	N.	Nenoff et al*)

Experiment: Determination of 14 MeV neutron reaction cross sections for some rare earth isotopes.

Method: Activation technique

•

Completion date: In progress, only preliminary data obtained.

*) Editor's note: preliminary information extracted from a letter by N. Nenoff. A full contribution on this work will be included in next year's issue.

\$

Laboratory and address:	Chalk River Nuclear Laboratories Chalk River, Ontario Canada KOJ 1JO
Names:	Janet S. Merritt, Anne R. Rutledge and Lyall V. Smith
Facilities:	1) Ge(Li) spectrometer 2) 4πβ counter
Experiment:	Measurement of the probability for 909-keV $\gamma\text{-ray}$ emission following the decay of $^{89}\text{Sr.}$
Method:	A Ge(Li) $\gamma$ -ray spectrometer was used to determine the 909.2 keV emission rate. The spectrometer was efficiency calibrated and a value for the photo-peak efficiency for the 909.2 keV $\gamma$ -ray deduced. The activity of the 89Sr was determined by $4\pi\beta$ counting. The ratio of $\gamma$ -ray emission rate to activity for unit sample size gives $P_{\gamma}$ directly.
Accuracy:	±0.8%
Completion date:	April, 1981
Discrepancies to other reported data:	Our result is about a factor of ten higher than values given in recent compilations, where unfortunately a value with a misplaced decimal point was adopted.
Publication:	Measurement of the Probability for 909-keV γ-ray Emission Following the decay of ⁸⁹ Sr. Janet S. Merritt, Anne R. Rutledge and Lyall V. Smith, Int. J. Appl. Radiat. Isot. Vol. 33, pp. 77-78, 1982.

.

# (cont'd)

Laboratory and address:	Chalk River Nuclear Laboratories Chalk River, Ontario Canada KOJ 1JO
Names:	A.R. Rutledge, L.V. Smith and J.S. Merritt
Facilities:	<ol> <li>4πγ ionization chamber</li> <li>4π gas flow proportional counter</li> <li>4π β -γ coincidence system</li> <li>scintillation spectrometer</li> <li>Ge(Li) detector</li> <li>Radioisotope standardization laboratory</li> </ol>
Experiment:	Half-life values for $82_{Br}$ , $95_{Nb}$ , $99_{Tc}m$ , $109_{Pd}$ , $115_{In}m$ , 133Xe, 134Cs, 134Csm, 137Bam, 137Cs, 141Ce and 152Eu. Gamma-ray emission probabilities for $85_{Kr}$ , $99_{Tc}m$ , $115_{In}m$ , 137Cs and $141_{Ce}$ .
Method:	$4\pi\gamma$ ionization chamber and $4\pi$ gas flow proportional counter used for half-lives; $4\pi\gamma$ ionization chamber, $4\pi\beta$ - $\gamma$ coincidence system, and scintillation spectrometer used for $\gamma$ -ray emission probabilities.
Accuracy:	T ₂ ; ± 1.4% for 137 Cs, <± 0.22% for 115 In ^m and 152 Eu, ± 0.02-0.09% for remainder. P _{\gamma} ; ± 6.5% for 85 Kr; 0.2-0.9% for remainder.
Completion date:	Results published March, 1980. Half-life measurements on ¹³⁷ Cs are preliminary and continuing.
Discrepancies	1) ¹³⁷ Cs half-life 2.6% shorter.
to other data:	2) ⁸⁵ Kr P _y 6-7% smaller.
Publication:	Decay Data for Radionuclides used for the Calibration of x- and $\gamma$ -ray Spectrometers. A.R. Rutledge, L.V. Smith and J.S. Merritt, Atomic Energy of Canada Limited, Report AECL-6692,1980.

Laboratory and address:	Nuclear Research Centre The University of Alberta Edmonton, Alberta Canada T6G 2N5
Names:	S.T. Lam, L.L. Yu, H.W. Fielding, W.K. Dawson G.C. Neilson and J.T. Sample
Facilities:	Subnano-second pulsed beam derived from 7 MV CN van de Graaff accelerator and Mobley magnet. Monoener- getic neutron beam obtained from ³ H(p,n) ³ He and ³ H(d,n) ⁴ He reactions using liquid nitrogen cooled tritium gas cell.
<u>Experiment</u> :	Determination of fission-fragment mass distribution and fission-fragment kinetic energy from fast neu- tron induced fission of 238 U and 232 Th. E _n = 2.0 - 5.2 MeV in steps of about 0.5 MeV for 238 U fission. E _n = 1.6, 3.1 and 5.2 MeV for 232 Th fission. Compa- rison of fission-fragment mass distribution with statistical model calculation. Fission barriers and shell energies deduced.
Method:	Fission fragment detected by Ortec surface barrier heavy-ion detector. Time-of-flight technique em- ployed to measure fragment flight time. Fission- fragment mass distribution and correlation of fragment kinetic energy versus fragment mass derived from data.
Accuracy:	Fragment mass resolution about 5 u. Fragment energy resolution about 2 MeV. A total of about 5000 fission events collected for each neutron energy.
Completion date:	²³⁸ U data completed and published. Analysis of ²³² Th data <b>and</b> Statistical model calculation completed.
Publication:	"Fast Neutron Induced Fission of ²³⁸ U" S.T. Lam, L.L. Yu, H.W. Fielding, W.K. Dawson G.C. Neilson and J.T. Sample. Phys. Rev. <u>C22</u> , 2485 (1980).
	Results for 232 _{Th} in Bull. Am. Phys. Soc. <u>26</u> (1981) 1118.

-

Laboratory and address:		University of Toronto Erindale College 3359 Mississauga Road North Mississauga, Ontario Canada L5L 1C6
Names:		B. Singh [†] , D. Viggars [†] , H. W. Taylor († - University of Kuwait)
Facilities:		14 MeV neutron generator producing $\sim$ 2 $\times$ $10^{10}$ n/s through the d,T reaction.
Experiment:		Study of the decay of 91 m 78 As.
Method:		Gamma radiations studied with Ge spectrometers, $\gamma-\gamma$ coincidence methods.
Accuracy:		γ-ray energy measurements to ≤0.6 keV energy levels in ⁷⁸ Se to ≤0.22 keV.
Completion date:		January 1982.
Discrepanci	es to oth	er reported data:
i) en	ergy and	intensity determinations have been improved
75	new transitions with energies of 351.1, 497.0, 637.1, 756.9, 903.6, 988.2, 1018.7, 1169.5 and 2758.8 keV have been observed.	
	coincidence measurements have produced some revisions of decay scheme.	
		B. Singh, D.A. Viggars and H.W. Taylor Spectroscopy of gamma rays from ⁷⁸ As decay Phys. Rev. C April 1982

## CHILE

Laboratory and address:	Chilean Nuclear Energy Commission La Reina Nuclear Research Reactor Casilla 188-D, Santiago - Chile
Facilities:	Research Reactor, Activation Analysis Systems, Calorimetric Lab.
Experiment:	Precise measurement of the decay heat following irradiation of various uranium samples with slow neutrons. This work is scheduled to begin in September 1982.
Method:	Absolute adiabatic calorimetry. The aim of this work is to check the existing data on uranium decay heat after various irradiation periods. The results will be used to determine the absolute burn-up of the fuel discharged from the research reactors.
Completion date:	experimental part: December 1983

## Czechoslovakia

Laboratory and Address:	Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rež Czechoslovakia Nuclear Centre, Faculty of Mathematics and Physics, Charles University, Prague, Povltavská 1, 180 00 Praha 8-Pelc-Tyrolka, Czechoslovakia
Names:	R. Bayer, Z. Dlouhý, J. Švanda, ^{X)} I.Wilhelm,
Facilities:	<ol> <li>6 MW - research reactor</li> <li>Self-fission source of 252 Cf</li> </ol>
Experiment:	Light particles emission from heavy nuclei fission
M <b>e</b> thod:	A semiconductor $\triangle E-E$ detector telescope and $\triangle E- \triangle E - E$ ionisation chamber are used for particle identification
Results:	The yields and their energy spectra of light particles from the self-fission of 252 Cf have been measured. The yields of ⁶ He, ⁸ He, Li, ⁶ Li, ⁷ Li, ⁸ Li, ⁹ Li, Be relative to emission of 100 alpha particles and their most probable energies were determined.
Accuracy:	The accuracy of yield determination was about 5 - 25 %.
Publications:	R. Bayer, Z. Dlouhý, J. Švanda, T.Wilhelm Investigation of light particle yields from ²⁵² Cf source. All Union Conf. on Neutron Physics, Kiev 1980, Part 3, 20.
	R. Bayer, Z. Dlouh <b>9, J. Svan</b> da A Multiparameter System for Heavy Nuclei Fission Study, Czech. J. Phys. B <u>31</u> (1981) 1273

# Arab Republic of Egypt

Laboratory and	Reactor and Neutron Physics Dept.,
address	Nuclear Research Centre,
	Atomic Energy Establishment,
	Cairo, Egypt.
Facilities: a)	Two time-of-flight spectrometers installed
	infront of two of the ET-RR-1 reactor
	horizontal channels. One of them has a
	mechanical chopper with its rotor from
	pertinax 160 mm in diameter, having straight
	slits 1 x 25 mm ² , while the flight path is
	8.1 m. The second spectrometer has a rotor
	of the same dimensions only with a cigar-
	shape slit 3 x 25 $mm^2$ , while the flight
	path is 4.2 m.
b)	Neutron diffraction spectrometer with Zn
	single crystal cut along the (111) plane,
	installed infront of one of the ET-RR-1
	reactor horizontal channels.
(1) Names:	M.Adib, R.M.A.Maayouf, A.Abdel-Kawy,
	A. Ashry and I. Hamouda.
Experiment:	Measurement of the total neutron cross-
	section of $E_u^{151}$ , $E_u^{153}$ and $E_u$ below 1 eV.
Method:	Transmission method.
Accuracy:	Varying between 0.5% - 5% at energies,
	1 - 0.002 eV respectively.
Completion date:	October 1980.
Discrepancies to o	ther reported data:
	The present set of data is the first
	complete measurements, carried out for
	each isotope separately.
Publication:	The data are published as IAEA Report-
	INDC (EGY) -1/L, Dec. 1980.
	Atomkernenergie <u>38</u> (1981) 285

ì

# Arab Republic of Egypt

(cont'd)

(2) Names:	M.Adib, A.Abdel-Kawy, R.M.A.Maayouf, M.Mostafa, M.Fayek and I.Hamouda.
Experiment:	Measurements of the total neutron cross- section of Nb, at different temperatures for neutrons with energies below 1 eV.
Method:	Transmission method.
Accuracy:	Varying from 0.5% - 5% respectèvely for neutron energies 2 eV-0.0023 eV.
Completion date:	March 1981.
Publication:	Published as INDC(EGY)-2 (Sept. 1981)

- Laboratory : Service RADIOCHIMIE ET PHENOMENOLOGIE Centre d'Etudes de BRUYERES-LE-CHATEL B.P. n° 561 - 92542 MONTROUGE CEDEX - FRANCE.
- Names : J. LAUREC A. ADAM.

Facilities : PROSPERO Critical assembly and LANCELOT 14 Mev neutrons generator (S.E.C.R./C.E. VALDUC) Radiochimical Laboratory Calibrated Ge-Li spectrometers.

- $\begin{array}{l} \underline{Experiments}: & \text{Determination of cumulative yields of some fission products} \\ (95_{\text{Zr}}, 97_{\text{Zr}}, 99_{\text{Mo}}, 103_{\text{Ru}}, 105_{\text{Rh}}, 127_{\text{Sb}}, 131_{\text{I}}, 132_{\text{Te}}, 140_{\text{Ba}}, \\ 141_{\text{Ce}}, 143_{\text{Ce}}, 144_{\text{Ce}}, 147_{\text{Nd}} ) \text{ for } 233_{\text{U}}, 235_{\text{U}}, 238_{\text{U}} \text{ and } 239_{\text{Pu}}, \\ & \text{with fission spectrum and 14,7 Mev neutrons.} \end{array}$
- Method : The fission number is measured by a fission chamber. The fission products activities of fissile target nuclides are determined by gamma direct spectrometry measurements with calibrated Ge-Li spectrometers. The targets and chamber deposits masses are determined by alpha and mass spectrometries.
- Accuracy: 3 to 5 %; the branching ratio error is not included; this last error is variable from one isotope to the other (1 % to 5 %).
- Completion : Work completed
- Publication : C.E.A. report R-5147 J. LAUREC, A. ADAM, T. DE BRUYNE

# (update of issue 6)

Laboratory and address :	Département de Recherche Fondamentale Laboratoire de Chimie Physique Nucléaire Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX - France.
Names :	J. BLACHOT, J. CRANÇON, Ch. HAMELIN, G. LHOSPICE
Facilities :	Melusine reactor (thermal neutron and caramel system for fast neutrons) 3 MeV neutrons generator and high flux reactor of I.L.L.
Experiment :	The element yields of Bromine,Krypton, Rubidium, Tellurium, Iodine, Xenon, Caesium, have been measured for :
	$2^{35}U(n_{th},f), 2^{35}U(n_{f},f), 2^{35}(n_{3MeV},f), 2^{32}Th(3MeV,f)$
	$238_{U(n_{3MeV},f)}, *232_{U(n_{th},f)}, *229_{Th(n_{th},f)}$
	Values for the odd even effects in Z for all these systems has been deduced.
Method :	Direct growth and decay activities are measured with a Ge/Li detector and recorder in a multispectrum mode by a 4K multichannel analyser.
Accuracy :	The average relative uncertainty of our measurements is between 5 and 10%.
Completion date:	²³⁵ U, ²³⁸ U, ²³² Th during 1980 and 1981, ²²⁹ Th and ²³² U in progress, ²³⁸ Pu will be started end of 1982.
Publication :	International Symposium on Physics and Chemistry of Fission - 14/18 May 1979 - Jülich (IAEA-SM/241 - F29)
	Nuclear Physics <u>A361</u> (1981) 213

.

.

*Collaboration with CSTN, Alger

Laboratory and address	:	Laboratoire de Biophysique, U.E.R.D.M., Université de Nice, 28, avenue Valrose - 06034 NICE CEDEX, F.
Name	:	G. MALLET
Facilities	:	This work was performed in the "Laboratoire de Chimie Physique Atomique et Structurale" of the Nice University, Parc Valrose.
Experiment	:	Study of the decay of $110_{Ag}$ m+g by application of the techniques of sum-peak and coincidence, $\gamma - \gamma$ coincidence and sum-coincidence.
Methods	:	1. Very great improvements in the determination of the energy levels of radioisotopes by the sum-peak technique plus coincidence counting have been achieved by the utilisation of two Ge(Li) detector arrangements. The spectrometer performances and the validity of the method for the ray-spectrum interpretation and for the shape of the continuum was tested for the decay of $110_{Ag}$ m+g 1,2).
		2. Sum-coincidence (Hoogenboom) and $\gamma-\gamma$ coincidence spectrometers with Ge(Li) detectors have been used. Their utilisation allowed to show up evidence of the cascade 387.1-997.2 keV and to determine the position of 13 weak transitions in the 110Agm+g decay scheme: 133.4, 365.4, 626.1, 630.6, 997.2, 1085.5, 1117.5, 1251.0, 1300.1, 1334.4, 1421.1, 1593.0 and 1903.4 keV.
		3. The $\gamma$ -ray energy and intensity measurements have been done using 5 semi-conductor detectors of volumes between 100 and 12 cm3.
Accuracy	:	1. The full energy peak efficiency has been determined with an uncertainty of less than 3% by means of our sum- peak and coincidence spectrometer provided with an inter- pretation method for the sum-peaks, derived from Wapstra's method 5). $2 + 3. \gamma$ -ray energy measurements to 0.1 keV.
		$\gamma$ -ray intensity measurements to <10%.
Completion date	:	in progress.

,

# (cont'd)

Discrepancies to other :	1. Energy level determination has been improved.
reported data	2. Levels at 2078.8, 2250.7, 2287.7, 2433.1, 2539.6, 2659.9, 2706, 2793.4, 2842.5 and 2876.8 keV are definitely confirmed by these techniques. Moreover the existence of a new level at 2356.2 keV is proposed. The known gamma-rays of 120.3, 341.4 and 356.4 keV have been inter- preted as well as four new transitions of about 648, 714.9, 1465.6 and 1698.5 keV.
	3. Apart from confirming the $\gamma$ -rays of 264.4, 341.4, 409.6, 572.7, 603.1, 603.6, 774.8, 1630.0 and 2004.6 keV observed by Meyer 6) but refuted by Verma et al. 7), our measurements give evidence for eight new $\gamma$ -rays at 648.2, 666.1, 714.9, 845.8, 927.6, 1050.1, 1465.6 and 1698.5 keV.
Publications :	1) G. MALLET, Thèse, Nice (1979).
and references	2) G. MALLET et M.S. PRAVIKOFF, Nucl. Instr. and Meth., 184 (1981) 469-475.
	<ul> <li>3) G. MALLET, J. DALMASSO, H. MARIA et G. ARDISSON,</li> <li>J. Phys. G : Nucl. Phys. 7 (1981) 1259-1270.</li> </ul>
	4) G. MALLET, J. Phys. Soc. Jpn. 50 (1981) 384-392.
	5) G. MALLET to be published.
	6) R.A. MEYER, private communication to Nucl. Data Sheets, 22 (1977) 135.
	7) H. R. VERMA, A. K. SHARMA, R. KAUR, K. K. SURI and P. N. TREHAN, J. Phys. Soc. Jpn. 47 (1979) 16.

Laboratory	Laboratoire de Chimie-Physique et Radiochimie
and address:	Faculté des Sciences, 28, avenue Valrose
	06034 Nice Cédex, France

J. Dalmasso, H. Maria, G. Barci-Funel and G. Ardisson Names: 1

Search for low energy Y-quanta in ¹²⁵Sb-¹²⁵Te^m Experiment: (same as INDC(NDS)-116) equilibrium source decay.

- Recent works have been performed concerning  $\beta$  decay Method: of ¹²⁵Sb (ref 1-4) in view to determinate missing low intensity X-rays in ¹²⁵Te levels scheme. Walters and Meyer ³ reported a new 19.88 keV transition. In this study, we reinvestigated the low energy spec-trum using a high resolution HPGe detector ( 145 eV at Fe  $K_{\sim}$  ). Pulses were analysed with a 8192 channels ADC. Several runs were performed with one 6 years old ¹²⁵Sb-¹²⁵Te^m source, before and after purification and precipitation as Sb₂S3¹.
- Energy and intensity of ¹²⁵Sb Y-rays and associated Measurements: Te X-rays were calculated using standards I.A.E.A. sources of 137Cs, 241Am and 123Ba. Careful examination of Te X-rays region was necessary, because a 20.020 keV photon was due to  $K_{\beta}$  escape of  $K_{\beta'1}$ line. However we analysed a contribution of (0.023  $\pm 0.005)\%$  for a 19.888 keV photon, in good agree-ment with result of Walters and Meyer³. Table summarizes results of energy and intensity in ¹²⁵Sb-¹²⁵Te^m equilibrium mixture.
- The accuracy (1 5) for energy is within 6 to 20 eV. Accuracy: Absolute intensities of Y- and X-rays range between 4 to 8% .

No evidence for reported 110.9 and 146.08 keV &-rays². Discrepancies to other reported Assuming the experimental value  $\alpha_{\rm K} = 151 \pm 11$  of data:  $109.26 \text{ keV M4 transition}^5$  and  $12.01 \pm 0.36$  for  $\alpha_{\rm K}(35.5)$  (ref6), a contribution of 1.55 e_K for all other transition and  $\omega_{\rm K} = 0.859$  (ref6), we found  $I(K_{\alpha} + K_{\beta}) = 56.7 \pm 8.5\%$  decays. This in good agreement with our experimental value i.e. 53.2 \pm 6.4 K X-rays % decays.

#### Publications: See ref. 1. 4 and to be published

References:

- (1) C. Marsol, G. Ardisson, Compt. Rend., <u>272B</u>(1971)61.
  (2) J.B. Gupta, N.C. Singhal and J.H. Hamilton, Z. Phys., <u>261(1973)</u> 137.
  - (3) W.B. Walters, R.A. Meyer, Phys. Rev., 14C(1976) 1925.
  - (4) G. Ardisson, K. Abdmeziem, Radiochem. Radioanal. Letters, <u>29</u>, Nº1(1977)1.
  - (5) S.B. Reddy, K. Sudhakar, K.L. Narasimhan, B.V. Thirumala Rao, V. Lakshminarayana, Indian J. Appl. Phys., 15,N°3 (1977)208. (6) E. Karttunen, H.U. Freund and R.W. Fink, Nucl.
  - Phys., <u>A131</u>(1969)343.

# FRANCE (cont'd)

2

Table: Absolute intensities of X-and low energy Y-rays in 125Sb-125Te^m equilibrium source decay.

pr Energy	esent work I (% decays)	Walters and Meyer ³ Energy I (% decays)
19.888 15	0.023 5 14.5 9 Te Kov2 29.1 15 Kov1 7.82 31 Kov1	19.88 15 0.02 1
01.02	V.UU1	35.504 15
109.263 12	0.072 6	109.276 15 110.89 15 0.0009 1
116.907 12	0.225 18	116.952       11       0.255       4         146.08       10       0.00062       4
172.702 20 176.342 10	0.181 15 6.74 [*] 26	172.615 15 0.182 3 176.334 11 6.79 2
which corres	ponds to 100βdecays ³	
Names:	-	, C. Ardisson and G. Ardisson
Experiment:	Accurate measurement decay of $108 \text{Ag}^{\text{m}}$ (T ¹ / ₂ =	of E1 energy transition in the 127 y)
Method:	old $108 \text{Agm}$ . The only by $107 \text{Ag}(n, \chi) 108 \text{Ag}$	were carried out with a 10 years one impurity was 109Cd produced $\rightarrow 10^{8}$ Cd(n, Y) 109Cd. Measurements 5mm ² HPGe detector and a 8192 tion was accomplished with 133Ba, s originated by 207Bi source.
Accuracy:	Energy accuracy is 6	eV at 20 confidence level.
Discrepancy to other data:		gree well with our accurate value
	present work ref.1 ref.2 ref.3	$E_{\chi} = 79.131  (6)  \text{keV} \\ 79.20  (5)  \text{keV} \\ 79.14  (3)  \text{keV} \\ 79.14  (3)  \text{keV} \end{cases}$
Publication:	H. Maria, J. Dalmasso, G. 195 (1982) 621	Ardissom, Nucl. Instr. Meth.
References:	<ol> <li>W.D. Schmidt-Ott,</li> <li>M. Behar, K.S. Kr. Nucl. Phys., <u>A201</u></li> </ol>	R.W. Fink, Z. Phys., <u>254</u> (1972)281. ane, R.M. Steffen, _{an} d M.E. Bunker, (1973)126.

Nucl. Phys., <u>A201(1973)126.</u>
(3) R.A. Meyer, priv. comm., in Lederer and V.S. Shirley Table of Isotopes (J. Wiley, New-York, 1978)_{app}. 5.

Laboratories		(cont'd,new)
and Adresses	:	Laboratoire de Chimie-Physique et Radiochimie(LCPR) Université de Nice, 06034 Nice Cédex, France Institut de Recherches sur les Energies Nouvelles(IREN) Faculté des Sciences, BP 322, Abidjan, Côte d'Ivoire
Names	:	J. Dalmasso, G. Barci, H. Maria, C. Ardisson, B. Weiss, H. Forest, G. Ardisson (LCPR) A. Hachem (IREN)
Facilities	:	Ge(Li) detectors, planar HPGe detectors, 4K analysers.
Experiments	:	Measurements of Absolute K-X Transition Probabilities of Fission Products. These quantities are required for quantitative determination of FP activities in environ- mental samples by the X-Ray spectrometric method (1,2). Accurate determination of $I_{\chi}$ and $E_{\chi}$ in Fission Radionu- clides. Decay Schemes.
Method	:	Very thin sources of radiochemically separated FP nucli- des are measured with calibrated coaxial Ge(Li) detectors and planar HPGe detectors (25 and 200 mm ² ). The follow- ing nuclides are investigated: $77_{\rm As}$ , $95_{\rm Zr}$ , $108_{\rm Ag}$ m+g, $110_{\rm Ag}$ m+g, $106_{\rm Ru}$ - $106_{\rm Rh}$ , $125_{\rm Sb}$ , $131_{\rm I}$ , $132_{\rm I}$ , $137_{\rm Cs}$ , $140_{\rm Ba}$ , $140_{\rm La}$ , $144_{\rm Ce}$ - $144_{\rm Pr}$ .
Accuracy	:	$\Delta E_{\chi}$ between 5 to 100 eV, $\Delta I_{\chi}$ between 5 to 15%. $\Delta I_{KX}$ between 5 to 15% (including error in branching ratios).
Completion date	:	Expected mid 83
Discrepancies	5:	The new I, and E, values found for 77 As decay are given with better precision than ref(a). For 140 La, our I,(487) =(45.10+0.9)% (ref:3) disagree with earlier value of ref (b) i.e. I,(487)=(38.1 ± 0.5)%.

Publications : 1/G. Ardisson, G. Barci, J. Dalmasso, H. Maria. "Determination of radionuclides in rain water by X-ray spectrometry", European Conference on Analytical Chemistry, Helsinki, (23-28 august 1981).
2/G. Ardisson"Determination of Fission Nuclides in rainwater by X-Ray spectrometry", Trends in Analytical Chemistry, 1982, in press.
3/G. Ardisson"Intensités des Y associés à la décroissance de 140La", Nucl. Instr. Methods, 151(1978)505.
4/G. Mallet, J. Dalmasso, H. Maria, G. Ardisson, "Contribution à l'étude des états excités de ¹¹⁰Cd peuplés lors de la désintégration de ¹¹ Ag^m", J. Phys., G,7 (1981) 1259.
5/H. Maria, J. Dalmasso, G. Ardisson, "Sur l'énergie de la stransition E1 de 108Ag^m", Nucl. Instr. Methods, 1982, in press.
References : a)G. Ardisson, C. Marsol, "Sur la mise en évidence de faibles branches β dans la désintégration de ⁷⁷As", Can. J. Phys., 49 (1971) 1731.

b)J.T. Harvey,J.L. Meason,J.C. Hogan and H.L. Wright," Gamma-ray intensities for the radioactive decay of Baryum 140 and Lanthanum 140"Nucl. Sci. Eng.,58 (1975) 431.

#### GERMANY Fed.Rep.

#### Laboratory and address:

Institut für Reine und Angewandte Kernphysik der Universität Kiel (IKK), D-2054 Geesthacht, Reaktorstation

Names: P. Fischer, U. Harz, H.G. Priesmeyer

#### Facility:

Fast Chopper Neutron Time-of-Flight spectrometer, 42 m flightpath in front of beam hole of 5MW FRG-1 reactor. 15 ns/m nominal resolution, special equipment for transmission investigations of highly radioactive samples, 11 Li-6 glass detectors, max. rotorspeed 12000 rpm, min. burst width 0.64 µsec, min. time | channel width 100 nsec, 2560 time-of-flight channels.

#### Experiments:

Neutron resonance investigations by transmission measurements between 1 eV and 1.5 keV on separated stable or radioactive isotopes of special interest to reactor physics (especially fission products), gross fission products. Possibility of extending energy range to thermal region using crystal spectrometer or neutron guide tubes.

- Completed: Final measurements on two of the five gross-fission product samples show time variations useful for isotopic identifications.
- Ongoing: Gross-fission product mixtures, comparative measurements

Planned: Transmission experiments on I 129, Krypton isotopes and gross-fission products; installation of 24 keV Fe-filter.

#### Method:

Sample in beam, sample out-of-beam transmission measurement, black resonance background determination technique.

#### Accuracy:

For resonance parameters : about 5 % or better, depending on statistical accuracy of transmission points.

#### Recent publications:

P. Fischer, U. Harz, H.G. Priesmeyer ATKE 38(1), (1981) 63 Neutron Resonance Parameters of ⁹⁹Tc in the Energy Range 4.5 to 25 eV.

P. Fischer, U. Harz, H.G. Priesmeyer GKSS 81/E/17 Die Energieeichung des IKK Fast-Choppers mit U 238 Standards - Die Resonanzparameter des Iridiums im Energiebereich bis 1.5 eV.

H.G. Priesmeyer, U. Harz, P. Fischer Neutron Physics Activities at the FRG-I RESEARCH REACTOR IAEA-SR-77/67 Seminar on Research Reactor Operation and Use, Jülich 1981.

## GERMANY, FED: REP.

LABORATORY:	Kernforschungszentrum Karlsruhe
	Institut für Angewandte Kernphysik
1. NAMES:	H. Beer, F. Käppeler
FACILITIES:	<ol> <li>pulsed 3 MV Van de Graaff, kinematically collimated neutron beam, 25 keV above</li> </ol>
	the 'Li(p,n) reaction threshold
	2) Ge(Li) detector (rel. efficiency for ⁶⁰ Co: 7 %, energy resolution at 1.33 MeV:
	2 keV)
EXPERIMENT.	30 keV capture cross section of 124 Xe, 132 Xe, 134 Xe, 152,154 Sm, 152,158 Gd and capture cross
	section of 151 Eu to the 9.3 h isomeric state in 152 Eu at 48.5 keV
METHOD:	activation technique
ACCURACY:	5-10 %
COMPLETION DATE:	Data analysis completed
PUBLICATIONS:	H. Beer, F. Fabbri, F. Käppeler, RD. Penzhorn, G. Reffo, R.A. Ward Annual Report on Nuclear Physics Activities
	1980-1982, KfK 3280 (Febr. 1982)
2. NAMES:	F. Käppeler, G. Walter
FACILITIES:	pulsed 3 MV Van de Graaff
EXPERIMENT:	Capture and Total Cross Section Measurements on ⁸⁰ Kr and ⁸⁶ Kr Between 4 and 300 keV Neutron Energy

.

- 35 -

METHOD:	continuous neutron energy spectrum from ⁷ Li(p,n) reaction;
	high pressure gas samples (300 bar in stainless steel
	spheres of 20 mm diameter and 0.5 mm wall thickness);
	capture events detected by 2 $C_6 D_6$ -detectors of 1 1
	volume with pulse height weighting;
	neutron energy determination by time-of-flight with a
	resolution of 1.5 ns/m;
	197 Au-sample used as a standard.
ACCURACY:	Statistical uncertainty typically 5-10% for energy
	intervals corresponding to the experimental resolution
	Systematic uncertainties between 4 and 10 % dependent
	on the isotopic composition of the samples.
COMPLETION D	DATE:   summer 1982
DISCREPANCIE	S TO No such data available
OTHER REPORT	
PUBLICATIONS	Preliminary data are summarized in internal reports.
3. NAMES:	K. Wisshak, F. Käppeler
FACILITIES:	1.) pulsed 3 MV Van de Graaff,
	kinematically collimated neutron beam
	2.) Moxon Rae detector with graphite converter
	. 93
EXPERIMENT:	Neutron capture cross section of ⁹³ Nb,
	103 Rh and 181 Ta in the energy range
	10 - 70  keV
METHOD:	Relative measurement, gold standard
ACCURACY:	3-5 %
PUBLICATION	S: Fast Neutron Capture Cross Sections and
	Related Gamma Ray Spectra of $93$ Nb, $103$ Rh and $181$ Ta
	G. Reffo, F. Fabbri, K. Wisshak and F. Käppeler
	Nucl. Sci. Eng. <u>80</u> (1982) 630

## Germany, Fed. Rep.

Laboratory and address	Institut für Radiochemie Technische Universität München 8046 Garching
Names	D.C.Aumann, D.Weismann, H.Zeising
Facility	Swimming-pool type reactor (FRM)
Experiment	Determination of the independent yields of Rh-102m, Rh-102g and Rh-101g for thermal-neutron-induced fission of U-235
Method	Radiochemical separation and $r$ -counting
Accuracy	25 <b>-</b> 50%
Completion date	completed
Publication	J. Inorg. Nucl. Chem. <u>43</u> (1981) 2223

* Present address: Inst. f. Physikalische Chemie, Abt. Nuklearchemie Univ. Bonn

.3

.

,

Germany, Fed. Rep.

(cont'd)

Laboratory and	Institut für Radiochemie
address	Technische Universität München
	8046 Garching

Names D.C.Aumann^{*}, I.Winkelmann

Facility 14.8-MeV neutron generator

Experiment Determination of fission yields for fission of Pu-242 induced by 14.8-MeV neutrons

Method Yields determined (1) by **f**-counting of irradiated Pu-242 sample and (2) radiochemically with either **f**- or **B**-counting. Yields of 65 fission products, representing 43 mass chains, have been determined

Accuracy Yields determined by **f**-counting:5-10% Yields determined radiochemically:10-20%

Completion date completed

Publication I.Winkelmann, Dissertation, Technische Universität München, 1981 to be published in J. Inorg. Nucl. Chem.

Present address: Inst. f. Physikalische Chemie, Abt. Nuklearchemie Univ. Bonn

## Germany, Fed. Rep.

Laboratory and	Institut für Physikalische Chemie
Address	Abt. Nuklearchemie
	Universität Bonn
Names	D.C. Aumann, L. Friedmann
Facility	Swimming-pool type reactor (FRM)
-	
Experiment	Determination of cumulative yield of
	$1.6 \cdot 10^7$ y I-129 from thermal-neutron
	_
	induced fission of U-235
Method	Radiochemical separation of I-129 and
	determination by neutron activation and
	measurement of the 12.3 h I-130 pro-
	duced by the neutron capture reaction
Accuracy	10%
Completion date	completed
Publication	Radiochim. Acta 30 (1982) 19

#### GERMANY, FED. REP.

- Laboratory II. Physikalisches Institut and adress: Universität Giessen Arndtstr. 2 D-6300 Giessen, Germany
- 1. Names: C. Geisse, G. Jung, H. Wollnik (II.Physik Giessen) F. Blönnigen (II.Physik Giessen/ILL Grenoble) B. Pfeiffer (ILL Grenoble)
- Facilities: On-line mass separator OSTIS installed at the high-flux reactor of ILL, Grenoble

Experiment: Q_B-values of neuton-rich fission products

Method: Alkaline fission products of  235 U are ionized on the 2000 K hot Rhenium surface of the ion source and separated according to mass. The beta-decay products are selected in energy by a magnetic sector device which is used for pile-up and background reduction. The energy determination is made in an 1000mm²x15mm Intrinsic Germanium detector. Taking into account the previously measured response function of the detector, the betaspectra of  $^{88-98}$ Rb and  $^{138-146}$ Cs are anlysed with an interactive graphics computer program.

Accuracy: 10-20 keV

Completion date: work is in progress

Publications: H. Wollnik et al.: Atomic Masses and Fundamental Constants <u>6</u> (1980) F.Blönnigen et al.:Nucl.Instr. and Meth. <u>178</u> (1980) 357-361 Annex to the Annual Report ILL 1979-1981

#### CERMANY, FED. REP.

(cont'd)

- Names: K. Becker, G. Jung, E. Koglin, J. Münzel,
   U. Stöhlker, H. Wollnik (II.Physik Giessen)
   E. Monnand, B. Pfeiffer (ILL Grenoble)
- Experiment: Half-lives and level schemes of neutron-rich fission products
- Method: Alkaline and alkaline earth as well as several rare earth fission products of ²³⁵U from the thermal ion source (2000 K) and a high temperature ion source (2700 K) are studied in different experiments: Gamma-multispectra and multiscaling methods for the half-live determination of extremly neutronrich fission fragments; single gamma-ray and conversion electron spektra, prompt and delayed gamma-gamma and beta-gamma coincidences and gamma-gamma angular correlation measurements with different Ge(Li)- and Si(Li)detectors allowed to establish or extend level schemes of numerous isotopes.

Completion date: work is in progress

Publications: E. Koglin et al.: Z. Physik <u>A288</u> (1978) 319-320 G. Jung et al.: Phys. Rev. <u>C22</u> (1980) 252-263 J. Münzel et al.: Nucl. Instr. and Meth. <u>186</u> (1981) 343-347 B. Pfeiffer et al.: Proc. 4th Int. Conf. on Nuclei far from Stability (1981) CERN 81-09, p. 423 *)

*) Decay of 95,97_{Rb}, 95,97,99_{Sr}.

## GERMANY, FED. REP.

Laboratory:	Institut für Kernchemie Universität Mainz D-6500 Mainz, Germany and Institut Laue-Langevin 38 Grenoble, France
Names:	H.O. Denschlag, H. Braun, W. Faubel, H. Faust, W. Pörsch, B. Sohnius
Facilities:	LOHENGRIN Mass separator for unslowed fission products at ILL, Grenoble
<u>Experiment</u> :	The charge distribution among heavy-mass peak fission products (A=130-147) from ²³⁵ U(n _{th} ,f) is being measured at various well defined kinetic energies (excitation energies) of the fission fragments
Method:	Fission fragments separated according to mass (resolution $\frac{M}{\Delta M}$ = 400) and kinetic energy (resolution 2 MeV) are intercepted on a moving transport tape, transported continuously or discontinuously in front of a Ge(Li) $\gamma$ -ray detector, and counted via the $\gamma$ -rays emitted in their $\beta$ -decay
Accuracy:	Varying
Completion:	nearly completed
Publications:	H.O. Denschlag, H. Braun, W. Faubel, G. Fischbach, H. Meixler, G. Paffrath, W. Pörsch, M. Weis, H. Schrader, G. Siegert, J. Blachot, Z.B. Alfassi, H.N. Erten, T. Izak-Biran, T. Tamai, A.C. Wahl, K. Wolfsberg, in Physics and Chemistry of Fission (Proc.Symp. Jülich, 1979), IAEA, Vienna (1980), Vol. II, p. 153-176, and progress reports in Jahresbericht, Institut für Kernchemie, Universität Mainz, and Annex to the Annual Report, Institut Laue-Langevin, Grenoble (1979-1981)
GERMANY, FED. REP. (cont'd) Institut für Kernchemie Laboratory: Universität Mainz Postfach 3980 D-6500 Mainz, Germany Facilities: TRIGA Mark II Reactor 1. Names: H. Braun, H.O. Denschlag Yields and decay properties of the fission Experiment: product chain with mass number A = 133 are (same as INDC(NDS)-116) being redetermined Method: Radiochemical and by mass-spectrometry Completion date: completed Jahresbericht 1977 and 1980 Publications: Institut für Kernchemie Universität Mainz H. Braun, Dissertation, in preparation 2. Names: R. Sehr, H.O. Denschlag Fractional cumulative fission yield of ⁷⁷Ga Experiment: (same as INDC(NDS)-116) shall be redetermined in the fission of ²³⁵U by thermal neutrons Method: Fast radiochemical separation Accuracy: σ<10% Completion date: partly completed Publications: R. Sehr, Diplomarbeit Mainz (1980) R.Sehr, H.O. Denschlag Jahresbericht 1980, Institut für Kernchemie,

Universität Mainz

#### GERMANY, Fed. Rep.

(cont'd)

3.	Names:	B. Sohnius, H.O. Denschlag
	Experiment:	Gamma-ray line intensities of short-lived nuclides in chains 142,143,144,146, and 147 are being redetermined relative to long-lived descendents
	Method:	Fast radiochemical and mass separations
	Accuracy:	Generally ±10%
	Completion date:	1982/83
	Publications:	B. Sohnius, W. Pörsch, H.O. Denschlag in Jahresbericht 1980 and B. Sohnius, M. Brügger, H.O. Denschlag in Jahresbericht 1981, Institut für Kernchemie, Universität Mainz

.

.

#### GERMANY, FED. REP.

- 45 -

Laboratory: Institut für Kernchemie Universität Mainz Postfach 3980 D-6500 Mainz, Germany 1. Names: H. Ohm, A. Schröder, W. Ziegert, K.-L. Kratz (Kernchemie Mainz), B. Pfeiffer, G. Jung (Universität Giessen/ILL Grenoble), C. Ristori, J. Crancon (CEN Grenoble), G.I. Crawford (Univ. of Glasgow) Facilities: Alkali isotope separator OSTIS installed at the Grenoble high-flux reactor Using different neutron detectors (³He ioniza-Experiment: tion chambers, liquid and glass scintillators), energy spectra of  $\beta$ -delayed neutrons have been measured in coincidence with  $\gamma$ -rays depopulating excited states in the respective neutron final nucleus. With these data and the information from neutron singles and  $\gamma$ -ray spectra  $\beta$ -strength functions  $(S_{\beta})$  which extend to near  $Q_{\beta}$  of ten Rb isotopes have been constructed (A = 89-98). As expected from shell model considerations, the experimental strength below about 9 MeV differs considerably from that predicted by the gross theory of  $\beta$ -decay. The particular importance of these investigations lies in the fact that the shape of  $S_{g}$  is decisive not only in predictions of  $\beta$ -decay half-lives and  $\beta$ -delayed neutron emission probabilities, but also for radioactive decay heat analyses.

Completion date:

#### GERMANY, FED. REP. (cont'd)

 Publications:
 K.-L. Kratz, INDC(NDS)-107, p. 103 (1979)

 K.-L. Kratz et al., CERN 81-09, p. 317 (1981)

 K.-L. Kratz et al., CHN 81-09, p. 317 (1981)

 K.-L. Kratz et al., Phys. Lett. 86B (1979) 21

 and 90B (1980) 57

 K.-L. Kratz et al., Z. Physik A306 (1982)

2. Names: H. Gabelmann, H. Ohm, K.-L. Kratz Facilities: TRIGA Mark II Reactor Time-dependent neutron spectra from  $^{235}U(n_{th},f)$ Experiment: corresponding to Keepin's 6 half-life groups Spectroscopy using ³He-ionization chambers and Method:  $100 \ \mu g$   $235 \ U \ samples$ Spectrum range from about 10 keV to 3 MeV with Accuracy: 2 keV channel width; energy resolution about 13-35 keV. Corrections for thermal neutrons, detector response and y-ray pile-up. J.G. Owen, D.R. Weaver (Univ. of Birmingham, U.K.) Cooperation: Probably end of 1982 for  $^{235}U(n_{th},f)$ . Further Completion date: measurements with other fissioning nuclides are

planned.

#### GERMANY, FED. REP. (cont'd)

3. Names:

Experiment:

H. Ohm, A. Schröder, W. Ziegert and K.-L. Kratz

From high-resolution delayed neutron energy spectra of  85 As,  87 ,  ${}^{89-92}$ Br,  ${}^{92-98}$ Rb,  135 Sb,  136 Te,  137,138 I,  ${}^{141-147}$ Cs measured with  3 He-ionization chambers (SEFORAD-Applied Radiation Ltd.) deduced average neutron energies ( $\overline{E}_{n}$ )

Accuracy:

Cooperation:

 $\Delta \vec{E}_{n} \approx 20 \text{ keV for 'soft' spectra}$   $\Delta \vec{E}_{n} < 75 \text{ keV for 'hard' spectra}$ 

G. Rudstam (Studsvik, Sweden), P.L. Reeder (Batelle, Pacific NW, Richland, USA): a) Comparison of neutron spectra from  87 Br,  ${}^{93-95}$ Rb and  143 Cs taken at 3 different laboratories with  3 He-spectrometers of different manufacture b) Comparison of  $\overline{E}_{n}$  for calibration of the SOLAR neutron counting rate ratio system

Publications: Proc. of the Consultants' Meeting on Delayed Neutron Properties, Vienna, March 1979, INDC (NDS)-107

#### C.E.C. GERMANY, FED. REP.

Commission of the European Communities Joint Research Centre Karlsruhe Establishment European Institute for Transuranium Elements Postfach 2266 7500 Karlsruhe Federal Republic of Germany

Names: L. Koch, Kl. Kammerichs, G. Cottone, R. De Meester, J. Heitz,

R. Molinet, C. Rijkeboer; JRC, Karlsruhe

D. Steinert, KfK Karlsruhe

#### 1. MEASUREMENT

Experiment: (Method) Milligram amounts of ²³³U, ²³⁵U, ²³⁶U, ²³⁸U, ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am have been separately encapsulated and irradiated to about 10²³n/cm² in RAPSODIE. Fission product abundancies in each of the capsule were analysed by massspectrometric isotope dilution technique. The analysed nuclides correspond to about 70 % of the amount of fission products with A > 120. The cumulative fission yields were obtained by normalisation. Averages for parallel analysed capsules are given and compared with published data if available.

Publication: Cumulative fast reactor fission yields of  233 U,  235 U,  236 U,  236 U,  238 U,  237 Np,  239 Pu,  240 Pu,  241 Pu,  241 Am

EUR 6738, en

#### C.E.C. GERMANY, FED. REP.

#### (cont'd)

Names: A. Cricchio, R. Ernstberger, L. Koch, R. Wellum

#### 2. MEASUREMENT

Experiment: The TACO experiment comprised the irradiation of well-(Method) characterized quantities of fissile and fission-product nuclides in the Rapsodie reactor. Each nuclide was prepared as an individual solution in nitric acid from which an aliquot was taken, dried on aluminium foil and sealed into stainless-steel containers under vacuum for irradiation.

> The irradiation took place during 1971 and 1972 with the samples being exposed to a total fast neutron flux of  $6 \times 10^{22}$  n/cm². After cooling the capsules were dissolved and the contents analysed by massspectrometry. For those cases where neutron absorbtion was followed by  $\beta,\gamma$  decay and for the determination of fission yields, isotope dilution massspectrometry was employed. The following actinides were irradiated: ²³³U, ²³⁵U, ²³⁶U. ²³⁷Np, ²³⁸U, ²³⁹⁻²⁴²Pu, ²⁴¹Am and ²⁴³Am. After subsequent analysis their integral neutron absorbtion, capture and fission cross-sections were calculated. The method of calculation depended in all cases on specifying the concentration of each nuclide relative to the total nuclide content of the capsule. In this way potential losses of material were compensated for. The fission-product nuclides irradiated included  95 _{Mo},  97 _{Mo},  98 _{Mo},  $^{100-102}$ _{Ru},  104 _{Ru},  106 _{Pd},  108 _{Pd},  110 _{Pd},  125 _{Te},  126 _{Te},  128 _{Te},  133 _{Cs},  141 _{Pr},  143 _{Nd},  144 _{Nd},  146 _{Nd},  148 _{Nd},  147 _{Sm},  149 _{Sm and  139 _{La}.} Integral neutron absorbtion cross-sections have been calculated for the majority of these isotopes.

Publication: to be presented at: International Conference on Nuclear Data, 6 - 10 September 1982, Antwerp, Belgium

#### HUNGARY

,

Laboratory	Central Research Institute for Physics, H-1525
and address:	Budapest 114, P.O.Box 49, Hungary
	^{<b>x</b>} Institute for Nuclear Sciences, Proeftuinstraat 86
	B-9000 Gent,Belgium
Names:	A. Simonits, L. Moens [*] , F. De Corte [*] , A. De Wispe- laere [*] , J. Hoste [*]
Facilities:	WWRS-M /Budapest/ 5 MW light-water moderated reactor and Ge/Li/ spectrometers
	"Thetis" /Gent/ 250 kW graphite moderated reactor and Ge/Li/ spectrometers
Experiment:	Absolute intensity measurements for the 140.5 keV gamma-ray of ⁹⁹ Mo
Method:	A relative method of irradiating a Mo-target with
	reactor neutrons and repeatedly measuring its $/n,\gamma/$
	induced activity relative to the 181.1 keV and 739.5
	keV gamma-lines of ⁹⁹ Mo as internal references was
	used. The weighted average of different runs yielded: $\gamma/^{99}$ Mo, 140.5 keV/ = /5.07+0.37/ %
Accuracy:	7.2 % /1 σ/
Completion data:	March 1981
Discrepancy to	Some compilers give no indication of this line,
other reported	others report intensity values ranging from 1.4 $\%$ to
data:	5.7 % /see original publication/
Publications:	J. Radioanal. Chem. Vol.67, No.1 /1981/ 61-74

- 51 -

#### INDIA

	Laboratory & Address	3	:	Radiochemistry Division Bhabha Atomic Research Centre Trombay, Bombay 400 085.
1.	Names		:	S.A. Chitambar, S.N. Acharya
	(same as INDC(NDS)-J	116)		H.C. Jain, C.K. Mathews and
				M.V. Ramaniah.
	Facilities		*	CH-5 Mass spectrometer with
			•	thermoionic source assembly.
	Experiment		1	Determination of fission yield in
				thermal neutron induced fission of 233U, 235U, 239Pu and 241Pu.
				addy addy - Fu dha - Fue
	Method		1	Fission yields in thermal neutron induced
				fission of $2330$ , $2350$ , $239$ pu and $241$ pu
				have been determined for about 20 mass nos, in each of the fissioning system by
				employing mass spectrometric techniques
				for the determination of relative yields.
	Accuracy		:	About 2-3 percent for asymmetric masses.
	Completion date		:	March 1980.
	•			
2.	Names (update)	: A. Rama and R.H		m <b>i,</b> V. Natarajan, B.K. Srivastava yer
	Facilities	: 60 с.с.	Ge	(Li), 4 K Analyser
	Experiment	: Absolut neutron	e y in	ields of the fission products in the aduced fission of ²³² Th and ²³³ U
	Method	The tot track r fission a pre-c	al egi pr ali	n cum gamma ray spectrometry. no. of fissions are obtained from the stered in a mica detector while the roduct activity was measured using brated 60 c.c Ge(Li) coupled to a mel analyser.
	Accuracy	: <u>+</u> 5%		
	Completion date	: Complet	ed	
	Discrepancies to other reported data	-		. yield values are higher than the ue by Meek and Rider
	Publications	the "Nu Symposi	cle um"	this work has been presented in Par Physics and Solid State Physics held at Madras, December 1979. Work in: J. Inorg. Nucl. Chem. <u>43</u> (1981)3067

#### (cont'd, same as INDC(NDS)-116)

Laboratory and address :		t	Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085	
1.	Names	t	S.S. Rattan, S.P. Dange, T. Datta, S.B. Manohar, P.P. Burte, Satya Prakash and M.V. Ramaniah	
	Facilities	:	Ge(Li)Detector, Multichannel analyzer and $4\pi\beta$ - $\chi$ coincidence counter.	
	Experiment	:	Intercomparison of gamma ray emission- rate measurements by means of Ge spectrometers and ¹⁵² Eu sources.	
	Method	1	Preparation of standard ¹⁵² Eu sources and development of efficiency calibra- tion curve for Ge(Li) detector for the	
			determination of gamma ray emission rates of ${}^{152}Eu_{\bullet}$	
	Completion date	1	Already completed.	
	Publications		BARC Report No. 1015 (1979).	
2.	Names	:	S.S. Rattan, A.V.R. Reddy, R.J. Singh, Satya Prakash and M.V. Ramaniah	
	Facilities	:	1. Ge(Li) detector with 4 K multi- channel analyzer	
			2. Class A Radiochemical Laboratory	
	Experiment		Charge distribution in the thermal neutron induced fission of ²²⁹ Th.	
			<b>Practional cumulative yields of</b> ¹³⁵ I 140 _{Ba}	
	Method	T	Fractional cumulative yields of ¹³⁵ I	
	·		and ¹⁴⁰ Ba have been determined by following the growth and decay of the fission products.	
	Accuracy		1 - 2 %.	
	Completion date	:	December, 1979.	
	Publication		Proc. Nucl. & Radio Chem. Symposium, Waltair, (India), Feb.25-28, 1980.	

.

(cont'd, same as INDC(NDS)-116)

3.	Name s	:	R.J. Singh, S.S. Rattan, A.V.R. Reddy, C.R. Venkatasubramani, A. Ramaswamy, Satya Prakash and M.V. Ramaniah
	Facilities	1	1. Ge(Li) detector coupled with 4 K analyzer.
			2. Beta proportional counter, Low background proportional counter.
			3. Class A Radiochemical Laboratory
	Experiment	1	Mass yield from thermal neutron fission of ²²⁹ Th.
	Method	:	Fission yields in thermal neutron induced fission of ²²⁹ Th were determined using comparison method with respect to thermal neutron fission of ²³⁵ U and using ⁹¹ Sr as internal standard.
	Accuracy		5 - 10% in the high yield region. 10 - 15% in the low yield region.
	Completion date	t	Completed.
	Discrepancies to other reported data	5	There are several reported data on mass yields of ²²⁹ Th in thermal neutron induced fission. Symmetric peak has been reported by some authors while others obtained only two asymmetric peaked mass yield distribu- tion. In the present work, existence of small symmetric peak in addition to two prominent asymmetric peak has been established.

#### (cont 'd)

4. Names: A. Ramaswami, B.K. Srivastava, K. Raghuraman and R.H. Iyer.

Facilities: 60 c.c Ge(Li), 4 K Analyser.

- Experiment: Absolute Yields of the fission products in the thermal neutron induced fission of ²⁴⁵Cm.
- Method: Track etch cum gamma ray spectrometry. The total number of fissions are obtained from the fission tracksregistered in a mica detector while the fission product activity was measured using a pre-calibrated 60 c.c. Ge(Li) coupled to a 4096 channel analyser.
- Accuracy:  $\pm 5-6\%$
- Completion Completed date
- Discrepancies: In good agreement with the recent literature to other data reported
- Publication: A part of this work has been presented in the "Seminar-cum-Workshop on Geological records and contemporary fluxes of energetic charged particles" held at Ahmedabad, India. Feb. 1981.
  A. Ramaswami et al, Radiochim. Acta <u>30</u> (1982) 11.

•

#### INDIA

## (cont'd, new)

	Leboratory and Address		Bha	liochemistry Division abha Atomic Research Centre ombay, Bombay 400 085.
1.	Nemes		S.	Ramaswami, B.K. Srivastava, B. Manohar, Satya ^P rakash and V. Ramaniah.
	Facilities			c.c. Ge(Li) detector, K channel analyser.
	Experiment		fi: fra and	arge Distribution in the spontaneous ssion of ²⁵² Cf: Determination of actional cumulative yields of ¹³⁸ Xe 1 ³⁹ Cs to arrive at charge distribution rameters.
	Method		fre 136 rad	mma spectrometrically determined actional cumulative yields of ³ Xe and 139Cs in ²⁵² Cf. Used diochemical separation technique r 139Cs.
	Accuracy		: Wit	thin 1-3%.
	Completion Date		: Al	ready completed.
	Publication		: Rad	li <b>ochimica Acta <u>30</u> (1982) 15</b>
2.	Name s	8		ta, S.P. Dange, S.K. Das, Prakash and M.V. Ramaniah.
	Facilities	1		. Ge(Id), 4 K analyser and hemical separation technique.
	Experiment	:	Invest angula	igation on fission fragment r momentum in 252Cf(SF) system.
	Method	8	isomer 1341 i angula	hemically determined independent ic yield ratios for ¹¹⁷ Cd and n ²⁵² Cf(SF) system. Fragment r momentm were deduced using tical model formalism.

## INDIA (cont'd, new)

	Acoursey	8	Within 10-15% for yield ratio with uncertainty of 1 h for fragment angular momentum.
	Completion Date	:	Already completed.
	Publication	1	To be communicated to Phys. Rev. C.
3.	Names	1	S.K. Das, T. Datta, S.P. Dange, A.G.C. Nair, Satya Prakesh and M.V. Ramaniah.
	Facilities	t	60 c.c. Ge(Ld) detector, 4 K analyser and Radiochemical separation technique.
	Experiment	:	Investigation on fragment angular momenta in ²⁵² Cf(SF) system.
	Method	8	Radiochemically determined independent yield ratio for ¹³⁵ Te and ¹³⁴ I in ²⁵² Cf(SF). Deduced fragment angular momenta from statistical model formalism.
	Acouracy	8	Within 10-15% for yield ratio. Uncertainty on angular momentum is 1 h.
	Completion Date	8	Already completed.
	Publication	:	Presented in DAE Silver Jubilee Physics Symposium, BARC, December 28, 1981 - January 1, 1982.
4.	Nome s	1	A.V.R. Reddy, S.B. Manchar, V.S. Mallapurkar, Satya Prakash and M.V. Ramaniah.
	Facilities	1	60 c.c. Ge(Id) detector, 4 K analyser and Radiochemical separation technique.
	Experiment	1	Isotopic yield distribution of Iodine in the spontaneous fission of 252Cf: Ap model.

## (cont'd, new)

	Method	8	Radiochemically separated iodine followed by gamma spectrometric and $\beta$ - counting based estimation of iodine to arrive at the independent yields of the isotopes.
	Accuracy	t	1-5%。
	Completion Date	1	Already completed.
	Publication	8	Presented in DAE symposium on Nuclear Chemistry and Radiochemistry, BHU, Varanasi, India, Nov. 3-7, 1981.
5.	Name s	:	T. Datta, S.P. Dange, A.G.C. Nair, Satya Prakash and M.V. Ramaniah.
	Facilities	:	i) 60 c.c. Ge(Id) Detector coupled to a 4 K channel analyser
			ii) Radiochemical separation technique
	Experiment	3	To deduce fragment angular momenta from determined isomeric independent yield ratio for ⁹⁵ Nb and ¹³² I in ²³³ U(n,f) to see correlation with fragment deformation.
	Method	:	Radiochemically determined independent isomeric yield ratio of $95$ Nb and $132$ I in $233U(n,f)$ system. Fragment angular momenta were deduced using statistical model formalism.
	Accuracy	:	About 10% on yield ratio for uncertainty of 1 h on angular momentum.
	Completion Date	:	Already completed.
	Publication	:	Phys. Rev. C-25, No.1, 358, 1982.

#### (cont'd, new)

6. Names: K. Raghuraman, A. Ramaswami, C.K. Sivaramakrishnan and R.H. Iyer.

Facilities: 60 c.c Ge(Li), 4 K Analyser.

Experiment: Absolute Yields of ⁹⁹Mo and ¹⁴⁰Bo in the spontaneous fission of ²⁴⁴Cm.

Method : Track etch-cum-radiochemistry, beta counting and gamm ray spectrometry.

Accuracy : 5-8%

Date : Completed.

Publication: Due to appear shortly in a forthcoming issue of <u>Radiochemica Acta</u>.

,			
Laboratory	:	Indian Institute of Technolog	y, KANPUR 208016, INDIA.
Names	:	M.M. Sharma, A.K. Sinha and G D.M. Nadkarni, B.A.R.C., Tron	
Facilities	:	2 MeV Van de Graaff Accelerat	or.
Experiment	:	Angular Distribution of Polar in Thermal Neutron Induced Fi	
Method	:	A semiconductor $\triangle E-E$ detector for particle identification at for fission fragment detection chamber separates polar and ex- particles with the help of a Using different collimation for yields of polar 1H and 4He pat in thermal neutron induced fis Monte Carlo technique, $\sigma(\Theta)$ of tion for polar proton and $\alpha$ 's Angular distribution of polar very narrow in contrast with a polar $\alpha$ -particles.	nd an ionization chamber n. The ionization quatorial light charged collimator arrangement. or polar LCP region, rticles were measured ssion of ²³⁵ U. Using f the angular distribu- were determined. protons was found to be
Accuracy	:	Refer to the table.	
Completion	Date:	sept. 1981	
Table	:	Yields of polar ¹ H and ⁴ He per different collimator sizes vis collimators.	
	LCP	l mm Collimator	2 mm Collimator
	l _H	$(2.0 \pm 0.6) \times 10^{-8}$	$(1.9 \pm 0.8) \times 10^{-8}$
	4 He	$(1.1 \pm 0.4) \times 10^{-8}$	$(9.3 \pm 1.8) \times 10^{-8}$

Publications:

- 1. Polar and equatorial emission of light charged particles in keV neutron induced fission, Journal of Physics G : Nuclear Physics, to be published in June 1982 issue.
- Angular distribution of polar light charged particles in thermal neutron induced fission of ²³⁵U. Silver Jubilee Physics Symposium (DAE, India), Nuclear Physics <u>24B</u> (1981) 97.

(cont'd, same as INDC(NDS)-116)

Laboratory : Indian Institute of Technology, KANPUR 208016, INDIA.

Names : A.K. Sinha, M.M. Sharma, N.M. Nadkarni[‡], S.C.L. Sharma and G.K. Mehta, I.I.T. Kanpur [‡]BARC, Trombay, Bombay.

Facilities : 2 MeV Van de Graaff Accelerator.

- Experiment : Polar and Equatorial Light Charged Particles in Fast Neutron Induced Fission of ²³⁵U.
- Method: A semi conductor  $\triangle E-E$  detector telescope is used for particle identification and an ionization chamber for fission fragment detection. Modifications are made in the ionization chamber for proper collimation of the particles so as to identify the polar and the equatorial emission. The yields of ¹H, ³H and ⁴He particles corresponding to the polar and the equatorial emissions have been determined in neutron induced fission of ²³⁵U at thermal and 600 <u>+</u> 100 keV neutron energies.
- Accuracy : Refer to the table.

Completion date : December 1980.

Table: Yields of ¹H, ³H, ⁴He at the thermal and 600 keV neutron induced fission normalised so as to give ⁴Heyield corresponding to the equatorial emission in thermal neutron induced fission as 100.

Domtiolo	Equatorial	Emission	Polar Emission		
Particle	Thermal neutron fission	600 keV neutron fission	Thermal neutron fission	600 keV neutron fission	
lH	2 <b>.7</b> <u>+</u> 0.8	15.1 <u>+</u> 2	5.4 <u>+</u> 3.5	25 <u>+</u> 10	
3 _H	9 <b>.</b> 2 <u>+</u> 3	9.5 <u>+</u> 3	_	-	
⁴ He	100 <u>+</u> 9	88 <u>+</u> 9	100 <u>+</u> 33	80 <u>+</u> 40	

#### Publications:

- 1. Polar Emission in the neutron induced fission of ²³⁵U, Nucl. Phys. and Solid State Symposium (India), 1980.
- 2. Polar Emission in the neutron induced fission of ²³⁵U, submitted for publication to Physical Review Letters.

```
(cont'd, same as INDC(NDS)-116)
```

Laborator	у:	Indian Institute	of Technology, K	ANPUR 208016,India
Names	:	S.C.L. Sharma and R.K. Choudhury, L Trombay.	G.K. Mehta, I.I. J.H. Nadkarni and	T. Kanpur S.S. Kapoor, BARC
Facilitie	s :	2 MeV Van de Graa	ff Accelerator	
Experimen	t :	Light-Charged-Par Fission of ²³⁵ U.	ticles in Fast Ne	eutron Induced
Method	:	A semiconductor for particle iden ber for fragment energy spectra o been determined a 230 <u>+</u> 90 and 550 <u>+</u> 90	tification and ar detection. The y $f^{1}H$ , $^{3}H$ and $^{4}He$ t thermal, 120 <u>+</u> 20	n ionization cham- vields and particles have ), 180 <u>+</u> 20,
Accuracy	:	About 5 %		
Completio	n date:	July, 1979.		
TABLE :	Yields c	of ${}^{4}_{\text{He}}$ , ${}^{3}_{\text{H}}$ , and ${}^{1}_{\text{H}}$	at various incide	ent neutron
	E _n (keV)	) $Y_{alpha}(x10^3)$	$Y_{triton}(x10^4)$	$Y_{proton}(x10^4)$
	Thermal	2.00 <u>+</u> 0.040	1.40 <u>+</u> 0.110	1.84 <u>+</u> 0.121
	1 <b>20+</b> 20	2.66 +0.083	2.07 <u>+</u> 0.230	3.11 <u>+</u> 0.290
	180 <u>+</u> 20	2.26 <u>+</u> 0.044	2 <b>.33 <u>+</u>0.16</b> 0	3 <b>.</b> 19 <u>+</u> 0.189
	230 <u>+</u> 90	2.58 <u>+</u> 0.064	3.00 <u>+</u> 0.460	7.20 <u>+</u> 0.701
	55 <b>0<u>+</u>90</b>	1.94 <u>+</u> 0.080	4.82 <u>+</u> 0.213	17.64 <u>+</u> 0.401
Publicati	ons:			
	i	Study of Emission o in the Fast Neutron Solid State Phys. S	Fission of $235_{U_1}$	Nucl. Phys.

 Multiparameter study of ¹_H, ³_H and ⁴_{He} from fast neutron fission ²³⁵_U, Nucl. Phys. 355 (1981) 13.

#### ISRAEL

Laboratory and Address:	Soreq Nuclear Research Centre 70600 Yavne, Israel			
Names:	M.S. Rapaport, G. Engler, A. Gayer and I. Yoresh.			
Facilities:	-4MW research reactor -SOLIS isotope separator			
Experiment:	Experimental Study of 145 Cs Decay			
Method:	SOLIS isotope separator operating on-line with the 4MW research reactor at Soreq Nuclear Research Centre. Integrated target-ion source system with 235 U targets enriched to 93% and exposed to a thermal neutron flux of $5 \times 10^8 \text{ n-cm}^{-2} \text{s}^{-1}$ . Selective separation of the A=145 mass chain starting with 145 Cs and 145 Ba with a Ta surface ionization surface used either as one integral piece or as a separate piece from the target container. The measurments consisted of simultaneous detection of $\gamma$ -rays and conversion electrons.			
Accuracy:	10% in intensities, 0.1 to 0.3 keV in energies.			
Results:	Established level scheme of 145 Ba, $\gamma$ -intensities, $\beta$ -branching and log ft values.			
Completion date:	Completed			
Discrepancies to other reported data:	Reasonable agreement in $\gamma$ -intensities with other reported data.			
Publication:	In press, Z. Phys. A-Atoms and Nucl. 306 (1982).			

•

# -63 -<u>ISRAEL</u> (cont'd)

Laboratory and address:	Soreq Nuclear Research Centre 70600 Yavne, Israel
Names:	G. Engler and E. Ne'eman
Facilities:	-4MW research reactor -SOLIS isotope separator
Experiment:	Delayed Neutron Emission Probabilities (P _n ) and Half-Lives of Rb, Sr, Y, In, Cs, Ba and La Precursors with A=93-98, A=127-131 and A=142-148.
Method:	SOLIS isotope separator operating on-line with the 4MW research reactor at Soreq Nuclear Research Centre. Integrated target-ion source system with 235U targets enriched to 93% and exposed to a thermal neutron flux of $5x10^{8}n-cm^{-2}s^{-1}$ . Selective separation of the isotopes of Rb and Cs by the use of a Ta ionizing surface and of the isotopes of Sr and Rb, or In, Ba and Cs, by the use of Re ionizing surface. Delay half-times achieved in these sources: $0.270\pm0.027$ sec for Rb and Cs, $1.4\pm0.3$ sec for Sr, $1.0\pm0.4$ sec for Ba and $1.5\pm0.5$ sec for In. For the determination of the P values a neutron counting system with 12 BF ₃ tubes and beta-counter of a 300µm Si surface barrier detector, were used.
Accuracy:	5-40% depending on isotope.
Results:	$P_{n}$ values of $P_{Rb}$ , $P_{Rb}$ , $P_{Sr}$ , $P_{Y}$ , $P_{Y}$ , $P_{T}$ ,
Completion date:	Completed
Discrepancies to other reported data:	Reasonable agreement with other reported experimental data except for 93Rb, 127-131In, 144,145 _{Cs} .
Publication:	Nucl. Phys. <u>A367</u> (1981) 29.

#### TTALY

- Laboratory and Address : Istituto di Ingegneria Nucleare Politecnico di Milano Via Ponzio 34/3 20133 MILANO, ITALY
  - ENEL-Centro di Ricerca Termica e Nucleare Bastioni Porta Volta 10 20121 MILANO, ITALY

A.Cesana, G.Sandrelli⁺, V.Sangiust, M.Terrani Names :

- L54 reactor, neutron long counter, high resolution Ge-Li Facilities: detector.
- Absolute total yields of delayed neutrons in the fission of  233 U,  237 Np,  $^{238/240/241}$ Pu,  241 Am. Experiment :

(work performed under contract CRTN/33-ENEL)

Method : The samples were few milligrams of highly enriched isotopes (oxides) encapsulated in stainless steel or zircaloy vials. Their characteristics were as follows:

Target	mass	impurities
233 237 238 Np 238 Pu	(mg) 3.35 30.2 2.82	$== \frac{234}{234} \frac{237}{1.28}, \frac{239}{1.28} \frac{239}{1.28} \frac{239}{1.28} \frac{239}{1.28}$
240 _{Pu}	4.6	²³⁹ Pu(1%), ²⁴¹ Pu(0.5%), ²⁴² Pu(0.7%),
241 _{Pu}	1.54	²⁴¹ Am(0.2%) ²³⁷ Np(0.2%), ²³⁹ Pu(0.1%), ²⁴⁰ Pu(0.2%), ²⁴¹ Am(21%)
241 _{Am}	5.36	$237_{Np}(2\%), 239_{Pu}(0.8\%)$

Samples were irradiated in a  $B_4^{C}$  filtered flux at the edge of L54 reactor core (1).

After irradiation they were transferred pneumatically to the neutron counter and delayed neutron decay was followed with a 100 channel multiscaler. The neutron efficiency was measured by counting the delayed neutron emission from

 $a^{235}$ U target for which the fission rate in the irradiation position had been accurately determined. The fission rates in all the samples were determined by measuring with a high resolution Ge-Li detector the absolute activities of some fission products: 103 Ru, 131 I and 140 La.

Fission yields were derived from ref. (2).

Both delayed neutron intensities and fission product activities were corrected for the presence of impurities. The samples transfer time was about 0.6 sec, so that halflives of less than 0.5 sec could not be seen. The delayed neutron decay curves were approximated by five groups (with half lives of about 55,22,6,2,0.5 sec) using a least square unfolding technique. Total delayed neutron yields were obtained as a sum of the yields of the groups listed above and the yield of a sixth group (with half life of about 0.2 sec) obtained by an empirical correlation(3) between the yields and the values of Z and A of each fissioning nuclide; for the determination of the fitting parameters the yields reported in ref.(3) were used. The results are listed below and compared, when possible with the values reported in the literature.

#### ITALY (cont'd)

Errors are quoted in the second column of the Accuracy: table below. They are intended as standard errors  $(+ 1 \sigma)$  and are obtained combining in the usual way the errors on the neutron intensities with those on the fission rates in the samples.

#### Completion date: Completed

G.Benedetti, A.Cesana, V.Sangiust, G.Sandrelli, Publications: M.Terrani"Delayed Neutron Yields from Fission of Uranium-233, Neptunium-237, Plutonium-238,-240 -241, and Americium-241." Nucl.Sci. Eng., 80, 379, (1982).

Results:	Nuclide	total delayed neutron yield			
		present work	ref. (3)	ref. (4)	
	233 _U	0.00779 ± 0.00026	0.00698 <u>+</u> 0.00013	0.0074 ± 0.0004	
	237 _{Np}	0.0122 <u>+</u> 0.0002			
	238 _{Pu}	0.00406 ± 0.00015	0.00456 <u>+</u> 0.00051		
	240 _{Pu}	0.0091 <u>+</u> 0.0003	0.0096 <u>+</u> 0.0011	0.0090 ± 0.0009	
	241 _{Pu}	0.0160 ± 0.0007	0.0160 ± 0.0016	0.0157 ± 0.0015	
	241 _{Am}	0.00394 ± 0.00015			

#### References:

1) P. Barbucci et al., En. Nucleare, 26, 11, (1979), 542.

- 2) B.F. Rider, NEDO-12154-3(A), (1979).
  3) R.J. Tuttle, Nucl. Sci. Eng. <u>56</u>, (1975), 37.
  4) S.A. Cox, ANL/NDM-5, (1974).

#### T TAT Y

(cont. 'd)

Laboratory and Address : Istituto di Ingegneria Nucleare Politecnico di Milano Via Ponzio 34/3 20133 MILANO, ITALY + ENEL-Centro di ricerca Termica e Nucleare Via Rubattino 54 20134 MILANO, ITALY A.Cesana, G.Sandrelli⁺, V.Sangiust, M.Terrani Names: L54 reactor, high resolution Ge-Li detector. Facilities : Experiment : Determination of fission yields in fast neutron fission of Pu-238 and Pu-240. The total yields of  88 Kr,  91 Sr,  92 Sr,  99 Mo,  103 Ru,  105 Ru,  132 Te,  131 I,  133 L,  134 I,  135 I,  135 Xe,  140 Ba, Method : 139 Ba. 143 Ce are being determined by gamma-ray counting of unseparated samples and by comparison with ²³⁵U thermal fission yields. Completion date: | 1983.

Laboratory	Department of Physics, Faculty of Science,			
and Address :	Hiroshima University			
	1-1-89 Higashi-Sendamachi, Nakaku, Hiroshima 730, Japan			
Names :	Y. Yoshizawa and Y. Iwata			
Facility :	Ge(Li) spectrometer			
Experiment :	Precision measurement of gamma-ray intensities for ¹²⁵ Sb			
Method :	The Ge(Li) detector was calibrated within uncertainties of 1 % with standard sources and cascade gamma rays in the energy range of 90 to 2750 keV. Relative intensities of gamma rays emitted from the 125 Sb nuclide were precisely measured. Gamma-ray intensities per decay were obtained from the relative gamma-ray intensities, theoretical internal conversion coefficients and beta branches. The intensity sum of all transitions feeding and crossing the isomer level at 145 keV of the daughter nucleus 125 Te.			
Accuracy :	For strong gamma rays, Accuracies of relative intensities and intensities per decay are within 1 % and 1.5 %, respectively.			
Completion date :	April 1982			
Descrepancies to	Large descrepancies to other reported data are not			

•

other reported data: recognized.

Table 1. Gamma-ray intensities for ¹²⁵Sb.

Gamma-ray energy (keV)	Relative intensity (%)	Intensity per decay (%)	Gamma-ray energy (keV)	Relative intensity (%)	Intensity per decay (%)
109.3	(0.241(24))	(0.071(7))	380.4	5.06(4)	1.500(19)
117.0	0.867(25)	0.257(8)	408.0	0.608(21)	0.180(6)
172.6	0.69(4)	0.205(12)	427.9	100.0(7)	29.6(3)
176.3	22.62(21)	6.70(9)	443.5	0.989(23)	0.293(7)
178.8	0.11(4)	0.032(13)	463.4	35.23(14)	10.44(12)
198.6	0.030(11)	0.009(3)	497.4	0.009(8)	0.0025(23)
204.1	1.08(3)	0.320(11)	600.6	59.54(22)	17.64(20)
208.1	0.788(21)	0.233(7)	606.6	16.94(7)	5.02(6)
227.9	0.433(12)	0.128(4)	635.9	37.87(14)	11.22(13)
321.0	1.391(24)	0.412(8)	671.4	6.039(24)	1.790(21)

## (cont'd)

Laboratory	Department of Physics, Faculty of Science,		
and Address :	Hiroshima University		
	1–1–89 Higashi-Sendamachi, Nakaku, Hiroshima 730, Japan		
Name :	Y. Iwata		
Facility :	Ge(Li) spectrometer		
Experiment :	Precision measurement of gamma-ray intensities for ¹⁵⁶ Eu		
Method :	The Ge(Li) detector was calibrated within uncertainties of 0.5 % with standard sources and cascade gamma rays in the region of 280 to 2750 keV. Disintegration rates of the standard sources were determined by means of $4\pi\beta$ - $\gamma$ or $4\pi X$ - $\gamma$ coincidence method. Relative intensites of 156 Eu gamma rays higher than 280 keV were precisely measured.		
Accuracy :	Relative intensities within accuracies of 1 % were obtained for strong gamma rays.		
Completion date :	May 1980		
Descrepancies to other reported data :	Large descrepancies to other data are not observed, while uncertainties of them are much larger than present data.		
Publication :	Y. Iwata, J. Phys. Soc. Japan 49 (1980) 2114		

. .

.

Laboratory and Nuclear Engineering School, Tokai Estab-Address: lishment, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken, Japan Name: Eiko Akatsu Facilities: Liquid scintillation spectrometer Measurement of the half-life of ⁸⁷Rb Experiment: Method: Measuring sample solution of rubidium chloride was dissolved in Insta-gel, and its radioactivity was measured by an efficiency tracing technique of liquid scintillation method. The rubidium content was determined by gravimetry as tetraphenylborate.  $(5.56 + 0.025) \times 10^{10} \text{ years}(0.45\%)$ Accuracy: Completion date: May, 1981 Half-life(year) Descrepancies to Sample Reference other reported  $(4.70+0.10) \times 10^{10}$ data: Rb octoate 1  $(4.77+0.10) \times 10^{10}$ Rb octoate 2  $(5.21+0.15) \times 10^{10}$ Rb octoate 3  $(5.56+0.025) \times 10^{10}$  RbC1 present work These values were all obtained by liquid scintillation method. Various values were obtained by the other method of measurement⁴⁾. Eiko Akatsu, Radioisotopes, 30, (12), 647 Publication: - 648 (1981). 1) K. F. Flynn and L. E. Glendenin, Phys. Rev., 116, 744 (1959).2) A. Kovach, Acta Phys. Acad. Sci. Hung., 17, 341 (1964); Nucl. Sci. Abstr., 19, 579 (1965), No. 5135. 3) G. A. Brinkmann, A. H. W. Aten, Jr. and J. Th. Veenboer, Physica, <u>31</u>, 1305 (1965).

4) W. Neumann and E. Huster, Z. Physik, 270, 121 (1974).

- 69 -

Laboratory and address:	Nuclear Physics II Laboratory Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Names:	Y. Furuta, Y. Kawarasaki, M. Mizumoto, Y. Nakajima M. Ohkubo, M. Sugimoto, S. Tanaka (JAERI) Y. Kanda, N. Ohnishi (Kyushu Univ.)
Facilities:	Neutron time-of-flight spectrometers at the 120 MeV electron linear accelerator.
1. Experiment:	Neutron capture cross section measurements in keV region.
Detectors:	3500 l liquid scintillator tank for capture yield, ⁶ Li-glass and ¹⁰ B-NaI detectors for neutron flux and transmission measurements.
Flight paths:	52 m for capture measurements. 56 m for flux and transmission measurements.
Normalization:	Saturated resonance method.
(1) Samples:	$10^{7}$ Ag, $10^{9}$ Ag (metallic powder enriched to 98.22 and 99.32 %, respectively).
Energy region: Accuracy:	3.3 to 700 keV 5 to 10 % (Experimental uncertainties are
Completion date:	represented with a covariance matrix)
(2) Sample: Status:	La Total radiation widths were obtained by the code TACASI for the s-wave resonances below 2.5 keV
Expected complet	ion date:   Aug, 1982
(3) Sample: Energy region: Completion date:	¹³⁷ Ba (Ba(NO ₃ ) ₂ powder enriched to 81.9 %) 1.5 eV to 100 keV Measurements are in progress.
2. Experiment:	Neutron resonance parameters.
Detectors:	⁶ Li-glass neutron detectors
Flight paths:	Moxon-Rae detector and 3500 l liguid scintillator tank 47 m, 56 m and 190 m for transmission measurements
Analysis:	47 m and 52 m for capture measurements The Atta-Harvey area analysis code and the multi-level Breit-Wigner code SIOB Monte Carlo code CAFIT and TACASI.

#### <u>JAPAN</u> (cont'd)

⁷⁹Br, ⁸¹Br (]) Samples: Resonance parameters,  $S_0$ ,  $\overline{D}$ ,  $\overline{\Gamma}_{\gamma}^{79}$  Br 156 levels  $E_{\gamma}^{<10} = 10 \text{ keV}$ ⁸¹Br 100 levels  $E_{n}^{n} < 15 \text{ keV}$ M. Ohkubo, Y. Kawarasaki and M. Mizumoto Publications: Resonance parameters of ⁷⁹Br and ⁸¹Br up to 15 keV. Int. Conf. on Nuclear Cross Sections for Technology, p173, NBS special publication 594, 1980 J. Nucl. Sci. Technol. 18 (1981) 745  85  Rb,  87  Rb (2) Samples: Resonance parameters,  $S_0$ ,  $\overline{D}$ ,  $\overline{\Gamma}_{\gamma}$ Rb 100 levels E < 17 keV Rb 42 levels  $E_n^{n}$  < 100 keV  $10^{7}$ Ag and  $10^{9}$ Ag (metallic powder enriched to 98.22 and (3) Samples: 99.32 %, respectively) 1.5 to 7000 eV both for  $10^7$ Ag and  $10^9$ Ag. Energy region: Expected Completion date: Dec. 1982 ¹²³Sb (4) Sample: Transmission and capture measurements

Expected completion date: | Dec. 1982

Laboratory and ad	ldress : Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan
Names	: M. Ohshima, Z. Matumoto and T. Tamura
Facilities :	$\pi \sqrt{2}$ iron-free $\beta$ -ray spectrometer in the Institute for Nuclear Study, University of Tokyo; Japan Research Reactor 2 in JAERI
Experiment :	Beta transitions from $103$ Ru to $103$ Rh levels
Method :	Energies and intensities of $\beta$ -transitions in the decay of 103 Ru were determined from $\beta$ -ray and conversion electron spectra, and from $\gamma$ -ray data by Macias et al. (Phys. Rev. C 14 (1976) 639)
Accuracy :	$I_{\gamma}$ (497.8 keV) : 91.3 ± 0.4 per 100 decays
Completion date:	July 1981
Discrepancies to	other reported data: I(497.08 keV) : 89.5 per 100 decays Y
	(Nuclear Data Sheets 28 (1979) 403). The highest $\beta$ -ray component was confirmed to feed the ground state of ¹⁰³ Rh, and not the first excited state.
Publication :	J. Phys. Soc. Japan 51 (1982) 43.

.

Laboratory and	Research Reactor Institute, Kyoto University				
address :	Kumatori, Sennan-gun, Osaka-fu, 590-04				
Names :	Itsuro Kimura, Katsuhei Kobayashi				
Facility :	²⁵² Cf source of JAERI				
Experiments :	Average cross sections to 252 Cf fission neutrons, of 24 Mg (n,p) 24 Na, 27 Al(n,p) 27 Mg, 32 S(n,p) 32 P, 51 V(n,p) 51 Ti, 54 Fe(n,p) 54 Mn, 56 Fe(n,p) 56 Mn, 58 Ni(n,p) 58 Co, 59 Co(n,d) 56 Mn, 64 Zn(n,p) 64 Cu, 113 In(n,n) 113m In, 115 In(n,n) 115m In, 197 Au(n,2n) 196 Au, 46 Ti(n,p) 46 Sc, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 199 Hg(n,n) 199m Hg				
Method :	Gamma-rays (except 32 P) from the induced activities were measured with a Ge-Li counter. The average cross section for 27 Al(n, $\propto$ ) 24 Na was taken to be 1.006 mb as a reference value and the other values were normalized to it. In evaluation of errors, covariance matrix was taken into account.				
Accuracy :	3~ 5 %				
Completion date :	March 1982				
Publication :	K. Kobayashi et al., J. Nucl. Sci. Technol., in print.				

- 74 -

Laboratory and	Institute of Atomic Energy, Kyoto University,
address:	Uji, Kyoto 611, Japan
Names:	Ichiro Fujiwara and Nobutsugu Imanishi
Facilities:	5 MW research reactor
	[Research Reactor Institute, Kyoto University]
Experiment:	Cumulative and independent fission-yields of some fission
	products in the thermal-neutron induced fission of 233 U, 235 U and 239 Pu.
Method:	Radiochemical for fission yields; Instrumental with
	germanium detectors.
Accuracy:	Errors range from 7 % to 20 % with different combinations of
	fission products and the fissile isotopes.
[Expected] comp]	letion date: 7
	see Table I
Publication:	J

#### Table I

Nuclide		Completion date	Publication
128,130,132 _{Sn} ,133 _{Sh} 128,130,132 _{Sb} ^m ,g, 131 _{Sb} ,131,133 _{Te} m,g		Sep. 1975	N. Imanishi, I. Fujiwara and T. Nishi, Nucl. Phys. <u>A263</u> , 141 (1976)
135 ₁ 131,133 _{I,} 132,134,136 _I m,g	[cum.] [Ind.]	Dec. 1976	T. Nishi, I. Fujiwara and N. Imanishi, Int. Conf. on Nucl. Structure, Tokyo, Sep. 1977
133,135 _{Xė} m,g	[Ind.]	Dec. 1976	I. Fujiwara, N. Imanishi and T. Nishi, J. Phys. Soc. JAPAN
138 _{Cs} m,g	[Ind.]	May 1978	(in press)
90 _{Rb} m,g	[Ind.]	End of 1982	

,

.

Laboratory	:	Department	of	Nuclear	Engineering,
		Nagoya Univ	vers	sity.	

Address : Furo-cho, Chikusa-ku, Nagoya, Japan

- Names : H. Miyahara, T. Gotoh, and T. Watanabe
- Facilities :  $4\pi\beta$ - $\gamma$  coincidence system, NaI(T1) scintillators, 400-channel pulse height analyzer, Computer.

1. Experiment : Decay property of  86 Rb and  103 Ru.

- Method : The disintegration rates of all sources were measured with the  $4\pi\beta$ - $\gamma$  coincidence system. The  $\gamma$ -ray intensities per decay were determined from the  $\gamma$ -ray spectra of NaI(T1) scintillators and the halflives were determined from the measurements of the disintegration rates during one or three half-lives.
- Accuracy : 1)  86 Rb; 1077 keV  $\gamma$ -ray intensity per decay: 8.64 ±0.04%, halflife: 18.631±0.018 day.
  - 2)  103 Ru; 497 keV  $\gamma$ -ray intensity per decay: 91.08  $\pm 0.76$ %, half-life: 39.214 $\pm 0.013$  day.

Completion date: Feburary 22, 1980.

- Comparison with other data: The γ-ray intensity per decay was directly determined and the accuracy was improved considerably.
- Publication: This work is reported in Int. J. Appl. Radiat. Isotopes Vol.32, p.573 (1981).

	Laboratory:	1.Department of Nuclear Engineering,
		Nagoya University
		2.Institute for Atomic Energy.
		Rikkyo University
	Address :	1.Furo-cho, Chikusa, Nagoya, Japan
		2.Nagasaka, Yokosuka, Kanagawa, Japan
	Names :	M.Totsuka ¹⁾ ,S.Fujita ¹⁾ ,K.Mio ¹⁾ ,K.Kawade ¹⁾ ,
		M.Totsuka ¹⁾ , S.Fujita ¹⁾ , K.Mio ¹⁾ , K.Kawade ¹⁾ , H.Yamamoto ¹⁾ , T.Katoh ¹⁾ and T.Nagahara ²⁾
	Facilities:	TRIGA-II reactor of Rikkyo University,pneumatic
		transport system, apparatus for electrophoresis,
		Ge(Li) detector,4096 pulse height analyzer
1.	Experiment :	Decay of 147 Ce to levels of 147 Pr
	Method :	By using the rapid paper electrophretic method,
		sources of ¹⁴⁷ Ce was separated from fission
		products of ²³⁵ U irradiated at the TRIGA-II
		reactor. Energies and intensities of gamma-
		rays and a half-life of 147 Ce were measured
		and a decay scheme is proposed
	Accuracy :	Less than 0.7 keV for gamma-ray energies,
		57 <u>+</u> 5 sec for the half-life
	Completion da	ate : September 30, 1981
	Discrepancy t	to other reported data :
		Four gamma-rays are newly observed, and two
		other gamma-rays reported previously are not
		detected. A new level of 147 Pr at 2.7 keV is
		proposed.
	Publication	: A paper on this work is submitted for the
		publication in J.Nuclear Science and Technology.

#### (cont'd)

Laboratory :	<ol> <li>Department of Nuclear Engineering, Nagoya University</li> <li>Institute for Atomic Energy, Rikkyo University</li> </ol>
Address :	1. Furo-cho, Chikusa-ku, Nagoya, Japan 2. Nagasaka, Yokosuka, Kanagawa, Japan
Names :	Hiroshi YAMAMOTO ¹⁾ , Yujiro IKEDA ¹⁾ , Kiyoshi KAWADE ¹⁾ , Toshio KATOH ¹⁾ , Teruaki NAGAHARA ²⁾
Facilities :	TRIGA II reactor of Rikkyo University, Pneumatic transport system, Ge(Li) detector.
2. Experiment : (same as INDC(NDS)-116)	a) Decay Properties of ¹⁴⁵ Ce and ¹⁴⁶ Ce b) Decay Studies of ¹⁴³ La and ¹⁴⁷ Pr
Method :	By using the rapid paper electrophoretic method, sources of $^{145}Ce$ , $^{146}Ce$ , $^{143}La$ and $^{147}Pr$ were separated from fission products of $^{235}U$ irradiated at the TRIGA-II reactor. Energies and intensities of $\gamma$ -rays, $Q_\beta$ values of $\beta$ -ray and half-lives were measured and decay schemes were proposed.
Accuracy :	Errors of the values of $\gamma$ -ray energies are less than 0.6 keV. Obtained half-lives are $3.01\pm0.06$ min for ¹⁴⁵ Ce, 13.52 $\pm0.13$ min for ¹⁴⁶ Ce, 14.14 $\pm0.16$ min for ¹⁴³ La and 13.3 $\pm0.4$ min for ¹⁴⁷ Pr. Q _β values were determined with the errors less than 0.1 MeV.
Completion data :	a) December, 1979 b) April, 1980
Discrepancies to other	reported data : Fourteen new $\gamma$ -rays from ¹⁴⁵ Ce, 6 new ones from ¹⁴⁶ Ce, 23 new ones from ¹⁴³ La and 9 new ones from ¹⁴⁷ Pr were observed. Fairly precise decay schemes of these nuclide are proposed.
Publication :	a) J. Inorg. Nucl. Chem., Vol. 42 (1980) No. 11, p. 1539 b) J. Inorg. Nucl. Chem., Vol. 43 (1981) No. 5, p. 855

Laboratory:	1. Research Laboratory for Nuclear Reactors,
	Tokyo Institute of Technolgy
	2. Research Reactor Institute, Kyoto University
Address:	1. 2-12-1, O-okayama, Meguro-ku, Tokyo
	2. Kumatori-cho, Sennan-gun, Osaka
Names:	l. N. Yamamuro, N. Igashira, H. Shirayanagi, T. Yoshinari. 2. Y. Fujita, K. Kobayashi.
Facilities:	46-MeV Electron Linear Accelerator of Research Reactor Institute, Kyoto University
Experiments:	Gamma-ray spectra from 133 Cs(n, $\gamma$ ) and Pd(n, $\gamma$ ) reactions.
Method:	Gamma-rays from the capture of 3-80keV neutrons were detected with $C_6D_6$ or BGO scintillation detector. Gamma-ray spectral distribution was obtained by unfolding experimental pulse-height spectrum with the response matrix of the detector. The gamma-ray strength function for ¹³⁴ Cs was derived.
Completion date:	1982 for 133 Cs data. Some additional experiments are planned using the BGO detector.
Publication:	N. Yamamuro et al. "Gamma-ray from radiative capture reactions $133$ Cs, $181$ Ta and $197$ Au", Specialists meetion on fast-neutron capture cross sections, ANL, 20-23 April 1982.

i
# JAPAN

.

# (cont'd)

Laboratory:	Research Laboratory for Nuclear Reactors,	
	Tokyo Institute of Technology	
Address:	2-12-1, O-okayama, Meguro-ku, Tokyo	
Names:	M. Igashira, T. Maruyama, K. Hashimoto, H. Kitazawa, N. Yamamuro.	
Facilities:	3-MV Pelletron accelerator, Anti-Compton NaI gamma-ray spectrometer.	
Experiments:	Gamma-ray spectra from capture of 400-keV neutrons in Nb, Mo and Sn.	
Method:	Gamma-rays following 400-keV neutron capture in Nb, Mo, and Sn have been measured. The neutrons were produced with pulsed proton beam from the pelleton accelerator using the ⁷ Li(p,n) reaction. Capture gamma-ray spectra were obtained after background subtraction, spectrum unfolding, and correction for the gamma-ray self-absorption and scattering in the sample.	

Completion date: The experiment is completed.

#### JAPAN

#### (same as INDC(NDS)-116)

- Laboratory and adress: Nuclear Engineering Research Laboratory Faculty of Engineering University of Tokyo 2-22 Shirane Shirakata, Tokai-mura Naka-gun Ibaraki, Japan
- Names: M. Akiyama and S. An

Facilities: Fast Neutron Source Reactor "YAYOI"

- Experiment: Fission Product Decay Heat for Fast-Neutron Fission of ²³⁵U, ²³⁸U, ²³³U, ²³⁹Pu and ²³²Th for cooling Time of 20 to 24000 seconds.
- Method: Samples have been irradiated for short periods with fast neutrons, and returned pneumatically to a counting area. Gamma-ray energy spectra have been measured using NaI detector and beta-ray energy spectra have been obtained using plastic scintillation detector combined with  $\Delta E/\Delta x$  type proportional counter to eliminate gamma-ray effects. Counting times have been chosen to provide good statistics within the time range of interest. Total energy release rates for beta and gamma-rays have been obtained to integrated beta and gamma-energy spectra respectively and summed to obtain the fission product decay heat.
- Accuracy: 5% to 10% (1σ)
- (Expected) Completion Measurements of gamma-ray energy release rates are Date: finished, and we plan to start writing a report for publication soon. Measurements of beta-ray decay heat have been completed.
- Discrepancies to other Data of gamma-ray and beta-ray energy release Reported Date : rates are in reasonable agreement with results of summation calculations.
- Publications: M. Akiyama. et al., UTNL-R-103

Laboratories:	Department of Nuclear Chemistry Chalmers University of Technology S-412 96 Göteborg Sweden
	Institut für Kernchemie Johannes Gutenberg Universität Postfach 3980 D-6500 Mainz Germany
Names:	The SISAK Collaboration:
	G. Skarnemark (Göteborg)
	N. Kaffrell and N. Trautmann (Mainz)
Facilities:	SISAK system for studies of radionuclides with half-lives down to 0.5 s.
Experiments:	$T_{1/2}$ -determinations, Y-singles, Y-Y coincidence and
	Y-Y angular correlation measurements. At present, our fission product measurements are concentrated on very neutron-rich isotopes of technetium, ruthenium, rhodium and palladium.
Method:	Fast chemical on-line separations. The measurements are carried out on flow cells or ion exchange columns. The fission products are transported from the target cell via a gas jet system. Ge(Li)-detectors are used.
Completion data:	The experiments mentioned above will be completed during 1982/83.

.

Laboratory and address:	Neutron Physics Laboratory Studsvik Energiteknik AB Fack S-611 82 NYKÖPING
	Sweden

Names: P-I Johansson

- Facilities: 6 MeV VdG accelerator
  PDP-15 Computer 24 k memory (on line)
  NaI(Tl) and Ge(Li) spectrometers, β-spectrometer
  CDC-CYBER 73 Computer (off line)
- Experiment: The objective of the experiment is to improve on the accuracy of currently available fission product decay heat data by means of radiometric study of small 238U and ²³⁹Pu specimens at cooling times longer than 5 seconds after irradiation with fast and thermal neutrons, respectively.
- Method: A facility for fast and thermal neutron irradiation of fissile specimens using a VdG accelerator has been built. Specimens are transported between the neutron source and a spectrometer by means of a pneumatic system.

The absolute number of fissions in the sample is determined by two independent methods: a) by utilizing an absolutely calibrated fission chamber with an active volume of about the same size as the samples, b) by counting the number of gamma quanta emitted from fission products with known yields and decay properties.

The gamma radiation is measured with a NaI(T1) crystal of diameter and length 12.5 cm. A 4096 channel analyzer is used for recording the spectra. Sample transportation, irradiation and counting times are handled by a PDP-15 computer. Spectra are automatically stored on magnetic tape for offline data analysis, i.e. the transformation from measured pulse height spectra to energy spectra.

Accuracy: Better accuracy than  $\pm$  7 % is expected for the total energy released as  $\gamma$ -radiation from the fission products at any time between a few seconds and 30 minutes after fission.

- Laboratory and The Studsvik Science Research Laboratory, address: S-611 82 Nyköping, Sweden.
- Facility: The OSIRIS on-line mass separator is used to extract selected nuclei from thermally fissioned  235 U. The extraction method has been extended in the sense that Al or CF₄ is added to the ion source to facilitate separation of halogenes or lanthanides, respectively.
- 1. Names: K. Aleklett, P. Hoff, E. Lund and G. Rudstam.
- Experiment: Characterization of and  $P_n$  values for delayed neutron precursors of yttrium and lanthanides.)
- Method: Simultaneous measurement of neutron and beta activities in a multiscaling mode. Neutron counter consisting of 29 ³He counters imbedded in paraffine beta counter being a 2 mm plastic scintillator. Separation of fluoride ions with CF_A addition to the ion source.

Completion date: Indefinite for the P_n studies as such.

2. Names: G. Rudstam.

Experiment: Calculation of effective delayed neutron energy spectra for reactor applications.

Method: Half-lives and branching ratios for delayed neutron precursors were measured as described above (Experiment 1). The shapes of the delayed neutron energy spectra were measured with a ³He spectrometer. These precursor data combined with the fission yield pattern provide information about the effective delayed neutron spectra for any irradiation condition.

Completion date: 1982. Publication: G. Rudstam, Six-Group Representation of the Energy spectra of Delayed Neutrons from Fission. Nucl. Sci. Eng. <u>80</u> (1982) 238.²)

¹) ¹⁴⁷_{La}, ^{147,149}_{Ce}, ^{147,149}_{Pr}

²)  $^{233,235}_{U}$ ,  $^{239,241}_{Pu}$  thermal,  $^{232}_{Th}$ ,  $^{236,238}_{U}$ ,  $^{237}_{Np}$ ,  $^{240,242}_{Pu}$  fast and  $^{252}_{Cf}$  spontaneous fission

3. Names:	K. Aleklett, P. Hoff, E. Lund and G. Rudstam.
Experiment:	Total beta decay energies and atomic masses.
Method:	Beta particles were recorded in coincidence with gamma rays depopulating known levels in the daughter nucleus. The end-point energies of the beta-spectra were determined, and by adding the level energy the total beta-decay energies were obtained. The beta-particles were recorded in a Si(Li) detector system and the gamma rays in two Ge(Li) detectors.
Completion date:	Indefinite for the experiment as such.
Publication:	K. Aleklett, P. Hoff, E. Lund and G. Rudstam, Total $\beta$ -decay energies and mass systematics for neutron rich silver and cadmium isotopes ³ ) (submitted for publication, 1982).
	K. Aleklett, P. Hoff, E. Lund and G. Rudstam, Nuclear Q -values for fission products. A comparison with mass formula predictions, CERN 81-09 (1981) 124.
	P. Hoff, K. Aleklett, E. Lund and G. Rudstam: Decay schemes and total decay energies of ⁸⁹ Br and ⁹⁰ Br, Z. Physik A <u>300</u> (1981)289.
	K. Aleklett, P. Hoff, E. Lund and G. Rudstam: Total beta decay energies and masses for 80,81Ga   and 79,81,82Ge, Z. Physik A 302 (1981) 241.
4. Names:	K. Aleklett, G. Rudstam.
Experiment:	Average beta energies of fission products.
Method:	The beta spectra have been measured with a spectrometer consisting of a system of Si(Li) detectors. The direct method has been used for important fission products. For other nuclides the average $\beta$ -ray energy has been determined using experimental data from a study of $\beta$ -strength functions.
Completion date:	1982.
Publication:	K. Aleklett and G. Rudstam, Average Beta-Ray Energies of Short-lived Fission Products. Nucl. Sci. Eng. <u>80</u> (1982) 74.4)
³ ) ^{115–121} Ag, ^{119–121} Cd	4) ${}^{86-89}_{\mathrm{Br}}$ , ${}^{89,91-93}_{\mathrm{Kr}}$ , ${}^{89,91-94}_{\mathrm{Rb}}$ , ${}^{93-95}_{\mathrm{Sr}}$ , ${}^{94-96}_{\mathrm{Y}}$ ${}^{134}_{\mathrm{Sb}}$ , ${}^{136-139}_{\mathrm{I}}$ , ${}^{137-141}_{\mathrm{Xe}}$ , ${}^{138-142}_{\mathrm{Cs}}$

5. Names:	B. Fogelberg, P. Hoff and E. Lund.
Experiment:	Nuclear spectroscopic studies of the decays of 114, 115, $116_{\rm Ag}$ . The studies aim at level scheme determinations to be combined with the $Q_{\beta}$ -studies.
6. Names:	B. Fogelberg, P. Hoff.
Experiment:	Nuclear spectroscopic studies of fission pro- duct nuclei. The energy levels and transition probabilities between these are studied. Recent studies include levels populated in the decays of ¹²¹ Ag, ¹²¹ Cd, ¹³¹ In and ¹³³ Sn.
Publications:	F. Fogelberg, J.A. Harvey, R.L. Macklin, S. Raman and P.H. Stelson, Neutron resonance study of a delayed neutron emitter, ⁸⁷ Kr, CERN 81-09 (1981) 3 <b>39</b> .
	B. Fogelberg and P. Hoff, The decays of ^{121m,g} Cd to ¹²¹ In, Nucl. Phys. <u>A376</u> (1982) 389.
7. Names:	P. Aagaard, E. Lund, G. Rudstam and H-U Zwicky.
Experiment:	Fission Yields and Branching Ratios for $\gamma$ -rays.
Method:	The activity of a fission product is determined by means of gamma spectroscopy of neutron counting. After correction for delay, counting efficiency, branching ratio and reactor power the result will be a product of the fission yield and the overall separation efficiency. The latter factor is nearly the same for all isotopes of a given element. Thus relative yields are directly obtainable and have to be normalized against the yield of one of the iso- topes determined absolutely by any other tech- nique. Since the branching ratios for the gamma rays are badly known for many nuclides a special project to determine this quantity has been performed. Well calibrated detectors have been used, a Ge(Li) detector for determination of the intensity of the $\gamma$ -peaks and a plastic scintillator for counting the $\beta$ -activity.
Completion date:	1982 for the fission yields of ²³⁵ U and for branching ratios in the most important fission products. Indefinite for other fissionating elements.

	1
Publication:	G. Rudstam, Analysis of Results from Delay Studies in ISOL-systems. The Studsvik Science Research Report NFL-20 (1980); Dead Time Corrections in Delay Studies, NFL-20 Comple- ment (1980).
	G. Rudstam, P. Aagaard, K. Aleklett, E. Lund, Applications of nuclear data on short-lived fission products. CERN 81-09 (1981) 696.
8. Names:	K. Aleklett, P. Hoff and E. Lund
Experiment:	Nuclear spectroscopic studies of the decays of 75,77 _{Zn} , 89,90 _{Br and 139,140_I. The studies aim at level scheme determinations to be combined with the $Q_{\beta}$-studies.}
Completion date:	1981.
Publication:	P. Hoff, K. Aleklett, E. Lund, Decay schemes and total decay energies for 89 Br and 90 Br, Z. Physik <u>300</u> (1981)289.
	E. Lund, K. Aleklett, P. Hoff, decay schemes and total decay energies of $^{139}I$ and $^{140}I$ (to be published 1982)

### Laboratory and address:

Department of Nuclear Physics, University of Lund, Sölvegatan 14, 223 62 LUND, Sweden.

Names: G. Magnusson, P. Andersson, R. Zorro and I. Bergqvist.

<u>Experiment</u>: Neutron capture cross-section measurements. Experimental and theoretical determination of corrections due to background low energy neutrons produced in reactions like (n,n') and (n,2n) and in charged-particle reactions. <u>Concluded</u>: Measurements at the neutron energy 14.7  $\pm$  0.3 MeV for the nuclei ²³Na, ⁵⁵Mn, ⁸⁹Y, ¹²⁷I, ¹³⁸Ba, ¹⁸⁶W and ¹⁹⁷Au; measurements in the neutron energy range 2 - 4.5 for the nuclei ¹¹⁵In and ¹⁹⁷Au. <u>In progress</u>: Measurements in the neutron energy range 4.5 - 10 MeV for ¹¹⁵In and ¹⁹⁷Au.

Method: The activation technique

Accuracy: 10 - 30%

<u>Discrepancies to other reported data</u>: The present results agree well with the results of the spectrum method. Most of previous activation results do not.

<u>Publications</u>: G. Magnusson and I. Bergqvist, 14.7 MeV Neutron Capture Cross-Section Measurements with Improved Activation Technique, Nucl. Techn., 34, 114 (1977).

G. Magnusson, P. Andersson and I. Bergqvist, 14.7 MeV Neutron Capture Cross-Section Measurements with Activation Technique, Physica Scripta, 21,21 (1980).

## SWITZERLAND

Laboratory & address:	Eidg. Institut für Reaktorforschung, CH-5303 Würenlingen, Switzerland
	Institut für anorganische, analytische und physikalische Chemie, Universität Bern, CH-3012 Bern, Switzerland
Name:	H.R. von Gunten, H.N. Erten
Facility:	Swimming-pool type reactor (SAPHIR)
Experiments:	Determination of independent and cumulative yields in the fission of ²³² Th, ²³³ U, ²³⁵ U, ²³⁹ Pu, and other nuclides
	Absolute yields in reactor neutron fission of ²³² Th
Method:	Absolute fission counting Radiochemical and instrumental (GeLi)
Accuracy:	5 - 10 %
Measurements completed:	²³² Th: Mass distribution and independent yield measurements completed
Publications:	H.N. Erten, A. Grütter, E. Rössler, H.R. von Gunten Mass-Distribution in the Reactor-Neutron Induced Fission of ²³² Th. Nucl. Sci. Eng. <u>79</u> , 167 (1981)
	D.T. Jost and H.R. von Gunten Independent yields of ^{92M} Nb in the thermal neutron- induced fission of ²³³ U, ²³⁵ U and ²³⁹ Pu. J. inorg. nucl. Chem. <u>43</u> , 2629 (1981)
	H.N. Erten, A. Grütter, E. Rössler and H.R. von Gunten Charge Distribution in the Reactor-Neutron-Induced Fission of ²³² Th. Phys. Rev. C., <u>25</u> , 2519 (1982)

### CERN, Switzerland

- Laboratory: ISOLDE, CERN
- and address: CH-1211 Genève 23, Switzerland
- Facilities: ISOLDE and Proton Synchrotron. Isotopically pure samples of nuclides are obtained by on-line isotope separation of products formed in proton induced reactions in uranium carbide or irridium targets.
- Experiment: Measurement of branching ratios for beta-delayed two-neutron 30,31,32 Na and 100 Rb.
- Method: Measurements of neutron time-correlation distributions, beta intensity, gamma intensity from lower mass daughter-products, and for Na also ion counting.
- Names 1:
  C. Detraz, M. Epherre, D. Guillemaud, P.G. Hansen, B. Jonson,
  R. Klapisch, M. Langevin, S. Mattsson, F. Naulin, G. Nyman,
  A.M. Poskanzer, H.L. Ravn, M. de Saint-Simon. K. Takahashi.
  C. Thibault, and F. Touchard
- Publication 1: Beta-delayed two-neutron emission from ^{30,31,32}Na, Phys. Lett. 94B (1980) 307
- Names 2: B. Jonson, H.A. Gustafsson, P.G. Hansen, P. Hoff, P.O. Larsson, S. Mattsson, G. Nyman, H.L. Ravn and D. Schardt
- Publication 2: Beta-delayed two-neutron and three-neutron emission. Proc. 4th international conference on nuclei far from stability, Helsingør, Danmark, 1981, CERN- 81-09, p. 265.

#### CERN, Switzerland

(cont'd)

Laboratory: ISOLDE, CERN

and address: CH-1211, Genève 23, Switzerland

Facility: ISOLDE. Isotopically pure samples of nuclides are obtained by online isotope separation of products formed in proton induced reactions in a uranium carbide target.

1. Experiment: Measurement of neutron emission probabilities of  9 Li and  11 Li.

Method: Neutrons were detected in ³He proportional counters imbedded in paraffin and beta particles in a thin plastic scintillator. The branching ratios were determined from beta-neutron coincidence measurements and for ¹¹Li also from beta-gamma coincidence measurements.

Descrepancies The new measurement of the  9 Li Pn-value gives  $(50\pm4)\%$  which should to other reported data: be compared to the previously adopted value of  $(35\pm5)\%$ . The Pnvalues of  ${}^{27-31}$ Na,  ${}^{93-98}$ Rb, and  145,146 Rb, which have been measured relative to  9 Li, all have to be renormalized by the factor 1.43.

Names: T. Björnstad, H.A. Gustafsson, P.G. Hansen, B. Jonson, U. Lindfors, S. Mattsson, A.M. Poskanzer, and H.L. Ravn

Publication: Delayed neutron emission probabilities of ⁹Li and ¹¹Li, Nucl. Phys. A359 (1981) 1.

2. Experiment: Spectroscopic investigation of low-lying states in ¹⁰⁰Sr fed in the beta-decay of ¹⁰⁰Rb.

Method: Gamma-ray spectroscopy of excited states and lifetime determinations by measuring delayed coincidences between beta particles and conversion electrons.

Names: R.E. Azuma, G.L. Borchert, L.C. Carraz, P.G. Hansen, B. Jonson, S. Mattsson, O.B. Nielsen, G. Nyman, I. Ragnarsson and H.L. Ravn Publication: The strongly deformed nucleus ¹⁰⁰Sr. Phys. Lett. 86B (1979) 5.

Laboratory and address:	AEE Winfrith	UKAEA Atomic Energy Establishment Winfrith Dorchester, Dorset DT2 8DH
Names:	W. H. Taylor, M. F. Murphy	7, M. F. James
Experiment:	and U235 fission in a fast extended over a period of closely as possible, the t in a typical power reactor	decay power from products of Pu239 reactor. The irradiation was ~43 days in order to simulate, as time distribution of fission events rirradiation period. The beta ded up to 2.10 ⁷ seconds after shut down.
Method:	were irradiated near the c energy spectrum was close the fission rates were mon fission chambers. The bet	U235, covered with catcher foils, eentre of the Zebra core. The neutron to that of a fast power reactor and itored by absolute (Alpha-calibrated) a-power was measured using a ch was calibrated using Sr-90/Y-90
Accuracy:	$\sim 10^7$ sec cooling times. T results was <u>+</u> 2.6%. A com of absolute beta power and code with the UKFPDD-2 deca	% at short cooling times and ± 5% at he systematic uncertainty on all the parison between the experimental values values calculated using the FISPIN ay data and C3I yield data libraries the experimental uncertainties.
Completion date:	Experiment completed.	
Publication:	The results have been public	ished in an internal Winfrith report.

Laboratory and address:	AEE Winfrith	UKAEA Atomic Energy Establishment Winfrith Dorchester, Dorset DT2 8DH		
Names:	W. H. Taylor, M. F. Murph	W. H. Taylor, M. F. Murphy, M. R. March, D. B. Gayther*		
Experiment:	U235 fission in a fast re over a period of $\sim$ 43 day	ay power from products of Pu239 and actor. The irradiation was extended as in order to simulate, as closely as bution of fission events in a typical a period.		
Method:	were irradiated near the neutron energy spectrum w reactor and the fission r (Alpha-calibrated) fissio was measured using a larg absolute values of the di were determined using hig The gross measurements ex	d U235, covered with catcher foils, centre of the Zebra core. The ras close to that of a fast power ates were monitored by absolute on chambers. The gross gamma power ge liquid scintillation tank and the fferent fission product activities th resolution $\times$ -ray spectroscopy. Etended from $10^4$ to 4 x $10^6$ seconds wity measurements from $10^3$ to $10^7$ seconds.		
Accuracy:	1	gross gamma power measurements were % and on the activity measurements		
Completion date:	Experiment completed.			
Publication:	The preliminary results h Winfrith report.	ave been published in an internal		

* of AERE Harwell

Laboratory and address:	AEE Winfrith	UKAEA Atomic Energy Establishment Winfrith Dorchester, Dorset DT2 8DH
Names:	W. H. Taylor, C. A. Uttle	y*, D. B. Gayther*, K Randle ⁺
Experiment:	reaction (which at presen experiments) has been mad Birmingham University as	e differential cross section for this t is only inferred from integral e using the DYNAMITRON machine at the source of monoenergetic made using the joint efforts of
Method:	purity germanium spectrom	y was determined using a high eter and the intensity of the neutron was monitored using the U235(n,f), ns.
Accuracy:	-	5% and the present problem is ugh neutron beam to enable this
Completion date:	The first measurement show	uld be completed by June 1982.
Publication:	The results of the first r the end of 1982.	neasurement should be published by
* of AERE Harwell	+ Birmingham Univers	sity

AERE Harwell Laboratory UKAEA and Address: AERE, Harwell, Oxfordshire OX11 ORA U.K. J.G. Cuninghame, H.H. Willis Names: Facilities: ZEBRA - BIZET To measure the effect of change of reactor Experiment: neutron spectrum on fission yields. Four irradiations, each of two  235 U, two Method: ²³⁸U and two ²³⁹Pu metal beads of approx. 100mg. weight have been made; two were in the inner breeder island and two in the outer core. One of the samples of each of the fissile materials was counted directly on a calibrated Ge(Li) detector, while the other was dissolved and used to prepare purified samples of certain fission products of very low yield, viz. As, Ag, Cd, Sn, Sb and Rare Earths. Final results have now been obtained which give complete fission yield curves for fission of  235 U in both the inner and outer core positions of a "conventional" fast reactor core arrangement. They show that there is no significant change in fission yields between the two core positions, even though the neutron spectrum in the outer position is much softer than that in the inner. Final calculations of the other 10 fission yield curves are now in progress. Expected ⁺ 10% Accuracy: Expected 1983 Completion date:

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire, OX11 ORA
Names:	I.C. McKean and E.A.C. Crouch	
Experiment:	³ H yield in thermal and fast fission spectra for U and Pu isotopes	
Facilities:	GLEEP and 'ZEBRA' Reactors	
Method:	The tritium produced in fission tritiated water, separated from products and measured by liquid counting. A preliminary experim completed in which solutions of irradiated in a thermal flux. S irradiated in GLEEP ( $235U + 239p$ in ZEBRA ( $235U + 239pu$ metal) an Samples of $240pu$ and $241pu$ have further experiments.	other fission scintillation ent has been ²³⁵ U were amples have been yu in solution) and ad await analysis.
Accuracy:	± 10%	
Completion date:	experiment interrupted, continua	tion pending.

-

Dounreay Nuclear Power

# UNITED KINGDOM

Laboratory and Address:	DNPDE	Development Establishment, UKAEA, Northern Division, Thurso, Caithness, Scotland KW14 7TZ	
Names:	W. Davies, V.M. Sinclair		
Facilities:	PFR		
Experiment:	The measurement of the ab $144_{Ce}$ , 143, 145, 146, 148, 15 products, from the fission and $241_{Pu}$	solute yields of $90_{ m Sr}$ , 137 _{Cs} , ^O Nd and perhaps other fission n of ²³⁵ U, ²³⁶ U, ²³⁹ Pu, ²⁴⁰ Pu	
	In progress		
Method:	Twelve sealed stainless s irradiated. Of these,	teel capsules are to be	
		s highly enriched uranium	
	dioxide, 3 capsules contain ²³⁹ Pu a plutonium dioxide, 238	as low ²⁴⁰ Pu content s depleted uranium dioxide	
	with an isotopic analysis	of 99.7% - 200	
	1 capsule contains ²⁴⁰ Pu a of plutonium with an isot 1 capsule contains ²⁴¹ Pu a	as a dried aqueous solution opic analysis of 99% 240Pu, as a dried aqueous solution opic analysis of 93% 241Pu, and	
	The 235U and 239Pu capsulpowder mixed with the fis heat transfer reasons.	es contain stainless-steel sile material dioxide for	
	receive irradiation corre- up of the fissile materia	35U and ²³⁹ Pu capsules will sponding to about 16% burn- 1, the ²³⁸ U capsule to about apsule to about 4% burn-up about 23% burn-up.	
		the reactor will be dissolved e irradiated set, the objective	
	The aim is to correlate 1 irradiation with the amou formed, for each capsule, absolute measurements of obtained.	(except 238U) to enable	
Accuracy:	$\frac{1}{2}$ 2% for 2350 and 23 $\frac{1}{2}$ 6% for 2380, 240Pu	99Pu fission yields 1 and 241Pu fission yields	

Expected completion date: | 1984

- 97 -

### UNITED KINGDOM

Laboratory and address:	National Physical Laboratory	Queens Road Teddington Middlesex TW11 OLW, UK
Names:	P Christmas, P Cross	
Facilities:	Iron-free, $\pi\sqrt{2}$ magnetic $\beta$ -ray spectrum free spectru	pectrometer.
Experiment:	Measurement of $\beta$ -spectra of $90$ Srto determine shape factors and en Similar measurements are being ma other European Laboratories using prepared from NPL solution. This has been organized by NPL on beha International Committee for Radio (ICRM).	ndpoint energies. ade by three g sources s intercomparison alf of the
Accuracy:	Endpoint energies will be determined expected uncertainty of $\pm$ 1 keV.	ined with an
Completion date:	Target is end 1982.	

Laboratory and address:	National Physical Laboratory	Queens Road, Teddington Middlesex. TW11 OLW, UK.
Names:	M J Woods, J L Makepeace, R A	Mercer
Facilities:	Mass separator, $4\pi\beta$ - $\gamma$ -coincid high pressure ionisation cham	
Experiment:	Production of solution and gas of $^{152}Eu$ , measurement of half	
Method:	99+% enriched $151_{\rm Eu}$ and $153_{\rm Eu}$ mass separation and irradiated $154_{\rm Eu}$ . $152_{\rm Eu}$ solution to be $4\pi\beta-\gamma$ -coincidence technique, a point gamma reference standard $152_{\rm Eu}$ and $154_{\rm Eu}$ half-lives to response measurements in high chambers, type IG11.	d to produce ¹⁵² Eu and standardised by the and then solution and ds to be fabricated. be determined by current
Progress:	154Eu has been standardized and 8.46y obtained for the half-li	d a preliminary value of ife.
Accuracy:	Standards to be accurate with Estimated that half-lives will within $\pm$ 1% (1 $\sigma$ ) by end 1982.	

.

.

•

Laboratory and address:	Birmingham Radiation Centre	University of Birmingham P.O. Box 363 Birmingham B15 2TT United Kingdom
Names:	J.G. Owen, J. Walker, D.R. Weave	r
Facilities:	3MV Dynamitron accelerator (Birm Tandem Van de Graaff and IBIS (H	•
Experiments:	Delayed neutron spectrum measurer monoenergetic fast neutron induct and ²³⁹ Pu	235
	Spectrum measurement of Am/Li so by the March 1979 Vienna Consult Delayed Neutron Properties. An also been measured.	ants' Meeting on
Method:	³ He spectrometers; for delayed a cyclic irradiation and counting equilibrium contributions from a groups.	to give near-
Accuracy:	A full covariance matrix is calc	ulated.
Publication:	A paper describing the Am/Li mean of obtaining the covariance matri A further paper on a 5Ci Am/Li so	ix has been published.

Laboratory and Address:	(same as INDC(NDS)-116) Kelvin Laboratory	University of Glasgow, N.E.L.,
	Kelvin Laboratory	
		East Kilbride, Glasgow G75 OQU.
Names:	G.I. Crawford, J.D. Kell University of Glasgow: B. Pfeiffer, L. Alquist, I.L.L., Grenoble.	
Facilities:	Experiment performed on Grenoble.	Ostis separator at I.L.L.,
Experiment:	Delayed neutron energy s	pectra of $93_{\text{Rb}}$ , $94_{\text{Rb}}$ , $95_{\text{Rb}}$ .
Me thod :	were collected on a slow prevented build-up of lo front of a thin plastic the $\beta$ decay of the Rb nu detected in two detector which was at a relatively mainly detected low energ (ii) a NE213 scintillator flight path to detect th Pulse shape discriminati scintillator to reduce y neutron time of flight s various flight paths for Relatively long flight p the best resolution. Th below 20 keV, about 6 ke 500 keV in the high reso	ng-lived activities) just in scintillator which detected clei. Neutrons were s (i) a Li glass detector y short flight path and gy (< 250 keV) neutrons and r which was used at a longer e higher energy neutrons. on was used with the NE213 -ray background. Beta- pectra were recorded for each of the precursors. aths for 94Rb and 95Rb gave is was typically < 1 keV V at 250 keV and 16 keV at
Accuracy:	Limited principally by constrained by constrained by the stablished.	ounting statistics and not
Completion date:	It is hoped to complete comparisons with other r	the analysis of the data and esults by July 1981.
Comparison with other data:	with the ³ He data of Kra the 13.6 keV peak in ⁹⁵ R	in good general agreement tz et al. The presence of b is clearly established. r structure observed in the ed.
Publications:	Only so far in I.L.L. An	nual Reports.

.

# USA

Laboratory and Address:	Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439
Names:	L. E. Glendenin, J. E. Gindler, J. W. Meadows
Facilities:	Fast-neutron generator facility (FNGF)
Experiment:	Determination of fission yields for monoenergetic neutron-induced fission as a function of incident neutron energy over the range 0.1 to 8 MeV.
Method:	Yields determined (1) radiochemically with either $\beta$ - or $\gamma$ -counting (RC) and (2) by $\gamma$ -counting irradiated foils of fissionable material ( $\gamma$ ). Neutrons produced by Li-p or D-d reaction. Flux monitored with fission chamber utilizing as the fission source the same material as that being irradiated. Absolute yields determined from flux measurements and/or 200% normalization of mass-yield distribution.
Accuracy:	Yields > 1% determined by $\gamma$ -counting: 3-5% Yields < 1% determined by $\gamma$ -counting: 5-20% Yields determined radiochemically with $\beta$ -counting: 10-20%
Completion Date:	Measurements completed and published for ²³⁸ U(n,f) ²³² Th(n,f) and ²³⁵ U(n,f). Work in progress for ²³⁹ Pu(n,f).
Publications:	"Mass distributions in monoenergetic-neutron-induced fission of ²³⁸ U", S. Nagy, K. F. Flynn, J. E. Gindler, J. W. Meadows, and L. E. Glendenin, Phys. Rev. <u>C17</u> , 163 (1978).
	"Mass distributions in monoenergetic-neutron-induced fission of ²³² Th", L. E. Glendenin, J. E. Gindler, I. Ahmad, D. J. Henderson and J. W. Meadows, Phys. Rev. <u>C22</u> , 152 (1980).
	"Mass distributions for monoenergetic-neutron-induced fission of ²³⁵ U", L. E. Glendenin, J. E. Gindler, D. J. Henderson and J. W. Meadows, Phys. Rev. <u>C24</u> , 2600 (1981).

Laboratory and address:

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois, 60439 U.S.A.

#### 1. Measurements of fast-neutron capture cross sections of fission-product nuclei.

#### Authors:

W. P. Poenitz and J. M. Wyrick

#### Facilities:

FNG (Fast Neutron Generator Facility), Ge(Li)-detectors, Large Liquid-Scintillation Detector.

#### Measurements:

Activation cross sections of Indium, Zirconium, Molybdenum and Cadmium were measured <u>at 30 KeV</u>. The forward cone close to the threshold of the ⁷Li(p,n) reaction was used as a neutron source. The activity was measured with a Li(Ge)-detector. Results will be obtained for ¹¹⁵In(n, $\gamma$ )¹¹⁶mIn, ⁹⁸Mo(n, $\gamma$ )⁹⁹Mo, ¹⁰⁰Mo(n, $\gamma$ )¹⁰¹Mo, ⁹⁴Zr(n, $\gamma$ )⁹⁵Zr, ⁹⁶Zr(n, $\gamma$ )⁹⁷Zr, ¹¹⁰Cd(n, $\gamma$ )¹¹¹mCd, ¹¹⁴Cd(n, $\gamma$ )¹¹⁵gCd, ¹¹⁶Cd(n, $\gamma$ )¹¹⁷Cd, ¹¹⁶Cd(n, $\gamma$ )¹¹⁷gCd, and ¹¹⁶Cd(n, $\gamma$ )¹¹⁷mCd. Thermal cross sections will also be obtained for some of these reactions. These data should prove useful for the normalization of theoretically calculated capture cross sections.

The energy dependence of capture cross sections of elements in the fission product mass range <u>above 400 KeV</u> were measured with a large liquid scintillator. Data for rhodium, palladium, neodymium, and samarium were analyzed and reported at the NEANDC Specialists' Meeting on Neutron Cross Sections of Fission Product Nuclei held at Bologna, December 12-14, 1979.

Additional activation measurements are <u>planned</u> on rhodium, palladium, niobium and others at 30 KeV and 500 KeV.

#### U.S.A.

#### (cont'd, same as INDC(NDS)-116)

#### Laboratory and address:

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois, 60439 U.S.A.

### 2. Measurements of fast-neutron total cross sections of fission-product nuclei.

#### Authors:

W. P. Poenitz, J. F. Whalen, A. B. Smith and P. T. Guenther

#### Facilities:

Fast-neutron monoenergetic source capability based upon a tandem accelerator.

#### Measurements:

Accurate total-neutron-cross-section data are needed in the fission product mass region in order to establish reliable optical model parameter sets to be used in nuclear model calculations of capture cross sections. A perusal of existing data reveals a substantial lack of such data and/or the existence of discrepancies (Ref. 1).

Measurements of the total neutron cross section of Y, Zr, Mo, Cd, Sn, Te, Ag, Nb, Rh, Pd, In and Sb in the energy range from 50 KeV to 4.5 MeV were completed. The measurement procedure followed that used for the heavy nuclei reported earlier (Ref. 2). Data were obtained in the 50 KeV-220 KeV energy range with pseudo-white neutron spectra and from 200 KeV to 4.5 MeV with monoenergetic neutrons. The data were corrected for resonanceself-shielding using correction factors calculated with Monte Carlo techniques. Measurements at some energies and for some samples (Nb, In, Sn, Mo, Y) with different thicknesses were used to verify these corrections. These data will be used together with scattering data for establishing optical model parameters which are needed for the calculation of capture cross sections of fission product nuclei.

Ref. 1. W. P. Poenitz, "Fast Neutron Capture Cross Section Measurements, Evaluations and Model Calculations of Fission Product Nuclei", Proc. Spec. Meeting on Neutron Cross Sections of Fission Product Nuclei, Bologna, (1979), NEANDC(E) 209 "L", p. 85.

Ref. 2. W. P. Poenitz et al., to be published, Nucl. Sci. Eng., (1981).

#### U.S.A.

(cont'd, same as INDC(NDS)-116)

#### Laboratory and address:

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois, 60439 U.S.A.

#### 3. Measurements of fast-neutron scattering cross sections.

#### Authors:

A. B. Smith, P. T. Guenther and C. Budtz-Jørgensen

#### Facilities:

FNG (Fast Neutron Generator), 10-Angle Time-of-Flight Facility.

#### Measurements:

The measurement program has focused upon elastic scattering with comprehensive results obtained from Z=39 to 52 including all elemental targets and selected isotopic targets. The experimental results have been reduced to cross sections and a unified model describing the region is being developed. Some of the measurements (e.g. Y and Nb) include detailed inelastic-neutron scattering results. In other instances additional inelastic-scattering measurements are planned with higher resolutions and in a few cases the isotopic complexity of the element (e.g. Sn) make inelastic-neutron studies unrewarding. In these latter instances isotopic targets are being used to the extent they are available and funded.

# U.S.A.

Laboratory and Address:	Brookhaven National Laboratory Upton, New York, 11973
Names:	R. E. Chrien, R. L. Gill, M. Shmid, A. Wolf, Y. Y. Chu, R. F. Casten and D. D. Warner
Facilities:	On-Line Mass Separator "TRISTAN" Surface Ionization Source for Production of Alkaline Metals High-Temperature Plasma Source Febiad Source PDP-11-based Data Acquisition System
Experiments:	β and γ spectroscopy of fission product nuclei Nuclear masses far from stability Delayed neutron production and spectra Time-of-flight, recoil and He 3 spectrometer Angular correlations and perturbed angular correlations
Accuracy:	State-of-art precision for spectroscopic experiments $\pm 10\%$ in delayed neutron probabilities $\pm 2\%$ in half lives, typical $Q_{\beta} \pm (10 \text{ to } 100 \text{ keV})$
Comments:	TRISTAN is a multi-user facility with participants from the following institutions, in addition to the local group:
	Clark University
	Cornell University Idaho National Engineering Laboratory
	Iowa State University
	Los Alamos National Laboratory
	Lawrence Livermore National Laboratory Louisiana State University
	McGill University
	Pacific Northwest Laboratory
	Swarthmore College University of Maryland
	University of Oklahoma
	For detailed publication list and participant list, please refer to individual contributions. A summary of the program is available in the DOE-NDC Progress Reports, available from the National Nuclear Data Center.

### U. S. A.

- Editor's note: in order to give more details on the data measured, the list below was extracted by the editor from DOE-NDC Progress Report no. 24 (May 1981).
- The O(6) symmetry and the structure of  ${}^{136}Ba$  (capture measurements at 2 and 2 and 24 keV)
- Nuclear structure of ¹⁵⁵Sm
- Tests of odd-mass nuclei for the IBA: ¹⁰³Ru
- Resonance capture  $\gamma$ -ray studies of the Se isotopes (see contribution on next page)
- Beta-delayed two-neutron emission from ⁹⁸Rb (see contribution on page 122)
- Recoil spectrometer measurements of beta-delayed neutron spectra (93-95Rb)
- Delayed neutron spectra by time-of-flight (95Rb)
- Precise Q-values for neutron-rich Rb and Cs isotopes
- Angular correlation studies of the transitional nuclides 142-146Ce and the low lying O+ excited states
- Band structure in ¹⁴⁸Ce
- Levels of ¹⁴⁶Ce from the decay of ¹⁴⁶La
- The decay of mass-separated 146, 148Ba to levels in 146, 148La
- Study of the decay of low-spin ¹⁴⁸Pr to levels of ¹⁴⁸Nd
- Low-lying levels in the N=85 isotone ¹⁴¹Ba
- Levels in ⁹⁹Sr resulting from the decay of ⁹⁹Rb
- Studies of the decay of ¹⁴⁷Cs and ¹⁴⁷Ba and a reinvestigation of the decay of ¹⁴⁷La

# <u>U.S.A</u>

.

Laboratory and Address:	Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
Names:	G. Engler, Robert E. Chrien and H.I. Liou
Facilities:	-40 MW research reactor -Three-crystal-pair spectrometer -Time-of-flight fast chopper facility.
Experiment:	Thermal and Resonance Neutron Capture Studies in Se Targets with A=74, 76, 77, 78, 80.
Method:	A three-crystal-pair spectrometer was used for thermal neutron capture. A time-of-flight chopper facility with stations at 22m and 48m and a Ge(Li) detector, was used for neutron resonance capture experiments.
Accuracy:	20-30% for $\gamma$ -intensities, 0.3 keV for energies.
Results:	Energies and intensities of primary and secondary $\gamma$ -rays for thermal and resonance neutron capture for ^{74,76,77,78,80} Se. Also neutron separation energies for ^{75,77,78,81} Se were deduced. 10 resonances were analyzed. E1 strength functions were calculated for ^{74,76,77} Se and for 27.1 eV resonance in ⁷⁴ Se.
Completion date:	Completed
Discrepancies to other reported data:	Overall good agreement with previous experimental $\gamma$ -ray energies. $\gamma$ -intensities are systematically higher than published data.
Publication:	Nucl. Phys. <u>A372</u> (1981) 125

# <u>U.S.A</u>

Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P. O. Box 1625 Idaho Falls, Idaho 83415 USA
Names:	R. A. Anderl, Y. D. Harker
Experiment:	Integral cross-section measurements in fast- reactor-type environments.
Method:	Enriched isotopes of fission-product-class materials are irradiated in the fast neturon fields of the Coupled Fast Reactivity Measurements Facility(CFRMF) and of the Experimental Breeder Reactor-II (EBR-II). Integral capture cross sections are derived from measurements which utilize gamma spectrometry and/or mass spectrometry. Neutron fields are characterized by means of transport calculations, active neutron dosimetry or passive neutron dosimetry. Integral cross sections are used for testing evaluated cross sections.
Accuracy:	<b>3%-10% (1σ uncertainty)</b>
Measurements Completed:	Earlier measurements for ~50 fission-product capture reactions in the CFRMF were re-evaluated and re-analyzed using ENDF/B-V decay data. Final report was prepared on integral capture measurements in EBR-II for isotopes of Nd, Sm and Eu.*)
Measurements Planned:	Remeasurements of the integral cross sections of ⁹⁹ Tc, ¹⁰³ Rh, ¹⁰⁴ Ru, ¹⁰⁹ Ag, ¹²⁷ I and ¹⁴⁷ Pm irradiated in the CFRMF are underway.
Publications:	Y. D. Harker, R. A. Anderl, "Integral Cross-Section Measurements on Fission-Products in Fast Neutron Fields," in the Proceedings of Specialists' Meeting on Neutron Cross Sections of Fission-Product Nuclei, Bologna, Italy, December 12-14, 1979, NEANDC(E)209"L" (June 1980).
	J. M. Ryskamp, R. A. Anderl <u>et al</u> ., "Sensitivity and Uncertainty Analysis of the CFRMF Central Flux Spectrum," Nucl. Tech. <u>57</u> ,20 (1982).
	R. A. Anderl, "Integral Data-Testing Report for ENDF/B-V Fission-Product and Actinide Cross Sections," U. S. DOE Report EGG-PHYS-5406, April, 1981.
	R. A. Anderl, F. Schmittroth, Y. D. Harker, "Integral- Capture Measurements and Cross-Section Adjustments for Nd, Sm and Eu," U. S. DOE Report EGG-PHYS-5182, INEL, July, 1981. *)

# <u>U.S.A.</u>

	Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P. O. Box 1625 Idaho Falls, Idaho 83415 USA
1.	Names:	R. C. Greenwood, R. J. Gehrke, J. D. Baker, V. J. Novick
	Experiment:	Nuclear decay properties $(T_{1_2}, \gamma$ -branching, $\beta$ -branching) of short-lived fission products.
	Facility:	Two $300-\mu g$ $^{252}Cf$ fission-product sources coupled via He-gas jet transport to a chemical separation laboratory.
	Method:	Fast on-line chemical separations using continuous centrifugal contactors and high pressure liquid chromatography followed by $\gamma$ - and $\beta$ -ray measurements.
	Measurements Completed:	The T1 ₂ and $\gamma$ -ray energies and intensities for new isotopes 8.5-min 168 Dy and 2.11-min 165 Tb.
	Publications:	J. D. Baker, R. J. Gehrke, R. C. Greenwood and D. H. Meikrantz, "Advanced System for Rapid Separation of Rare Earth Fission Products," Journal of Radioanalytical Chemistry (in press).
		R. J. Gehrke, R. C. Greenwood, J. D. Baker and D. H. Meikrantz, "A New Isotope ¹⁶³ Gd; Comments on the Decay of ¹⁶² Gd," Radiochimica Acta (in press).
		R. C. Greenwood, R. J. Gehrke, J. D. Baker and D. H. Meikrantz, "Identification of New Neutron-Rich Rare-Earth Nuclei Produced in ²⁵² Cf Spontaneous Fission," in 4th International Conference on Nuclei Far From Stability, CERN 81-09 (1981) pp. 602-607.
		R. C. Greenwood, R. J. Gehrke, J. D. Baker and D. H. Meikrantz, "Identification of a New Isotope, ¹⁵⁵ Pm, Produced in Spontaneous Fission of ²⁵² Cf," Radiochimica Acta (in press).
	I	D. H. Meikrantz, R. J. Gehrke, L. D. McIsaac, J. D. Baker and R. C. Greenwood, "An Automated System for Selective Fission Product Separations; Decays of ¹¹³⁻¹¹⁵ Pd", Radiochim. Acta <u>29</u> (1981) 93.

.

,

# <u>U.S.A.</u>

2.	Names:	R. J. Gehrke, R. G. Helmer
	Facilities:	l) 4π β-γ coincidence counting system 2) Calibrated Ge(Li) spectrometers
	Experiment:	Determination of absolute $\gamma$ -ray emission probabilities for important fission-product isotopes.
	Method:	The decay rates are determined by the $4\pi \beta - \gamma$ coincidence counting system, which has two separate pulse-processing systems. One system is based on fixed pulse widths. The other is based on variable pulse widths and an overlap coincidence circuit. The dead time of the beta, gamma and coincidence channels is measured by counting the pulses from a 10 MHz clock. The variable pulse width system is useful in measuring the $\gamma$ -ray emission probabilities of short-lived (<30 m) fission products, where high count rates are needed. The $\gamma$ -ray emission rates are determined by Ge(Li) spectrometers whose efficiencies have been measured to an accuracy of $\pm 1-1/2\%$ (1 $\sigma$ ) between 0.3 and 2 MeV.
	Accuracy:	$\pm 1\%$ to $\pm 5\%$ (lo uncertainty).
	Measurement Completed:	Emission probabilities of the 57- and 293-keV $\gamma$ rays emitted in the decay of ¹⁴³ Ce measured to an accuracy of ~3% and 1.0%, respectively. (1 $\sigma$ level).
	Completion Date:	¹⁴⁶ Ce measurement in progress. ¹⁴⁷ Nd measurement in progress.
	Publications:	R. J. Gehrke, "γ-Ray Emission Probabilities for the Decays of ¹⁴¹ La and ¹⁴² La," Int. J. Appl. Radiat. and Isotopes <u>32</u> , 377 (1981).
		R. J. Gehrke, "Gamma-Ray Emission Probability for the Decay of ¹⁴³ Ce," Int. J. Appl. Radiat. and Isotopes (in press).
		R. J. Gehrke and L. O. Johnson, "A $4\pi$ $\beta$ - $\gamma$ Coincidence System with Minimally Broadened Pulses for High Count Rates," submitted for publication in Nucl. Instr. and Methods.

# <u>U.S.A.</u>

(cont'd)

3.	Names:	R. G. Helmer, R. C. Greenwood, R. J. Gehrke, A. J. Caffrey
	Experiment: (new)	Precise _Y -ray energy measurements for energy calibration standards.
	Facility:	$\gamma$ -ray spectrometers using Ge detectors.
	Method:	Comparison of $\gamma$ -ray energies by measurement of spectra including lines of known and unknown energies.
	Measurements Completed:	$\gamma\text{-ray}$ energies for $^{99}\text{Mo}$ , $^{133}\text{Ba}$ and $^{210}\text{Pb}$ .
	Publications:	R. G. Helmer, A. J. Caffrey, R. J. Gehrke and R. C. Greenwood, " $\gamma$ -Ray Energies from the Decay of 99 Mo, 133 Ba and 210 Pb," Nucl. Instr. and Methods <u>188</u> , 671 (1981).

- 111 -

### <u>U. S. A.</u>

Laboratory: Idaho National Engineering Laboratory

Address: Exxon Nuclear Idaho Co., Inc. P. O. Box 2800 Idaho Falls, Idaho 83401 United States of America

1. Name: T. C. Chapman, W. J. Maeck

Experiment: Fast Reactor Fission Yields and Determination of Burnup for Fast Reactor Fuels

A program at the Idaho Chemical Processing Plant (ICPP) laboratories to accurately measure absolute fast reactor fission yields for 233U, 235U, 238U, 237Np, 239Pu, 240Pu, 241Pu, and 242Pu has been completed. The irradiations were conducted in EBR-II.

<u>Method</u>: The principal measurement technique was isotope dilution mass spectrometry for the isotopes of Kr, Rb, Sr, Zr, Mo, Ru, Xe, Ce, Ba, La, Ce, Nd, and Sm. The number of fissions was established by summing the total number of atoms in the heavy mass peak.

Accuracy: In general, the uncertainties associated with  $235_{U_1}$ ,  $237_{NP_2}$ ,  $239_{Pu_1}$ ,  $241_{Pu_2}$ , and  $242_{Pu}$  yields range from 1.0-1.5% relative, and for  $238_{U_2}$  and  $240_{Pu}$  yields, the uncertainties range from 1.5-3.0% relative.

Completion Date: Completed.

<u>Publications</u>: The results of this measurement program have been published in the reports listed below. These reports are available from the National Technical Information Service, U. S. Dept. of Commerce, 5285 Port Royal Road, Springfield, Virginia, 22161, USA.

- W. J. Maeck, Editor, "Fast Reactor Fission Yields for ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu and Recommendations for the Determination of Burnup on FBR Mixed Oxide Fuels: An Interim Project Report," Allied Chemical Corporation, Idaho Chemical Programs Rept., ICP-1050-I (January 1975).
- W. J. Maeck, Editor, "Fast Reactor Fission Yields for ²³⁹Pu and ²⁴¹Pu," Allied Chemical Corporation, Idaho Chemical Programs Rept., ICP-1050-II (August 1977).
- 3. W. J. Maeck, W. A. Emel, A. L. Erikson, J. E. Delmore, J. W. Meteer, "Fast Reactor Fission Yields for ²³⁷Np," Allied Chemical Corporation, Idaho Chemical Programs Rept., ICPP-1050-III (September 1977).
- 4. W. J. Maeck, R. L. Eggleston, A. L. Erikson, R. L. Tromp, "Fast Reactor Fission Yields for 240pu and 242pu," Allied Chemical Corporation, Idaho Chemical Programs Rept., ICP-1050-IV (February 1979).

# $\frac{U. S. A.}{(cont'd)}$

- 5. W. J. Maeck, A. L. Erikson, R. L. Tromp, "Fast Reactor Fission Yields for ²³³U, and ²³⁵U Irridated in Row-4 of EBR-II, Exxon Nuclear Idaho Co., Inc., Rept., ENICO-1028 (February 1980).
- 6. W. J. Maeck A. L. Erikson R. L Tromp, "Fast Reactor Fission Yields for ²⁴¹Pu and Relative Fission Product Isotopic Data for ²³⁹Pu Irradiated in Row-4 of EBR-II," Exxon Nuclear Idaho Co., Inc., Rept., ENICO-1046 (July 1980).
- 7. A. L. Erikson, R. L. Tromp, W. J. Maeck, W. A. Emel, "Methods for Fission Product Analysis by Isotope Dilution Mass Spectrometry," Exxon Nuclear Idaho Co., Inc., Rept, ENICO-1061 (October 1980).
- 8. W. J. Maeck, R. L. Tromp, "Revised EBR-II Fast Reactor Fission Yields for 233U, 235U, and ²³⁸U," Exxon Nuclear Idaho Co., Inc., Rept, ENICO-1091 (August 1981).
- 9. R. L. Tromp, J. E, Delmore, R. A. Nielsen, T. C. Chapman, "Mass Spectrometric Systems and Techniques for Fission Product Analysis," Exxon Nuclear Idaho Co., Inc., Rept, ENICO-1094 (October 1981).
- 2. Name: T. C. Chapman, R. L. Tromp

Experiment: Fast Reactor Fission Yield Measurements in FFTF.

For many years, personnel at the Idaho Chemical Processing Plant (now operated by Exxon Nuclear Idaho Company, Inc.) at the Idaho National Engineering Laboratory, have been involved in the accurate measurement of absolute fission yields for use on the determination of burnup in fast reactor fuels. As a continuing effort of this program, an irradiation of heavy element nuclides ( 233 U,  235 U,  239 Pu, and  241 Pu) was conducted in the eight-day full-power run associated with the FFTF Reactor Characterization Experiment at Hanford, Washington.

The primary purpose is to generate a group of heavy element reference standards for which the number of fissions and burnup are well known. By combining this experiment with others of a similar nature, these samples will serve as reference and comparison standards. A secondary purpose is to verify the fast reactor fission yields measured in EBR-II and to assess the validity of using EBR-II values for irradiations conducted in FFTF.

For this experiment, ten samples each of highly-enriched  233 U,  235 U,  239 Pu, and  241 Pu (as oxides), sealed in high-purity nickel capsules were irradiated. Capsules were placed axially in one of the removable pins in Rows 1, 4, 5, and 6. Each pin was located immediately adjacent to an ILLR dosimetry package pin. The amount of material in each sample capsule was adjusted such that each individual sample will give about  $10^{19}$  fissions.

### <u>U. S. A.</u>

### (cont'd)

<u>Schedule</u>: The irradiation was completed in November, 1981. Analysis is planned to begin in Idaho during late 1982.

<u>Method</u>: The samples in Rows 1 and 6 will be dissolved and analyzed for the following fission product elements using isotope dilution mass spectrometry: Kr, Rb, Sr, Zr, Mo, Ru, Xe, Cs, Ba, La, Ce, Nd, and Sm. The absolute number of fissions will be established by summing the number of fission product atoms in the heavy mass peak. The samples in Rows 4, and 5, will only be partially analyzed. principally for Nd, Cs, Kr, and Xe, to establish relative fission yield values for the intermediate reator positions. Extensive correlation of the isotopic composition and fission yields of several of the fission product elements as a function of neutron energy will be made.

3. Name: William J. Maeck

Experiment: Natural Fission Reactor Studies: ²³⁸U Spontaneous Fission Yields

In the process of analyzing approximately 25 rich uranium ore samples for fissiogenic ruthenium, a preliminary estimate of the  238 U spontaneous fission yields for  99 Ru,  101 Ru,  102 Ru,  104 Ru has been obtained. The measurement technique was mass spectrometry.

After correction for the natural Ru component and the fissiogenic component resulting from  235 U induced fission, the best estimate for the isotopic composition of  238 U spontaneous fission Ru is:

99	0.236
101	0.285
102	0.314
104	0.165

Using a value of 6.0% for the  $^{238}\text{U}$  spontaneous fission yield of  $^{99}\text{Mo}$ , the preliminary  $^{238}\text{U}$  spontaneous fission yields for the Ru isotopes are:

99 _{Ru} 101 _{Ru}	6.0%	(relative	to	99 _{Mo} )
101 _{Ru}	7.25	•		
102 _{Ru} 104 _{Ru}	8.0			
¹⁰⁴ Ru	4.2			

These values have been updated and supersede those reported in INDC (NDS)-86.

<u>Special Comment</u>: Funding for this experiment was discontinued in 1981. Work will be resumed when funding is made available.
# (same as INDC(NDS)-116)

LABORATORY	Lawrence Livermore Laboratory University of California P.O. Box 808 Livermore, CA 94550, U.S.A.	+ McClellan Central Laboratory 1155th Technical Operations Squadron McClellan AFB, CA 95652
NAMES	D. R. Nethaway A. L. Prindle	+ M. V. Kantelo ¹ + R. A. Sigg ¹

FACILITY FLATTOP Critical Assembly (Pu), Los Alamos Scientific Laboratory

#### 1. <u>EXPERIMENT</u> Measure fission yields for fission of Am-241 induced by fissionspectrum neutrons.

- COMPLETION DATE The experiment is finished.

D. H. Sisson

<u>PUBLICATION</u> A manuscript has been submitted to The Physical Review C. A preprint is available as UCRL-85195 (Dec. 1980).

¹Present address: E. I. duPont de Nemours and Co., Savannah River Laboratory, Aiken, SC 29808. U.S.A. (cont'd.) (new)

- LABORATORY University of California P.O. Box 808 Livermore, CA 94550, U.S.A.
- NAMES D. R. Nethaway F. F. Momyer C. F. Smith N. A. Bonner
- FACILITY Livermore RTNS-2 Accelerator (D-T Neutrons)
- 2. <u>EXPERIMENT</u> Measure fission yields of rare gases, especially 10.7-y 85Kr, for fission of 235U, 238U, and 239Pu induced by 14-15 MeV neutrons. Several rare-earth yields will also be measured, such as ¹⁵⁶Eu and ¹⁶¹Tb.
  - METHOD Measurements will be made by separating and counting the gaseous products from the dissolved target. Other products will be measured by direct Ge(Li) counting of an aliquot of the solution, and by chemically separating and counting various rare-earth products. Fission yields will be measured relative to known yields of products such as 95Zr, 99Mo, and 147Nd. We plan to have about 1014 fissions in each target of 1 g of uranium or plutonium. The relative fission yields will be measured with an accuracy of about 2-5%.
  - <u>COMPLETION DATE</u> We plan to have the first irradiation in June 1982, and to finish the irradiations this year.

# <u>U. S. A.</u>

Laboratory	Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee USA 37830
Name:	R. L. Macklin
Facility:	Oak Ridge Electron Linear Accelerator (ORELA)
Experiment:	Neutron Capture Cross Sections 2.6-2000 keV; 99 Tc, $107, 109$ Ag, $127, 129$ I, $136$ Xe
Method:	Neutron Time-of-Flight; prompt gamma cascade energy by liquid scintillator pulse height weighting
Accuracy:	Estimated 5% or less
Completion Date:	Experiment 1981-2; Analysis and Report 1982-3
Discrepancies:	Suggested for ¹⁰⁹ Ag
Publications:	R.L. Macklin and R.R. Winters, "Stable Isotope Capture Cross Sections from Oak Ridge Electron Linear Accelerator," NSE <u>78</u> , 147 (1981)
	B. Fogelberg et al. "Neutron Resonance Study of ⁸⁶ Kr*", Fourth International Symposium on Neutron- Capture Gamma-Ray Spectroscopy and Related Topics, Grenoble, France, September 7-11, 1981
	R.L. Macklin, "Cesium-133 Neutron Capture Cross Section", NSE (in press) 1982

#### U.S.A.

- Laboratory and<br/>AddressOak Ridge National Laboratory<br/>P. 0. Box X, Building 6010<br/>Oak Ridge, Tennessee 37830, USA
- 1. Names: J. K. Dickens and J. W. McConnell
  - Facilities: Fast Rabbit Transport Station at Oak Ridge Research Reactor (ORR)
  - Experiment: (revised) Absolute yields of fifty-one mass chains created by thermalneutron fission of ²⁴⁹Cf have been determined from data obtained for 107 gamma rays following decay of 97 fission products.
  - Method: A 0.4 µgram sample of  249 Cf was irradiated for three irradiation periods: 5 sec, 120 sec, and 10 min with thermal neutrons. Following an irradiation the sample was moved to a  $\gamma$ -ray counting area. Unseparated fission-product  $\gamma$ -ray spectra were obtained using a large volume Ge(Li) detector. One hundred fifteen counting measurements were made between 45 sec and 0.3 yr after irradiation.
  - Accuracy: Between 8% and 50% (1**o**), made up of 8% uncertainty in determining the number of fissions created in the sample, and the remainder due to uncertainties in peak extractions and in branching ratios and lifetimes given in the literature.

Completion date: January 1981.

- Discrepancies: Data agree with most prior measurements, except for A =  $113 \pm 2$ , which discrepancies may indicate that incorrect  $\gamma$ -ray branching ratios are currently in the literature for radioisotopes in this mass region.
- Publications: J. K. Dickens and J. W. M^CConnell, "Yields of Fission Products Produced by Thermal-Neutron Fission of ²⁴⁹Cf," Physical Review C 24, 192 (1981).

2. Names: J. K. Dickens, J. W. McConnell and K. J.Northcutt

- Facilities: Fast Rabbit Transport Station of the ORR
- Experiment: Absolute yields of 39 fission products having half-lives (revised) between 15 and 4600 sec, representing 30 mass chains created by thermal-neutron fission of ²²⁹Th have been determined.

# $\frac{\underline{U} \cdot \underline{S} \cdot \underline{A}}{(\text{cont'd})}$

- Method: A 15 µgram sample of  229 Th was irradiated for 15 sec with thermal neutrons. Unseparated fission-product  $\gamma$ -ray spectra were obtained using a large-volume Ge(Li) detector. Counting intervals were initiated between 25 and 1920 sec following the end of the irradiation.
- Accuracy: Relative 1**G** uncertainties range between 6 and 65%; absolute uncertainties are dominated by a 13% uncertainty in determining the number of fissions created in the sample.
- Completion date: March 1981
- Discrepancies: Cumulative fission yields are in fair agreement with previous measurements and recommended evaluations.
- Publications: J. K. Dickens, J. W. McConnell, and K. J. Northcutt, "Yields of Short-Lived Fission Products Produced by Thermal-Neutron Fission of ²²⁹Th," Nucl. Sci. Engg. 80, 455 (1982).
- 3. Names: J. K. Dickens and J. W. McConnell

Facilities: Fast Rabbit Transport Station at the ORR.

- Experiment: Absolute yields of 37 fission products having half-lives between 7 min and 65 days, representing 25 mass chains created by thermal-neutron fission of ²²⁹Th have been determined.
- Method: A 15 μgram sample of ²²⁹Th was irradiated twice, once for 150 sec and a second time for 1200 sec, with thermal neutrons. Counting intervals were between 15 min and 0.4 yr following the end of the irradiation.
- Accuracy: Relative 1^o uncertainties range between 2 and 15%; absolute uncertainties are dominated by an 8% uncertainty in absolute normalization, which is based on good agreement of the total mass yield for A between 76 and 152 with the expected 200% total yield.
- Discrepancies: Deduced fission yields are in reasonably good agreement with previous measurements. Deduced mass yields agree with evaluation for  $A \le 100$  and  $138 \le A \le 141$ , and disagree for  $129 \le A \le 137$  and  $A \ge 141$ .

Completion date: January 1982.

Publication: J. K. Dickens and J. W. McConnell, "Yields of Fission Products Produced by Thermal-Neutron Fission of 229Th," preprint available May 1982.

### <u>U.S.A.</u> (cont'd)

- 4. Names: D. G. Breederland, J. K. Dickens, and J. W. McConnell
  - Facilities: Fast Rabbit Transport Station of the High Flux Isotope Reactor (HFIR).
  - Experiment: Absolute yields of 23 fission products having half-lives between 6 hr and 65 day, representing 16 mass chains created by thermal-neutron fission of a sample enriched in the isotope ²⁴³Cm have been determined.
  - Method: A 0.077µgram sample of  243 Cm (in the form of curium nitrate) was irradiated for 150 sec by thermal neutrons. Unseparated fission-product  $\gamma$ -ray spectra were obtained between 22 hrs and 79 days after the end of the irradiation.
  - Accuracy: Relative 1st uncertainties are between 1 and 25%. Absolute uncertainties have not yet been determined.
  - Completion date: First part, December 1981. A date has not been set for completion of the total data reduction.
  - Discrepancies: There are no prior measurements for  243 Cm(n,f) fissionproduct yields.
  - Publication: David G. Breederland, "Fission Product Yields for Thermal-Neutron Fission of Curium-243," ORNL/TM-8168 (1982).

(same as INDC(NDS)-116)

Laboratory and Address:

Pacific Northwest Laboratory P. O. Box 999 Richland, WA 99352 USA

Names: P. L. Reeder and R. A. Warner

Facilities: SOLAR - Spectrometer for On-Line Analysis of Radionuclides. This is an on-line mass spectrometer which incorporates a ²³⁵U target in a surface ionization source located in the thermal column of a 1 MW TRIGA reactor at Washington State University, Pullman, WA.

Experiment: Isomer yield ratios for  $^{235}U + n_{th}$ .

- Method: Ratios of independent yields of fission product isomers are being measured for thermal neutron fission of ²³⁵U by use of an on-line mass spectrometric technique. A short burst of neutrons from the TRIGA reactor is used to produce various isomers of Br, Rb, In, I and Cs fission products within the surface ionization source. Selective ionization performs the rapid chemical separations and magnetic analysis performs the mass separation to give the desired nuclides as a beam of ions. Ions are collected on a moving tape collector system for a short time interval during and after the neutron pulse. The radioactive decay of the two isomers is followed by beta and gamma counting to determine the relative yield of each isomer.
- Accuracy: The final accuracy will probably depend more on how well the decay schemes are known for particular cases than on statistical uncertainties.

Completion Date: Work is continuing.

### U. S. A.

(cont'd)

Laboratory and Address:

Pacific Northwest Laboratory P. O. Box 999 Richland, WA 99352

Names: P. L. Reeder and R. A. Warner

Facilities: TRISTAN - This is an on-line isotope separator located at the High Flux Beam Reactor at Brookhaven National Laboratory, Upton, NY

# Experiment: Half-lives, P_n values, average energies, and neutron gated gamma spectra are being measured for separated delayed-neutron precursors.

- Method: Delayed neutrons from separated precursors are counted in a polyethylene moderated counter containing 3 rings of counter tubes. Delayed neutron growth and decay curves have been measured at masses 97-99 and 146-148 to identify possible precursors among the Sr, Y, Ba, and La isotopes.  $P_n$  values are obtained from simultaneous beta decay curves. The ratio of counts in one ring compared to counts in another ring has been calibrated for monoenergetic neutrons from (p,n) reactions. Average energies of unknown spectra are thus obtained from the measured ring ratios. Neutron-gated gamma spectra provide partial neutron emission probabilities to excited states of the (A-1) daughter. The  $P_n^i$ are being compared to predictions of a beta-decay model.
- Accuracy: The accuracy of the  $P_n$  measurements depends primarily on the accuracies of the neutron and beta counter efficiencies. The overall accuracy is expected to be about  $\pm 7\%$ . Random errors in the average energy measurements can be as low as  $\pm 10$  keV but systematic uncertainties in the ring ratio calibration curve give uncertainties of about 30 keV.
- Discrepancies: No evidence for Sr and Ba precursors has been seen at masses 97-99 and 146-148. The average energies are being measured by the ring ratio technique as a check on delayed neutron spectra measured by various types of neutron spectrometers.

Completion Date: Work is continuing.

**Publications:** 

- P. L. Reeder and R. A. Warner, "Average Energy of Delayed Neutrons from Individual Precursors and Estimation of Equilibrium Spectra," Nucl. Sci. Eng. <u>79</u>, 56 (1981).
- P. L. Reeder, R. A. Warner, T. R. Yeh, R. E. Chrien, R. L. Gill, M. Shmid, H. I. Liou, and M. L. Stelts, "Beta-Delayed Two-Neutron Emission from ⁹⁸Rb," Phys. Rev. Letters <u>47</u>, 483 (1981).

#### U.S.A.

- Laboratory and address: University of Illinois Nuclear Radiation Laboratory 214 Nuclear Engineering Lab. 103 South Goodwin Ave. Urbana, Illinois 61801 U.S.A.
- Names: Bernard W. Wehring
- Facilities: Illinois Advanced TRIGA 1.5-MW Nuclear Reactor, HIAWATHA Fission-Fragment Mass Spectrometer.
- Experiment: Direct Physical Measurement of the Primary Postneutron-Emission Nuclide Yields in Thermal-neutron Fission of U-235, Pu-239, U-233, and Th-229.
- Method: The fission-fragment recoil mass spectrometer HIAWATHA, consisting of a cylindrical focusing electrostatic analyzer and time-of-flight system, is used to determine fragment masses while fragment energy loss is used to identify fragment atomic numbers in multiparameter experiment. All fragment velocities and charge states are measured.
- Accuracy: |<0.5-amu mass resolution, achieved, about 1-Z atomic-number resolution, achieved, 1% standard error (relative error) in largest mass yield, achieved, 0.02-0.1% standard error (absolute error) in nuclide yields, achieved.

Completion date:

Publications:

- Gino DiIorio, "Direct Physical Measurement of Mass Yields in Thermal Fission of Uranium 235," Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1976.
- Gino DiIorio and B. W. Wehring, "HIAWATHA, A Fission-Fragment Recoil Mass Spectrometer," Nucl. Instr. Methods 147, 487 (1977).
- R.B. Strittmatter, "Nuclide Yields for Thermal Fission of Uranium 235," Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1978.
- R.B. Strittmatter and B.W. Wehring, "Direct Measurement of Nuclide Yields in Thermal-Neutron Fission Using HIAWATHA," Proceedings of the International Conference on Neutron Physics and Nuclear Data for Reactor and other Applied Purposes, Harwell, September 25-29, 1978.
- R.B. Strittmatter and B.W. Wehring, "Fragment Atomic-Number Identification Using a Gas Ionization Chamber in Fission Yield Measurements," Nucl. Instr. Methods 166, 473 (1979).
- B.W. Wehring, S. Lee, G. Swift, and R.B. Strittmatter, "Light-Fragment Independent Yields for Thermal-Neutron Fission of U-233," UILU-ENG-80-5312 (May 1980); Trans. Am. Nucl. Soc. 35, 551-552 (1980).

# U. S. A.

Laboratory and address:	University of Lowell, Lowell, Mass. 01854
Names:	G. Couchell, W. Schier
Facilities:	5.5 - MV Van de Graff, 1 MW swimming pool reactor, helium gas jet and tape transport system
Experiment:	Delayed neutron energy spectra as a function of time following fission; initially for $2350$ and $239$ Pu.
Method:	Beta-neutron time-of-flight method using helium jet and tape transport system together with Pilot U plastic and ⁶ Li-glass scintillators. Initially accelerator, later reactor neutrons are used.
Completion date:	In progress; preliminary near equilibrium spectra have been measured.

# U. S. A.

Laboratory and address:	University of Missouri Research Reactor Facility Columbia, Missouri 65211, USA
Name:	David E. Troutner
Facilit <b>y:</b>	10-megawatt research reactor. Fluxes up to 7 x $10^{14}$ n cm ⁻² S ⁻¹ . Pneumatic transfer tubes terminating in flux of $10^{14}$ n cm ⁻² S ⁻¹ .
Experiment:	Primary yields of products from neutron-induced fission.
Method:	Fission products are separated and purified by radio- chemical methods and radioactivity determined by Ge(Li) detectors. Current facilities limit experiments to those which require separation times of about 1 minute or longer. Emphasis is on comparison of primary yields from fission of Cf-249 to those of fission of U-233. Yields from Cf-249 fission appear to be consistent with the charge distribution wider than that found for fission of U-233 and U-235.
Publications:	M.A. Monzyk and D.E. Troutner, "Fractional independent yields of Ba-139 and La-142 from the thermal-neutron- induced fission of Cf-249", Phys. Rev. <u>C20</u> , 212 (1979).
	D.K. Pal and D.E. Troutner, "Fractional independent yields of La-141 and La-142 from thermal-neutron-induced fission of U-233", J. inorg. nucl. chem. <u>43</u> (1981)885.
	D. K. Pal, "Nuclear charge distribution in fission: independent yields of La-141, La-142, Y-92, and Y-93 from thermal-neutron fission of U-233 and Y-92 and Y-93 from thermal-neutron fission of Cf-249", Ph.D. thesis, University of Missouri, Columbia, 1981.

.

# <u>U.S.A.</u>

(same as INDC(NDS)-116)

.

Laboratory and address	Washington University, Dept. of Chemistry, St. Louis, MO, USA
Names	A. C. Wahl, T. Semkow, L. Robinson
Facilities	Cyclotron and 14-MeV neutron generator
Experiment	Fractinal yields from thermal and 14 MeV fission of 235 U.
Method	Fractional independent or cumulative yields of indium, cadmium, silver, and palladium fission products will be determined to learn about nuclear-charge-distribution systematics for near symmetric modes of fission. Rapid (~l sec), continuous solvent- extraction separations of short-lived, low-yield fission pro- ducts from their beta-decaying precursors will be carried out using a SISAK-2 system containing H-10 centrifuges. Relatively long-lived descendants in each phase will be purified and measured radiochemically for yield determinations.
Publications	<ul> <li>E.N. Vine and A.C. Wahl, "Fractional Independent Yields of ¹⁰⁴Tc and ¹⁰⁵Tc from Thermal-neutron-induced Fission of ²³⁵U and ²³⁹Pu," J. inorg. nucl. Chem. <u>43</u>, 877 (1981).</li> <li>M.M. Fowler and A.C. Wahl, "Yields and Genetic Histories of ¹²⁸Sb, ¹²⁹Sb, and ¹³⁰Sb from Thermal-Neutron-Induced Fission of ²³⁵U," J. inorg. nucl. Chem. <u>36</u>, 1201 (1974).</li> <li>B.R. Erdal, A.C. Wahl, and R.L. Ferguson, "Modes of Formation of Tin Fission Products," J. inorg. nucl. Chem. <u>33</u>, 2763 (1971).</li> </ul>

•

# U.S.S.R.

Laboratory and address	5 :	Fiziko-Energeticheskij Institut, (Institute of Physics and Power Engineering),Obninsk, Kaluga Region
Names	:	V.N. Kononov, E.D. Poletaev, B.D. Yurlov
Facility	:	Fast and resonance neutron time-of-flight spectrometer on pulsed Van-de-Graaff accelerator EG-1. Continuous neutron spectrum from 7 Li(p,n) 7 Be reaction, thick metallic Lithium target.
Experiment	:	Neutron capture cross section measurements for 5-500 keV neutrons, enriched samples.
Method	:	Prompt capture $\gamma$ -ray detection with liquid scintillator detector. Determination of total $\gamma$ -ray energy by weighting method Absolutisation: a) relative standard capture cross section in $^{197}Au$ at $E_n = 30$ keV; b) by using a method of saturated (black) resonances in the eV region. Measurement of neutron flux by 0,8 mm thick ⁶ Li-glass detector and ¹⁰ B plate - NaI(T1) neutron detector.
Accuracy	<b>:</b>	Method a) $-7 + 9\%$ Method b) $-3 + 5\%$
Results	:	Neutron capture cross sections were measured for 28 isotopes $(115_{In}, 142, 144, 146, 148, 150_{Nd}, 144, 147, 148, 149, 150, 152, 154_{Sm}, 151, 153_{En}, 156, 158, 160_{Gd}, 160, 161, 162, 163, 164_{Dy}, 166, 168, 170_{Er}, 181_{Ta}, 197_{Au}$ . Average fast neutron capture cross sections were analyzed in terms of statistical theory and 5-, p-, d- wave neutron and radiative strength functions were obtained. Measurements are completed for Yb, Hf, Sn isotopes. Fast neutron capture cross sections evaluation for $147, 149, 151_{Sm}, 151, 153, 155_{Eu}$ is in progress.

$$\frac{U.S.S.R.}{(cont'd)}$$

Publications:
1. "Fast Neutron Radiative Capture Cross Sections for In, Ta, Au, Sm und Eu".
V.N. Kononov, B.D. Yurlov, E.D. Poletaev, V.M. Timokhov Yadernaja Fizika, v. 26, No. 5 (1977)947, (English: Sov. J. Nucl. Phys., v. 26, (1977)500)

- "Fast Neutron Radiative Capture Cross Sections for Even-Even Isotopes of Nd, Sm, Gd and Er".
   V.N. Kononov, B.D. Yurlov, E.D. Poletaev, V.M. Timokhov. Yadernaja Fizika, v. 27, No. 1, (1978)10, (English: Sov. J. Nucl. Phys., v. 27(1978)5)
- 3. "Some Results of Experimental Research of s-, p- and d-Neutrons Interaction with Nuclei". V.N. Kononov. The III International School on Neutron Physics (Alushta, April 19-30 1978). D3-11787, Dubna 1978, p. 415.
- 4. "Fast Neutron Radiative Capture Cross Sections and d-Wave Strength Functions". V.N. Kononov, E.D. Poletaev, B.D. Yurlov, M.V. Bokhovko, L.E. Kazakov, V.M. Timokhov. 4th International Symposium on Neutron Capture Gamma-Ray Spectroscopy and Related Topics, 7-11 September 1981, Grenoble.

# - 129 -

# U.S.S.R.

Laboratory and address:	_	t Institute of d 198013, USSR	Technolog	у
Names:	M.Ya.Kondrat'ko, A.V.Mosesov, K.A.Petrzhak, O.A.Teodorovich			
Facilities:	Ge(Li) $\gamma$	-ray spectrome	ter, 4555-c	ounters
Experiments:		ents of produc 9 induced by 28	-	or the fission strahlung
Method:	Al.catche lung. Ray means of products with sub- ing. Absolute normaliza yield of Fractiona by $\gamma$ -ray	dioactive nucl direct j-ray in catcherfoi sequent j-ray cumulative yi ation of mass	iated with ides were spectromet: ls, radioc spectromet: elds were distributio yields we: unmeasure	linac bremsstrah- determined by ry of unseparated hemical separation ry and 4The-count- determined by on to a total re determined d chain yield
Accuracy:	yields is products yield pro	oducts. racy of fracti	mean 4.5% 15%, mean 9	(1 <b>6</b> ) for peak 9%(16) for low
Results:	Fission product	Cumulative yield,%	Fission product	Cumulative yield,%
	Kr-88 Sr-91 Y -92	.851 <u>+</u> .068 1.62 <u>+</u> .21 2.89 <u>+</u> .23 3.20 <u>+</u> .16 4.02 <u>+</u> .20	Zr-97 Mo-99	5.76 <u>+</u> .22

		$\frac{U_{\bullet} S_{\bullet} S_{\bullet} R_{\bullet}}{(\text{cont'd})}$		
Results:	Fission	Cumulative	Fission	Cumulative
(continued)	product	yield,%	product	yield,%
	Ru <b>-1</b> 06	3.70 <u>+</u> .26	B <b>a-1</b> 39	5.18 <u>+</u> .26
	Ag-111	1.242 <u>+</u> .075	La-140	4.55 <u>+</u> .18
	Ag-112	•955 <u>+</u> •05 <b>7</b>	C <b>e-1</b> 41	4.23 <u>+</u> .14
	Ag-113	•710 <u>+</u> •069	C <b>e-1</b> 43	3.26 <u>+</u> .13
	Cd-115g	•394 <u>+</u> •027	Ce-144	2.83 <u>+</u> .11
	Cd-117m	•165 <u>+</u> •017	Pr-145	2.33 ±.15
	Cd-117g	•227 <u>+</u> •016	Nd-147	1.642 <u>+</u> .064
	Sb-127	1•43 <u>+</u> •15	Pm-149	1.138 <u>+</u> .064
	I <b>-</b> 131	4.67 <u>+</u> .15	Pm-151	•745 <u>+</u> •074
	I <b>-</b> 132	4•96 <u>+</u> •16	Sm-153	•385 <u>+</u> •027
	I <b>-1</b> 33	5•43 <u>+</u> •21	Sm-156	•161 <u>+</u> •018
	X <b>e-1</b> 35	6.32 <u>+</u> .26	Eu-157	•098 <u>+</u> •015
	Fission	Fractional		
	product	independent		
		yield		
	N <b>b-</b> 96	•011 <u>+</u> •002		
	I -132	•217 <u>+</u> •044		
	<b>Xe-1</b> 35	•412 <u>+</u> •025		
	C <b>s-1</b> 36	•123 <u>+</u> •009		
	La-140	•032 <u>+</u> •006		
Publicotionae	Neutron	Physics Press	adinga of	· 5th Conferen

Publications: Neutron Physics. Proceedings of 5th Conference on Neutron Physics, Kiev, 15-19 September 1980. Part 3, pp. 148-152. Atomnaja Energija (USSR), <u>50</u>, 34-36 (1981).

#### II. COMPILATIONS AND EVALUATIONS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.

#### - 133 -

#### BELGIUM

Laboratory and address : Nuclear Physics Laboratory Proeftuinstraat 42 B-9000 Gent, Belgium

Names : P.De Gelder, D.De Frenne, E.Jacobs

Evaluation : Nuclear Data Sheets for A = 102 and 110

Method : cfr. Nuclear Data Project

Major sources of information : Recent References of NDP

Deadline of literature coverage : 102 : March 1982 110 : April 1982

Status : about 75 % of the data sets is reevaluated

Computer file of evaluated data : ENSDF

Completion date : 102 : March 1982 110 : May 1982

Publications : to be published as a Nuclear Data Sheets issue.

#### FRANCE

•

# (update of issue 6)

Laboratory and address :	Département de Recherche Fondamentale Laboratoire de Chimie Physique Nucléaire Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX - France.
Name :	J. BLACHOT
Cooperation :	C. FICHE ^{***} for developping the file and J.C. NIMAL [*] , B. DUCHEMIN [*] ; for the applications in summation calculation.
Compilation and Evaluation :	Radionuclide decay data : - to provide a comprehensive data bank of radioactive decay data with : half lives, Q-values, branching ratios, nuclear and spectra $\alpha$ , $\beta$ , $\gamma$ , energies and intensities with associated uncertainties.
Purpose :	<ul> <li>Decay data file for summation calculation of decay heat (Pepin code).</li> <li>Data bank for all people using decay data parameters.</li> </ul>
Sources :	ENSDF file mostly and new recent works on short lived F.P. not yet evaluated in ENSDF.
Computer file and programs :	<ul> <li>EDIBIN, TRIGAL, ISOTAB Programs         <ul> <li>Magnetic tape available on line for those using the French CISI Network.</li> <li>Off line from the NEA Data bank (Saclay).</li> </ul> </li> </ul>
1-	- AT. Data and Nucl. Dat. Tab. Vol. 20 (1977) p.241. - Annales de Physique Vol 65 (1981) - Nucl. Dat. for Science ANTWERP Sept. 82

CEN/CADARACHE -C.E.A - BP.1 - 13115 St-PAUL LES DURANCE × ×х CEN/SACLAY-C.E.A - BP.2 - 91190 GIF SUR YVETTE -

*(* 

.

## FRANCE

Laboratory and address:	Laboratoire de Métrologie des Rayonnements Ionisants C.E.N. de Saclay B.P. No. 2, F-91190 Gif sur Yvette
Names:	F. Lagoutine, N. Coursol, J. Legrand
Evaluation:	Radionuclide decay data
Purpose:	Preparation of a document providing recommended values of the principle decay scheme parameters; half-life, energies and intensities of various radiations emitted (e.g. $\beta$ , $\gamma$ , c.e., X-rays)
Method:	- critical analysis of published results
	- determination of mean values and associated uncertainties
Source of information:	Nuclear Data Sheets, INIS-Atomindex, other recent publications
Publications:	Table de radionucléides, edition CEA-LMRI, containing among other radionuclides, the following fission products:
	- Vol.1: Kr-85, Mo-99, Tc-99, Ru-103 + Rh-103m, Sb-125 + Te-125m, Xe-133, Xe-133m, Ce-144 + Pr-144 (revised publication 1982)
	- Vol.2: Rb-86, Rb-88, Sr-89, Sr-90 + Y-90, Y-91, Ru-106 + Rh-106, Te-127m + Te-127, I-129, Te-131m + Te-131, Xe-131m, Ba-140 + La-140, Pr-143. Zr-95 + Nb-95, 95m, I-131, Cs-137 + Ba-137m, Ce-141 (revised publication 1982)
	- Vol.3: Sr-92, Y-92, Pm-147, Ra-226 and its descendants, Pu-239 (publication 1982)
	- in preparation: Kr-88, Te-129m, Nd-147, Sm-151.

GERMANY, DEM. REP. (same as INDC(NDS)-116) Laboratory Zentralinstitut für Kernforschung and address: Rossendorf DDR 8051 Dresden Postfach 19 Names: H.-C. Lehner, E. Franke Effective resonance integral of 133Cs in Evaluation: reactor fuel elements To clear differences between experimental Purpose: and calculated fission product concentrations of ¹³⁴Cs observed in investigations of burnt fuel elements Calculation of effective resonance integral 1. Method: of ¹³³Cs taking into account shielding by ²³⁸U resonances and self-shielding using Breit-Wigner formalism with Doppler broadening Major sources BNL-325, 3rd. ed. 1973 of information: Status: Completed Radiochem. Radioanal. Letters 43 (1980) 77 Publication: Calculation of the effective resonance 2. Method: integral of ¹³³Cs with the cell-code PEACO-II Major sources of - Y. Ishiguro, PEACO-II, JAERI-M 5527 (1974) - BNL-325. 3rd. ed., 1973 for ¹³³Cs data information: - JAERI-1255 (1978) for ²³⁸U data under work Status: Publication: in plan

#### GERMANY, FED. REP.

Laboratory	Inst. for Nuclear Chemistry, Philipps-University
and address:	Marburg, Lahnberge, D-3550 Marburg/Lahn
	*Physikalisch-Technische Bundesanstalt,
	Abteilung SE, Bundesallee 100, D-3300 Braunschweig
Names:	U. Reus, W. Westmeier and [*] I. Warnecke
	C .

Compilation: Gamma-Ray Catalog⁹

- Type of data: Compilation of energies and intensities of gamma-rays originating from the radioactive decay of nuclides, as well as other important decay properties of these nuclides.
- Arrangement: Part I is a listing of ca. 22,000 gamma-rays ordered by increasing energy with the corresponding nuclei and other information needed for identification purposes. Part II is ordered by nuclides (A,Z) and contains the complete data sets for [ca. 2400 nuclides and isomers (i.e. ca. 40,000 gamma-energies), decay data, references, comments etc.
- <u>Purpose:</u> Identification of gamma-rays, data for cross-section calculations, activation analysis etc.
- Major sources of information: Nuclear Data Sheets and almost all important journals in nuclear physics and chemistry.
- Deadline of literature coverage: All information received before December 31, 1981, has been included.
- Other details: The updated version includes information on X-rays. K-X-ray intensities have been calculated where no experimental data were available.
- <u>Completion date:</u> Revision of data has been completed, appearance of the revised version is planned for the end of 1982.
- Publication: It is anticipated that the revised version of the catalog will be published in Atomic Data and Nuclear Data Tables in order to be commonly available.

SWork performed with the support of GSI (Gesellschaft für Schwerionenforschung mbH, D-6100 Darmstadt).

#### C.E.C. GERMANY, FED. REP.

Commission of the European Communities Joint Research Centre Karlsruhe Establishment European Institute for Transuranium Elements Postfach 2266 Federal Republic of Germany

Names: L. Koch

#### 1. EVALUATION

Evaluation: Systematics of fast cumulative fission yields of (purpose & method) ten actinide isotopes were observed for isotopic and isodiapheric nuclides and could be explained by relation to the magic numbers 50 and 82.

Key or source of information: EUR 6738, en

Publication: Systematics of fast cumulative fission yields Radiochimica Acta <u>29</u>, 61 - 63 (1981) C.E.C. GERMANY, FED. REP.

#### (cont'd)

Commission of the European Communities Joint Research Centre Karlsruhe Establishment European Institute for Transuranium Elements Postfach 2266 7500 Karlsruhe Federal Republic of Germany

Names: I. Broeders, KfK Karlsruhe, FRG

- L. Koch,
- M. Robin, CEA Cadarache, France
- R. Wellum

#### 2. EVALUATION

Evaluation: In the TACO experiment described previously , (purpose and method) integral neutron cross-sections of selected actinides and fission product nuclides were determined. The total neutron flux was measured and the neutron spectrum as a function of axial position in the irradiation pins was known. Differential cross-sections for the isotopes concerned were taken from the KEDAK library . From the flux and differential cross-sections the integral  $(n,\gamma)$ , fission, and in some cases (n, 2n), cross-sections have been calculated. The experimentally determined and the calculated values are compared.

Publication: to be presented at: International Conference on Nuclear Data, 6 - 10 September 1982, Antwerp, Belgium

# INDIA

.

Laboratory and address	:	Department of Physics, Panjab University, Chandigarh-160014(INDIA)
Names	:	D.R.Saroha, R.Aroumougame, R.K.Gupta
Evaluation	:	Charge distribution yields in the spontaneous fission of $236_U$ and $252_Cf$ nuclei.
Purpose	:	To predict the charge distribution of fission fragments of the naturally fissioning nuclei in terms of an analytically solvable model based on the results of Fragmentation theory and two-centre shell model.
Method	:	An analytical solution of the time-dependent Schrodinger equation leads to an explicit expression for charge distribution yields as a Gaussian function which gives the most probable charge and the width of distribution. The hypothesis of unchanged charge distribution and minimum potential energy are included as limiting cases.
Major sources of information	:	Journals and reports.
Deadline of literature coverage	:	1980.
Status	:	Comparison of theoretical results with the experimental data for the charge distribution yields in $^{236}U$ and $^{252}Cf$ nuclei is shown to be good and the most probable charge is comparable with that of potential energy hypothesis.
Publication	:	Results for ²³⁶ U are submitted for publication.

•

# ITALY

Laboratory and address:	ENEA, Centro Studi e Ricerche "E.Clementel" Via Mazzini 2 - 40138 Bologna, Italy.
Names:	V. Benzi, F. Fabbri, G. Maino, T. Martinelli, E. Menapace, M. Motta, G.C. Panini, G. Reffo, M. Vaccari, A. Ventura.
Work in Progress and Methods:	<ul> <li>i) A <u>critical intercomparison</u> was performed on the <u>recent evaluations</u> of the 21 most important FP nuclei for fast reactor calculations. As ref- erence Files ENDF/B-V, CNEN-CEA, JENDL-1, RCN-3 were considered. From these files group constants in CARNAVAL scheme and average capture cross sections, for a number of fast reference spectra, were also examined and compared. The work has been made <u>in cooperation with ECN-Petten</u>, with the aim of recommending a FP library for fast reactor applications.</li> <li>ii) <u>New evaluations of Pd-105 and -107</u>, as maximum priority nuclei for fast reactors, were undertaken referring to the indications from recent differential and integral experiments.</li> <li>iii) BCS microscopic approach to <u>level density</u> <u>calculations</u>, extended to odd nuclei with a new blocking procedure, was applied systematically to the nuclides in 40-160 mass region. A systematics of "gap parameters" to be utilized in the model was obtained and explained according to the basic theory. A paper on the matter was published on "Il Nuovo Cimento" <u>66</u>, 1, 1 (authors: V. Benzi, G. Maino, E. Menapace).</li> </ul>
Purpose:	Evaluation of reliable FP data, mainly capture cross sections, for estimate of long term reactivity effects in fast reactors.
Major sources of informati	on: NEUDADA, CINDA up to 81 supplement, Nuclear Data Sheets.
Deadline of literature cov	verage:   December 1981.
Status:	see above text.
Cooperation:	CEA-Cadarache, ECN-Petten.

#### JAPAN

,

Laboratory and address :	Japanese Nuclear Data Committee/FPND W.G., Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki, Japan
Name :	S. Iijima, M. Kawai (group leader) (i), S. Igarashi Y. Kikuchi, Y.Nakajima, H. Nishimura (ii) H. Matsunobu(iii), T. Aoki(iv), A. Zukeran(v), T. Watanabe(vi), M. Sasaki (vii).
Evaluation :	<ol> <li>Neutron cross sections of about 80 FP nuclides (Z=35 to 64), for JENDL-2 FP Library.</li> <li>Integtal test of JENDL FP Library.</li> </ol>
Purpose :	Fast breder reactor and thermal reactor calculation.
Method :	(1) Calculation with spherical optical model and statistical theory. Single and muti-level BW formula in thermal and resonance regions. Optical model paremeters are determined by SPRT method. Level density parameters are re-evaluated, deriving systematics of parameters.
	(2) Calculation using JAERI-FAST type 70-group cross sections with resonance self-shielding factors, and the neutron spectrum data from STEK and CFRMF data.
Major sources of information :	EXFOR Library, CINDA, BNL-325 and recent literature. Integral data from STEK, CFRMF and EBR-II.
Status :	(1) Re-evaluation for about 80 FP nuclides. Optical model parameters were re-determined in element-wise way for Rb-Gd. Level density parameters were determined for about 90 nuclides based on level spacing data and level scheme data. Compilation and evaluation of resonance parameters are in progress.
	<ul> <li>(2) Analysis of STEK reactivity data for weak absorbers was completed. Revised calculation of CFRMF activation rates is planned using ENDF/B-5 spectrum field.</li> <li>(3) FP data library for thermal reaction application was prepared, and the fission product model was investigated for LWR calculation.</li> </ul>
Other relvant det	ails : The evaluation of 68 nuclides was completed in Aug., 1977, and the file is available from NEA Data Bank. New preliminary calculation for JENDL-2 was completed. File preparation was started in May 1982. Cross- section adjustment based on integral data is planned.

(i) Nippon Atomic Industry Group Co., Ltd. (ii) JAERI (iii) Sumitomo Atomic Energy Industries, Ltd. (iv) Fuji Electric Co. (v) Hitachi Ltd.
(vi) Kawasaki Heavy Industries (vii) Mitsubishi Atomic Power Industries, Ltd.

# JAPAN

(cont'd)

Computer file of evaluated data	JENDL (ENDF/B-IV Format).
Discrepancy encountered :	The STEK reactivities for scatterers such as 0,C, Al were systematically underpredicted by about 20%. After correcting for the scattering reactivity based on the above observation, capture reactivity of Zr-93 was found as considerably overstimated whenJENDL-1 data was used. Probably,ENDF/B-4 and CNEN-2 will give a better result for this nuclide.
Expected completic	n data : End of 1982
Publications :	<ul> <li>(1) Y. Kikuchi, T. Nakagawa, H. Matsunobu, M. Kawai, S. Igarashi and S. Iijima, Neutron cross sections of 28 Fission Product Nuclides adopted in JENDL-1, JAERI 1268 (NEAND C (J)-68/U) (February 1981)</li> <li>(2) S. Iijima, T. Yoshida and T. Yamamoto, Fission product model for BWR lattice calculation code, J. Nucl. Sci. Technol. <u>19</u> (1982) 96.</li> </ul>
	J. Nucl. Sci. Technol. <u>19</u> (1982) 96.

#### JAPAN Japanese Nuclear Data Committee, Decay Heat Evaluation Working Group Secretariat address: Japan Atomic Energy Research Institute Tokai-mura, Naka-qun, Ibaraki-ken 319-11, Japan Names: R. Nakasima (Hosei University) M. Yamada (Waseda University) T. Tamai (Kyoto University) M. Akiyama (University of Tokyo) I. Otake (Fuji Electric Co., Ltd.) A. Zukeran (Hitachi Ltd.) S. Iijima, T. Murata, T. Yoshida (Nippon Atomic Industry Group Co.) T. Hojuyama (FBR Engineering Co.) K. Umezawa, K. Tasaka, Z. Matumoto, T. Tamura, H. Ihara, J. Katakura (JAERI) 1. Compilation: Decay data and delayed neutron data Purpose: Revision of a FP decay data library completed in 1981 for summation calculation of decay heat Major Sources of Information: Journals, Nuclear Data Sheets, and ENSDF Expected Completion Date: Continuous compilation 2. Evaluation: ](1) Evaluation of raw decay data by comparing calculated decay heat curves with measurements (2) Study of beta strength functions to improve the reliability of released beta- and gamma-energy data for short-lived FP nuclides Purpose: Revision of a FP decay data library completed in 1981 for summation calculation of decay heat Sensitivity study for decay heat Method: Gross theory of beta decay and systematics Major Sources of Information: Own compiled data Status: Quite satisfactory agreement was obtained between calculated decay heat curves and measurements, especially those from Univ. of Tokyo (fast fission) and those from ORNL (thermal fission), at short cooling-times. This improvement was achieved by an introduction of theoretical values of beta- and gamma-energies released from short-lived FPs. Some discrepancy remains, however, at cooling-times around 3000 seconds after a fission event. Computer File of Evaluated Data: FP DECAY DATA FILE contains half-life, decay constant, Q-beta, Q-EC, mean energies of beta, gamma and conversion electron, branching ratios, neutron capture cross section, and yields for 10 fission types Avaliability of Numerical Data: Contact Dr. Z. Matumoto, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken 319-11, Japan Publications: T. Yoshida, Nucl. Sci. Engn., 63, 376 (1977) T. Yamamoto, M. Akiyama, Z. Matumoto, and R. Nakasima, JAERI-M 9357 (1981) T. Yoshida and R. Nakasima, J. Nucl. Sci. Technol., 18, 393 (1981)H. Ihara, Z. Matumoto, K. Tasaka, R. Nakasima, M. Akiyama, and T. Yoshida, JAERI-M 9714 (1981) (in Japanese) H. Ihara, Z. Matumoto, K. Tasaka, M. Akiyama, T. Yoshida, and R. Nakashima, JAERI-M 9715 (1981) K. Tasaka, et al., JAERI report (in preparation)

# NE THE RLANDS

Laboratory	: Netherlands Energy Research Foundation ECN, Postbus 1, 1755 ZG Petten, The Netherlands.
Names	: Willem L. Zijp and J.H. Baard.
Compilation	: Selected fission yields and fission product decay data for reactor neutron metrology application.
purpose	: Creation of a common data set for all laboratories working in the field of reactor neutron metrology. The guide was prepared on behalf of the Euratom Working Group on Reactor Dosimetry.
Major sources of information	<ul> <li>Cuninghame, J.G., Technical Report IAEA-213 (IAEA, Vienna, 1978);</li> <li>Gilliam, D.M., et al., Report NUREG/CP-004 (NRC, Washington D.C., 1978);</li> <li>Data supplied by the computer program MEDLIST from the Evaluated Nuclear Structure Data File (ENSDF);</li> <li>Data supplied by the Physikalisch Technische Bundesanstalt, Braunschweig.</li> </ul>
Deadline of literature covera	ge: Spring 1979.
Cooperation	: Members of Euracom Working Group on Reactor Dosimetry.
Other relevant details	: Fission yields and decay data and decay schemes are given for the following fission products: ⁹⁵ Zr, ⁹⁷ Zr, ¹⁰³ Ru, ¹³¹ I, ¹³² Te, ¹³⁷ Cs and ¹⁴⁰ Ba. The fissionable isotopes considered are: ²³⁵ U, ²³⁸ U, ²³⁹ Pu, ²³⁷ Np.
Computer file	: Not present.
Completion date	: August 1979.
Publications	: Report ECN-71, also as EUR 7164, part II.

#### NETHERLANDS

Laboratory and address	Netherlands Energy Research Foundation (ECN) P.O. Box 1, 1755 ZG Petten, The Netherlands. Telephone: (02246)-6262, telex: 57211 reacp nl.
Names	H. Gruppelaar, H.A.J. van der Kamp, R.J. Heijboer.
<u>Evaluation</u>	<ol> <li>RCN-2 and RCN-3 evaluations of neutron cross sections for fission-product nuclides and natural elements in the fission-product mass range  1-3 . The RCN-3 evaluation is a revised version of the published RCN-2 evaluation (see previous newsletters). The capture cross section has been adjusted to fit integral STEK and CFRMF data. The format of the library is that of KEDAK.</li> <li>Pseudo fission-product group cross sections in 26-group ABBN format  4 .</li> </ol>
Purpose	Fast breeder power-reactor data needs.
Method	Calculation with multilevel Breit-Wigner formula, optical model and statistical model, taking into account all available experimental information. Adjustment of point-wise given capture cross sections to integral data (STEK+CFRMF); see Refs.  1-3 .
Major sources of information	BNL-325, EXFOR, CINDA, Nuclear Data Sheets, recent literature, integral data from STEK and CFRMF.
Status	<ul> <li>(1) RCN-3 evaluation completed for : Nb-93, natural Mo, Tc-99, Rh-103, Pd-102, Pd-104, Pd-105, Pd-106, Pd-107, Pd-108, Pd-110, Ag-107, Ag-109, natural Ag, I-127, I-129, Cs-133, La-139, Pr-141, Nd-142, Nd-143, Nd-144, Nd-145, Nd-146, Nd-147, Nd-148, Nd-150, natural Nd, Pm-147, Sm-148, Sm-149, Sm-150, Sm-151, Sm-152, Sm-154, natural Sm. In progress: Reevaluation of Ru-isotopes.</li> <li>(2) Completed: Pseudo fission-product cross sections  4 , based upon adjusted RCN-2A data, supplemented with ENDF/B-IV data and charged-particle emission cross sections  5 ; comparison with ENDF/B-V data  3 .</li> </ul>
Computer file	RCN-2 and RCN-3 libraries in KEDAK-format, available from NEA Data Bank.
Completion date	1983
Recent publications	<ul> <li>Plakman, J.C. (comp.), Fast reactor programme. Annual progress report 1980, ECN-115 (1982), other progress reports in press.</li> <li>Gruppelaar, H. and J.B. Dragt, Cross section adjust- ments using integral data, Conf. on <u>Nuclear Data</u> <u>Evaluation Methods and Procedures</u>, Brookhaven, Sept. 22-25, 1980, BNL-NCS-51363, vol. <u>1</u>, p. 133 (1981).</li> </ul>

- 147 -

#### NETHERLANDS

#### (cont'd)

- [3] H. Gruppelaar, Status of recent fast capture cross section evaluations for important fission product nuclides, NEANDC/NEACRP Specialists' Mtg. on Fast-neutron capture cross sections, Argonne, 20-23 April, 1982.
- Heijboer, R.J. and A.J. Janssen, Status of pseudo fission-product cross sections for fast reactors; sensitivity study for sodium void effect, Proc. of the NEANDC Specialists' Meeting on <u>Neutron Cross</u> <u>Sections of Fission Product Nuclei</u>, Bologna, Dec. 12-14, 1979, NEANDC(E)209"L" (1980), p. 375.
- [5] Gruppelaar, H. and B.P.J. van den Bos, The contribution of (n,p) and (n,α) reactions to fissionproduct capture cross sections, ibid, p. 285; extended report: ECN-78 (1979).

## TURKEY

.

.

Laboratory and address:	Ege University Nuclear Research and Training Institute Bornova, Izmir		
Name:	Güngör Yener		
Evaluation:	Number of prompt neutrons and gamma-ray energies in thermal neutron fission of Pu-239 and Pu-241		
Purpose:	To compare different models for division of energy between the complementary fragments		
Method:	Considering the neutron and gamma-ray emission as statistical pocesseses, Monte-Carlo technique is used in calculations.		
Major sources of information:	FPND(1974,1978), Dostrovsky et.al. Phys.Rev. 116(1959)683, Gordon and Aras,Proc. IAEA Symp. Phys. Chem.Fission Vol.II(1965)73, Kildir,Thesis(1978) and recently published papers		
Deadline of literature coverag	e: 1980		
Status:	Completed in September 1980, further development continuing.		
Other relevant details:	Yield-mass and charge distribution for secondary fragments, charge dependence of avarage number of neutrons and gamma-rays energies are also investigated. All the results are compared with experimental values which are available.		
Computer file:	None		
Publications:	<b>Assoc. Prof.Thesis, Ege Univ.1980,</b> Somè relevant details are in progress for publication.		

.

# UNITED KINGDOM

(same as INDC(NDS)-116)

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire, Oxll ORA	
Name:	E.A.C. Crouch		
Compilation:	Chain, Cumulative and Independent fission product yields for all neutron induced fission reactions with neutrons of energy up to 14 MeV, including spontaneous fission. Ongoing compilation.		
Purpose:	Basic data for fission yield ev	valuation.	
Sources:	Journals, Proceedings of Learned Societies, or other open literature, Project reports if the work is complete but unlikely to be published.		
Deadline:	No results prior to 1950 are co	ollected.	
Cooperation:	We are prepared to exchange fi	les with other groups.	
Computer File:	Information held in standard for	orms on Computer Files.	
Completion Date:	Continuous compilation.		
Publications:	AERE R6642 'A library of neutron induced fission product yields maintained and interrogated by computer methods'. 'Part I: The establishment of the library'. E.A.C. Crouch, December 1970.		
	AERE R7207 'A library of neutroproduct yields maintained and a computer methods'. 'Part II: The interrogation of E.A.C. Crouch, August 1972.	interrogated by	
	Fission Product Yields from New E.A.C. Crouch. Atomic Data and Nuclear Data Ta May, 1977. Contains experimental values as after fitting to conservation	ables, Vol. 19, 5, nd adjusted values	

# UNITED KINGDOM

(same as INDC(NDS)-116)

Laboratory and Address:	AERE	Harwell	UKAEA AERE Harwell Oxfordshire OX11 ORA
Name:	E.A.	C. Crouch	
1. Evaluation	(1)	Neutron induced fission product yields for all fissile nuclides at neutron energies up to 15 MeV; chain yields and independent yields.	
	(2)	Adjustments of the chain yi independent yields to force conservation laws i.e. to f	e agreement with the
Purpose:	UKNE	) File to be used in Reactor	design and operation.
Method:	(1)	The individual yields for a given reaction (both chain and independent), are examined, weighted and the means calculated together with the error	
	(2)	The evaluated yields are an ation to fill missing value independent yields by calcu meters estimated from known are fitted by least squares conditions to give adjustme and independent yields.	es or in the case of alation based on para- n values. The results s to the conservation
		Complete - the fitting of a equality of yields of compl set will be tested for its estimate of after heat from experimental values than pr	lementary elements. The ability to produce an n ²³⁹ Pu Fission nearer to
Sources:	Comp	pilation mentioned above.	
Deadlin <b>e:</b>	beli	No results prior to 1950 are collected. Compilations believed to be complete up to end 1975, some 1976 results included.	
Status:		uation and Consistent set co . Further development cont:	
Cooperation:	We a	are prepared to exchange file	es with other groups.
## UNITED KINGDOM

(cont'd, same as INDC(NDS)-116)

	Computer Files of Compiled Data:	Compilation as above.
	Computer File of Evaluated data:	Magnetic tape or punched cards of the consistent set in ENDF/BIV format.
	Discrepancies found:	Files are compared with those of B.F. Rider and discrepancies found are resolved.
	Publication:	Fission Product Yields from Neutron-Induced Fission. E.A.C. Crouch. Atomic Data and Nuclear Data Tables, vol. 19, 5, May 1977.
2.	Evaluation:	Compilation and evaluation of the half lives of delayed neutron emitter precursors and emission probabilities of the delayed neutron emitters. Hence, using the fission product consistent sets, calculation of the delayed neutron yields Proceeding.
	Purpose:	UK Nuclear Data File for use in Reactor design and operation calculations.
	Sources:	The open literature
	Deadline:	Continuous compilation.

Status: Compilation of delayed neutron data proceeding.

.

.

Cooperation: We are prepared to exchange information with other groups.

Computer files: Not yet implemented.

## UNITED KINGDOM

Laboratory and Address:	CEGB Berkeley Nuclear Laboratories	Berkeley Nuclear Laboratories Berkeley, Gloucestershire, GL13 9PB U.K.
Working Group:	B.S.J. Davies CEGB, A. Tobias CEGB, K.M. Glover AERE, M. F. James AEE, A. L. Nichols AEE,	
Compilation and Evaluation	Radionuclide decay dat	a .
purpose:	of radioactive decay d Q-values, branching ra	sive, updated data file lata including half-lives, tios, $\alpha$ , $\beta$ and $\gamma$ energies sociated uncertainties.
progress:	known as UKFPDD-2 has contains data on 855 n radioactive and 390 ha Data, particularly on collected from the li revisions. The UKFPD calculate decay heat v ²³⁸ U and ²³⁹ Pu and sum	uclides of which 736 are ve spectral data. short-lived nuclides is being terature for use in future D-2 data has been used to
Publication:		nalytical Fits to UKFPDD-2 or ²³⁵ U, ²³⁸ U and ²³⁹ Pu', 81

## UNITED KINGDOM

Laboratory and address:	Birmingham Radiation Centre	University of Birmingham P.O. Box 363 Birmingham B15 2TT United Kingdom
Name:	D.R. Weaver	
Evaluation:	Equilibrium and near-equilibrium of spectra	delayed neutron
Purpose:	For reactor physics calculations and analysis of delayed neutron yield measurements. The evaluation was recommended by the March 1979 Vienna Consultants' Meeting on Delayed Neutron Properties	
Method:	Calculation of a full covariance a spectra	matrix for the
Deadline of		
literature coverage:	None. Raw experimental data from	n laboratories who
	used either ³ He or proton recoil of obtained. Further data would be	
Status:	A method of obtaining a full covar been derived based upon the sensit obtained from unfolding to changes parameters of the detector and cou A paper describing the technique a Am/Li spectrum using a ³ He counter	tivity of the spectra in the calibration inting statistics. and measurement of an

.

## U. S. A.

Laboratory and addresses:

National Nuclear Data Center Brookhaven National Laboratory Upton, N.Y. 11973, U.S.A.

Names:

S. F. Mughabghab, and M. Divadeenam

1. Evaluation:

BNL-325 Neutron Cross Sections Vol. I. Resonance Parameters and Thermal Cross Sections

Purpose

Update resonance parameter and thermal cross section evaluations

Major Sources of Information:

CSISRS data file, CINDA, Private communications and personal files.

Status:

Vol. 1, Part A: Z = 1-60 is completed and published by Academic Press, Inc.

Other Relevant Details:

Any other details may be obtained from S. F. Mughabghab

Completion Date:

Projected Publication Dates:

Part A (Z = 1-60) is available from the Academic Press, Inc. Part B (Z = 61-100) goes to press early 1983

Publications:

The new edition of BNL-325, Neutron Cross Sections. Vol. I. Part B Neutron Resonance Parameters and thermal cross section will be published by the Academic Press.  $\frac{U.S.A.}{(cont'd)}$ 

Laboratory and addresses:

J. K. Tuli National Nuclear Data Center Brookhaven National Laboratory Upton, N.Y. 11973, U.S.A.

2. Evaluation:

Evaluated Nuclear Structure Data File (ENSDF)

Purpose:

Evaluate nuclear structure information

Method:

By mass chain as published in the Nuclear Data Sheets

Major Sources of Information:

Published literature

Deadline of Literature Coverage:

Varies by mass number, but generally within the last five years.

Status:

Continuously updated

Cooperation:

IAEA - sponsored Nuclear Structure and Decay Data Network

## Computer File of Evaluated Data:

ENSDF maintained and distributed by the National Nuclear Data Center.

Publications:

Nuclear Data Sheets

U.S.A.

Laboratory and address:

Hanford Engineering Development Laboratory P.O.Box 1970 Richland, WA 99352

Names:

RE Schenter, FM Mann, DL Johnson, and F Schmittroth

Evaluation:

ENDF/B-V, Mods to ENDF/B-V, and ENDF/B-VI Fission Product Data File and Fission Yield Files

- A. Coordinate generation and testing of complete ENDF/B-FP files which will contain cross sections, decay data and fission yields for approximately 900 fission product nuclei and 20 fissionable nuclei. Coordination is part of the responsibility as Chairman of CSEWG (Cross Section Evaluation Working Group) Fission Product and Actinide Data Subcommittee. Two subcommittees related and contributing to this subcommittee are chaired by TR England (LASL) and CW Reich (INEL) and cover the areas of fission yields and experimental decay data, respectively. Evaluations to these files will be contributed by essentially all CSEWG member laboratories.
- B. Evaluate important FP cross sections for fast and thermal reactor application. These will mainly involve updating about 180 cross section evaluations from ENDF/B-V with emphasis on capture. Use will be made of combining recent integral and differential data results from CFRMF, STEK, RPI and ORNL.
- C. Evaluate delayed neutron spectra using summation method from individual precursors in cooperation with TR England (LASL) and CW Reich (INEL). Precursors without experimental spectra will be predicted using the computer code BETA.
- D. Evaluate decay data parameters  $\overline{E}_{\beta}$ ,  $\overline{E}_{\gamma}$  for "theoretical" ("no line data") FP nuclides using BETA code, extrapolated "fits" to known data, and integral results of recent decay heat measurements.
- E. Analyze fission yield experimental results from FFTF.

Purpose:

Update ENDF/B Fission Product Data Files

Completion dates:

ENDF/B-V file was issued May 1980. ENDF/B-V Fission Yield Files issued April/May 1979. Mods to ENDF/B-V expected to be released  $s_{ep}$ . 1982 and May 1983.

# <u>U.S.A.</u> (cont'd)

## References:

•

Results for delayed neutron spectra will be reported at the Internat. Conf. on Nuclear Data for Science and Technol., Antwerp, 6-10 Sep. 1982.

Other references related to this work may be obtained from R.E. Schenter.

- 158 -
<u>U.S.A.</u>
Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415 USA
C. W. Reich, R. L. Bunting
Decay data for fission products. Quantities treated include: $T_{\frac{1}{2}}$ ; $Q_{\beta}$ ; branching fractions for the various decay modes; energies and intensities of all emitted radiations (e.g., $\beta$ , $\gamma$ , c.e., x-ray); K-, L- and total ICC; delayed-neutron energy spectra for individual precursors; uncertainties in all measured values.
Decay data file for ENDF/B.
Nuclear Data Sheets, Table of Isotopes (7th Ed.), recently published papers, preprints of recent work.
Ongoing. For Version V of ENDF/B, cut-off date is approximately September, 1978.
Decay data are included in ENDF/B Fission Product File. Tapes available through normal ENDF/B procedures. Evaluated decay data sets for 318 fission- product nuclides (and isomeric states) have been prepared for inclusion in the ENDF/B-V Fission-Product File.
<ul> <li>R. L. Bunting and C. W. Reich, "Evaluation Procedures for Experimental Decay Data," in <u>Proceedings of the Conference on Nuclear</u> <u>Data Evaluation Methods and Procedures</u>, BNL-NCS-51363, Vol. I, pp. 163-183 (March, 1981).</li> <li>C. W. Reich and R. L. Bunting, "The Use of Data from Beta-Strength-Function Experiments to Obtain Average Decay-Energy Values for Short-Lived Fission-Product Nuclides," Nuclear Science and Engineering (in press).</li> </ul>

## <u>U. S. A.</u>

Laboratory: Idaho National Engineering Laboratory

Address: Exxon Nuclear Idaho Co., Inc. P. O. Box 2800 Idaho Falls, Idaho 83401 United States of America

 <u>Names</u>: William J. Maeck, T. C. Chapman (same as INDC(NDS)-116)
 <u>Evaluation</u>: The Correlation of ²³⁵U Fission Yields with Neutron Energy

<u>Purpose</u>: A study was conducted to evaluate the correlation of  235 U fission yields with neutron energy over the energy region encompassed by thermal and fast reactors.

<u>Method</u>: In this study, to correlate yields with neutron energy, the criteria for entry into the data base were: 1) mass spectrometrically determined values, and 2) a measurement of the relative isotopic abundance of fission product neodymium. Although these criteria eliminated the bulk of the reported fast yield measurements, especially radiochemical measurements, sufficient data were retained to conduct this study.

Through the use of mass spectrometric isotopic measurements of the stable and long-lived fission products, both the change in the relative isotopic abundance and the fission yields of the major fission product nuclides correlate well with neutron energy. In many cases, changes of only a few percent in the relative isotopic abundance of the fission yields over the energy range from thermal to 1MeV are easily discernable and significant.

The neutron energy index used in this study is the isotope ratio,  $150_{Nd}/143_{Nd}$ . A unique feature of this index is that the resulting correlations are linear for the energy range studied. In some respects, this energy index is superior to others because neodymium, which is a direct result of the fission process, is formed in the sample undergoing fission and, as such, provides superior data to that afforded by the use of monitors external to the target.

<u>Major Sources of Information</u>: The  235 U yield data used in this study inclued measurements from samples irradiated in the Experimental Breeder Reactor-II (EBR-II), the Dounreay Fast Reactor, French fast reactors, and EBR-I. The primary data sources, details relative to various experiments, neutron spectrum, and specific comments on the data are discussed.

For all the major fission products, mass spectrometrically measured fast yield data representative of at least three different neutron energies, in addition to the thermal data, are available. In many cases, the only data available are those produced in our laboratory.

## U. S. A.

## (cont'd)

Deadline of Literature Coverage: Mid-1980.

Status: Specific conclusions relative to this study are:

- 1. The isotope ratio 150 Nd/143 Nd is an effective energy index for correlating changes in fission product relative isotopic abundance data and fission yields with neutron energy.
- 2. The relative isotopic abundances of the individual nuclides of the major fission product elements determined in several different experiments and neutron environments are highly correlated with neutron energy.
- 3. Absolute fast reactor fission yield data reported by several different experimentors can be correlated with neutron energy.
- 4. Existing and future fast reactor fission yield compilations must consider the energy dependency factor if the listed values are to be meaningful.
- 5. Certain ENDF fast yield values should be reevaluated in light of the results of this evalution.
- 6. Fast reactor fission yields for  235 U can now be assigned for any neutron spectrum.

Publications:

1. W. J. Maeck, "The Correlation of ²³⁵U Thermal and Fast Reactor Fission Yields with Neutron Energy," Exxon Nuclear Idaho Co., Inc., Rept., ENICO-1065 (December 1980).

Available from:

National Technical Information Service, U. S. Dept,,, of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, USA.

2. Names: W. J. Maeck, T. C. Chapman (new)

Evaluation: The correlation of ²³⁹Pu Fission Yields with Neutron Energy.

<u>Purpose</u>: The relative isotopic abundances and the fission yields for over 40 stable and long-lived fission products from  239 Pu fast fission were evaluated to determine if the data could be correlated with neutron energy.

<u>Method</u>: Through the use of precise mass spectrometric isotopic abundance and isotope dilution measurements of many stable and long-lived fission product nuclides, both the change in the relative isotopic abundance, and the fast reactor fission yields for some nuclides are shown to correlate well with neutron energy. For others, the data are too sparse and scattered to obtain definitive correlations.

# <u>U. S. A.</u>

(cont'd)

The energy index used for the correlation study is the isotope ratio  $150 \, \text{Nd}/143 \, \text{Nd}$ . This ratio can be measured with high precision, approximately 0.25%, and for  $239 \, \text{Pu}$  fission changes approximately 20% over the energy range of thermal to approximately 12 MeV. The correlation of the isotopic abundances and the fission yields of the major fissions product nuclides is linear relative to the  $150 \, \text{Nd}/143 \, \text{Nd}$  ratio for a wide energy range.

<u>Major Sources of Information</u>: The data used in this study were obtained from samples irradiated in several different fast reactors and were analyzed in different laboratories.

As part of this study, the current ENDF yields, especially the fast yields, were compared to the results obtained from this work. Several discrepancies between the ENDF values and those obtained from this work are identified.

Deadline of Literature Coverage: End of 1980.

Status: Specific conclusions relative to this study are:

- 1. Fast fission yield values for some of the major ²³⁹Pu fission products can now be assigned for any neutron spectrum.
- 2. In many cases the data are too sparse and scattered to obtain definitive correlation.
- 3. There are several discrepancies between the correlations developed in this study and the current ENDF data.
- There is a serious need for additional ²³⁹Pu fast yield measurements, especially in the 800-1000 keV range.

## Publications:

 W. J. Maeck, "The Correlation of ²³⁹Pu Thermal and Fast Reactor Fission Yields with Neutron Energy", Exxon Nuclear Idaho Co., Inc., Rept., ENICO-1099 (October 1981)

Available from:

National Technical Information Service, U. S. Dept. of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, USA.

## U. S. A.

(same as INDC(NDS)-116)

#### Laboratory and Address:

University of California Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico 87545 (U.S.A.)

## 1. <u>Names</u>:

T. R. England (LASL) R. E. Schenter (HEDL) B. F. Rider (G.E.) J. Liaw (ANL)

#### Compilation:

Library of evaluated fission product yields for Version V of the Evaluated Nuclear Data Files (ENDF/B-V).

### Deadline of Literature Coverage:

Mid-1978, including recent unpublished data.

### **Cooperation:**

Subcommittee consisting of members from major U.S.A. commercial and government laboratories.

## Other Relevant Details:

Twenty yield sets for 11 fissionable nuclides  $(^{233}, 235, 236, 238_{U}, 239, 240, 241, 242_{Pu}, 237_{Np}, 232_{Th}, and 252_{Cf})$ . Each set contains  $\sim 1100$  yields and uncertainties; independent yields before delayed neutron emission and cumulative yields (by A and Z) after delayed neutron emission are given. Yield distributions account for isobaric states, Z and N pairing effects, ternary fission and delayed neutron branching.

## Completion Date:

August 1978 for compilation. Phase I testing completed. Phase II testing completed.

#### Publications:

Report on Phase I testing, and other relevant details in progress.

#### Computer File:

Distributed by the National Nuclear Data Center at the Brookhaven National Laboratory.

## U.S.A.

(cont'd; same as INDC(NDS)-116)

#### LABORATORY AND ADDRESS:

University of California Los Alamos Scientific Laboratory P O Box 1663 Los Alamos, New Mexico 87545 (USA)

#### 2. <u>NAMES</u>:

T. R. England R. J. LaBauve W. B. Wilson

#### COMPILATION:

Library of processed 154-group ENDF/B-IV fission_product reaction cross sections.

#### **PURPOSE**:

Data file of multigroup values  $(10^{-5} \text{ eV-} 20 \text{ MeV})$  for use in collapsing to few-group values.

#### MAIN SOURCE OF INFORMATION:

ENDF/B-IV Fission-Product Data File

#### **OTHER RELEVANT DETAILS:**

Cross sections were processed into the Power Reactor Studies (PRS) 154-group structure described in Ref. 1 and 2, using the PRS Neutron Flux Weighting Function described in Ref. 1. Cross sections were processed at 900 or 1000 K at infinite dilution. A total of 181 nuclides are described with total, elastic, total inelastic, and radiative capture multigroup values. Additional neutron absorption reaction cross-section tabulations are given for 36 of the nuclides. A total of 960 multigroup cross-section tabulations are included in the data file, which is issued with a companion collapsing code TOAFEW.

#### COMPUTER FILE:

The data file and collapsing code are available from the Radiation Shielding Information Center, Oak Ridge National LAboratory, P O Box X, Oak Ridge, Tennessee 37830 (USA).

#### **REFERENCES**:

- W. B. Wilson, T. R. England, and R. J. Labauve, "Multigroup and Few-Group Cross Sections for ENDF/B-IV Fission Products; the TOAFEW Collapsing Code and Data File of 154-Group Fission-Product Cross Sections," Los Alamos Scientific LAboratory report LA-7174-MS (March 1978).
- 2. R. J. LaBauve and W. B. Wilson, "Proposal to Extend CSEWG Neutron and Photon Multigroup Structures for Wider Applications," Los Alamos Scientific Laboratory report LA-6240-P (February 1976).

<u>U.S.A.</u> (cont'd)

3. Names:

T. R. England R. J. LaBauve D. G. Madland W. B. Wilson |D. C. George

#### Cooperation:

R. E. Schenter, chairman of the ENDF/B actinide and fission product subcommittee, and F. Schmittroth of the Hanford Engineering Development Laboratory, P. O. Box 1970, Richland, Washington 93352.

#### Compilations:

## A) Nuclide Parameter Evaluated Compilations

1)  $\beta$  and  $\gamma$  decay energies, branching fractions [decay and  $(n,\gamma)$ ], half-lives, Q-values and cross sections for 824 fission products are tabulated in Ref. 1. This is a basic data set that includes the major types of parameters, with corrections, from ENDF/B-IV, except for yields and the energy dependence of cross sections.

2) Multigroup  $\beta$  and  $\gamma$  spectra are tabulated in Ref. 2 for 180 fission product nuclides. The  $\beta$  spectra are given in 75 groups and the  $\gamma$  spectra in 150 groups. These data are based on ENDF/B-IV; ENDF/B-V spectra are now available.

3) Multigroup cross sections are compiled in Ref. 11, processed from ENDF/B-IV. (see contribution 4. below).

4) Few group fitted spectral functions available in Ref. 9; a report based on ENDF/B-V is available in draft form.

5) Comparisons with experiment and a new decay heat standard are presented in Ref. 14. Reference 15 is a code incorporating the pulse function data of the new ANS Decay Heat Standard.

#### B) Evaluations

1) Yield distribution (pairing effects) and branching to isomeric states are evaluated and modeled in Refs. 3 and 4. Estimated values from the modeling are also included in these references.

2) Ternary fission is evaluated and compiled in Ref. 5.

3)  $\beta$  and  $\gamma$  spectra, decay heating and absorption buildup are evaluated by comparison with experiment in Refs. 6-13. based on ENDF/B-IV and a draft report using ENDF/B-V is available.

## U.S.A.

(cont'd)

#### Purpose:

Research by the Los Alamos nuclear data group (T-2) is directed at improvement in the national data file ENDF/B and at the use of these data in, e.g., determining a new decay heat standard, absorption buildup, etc.

### References

- T. R. England and R. E. Schenter, "ENDF/B-IV Fission Product Files: Summary of Major Nuclide Parameters," Los Alamos Scientific Laboratory report LA-6116-MS [ENDF-223] (October 1975).
- T. R. England and M. G. Stamatelatos, "Multigroup Beta and Gamma Spectra of Individual ENDF/B-IV Fission-Product Nuclides," Los Alamos Scientific Laboratory report LA-NUREG-6622-MS (Decamber 1976).
- 3. D. G. Madland and T. R. England, "The Influence of Pairing on the Distribution of Independent Yield Strengths in Neutron-Induced Fission," Los Alamos Scientific Laboratory report LA-6430-MS [ENDF-240] (July 1976).
- D. G. Madland and T. R. England, "Distribution of Independent Fission-Product Yields to Isomeric States," Los Alamos Scientific Laboratory report LA-6596-MS [ENDF-241] (November 1976).
- 5. D. G. Madland and Leona Stewart, "Light Ternary Fission Products: Probabilities and Charge Distributions," Los Alamos Scientific Laboratory report LA-6783-MS [ENDF-247] (April 1977).
- D. G. Foster, Jr. and T. R. England, "Time-Dependent Spectra of Photons and Spontaneous-Fission Neutrons for Applied Problems," <u>Invited Paper</u>, Trans. Am. Nucl. Soc. <u>23</u>, 551 (1976).
- T. R. England and M. G. Stamatelatos, "Beta and Gamma Spectra and Total Decay Energies from Fission Products," Trans. Am. Nucl. Soc. <u>23</u>, 493 (1976).
- M. G. Stamatelatos and T. R. England, "Fission-Product Gamma-Ray and Photoneutron Spectra and Energy-Integrated Sources," NUREG-0155 [LA-NUREG-6345-MS] (Issued December 1976) (See also Addendum 1, March 1977).
- 9. R. J. LaBauve, et al., "The Application of a Library of Processed ENDF/B-IV Fission-Product Aggregate Decay Data in the Calculation of Decay-Spectra," LA-7483-MS (September 1978).
- M. G. Stamatelatos and T. R. England, "Short Irradiation Fission-Product Beta Spectra and Total Energy: Calculations Versus Experiment," (ANS Summary accepted for ANS Annual Meeting June 12-17, 1977).
- 11. T. R. England, W. B. Wilson, and M. G. Stamatelatos, "Fission-Product Data for Thermal Reactors Part 1 A Data Set for EPRI-CINDER Using ENDF/B-IV Part 2 Users Manual for EPRI-CINDER Code and Data," Los Alamos Scientific Laboratory reports LA-6745-MS and LA-6746-MS (December 1975) [To be issued by EPRI ~ March 1977].

## U. S. A.

## (cont'd)

- 12. W. B. Wilson and T. R. England, "Status of Fission-Product Data for Absorption Calculations," LA-UR-78-1452, (May 1978).
- E. T. Jurney, P. J. Bendt, and T. R. England, "Fission Product Gamma Spectra," LA-7620-MS (January 1979).
- 14. T. R. England, R. E. Schenter, and F. Schmittroth," Integral Decay-Heat Measurements and Comparisons to ENDF/B-IV and V," NUREG/CR-0305 [LA-7422-MS] (August 1978).
- 15. W. B. Wilson, T. R. England, and R. J. LaBauve," DKPOWR: A Code for Calculating Fission-Product Decay Power (report in preparation).
- 16. T. R. England, W. B. Wilson, "TMI-2 decay power: LASL fission-product and Actinide decay power calculations for the president's commission on the accident at Three Miles Island " LA-8041-MS, Revised (March 1980).
- 17. "Generation of Pulse Functions for Beta and Gamma Decay Spectra " LA-8277-MS.
- 18. "Comparisons of Calculated and Measured Pu-239 Beta and Gamma Spectra " NUREC/CR-1172 (ORNL/NURGE-66).
- 19. "Status of ENDF/B-5 Yields " Third ASTM Euratom Symposium, Ispra, Italy, Oct. 1979.
- 20. "Summary of major decay parameters and cross sections based on ENDF/B-V", (report in preparation)
- 21. T. R. England, W. B. Wilson, R. E. Schenter, and F. M. Mann, "Aggregate Delayed Neutrons and Spectral Calculations Using Preliminary Precursor Data Evaluated for Inclusion in ENDF/B-VI," Los Alamos National Laboratory report LA-UR-82-841 (March 1982).
- 22. R. J. LaBauve, T. R. England, and D. C. George, "Integral Data Testing of ENDF/B Fission Product Data and Comparisons of ENDF/B with Other Fission Product Data Files," Los Alamos National Laboratory report LA-9090-MS (ENDF-320), (November 1981).
- 23. R. J. LaBauve, T. R. England, D. C. George, and C. W. Maynard, "Fission Product Analytic Impulse Source Functions", Nucl. Technol. <u>56</u> (1982) 322.

<u>U.S.A.</u> (cont'd)

#### LABORATORY AND ADDRESS:

University of California Los Alamos National Laboratory PO Box 1663 Los Alamos, New Mexico 87545 (USA)

## 4. NAMES:

W. B. Wilson T. R. England R. J. LaBauve R. M. Boicourt

#### COMPILATION:

Library of processed 154-group ENDF/B-V actinide and fissionproduct reaction cross sections.

#### PURPOSE:

Direct application or input file to companion TOAFEW-V crosssection collapsing code.

#### MAIN SOURCE OF INFORMATION:

ENDF/B-V actinide and fission-product data files.

### OTHER RELEVANT DETAILS:

This processed 154-group ENDF/B-V actinide and fission-product cross-section file replaces our earlier ENDF/B-IV fission-product file described in Ref. 1. All total, elastic, total inelastic, (n,2n), (n,3n), fission,  $(n,n'\alpha)$ , (n,n'p), n,4n,  $(n,\gamma)$ , (n,p), (n,d), (n,t), (n, He), and  $(n,\alpha)$  cross sections given in ENDF/B-V for 41 actinide and 196 fission-product nuclides were processed at 300, 900, and 1200 K at infinite dilution. Actinide cross sections were processed at additonal dilutions using the Bondarenko scheme. The library is furnished with the companion TOAFEW-V collapsing code, which collapses desired multigroup values to any few-group structure using any of a variety of flexible user flux-dependent schemes. The code and library are described in Ref. 2.

#### COMPUTER FILE:

The data file and collapsing code will soon be available from the Radiation Shielding Information Center, Oak Ridge National Laboratory.

#### **REFERENCES:**

- 1. TOAFEW report, LA-7174-MS.
- 2. TOAFEW-V report, EPRI NP-2345 (April 1982).

## U. S. A.

## (cont'd, new)

## LABORATORY AND ADDRESS:

University of California Los Alamos National Laboratory PO Box 1663 Los Alamos, New Mexico 87545 (USA)

#### 5. NAMES:

T. R. England (LANL) B. F. Rider (Retired)

R. E. Schenter (HEDL)

## COMPILATION

Library of evaluated fission product yields for ENDF/B-VI files (preliminary).

#### DEADLINE OF LITERATURE COVERAGE

Mid-1981

## COOPERATION

Subcommittee consisting of members from major USA commercial and government laboratories.

## RELEVANT DETAILS

See comment for ENDF/B-V. The new files are updated and extended to include 50 yield sets for 34 fissioning nuclides at one or more fission energies. Data are not yet in ENDF/B-V format and there has been no Phase I Testing.

## PUBLICATIONS

- B. F. Rider, et al, "Evaluation of Fission Product Yields for the U. S. National Nuclear Data Files," Proc. of the Conf. on Nuclear Data Evaluation Methods and Procedures, held at BNL Sept. 22-25, 1980. Report BNL-NCS-51363 [DOE-NDC-23, NEANCD(US)-209, INDC(USA)-85] March 1981.
- B. F. Rider, "Compilation of Fission Product Yields," General Electric Vallecitos Nuclear Center report (microfiche only) NEDO-12154-3(C) [ENDF-322] October 31, 1981.

### U.S.A.

Laboratory and	Oak Ridge National Laboratory
Address:	P. O. Box X, Building 6010
	Oak Ridge, Tennessee 37830, USA

1. Name: J. K. Dickens

- Purpose: To compute gross fission-product  $\beta$ -ray spectra obtained, e.g. following fission of  $^{235}U$  so as to determine the associated "reactor antineutrino" spectrum to be used in experimental measurements of antineutrino-induced reactions.
- Major sources Nuclear Data Sheets, Table of Isotopes (7th Edition), and of information: recent published literature.
- Deadline: January 1982 for the current compilation.
- Status: Data file will be available from the ORNL Radiation Shielding Information Center in July 1982.
- Publications: J. K. Dickens, "Electron Spectra from Decay of Fission Products," ORNL/TM-8285 (in preparation); J. K. Dickens, "Electron Antineutrino Spectrum for ²³⁵U(n,f)," Phys. Rev. Lett. <u>46</u>, 1061 (1981); J. K. Dickens, "Calculated Beta-Ray Spectra from Decay of Fission Products Produced by Thermal-Neutron Fission of ²³⁵U," Phys. Lett. B (accepted).
- 2. Name: J. K. Dickens and P. T. Perdue
  - $\underbrace{\text{Compilation:}}_{\text{jess and absolute intensities when available, or relative}_{\text{intensities when absolute values are not available.}$
  - Purpose: Identification of responsible radionuclides for data reduction of high-resolution Ge(Li) spectroscopy.
  - Major Sources: Nuclear Data Sheets and Table of Isotopes (7th Edition).

Deadline: Continuing.

Status: Three data files contain data for 748 radionuclides between 7-Be and 254-Es. About 50% of the 3100 entries are up to date (December 1981). The remainder are being upgraded on a continuous basis. The primary file is ordered by increasing Z and A; the file contains information useful for neutron

## U. S. A.

## (cont'd)

activation analysis (NAA). There is a secondary file consisting of 3136  $\gamma$  rays ordered by increasing  $\gamma$ -ray energy; for each entry a second  $\gamma$  ray is included if available. There is an additional secondary file of the 748 radionuclides ordered by increasing half life; no  $\gamma$ -decay information is in this file. These data files will be available from the ORNL Radiation Shielding Information Center in May 1982.

Publication: Radiation Shielding Information Center Document No. DLCO88/TPASGAM, "Informal Notes," J. K. Dickens and P. T. Perdue (April 1982).

## U.S.A.

# (same as INDC(NDS)-116)

Laboratory and address	Washington University, Dept. of Chemistry, St. Louis, MO., USA
Name	A. C. Wahl
<u>Compilation</u> and <u>evaluation</u>	Independent yields and other data related to nuclear-charge distribution in fission are compiled and evaluated for low- energy fission reactions (excitation energies up to $\sim 20$ MeV). The current compilation includes data for thermal-nuetron- induced fission of 233 U, 235 U, and 239 Pu and for spontaneous fission of 252 Cf. Data for other fission reactions are to be added.
Purpose	Systematic trends in independent yields (IN) are derived from the data by use of models, which allow reasonable estimates to be made of independent yields for all fission products and increase knowledge of fission-reaction mechanisms.
Sources of information	Journals, reports, preprints, other compilations, and personal communications
Method	Original values of experimental data and uncertainties are maintained in a file, and average values are calculated and normalized for each A, when sufficient data exist, so that the sum of fractional independent yields (FI) is unity. The set of FI values for each fission reaction, or IN values derived from them, are treated by the method of least squares to derive systematic trends in the yields described by the $Z_p$ and $A'_p$ models.
	Experimental yield data are evaluated by comparison with other data, with average yield values, and with yields cal- culated from the models.
Cooperation	We are prepared to exchange files with other groups.
Computer file	Information is held in standard forms on computer files.
Completions	Compilation is continuous.
Publications	A.C. Wahl, "Systematics of Nuclear Charge Distribution in Fission - The Z _P Model," J. Radioanal. Chem. <u>55</u> , 111 (1980).
	A.C. Wahl, "Nuclear-Charge distribution in Fission - Inves- tigation of Systematics and Methods of Estimation of Inde- pendent Yields," Contribution to IAEA Petten Panel on Fission Product Nuclear Data - Sept., 1977. Published in: INDC(NDS)-87 (1978), 215.
	A.C. Wahl, A.E. Norris, R.A. Rouse, and J.C. Williams, "Pro- ducts from Thermal-neutron-induced fission of ²³⁵ U: A cor- relation of Radiochemical Charge and Mass Distribution Data," in Proceedings of the Second International Atomic Energy Sym- posium on Physics and Chemistry of Fission, Vienna, Austria, 1969 (I.A.E.A.), p. 813.

#### **III. RECENT PUBLICATIONS RELATED TO FPND**

The publications listed below refer to activities related to FPND which are not covered by the contributions contained in this issue. They are sorted according to

- 1. Fission yields and charge distribution
- 2. Neutron reaction cross sections
- 3. Decay data
- 4. Delayed neutron data
- 5. FP decay heat
- 6. Reviews and summaries

Completeness of this section has not been attempted. For papers presented at meetings see section IV.

#### III.1. Fission yields and charge distribution

(For fission yields of delayed neutron precursors see also "delayed neutrons")

Determination of the isoboric elemental yields in velocity selected fission products

H. Faust, P. Geltenbort, F. Gönnenwein, A. Oed Nucl. Instr. Meth. 193 (1982) 577

A continuous on-line method for fission yield measurements with the combined GJRT-SISAK technique

T. Björnstad Nucl. Instr. Meth. 188 (1981) 375

Measurement of yields of fission products with half lives of 1 to 30 sec by continuous chemistry techniques

K. Rengan, J. Lin, R.A. Meyer Radiochem. Radioanal. Lett. <u>51</u> (1982) 339

(fissioning nuclide not mentioned in paper)

Charge distribution in the fission of  232 Th by 14 MeV neutrons

Li W., Sun T., Sun X., Zhang T., Zheng M., Dong T., Fu M. Physica En. Fortis et Physica Nucl. <u>6</u> (1982) 365 (in Chinese with English abstract; independent yields of  $82_{Br}$ ,  $96_{Nb}$ ,  $130,132,134_{I}$ ,  $134m,135m,136_{Cs}$ ,  $140_{La}$ ) Mass number and prompt neutron emission of individual fission fragments as functions of nuclear charge, both involving parameters determinable from radiochemical data

M. Talât-Erben, R.K. Tokay Phys. Rev C 24 (1981) 1055

(expressions derived for fragment mass, charge density and neutron yields versus charge for fission of  232 Th,  233 U,  235 U.,  238 U.  239 Pu.  252 Cf)

Thin film scintillation detector response to fragments from light charged particle accompanied fission of  $^{236}\mathrm{U}$ 

N.N. Ajitanand, K.M. Iyengar, S.R.S. Murthy Nucl. Instr. Meth. 193 (1982) 587

 $(^{235}U$  thermal fission)

Energy, angular, and mass correlations in fission of  235 U by thermal neutrons with emission of  4 He, Li, and Be nuclei

V.T. Grachev, Yu.I. Gusev, D.M. Seliverstov, N.N. Smirnov Yad. Fiz. <u>32</u> (1980) 1186 (Engl.: Sov. J. Nucl. Phys. <u>32</u> (1980) 612)

Fine structure in the mass yields from fission of  $^{237}\mathrm{Np}$  by neutrons

V.F. Teplykh, E.V. Platygina, K.A. Petrzhak, B.M. Markov, V.I. Kozinets Yad. Fiz. <u>29</u> (1979) 293 (Engl.: Sov. J. Nucl. Phys. <u>32</u> (1979) 144)

Absolute measurement of velocities, masses and energies of fission fragments from Californium-252 (SF)

H. Henschel, A. Kohnle, H. Hipp, G. Gönnenwein Nucl. Instr. Meth. 190 (1981) 125

Fission-fragment kinetic energy and mass distribution measurement for  $^{252}\mathrm{Cf}$  spontaneous fission

Bao Z., Han H., Meng J. Huang S. Chinese J. Nucl. Phys. 4 (1982) 41

(in Chinese with English abstract)

### III.2. Neutron reaction cross sections

Mesure de la section efficace de capture radiative de neutrons pour les noyaux de rubidium, yttrium, niobium, gadolinium, tungstene, platine et thallium entre 0,5 et 3 MeV

J. Voignier, S. Joly, G. Grenier report CEA-R-5089 (August 1981) Evaluation complete des données nucléaires neutroniques de  85 Rb et  87 Rb de 10⁻⁵ eV à 20 MeV G. Simon, A. Prince, E. Lalie report CEA-N-2201 (April 1981) Experimental and theoretical neutron cross sections at 14 MeV R.C. Harper, W.L. Alford J. Phys. G 8 (1982) 153 (including  $93_{Nb}(n, 2n)92m_{Nb}$  and  $93_{Nb}(n, \alpha)90m_{Y}$ ) Evaluation of the cross sections for the reactions  $19_{F(n,2n)} 18_{F}$ ,  $31_{P(n,p)} 31_{Si}$ ,  $93_{Nb(n,n')} 93_{mNb}$  and  $103_{Rh(n,n')} 103_{mRh}$ B. Strohmaier, S. Targesen, H. Vonach Physics Data No. 13-2 (1980) Measurement of the total neutron cross-section of molybdenum in the energy range from 2.2 eV to 3 meV M. Salama, M. Mazhar Atomkernenergie 39 (1981) 207 New measurements for the total neutron cross section of molybdenum in the energy range from 2.2 eV to 0.04 eV M.A. Salama, M.S. Mazher Atomkernenergie 40 (1982) 290 III.3. Decay data (for delayed neutron precursor decay data see also "delayed neutrons") Properties of strongly neutron-rich isotopes of germanium and arsenic

> P. Hoff, B. Fogelberg Nucl. Phys. A 368 (1981) 210

(cf. contributions on pages 84-86)

Ground-state decay branchings for 85,86,87,88Se isotopes with a gas-phase rapid chemistry system

J. Lin, K. Rengan, R.A. Meyer Radiochem. Radioanal. Lett. 50 (1982) 399 Use of organo-metallic reactions for the isolation and study of short-lived selenium fission products and simultaneous supression of daughter bromine activity

K. Rengan, J. Lin, T.N. Massey, M. Zendel, R.A. Meyer Radiochem. Radioanal. Lett. 50 (1982) 385

(decay studies assigned to  89 Se)

Continuous gas-phase separation of bromine fission products with half-lives of 600 ms to 56 s

K. Rengan, J. Lin, R.A. Meyer Radiochem. Radioanal. Lett. 50 (1982) 393

(decay studies of ⁸⁸⁻⁹⁰Br)

A hyperpure germanium detector for precise beta endpoint energy determinations

R. Decker, K.-D. Wünsch, H. Wollnik, G. Jung, E. Koglin, G. Siegert Nucl. Instr. Meth. 192 (1982) 261

(including ⁸⁸Rb; see also contribution on page 40)

Energy levels of 99 Mo populated in the decay of 99 mNb

S. Ohya, M. Kanazawa, N. Mutsuro, T. Tamura, Z. Matumoto J. Phys. Soc. Japan 50 (1981) 1057

Chemical effects of  $\beta^{-}$  decay in 99 Mo(CO)₆

T. Muto, H. Ebihara J. inorg. nucl. Chem. 43 (1981) 2617

Chemical effect of Tc K X-ray intensity in the decay  $99_{Mo} \xrightarrow{0^-} 99_{mTc} \xrightarrow{99_{Tc}}$ 

K. Yoshihara, A. Hibino, I. Yamoto, H. Kaji Radiochem. Radioanal. Lett. 48 (1981) 303

Measurement of the number of radioactive atoms and half-life (I)

Feng X., Zhao Z., Lo S., Zhang J., Guo Y., Xu Y., Yang R., Huang Z., Zhang Y., Su Z., Li Z., Ma G. Physica Energiae Fortis et Physica Nucl. 5 (1981) 754

(half life of ^{99m}Tc; in Chinese with English abstract)

Measurement of the number of radioactive atoms and half-life (II)

Feng X., Zhao Z., Xu Y., Guo Y., Lo S., Huang Z., Yang R., Jiang Y. Physica Energiae Fortis et Physica Nucl. <u>6</u> (1982) 112

(half life of ^{99m}Tc; in Chinese with English abstract)

Decay scheme of 50 sec  $103_{Tc}$ H. Niizeki, S. Kageyama, T. Tamura, Z. Matumoto J. Phys. Soc. Japan 47 (1979) 26 The decay of 106gRh R. Kaur, A.K. Sharma, S.S. Sooch, N. Singh, P.N. Trehan J. Phys. Soc. Japan 51 (1982) 23 Study of the radioactive decay of Ag^{110m} H.R. Verma, A.K. Sharma, R. Kaur, K.K. Suri, P.N. Trehan J. Phys. Soc. Japan 47 (1979) 16 Decay properties of neutron-rich silver isotopes W. Brüchle, G. Herrmann Radiochim. Acta 30 (1982) 1 ( $\beta$ -,  $\gamma$ -, x-ray spectroscopy of ¹¹³⁻¹¹⁸Ag) Experimental beta-decay energies of very neutron-rich Cs isotopes U. Keyser, F. Münnich, B. Pahlmann, B. Pfeiffer Z. Phys. A 300 (1981) 249  $(142 - 146 c_s)$ Precise  $Q_{\beta}$ -values with an intrinsic germanium detector for heavy, neutron-rich fission products R. Decker, K.D. Wünsch, H. Wollnik, G. Jung, J. Münzel, G. Siegert, E. Koglin Z. Phys. A 301 (1981) 165 (138-146_{Cs}, 139,141,143,146_{Ba}, 146_{La}; in German see also contribution on page 40) Level scheme of ¹⁴⁰Cs D. Otero, A.N. Proto, E. Duering, M.L. Pérez Phys. Rev. C 23 (1981) 2691 Study of the radioactive decay of isotopes with mass number A=140 I. Adam et al Dubna report no. P6-81-523 (Ba, La decay; in Russian) Levels and transitions in  $142,\!144\text{Ce}$  populated following the decay of  $142,\!144\text{La}$ E. Michelakakis, W.D. Hamilton, P. Hungerford, G. Jung, P. Pfeiffer, S.M. Scott J. Phys. G 8 (1982) 111

The decay of 144Ce

Yu B., Liu F., Lu X., Li S., Yang C. Chinese J. Nucl. Phys. 3 (1981) 312

 $(\gamma$ -ray spectroscopy; in Chinese with English abstract)

Gamma ray emission probabilities in the decay of  $^{144}\mathrm{Ce}$  and  $^{144}\mathrm{Pr}$ 

J.B. Olomo, T.D. MacMahon Nucl. En. 20 (1981) 237

Level scheme of ¹⁴⁹Pm

T. Seo, S. Yamada, Y. Miyatake, T. Hayashi Annu. Rep. Res. Reactor Inst. Kyoto Univ. 12 (1979) 152

Internal ionisation probability in the beta decay of  151 Sm

I.J. Unus, P.A. Indira, P. Venugopala Rao J. Phys. G. 7 (1981) 1683

III.4. Delayed neutrons

Observation of beta-delayed neutron decay to excited 0⁺ states in the residual nucleus: the case  ${}^{97}\text{Rb}(\beta n\gamma){}^{96}\text{Sr}$ 

K.-L. Kratz, A. Schröder, H. Ohm, G. Jung, B. Pfeiffer, F. Schussler Phys. Lett. 103B (1981) 305

Delayed neutrons and symmetric fission

B.P. Maksyutenko, A.A. Shimanskii Yad. Fiz. <u>29</u> (1979) 3 (Engl.: Sov. J. Nucl. Phys. <u>29</u> (1979) 1)

(calculated contribution of symmetric fission fragment precursors to delayed neutron yields in 15 MeV neutron fission of  $^{235}\mathrm{U}$  and  $^{238}\mathrm{U})$ 

III.5. Decay heat

Absolute measurement of the beta spectrum from  235 U fission as a basis for reactor antineutrino experiments

K. Schreckenbach, H.R. Faust, F. von Feilitzsch, A.A. Hahn K. Hawerkamp, J.L. Vuilleumier Phys. Lett. 99B (1981) 251 III.6. Reviews and summaries

.

Nuclei far from stability

B. Jonson Nucl. Phys. A <u>354</u> (1981) 77c 4th international conference on nuclei far from stability

Helsingoer, Denmark, 7-13 June 1981

The proceedings were published as CERN 81-09 (20 July 1981)

- page: selected papers:
- 116 Critical survey of beta decay energies and nuclear masses for the neutron-rich Rb and Cs isotopes.

U. Keyser, F. Münnich, B. Pahlmann, B. Pfeiffer

124 Nuclear  $Q_{\beta}$ -values for fission products. A comparison with mass formula predictions.

K. Aleklett, P. Hoff, E. Lund, G. Rudstam

(see also contribution on page 84)

129 Precision Q-value determinations for neutron-rich Rubidium isotopes at TRISTAN

D.S. Brenner, M.K. Martel, A. Aprahamian, R.E. Chrien, R.L. Gill, G.M. Gowdy, H.I. Liou, M. Shmid, M.L. Stelts, F.K. Wohn, C. Chung, D.M. Rehfield

(see also contribution on page 105)

265 Beta-delayed two-neutron and three-neutron emission

B. Jonson, H.A. Gustafsson, P.G. Hansen, P. Hoff, P.O. Larsson, S. Mattsson, G. Nyman, H.L. Ravn, D. Schardt

(see also contribution on page 89)

276 Beta-delayed two-neutron decay studies for ⁹⁶⁻⁹⁹Rb

P.L. Reeder, R.A. Warner, T.R. Yeh, R.E. Chrien, R.L. Gill, H. Liou, M. Shmid, M.L. Stelts

(see also contribution on page 122)

317 The beta minus strength function of nuclei far from stability in the A = 90 mass region

> K.-L. Kratz, H. Ohm. A. Schröder, H. Gabelmann, W. Ziegert, H.V. Klapdor, H. Metzinger, T. Oda, B. Pfeiffer, G. Jung, L. Alquist, G.I. Crawford

(see also contribution on page 45)

334 Investigation of the beta strength function at high energy: gamma-ray spectroscopy of the decay of 5.3 s  84 As to  84 Se

E.A. Henry, O.G. Lien III, R.A. Meyer

339 Neutron resonance study of a delayed neutron emitter,  $87_{\rm Kr}$ 

B. Fogelberg, J.A. Harvey, R.L. Macklin, S. Raman, P.H. Stelson

(see also contribution on page 85)

413 Decay properties of  81 Ga and  81 Ge and observation of abnormal energy shift in the  $p_{1/2}$  state

P. Hoff, K. Aleklett, B. Fogelberg, E. Lund, G. Rudstam

(see also contribution on pages 84,85)

423 The level schemes of Sr and Y isotopes in the mass chains A = 95, 97 and 99

B. Pfeiffer, E. Monnand, J.A. Pinston, F. Schussler, G. Jung, J. Münzel, H. Wollnik

(see also contribution on page 41)

430 The strongly deformed nucleus ¹⁰⁰Sr

S. Mattsson, R.E. Azuma, H.A. Gustafsson, P.G. Hansen, B. Jonson, V. Lindfors, G. Nyman, I. Ragnarsson, H.L. Ravn, D. Schardt

(see also contribution on page 90)

436 Phase transition in nuclear shape in the A = 100 region?

J. Stachel, N. Kaffrell, N. Trautmann, H. Emling, H. Folger, E. Grosse, R. Kulessa, D. Schwalm, K. Brodén. G. Skarnemark, D. Eriksen

(see also contribution on page 81)

443 Extension of systematics for even-even Zr isotopes to A = 102

John C. Hill, K. Shizuma, H. Lawin, M. Shaanan, H.A. Selic, K. Sistemich

532 Level scheme of ¹³¹Sb

F. Schussler, J. Blachot, E. Monnand, J.A. Pinston, H. Lawin, K. Sistemich, K. Kawade, K. Heyde, J. Sau, B. Pfeiffer 557 Angular correlation and coincidence studies of excited  $0^+$  and other levels in the transitional Ce nuclides  $142_{Ce}$ ,  $144_{Ce}$ ,  $146_{Ce}$  and  $148_{Ce}$ W.B. Walters, C. Chung, D.S. Brenner, R. Gill, M. Shmid, R. Chrien, H.I., Liou, G. Gowdy, M. Stelts, Y.Y. Chu, F.K. Wohn, K. Sistemich, H. Yamamoto, R. Petry (see also contribution on page 105) Levels in ¹⁴⁶Ce and the N=88 isotones 562 G.M. Gowdy, R.E. Chrien, Y.Y. Chu, R.L. Gill, H.I. Liou, M. Shmid, M.L. Stelts, K. Sistemich, F.K. Wohn, H. Yamamoto D.S. Brenner, T.R. Yeh, R.A. Meyer, C. Chung, W.B. Walters, R.F. Petry (see also contribution on page 105) Band Structure in 148Ce from the decay of mass 569 separated ¹⁴⁸La R.L. Gill, R.E. Chrien, M. Shmid, G.M. Gowdy, H.I. Liou, D.S. Brenner, F.K. Wohn, K. Sistemich, H. Yamamoto, C. Chung, W.B. Walters (see also contribution on page 105) 576 Nuclear spectroscopy of neutron rich A=147 nuclides: decay of 147Cs, 147Ba and 147La M. Shmid, Y.Y. Chu, G.M. Gowdy, R.L. Gill, H.I. Liou, M.L. Stelts, R.E. Chrien, R.F. Petry, H. Dejbakhsh, C. Chung, D.S. Brenner (see also contribution on page 105) The transitional Cerium isotopes ^{142,144}Ce 581 E. Michelakakis, W.D. Hamilton, P. Hungerford, S. Scott, G. Jung, B. Pfeiffer 589 Nuclear spectroscopy of neutron rich A = 147 nuclei F. Schussler, B. Pfeiffer, H. Lawin, E. Monnand, J. Münzel, J.A. Pinston, K. Sistemich 602 Identification of new neutron-rich rare-earth nuclei produced in ²⁵²Cf spontaneous fission R.C. Greenwood, R.J. Gehrke, J.D. Baker, D.H. Meikrantz (see also contribution on page 109)

G. Rudstam, P. Aagaard, K. Aleklett, E. Lund

723 Development of a gas-jet coupled ISOL facility with a ²⁵²Cf spontaneous fission source

R.C. Greenwood, R.A. Anderl, V.J. Novick

727 Rapid continuous chemical methods for studies of nuclei far from stability

> N. Trautmann, N. Greulich, U. Hickmann, N. Kaffrell, E. Stender, M. Zendel, H. Gäggeler, K. Brodén, G. Skarnemark, D. Eriksen

(see also contribution on page 81)

Internat. Conf. on nuclear data for science and technology

Antwerp, Belgium, 6-10 Sept. 1982

Among the abstracts received at the Nuclear Data Section, the following selected papers contain some information on FPND:

paper title: no:

13A Study of excitation functions around 14 MeV neutron energy

J. Csikai

(cross section between 13.5 and 14.7 MeV including: (n, 2n) for  $90_{Zr}$ ,  $93_{Nb}$ ,  $113_{In}$ ,  $(n, \alpha)$  for  $94,96_{Zr}$ , (n, n') for 113,115_{In}, and  $92_{Zr}(n,d)$ )

13B Measurement of some average cross sections for ²⁵²Cf neutrons

H. Benabdallah, G. Paic, J. Csikai

(including: (n,r) for  ${}^{86}Sr$ ,  ${}^{115}In$ ,  ${}^{134},{}^{138}Ba$ , (n,n') for  ${}^{87}Sr$ ,  ${}^{111}Cd$ ,  ${}^{113},{}^{115}In$ ,  ${}^{135}Ba$ )

13C Measurement of average cross section for ²⁵² Cf neutrons

Z. Dezsö, J. Csikai

(including:  $^{93}Nb(n,\alpha)$ ,  $^{113}In(n,n')$ )

13D Measurement and evaluation of (n,t) cross sections

```
Z.T. Bödy, F. Cserpak, J. Csikai, S. Sudar, K. Mihaly
```

(including: ⁹³Nb)

28A Nuclear fission: from saddle to scission

J.P. Theobald

(light fragment mass distribution in ²³³U thermal fission)

29A Present status and benchmark tests of JENDL-2

Yasuyuki Kikuchi and members of JNDC

(see also contribution page 142)

- 35C Radiation widths of iodine, cesium and iridium neutron resonancesA.B. Popov, K. Trzeciak, Zo In Ok
- 36A Precise measurement of cross sections for the reactions  $90_{Zr(n,2n)}^{89}$ Zr and  $58_{Ni(n,2n)}^{57}$ Ni from threshold to 20 MeV

G. Winkler, A. Pavlik, H. Vonach, A. Paulsen, H. Liskien

42A On neutron capture cross section measurements with the activation technique in the MeV region

P. Andersson, I. Bergqvist, R. Zorro

 $(^{115}In(n,\gamma))^{116m}In$ , see also contribution page 87)

45A The UK Chemical nuclear data library: evaluated nuclear decay data for reactor applications

B.S.J. Davies

(see also contribution page 152)

54A Energy and mass distributions for  $^{241}Pu(n,th,f)$ ,  $^{242}Pu(s.f.)$  and  $^{244}Pu(s.f.)$ -fragments

E. Allaert, C. Wagemans, C. Wegener-Penning, A.J. Deruytter, R. Barthélémy

(see also contribution page 12)

> Lu Hanlin, Huang Jianzhou, Fan Peiguo, Cui Yunfeng, Zhao Wenrong

79A Measurements of fission-product decay heat for fast reactors

Masatsugu Akiyama and Shigehiro An

(see also contribution page 80)

80A IBA Description of collective states in neodymium isotopes

G. Maino, E. Menapace, A. Ventura

94A Gamma-rays from capture of 400-keV neutrons

N. Yamamuro, H. Kitazawa, M. Igashira, T. Maruyama, K. Hashimoto

(see also contribution page 79)

102A Neutron radiative capture and transmission measurements of  $107_{Ag}$  and  $109_{Ag}$ 

M. Mizumoto, M. Sugimoto, Y. Nakajima, M. Ohkubo, Y. Furuta Y. Kawarasaki

(see also contribution on pages 70,71)

111A Isotopic distributions for Kr, Sr, I and Xe in the photofission of 235,238U

D. De Frenne, H. Thierens, B. Proot, E. Jacobs, P. De Gelder, A. De Clercq

(see also contribution on page 9)

120A A measurement of the cross sections for the reactions  $93_{Nb(n,2n)}92m_{Nb}$ ,  $90_{Zr(n,2n)}89m+g_{Zr}$ ,  $63_{Cu(n,2n)}62_{Cu}$ ,  $27_{A1(n,p)}27_{Mg}$  and  $27_{A1(n,\alpha)}24_{Na}$  for the purpose of neutron spectrometry around  $E_n = 14$  MeV

A. Chiadli, G. Paic

1418 A predicted directional bias of the mass asymmetry in  230 Th(n,f)

D.W. Lang

145A Effets dynamiques dans la fission de ²³²Th et ²³⁰Th induite par neutrons

J. Trochon, J. Fréhaut, J.W. Boldeman, G. Simon, Y. Pranal

145B Comparaison des caracteristiques des fragments de la fission spontanée et de la fission induite par neutrons thermiques des noyaux 240,239 Pu, 242,241 Pu et 244,241 Pu

J. Trochon, J.W. Boldeman, F. Brisard, Y. Pranal

(see also contribution page 7)

150A Mesure de la section efficace de capture radiative du lanthane, du bismuth, du cuivre naturel et de ses isotopes pour des neutrons d'energie comprise entre 0,5 et 3 MeV

J. Voignier, S. Joly, G. Grenier

B. Duchemin, J. Blachot, B. Nimal, J.C. Nimal, J.P. Veillaut

(see also contribution page 134)

177A Reactor Irradiations of ²⁴²Pu and comparisons of measured and calculated yields of ²⁴⁴Pu, ²⁴³Am, ²⁴⁴Cm and fission products

C. De Raedt, P. De Regge, T. Babeliowsky, E. Wattecamps

193A Fission fragment angular distribution data for neutron induced fission of  $^{235}U$ 

S.S. Kapoor, K.N. Iyengar, D.M. Nadkarni, V.S. Ramamurthy

197B Fission fragment angular distributions and total kinetic energies for ²³⁵U(n,f) from 0.18 to 8.83 MeV

J.W. Meadows, C. Budtz-Jorgensen

201A Delayed neutron spectral measurements and covariance error analysis for fast fission in ²³⁵U and ²³⁹Pu

J. Walker, D.R. Weaver, J.G. Owen

(see also contribution page 99)

205A Measurements of decay scheme data

S.P. Holloway, J.B. Olomo, T.D. Mac Mahon, B.W. Hooton

(including:  $\gamma$ -ray spectroscopy of  $140_{Ba} - 140_{La}$ , half life of  $154_{Eu}$ )

211A A comparison of measured and calculated integral neutron crosssections

I. Broeders, L. Koch, M. Robin, R. Wellum

(see also contribution page 139)

211B The TACO experiment for the determination of integral neutron cross-sections in a fast reactor

A. Cricchio, R. Ernstberger, L. Koch, R. Wellum

(see also contribution page 49)

214A The measurement of short-lived radionuclides using a cyclic activation system

Charles A. Adesanmi, Nicholas M. Spyrou

(including:  92 Y,  99 Zr,  101 Zr, ...)

218A High resolution measurements of delayed neutron emission spectra from fission products

T.R. Yeh, D. CLark, G. Scharff-Goldhaber, R.E. Chrien, L.-J. Yuan, M. Shmid, R.L. Gill, A. Evans, H. Dautel, J. Lee

(see also contribution page 105)

224B Mesures par activation d'isotopes separes de produits de fission dans des spectres de reacteurs a neutrons rapides

L. Martin Deidier, M. Darrouzet

(including:  $98,100_{Mo}$ ,  $102,104_{Ru}$ ,  $108_{Pd}$ ,  $139_{La}$ ,  $141_{Pr}$ ,  $142_{Ce}$ ,  $146,148,150_{Nd}$ ,  $152_{Sm}$ )

235A Radiative capture cross-sections of ¹⁶⁰Gd and ¹¹⁵In in MeV energy region

M. Afzal Ansari, I.M. Govil, M.L. Sehgal

226A Average capture cross section of the fission product nuclei 104,105,106,108,110_{Pd}

E. Cornelis, C. Bastian, G. Rohr, R. Shelley, T. van der Veen, G. Vanpraet

(see also contribution page 13)