

International Atomic Energy Agency

INTERNATIONAL NUCLEAR DATA COMMITTEE

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilation/evaluations of fission product nuclear data (FPND)

collected

by

M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

> No. 9 August 1983

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Reproduced by the IAEA in Austria August 1983 83-4234

INDC(NDS)-143/GP

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about activities in the field of measurements and compilation/evaluations of fission product nuclear data (FPND)

collected

by

M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

> No. 9 August 1983

FOREWORD

This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed.

The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted.

The types of activities being included in this report are measurements, compilations and evaluations of:

Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.).

The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983.

The next issue of this report series is envisaged to be published in June 1984.

TABLE OF CONTENTS

			Page *)
For	eword		i
Tab	le of Contents		iii
Sub	mitting contrib	outions	vii
Sub	ject Index		ix
I.	Measurements		1
	Algeria	: CSTN Alger	(25)
	Argentina	: Com. Nac'l En. At., Buenos Aires	3
	Australia	: AEEC, Lucas Heights James Cook Univ., Queensland Univ. of Wollongong, NSW Western Austral. Inst. Technol	4,5 (4) (4) (4)
	Belgium	: CEN Mol	8-10 (4),15 6-9
	EEC Belgium	: CBNM Geel	(4),10-15
	Brazil	: Inst. Eng. Nucl., Rio de Janeiro	16
	Bulgaria	: Inst. Nucl. Res. Nucl. En., Sofia Univ. of Sofia	(17) 17,18
	Canada	: Chalk River Nucl. Labs	19,20 21 22
	Chile	: Comision de En. Nuclear, Santiago	23
	C.S.S.R.	: Charles University, Prague	24 24

^{*)} Page numbers in brackets refer to collaborations, which are not listed under "Laboratory and address"

Table of contents	(cont'd)	Page *)
France	: CEN Bruyéres-le-Chatel	25,26 8,9,26,(42,43) 44,(48) 8 (35)
Germany, F.R.	: FIZ, Karlsruhe	40 41 42,43,(48)
CEC Germany	: Eur. Inst. Transurane, Karlsruhe	49-50
India	: BARC, Trombay	58,59
Israel	: Soreq Nucl. Res. Centre, Yavne	
Italy	: ENEL-Cent. Ric. Term. e Nucl., Milano Politecnico di Milano	66,67 66,67
Ivory Coast	: Inst. Recherches En. Nouv., Abidjan	29-31
Japan	Kyoto Univ.	68 69,70,78 71-75 (69,70) 76 76 77 78
Kuweit	: Univ. of Kuweit	(22)
Norway	: Univ. of Oslo	79
Sweden	Studsvik Sci. Res. Lab	79 80-84 85
Switzerland	5	86 86

	le of contents (d		Page *)
	CERN Switzer1.	ISOLDE collab., CERN, Geneva	87,88
	United Kingdom	AERE Harwell	89-91 92 93,94 95 (48)
	U. S. A.	Ames Lab., Iowa State Univ.ANL, ArgonneBNL, BrookhavenClark Univ.Cornell Univ.Cornell Univ.HEDL, Hanford, RichlandINEL, EG&G IdahoINEL, EG&G IdahoINEL, Exxon Nuclear Idaho Co.Lafayette CollegeLos Alamos National Lab.LLL, LivermoreLouisiana State Univ.McClellan Central Lab.McGill Univ.ORNL, Oak RidgePacific Northwest Lab., RichlandTexas A&MUniv. of IllinoisUniv. of ArylandUniv. of OklahomaWashington Univ., St. Louis	(101,102) 96-100 101,102 (101,102) (101,102) (47) (101,102),103-106 107 (101,102),103-106 107 (101,102),108,109 (101,102),108,109 (101,102) 108 (101,102),113,114 (101,102),113,114 (101,102),113,114 (101,102) 115 116 (101,102) (101,102) (101,102) (101,102) 117
	U. S. S. R.	Kurchatov Inst. At. En., Moscow Lensovjet Inst. Technol., Leningrad . Moscow Phys. Engg. Inst	118 119,120 121-124
II.	Compilations and	Evaluations	125
	Belgium	Univ. of Gent	127
	France	CEN Cadarache	(128,132,134) 128 (128),129
	German D. R.	ZfK Rossendorf, Dresden	130
		KFK, Karlsruhe	(132)

*) see page iii

Table of contents (cont'd)

CEC	Germany	:	Eur. Inst. Transurane, Karlsruhe .	•	132
Indi	a	:	Panjab Univ., Chandigarh	•	133
Ital	У	:	CNEN, Bologna	•	134
Japa	n	:	Japanese Nuclear Data Committee .	•	135-137
Neth	erlands	:	ECN Petten	٠	(134),138-140
Swed	len	:	Studsvik Sci. Res. Lab	•	(152)
Unit	ed Kingdom:	:	AERE Harwell	•	
U. S	. А.		HEDL, Hanford, Richland INEL, EG&G Idaho Los Alamos National Lab ORNL, Oak Ridge Washington Univ., St. Louis	•	(147,148),149 (147,148),150-152
U. S	5. S. R.	:	FEI, Obninsk		
III.Rece	ent publicat	i	ons related to FPND	•	158
IV. Meet	ings		••••••••••••••••	•	162
			ll conference on nuclear data for technology	•	162
			: Specialist's meeting on yields ta of fission product nuclides	•	169

*) see page iii

SUBMITTING CONTRIBUTIONS

The next issue is expected to be published in July 1984. All scientists who are presently working - or have recently completed work - in the field of FPND and who want to contribute to the 9th issue of this series, are kindly asked to send contributions to me between now and 1 May 1984, so that they reach NDS before 15 May 1984.

Those scientists or groups who have already contributed to the present issue and who want to leave their contribution(s) unchanged or who wish to suggest only slight changes, should write an appropriate note to me before the above deadline.

Format:

The size of one contribution should preferably not exceed one page. Of course, the number of contributions per working group or laboratory is not restricted. Similar experiments (or calculations, evaluations, etc.) performed by one person or group should preferably be combined to one contribution, if this is possible without loss of clarity.

The headings suggested for the 3 types of contributions can be found on page viii. For the sake of consistency it is requested that the suggested headings be used as far as appropriate.

<u>Compilation and evaluations</u>: If applicable, the <u>availability of</u> <u>numerical data</u> from computer files could be indicated either under the headings "Computer files ..." or under a separate heading "Availability...".

Editing: Since contributions received are generally used directly for publication, it is important that typed <u>originals</u> are sent and not just carbon- or photocopies. It would be a great help for producing an edited report if a margin of 2 cm (or 1 inch for North American paper format) is left on each side of the text and a 5 cm space is left at the top of each page (or 3 cm, if the name of the country is included).

<u>Comments or suggestions</u> concerning the format, content and layout of this report series are most welcome and should be directed to me in time before the next issue.

I would like to thank the contributors for their cooperation.

M. Lammer

Measurements:	Compilations:	Evaluations:
Measurements: Laboratory and address: Names: Facilities: <u>Experiment</u> : Method: Accuracy: Completion date: Descrepancies to other reported data: Publications:	Laboratory and address: Names: <u>Compilation</u> : Purpose: Major sources of information: Deadline of literature coverage: Cooperation: Other relevant details: Computer file:	Laboratory and address: Names: Evaluation: Purpose: Method: Major sources of information: Deadline of literature coverage: Status: Cooperation:
	Completion date: Publications:	Other relevant details: Computer file of compiled data: Computer file of evaluated data: Discrepancies encountered: Completion date: Publications:

SUBJECT INDEX a)

1. MEASUREMENTS

1.1. Fission yields

nuclide	neutron energy	further specifications	page
Th-229	thermal thermal thermal thermal	element yields Br,Kr,Rb,Te,I,Xe,Cs mass yields, R-value rel. U-235 (Sr-91) 37 FP=25 chains, T _{1/2} =7m - 65d, Ge(Li) fragment mass yields, physical, all A	25 53 111 (115)
Th-230	unspecified	mass yields	5
Th-232	reactor-spec. 0.1-8 MeV 2.0-5.2 MeV 3 MeV	indep., cumul. and chain yields rad.chem., Ge(Li), normalized to 200% fragment mass distribution, kin. energy element yields Br,Kr,Rb,Te,I,Xe,Cs	(86) (96) 21 (25)
U-232	thermal	element yields Br,Kr,Rb,Te,I,Xe,Cs	25
U-233	thermal thermal thermal thermal thermal thermal fast	Te isotope yields, mass-spec. light charged particles, absol. yields cumul. + indep., rad. chem. + Ge(Li) indep. cumul. yields, rad. chem. + Ge(Li) fragment mass yields, physical, all A cumul. yields (T1/2 = 7.1-54 s) FFTF, i.d. mass-spectrometry	4 9 71 (86) 115 <u>121</u> 107
U-235	photofission thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal	fragment charge + isotopic distribution Te isotope yields, mass-spec. light charged particles, absol. yields element yields Br,Kr,Rb,Te,I,Xe,Cs direct ylds, A=130-147, on-line mass-spec. A=133 charge disp.,rad.chem.+ mass-spec. fragment mass, charge distribution polar LCP absolute yields, angular distr. indep. yield Br-87 to 91, I-138 to 141 cumul. + indep., rad.chem. + Ge(Li) rel. yields + 1 absolute yield indep.+ cumul. yields, rad.chem + Ge(Li) tritium yield isomer yield ratios, on-line mass-spec fragment mass yields, physical, all A Ag,Cd,In,Sn fract. yields, SISAK-2 system Tc-104,105 fract. indep. yields	7 4 (9) (25) 44 (45) 51 58 64 71 82 (86) (91) (113) (115) 117 (117)

a) with respect to the earlier issues, underlined page numbers refer to new work, page numbers in brackets refer to unchanged contributions, and others refer to revised contributions.

1.1. Fission yields (cont'd)

nuclide	neutron energy	further specifications	page
U-235	fast fast fast fast 140-1000 keV 0.1-8 MeV 3 MeV 14-15 MeV 14 MeV	element yields Br,Kr,Rb,Te,I,Xe,Cs 2 fast spectra, direct Ge(Li) + rad.chem. tritium yield PFR, chain yields, mass-spec. FFTF, i.d. mass-spectrometry angular anisotropy of LCP rad.chem., Ge(Li), normalized to 200 % element yields Br,Kr,Rb,Te,I,Xe,Cs direct Ge(Li), yields rel. Zr-95 etc. Ag,Cd,In,Sn fract. yields, SISAK-2 system	(25) (89) (91) 92 107 59 (96) (25) 109 117
U-236	spontaneous	angular momentum (indep. isomer ratio)	<u>55</u>
U-238	photofission epicadmium fast fast fission spec. 0.1-8 MeV 1.6,3.1,5.2MeV 3 MeV 14-15 MeV 14 MeV	fragment charge + isotopic distribution cumul.= fract. yields, A=131-134 2 fast spectra, direct Ge(Li) + rad.chem. PFR, chain yields, mass-spec. cumul. yields, rad. chem. + γ -spectr. rad.chem., Ge(Li), normalized to 200% fragment mass distribution, kin. energy element yields Br,Kr,Rb,Te,I,Xe,Cs direct Ge(Li), yields rel. Zr-95 etc. Ag,Cd,In,Sn fract. yields, SISAK-2 system	7 (17) (89) 92 (16) (96) (21) (25) 109 <u>117</u>
Np-237	photofission thermal	35 cumulative + 4 independent yields light charged particles, absol. yields	<u>119</u> (9)
Pu-238	unspecified spontaneous spontaneous thermal fast	element yields Br,Kr,Rb,Te,I,Xe,Cs mass yields, kin. energy fragment kinetic en. and mass distrib. mass yields, kin. energy cumul. yields Ru-103,I-131 rel. Ba-140	25 5 10 5 66
Pu-239	spontaneous thermal thermal thermal thermal thermal thermal thermal thermal thermal thermal fast fast fast fast 0.1-8 MeV 14-15 MeV	<pre>mass yields, kin. energy mass resolution correction mass yields, kin. energy fragment mass distribution light charged particles, absol. yields fragment kinetic en. and mass distrib. indep. yields, light fragments cumul. + indep., rad. chem. + Ge(Li) indep.+ cumul. yields, rad.chem. + Ge(Li) tritium yield fragment mass yields, physical, all A Tc-104,105 fract. indep. yields cumul. yields (T1/2 = 7.1-48 s) 2 fast spectra, direct Ge(Li)+rad.chem. tritium yield PFR, chain yields, mass-spec. FFTF, i.d. mass-spectrometry rad. chem., Ge(Li), normalised to 200% direct Ge(Li), yields rel. Zr-95 etc.</pre>	5 5 (6) (9) 10 26 71 86 (91) (115) (117) 122 (89) (91) 92 107 96 109

1.1. Fission yields (cont'd)

nuclide	neutron energy	further specifications	page
Pu-240	photofission spontaneous spontaneous fast fast fast fast	fragment mass distribution mass yields, kin. energy fragment mass distribution fragment kinetic en. and mass distrib. cumul. yields 5 FP rel Ba-140 tritium yield PFR, chain yields, mass-spec.	(6) 5 (6) <u>10</u> 66 (91) 92
Pu-241	spontaneous thermal thermal thermal thermal fast fast fast	mass yields, kin. energy mass yields, kin. energy fragment mass distribution fragment kin. energy and mass distrib. tritium yield tritium yield PFR, chain yields, mass-spec. FFTF, i.d. mass-spectrometry	5 6 10 (91) (91) 92 107
Pu-242	photofission spontaneous spontaneous spontaneous 14.8 MeV	fragment mass distribution mass yields, kin. energy fragment mass distribution fragment kin. energy and mass distrib. 65 FP=45 chains, rad.chem.+ direct Ge(Li)	6 5 6 10 41
Pu-243	spontaneous thermal	mass yields, kin. energy mass yields, kin. energy	5 5
Pu-244	photofission spontaneous spontaneous spontaneous	fragment mass distribution mass yields, kin. energy fragment mass distribution fragment kin. energy and mass distrib.	6 5 6 10
Am-241	thermal fission spec.	light charged particles, absol. yields rad.chem., normaliz. and rel U-235,238	(9) 108
Cm-243	thermal	23 FP = 16 chains, $T_{1/2}$ = 6h-65d, Ge(Li)	111
Cm-244	spontaneous	absolute yields of Mo-99, Ba-140	54
Cf-249	thermal	7 indep. + 32 cumul. yields	<u>123</u>
Cf-252	spontaneous spontaneous spontaneous spontaneous spontaneous	mass resolution correction light particle yields rel. α yield angular momentum (indep. isomer ratio) cumul.yield, short lived Ru isotopes isotopic yields of Tc isotopes	5 24 54 56 57

1.2. Neutron reaction cross sections

nuclide	neutron energy	reaction	page
Br-79	below 10 keV 25 keV	res. pars. (n,γ) maxwellian average	70 <u>39</u>
Br-81	below 15 keV 25 keV	res. pars. (n, _Y) maxwellian average	70 <u>39</u>
Kr-80	4-300 keV	(n, _Y), total	36
Kr-82	1 eV-1.5 keV	res. pars. (transmission)	(33)
Kr-83	1 eV-1.5 keV	res. pars. (transmission)	(33)
Kr-84	1 eV-1.5 keV	res. pars. (transmission)	(33)
Kr-86	1 eV-1.5 keV 4-300 keV up to 400 keV 2.6-2000 keV	res. pars. (transmission) (n, γ), total neutron cross section study (n, γ)	(33) 36 84 <u>110</u>
Rb-85	below 17 keV 25 keV	res. pars. (n, _Y) maxwellian average	70 <u>39</u>
Rb-87	below 100 keV 25 keV	res. pars. (n, _Y) maxwellian average	70 <u>39</u>
Sr-86	3-200 keV	(n, _Y), res. pars.	4
Sr-87	3-200 keV	(n, _Y), res. pars.	4
Sr-88	fast 3-200 keV up to 300 keV	capture _Y -spectrum (n, _Y), res. pars. res. pars.	4 4 4
Y-89	3-200 keV 47 keV-20 MeV 0.8-4.5 MeV 0.5-4.5 MeV 1.5-4.0 MeV	(n,γ), res. pars. total total (n,γ) elastic	4 98 97 <u>100</u> <u>97</u>
Zr	47 keV-20 MeV 0.5-4.0 MeV 1.5-4.0 MeV	total (n,γ) elastic	98 <u>100</u> <u>97</u>
Zr-90	3-200 keV	(n, _Y), res. pars.	4
Zr-91	3-200 keV	(n, _Y), res. pars.	4
Zr-92	3-200 keV	(n, _Y), res. pars.	4
Zr-94	thermal+30 keV 3-200 keV	(n, γ) (n, γ) , res. pars.	99 4

nuclide	neutron energy	reaction	page
Zr-96	thermal+30 keV up to 35 keV	(n,γ) res. pars.	99 4
ND-93	30+500 keV 47 keV-20 MeV 0.8-4.5 MeV 1.5-4.0 MeV	(n, _Y) total total elastic	(102) 98 97 <u>97</u>
Мо	47 keV-20 MeV 0.5-4.0 MeV 1.5-4.0 MeV	total (n,γ) elastic	98 100 <u>97</u>
Mo-92	3-200 keV	(n,y), res.pars.	<u>4</u>
Mo-94	3-200 keV	(n,y), res.pars.	4
Mo-95	fast 3-200 keV	RAPSODIE, mass-spec., absorption (n, γ) , res. pars.	49 4
Mo-96	3-200 keV	(n,y), res. pars.	4
Mo-97	fast 3-200 keV	RAPSODIE, mass-spec., absorption (n, γ) , res. pars.	49 4
Mo-98	thermal+30 keV fast 3-200 keV	(n, γ) RAPSODIE, mass-spec., absorption (n, γ) , res. pars.	99 49 4
Mo-100	thermal+30 keV 3-200 keV	(n,γ) (n,γ), res.pars.	99 <u>4</u>
Tc-99	4.5-24 eV 2.6-2000 keV	res. pars. (transmission) (n, _Y)	(33) 110
Ru-100	fast	RAPSODIE, mass-spec., absorption	49
Ru-101	fast	RAPSODIE, mass-spec., absorption	49
Ru-102	fast	RAPSODIE, mass-spec., absorption	49
Ru-104	fast	RAPSODIE, mass-spec., absorption	49
Rh-103	47 keV-20 MeV 0.8-4.5 MeV 1.5-4.0 MeV	total total elastic	98 97 <u>97</u>
Pd	47 keV-20 MeV 0.8-4.5 MeV 1.5-4.0 MeV	total total elastic	98 97 <u>97</u>
Pd-104	up to 500 keV	(n, _Y)	(15)

	1.2	Neutron	reaction	cross	sections	(cont'd)
--	-----	---------	----------	-------	----------	----------

nuclide	neutron energy	reaction	page
Pd-105	up to 500 keV	(n, _Y)	15
Pd-106	fast up to 500 keV	RAPSODIE, mass-spec., absorption (n, γ)	49 15
Pd-108	fast up to 500 keV	RAPSODIE, mass-spec., absorption (n, γ)	49 15
Pd-110	fast up to 500 keV	RAPSODIE, mass-spec., absorption (n, γ)	49 15
Ag	47 keV-20 MeV 0.5-4.0 MeV 1.5-4.0 MeV	total (n,γ) elastic	98 <u>100</u> <u>97</u>
Ag-107	1.5 eV-7 keV 3.3-700 keV 2.6-2000 keV	res. pars. (n,γ) (n,γ)	70 69 110
Ag-109	1.5 eV-7 keV 3.3-700 keV 2.6-2000 keV	res. pars. (n,γ) (n,γ)	70 69 110
Cd	47 keV-20 MeV 0.5-4.0 MeV 1.5-4.0 MeV	total (n,γ) elastic	98 <u>100</u> <u>97</u>
Cd-106	3-200 keV	(n,γ), res.pars.	<u>4</u>
Cd-108	3-200 keV	(n, _Y), res.pars.	<u>4</u>
Cd-110	fast 3-200 keV	(n,γ) to Cd-111m (n,γ), res. pars.	99 4
Cd-111	3-200 keV	(n,γ), res. pars.	<u>4</u>
Cd-112	3-200 keV	(n,γ), res. pars.	4
Cd-113	3-200 keV	(n,γ), res. pars.	4
Cd-114	3-200 keV	(n,γ), res. pars.	4
Cd-116	3-200 keV	(n,γ), res. pars.	<u>4</u>
In	47 keV-20 MeV 0.8-4.5 MeV 0.5-4.0 MeV 1.5-4.0 MeV	total total (n,γ) elastic	98 97 <u>100</u> <u>97</u>
In-113	fission spec.	Cf-252 source, (n,n')In-113m	75

- xiv -

nuclide	neutron energy	reaction	page
In-115	fission spec. 2-10 MeV	Cf-252 source, (n,n')In-115m (n,y)	75 85
Sn	47 keV-20 MeV 0.8-4.5 MeV 1.5-4.0 MeV	total total elastic	98 97 <u>97</u>
Sb	47 keV-20 MeV 0.8-4.5 MeV 0.5-4.0 MeV 1.5-4.0 MeV	total total (n,γ) elastic	98 97 100 <u>97</u>
Sb-123	unspecified	transmission and capture	70
Te-125	fast	RAPSODIE, mass-spec., absorption	49
Te-126	fast	RAPSODIE, mass-spec., absorption	49
Te-128	fast	RAPSODIE, mass-spec., absorption	49
I-127	2.6-2000 keV	(n, _Y)	110
I-129	1 eV-1.5 keV 2.6-2000 keV	res. pars. (transmission) (n, _Y)	(33) 110
Xe-124	30 keV	(n, _Y)	36
Xe-132	30 keV	(n, _Y)	36
Xe-134	30 keV	(n, _Y)	36
Xe-136	2.6-2000 keV	(n, _Y)	110
Cs-133	fast 2.6-2000 keV	RAPSODIE, mass -spec., absorption (n, _Y)	49 110
Ba-134	3-200 keV	(n, _Y), res. par s .	4
Ba-135	3-200 keV	(n, _Y), res. par s .	4
Ba-136	3-200 keV	(n, _Y), res. pars.	4
Ba-137	1.5 eV-100 keV 3-200 keV	(n,γ) (n,γ), res. p ars.	69 <u>4</u>
Ba-138	3-200 keV	(n, _Y), res. pars.	4
La-139	fast fast below 2.5 keV 0.5-4.0 keV 3-200 keV	capture y spec trum RAPSODIE, mass-spec., absorption res. pars. (n,y) (n,y), res. p ars .	4 49 69 <u>100</u> 4

nuclide	neutron energy	reaction	page
Ce-140	3-200 keV	(n, _Y), res. pars.	4
Pr-141	fast fast 3-200 keV	capture γ -spectrum RAPSODIE, mass-spec., absorption (n, γ), res. pars.	4 49 4
Nd-142	3-200 keV 6-250 keV	(n,γ), res. pars. (n,γ)	4 <u>39</u>
Nd-143	fast fast 3-200 keV 6-250 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral (n,γ) (n,γ) , res. pars. (n,γ)	49 (106) <u>4</u> <u>39</u>
Nd-144	fast fast 3-200 keV 6-250 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral (n,ץ) (n,ץ), res. pars. (n,ץ)	49 (106) 4 <u>39</u>
Nd-145	fast 3-200 ke¥	CFRMF, EBR-II, integral (n,ץ) (n,ץ), res. pars.	(106) <u>4</u>
Nd-146	fast fast 3-200 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral (n,γ) (n,γ) , res. pars.	49 (106) 4
Nd-147	thermal 4-250 keV	effective capture cross section (n, _Y) deduced from Sm-148,149,150	<u>20</u> <u>38</u>
Nd-148	fast fast 3-200 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral (n,ץ) (n,ץ), res. pars.	49 (106) 4
Nd-150	fast	CFRMF, EBR-II, integral (n, _Y)	(106)
Pm-147	4-250 keV	(n, _Y), deduced from Sm-148,149,150	38
Pm-148	4-250 keV	(n, _Y), deduced from Sm-148,149,150	38
Sm-147	fast fast	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral (n, γ)	49 (106)
Sm-148	4-250 keV	(n, _Y)	38
Sm-149	fast fast up to 500 keV 4-250 keV	RAPSODIE, mass-spec., absorption CFRMF, EBR-II, integral (n,ץ) (n,ץ) (n,ץ)	49 (106) 15 <u>38</u>
Sm-150	4-250 keV	(n, _Y)	38

nuclide	neutron energy	reaction	page
Sm-151	4-250 keV	(n, _Y) deduced from Sm-148,149,150	<u>38</u>
Sm-152	30 ke¥	(n, _Y)	36
Sm-154	30 ke¥	(n, _Y)	36
Eu	0.5-4.0 keV	(n, _Y)	<u>100</u>
Eu-151	fast 2.6-2000 keV 48.5 keV	CFRMF, EBR-II, integral (n, γ) (n, γ) (n, γ) to 9.3 h isomer	(106) <u>-110</u> <u>36</u>
Eu-152	fast	CFRMF, EBR-II, integral (n, _Y)	(106)
Eu-153	fast 2.6-2000 keV	CFRMF, EBR-II, integral (n, _Y) (n, _Y)	(106) <u>110</u>
Eu-154	fast	CFRMF, EBR-II, integral (n, _Y)	(106)
Gd	0.5-4.0 ke¥	(n, _Y)	<u>100</u>
Gd-152	30 keV	(n, _Y)	36
Gd-155	10 eV-200 keV	(n, _Y)	<u>69</u>
Gd-157	10 e V-200 keV	(n, _Y)	<u>69</u>
Gd-158	30 ke¥	(n, _Y)	36
Tb-159	0.5-4.0 ke¥	(n, _Y)	<u>100</u>
Dy	0.5-4.0 ke¥	(n, _Y)	<u>100</u>
Dy-162	14 MeV	(n,p)	<u>18</u>
Er	0.5-4.0 keV	(n, _Y)	<u>100</u>
FP *)	unspecified 1 eV-1.5keV	comparative measurements res. pars. (transmission)	
Many +)	thermal	(n,α), systematic study	8

- *) gross FP-mixtures
- +) several reactions not specified in detail

1.3. Decay data

FP	data type	page
Zn-75	nucl. spectroscopy	83
Zn-77	nucl. spectroscopy	83
As-77	E _Y , I _Y , I _{KX} (absol.) E _Y , I _Y , I _{KX} (absol.)	(29) 30
As-78	E_{γ} , I_{γ} , decay-scheme	22
Br-82	T _{1/2}	19
Br -88	Ι _γ	<u>124</u>
Kr-85	Ι _γ (absolute)	19
Kr-90	Ι _γ	<u>124</u>
Rb-88	Q _в Q _в , в-spec.	42 102
Rb-89	Q _β	42
Rb-90	Q _β	42
Rb-91	Q _β	42
Rb-92	Q _β	42
Rb-93	Q _β	42
Rb-94	β-decay energy Q _β Q _β , β-spec	40 42 102
Rb-95	T _{1/2} , γ-, ce-spec. β-decay energy Q _β	43 <u>40</u> 42
Rb-96	в-decay energy Q _в Q _в , в-spec	40 42 102
Rb-97	T _{1/2} , γ-, ce-spec. β-decay energy Q _β	43 <u>40</u> 42
Rb-98	T _{1/2} , γ-, ce-spec. β-decay energy Q _β , β-spec	43 40 102

FP	data type	page
Rb-99		(102)
	1/2 0	
Sr-90	β-spectr. β-spectr., Ε _β	$\frac{11}{93}$
Sr-93	T _{1/2}	<u>72</u>
Sr-94	T _{1/2} β-,γ- singles, coinc.	72 <u>74</u>
Sr-95	T _{1/2} , y-, ce-spec.	43
Sr-97	T _{1/2,γ} -, ce-spec.	43
Sr-98	γ-angular correl.	102
Sr-99	T _{1/2,γ} -, ce-spec. T _{1/2,γ} -singl.+coinc	43 <u>102</u>
Sr-100	T _{1/2} ,γ-, ce-spec.	<u>43</u>
Sr-101	T _{1/2} ,γ-, ce-spec.	<u>43</u>
Y-90	β-spec. β-spec. E _β	$\frac{11}{93}$
Y-100	T _{1/2,γ} -, ce-spec.	<u>43</u>
Y-102	γ-singles, coinc.	<u>34</u>
Zr-95	E _Y , I _Y , I _{KX} (absol.)	29
Zr-97	γ-angular correl.	<u>102</u>
Zr-99	Ι _γ	<u>124</u>
Zr-100	Ι _γ	<u>124</u>
Nb-93m	T _{1/2} ,ce,x-rays	<u>14</u>
Nb-95	T _{1/2}	19
Nb-99	Ι _γ	<u>124</u>
Nb-101	Ι _γ	<u>124</u>
Nb-102	Ι _γ	<u>124</u>
L		

1.3. Decay data (cont'd)

FP	data type	page	F
Nb-103	γ-singles+coinc.	<u>35</u>	Ag
Nb-105	γ-singles+coinc.	<u>35</u>	Ag
Nb-106	γ-singles+coinc.	<u>34</u>	Ag
Mo-99	Ι _γ Ε _γ	60 (105)	Ag
Тс	T _{1/2} , γ-spec., short lived isotopes	79	Ag
Tc-99m	$T_{1/2}$, I_{γ} (absol.)	19	Cd
Tc-103	_	70	Cd
10-103	Ε _γ , Ι _γ , γ-γ, Ι _β Ι _γ	<u>78</u> <u>124</u>	Cd
Ru	T _{1/2} , γ-spec., short lived isotopes	79	Cd-
Ru-106	Ε _γ , Ι _γ , Ι _{ΚΧ} (absol.)	29	Cd
Rh	T _{1/2} , γ-spec., short lived isotopes	79	In-
Rh-106	E _γ , I _γ , I _{KX} (absol.)		In-
Pd	$T_{1/2}$, γ -spec., short		In-
	lived isotopes		In-
Pd-109	T _{1/2}	19	Sn-
Ag-108m	Ε _γ , Ι _γ , Ι _{ΚΧ} (absol.)	29	Sn-
Ag-108	Ε _γ , Ι _γ , Ι _{ΚΧ} (absol.)	29	Sn-
Ag-110m	γ singles + coinc. E _γ , I _γ , I _{KX} (absol.)	32 29	A=
Ag-110	γ singles + coinc.	32	Sn-
Ac-114	E_{γ} , I_{γ} , I_{KX} (absol.)	29 83	Sb-
Ag-114	nucl. spectroscopy		Sb-
Ag-115	Q _β nucl. spectroscopy	81 83	
Ag-116	Q _g nucl. spectroscopy	81 83	Sb-

FP	data type	page
Ag-117	Q _β	81
Ag-118	Q _β	81
Ag-119	Q _β	81
Ag-120	Q _B	81
Ag-121	Q_{β} nucl. spectroscopy	81 (84)
Cd-119	Q _β	81
Cd-120	Q _{βn}	81
Cd-121	Q_{β} nucl. spectroscopy	81 83
Cd-122	γ-spectroscopy	<u>102</u>
Cd-124	γ-spectroscopy	<u>102</u>
In-115m	T _{1/2} , Ι _γ (absol.)	19
In-131	nucl. spectroscopy	(84)
In-132	T _{1/2} , _Y -spectroscopy	<u>87</u>
In-133	T _{1/2,Y} -spectroscopy	<u>88</u>
Sn-119	level T _{1/2}	<u>12</u>
Sn-124	γ-angular correl.	102
Sn-129	T _{1/2} , _Y -spectroscopy	3
A=133	decay properties	(45)
Sn-133	nucl. spectroscopy	84
Sb-121	level T _{1/2}	12
Sb-125	E _γ , I _γ , X-rays E _γ , I _γ , I _{KX} (absol.) I _γ I _γ	(27) 29 <u>61</u> 68
Sb-129	T _{1/2,γ} -spectroscopy	3

1.3. Decay data (cont'd)

FP	data type	page
I-131	E _y , I _y , I _{KX} (absol)	29
I-132	Ε _γ , Ι _γ , Ι _{KX} (absol)	29
I-139	nucl. spectroscopy	83
I-140	nucl. spectroscopy	83
Xe-133	T _{1/2}	19
Xe-139	Ι _γ	<u>124</u>
Xe-140	Ι _γ	<u>124</u>
A=124	I,(rel.), short lived isobars	45
A=143	I,(rel.),short lived isobars	45
A=144	I,(rel.), short lived isobars	45
Cs	Q _β , β-spectr., Cs isotopes	(102)
Cs-133	level T _{1/2}	<u>12</u>
Cs-134m	T _{1/2}	19
Cs-134	T _{1/2}	19
Cs-137	$T_{1/2}, I_{\gamma}(absol.)$ $E_{\gamma}, I_{\gamma}, I_{KX}(absol)$ β -spec., E_{β}, I_{β}	19 29 <u>94</u>
Cs-138	Q _β	42
Cs-139	Q _β	42
Cs-140	Q _β	42
Cs-141	Q _β γ-singles, coinc.	42 (102)
Cs-142	β-decay energy Q _β	<u>40</u> 42
Cs-143	β-decay energy Q _β	<u>40</u> <u>42</u>

,

FP	data type	page
Cs-144	β-decay energy Q _β	40 42
Cs-145	T _{1/2,γ} -singl+coinc β-decay energy Q _β ce ⁺ γ decay scheme	102 40 42 63
Cs-146	β-decay energy Q _β	<u>40</u> 42
Cs-147	T _{1/2} , γ-spec.	(102)
A=146	I _y (rel),short lived	45
A=147	I _y (rel),short lived	45
Ba-137m	T _{1/2}	19
Ba-140	Ε _γ , Ι _γ , Ι _{ΚΧ} (absol)	(29)
Ba-143	T1/2 Ι _γ	72 124
Ba-144	β-,γ-singles+coinc. γ angular correl. Ι _γ	$\frac{102}{102}$ 124
Ba-145	T _{1/2,Y} -singl+coinc	<u>102</u>
Ba-146	γ angular correl. β-,γ-singles	<u>102</u> (102)
Ba-147	T _{1/2,γ} -,ce-spectr. T _{1/2,γ} -singl+coinc	<u>43</u> (102)
Ba-148	T _{1/2,γ} -,ce-spectr. β-,γ-singles+coinc	43 (102)
Ba-149	T _{1/2,γ} -,ce-spectr.	<u>43</u>
La-140	E _y , I _y , I _{KX} (absol)	(29)
La-142	β-,γ-singels+coinc.	(102)
La-144	β-,γ-singles+coinc. Ι _γ	(102) <u>124</u>
La-146	β-,γ-singles+coinc. Q _β , β-spec.	(102) <u>102</u>

1.3. Decay data (cont'd)

FP	data type	page
La-147	$T_{1/2,\gamma}$, ce-spectr. γ -singles, coinc.	43 (102)
La-148	$T_{1/2,\gamma}$, ce-spectr. $T_{1/2,\gamma}$ -spectr. Q_{β} , β -spectr.	<u>43</u> (102) <u>102</u>
Ce-141	T _{1/2} ,I _y (absol.)	19
Ce-142	Y angular correl.	<u>102</u>
Ce-143	Ι _γ (absolute)	<u>104</u>
Ce-144	E_{γ} , I_{γ} , I_{KX} (absol) E_{γ} , I_{γ} , I_{KX} (absol) γ angular correl.	29 <u>31</u> <u>102</u>
Ce-146	Ι _γ (absolute)	104
Ce-147	$T_{1/2}$, E_{γ} , I_{γ}	76
Ce-149	nucl. spectroscopy	<u>84</u>
Ce-150	nucl. spectroscopy	<u>84</u>
Pr-144	Ε _γ , Ε _γ , Ι _{KX} (absol)	29
Pr-148	β-,γ-singles,coinc.	(102)
Pr-150	β-,γ-singles+coinc.	<u>102</u>
Pr-152	T _{1/2} ,γ-,ce-spectr. β-,γ-singles+coinc.	<u>43</u> <u>102</u>
Nd-154	β-, _Y -singles,coinc.	<u>102</u>
Pm-152	$T_{1/2}, I_{\gamma}, I_{\beta}$	<u>103</u>
Pm-153	T _{1/2} , Ι _γ , Ι _β	<u>102</u>
Pm-154	T _{1/2} , Ι _γ , Ι _β	<u>102</u>
Pm-155	T _{1/2} , E _γ , I _γ	<u>103</u>
Eu-152	T _{1/2} ce: k/lm ratio	19 <u>13</u>
Eu-160	T _{1/2}	<u>103</u>
Gd-162	comments on decay	103

FP	data type	bage
Gd-163	decay properties	103
Tb-165	T _{1/2} , E _Y , I _Y	103
Dy-168	T _{1/2} , E _y , I _y	103
Many	transition life times γ branching decay scheme studies	65 82 90

1.4. Delayed neutron (del-n) data	1.4.	Delayed	neutron	(de1-n)	data
-----------------------------------	------	---------	---------	---------	------

					-
	FP	data type	page	FP	
	As-85	E-spec., avg. E _n	47	Sr-98	T _{1/2} T _{1/2}
	Br	P _n , Br precursors	102	Sr-99	T _{1/2} T _{1/2}
	Br-87	E-spec., avg. E _n	47	Y	P _n (Y
	Br-88	E-spec., avg. E _n	47	Y-97	T _{1/2}
	Br-89	E-spec., avg. E _n P _n	47 <u>87</u>	Y-98	T1/2
	Br-90	E-spec., avg. E _n	47	1-30	T _{1/2}
		Pn	87	Y-99	T _{1/2}
	Br-91	E-spec., avg. E _n P _n	47 <u>87</u>	Ag	Τ <u>1/2</u> Ρ _n ,Α
	Br-92	E-spec., avg. E _n Pn	47 <u>87</u>	Ag-121	T _{1/2}
	Kr	P _n , Kr precursors	102	Ag-122	T1/2
	Rb	P _n , Rb precursors	102	Ag-123	T _{1/2}
	Rb-92	E-spec., avg. E _n	47	Ag-124	T1/2
	Rb-93	E-spec., avg. E _n	47 102	In	P _n ,
		E-spec.		In-127	T1/2
	Rb-94	E-spec., avg. E _n E-spec.	47 102	In-128	T _{1/2}
	D L OF	P _n	73	In-129	T1/2
	Rb-95	E-spec., avg. E _n E-spec.	47 102	In-130	T _{1/2}
		P _n	73	In-132	dn s
	Rb-96	E-spec., avg. E _n 	47	In-133	dn s
	Rb-97	E-spec., avg. E _n	47	Sb-135	E-sp
	Rb-98	E-spec., avg. E _n	47	Te-136	E-sp
	Sr-97	T _{1/2} , P _n T _{1/2} , P _n , avg. E	48 114	I	Pn,
1				ŧ	

FP	data type	page	
Sr-98	^T 1/2, ^P n T _{1/2} , P _n , avg. E	48 114	
Sr-99	T _{1/2} , P _n T _{1/2} , P _n , avg. E	48 114	
Y	P _n (Yttrium isotopes)	(80)	
Y-97	T _{1/2} , P _n T _{1/2} , P _n , avg. E	48 114	
Y-98	T _{1/2} , P _n T _{1/2} , P _n , avg. E	48 114	
Y-99	T _{1/2} , P _n T _{1/2} , P _n , avg. E	48 114	
Ag	P _n ,Ag precursors	<u>102</u>	
Ag-121	T _{1/2} , P _n , avg. E	<u>114</u>	
Ag-122	T _{1/2} , P _n , avg. E	<u>114</u>	
Ag-123	T _{1/2} , P _n , avg. E	<u>114</u>	
Ag-124	T _{1/2} , P _n , avg. E	<u>114</u>	
In	P _n , In precursors	<u>102</u>	
In-127	T _{1/2} , P _n , avg. E	<u>114</u>	
In-128	T _{1/2} , P _n , avg. E	<u>114</u>	
In-129	T _{1/2} , P _n , avg. E	<u>114</u>	
In-130	T _{1/2} , P _n , avg. E	<u>114</u>	
In-132	dn spectrum	<u>87</u>	
In-133	dn spectrum	<u>88</u>	
Sb-135	E-spec., avg. E _n	47	
Te-136	E-spec., avg. E _n	47	
I	P _n , I precursors	<u>102</u>	r

-

FP	data type	page	FP	data type	page
I-137	E-spec., avg. E _n	47	Cs-147	E-spec., avg. E _n	47
I-138	E-spec., avg. E _n	47	Ba-146	T _{1/2} , P _n , avg. E	114
I-139	E-spec., avg. E _n	<u>47</u>	Ba-147	T _{1/2} , P _n T _{1/2} , P _n , avg. E	73 1 14
I-140 I-141	E-spec., avg. E _n E-spec., avg. E _n	<u>47</u> <u>47</u>	Ba-148	T _{1/2} , P _n T _{1/2} , P _n , avg. E	73 114
Xe	P _n , Xe precursors	102	La-146	T _{1/2} , P _n , avg. E	114
Cs Cs-141	P _n , Cs precursors E-spec., avg. E _n	<u>102</u> 47	La-147	T _{1/2} , P _n Pn T _{1/2} , P _n , avg. E	73 (80) 114
Cs-142	E-spec., avg. E _n	47	La-148	T _{1/2} , P _n T _{1/2} , P _n , avg. E	73 114
Cs-143	E-spec., avg. E _n	47	Ce-147	Pn	(80)
Cs-144	E-spec., avg. E _n	47	Ce-149	Pn	(80)
Cs-145	E-spec., avg. E _n	47	Pr-147	P _n	(80)
Cs-146	E-spec., avg. E _n	47	Pr-149	Pn	(80)

1.4. Delayed neutron (del-n) data (cont'd)

nuclide	neutron energy	data type	page
U-235	thermal	group spec.(time)	46
	thermal	time depend. E-spec.	47
	monoenergetic	equil. spectra	95
	0 - 3.6 MeV	energy spec.(time)	116
Pu-239	monoenergetic	equil. spectra	95
	0 - 3.6 MeV	energy spec.(time)	116
Many		group spec.(time)	46

1.5. Decay heat

nuclide	neutron energy	reaction	page
Th-232	fast	β, γ, total	77
	14 MeV	β, γ, total	<u>77</u>
U(nat.)	fast	β, γ, total	<u>77</u>
U-233	fast	β, γ, total	77
U-235	thermal	total	23
	thermal	sum-β-spectra	40
	thermal	fragment β-spec.	<u>118</u>
	fast	β, γ, total	77
V-238	fast	β, γ, total	77
	14 MeV	β, γ, total	<u>77</u>
Pu-239	thermal	sum-β-spectra	40
	thermal	fragment β-spec.	118
	fast	β, γ, total	(80)

COMPILATIONS AND EVALUATIONS

data category	further specifications	page
fission yields	charge distr., U-236, Cf-252 spont. fission selected compil. f. reactor dosimetry compilation (Crouch for UKND-file) complete eval. (Crouch for UKND-file) evaluated file (ENDF/B-V,VI) eval. file (ENDF/B-V,VI) eval. file (ENDF/B-VI, formerly Rider) summary of data contained in ENDF/B-V indep. yields, charge distrib. predicted mass yields vs En, U-233,35,38	133 140 (141) (142) (147,148 150 151 (155) 156
cross sections	Cs-133 eff. reson. integral integral fast capture, calc. + measured critical intercomparison, Gd isotopes new evaluation of Pd-105,107 capt, scat, total, model calcs., Nb, Rh capture, model calcs. several FPs integral test of JENDL-2 FP library evaluation: 80 FP (Z=35-64) for JENDL-2 RCN-2, RCN-3 evaluation, integral tests pseudo-FP 26 group cross sections evaluated file (ENDF/B-V,VI) summary of data contained in ENDF/B-V thermal + resonance data, Pm isotopes	(130) 132 134 134 134 134 134 136,137 136,137 138,139 138,139 (147,148 151 157
decay data	Nuclear Data Sheets for A=102,105,110 compil. + eval., all data, French file $T_{1/2}$, decay scheme data (42 FP) compilation, gamma-ray catalog compil. + eval. (JNDC) for decay heat calc. selected compil. f. reactor dosimetry complete file (UK working group) evaluated file (ENDF/B-V,VI) all data, compilation for ENDF/B-V summary of data contained in ENDF/B-V eval. of beta radiation data, 536 FP compil. of gamma radiation data, 536 nucl.	127 (128) 129 131 135 140 144,145 (147,148 149 151 153 153,154
delayed neutrons	compilation (JNDC) for decay heat calc. $T_{1/2}$, P_n , del-n yield (UKND-file) eval., equilibrium spectra total spectra from precursor data evaluated and calculated spectra	(135) (143) 146 (147,148 <u>152</u>
decay heat	evaluation (JNDC working group) fitted functions for U-235, 238, Pu-239	135 144,145

•

2.

I. MEASUREMENTS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.

ARGENTINE

Departamento de Física Laboratory: Comisión Nacional de Energía Atómica Av. del Libertador 8250 1429 Buenos Aires, Argentina On-line electromagnetic isotope separator Facilities: coupled with a neutron generator for 235 U(n_{+h},f) products studies (IALE facility). H.Huck, M.L.Pérez and J.J.Rossi Names: Half lives and partial decay schemes for the Experiment: 129 Sn (2.4 min) and 129 Sn (6.9 min) and 129 Sb isotopes were established. The ²³⁵U thermal fission products were Method: electromagnetically separated and mass 129 collected on a movable tape collector. Half lives determinations were performed by multiscaling the gamma-spectra. Growing-decay curves were taken in order to assign a new half-life no previously reported. Gamma-ray energies and intensities as well as gammagamma coincidences were used to construct the decay schemes. Varying Accuracy: Completion date: Completed Publications: Phys. Rev. C26 (Aug. 1982) 621. CNEA NT 5/82 pag b.49, Progress Report 1980-1981, Department of Physics CNEA, Buenos Aires, Argentina.

AUSTRALIA

	Laboratory and address:	Australian Atomic Energy Commission, Research Establishment, Lucas Heights Research Laboratories, Lucas Heights, NSW 2234, Australia.
	Names:	J.W. Boldeman, B.J. Allen, D.W. Lang, R.L. Walsh
	Facilities:	3 MeV Van de Graaff accelerator, HIFAR and Moata reactors.
1.	Experiment:	Collaborative measurements with ORNL of neutron capture cross sections in the fission product mass region.
	Publications:	"Resonance Neutron Capture in ^{8 6,87} Sr". G.C. Hicks ^(b) , B.J. Allen, A.R. de L. Musgrove, R.L. Macklin ^(a) Aust.J.Phys. 35 (1982) 267.
		"Stable Isotope Capture Cross Sections from the Oak Ridge Linear Accelerator - Part II"
		B.J. Allen, J.W. Boldeman, R.L. Macklin, Nucl.Sci.Eng. 82 (1982) 230 (for list of nuclides see next page).
2.	Experiment:	Collaborative Measurements with C.B.N.M. of High Resolution Neutron Capture Cross Sections.
	Method:	$C_{g}D_{6}, C_{6}F_{6}$ detector at 30, 60 m flight path at GELINA.
	Publications:	"Failure of Valence Neutron Capture in ⁹⁶ Zr". A. Brusegan ^(C) , F. Corvi ^(C) , G. Rohr ^(C) , B.J. Allen. Fourth Int. Symp. on Neutron Capture Gamma-Ray Spectroscopy and Related Topics (1981), Grenoble.Ed. T. Von Egidy and F. Gonnenwein - Adam Hilger, p. 406
		"Search for Valence Effects in p-Wave Capture in ⁸⁸ Sr". B.J. Allen, R. Shelley ^(C) , T. van der Veen ^(C) , A. Brusegan ^(C) , G. Vanpraet ^(d) - ibid. p. 404.
3.	Experiment:	Measurement of fast neutron capture y-ray spectra.
	Method:	NaF detector and pulsed Van de Graaff accelerator.
	Publications:	"Fast Neutron Capture γ -Ray Spectra in ⁸⁸ Sr. B.J. Allen and F.Z. Company ^(e) .
		Fourth Int.Symp. on Neutron Capture Gamma-Ray Spectroscopy and Related Topics (1981), Grenoble.
		Ed. T. von Egidy and F. Gonnenwein - Adam Hilger, p. 398.
		"Average Neutron Capture γ -ray Spectra in ¹³⁹ La and ¹⁴¹ Pr". B.J. Allen and F.Z. Company ^(e) , ibid. p.401.
4.	Experiment:	Relative yields of stable tellurium isotopes in neutron induced fission.
		Measurements of ²³³ U, ²³⁵ U.
	Method:	Mass spectrometer; reactor HIFAR
	Accuracy:	1-5% (relative).
	Completion date:	Completed
	Publication:	J.R. de Laeter ^(f) , K.J.R. Rosman ^(f) and J.W. Boldeman, Aust.J.Phys. <u>35</u> (1982) 385.

AUSTRALIA (cont'd)

Experiment:	Mass yields in neutron fission of ²³⁰ Th. 3 MeV Van de Graaff accelerator: surface barrier detectors. December 1983		
Method:			
Completion date:			
Publication:	J.W. Boldeman and R.L. Walsh, 9th Aust.Inst.Nucl.Science and Eng.Conf., Melbourne, February 1982.		
Experiment:	Mass resolution correction in double-energy fission measurements.		
Method:	Calculation of and correction for mass resolution by operator and iterative methods. For $^{252}Cf(sf)$ and $^{239}Pu(n,f)$.		
Completion date:	Completed		
Publication:	D.W. Lang and R.L. Walsh, Nucl.Inst.Meth., 200 (1982) 389.		
Experiment:	Mass yields and kinetic energies for spontaneous fission and thermal neutron fission of plutonium isotopes (in collaboration with J. Trochon <i>et al.</i> , Bruyères-le-Châtel). Measurements of: ²³⁸⁻²⁴⁴ Pu. Surface barrier detectors		
	June 1984		
Publication:	H. Abou Yehia ^(g) , J.W. Boldeman, Y. Pranal ^(g) , and J. Trochon ^(g) . 4th Aust.Inst.Physics Congress, Melbourne, 1980.		
	Method: Completion date: Publication: Experiment: Method: Completion date: Publication: Experiment: Method: Completion date:		

- (a) Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
- (b) James Cook University, Queensland, Australia
- (c) Central Bureau for Nuclear Measurements, Geel, Belgium
- (d) Rijksuniversitair Centrum, Antwerp, Belgium
- (e) University of Wollongong, NSW, Australia
- (f) Western Australian Institute of Technology, South Bentley, W.A.
- (g) Bruyères-le-Châtel, France.

List of nuclides for first experiment: correction factors for capture cross sections published earlier are giveb for: $^{86-88}$ Sr, 89 Y, $^{90-92,94}$ Zr, $^{92,94-98,100}$ Mo, $^{106,108,110-114,116}$ Cd, $^{134-138}$ Ba, 139 La, 140 Ce, 141 Pr, $^{142-146,148}$ Nd.

BELGIUM

Laboratory and address : : - Nuclear Physics Laboratory Proeftuinstraat 42 B-9000 Gent, Belgium

Names : H.Thierens, A.De Clercq, E.Jacobs, D.De Frenne, P.D'hondt, P.De Gelder and A.J.Deruytter.

Facilities : Linear Electron Accelerator, Gent Reactor BR1, SCK/CEN Mol

Experiment : Kinetic energy and fragment mass distributions for 240,242 , 244 Pu sf, 239,241 Pu(n_{th},f) and 240,242,244 Pu(γ ,f).

Method : Measured : photofission yields, fragment kinetic energies ; deduced : $\sigma(\gamma, f)$, kinetic energy- and provisional mass distributions with changing excitation energy of the compound system.

Completion date : 239,240 Pu : November 1980 241,244 Pu : September 1982 242 Pu : February 1983

Publications : -H.Thierens, A.De Clercq, E.Jacobs, D.De Frenne, P.D'hondt, P.De Gelder and A.J.Deruytter, Phys.Rev. <u>C23</u>, 2104 (1981) -H.Thierens, A.De Clercq, E.Jacobs, M.Piessens, P.D'hondt and D.De Frenne, Phys.Rev. <u>C27</u>, 1117 (1983) -H.Thierens et al, to be published in Phys.Rev.C.

BELGIUM

- Laboratory and address : Nuclear Physics Laboratory Proeftuinstraat 42 B-9000 Gent, Belgium - Physikalische Chemie, Philipps-Universität D-3550 Marburg, W.Germany^{a)}
- Names : D.De Frenne, H.Thierens, B.Proot, E.Jacobs, P.De Gelder, A.De Clercq and W.Westmeier^{a)}.

Facilities : Linear Electron Accelerator, Gent.

- $\frac{\text{Experiment}}{\text{fragment spins for}}: \text{Charge and isotopic distribution, isomeric ratios and initial} \\ \text{fragment spins for} \ {}^{235,238} \text{U}(\gamma, f).$
- Method : Measured : fission product γ -ray spectra ; deduced : fractional independent and cumulative yields.

Completion date : beginning 1983.

Publications : - H.Thierens, B.Proot, D.De Frenne and E.Jacobs, Phys.Rev. <u>C25</u>, (1982) 1546
- D.De Frenne, H.Thierens, B.Proot, E.Jacobs, P.De Gelder, A.De Clercq, W.Westmeier, Phys.Rev. C26, 1356 (1982)
- D.De Frenne, H.Thierens, B.Proot, E.Jacobs, P.De Gelder and A.De Clercq, Proc. of the International Conference on Nuclear Data for Science and Technology, 1982 (D.Reidel Publ.Cie, Dordrecht 1982) p.748.

BELGIUM

Laboratory and	:	Nuclear Physics Laboratory, Proeftuinstraat 86,
adress		B-9000 GENT, Belgium
		SCK/CEN, B-2400 MOL, Belgium
		Institut de Physique Nucléaire, 69622 VILLEURBANNE,
		France
		Institut Laue-Langevin, BPN156X, 38042 GRENOBLE,
		France
Names	:	C. Wagemans, E. Allaert, P. D'Hondt, A. Emsallem,
		R. Brissot
Facilities	:	High Flux Reactor, Institut Laue-Langevin, GRENOBLE
Experiments	:	Thermal neutron induced (n, α) reactions on fission
		products.
Method	:	Charged particle detection with surface barrier
		detectors
Completion date	:	Systematic study in progress
Publications	:	P. D'Hondt et al., Proc. Int. Conf. on Nuclear
		Data for Science and Technology, Antwerp 1982, p.147

BELGIUM

(same as INDC(NDS)-130)

Laboratory and	:	Nuclear Physics Laboratory, Proeftuinstraat 86,
adress		B-9000 GENT, Belgium
		SCK/CEN, B-2400 MOL, Belgium
		Institut Laue-Langevin, B.P. N.156X GRENOBLE,
		France
Names	:	P. D'Hondt, C. Wagemans, A. De Clercq, E. Allaert,
		R. Brissot
Facilities	:	High Flux Reactor, Institut Laue Langevin, GRENOBLE
Experiments	:	Absolute yields and energy distributions of the
		charged light particles emitted during the thermal
		neutron induced fission of 233 U, 235 U, 237 Np, 239 Pu and 241 Am
Method	:	The charged particles are identified with surface
		barrier ($\Delta E-E$) telescope detectors
Completion date	:	²³⁵ U completed; other isotopes in progress
Publications	:	1) C. Wagemans et al., Report BLG 539 (1980)
		2) P. D'Hondt et al., Nucl. Phys. <u>A 346</u> (1980) 461
		3) C. Wagemans et al., Nucl. Phys. <u>A 369</u> (1981) 1

E.E.C. BELGIUM

Laboratory and	:	CEC - JRC, Central Bureau for Nuclear Measurements,
address		B-2440 GEEL, Belgium
		SCK/CEN, B-2400 MOL, Belgium
Names	:	C. Wagemans, E. Allaert, G. Wegener-Penning, A.J. Deruytter
Facilities	:	Neutron time-of-flight spectrometer at the 150 MeV Linac
		Thermal neutron beam at the Reactor BR1
Experiments	:	Fission fragments kinetic energy and mass distribution for 238 Pu (s.f.), 239 Pu (n _{th} ,f), 240 Pu (s.f.), 241 Pu (n _{th} ,f),
		242 Pu (s.f.) and 244 Pu (s.f.)
Method	:	CoIncident fission fragments detected with surface barrier
		detectors. Deduced fragment mass and energy distributions
Publications	:	E. Allaert et al., Nucl. Phys. <u>A380</u> (1982) 61
		E. Allaert et al., Verhandl. DPG VI <u>18</u> , 1150 (1983)

E.E.C. BELGIUM

	Laboratory and address	:	CEC-JRC, Central Bureau for Nuclear Measurements, Geel, Belgium •
1.	Names	:	H.H. Hansen .
	Facilities	:	Double focusing magnetic β -ray spectrometer.
	Experiments	:	Determination of decay properties of ${}^{90}\text{Sr}/{}^{90}\text{Y}$: endpoint energies of the β -spectra, spectrum shapes and the ratio of the number of β -particles emitted in both decays.
	Methods	:	Recording of the β -ray spectra by scanning with small equal current increments. Separate treatment of the spectra in the energy regions between 550 and 2200 keV (90 Y decay) and between 100 and 550 keV (90 Sr decay). Shape correction coefficients were deduced from calculations of the spectrum shapes. From the Kurie plots values of the endpoint energies were obtained. After extrapolation of the Kurie plots to energy E = 0, the complete spectra of emitted β -particles have been calculated.
	Accuracies	:	Random and systematic uncertainties have been combined corresponding to a 68 % confidence level : 0.12 and 0.29 % on the endpoint energies of 90 Y/ 90 Sr β -spectra respectively; 30 and 22 % on the skope correction coefficients of the β -spectrum in the 90 Y decay and that in the 90 Sr decay, respectively; 1 % was found on the relative intensities of both β -spectra.
	Publication	:	H.H. Hansen, Int. J. Appl. Radiat. Isot., in press.

- 11 --

		E. E. C. BELGIUM
		(cont'd)
2. Names	:	H.H. Hansen, D. Mouchel, A. Nylandsted Larsen .
Facilities	:	Various scintillation detectors in slow and/or fast
		coincidence arrangements.
Experiments	:	Determination of half lives of excited nuclear levels
		in the nanosecond and microsecond region in 119 Sn, 121 Sb, 133 Cs and 181 Ta.
Methods	:	Measurements were carried out using the method of
		delayed coincidences with a time-to-amplitude
		converter operated in the start-stop mode. In the
		nanosecond time range gitter, drift and walk phenomena
		are serious sources of errors. They have been
		minimized by a careful time pick-off with fast timing
		detectors and electronics. In the microsecond time
		range the ratio of true delayed to chance coincidences
		influences considerably the final accuracy. A series
		of measures have been applied to reduce the chance
		coincidence rate.
Accuracies	•	Random and systematic uncertainties have been combined
needracreb	•	corresponding to a 68 % confidence level. The following
		values were found : 2 % (6.05 μ s level at 6.2 keV in
		¹⁸¹ Ta), 0.4 $\%$ (18.03 ns level at 23.9 keV in ¹¹⁹ Sn),
		0.9 % (3.46 ns level at 37.1 keV in 121 Sb), 0.5 %
		(6.23 ns level at 81.0 keV in ¹³³ Cs), 0.5 % (10.67 ns
		level at 482.2 keV in 181 Ta) and 0.8 % (17.64 μ s level at
		615.3 keV in ¹⁸¹ Ta).
Publication s	•	A. Nylandsted Larsen, D. Mouchel and H.H. Hansen,
		Z. Phys. A294, 191 (1980)
		D. Mouchel, A. Nylandsted Larsen and H.H. Hansen,
		Z. Phys. A300, 85 (1981)
		H.H. Hansen, D. Mouchel and A. Nylandsted Larsen,
		Z. Phys. A305, 347 (1982)
		D. Mouchel and H.H. Hansen, Int. J. Appl. Radiat. Isot.,
		in press.
		•

- 12 -

3. Names	:	H.H. Hansen, D. Mouchel.
Facilities	:	Double focusing magnetic β -ray spectrometer.
Experiments	:	Determination of the internal conversion ratio K/LM+ for four pure E2 transitions in the decays of ¹⁵² Eu and ¹⁹² Ir.
Methods	:	Recording of electron spectra by scanning with small equal current increments. Background events and contributions of the continuous β -spectra have been subtracted. The intensities of the different conversion lines have been obtained by adding the counts registered for the various potentiometer readings.
Accuracies	:	Random and systematic uncertainties have been combined corresponding to a 68 % confidence level : they range between 1.4 and 3.8 %. The agreement between the experimental results and theoretical calculations is very good (within 1 %).
Publication 4	:	H.H. Hansen and D. Mouchel, Int. J. Appl. Radiat. Isot., in press.

E.E.C. BELGIUM

Laboratory and address	:	CEC-JRC, Central Bureau for Nuclear Measurements, Geel, Belgium .
Names	:	D. Reher, R. Vaninbroukx.
Facilities	:	Pressurized 4π proportional counter. Solid state photon and electron spectrometers.
Experiments	:	Determination of decay parameters of ^{93m} Nb : internal conversion data, half life, KX-ray emission probability.
Methods	:	Measurement of the conversion electrons with the pressurized 4π counter and with an open solid state detector. Remeasurement at regular intervals of the KX-ray emission rates from 5 different sources. Measurement of KX-ray emission probability using calibrated photon detectors.
Accuracíes	:	Accuracies corresponding to the 68 % confidence level and taking into account random and systematic uncertain- ties : conversion data : 7 to 17 % half life : 0.9 % KX-ray emission probability : 2.6 %.
Publications	:	D. Reher, Int. J. Appl. Radiat. Isot. <u>33</u> , 537 (1982) R. Vainbroukx, Int. J. Appl. Radiat. Isot., in press.

E.E.C. Belgium

Laboratory and		JRC, CBNM, Geel, Belgium
address	:	* Rijksuniversitair Centrum, Antwerpen, Belgium
Names	:	A. Brusegan, E. Cornelis, F. Corvi, G. Rohr, R. Shelley, T. van der Veen, G. Vanpraet
Facilities	:	Neutron time-of-flight spectrometer at the 150 MeV
		Linac (pulse width : 4 nsec)
Experiments	:	Neutron capture cross sections for ¹⁰⁴ , 105, 106, 108, ¹¹⁰ Pd and ¹⁴⁹ Sm up to 500 keV
Methods	:	Capture detectors : $C_{6}D_{6}$ -, $C_{6}F_{6}$ - detectors using
		Maier Leibnitz method
		Neutron Flux detectors : 6 Li-glass and 10 B-slab
Accuracy	:	5-10% in the cross section
Completion date	:	Cross section for ¹⁴⁹ Sm end of 1983
Publication	:	Average Capture Cross Section of the Fission Product Nuclei ¹⁰⁴ , 105, 106, 108, 110 _{Pd} E. Cornelis, G.J. Vanpraet, C. Bastian, G. Rohr, R. Shelley, T. van der Veen
		Nuclear Data for Science and Technology, Antwerpen
		(1982) p. 222

BRASIL

Laboratory and	Instituto de Engenharia Nuclear
address:	Comissão Nacional de Energia Nuclear
	C.P. 2186
	20001 Rio de Janeiro, Brasil.
Names:	A.V. Bellido
Facilities:	Argonaut Reactor
Experiment:	Measurement of fission product yields for ²³⁸ U fission induced by fission spectrum neutrons.
Method:	Separation of the irradiated samples in lanthanide and non-lanthanide fractions. Identification and activity measurements of the fission products by χ - ray spec- trometry. Calculation of cumulative vields by substraction the ²³⁵ U fission contribution and relation of the satura- tion activities for each nuclide, in de- pleted and natural uranium, with the ac- tivities of reference nuclides. (Yields of reference nuclides: ¹⁴² La = 4.95 and ⁹² Sr = 4.10).
Accuracy:	Better than 10%
Completion date:	1983

BULGARIA

Laboratory and	University	of	Sofia,	Faculty	of Phy	vsics,
address :	Department	of	Atomic	Physics,	1126	Sofia,
	Bulgaria					

- 1. Names : E. Dobreva, N. Nenoff
 M. Iovtshev (Institute for Nuclear Research and Nuclear Energy, Sofia)
 - Facility : Experimental reactor of the Institute for Nuclear Research and Nuclear Energy
 - Experiment : Measured yields of ¹³¹I, ¹³²I, ¹³³I and ¹³⁴I for the epicadmium reactor neutron induced fission of ²³⁸U. Deduced fractional independent yields for ¹³²I, ¹³³I and ¹³⁴I; most probable charge for the isobaric chains 132, 133 and 134; yields of precursor nuclides and chain yields for mass 131, 132, 133 and 134 relative to the cumulative yield of ¹³⁵I.
 - Method : Radiochemical separation of I, Ge(Li) j-ray counting. Five independent runs with equal irradiation and different separation time.
 - Accuracy : Between 5 and 10 % ; 28 % for the lowest yield isotope (¹³²I).

Completion date : November 1979

BULGARIA

(cont'd)

Publications :	1. E. Dobreva, V. Gadjokov, M. Iovtshev,
	N. Nenoff. Annu. Univ. Sofia <u>70-71</u>
	(1979/80) ₁ .
	2. E. Dobreva, N. Nenoff. Radiochem. Radio-
	anal. Letters (submitted).
2. Names:	N. Nenoff et al
Experiment:	Determination of 14 MeV neutron reaction cross sections for:
	$162_{\text{Dy}(n,p)}$ 162_{Tb} , $174_{\text{Yb}(n,p)}$ 174_{Tm} , $176_{\text{Yb}(n,p)}$ 176_{Tm} .
	176 Yb(n, α) 173 Er.
Method:	Activation technique
Completion date:	In progress, only preliminary data obtained.
Publication:	Submitted to Bulg. J. Phys.

CANADA

Laboratory and address:	Chalk River Nuclear Laboratories Chalk River, Ontario Canada KOJ 1JO
Names:	A.R. Rutledge [*] , L.V. Smith and J.S. Merritt [*]
Facilities:	 4πγ ionization chamber 4π gas flow proportional counter 4π β -γ coincidence system scintillation spectrometer Ge(Li) detector Radioisotope standardization laboratory
Experiment:	Half-life values for 82 Br, 95 Nb, 99 Tc ^m , 109 Pd, 115 In ^m , 133Xe, 134Cs, 134Cs ^m , 137Ba ^m , 137Cs, 141Ce and 152Eu. Gamma-ray emission probabilities for 85 Kr, 99 Tc ^m , 115In ^m , 137Cs and 141Ce.
Method:	$4\pi\gamma$ ionization chamber and 4π gas flow proportional counter used for half-lives; $4\pi\gamma$ ionization chamber, $4\pi\beta-\gamma$ coincidence system, and scintillation spectrometer used for γ -ray emission probabilities.
Accuracy:	$T_{\frac{1}{2}}$; ± 1.4% for ¹³⁷ Cs, <± 0.22% for ¹¹⁵ In ^m and ¹⁵² Eu, ± 0.02-0.09% for remainder. P _{γ} ; ± 6.5% for ⁸⁵ Kr; 0.2-0.9% for remainder.
Completion date:	Results published March 1980; part of the work is ongoing. Measurements on 137Cs are preliminary and continuing.
Discrepancies to other data:	1) ¹³⁷ Cs half-life 2.6% shorter.
	2) 85 Kr P _y 6-7% smaller.
Publication:	Decay Data for Radionuclides used for the Calibration of x- and γ-ray Spectrometers. A.R. Rutledge, L.V. Smith and J.S. Merritt, Atomic Energy of Canada Limited, Report AECL-6692, 1980. Also published in: NBS Special Publication No. 626 "Nuclear Data for the Efficiency Calibration of Germanium Spectrometer Systems", D. D. Hopper and F.J. Schima, Editors, National Bureau of Standards, Washington (Jan. 1982) pp. 5-31.

* retired

CANADA

Laboratory and Address:	tomic Energy of Canada Limited Research ompany, Chalk River Nuclear Laboratories, halk River, Ontario, Canada, KOJ 1J0				
Names:	L.W. Green and W.J. Edwards				
Facilities:	NRU Reactor				
Experiment:	Effective Neutron Capture Cross Section of ¹⁴⁷ Nd in a Thermal Reactor.				
Method:	1. Gamma spectrometric determination of depletion of ¹⁴⁷ Nd caused by neutron irradia- tion in NRU. Involves production of ¹⁴⁷ Nd from fission of ²³⁵ U, and separation of Nd.				
	2. Irradiation of ¹⁴⁶ Nd in the NRU reactor for 2 years followed by mass spectrometric determination of the ¹⁴⁸ Nd to ¹⁴⁶ Nd ratio.				
Accuracy:	8%				
Completion dates:	1. 1983 November 2. 1986				

<u>CANADA</u>

Laboratory and address:	Nuclear Research Centre The University of Alberta Edmonton, Alberta Canada T6G 2N5
Names:	S.T. Lam, L.L. Yu, H.W. Fielding, W.K. Dawson G.C. Neilson and J.T. Sample
Facilities:	Subnano-second pulsed beam derived from 7 MV CN van de Graaff accelerator and Mobley magnet. Monoener- getic neutron beam obtained from ³ H(p,n) ³ He and ³ H(d,n) ⁴ He reactions using liquid nitrogen cooled tritium gas cell.
<u>Experiment</u> :	Determination of fission-fragment mass distribution and fission-fragment kinetic energy from fast neu- tron induced fission of 238 U and 232 Th. E _n = 2.0 - 5.2 MeV in steps of about 0.5 MeV for 238 U fission. E _n = 1.6, 3.1 and 5.2 MeV for 232 Th fission. Compa- rison of fission-fragment mass distribution with statistical model calculation. Fission barriers and shell energies deduced.
Method:	Fission fragment detected by Ortec surface barrier heavy-ion detector. Time-of-flight technique em- ployed to measure fragment flight time. Fission- fragment mass distribution and correlation of fragment kinetic energy versus fragment mass derived from data.
Accuracy:	Fragment mass resolution about 5 u. Fragment energy resolution about 2 MeV. A total of about 5000 fission events collected for each neutron energy.
Completion date:	The measurement programme has been completed.
Publication:	"Fast Neutron Induced Fission of ²³⁸ U" S.T. Lam, L.L. Yu, H.W. Fielding, W.K. Dawson G.C. Neilson and J.T. Sample. Phys. Rev. <u>C22</u> , 2485 (1980). Results for ²³² Th in Bull. Am. Phys. Soc. <u>26</u> (1981) 1118. also submitted to Phys. Rev. C

CANADA

Laboratory and address:		University of Toronto Erindale College 3359 Mississauga Road North Mississauga, Ontario Canada L5L 1C6			
Names:		B. Singh [†] , D. Viggars [†] , H. W. Taylor († - University of Kuwait)			
Faciliti	es:	14 MeV neutron generator producing \sim 2 \times 10^{10} n/s through the d,T reaction.			
Experiment:		Study of the decay of 91 m 78 As.			
Method:		Gamma radiations studied with Ge spectrometers, $\gamma-\gamma$ coincidence methods.			
Accuracy	:	γ-ray energy measurements to ≤0.6 keV energy levels in ⁷⁸ Se to ≤0.22 keV.			
Completi	on date:	January 1982.			
Discrepa	ncies to oth	er reported data:			
i)	energy and	intensity determinations have been improved			
ii)		ions with energies of 351.1, 497.0, 637.1, 6, 988.2, 1018.7, 1169.5 and 2758.8 keV have ed.			
iii)	coincidence decay scheme	measurements have produced some revisions of e.			
Publicat		B. Singh, D.A. Viggars and H.W. Taylor Spectroscopy of gamma rays from ⁷⁸ As decay Phys. Rev. C <u>25</u> (April 1982) 2003.			

CHILE

Laboratory and address:	Chilean Nuclear Energy Commission La Reina Nuclear Research Reactor Casilla 188-D, Santiago - Chile			
Facilities:	Research Reactor, Activation Analysis Systems, Calorimetric Lab.			
Experiment:	Precise measurement of the decay heat following irradiation of various uranium samples with slow neutrons.			
Method:	Absolute adiabatic calorimetry. The aim of this work is to check the existing data on uranium decay heat after various irradiation periods. The results will be used to determine the absolute burn-up of the fuel discharged from the research reactors.			
Completion date:	start of measurement delayed.			

<u>Czechoslovakia</u>

Laboratory and Address:	Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Řež Czechoslovakia Nuclear Centre, Faculty of Mathematics and Physics, Charles University, Prague, Povltavská 1, 180 00 Praha 8-Pelc-Tyrolka, Czechoslovakia
Names:	R. Bayer, Z. Dlouhý, J. Švanda, ^{x)} I.Wilhelm,
Facilities:	l. 6 MW - research reactor 2. Self-fission source of 252 Cf
Experiment:	Light particles emission from heavy nuclei fission
M e thod:	A semiconductor $\triangle E-E$ detector telescope and $\triangle E- \triangle E - E$ ionisation chamber are used for particle identification
Results:	The yields and their energy spectra of light particles from the self-fission of 252 Cf have been measured. The yields of ⁶ He, ⁸ He, Li, ⁶ Li, ⁷ Li, ⁸ Li, ⁹ Li, Be relative to emission of 100 alpha particles and their most probable energies were determined.
Accuracy:	The accuracy of yield determination was about 5 - 25 %.
Completion date:	Work is in progress
Publications:	R. Bayer, Z. Dlouhý, J. Švanda, I.Wilhelm Investigation of light particle yields from ²⁵² Cf source. All Union Conf. on Neutron Physics, Kiev 1980, Part 3, 20.
	R. Bayer, Z. Dlouh ŷ, J. Sva nda A Multiparameter System for Heavy Nuclei Fission Study, Czech. J. Phys. B <u>31</u> (1981) 1273

Laboratory and address :	Département de Recherche Fondamentale Laboratoire de Chimie Physique Nucléaire Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX - France.
Names :	J. BLACHOT, J. CRANÇON, Ch. HAMELIN, G. LHOSPICE
Facilities :	Melusine reactor (thermal neutron and caramel system for fast neutrons) 3 MeV neutrons generator and high flux reactor of I.L.L.
Experiment :	The element yields of Bromine,Krypton, Rubidium, Tellurium, Iodine, Xenon, Caesium, have been measured for :
	²³⁵ U(n _{th} ,f), ²³⁵ U(n _f ,f), ²³⁵ (n _{3MeV} ,f), ²³² Th(3MeV,f)
	238 U(n _{3MeV} ,f), *232 U(n _{th} ,f), *229 Th(n _{th} ,f)
	Values for the odd even effects in Z for all these systems has been deduced.
Method :	Direct growth and decay activities are measured with a Ge/Li detector and recorder in a multispectrum mode by a 4K multichannel analyser.
Accuracy :	The average relative uncertainty of our measurements is between 5 and 10%.
Completion date:	235_{U} , 238_{U} , 232_{Th} during 1980 and 1981, 229_{Th} and 232_{U} in progress,
	²³⁸ Pu will be started end of 1983.
Publication :	International Symposium on Physics and Chemistry of Fission - 14/18 May 1979 - Jülich (IAEA-SM/241 - F29)
	Nuclear Physics <u>A361</u> (1981) 213
	International Symposium on Nuclear Physics, Florence, Italy, 29 Aug 3 Sept. 1983.
	Ch. Hamelin, Ph-D Thesis , July 1983.

Laboratory and adress	: - DRF/CPN, CEN.G - 85 X, 38041 GRENOBLE CEDEX. - Institut LAUE LANGEVIN - B.P. n° 156 X GRENOBLE. - Institut für Kernphysik, Technische Hochschule - DARMSTADT (RFA) - K.F.A. KARLSRUHE (RFA).
Names	: A. GUESSOUS, J.P. BOCQUET, R. BRISSOT, H. NIFENECKER, Ch. RISTORI, K. SCHMIDT, H.G. CLERC, E. ENGELHARDT.
Facilities	: High Flux Reactor - Lohengrin spectrometer.
Experiment	: Independent yields and energy distributions of the light fission fragments produced by thermal neutron induced fission of ²³⁹ Pu.
Method	: The fragments are separated according to their mass and their energy by the Lohengrin separator. Energy loss technique is used to separate the charge components of a given mass.
Completion date	: Experiment completed. Data processing nearly achieved.
Publication	: To be published in NUCLEAR PHYSICS.

(same as INDC(NDS)-130)

Laboratory and address:	Laboratoire de Chimie-Physique et Radiochimie Faculté des Sciences, 28, avenue Valrose 06034 Nice Cédex, France
Names:	J. Dalmasso, H. Maria, G. Barci-Funel and G. Ardisson

Search for low energy γ -quanta in 125Sb-125Te^m Experiment: equilibrium source decay.

- Recent works have been performed concerning β decay of ¹²⁵Sb (ref 1-4) in view to determinate missing low intensity γ -rays in ¹²⁵Te levels scheme. Walters and Meyer ³ reported a new 19.88 keV transition. In Method: this study, we reinvestigated the low energy spec-trum using a high resolution HPGe detector (145 eV at Fe K_{χ}). Pulses were analysed with a 8192 channels ADC. Several runs were performed with one 6 years old ¹²⁵Sb-¹²⁵Te^m source, before and after purifica-tion and precipitation as Sb₂S3¹.
- Energy and intensity of ¹²⁵Sb Y-rays and associated Measurements: Te X-rays were calculated using standards I.A.E.A. sources of 137Cs, 241Am and 123Ba. Careful examination of Te X-rays region was necessary, because a 20.020 keV photon was due to K_{β} escape of $K_{\beta'}$ line. However we analysed a contribution of (0.023 \pm 0.005)% for a 19.888 keV photon, in good agree-ment with result of Walters and Meyer³. Table sum-marizes results of energy and intensity in ¹²⁵Sb-¹²⁵Te^m equilibrium mixture.
- The accuracy (1 or) for energy is within 6 to 20 eV. Accuracy: Absolute intensities of Y- and X-rays range between 4 to 8% .

No evidence for reported 110.9 and 146.08 keV X-rays². Discrepancies to other reported Assuming the experimental value $X_{\rm K} = 151 \pm 11$ of data: $109.26 \text{ keV M4 transition}^5 \text{ and } 12.01 \pm 0.36$ for $X_{\rm K}(35.5)$ (ref6), a contribution of 1.55 e_K for all other transition and $W_{\rm K} = 0.859$ (ref6), we found $I(K_{\rm X} + K_{\rm g}) = 56.7 \pm 8.5\%$ decays. This in good agreement with our experimental value i.e. 53.2 \pm 6.4 K X-rays % decays.

See ref. 1, 4 and to be published Publications:

References:

- (1) C. Marsol, G. Ardisson, Compt. Rend., <u>272B</u>(1971)61. (2) J.B. Gupta, N.C. Singhal and J.H. Hamilton,
- Z. Phys., <u>261</u>(1973) 137. (3) W.B. Walters, R.A. Meyer, Phys. Rev., <u>14C</u>(1976) 1925.
- (4) G. Ardisson, K. Abdmeziem, Radiochem. Radioanal. Letters, 29,Nº1(1977)1.
- (5) S.B. Reddy, K. Sudhakar, K.L. Narasimhan, B.V. Thirumala Rao, V. Lakshminarayana, Indian J. Appl. Phys., 15,N°3 (1977)208. (6) E. Karttunen, H.U. Freund and R.W. Fink, Nucl.
- Phys., <u>A131</u>(1969)343.

FRANCE (cont'd)

Table: Absolute intensities of X-and low energy Y-rays in 125Sb-125Te^m equilibrium source decay.

Energ		present wo I (% d		a)	¥ Energy	Valter	s and Meyer ³ I (% decay	s)
19.888 27.213 27.484 30.985 31.706	15 8 6 6	0.023 14.5 29.1 7.82 1.75	5 9 15 31 9	Te Kα2 Kα1 Kβ1	19.88	15	0.02	1
35.505 61.83	6	4.46 0.001	18	κ _{β'2}	35. 504	15		
109.263	12	0.072	6		109.276 110.89	15 15	0.0009	1
116.907	12	0.225	18		116.952 146.08	11 10	0.255 0.00062	4 4
172.702 176.342		0.181 6.74*	15 26		172.615 176 .33 4	15 11	0.182 6.79	3 2
		value of r esponds to				4 pho	tons of 427.	9 keV

which corresponds to 100β decays³.

Laboratories and Adresses :	Laboratoire de Chimie-Physique et Radiochimie(LCPR)
and Adresses .	Université de Nice, 06034 Nice Cédex, France Institut de Recherches sur les Energies Nouvelles(IREN) Faculté des Sciences, BP 322, Abidjan, Côte d'Ivoire
Names :	J. Dalmasso, G. Barci, H. Maria, C. Ardisson, B. Weiss, H. Forest, G. Ardisson (LCPR) A. Hachem (IREN)
Facilities :	Ge(Li) detectors, planar HPGe detectors, 4K analysers.
Experiments :	Measurements of Absolute K-X Transition Probabilities of Fission Products. These quantities are required for quantitative determination of FP activities in environ- mental samples by the X-Ray spectrometric method $(1,2)$. Accurate determination of I _y and E _y in Fission Radionu- clides. Decay Schemes.
Method :	Very thin sources of radiochemically separated FP nucli- des are measured with calibrated coaxial Ge(Li) detectors and planar HPGe detectors (25 and 200 mm ²). The follow- ing nuclides are investigated: 77_{As} , 95_{Zr} , 108_{Ag} m+g, 110_{Ag} m+g, 106_{Ru} - 106_{Rh} , 125_{Sb} , 131_{I} , 132_{I} , 137_{Cs} , 140_{Ba} , 140_{La} , 144_{Ce} - 144_{Pr} .
Accuracy :	ΔE_{χ} between 5 to 100 eV, ΔI_{χ} between 5 to 15%. ΔI_{KX} between 5 to 15% (including error in branching ratios).
Completion date :	Expected mid 84
Discrepancies:	The new I, and E, values found for 77 As decay are given with better precision than ref(a). For 140La, our I, (487) =(45.10+0.9)% (ref:3) disagree with earlier value of ref (b) i.e. I, (487)=(38.1 ± 0.5) %.
Discrepancies: Publications :	The new I, and E, values found for 77 As decay are given with better precision than ref(a). For 140La, our I, (487) =(45.10+0.9)% (ref 3) disagree with earlier value of

Laboratories and Adresses:	 Laboratoire de Chimie Physique et Radiochimie,(LCPR) Université de Nice, 06034 Nice Cedex, France. Institut de Recherches sur les Energies Nouvelles(IREN) Faculté des Sciences 04 BP 322 ,Abidjan, Câte d'Ivoire. 					
Names:	J. Dalmasso, H. Maria, G. Barci, C.Ardisson-Marsol and G. Ardisson (LCPR) A. Hachem (IREN)					
Facilities:	HPGe Planar détector, Ge-Li coaxial detectors 4 K multichannel analysers.					
Experiment 1 :	Reinvestigation of As decay.					
Method :	⁷⁷ As nuclide was radiochemically separated from ⁷⁷ Ge. The low energy spectrum of ⁷ As was measured with high resolution HPGe planar detector. Precise energies and intensities of 14 Y lines were obtained by simultaneous calibration with ¹⁵² Eu and ¹⁸² Ta sources. Two unreported photons at 51.34 and 125.84 keV were interpreted as desexciting a $J^{TK} = 9/2^+$ level at 175.33keV in ⁷⁷ Se. ⁷⁷ Se K _K and K _B X-ray intensities were also measured.					
Accuracy :	Within 5 to 15 eV for strong 🖁 rays.					
Table:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
Discrepancy:	Good agreement with previous work of Ardisson and Marsol ¹ . Y-rays at 167 and 177 keV reported by Cheng e.a. were absent from our spectra. They could belong to ⁷⁷ Ge as it has been reported elsewhere ³ .					
Publication:	J. Dalmas so, H. Mari a, G. Barci, G. Ardisson, Radiochimica Acta (1983) in press.					
References:	 (1) G. Ardisson, C. Marsol, C.J. Phys., 49(1971) 1731. (2) V.C.K. Cheng , Y.C. Liu, T.S. Heng , Chin.J.Phys. 18 (1980) 83. (3) B. Singh and D.A. Viggars, Nucl. Data Sheets, 29 (1980)75. 					

(cont'd)

Experiment 2: Precise measurements of the ¹⁴⁴Ce ¥ lines

Method : Radiochemically separated ¹⁴⁴Ce was measured with HPGe detector. The system resolution was better than 180 eV at FeK_& line. Precise energy of main photon lines were obtained by simultaneous counting runs with ⁵⁷Co, ¹⁵²Eu and¹⁸²Ta. A dispersion of 0.048 keV/channel was used in these experiments.

Accuracy: Within 5 to 50 eV for E_{χ} and 4 to 8 % for relative I_{χ}

Table :

E ₁ (keV)	Iγ	Interpretation
5.012 (50)	5.44	$L_{\alpha_1} + L_{\alpha_2}$
5.486 (50)	5.28	$L_{\beta_1} + L_{\beta_3} + L_{\beta_4}$
5.851 (50)	1,6	
6.297 (50)	0.8	
6.594 (50)	0.58	$L\gamma_2 + L\gamma_3$
33.568 (10)	1.77	
35.547 (20)	20.0	K X 2
36.026	37.0	KOX,
40.739 (20)	12.8	Kβ1
40.98 (20)	1.38	
41.778 (10)	2.93	^K β ₂
53.402 (5)	0.90	T2
80.120 (5)	12.25	
99.961 (20)	0.36	
33.515 (5)	100	

Discrepancy:	The 59 keV isomeric transition reported by other authors ¹ is not found in this experiment .
Publication:	J. Dalmasso et al , to be published
References :	¹ A. Anttila, M. Piiparinen, Z. Physik, 237 (1970) 126. B.V.N. Rao, G.N. Rao, J. Phys Soc. Japan, 40, (1976) 1.

Laboratory and address	:	Laboratoire de Biophysique, U.E.R.D.M., Université de Nice, 28, avenue Valrose - 06034 NICE CEDEX, F.
Name	:	G. MALLET
Facilities	:	This work was performed in the "Laboratoire de Chimie Physique Atomique et Structurale" of the Nice University, Parc Valrose.
Experiment	:	Application of 110 Ag ^{m+g} to the determination of the absolute efficiency of Ge(Li) detectors.
Method	:	In γ spectra we can observe distributions due to the addi- tion in the detector of pulses coming from γ emitted in coincidence by the sample studied. During our study of the llOAgm+g decay we have demonstrated that it is possible to take advantage of this parasitic summing effect to determi- nate the full energy peak efficiency (F.E.P.E.) of two identical Ge(Li) detectors. This method can be also used to measure the F.E.P.E. of only one detector used in the single mode with the source near the detector.
Accuracy	:	Better than 3%.
Completion date	:	Completed.
Publications	:	 G. MALLET - "Measurement of the Radioactive Decay of 110_{Ag}m+g" J. of the Phys. Soc. of Japan, <u>50</u>, 384-392 (1981). G. MALLET and M.S. PRAVIKOFF - "Analyse du Fonctionnement du Spectromètre à Coïncidence et Addition ; Application à 1'Etude de 207Bi et 110mAg" Nucl. Inst. Meth. <u>184</u>, 469-476 (1981). G. MALLET, J. DALMASSO, H. MARIA et G. ARDISSON - "Contribution à 1'Etude des Etats Excités de ¹¹⁰Cd Peuplés lors de 1a Désintégration de ^{110mAg}" J. of Phys. G : Nucl. Phys. <u>7</u>, 1259-1270 (1981). G. MALLET - "Application of the Sum-peak and Coincidence Spectrometer to the Determination of the Absolute Efficiency" J. de Physique - Lettres, <u>44</u>, 147-150 (1983).

GERMANY Fed.Rep.

Laboratory and address:

Institut für Reine und Angewandte Kernphysik der Universität Kiel (IKK), D-2054 Geesthacht, Reaktorstation

Names: P. Fischer, U. Harz, H.G. Priesmeyer

Facility:

Fast Chopper Neutron Time-of-Flight spectrometer, 42 m flightpath in front of beam hole of 5MW FRG-1 reactor. 15 ns/m nominal resolution, special equipment for transmission investigations of highly radioactive samples, 11 Li-6 glass detectors, max. rotorspeed 12000 rpm, min. burst width 0.64 µsec, min. time channel width 100 nsec, 2560 time-of-flight channels.

Experiments:

Neutron resonance investigations by transmission measurements between 1 eV and 1.5 keV on separated stable or radioactive isotopes of special interest to reactor physics (especially fission products), gross fission products. Possibility of extending energy range to thermal region using crystal spectrometer or neutron guide tubes.

- Completed: Final measurements on one of the five gross-fission product samples show time variations useful for isotopic identifications.
- Ongoing: Gross-fission product mixtures, comparative measurements; measurements using 24 keV Fe-filter neutrons.
- Planned: Transmission experiments on I 129, Krypton isotopes and gross-fission products.

Method:

Sample in beam, sample out-of-beam transmission measurement, black resonance background determination technique.

Accuracy:

For resonance parameters : about 5 % or better, depending on statistical accuracy of transmission points.

Recent publications:

P. Fischer, U. Harz, H.G. Priesmeyer ATKE 38(1), (1981) 63 Neutron Resonance Parameters of ⁹⁹Tc in the Energy Range 4.5 to 25 eV.

P. Fischer, U. Harz, H.G. Priesmeyer GKSS 81/E/17 Die Energieeichung des IKK Fast-Choppers mit U 238 Standards - Die Resonanzparameter des Iridiums im Energiebereich bis 1.5 eV.

H.G. Priesmeyer, U. Harz, P. Fischer Neutron Physics Activities at the FRG-I RESEARCH REACTOR IAEA-SR-77/67 Seminar on Research Reactor Operation and Use, Jülich 1981.

GERMANY, FED. REP.

Laboratory: Kernforschungsanlage Jülich, Institut für Kernphysik, Postfach 1913, D-5170 Jülich 1 1. Names: K. Shizuma (1980-82 on leave from Hiroshima University, Japan), H. Lawin, K. Sistemich Facility: Fission product separator JOSEF at reactor DIDO, Jülich Study of the ß decay of 106 Nb and of the level scheme of 106 Mo Experiment: Method: Separation of the fission products according to their mass and nuclear charge. Measurement of γ singles and γ - γ coincidence spectra Accuracy: Varying Completion: Completed Publication: Zeitschrift für Physik A-Atoms and Nuclei 311, 71 (1983) ---------(1980-82 on leave from Hiroshima University, 2. Names: K. Shizuma Japan), J.C. Hill (1980/81 on leave from Iowa State University, USA), H. Lawin, M. Shaanan (1980/81 on leave from Technion Haifa, Israel), H.A. Selič, K. Sistemich Fission product separator JOSEF at reactor DIDO, Jülich Facility: Study of the β decay of 10^{2} Y and the level scheme of 10^{2} Zr Experiment: Method: Separation of the fission products according to their mass and nuclear charge. Measurement of γ singles and γ - γ coincidence spectra

GERMANY, FED. REP.

(cont'd)

	Accuracy:	Varying
	Completion:	Completed
-	Publication:	To be published in Physical Review C
3.	Laboratories:	Universität Mainz, Institut für Kernchemie, Postfach 3980 D-6500 Mainz Gesellschaft für Schwerionenforschung, Postfach 110541, D-6100 Darmstadt Kernforschungsanlage Jülich, Institut für Kernphysik, Postfach 1913, D-5170 Jülich
	Names:	 K. Shizuma (KFA, 1980-82 on leave of absence from Hiroshima University, Japan), H. Ahrens (GSI), J.P. Bocquet (Université de Grenoble, France), N. Kaffrell (Uni Mainz), B.D. Kern (KFA, 1978 on leave of absence University of Kentucky, USA), H. Lawin (KFA), R.A. Meyer (KFA, 1982/83 on leave of absence from University of California, USA), K. Sistemich (KFA), G. Tittel (Uni Mainz), N. Trautmann (Uni Mainz)
	Facilities:	Fission product separators LOHENGRIN (High flux reactor, ILL Grenoble, France) and JOSEF (Reactor DIDO, Jülich)
	<pre>Experiments:</pre>	Study of the ß decays of $^{103,105}\mathrm{Nb}$ and the level schemes of 103,105 $_{MO}$
	Method:	Separation of the fission products according to their mass and nuclear charge. Measurement of γ singles and $\gamma-\gamma$ coincidence spectra
	Accuracy:	Varying
	Completion:	Completed
	Publication:	In preparation

GERMANY, FED: REP.

LABORATORY:	Kernforschungszentrum Karlsruhe
	Institut für Angewandte Kernphysik
1. NAMES:	H. Beer, F. Käppeler
FACILITIES:	 pulsed 3 MV Van de Graaff, kinematically collimated neutron beam, 25 keV above the ⁷Li(p,n) reaction threshold Ge(Li) detector (rel. efficiency for ⁶⁰Co: 7 %, energy resolution at 1.33 MeV: 2 keV)
<u>EXPERIMENT</u> .	30 keV capture cross section of 124 Xe, 132 Xe, 134 Xe, 152,154 Sm, 152,158 Gd and capture cross section of 151 Eu to the 9.3 h isomeric state in 152 Eu at 48.5 keV
METHOD:	activation technique
ACCURACY:	5-10 %
, COMPLETION DATE:	Summer 1983
PUBLICATIONS:	H. Beer, F. Fabbri, F. Käppeler, RD. Penzhorn, G. Reffo, R.A. Ward Annual Report on Nuclear Physics Activities 1980-1982, KfK 3280 (Febr. 1982)
2. NAMES:	G. Walter, F. Kaeppeler
FACILITIES:	pulsed 3 MV Van de Graaff
EXPERIMENT:	Cross Section Measurements on ⁸⁰ Kr and ⁸⁶ Kr Between 4 and 300 keV Neutron Energy

GERMANY,	FED.	REP.	
(cor	nt'd)		

METHOD:	continuous neutron energy spectrum from ⁷ Li(p,n)
	reaction;
	high pressure gas samples (300 bar in stainless steel
	spheres of 20 mm diameter and 0.5 mm wall thickness);
	capture events detected by 2 $C_6 D_6$ -detectors of 1 1
	volume with pulse height weighting;
	neutron energy determination by time-of-flight with a
	resolution of 1.5 ns/m;
	¹⁹⁷ Au-sample used as a standard.
ACCURACY:	Statistical uncertainty typically 5-10% for energy intervals corresponding to the experimental resolution. Systematic uncertainties between 4 and 10 % dependent on the isotopic composition of the samples.
COMPLETION DATE:	summer 1983
DISCREPANCIES TO OTHER REPORTED DATA:	No such data available

PUBLICATIONS: Preliminary data are summarized in internal reports.

÷

- 38 -Germany, Fed .Rep. (cont'd) 3. Names : R.R.Winters, F. Käppeler, K.Wisshak, G.Reffo, A. Mengoni Facility : 3.75 MV Van de Graaff : Neutron capture cross sections Experiment : $\sigma_{n\gamma}$ for ^{148,149,150}Sm for measured $4 < E_n < 250 \text{ keV}$ $\sigma_{n\gamma}$ for the unstable isotopes 147Nd, 147,148Pm, 151Sm calculated : : continuous neutron energy spectrum from Method [/]Li(p,n) reaction; capture events detected by 2 C₆D₆-detectors of 1 1 volume with off-line pulse height weighting; neutron energy determination by time-of-flight with a resolution of 1.5 ns/m; ¹⁹⁷Au sample as a standard : statistical uncertainty typically 3 % for Accuracy energy intervals corresponding to the experimental resolution. Systematic uncertainties 4.5 % Completion : Autumn 1983 date no discrepancies for ¹⁴⁸Sm, but severe discre-Discrepancies pancies for ¹⁴⁹Sm (compared to Mizumoto et al., to other re- : ported data Proc.Int.Conf. on Nuclear Cross Sections for Technology, Knoxville, Tennessee, p. 328 (1979) and for ¹⁵⁰Sm (compared to Kononov et al., Sov.J.Nucl.Phys., 27 (1978) 5)

			- 39 -
		Ge	rmany, Fed.Rep.
			(cont'd)
4.	Names	:	G.J.Mathews, F.Käppeler
	Facility	:	3.75 MV Van de Graaff
	Experiment	:	Measurement of the neutron capture cross sections of ^{142,143,144} Nd for 6 < E _n < 250 keV
	Method	:	continuous neutron energy spectrum from ⁷ Li(p,n) reaction;
			capture events detected by 2 C ₆ D ₆ -detectors of 1 1 volume with off-line pulse height weighting;
			neutron energy determination by time-of-flight with a resolution of 1.5 ns/m; ¹⁹⁷ Au sample as a standard
	Accuracy	:	Statistical uncertainty typically 5 % for energy intervals corrsesponding to the experi- mental resolution,systematic uncertainties 6 %.
	Completion date	:	Summer 1983
	Discrepancies to other re- ported data		No discrepancies for ^{142,143} Nd but severe discrepancy for ¹⁴⁴ Nd (compared to Musgrove et al., Proc.Int.Conf. on Neutreon Physics and Nuclear Data, Harwell, p. 438 (1979))
5.	Names	:	G. Walter, H.Beer
	Facility	:	3.75 MV Van de Graaff
	Experiment	:	Measurement of the Maxwellian average neutron capture cross sections of ^{79,81} Br and ^{85,87} Rb at kT = 25 keV
	Method	:	activation technique
	Accuracy	:	5 - 18 %
	Completion date	:	Summer 1983

GERMANY, FED. REP.

Laboratory and address: Kernspektroskopie, Institut für Metallphysik, Technische Universität, Mendelssohnstr. 3 D-3300 Braunschweig, Germany

Names: U. Keyser, F. Münnich, B. Pahlmann

- Facilities: On-line mass separator LOHENGRIN and OSTIS, installed at the high-flux reactor of the ILL, Grenoble, France.
- Experiments: 1.) Determination of beta-decay energies of very neutronrich isotopes available from fission of ²³⁵U and ²³⁹Pu.
 - 2.) Sum-beta-spectra of 235 U and 239 Pu from thermal neutron fission to deduce the antineutrinospectrum of a reactor core.
- Method: $\beta\gamma$ -coincidence measurements with a plastic-scintillator telescope, β -singles measurements with a high-purity Ge detector.
- Accuracy: ΔE between 70 keV and 150 keV, depending upon the complexity of the decay scheme.
- Completion date: 1.) Systematic investigation 2.) end of 1983
- Publications: Yellow report CERN 81-09, p. 116 Zeitschrift für Physik A <u>308</u> (1982) 345

94-98_{Rb}, 142-146_{Cs}

Germany, Fed. Rep.

- Institut für Radiochemie Laboratory and Technische Universität München address 8046 Garching D.C.Aumann, I.Winkelmann Names Facility 14.8-MeV neutron generator Determination of fission yields for fission Experiment of Pu-242 induced by 14.8-MeV neutrons Yields determined (1) by r-counting of Method irradiated Pu-242 sample and (2) radiochemically with either f - or β -counting. Yields of 65 fission products, representing 43 mass chains, have been determined Yields determined by f-counting:5-10% Accuracy Yields determined radiochemically:10-20% Completion date completed Publication I.Winkelmann, Dissertation, Technische Universität München, 1981 to be published in Radiochim. Acta
- Present address: Inst. f. Physikalische Chemie, Abt. Nuklearchemie Univ. Bonn

- 42 -

GERMANY, FED. REP.

- Laboratory II. Physikalisches Institut and adress: Universität Giessen Heinrich-Buff-Ring 16 D-6300 Giessen, Germany
- Names:
 C. Geisse, H. Wollnik (II.Physik Giessen)
 F. Blönnigen (II.Physik Giessen/ILL Grenoble)
 B. Pfeiffer (ILL Grenoble)
- Facilities: On-line mass separator OSTIS installed at the high-flux reactor of ILL, Grenoble
- Experiment: Q_B-values of neuton-rich fission products
- Method: Alkaline fission products of 235 U are ionized on the 2000 K hot Rhenium surface of the ion source and separated according to mass. The beta-decay products are selected in energy by a magnetic sector device which is used for pile-up and background reduction. The energy determination is made in an 1000mm²x15mm Intrinsic Germanium detector. Taking into account the previously measured response function of the detector, the betaspectra of $^{88-98}$ Rb and $^{138-146}$ Cs are analysed with an interactive graphics computer program.

Accuracy: 10-20 keV

Completion date: work is in progress

Publications: H. Wollnik et al.: Atomic Masses and Fundamental Constants <u>6</u> (1980) F. Blönnigen et al.: Nucl. Instr. and Meth. <u>178</u> (1980) 357-361 R. Decker et al.: Nucl. Instr. and Meth. <u>192</u> (1982) 261-272 Annex to the Annual Report ILL 1979-1982

GERMANY, FED.REP.

(cont'd, same as INDC(NDS)-130)

- Names: K. Becker, K. Kobras, E. Koglin, J. Münzel,
 U. Stöhlker, H. Wollnik (II.Physik Giessen)
 E. Monnand, B. Pfeiffer (ILL Grenoble)
- Experiment: Half-lives and level schemes of neutron-rich fission products *)

Method: Alkaline and alkaline earth as well as several rare earth fission products of ²³⁵U from the thermal ion source (2000 K) and a high temperature ion source (2700 K) are studied in different experiments: Gamma-multispectra and multiscaling methods for the half-live determination of extremly neutronrich fission fragments; single gamma-ray and conversion electron spe tra, prompt and delayed gamma-gamma and beta-gamma coincidences and gamma-gamma angular correlation measurements with different Ge(Li)- and Si(Li)detectors allowed to establish or extend level schemes of numerous isotopes.

Completion date: work is in progress

Publications: E. Koglin et al.: Z. Physik <u>A288</u> (1978) 319-320
G. Jung et al.: Phys. Rev. <u>C22</u> (1980) 252-263
J. Münzel et al.: Nucl. Instr. and Meth. <u>186</u> (1981) 343-347
B. Pfeiffer et al.: Proc. 4th Int. Conf. on Nuclei far from Stability (1981) CERN 81-09, p. 423

*) ${}^{95,97,98}_{\text{Rb}}$, ${}^{95,97,99,100,101}_{\text{Sr}}$, ${}^{100}_{\text{Y}}$, ${}^{147-149}_{\text{Ba}}$, ${}^{147,148}_{\text{La}}$, ${}^{152}_{\text{Pr}}$, ${}^{154}_{\text{Nd}}$.

- 43 -

GERMANY, FED. REP.

1.	Laboratory	Institut für Kernchemie Universität Mainz D-6500 Mainz, Germany
	Names:	H.O. Denschlag, H. Braun, W. Ditz, B. Sohnius (Univ. Mainz), and H. Faust (ILL, Grenoble)
	Facilities:	LOHENGRIN Mass separator for unslowed fission products at ILL, Grenoble
	<u>Experiment</u> :	The charge distribution and isomeric yield ratios among heavy-mass peak fission products (A=130-147) from ²³⁵ U(n _{th} ,f) are being measured at various well defined kinetic energies (excitation energies) of the fission fragments
	Method:	Fission fragments separated according to mass (resolution $\frac{M}{\Delta M}$ = 400) and kinetic energy (resolution 2 MeV) are intercepted on a moving transport tape, transported continuously or discontinuously in front of a Ge(Li) γ -ray detector, and counted via the γ -rays emitted in their β -decay
	Accuracy:	Varying
	Completion:	nearly completed; experiment interrupted at present due to temporary reactor shut off
	Publications:	 H.O. Denschlag, H. Braun, W. Faubel, G. Fischbach, H. Meixler, G. Paffrath, W. Pörsch, M. Weis, H. Schrader, G. Siegert, J. Blachot, Z.B. Alfassi, H.N. Erten, T. Izak-Biran, T. Tamai, A.C. Wahl, K. Wolfsberg, in Physics and Chemistry of Fission (Proc.Symp. Jülich, 1979), IAEA, Vienna (1980), Vol. II, p. 153-176, and progress reports in Jahresbericht, Institut für Kernchemie, Universität Mainz, and Annex to the Annual Report, Institut Laue-Langevin, Grenoble (1979-1981)

		GERMANY, FED. REP. (cont'd)
2.	Names:	H. Braun, H.O. Denschlag
	Facilities:	TRIGA Mark II Reactor
	<pre>Experiment: (same as INDC(NDS)-130)</pre>	Yields and decay properties of the fission product chain with mass number A = 133 are being redetermined
	Method:	Radiochemical and by mass-spectrometry
	Completion date:	completed
	Publications:	Jahresbe <mark>richt 1977 and 1980</mark> Instit <mark>ut für Kernchemie</mark> Universität Mainz
		H. Braun, Dissertation, Mainz 1983, publication in preparation
3.	Names:	B. Sohnius, H.O. Denschlag
	Facilities:	TRIGA Reactor (Mainz), HELIOS Mass-separator (Mainz), OSTIS Mass-separator (Grenoble)
	Experiment:	Gamma-ray line intensities of short-lived nuclides in chains 142,143,144,146, and 147 are being redetermined relative to long-lived descendents
	Method:	Fast radiochemical and mass separations
	Accuracy:	Generally ±10%
	Completion date:	Completed
	Publications:	B. Sohnius, M. Brügger, H.O. Denschlag in Report NEANDC (E)-232 U Vol. V INDC (Ger.)-24/L (1982) p. 46, and B. Sohnius, B. Pfeiffer, H.O. Denschlag ibid (1983) in press

- 45 -

GERMANY, FED. REP.

Laboratory:	Institut für Kernchemie
	Universität Mainz
	Postfach 3980
	D-6500 Mainz, Germany
1.Names:	B. Steinmueller, H. Gabelmann, KL. Kratz
Facilities:	TRIGA Mark II Reactor
Experiment:	Time-dependent neutron spectra from ²³⁵ U(n _{th} f) corresponding to Keepin's 6 half-life groups
Method:	Spectroscopy using 3 He-ionization chambers and 100 μ g 235 U samples
Accuracy:	Spectrum range from about 10 keV to 3 MeV with 2 keV channel width; energy resolution about $^{-35}$ keV. Corrections for thermal neutrons, detector response and γ -ray pile-up.
Cooperation:	J.G. Owen, D.R. Weaver (Univ. of Birmingham, U.K.)
Completion date:	End of 1983 for ²³⁵ U(n _{th} ,f). Further measurements with other fissioning nuclides are in progress.

GERMANY, FED. REP.

2. Names:	H. Ohm, A. Schroeder, W. Ziegert and KL. Kratz
	From high-resolution delayed neutron energy spectra of 85_{AS} , $87-92_{Br}$, $92-98_{Rb}$, 135_{Sb} , 136_{Te} , $137-141_{I}$, $141-147_{CS}$ measured with ³ He - ionization chambers (SEFORAD-Applied Radiation Ltd.); deduced: (I) average neutron energies (\overline{E}_n) (II) time-dependent neutron spectra for $235_{U}(n th, f)$ by summation method
Accuracy:	∆Ēn≃20keV for 'soft' spectra ∆Ēn≤75keV for 'hard' spectra
Cooperation:	T.R. England (LASL), F.M. Mann, R.E. Schenter (Hanford Engn. Development Lab.)
Publications:	Proc. of the Consultants' Meeting on Delayed Neutron Properties, Vienna, March 1979, INDC (NDS)-107

GERMANY, FED. REP.

(cont'd)

3. Names:		H. Gabelmann, KL. Kratz, B. Pfeiffer (ILL Grenoble) J. Muenzel, H. Wollnik (Univ. Giessen) G.I. Crawford (Univ. Glasgow)			
Faciliti	es:	Alkali isotope separator OSTIS (ILL Grenoble)			
Experime	<u>nt:</u>	Measurement of half-lives and Pn-values of alkaline and earth-alkaline fission products			
Method:		Neutron-multiscaling, beta-multiscaling			
Completi	on date:	1984. Results of Pn-values for $97-99$ Sr, $97-99_{Y}$, 147,148 _{Ba} , 147,148 _{La} have already been published (see below).			
Discrepa	ncies to				
other da		Pn values obtained in this work are generally one or more orders of magnitude smaller than those given by G. Engler and E. Ne'eman, Nucl. Phys. <u>A367</u> (1981)29.			
Publicat	ion:	H. Gabelmann et al., Z. Phys. <u>A308</u> (1982)359.			
<u>Note</u> :	page 45 of	ent described in last years contribution on INDC(NDS)-130 is completed, but 2 additional s should be mentioned:			
TZ T		URate Dalawal Neutron Emission from 93-100 _{ph}			

K.-L. Kratz et al., "Beta-Delayed Neutron Emission from $^{93-100}$ Rb to Exited States in the residual Sr Isotopes", Z. Phys. A <u>306</u> (July 1982) 239.

K.-L. Kratz et al. "The Beta-Decay of 95 Rb and 97 Rb", Z. Phys. A <u>312</u> (1983) 43.

- 48 -

C.E.C. GERMANY, FED. REP.

Commission of the European Communities Joint Research Centre Karlsruhe Establishment European Institute for Transuranium Elements Postfach 2266 7500 Karlsruhe Federal Republic of Germany

Names: A. Cricchio, R. Ernstberger, L. Koch, R. Wellum

MEASUREMENT

Experiment: The TACO experiment comprised the irradiation of well-(Method) characterized quantities of fissile and fission-product nuclides in the Rapsodie reactor. Each nuclide was prepared as an individual solution in nitric acid from which an aliquot was taken, dried on aluminium foil and sealed into stainless-steel containers under vacuum for irradiation.

> The irradiation took place during 1971 and 1972 with the samples being exposed to a total fast neutron flux of $6 \times 10^{22} \text{ n/cm}^2$. After cooling the capsules were dissolved and the contents analysed by massspectrometry. For those cases where neutron absorbtion was followed by β , γ decay and for the determination of fission yields, isotope dilution massspectrometry was employed. The following actinides were irradiated: ²³³U, ²³⁵U, ²³⁶U, ²³⁷Np, ²³⁸U, ²³⁹⁻²⁴²Pu, ²⁴¹Am and ²⁴³Am. After subsequent analysis their integral neutron absorbtion, capture and fission cross-sections were calculated. The method of calculation depended in all cases on specifying the concentration of each nuclide relative to the total nuclide content of the capsule. In this way potential losses of material were compensated for.

C.E.C. GERMANY, FED. REP.

(cont'd)

The fission-product nuclides irradiated included ${}^{95}_{MO}$, ${}^{97}_{MO}$, ${}^{98}_{MO}$, ${}^{100-102}_{Ru}$, ${}^{104}_{Ru}$, ${}^{106}_{Pd}$, ${}^{108}_{Pd}$, ${}^{110}_{Pd}$, ${}^{125}_{Te}$, ${}^{126}_{Te}$, ${}^{128}_{Te}$, ${}^{133}_{Cs}$, ${}^{141}_{Pr}$, ${}^{143}_{Nd}$, ${}^{144}_{Nd}$, ${}^{146}_{Nd}$, ${}^{148}_{Nd}$, ${}^{147}_{Sm}$, ${}^{149}_{Sm}$ and ${}^{139}_{La}$. Integral neutron absorbtion cross-sections have been calculated for the majority of these isotopes.

Publication: International Conference on Nuclear Data, 6-10 Sept. 1982, Antwerp, Belgium; proceedings p. 175.

- Laboratory and Address: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085, India.
- <u>Names</u>: Rekha Govil, S.S. Kapoor, D.M. Nadkarni, S.R.S. Murthy and P.N. Rama Rao.

Facilities: CIRUS Reactor, BARC

<u>Measurements</u>: Measurements of Fregment Mass, Charge and Kinetic Energy Distributions in Thermal Neutron Fission of ²³⁵U.

A simultaneous measurement of mass (M), charge (Z) Method: and kinetic energy (E_k) distributions in 235U (n_{th},f) has been carried out using a back-to-back \triangle E-E detector system. A pair of gridded ionization chambers filled with P-5 gas measured the energy losses ΔE_1 , ΔE_2 of the complementary fragments in the gas and the residual fragment energies were measured with a pair of semiconductor detectors. The four parameter data were analysed to obtain fragment charge distributions using the mass momentum relations to obtain M and then using the dependence of $\underline{\Lambda}$ E on E/M and Z. The charge resolution was determined at the gas pressures of 40-, 150- and 270- torr and an optimum resolution of FWHM = 2.1+0.1 charge units was obtained at 270 torr. The variances $\overline{U_{M}^{2}}$, $\overline{U_{7}^{2}}$ of the fragment mass and charge distributions obtained as a function of E_k at 5 MeV intervals. The results of \int_{M}^{2} , \int_{Z}^{2} versus E_k suggest a strong dependence of neutron-proton correlations on the \mathbf{E}_k in the nucleon exchange processes which result in the fragment mass and

(cont'd)

charge division.

<u>Results</u>: i) \overline{M}_L , \overline{M}_H , \overline{O}_M^2 versus E_k ii) \overline{O}_z^2 versus E_k

<u>Accuracy</u>: Fragment mass distributions measured with an experimental resolution of FWHM \sim 4 amu. Fragment charge distribution with a resolution of FWHM = 2.1 \pm 0.1. <u>Completion Date</u>: April 1983

Discrepancies to other reported data: The similar data known to the authors. Publications: i) Measurement of Specific Energy Losses of Individual Fission Fragments with a Back-to-Back ΔL-E Detector System" - Rekha Govil, S.S. Kapoor, U.M. Nadkarni, S.R.S. Murthy and P.N. Rama Rao to be published.

> ii) "Measurements of Fragment Mass, Charge and Kinetic Energy Distributions in Thermal Neutron Fission of ²³⁵U with a Back-to-Back <u>∆E-E</u> detector system" -Rekha Govil, S.S. Kapoor, D.M. Nadkarni, S.R.S. Murthy and P.N. Rama Rao (to be published).

Laboratory and address	: Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085
1. Names	: R.J. Singh, S.S. Kattan, A.V.R. Reddy, C.R. Venkatasubramani, A. Ramaswamy, Satya Prakash and W.V. Ramaniah
Facilities	: 1. Ge(I1) detector coupled with 4 K analyzer.
	2. Beta proportional counter, Low background proportional counter.
	3. Class A Radiochemical Laboratory
Experiment	: Mass yield from thermal neutron fission of ²²⁹ Th.
Nethod	: Fission yields in thermal neutron induced fission of ²²⁹ Th were determined using comparison method with respect to thermal neutron fission of ²³⁵ U and using ⁹¹ Sr as internal standard.
Accuracy	: 5 - 10% in the high yield region.
	10 - 15% in the low yield region.
Completion date	: Completed.
Discrepanci es to other reported data	: There are several reported data on mass yields of ²²⁹ Th in thermal neutron induced fission. Symmetric peak has been reported by some authors while others obtained only two asymmetric peaked mass yield distribu- tion. In the present work, existence of small symmetric peak in addition to two prominent asymmetric peak has been established.
Publication	: Radiochimica Acta <u>31</u> (1982) 69-73

(cont'd)

2. Names: K. Raghuraman, A. Ramaswami, C.K. Sivaramakrishnan and R.H. Iyer.

Facilities: 60 c.c Ge(Li), 4 K Analyser.

- Experiment: Absolute Yields of ⁹⁹Mo and ¹⁴⁰Bo. in the spontaneous fission of ²⁴⁴Cm.
- Method : Track etch-cum-radiochemistry, beta counting and gamm ray spectrometry.
- Accuracy : 5-8%
- Date : Completed.

Publications | Radiochimica Acta 31 (1982) 65-67.

T. Datta, S.P. Dange, S.K. Das, 3. Names : Satya Prakash, and M.V. Ramaniah. Facilities 4K analyser and Ge detectors. : Investigation on fragment angular momentum in ²⁵²Cf (SF) : Experiment system. Radiochemical separation followed Method : by Y - ray spectrometry. Work in progress. Completion date 8 A part of work was presented at : Publication Solid State Nucl. Phys. Symp. at Varanasi, December 1982.

Laboratory and Address	:	Radiochemistry Division Bhabha Atomic Research Centre Trombay Bombay 400 085, India.
Names	:	T. Datta, S.M. Sahakundu, S.P. Dange, N. Chakravarty, R. Guin and Satya Prakash
Facilities	\$	VEC, 4K analyser, 60 CC. Ge(Li)
Experiment	:	Dependence of fragment angular moments on entrance channel in 236 _U Fission
Method	:	Radiochemical separation followed by \mathbf{Y} - ray spectrometry
Accuracy	3	-
Completion date	:	Completed.
Publication	:	Phys. Rev. Vol.27, No. 5 May 1983.

Laboratory and Address	8	Radiochemistry Division Bhabha Atomic Research Centre Trombay Bombay- 400 085, India.
Names	:	Alok Srivastav, A.G.C, Nair, B.K. Srivastava, S.B. Manohar, Satya Prakash and M.V. Ramaniah.
Facilities	:	45 CC. Ge Detector 4K Channel Analyser
Experiment	:	Cumulative yields of short lived Rathenium isotopes in the spontaneous fission of ²⁵² Cf.
Me thod	8	Fast radiochemical separation followed by - ray spectrometry
Accuracy	:	<u>+</u> 5-6%
Completion date	2	December, 1982.
Publication	I	Presented in DAE, Radio. Chem & Radiation Chem. Symposium, Poona, 1982.

Laboratory and Address	2	Radiochemistry Division Bhabha Atomic Research Centre Trombay Bombay 400 085, India
Names	:	Alok Srivastava, A.G.C. Nair, B.K. Srivastav, S.B. Manohar, Satya Prakash and M.V. Ramaniah
Facilities	:	45 CC. Intrinsic Ge detector 4K channel Analyser
Experiment	£	Isotopic yield distribution of Tc isotopes in the sponta- neous fission of $^{252}C_{f}$.
Me thod	:	Fast radiochemical separation followed by γ -ray spectrometry
Accuracy	:	± 10%
Completion date	:	December, 1982.
Publication	1	Presented in DAE, Nucl. Phy. Solid State Physics Symp. December, 1982. Varanasi.

Laboratory	:	Indian Institute of Technology, KANPUR 208016, INDIA.
·	-	
Names	:	M.M. Sharma, A.K. Sinha and G.K. Mehta, I.I.T. Kanpur D.M. Nadkarni, B.A.R.C., Trombay, Bombay.
Facilities	:	2 MeV Van de Graaff Accelerator.
Experiment	:	Angular Distribution of Polar Light Charged Particles in Thermal Neutron Induced Fission of ²³⁵ y.
Method	:	A semiconductor $\triangle E$ -E detector telescope is used for particle identification and an ionization chamber for fission fragment detection. The ionization chamber separates polar and equatorial light charged particles with the help of a collimator arrangement. Using different collimation for polar LCP region, yields of polar ¹ H and ⁴ He particles were measured in thermal neutron induced fission of ²⁰⁵ U. Using Monte Carlo technique, $\sigma(\Theta)$ of the angular distribu- tion for polar proton and α 's were determined. Angular distribution of polar protons was found to be very narrow in contrast with a wide distribution of polar α -particles.
Accuracy	:	Refer to the table.
Completion	Date:	sept. 1981
Table	:	Yields of polar ¹ H and ⁴ He per fission for two different collimator sizes viz 1 mm and 2 mm collimators.

LCP ·	l mm Collimator	2 mm Collimator
1 ^H	(2.0 ± 0.6)x10 ⁻⁸	$(1.9 \pm 0.8) \times 10^{-8}$
4 _{He}	$(1.1 \pm 0.4) \times 10^{-8}$	$(9.3 \pm 1.8) \times 10^{-8}$

Publications:

- Polar and equatorial emission of light charged particles in ken neutron induced fission, Journal of Physics G: Nuclear Physics, vol. <u>8</u> (1982) L85-L88.
- 2. Angular distribution of polar light charged particles in thermain neutron induced fission of 235U. Silver Jubilee Physics Symposium (DAE, India), Nuclear Physics 24B (1981) 97.

Laboratory	:	Indian Institute of Technology, KANPUR-208016, INDIA	
Nam es	:	M.M. Sharma, S.C.L. Sharma, A.K. Sinha and G.K. Mehta, I.I.T. Kanpur	
Facilities	:	2 MeV Van de Graaff Accelerator	
Experiment	:	Angular distribution of light cha with respect to neutron direction induced fission of ²³⁵ U.	rged particles in fast neutron
M et hod	:	Particle identification was performed by using a semiconductor AE-E detector telescope. The angular information of the particles with respect to the detector axis was also obtained by telescope ¹ using the technique developed in our laboratory. Experiments have been carried out at several neutron energies between thermal and 1 MeV and the anisotropies in the angular distributions of alpha particles are determined.	
Accuracy	:	Refer to the table	
Compl etion Date	:	April 1983	
Table	:	Anisotropies $(Y^{(0^0)}/Y^{(90^0)})$ of the ternary alpha particle angular distribution	
		Neutron Energy	Anisotropy
		(140 ± 30) KeV	(-85 ± 28)%
		(170 ± 25) KeV	(-87 ± 32)%
		(200 ± 25) KeV	(-94 ± 31)%
		(400 ± 200) KeV	(-10 ± 28)%
		(600 ± 180) KeV	(-25 ± 19)%
		(1000 ± 170) KeV	(-50 ± 27) %

Publications:

1. Unpublished

Laboratory:	Department of Physics, Faculty of Science,
and address:	Punjabi University, Patiala-147002, India.

K. Singh and H.S. Sahota. Names:

Facility: Intrinsic Ge, Si(Li) and Ge(Li) spectrometers.

Experiment: Precision measurement of gamma-ray intensities and directional correlation measurements in the decay of 99Mo.

- Method: The intrinsic Ge and low energy Si(Li) detectors were calibrated with standard sources down to 5 keV energy region. The relative gamma ray intensities were precisely measured. For high energy region large size 64.1 cc Ge(Li) detector was used. From gamma-gamma directional correlation measurements on 740-181, 740-(40)-140, 961-181 and 822-(40)-140 keV cascades, the multipole admixtures in the 40, 140, 822 and 961 keV gamma rays have been respectively found as $M1+ \leq 6.25 \times 10^{-2}\% E2$, M1+(8+1)% E2, E1+1%M2 and M2+E3. The spins of 921, 1004 and 1142 keV levels have been uniquely determined as $3/2^+$, $5/2^$ and $1/2^{-}$.
- Errors are quoted in the parenthesis. Accuracy:

Completion date: June 1981.

In good agreement with the recent Discrepancies to other reported literature data. data:

J. Phys. Soc. Japan, <u>51</u> (1982) 3766. Publication:

Energy (keV)	Relative intensity	Energy (keV)	Relative intensity	Ener g y (keV)	Relative intensity
38.4	0.0035	352.9	0.0209	727.0	0.0585(3)
40.5	7.7(6)	366.4	9.8(8)	739.7	100
140.5	686 (49)	380.7	0.07(2)	778.2	34.8(19)
159.7	0.11(4)	409.0	0.009	823.1	1.10(7)
163.4	0.078(13)	411.5	0.14(2)	861.0	0.005(3)
181.0	49.8(33)	458.0	0.04(2)	940.0	0.0008(3)
242.7	0.0118(44)	528.9	0.44(4)	961.0	0.79(6)
249.0	0.04(3)	537.9	0.009(3)	1001.7	0.045(12)
319.8	0.052(2)	580.1	0.021(8)	1057.2	0.007(3)
321.0	0.056(9)	599.6	0.017(8)	1071.9	0.010(4)
344.5	0.005(24)	620.7	0.026(2)	1082.0	0.005(2)

- 61 -

INDIA

Laboratory and Address:	Department of Physics, Faculty of Science, Punjabi University, Patiala-147002, India.
Names:	K.Singh and H.S.SahOta
Facility:	Intrinsic Ge, low energy Si(Li) and large size Ge(Li) detectors.
Experiment:	Precision measurement of gamma-ray intensitis and
	gamma-gamma directional correlations in the decay of ¹²⁵ Sb.
Method:	The high resolution precisely calibrated semiconduct- detectors were used to measure the intensities of several low energy lines below 200 keV. With the presence of 58, 693 and 729 keV gamma rays as $729 \rightarrow 671$, $729 \rightarrow 36$ and $729 \rightarrow 0$ transitions, the 729 keV level was confirmed. A 642 keV transition was found as $7/2^+ - 1/2^+$ M3 de-excitation. From directional correlation measurements on 204-176, 321-176, 208-428 and 208-463 keV cascades. The spin of 525 keV level was assigned as $7/2^-$ and some M3 content in 428 keV transition, in addi- tion to M1+E2 was found.
Accuracy:	Errors are quoted in parentheses.
Completion date:	September 1981.
Discrepancies to	1)
other reported data	ii) * iii)
Publications:	Raj Mittal, K. Singh and H.S. Sahota, Curr. Sci. (India) <u>51</u> (1982) 746.
	K. Singh and H.S. S ahot a Ind. J. Phys. (Calcutta) <u>56A</u> (1982) 291.
	K. Singh and H.S. Sahota Ind. J. Pure and Appl. Phys. (New Delhi) (in press)
*	

- i) Intensity determinations for weak transitions have been improved
- ii) New transitions with energies 20.14, 58.29, 111.36, 642.14, 693.23 and 729.62 keV have been observed.
- iii)From coincidence measurements, the anomaly in the characters of 116.95 and 429.88 keV transitions have been removed.

Table-1	Relative	gamma-ray in	tensities in th	ne decay of	Sb
Energy (keV)	Relative intensity	Energy (keV)	Relative intensity	Energy (keV)	Relative intensity
20.1	0.068(2)	204.1	1.14(4)	463.4	35.50(7)
35.5	14 .53(3 5)	208 .0	0.82(2)	497.3	0.015(3)
58.2	0.91(4)	227.9	0.44(2)	600.5	60.50(10)
109.2	0.232(5)	315.1	0.013(2)	606.6	17.2(9)
111.3	0.0042(3)	321.0	1.30(5)	635.8	39.1(22)
116.9	1.060(10)	380 • 4	6.02(25)	642.1	0.160(9)
172.6	0 .86(2)	408 .0	0.61(3)	671.4	5.9(3)
176.3	24.5(8)	427.8	100	693.2	0.0015(6)
178.6	0.130(5)	443.4	1.12(5)	729.6	0.0025(7)
198.0	0.081(4)				

Table-1 Relative gamma-ray intensities in the decay of ¹²⁵Sb

ISRAEL

Laboratory and Address:	Soreq Nuclear Research Centre 70600 Yavne, Israel
Names:	M.S. Rapaport, G. Engler, A. Gayer and I. Yoresh.
Facilities:	-4MW research reactor -SOLIS isotope separator
Experiment:	Experimental Study of ¹⁴⁵ Cs Decay
Method:	SOLIS isotope separator operating on-line with the 4MW research reactor at Soreq Nuclear Research Centre. Integrated target-ion source system with ²³⁵ U targets enriched to 93% and exposed to a thermal neutron flux of $5 \times 10^8 n$ -cm ⁻² s ⁻¹ . Selective separation of the A=145 mass chain starting with ¹⁴⁵ Cs and ¹⁴⁵ Ba with a Ta surface ionization surface used either as one integral piece or as a separate piece from the target container. The measurments consisted of simultaneous detection of γ -rays and conversion electrons.
Accuracy:	10% in intensities, 0.1 to 0.3 keV in energies.
Results:	Established level scheme of 145 Ba, γ -intensities, β -branching and log ft values.
Completion date:	Completed
Discrepancies to other reported data:	Reasonable agreement in γ -intensities with other reported data.
Publication:	Z. Phys. 1 305 (1982) 359.

ISRAEL

Laboratory	Soreq Nuclear Research Centre
and Address:	70600, Yavne, Israel.
Names:	G. Engler and M.S. Rapaport
Facilities:	- 4MW research reactor
	- SOLIS isotope separator
Experiment:	Independent Fission Yields of Short-
	Lived Br and I Isotopes in Thermal
	Neutron Fission of ²³⁵ U
Method:	SOLIS isotope separator operating
	on-line with 4MW research reactor at
	Soreq Nuclear Research Centre, Negatiye
	surface ionization integrated target-ion
	source system with ²³⁵ U targets enriched
	to 93% and exposed to thermal flux of 5×10^8 n-cm ⁻² s ⁻¹ . Selective separation
	of Br and I isotopes.
	The measurments consisted of β -scans
	using a 300 mµ Si surface barrier
	detector.
Accuracy:	10-20% depending on isotope
Results:	Measured independ fission yields of $87-91_{Br}$ and $138-141_{I}$.
Completion date:	Completed.
Discrepancies to	Reosonable agreements with other
other reported data	reported data.
Publication:	Article in preparation,

ISRAEL

Laboratory and Address	<pre>Weizmann Institute of Science, : Rehovot, Israel, in collaboration with Los Alamos Scientific Laboratory, U.S.A.</pre>
Names	: G. Mamane, E. Cheifetz, E. Dafni and J. B. Wilhelmy.
Facility	: ²⁵² Cf source
Experiment	: Measurements of short half-lives (t _{1/2} <0.5 nsec) of excited states in prompt fission products
Method	: Fission fragments emitted from a very flat thin foil of ²⁵² Cf are stopped by a plunger whose distance to the foil is varied in steps from $4 \cdot 10^{-3}$ -0.5 cm. Gamma ray spectra are measured with Ge-Li detector in coincidence with the complementary fragment. Lifetimes of known transitions, in parti- cular 4 ⁺ +2 ⁺ and 6 ⁺ +4 ⁺ decays in even-even isotopes, are determined from the variation of the non-doppler shifted intensities with the distance
Accuracy	: Dependent on transition intensities
Completion date	: In progress

ITALY				
Laboratory and	Vi	EL - Centro a Rubattino 134 MILANO,		
	Po Vi	tituto di I lıtecnico d a Ponzio, 3 133 MILANO,	4/3	
Names :	A. Cesana ^{$+$} ,	G. Sandrel	li, M. Terrani ⁺	
Facilities :	L54 reactor,	high resol	ution Ge-Li detector .	
Experiment :	induced fiss	ion of Pu-2	ative fission yields from fas 38 and Pu-240, relative to Ba- ontract ENEL-CRTN/33-1975)	
Method :	powder), enc B_A^C filtered	apsulated i neutron fl	rams of highly enriched isoto n zircaloy vials, were ırradia ux at the edge of L54 reactor lowing composition :	ated in a
	Target	Mass (mg)	Impurities	
		2.82 ± 0.01	²³⁴ U (5%), ²³⁷ Np (1.2%), ²³⁹ ²⁴⁰ Pu(1%)	Pu (0.7%),
	240 _{Pu}	4.60 ± 0.02	239 241 Pu(1%), Pu (0.5%), 242 Am(0.2%)	Pu (0.3%),
	determined b formed direc diated sampl fissioning i The results	y Ge-Li spe tly on the es. Gamma-r mpurities w are listed	of the examined fission product ctrometric gamma-ray measureme fission product mixtures in the ay interferences and contribu- ere duly taken into account. below and compared, when possion orted in the literature .	ents per- ne irra- tions from
Accurancy :	errors (± 10 the errors o ciency, gamm branchings () . They ar n the gamma a-ray selfa as reported	e table below are intended as e obtained combining in the us -ray peaks, gamma-ray detection bsorption in the sample and ga in the literature) both for the -140 taken as reference .	sual way on effi- amma-ray

Completion date : 1984

Results :

Relative Cumulative Yields

Fissioning Nuclide Fission Product	238 _{Pu}	240 Pu	
	present work	present work ref.2(a)	
91 Sr	-	0.41 ± 0.43 ± 0.02 0.05	
103 Ru	1.25 ± 0.03	$1.28 \pm 1.29 \pm 0.03 \qquad 0.14$	
¹³¹ I	0.89 ± 0.03	$\begin{array}{cccc} 0.70 \pm & 0.72 \pm \\ 0.02 & 0.08 \end{array}$	
132 Te	-	0.86 ± 0.93 ±	
¹³⁵ I	-	0.02 0.10 1.29 ± 1.31 ±	
140 Ba	1.00 ± ^(b) 0.02	$\begin{array}{ccc} 0.04 & 0.14 \\ 1.00 \pm {}^{(b)} & 1.00 \pm \\ 0.01 & 0.08 \end{array}$	
(a) Experimental Cumulative Yields $(Y_{Ba} = 5.28\%)$. (b) Preliminary absolute determination : for ²³⁸ Pu, $Y_{Ba} = 5.27\%$; for ²⁴⁰ Pu, $Y_{Ba} = 5.56\%$.			

References : 1) P. Barbucci et al., Energia Nucleare, <u>26</u>, 11, 542 (1979). 2) B.F. Rider, NEDO-12154-3(A), (1979).

and Address :	Hiroshima University 1-1-89 Higashi-Sendamachi, Nakaku, Hiroshima 730, Japan
	1–1–89 Higashi-Sendamachi, Nakaku, Hiroshima 730, Japan
Names :	Y. Yoshizawa and Y. Iwata
Facility :	Ge(Li) spectrometer
Experiment :	Precision measurement of gamma-ray intensities for ¹²⁵ Sb
Method :	The Ge(Li) detector was calibrated within uncertainties of 1 % with standard sources and cascade gamma rays in the energy range of 90 to 2750 keV. Relative intensities of gamma rays emitted from the 125 Sb nuclide were precisely measured. Gamma-ray intensities per decay were obtained from the relative gamma-ray intensities, theoretical internal conversion coefficients and beta branches. The intensity sum of all transitions feeding and crossing the isomer level at 145 keV of the daughter nucleus 125 Te.
Accuracy :	For strong gamma rays, Accuracies of relative intensities and intensities per decay are within 1 % and 1.5 %, respectively.
Completion date :	April 1982
Descrepancies to other reported data:	Large descrepancies to other reported data are not recognized.

Gamma-ray energy (keV)	Relative intensity (%)	Intensity per decay (%)	Gamma-ray energy (keV)	Relative intensity (%)	Intensity per decay (%)
109.3	(0.241(24))	(0.071(7))	380.4	5.06(4)	1.500(19)
117.0	0.867(25)	0.257(8)	408.0	0.608(21)	0.180(6)
172.6	0.69(4)	0.205(12)	427.9	100.0(7)	29.6(3)
176.3	22.62(21)	6.70(9)	443.5	0.989(23)	0.293(7)
178.8	0.11(4)	0.032(13)	463.4	35.23(14)	10.44(12)
198.6	0.030(11)	0.009(3)	497.4	0.009(8)	0.0025(23)
204.1	1.08(3)	0.320(11)	600.6	59.54(22)	17.64(20)
208.1	0.788(21)	0.233(7)	606.6	16.94(7)	5.02(6)
227.9	0.433(12)	0.128(4)	635.9	37.87(14)	11.22(13)
321.0	1.391(24)	0.412(8)	671.4	6.039(24)	1.790(21)

Table 1. Gamma-ray intensities for ¹²⁵Sb.

- 69 -

Laboratory and address:	Nuclear Physics II L aboratory Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken, Japan
Names:	U. Furuta, Y. Kawarasaki, M. Mizumoto, Y. Nakajima, M. Ohkubo, M. Sugimoto, S. Tanaka (JAERI) Y. Kanda, I. Tsubone (Kyushu Univ.)
Facilities:	Neutron time-of-flight spectrometers at the 120 MeV electron linear accelerator.
1. Experiment:	Neutron capture cross section measurements in
Detectors:	keV region. 3500 1 and 500 1 liquid scintillator tank for capture yield, ⁶ Li-glass and ¹⁰ B-NaI detectors for
Flight paths:	neutron flux and transmission measurements. 52 m for capture measurements.
Normalization:	56 m for flux and transmission measurements. Saturated resonance method.
(1) Samples:	107 Ag, 109 Ag (metallic powder enriched to 98.22 and 99.32 % respectively).
Energy region: Accuracy:	3.3 to 700 ke¥ 5 to 10 % (Experimental uncertainties
Completion data: Publication:	are represented with a covariance matrix) Measurements are completed M. Mizumoto et al. Int. Conf. on Nuclear Data for Science and Technology, p. 228. Antwerp, 1982.
(2) Sample:	La Total madiation widths worm obtained by the code
Status:	Total radiation widths were obtained by the code TACASI for the s-wave resonances below 2.5 keV.
Publication:	Y. Nakajima et al. J. Nucl. Sci. Technol. 20(1983)183
(3) Sample:	137 Ba (Ba(NO ₃) ₂ powder enriched to 81.9 %)
Energy region: Completion date:	1.5 eV to 100 keV Measurements are completed.
(4) Samples:	¹⁵⁵ Gd, ¹⁵⁷ Gd enriched samples
Energy region: Completion date:	10 eV to 200 keV Measurements are completed.
2. Experiment:	Neutron resonance parameters.
Detectors:	⁶ Li-glass neutron detectors Moxon-Rae detector and 3500 l liquid scintillator
Flight paths:	tank 47 m, 56 m and 190 m for transmission measurements 47 m and 52 m for capture measurements

$\frac{\text{JAPAN}}{(\text{cont}^{+}d)}$

	Analysis:	The Atta-Harvey area analysis code and the multi- level Breit-Wigner code SIOB Monte Carlo code CAFIT and TACASI
(1)	Samples:	⁷⁹ Br, ⁸¹ Br Resonance parameters, S ₀ , D̄,r̈́ ⁷⁹ Br 156 levels E _n < 10 keV ⁸¹ Br 100 levels E _n < 15 keV
	Publications:	M. Ohkubo, Y. Kawarasaki and M. Mizumoto Resonance parameters of ⁷⁹ Br and ⁸¹ Br up to 15keV. Int. Conf. on Nuclear Cross Sections for Technology, p173, NBS special publication 594, 1980 J. Nucl. Sci. Technol. 18 (1981) 745
(2)	Samples:	⁸⁵ Rb, ⁸⁷ Rb Resonance parameters, S ₀ , Ď, Ť _Υ Rb 100 levels E _n < 17 keV Rb 42 levels E _n < 100 keV
(3)	Samples: Energy region: Completion date: Publication:	<pre>¹⁰⁷Ag and ¹⁰⁹Ag (metallic powder enriched to 98.22 and 99.32 % respectively)</pre>
(4)	Sample: Completion date:	¹²³ Sb Transmission and capture measurements Measurements are completed.

Laboratory and	Institute of Atomic Energy, Kyoto University,
address:	Uji, Kyoto 611, Japan
Names:	Ichiro Fujiwara and Nobutsugu Imanishi
Facilities:	5 MW research reactor
	[Research Reactor Institute, Kyoto University]
Experiment:	Cumulative and independent fission-yields of some fission
	products in the thermal-neutron induced fission of 233 U, 235 U and 239 Pu.
Method:	Radiochemical for fission yields; Instrumental with
	germanium detectors.
Accuracy:	Errors range from 7 % to 20 % with different combinations of
	fission products and the fissile isotopes.
[Expected] compl	etion date: 7
	see Table I
Publication:	J

Table I

Nuclide		Completion date	Publication
128,130,132 _{Sn} ,133 _{Sl} 128,130,132 _{Sb} ^{m,g} ,	-		N. Imanishi, I. Fujiwara and T. Nishi, Nucl. Phys. <u>A263</u> ,
¹³¹ Sb, ^{131,133} Te ^{m,g}	[Ind.]	Sep. 1975	141 (1976)
135 ₁ 131,133 ₁ ,	[cum.]		T. Nishi, I. Fujiwara and N. Imanishi, Int. Conf. on Nucl.
1, 132,134,136 ₁ m,g	[Ind.]	Dec. 1976	Structure, Tokyo, Sep. 1977
L33,135 _{Xè} m,g	[Ind.]	Dec. 1976	I. Fujiwara, N. Imanishi and T. Nishi, J. Phys. Soc. JAPAN
138 _{Cs} m,g	[Ind.]	May 1978	51,1713(1982)
90 _{Rb} m,g	[Ind.]	End of 1983	

Laboratory and address:	Research Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka, Japan
Names:	K. Okano, Y. Kawase and Y. Funakoshi
Facilities:	On-line mass separator(KUR-ISOL) installed at 5 MW Kyoto University Reactor.
Experiment:	Half-life measurements of 93 Sr, 94 Sr and 143 Ba.
Method:	Gamma-rays following the decay of 93 Sr, 94 Sr and 143 Ba were measured with a Ge(Li) detector.
Accuracy:	Estimated errors are 0.3-0.6%.
Completion date:	The measurements are completed.
Publications:	Annu. Rep. Res. Reactor Inst., Kyoto Univ., 16(1983) in press.

Laboratory	Research Reactor Institute, Kyoto University
and address:	Kumatori-cho, Sennan-gun, Osaka, Japan
Names:	K. Okano, Y. Funakoshi and Y. Kawase
Facilities:	On-line mass separator(KUR-ISOL) installed at 5 MW Kyoto University Reactor.
Experiment:	Determination of delayed neutron emission probability by a $\beta - \gamma$ spectroscopic method.
Method:	Gamma-rays in the decay chain of 94 Rb were measured with a Ge(Li) detector. The P _n value of 94 Rb was deduced from γ -ray intensity ratio of 1427.6 keV (94 Sr) and 590.2 keV(93 Sr).
Accuracy:	The associated error of P_n is about 7%.
Completion date:	The measurement for the ⁹⁴ Rb precursor is completed. The experiment for ⁹⁵ Rb is now in progress. The extension of the method to other Rb and Cs isotopes is planned.
Publications:	Annu. Rep. Res. Reactor Inst., Kyoto Univ., <u>16</u> (1983) in press.

Laboratory	Research Reactor Institute, Kyoto University
and address:	Kumatori-cho, Sennan-gun, Osaka, Japan
Names:	Y. Funakoshi, K. Okano and Y. Kawase
Facilities:	On-line mass separator(KUR-ISOL) installed at 5 MW Kyoto University Reactor.
Experiment:	Determination of the decay scheme of ⁹⁴ Sr.
Method:	Gamma-ray singles and coincidence spectra in the decay of ⁹⁴ Sr were measured with Ge(Li) detectors. Beta-ray spectra were taken with a Ge(HP) detector.
Accuracy:	Gamma-ray energies to 0.1-0.2 keV, gamma- ray intensities to 5-10%.
Completion date:	February 1983
Publications:	Preliminary note; Annu. Rep. Res. Reactor Inst. Kyoto Univ., <u>15</u> (1982)151. Full report will be published soon.

Laboratory and	Research Reactor Institute, Kyoto University
address :	Kumatori, Sennan-gun, Osaka-fu, 590-04
Names :	Itsuro Kimura, Katsuhei Kobayashi
Facility :	²⁵² Cf source of JAERI
Experiments :	Average cross sections to 252 Cf fission neutrons, of 24 Mg (n,p) 24 Na, 27 Al(n,p) 27 Mg, 32 S(n,p) 32 P, 51 V(n,p) 51 Ti, 54 Fe(n,p) 54 Mn, 56 Fe(n,p) 56 Mn, 58 Ni(n,p) 58 Co, 59 Co(n,d) 56 Mn, 64 Zn(n,p) 64 Cu, 113 _{In(n,n}) 113m In, 115 In(n,n) 115m In, 197 Au(n,2n) 96 Au, 46 Ti(n,p) 46 Sc, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 199 _{Hg} (n,n) 199m Hg
Method :	Gamma-rays (except 32 P) from the induced activities were measured with a Ge-Li counter. The average cross section for 27 Al(n, α) 24 Na was taken to be 1.006 mb as a reference value and the other values were normalized to it. In evaluation of errors, covariance matrix was taken into account.
Accuracy :	3~ 5 %
Completion date :	March 1982
Publication :	K. Kobayashi et al., J. Nucl. Sci. Technol. vol. <u>19</u> (1982) p. 341.

<u>JAPAN</u>

Laboratory:	 Department of Nuclear Engineering, Nagoya University Institute for Atomic Energy
	Rikkyo University
Address:	1. Furo-cho, Chikusa, Nagoya, JAPAN
	2. Nagasaka, Yokosuka,Kanagawa, JAPAN
Names:	M.Totsuka ¹⁾ , S.Fujita ¹⁾ , K. Mio ¹⁾ , K. Kawade ¹⁾ , H.Yamamoto ¹⁾ , T. Katoh ¹⁾ and T. Nagahara ²⁾
Facilities:	TRIGA-II reactor of Rikkyo University, pneumatic
	transport system, apparatus for electrophoresis,
	Ge(Li) detector, 4096 pulse height analyser
Experiment:	Decay of ¹⁴⁷ Ce to levels of ¹⁴⁷ Pr
Method:	By using a rapid paper electrophoretic method,
	sources of Ce was separated from fission
	products of 235 U irradiated at the TRIGA-II
	Reactor. Energies and intensities of gamma
	rays and a half-life of 147 Ce were measured
	and a decay scheme is proposed.
Accuracy:	Less than 0.7 keV for gamma ray energies,
	57 <u>+</u> 5 sec for the half-life
completion da	te: April 12, 1982
Discrepancy t	o other reported data:
	Among 14 gamma rays assigned to the decay of ¹⁴⁷ Ce, 4 gamma rays are newly observed ones, and
	2 gamma rays reported previously are not detected.
	A new level of 147 Pr at 2.7 keV is proposed.
	Level energies of the 291.9 and the 802.4 keV
	levels are revised from old values.
Dublinstian	
Publication:	J. Nuclear Science and Technology, vol 19 (1982)
	no 9, pp 765-767

Laboratory and address:	Nuclear Engineering Research Laboratory Faculty of Engineering University of Tokyo 2-22 Shirane Shırakata, Tokai-mura Ibaraki 319-11, Japan	
Names:	M. Akıyama, Y. Oka, H. Hashikura and S. An	
Facilities:	Fast Neutron Source Reactor "YAYOI" A 14 MeV neutron generator	
Experiment:	Measurements of beta and gamma decay heat from fission products for fast neutron fissions of 233 U, 235 U, 238 U, natural U, 239 Pu and 232 Th for cooling times of 19 to 24000 seconds. Those measurements were already com- pleted. Measurements of decay heat from fission pro- ducts for 14 MeV neutron fissions were started.	
Method:	Samples were irradiated for short periods with fast neutrons or 14 MeV neutrons, and returned immediately after irradiations to a counting area. Gamma-ray energy spectra emitted from the irradiated sample were measured using a NaI detector, and beta-ray spectra were obtained a plastic scintillation detector combin- ed with $\Delta E/\Delta X$ type proportional counter to eliminate gamma-ray effects. Counting times were chosen to provide good statistics within the time range of interest. Energy release rates for beta- and gamma- rays were obtained to integrate beta and gamma energy spectra respectively and summed to obtain total decay heat from fission products.	
Accuracy:	For fast neutron fissions gamma decay heat for ²³³ U, ²³⁵ U, ²³⁹ Pu 5% gamma decay heat for ²³⁸ U, natural U, ²³² Th 6% beta decay heat 4% For 14 MeV neutron fissions ~ 8% for gamma decay heat for ²³⁸ U, ²³² Th	
Completion date:	Measurements of decay heat for fast neutron fissions were already completed. Measurements of decay heat for 14 MeV neutron fissions are preliminary and continuing.	
Discrepancies to Present data of beta and gamma decay heat for fast other reported data: neutron fissions are in reasonable agreement with results of current summation calculations.		
Publications:	 M. Akiyama, et al.; J. Atom. Energy Soc. Japan <u>24</u>, 709 (1982). M. Akiyama, et al.; ibid., <u>24</u>, 803 (1982). M. Akiyama, S. An ; Proc. Intern. Conf. Nucl. Data Sci. Technol. Sep. Antwerp 1982, (1983), page 237 	

Laboratory:	1.Department of Physics, Faculty of Science, Yamagata University
	2.Division of Physics, Japan Atomic Energy
	Research Institute
Address:	1.Koshirakawa-cho, Yamagata, 990,Japan
	2.Tokai-mura, Naka-gun, Ibaraki, 319-11, Japan
Names:	H.Niizeki ¹⁾ , S.Kageyama ¹⁾ , T.Tamura ²⁾ and
	Z.Matumoto ²⁾
Facilities:	50 Mev Electron liner accelerator
	(Japan Atomic Energy Research Institute)
Experiments:	The level scheme of 103 Ru has been studied
	in the β -decay of 103 Tc
Method:	Radioactivity ¹⁰³ Tc (from ¹⁰⁴ Ru (γ ,p)); meassured
	E_{γ} , I_{γ} , γ - γ coinc, I_{β} , deduced log ft. ¹⁰³ Ru
	deduced levels J,π . Enriched isotope, Ge(Li),
	anthracene scintillation detectors.
Accuracy:	Details given in the publication.
Complation:	Completed
Publication:	Jour. Phys. Soc. Japan <u>47</u> (1979) 26

•

- 79 -

SWE DEN

Laboratories:	Department of Nuclear Chemistry Chalmers University of Technology S-412 96 Göteborg Sweden
	Institut für Kernchemie Johannes Gutenberg Universität Postfach 3980 D-6500 Mainz Germany
	Department of Nuclear Chemistry University of Oslo Blindern, Oslo 3 Norway
	Nuclear Chemistry Division Los Alamos National Laboratory Los Alamos, New Mexico 87545 U.S.A.
Names:	S. Höglund and G. Skarnemark (Göteborg) N. Kaffrell, H. Tetzlaff and N. Trautmann (Mainz) J. Alstad (Oslo) K. Wolfsberg and W. Daniels (Los Alamos)
Facilities:	SISAK system for studies of radionuclides with half-lives down to less than 1 s.
Experiments:	Half-life determinations, Y-singles, Y-Y coincidence and Y-Y angular correlation measurements. At present, our measurements are concentrated on very neutron-rich isotopes of technetium, ruthenium, rhodium and palladium formed in thermal-neutron induced fission of Cf-249.
Method:	Fast chemical on-line separations. The measurements are carried out on flow cells or ion exchange columns. The fission products are transported from the target cell via a gas jet system. Ge-detectors are used.
Completion date:	-

SWEDEN

Laboratory and The Studsvik Science Research Laboratory, address: S-611 82 Nyköping, Sweden.

- Facility: The OSIRIS on-line mass separator is used to extract selected nuclei from thermally fissioned 235 U. The extraction method has been extended in the sense that Al or CF₄ is added to the ion source to facilitate separation of halogenes or lanthanides, respectively.
- 1. Names: K. Aleklett, P. Hoff, E. Lund and G. Rudstam.

ExperimentCharacterization of and P
n values(same asfor delayed neutron precursors of yttrium andINDC(NDS)-130)lanthanides

Method: Simultaneous measurement of neutron and beta activities in a multiscaling mode. Neutron counter consisting of 29 ³He counters imbedded in paraffine beta counter being a 2 mm plastic scintillator. Separation of fluoride ions with CF_L addition to the ion source.

1) 147 147,149 Ce, 147,149 Pr

- 81 -

SUEDEN

(cont'd)

Completion date: Indefinite for the P_ studies as such.

2. Names: K. Aleklett, P. Hoff, E. Lund and G. Rudstam.

Experiment Total beta decay energies and atomic masses.

Method: Beta particles were recorded in coincidence with gamma rays depopulating known levels in the daughter nucleus. The end-point energies of the beta-spectra were determined, and by adding the level energy the total beta-decay energies were obtained. The beta-particles were recorded in a Si(Li)

detector system and the gamma rays in two Ge(Li) detectors.

Further experiments will probably be performed using other techniques, such as HPGe detector for registration of beta particles or well calibrated plastic scintillators.

Completion date: Indefinite for the experiment as such.

Publication: K. Aleklett, P. Hoff, E. Lund and G. Rudstam, Total beta decay energies and mass systematics for neutron rich silver and cadmium isotopes²⁾, Phys. Rev. <u>C26</u>(1982) 1157.

```
2) 116-121 Ag and 119,121 Cd
```

SWEDEN

```
(cont'd)
```

3. Names: P. Aagaard, E. Lund, G. Rudstam and H-U Zwicky.

- Experiment: Yields of products from thermal-neutron induced fission of ²³⁵U.
- Method: The activity of a fission product is determined by means of gamma spectroscopy and of neutron counting. After correction for delay, counting efficiency, branching ratio and reactor power the result will be a product of the fission yield and the overall separation efficiency. The latter factor is nearly the same for all isotopes of a given element. Thus relative yields are directly obtainable and have to be normalized against the yield of one of the isotopes determined absolutely by any other technique.

Completion date: 1983.

4. Names: P. Aagaard, E. Lund, G. Rudstam and J.
 Eriksen.
 Experiment: Gamma branching ratios for fission products.
 Method: Gamma branching ratios for products induced in thermal-neutron fission of ²³⁵U have been

SWEDEN

(cont'd)

determined by simultaneous measurement of the gamma and beta activities. Well calibrated detectors have been used, a Ge(Li) detector for the determination of the intensities of certain gamma transitions and a plastic scintillator for determination of the beta activity.

Completion date: 1984.

5. Names: K. Aleklett, P. Hoff and E. Lund.

<u>Experiment:</u> Nuclear spectroscopic studies of the decays of 75,77 Zn, and 139,140 I. The studies aim at level scheme determinations to be combined with the Q_{B} -studies.

Completion date: 1983.

Publication: E. Lund, K. and total de published 19

6. Names: B. Fogelberg

Experiment: Nuclear spectroscopic studies of the decays of 113,114,115 Ag. The studies aim at level scheme determinations to be combined with the Q_B-studies.

<u>SWEDEN</u> (cont'd)

7. Names: B. Fogelberg, P. Hoff and G. Skarnemark.

- Experiment: Nuclear spectroscopic studies of fission product nuclei. The energy levels and transition probabilities between these are studied. Recent studies include levels populated in the decays of ${}^{121}Ag$, ${}^{131}In$, ${}^{133}Sn$ and 149 , ${}^{150}Ce$.
- Publications: B. Fogelberg and P. Hoff, Levels and transition probabilities in ¹²¹Cd, Nucl. Phys.<u>A391</u> (1982)445

S. Raman, B. Fogelberg, J.A.Harvey. R.L. Macklin. P.H. Stelson, A. Schroder and K.-L. Kratz, Overlapping beta-decay and resonance neutron spectroscopy of levels in ⁸⁷Kr, Phys. Rev. C (in press 1983).

SWEDEN

Laboratory:

Department of Nuclear Physics, University of Lund.

Names:

| P. Andersson, R. Zorro and I. Bergqvist.

Activity:

Neutron capture cross section measurements with the activation technique. Experimental and theoretical determination of corrections due to background low energy neutrons produced in reactions like (n,n^{-1}) and (n,2n) and charged-particle reactions like (p,n) and (d,n) in target backing etc.

Facilities:

3 MV pelletron accelerator, Ge(Li) spectrometers, proton recoil telescope, long-counters.

Results:

Measurements in the neutron energy range 2-4.5 MeV for the nuclei 115 In and ^{197}Au .

Publications:

P. Andersson, R. Zorro and I. Bergqvist, Nuclear Physics Reports LUNFD6/ (NFFR)/1-26/(1982).

Work in progress:

Most measurements for 115 In and 197 Au in the neutron energy range 4.5-7.5 MeV have been concluded.

Address:

Department of Nuclear Physics, University of Lund, Sölvegatan 14, 223 62 Lund, Sweden.

Contact:

P. Andersson.

SWITZERLAND

Laboratory & address:	Eidg. Institut für Reaktorforschung, CH-5303 Würenlingen, Switzerland
	Institut für anorganische, analytische und physikalische Chemie, Universität Bern, CH-3012 Bern, Switzerland
Name:	H.R. von Gunten, H.N. Erten
Facility:	Swimming-pool type reactor (SAPHIR)
Experiments:	Determination of independent and cumulative yields in the fission of ²³² Th, ²³³ U, ²³⁵ U, ²³⁹ Pu, and other nuclides
	Absolute yields in reactor neutron fission of ²³² Th
Completion date:	The measurement programme has been discontinued. The final publications are given below.
Publications:	H.N. Erten, A. Grütter, E. Rössler, H.R. von Gunten Mass-Distribution in the Reactor-Neutron Induced Fission of ⁷³² Th. Nucl. Sci. Eng. <u>79</u> , 167 (1981)
	D.T. Jost and H.R. von Gunten Independent yields of 92 MNb in the thermal neutron- induced fission of 233 U, 235 U and 239 Pu. J. inorg. nucl. Chem. 43, 2629 (1981)
	H.N. Erten, A. Grütter, E. Rössler and H.R. von Gunten Charge Distribution in the Reactor-Neutron-Induced Fission of ²³² Th. Phys. Rev. C., <u>25</u> , 2519 (1982)

CERN, Switzerland

	Laboratory:	ISOLDE, CERN
	and address:	CH-1211 Genève 23, Switzerland
	Facilities:	ISOLDE and Proton Synchrotron. Isotopically pure samples are obtained by on-line isotope separation of products formed in proton induced reactions in uranium carbide, thorium oxide or tantalum metal foil targets.
1.	Experiment:	Measurement of delayed neutron emission probability and neutron spectra for ⁸⁹⁻⁹² Br
	Methods:	Measurements by means of 3 He-spectrometers for neutron spectra and by a system of 3 He proportional counters imbedded in paraffin to obtain the neutron counting rate. Branching ratios are obtained by comparing the neutron rates to the beta rates obtained in a thin plastic scintillator, by means of multi- scaling or beta-neutron coincidences.
	Descr <mark>epan</mark> cies to e <mark>arlier</mark> data:	A P _n value of 27.8 \pm 3.3 % is obtained for ⁹¹ Br, in disagreement with a value of 18.2 \pm 1.3 % obtained by Aleklett et al. (Z.Phys. <u>A295</u> (1980) 331)
	Names:	R.D. von Dincklage, H.Gabelmann, P.Hoff, B.Jonson, KL.Kratz, G.Nyman, H.L.Ravn, W.Ziegert.
2.	Experiment:	Measurement of the properties of states in ¹³² Sn populated in the beta-decay of ¹³² In
	Methods:	Delayed neutron spectra by means of ³ He-spectrometers. Gamma- ray spectroscopy and lifetime determinations by measuring delayed coincidences between electrons and gamma-rays.
	Names:	J.Blomqvist, R.D.von Dincklage, G.T.Ewan, P.Hoff, B.Jonson, K.Kawade, A.Kerek, G.Lövhöiden, G.Nyman, S.Mattsson, H.L.Ravn, K.Sistemich
	Publication:	Excited states in the doubly closed shell nucleus $^{132}_{50}$ Sn ₈₂ . Z.Phys. A306 (1982) 95

CERN, Switzerland (cont'd)

3. <u>Experiment</u> :	Investigation of the decay of ¹³³ In and the properties of states in ¹³³ Sn
Methods	Delayed neutron detection, gamma-ray spectroscopy
Result:	Discovery of ¹³³ In, $T_{\frac{1}{2}} = 180 \stackrel{+}{-} 20 \text{ ms}$
Names:	J.Blomqvist, R.D.von Dincklage, G.T.Ewan, P.Hoff, B.Jonson, A.Kerek, G.Lövhöiden, G.Nyman, H.L.Ravn

(same as INDC(NDS)-130)		
Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire OX11 ORA U.K.
Names:	J.G. Cuninghame, H.H. Will	lis
Facilities:	ZEBRA - BIZET	
Experiment:	To measure the effect of o	change of reactor
	neutron spectrum on fissio	on yields.
Method:	Four irradiations, each of ²³⁸ U and two ²³⁹ Pu metal b	E two ²³⁵ U, two peads of approx.
	100mg. weight have been ma	ade; two were in
	the inner breeder island a	and two in the
	outer core. One of the sa	amples of each
	of the fissile materials v	vas counted
	directly on a calibrated (Ge(Li) detector,
	while the other was dissol	ved and used to
	prepare purified samples of	of certain fission
	products of very low yield	l, viz.
	As, Ag, Cd, Sn, Sb and Rar	e Earths.
	Final results have now bee	en obtained which
	give complete fission yiel	d curves for
	fission of 235 U in both th	e inner and outer
	core positions of a "conven	tional" fast reactor
	core arrangement. They sh	low that there is no
	significant change in fiss	ion yields between
	the two core positions, ev	en though the neutron
	spectrum in the outer posi	tion is much softer
	than that in the inner. F	inal calculations
	of the other 10 fission yi	eld curves are now
	in progress.	
Accuracy:	Expected _ 10%	
Completion date:	Expected 1983	

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire OX11 ORA U.K.
Names:	J. G. Cuninghame, H. 1	E. Sims
Facilities:	Variable Energy Cyclo Helium jet recoil tra	
Experiment:	Decay scheme studies o products.	on short-lived fission
Method:	and transport by heli	with potassium chloride,

- 91 -

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire, OX11 ORA
Names:	I.C. McKean and H.E. Sims	
Experiment:	³ H yield in thermal and fast fis U and Pu isotopes	sion spectra for
Facilities:	GLEEP and 'ZEBRA' Reactors	
Method:	The tritium produced in fission tritiated water, separated from products and measured by liquid counting. A preliminary experim completed in which solutions of irradiated in a thermal flux. S irradiated in GLEEP ($^{235U} + ^{239}Pu$ in ZEBRA ($^{235U} + ^{239}Pu$ metal) ar Samples of ^{240}Pu and ^{241}Pu have further experiments.	other fission scintillation ment has been ²³⁵ U were Samples have been Pu in solution) and nd await analysis.
Accuracy:	+ - 10%	
Completion date:	experiment interrupted, continua	tion pending.

Laboratory and Address:	DNPDE	Dounreay Nuclear Power Development Establishment UKAEA, Northern Division Thurso, Caithness, Scotland KW14 7TZ
Names:	T W Kyffin, C G Allan	
Facilities:	PFR	
Experiment:	The measurement of the 144 Ce, 143 , 145 , 146 , products, from the fis and 241 Pu.	absolute yields of 90 Sr, 137 Cs, 148 , 150 Nd and perhaps other fission sion of 235 U, 238 U, 239 Pu, 240 Pu
	In progress	
Method:	Twelve sealed stainles iated. Of these,	s steel capsules are to be irrad-
	3 capsules contain ²³⁹ F dioxide, 238 2 capsules contain an isotopic analysis o 1 capsule contains ²⁴⁰ plutonium with an isot 1 capsule contains ²⁴¹ plutonium with an isot	and highly enriched uranium dioxide, u as low ²⁴⁰ Pu content plutonium U as depleted uranium dioxide with f 99.7% ²³⁸ U, Pu as a dried aqueous solution of copic analysis of 99% ²⁴⁰ Pu, Pu as a dried aqueous solution of opic analysis of 93% ²⁴¹ Pu, and added fissile material.
		sules contain stainless-steel powder material dioxide for heat trans
	receive irradiation co of the fissile materia	e ²³⁵ U and ²³⁹ Pu capsules will rresponding to about 35% burn-up 1, the ²³⁸ U capsule to about 1.5% sule to about 10% burn-up and the 50% burn-up.
	for irradiation in the analysed alongside the	tical to the irradiated set except reactor will be dissolved and irradiated set, the objective eliability of the analyses.
		e loss of fissile material during mounts of fission products formed, ept ²³⁸ U) to enable absolute meas- eles to be obtained.
Accuracy:	$\frac{+}{+}$ 2% for $\frac{235}{238}$ U and $\frac{+}{+}$ 6% for U,	²³⁹ Pu fissio n yields Pu and ²⁴¹ Pu fission yields
Expected completion date:	1986	

Laborato ry and add ress:	National Physical Laboratory	Queens Road Teddington Middlesex TW11 OLW, UK
Names:	P Christmas, P Cross	
Faciliti es:	Iron-free, π√2 magnetic β-ray sp	ectrometer.
Experiment:	Measurement of β -spectra of 90 Sr- to determine shape factors and en Similar measurements are being ma other European Laboratories using prepared from NPL solution. This has been organized by NPL on beha International Committee for Radio (ICRM).	dpoint energies. de by three sources intercomparison lf of the
Accuracy:	Endpoint energies will be determi expected uncertainty of \pm 1 keV.	ned with an
Completion date:	Measurements have been made. Tar completion of intercomparison is	

•

1) National Physical Laboratory	Queens Road Teddington Middlesex TW11 OLW, UK
2) Fachinformationszentrum Energie, Physik, Mathematik	Karlsruhe D-7514 Eggenstein Leopoldshafen, FRG
H. Behrens 2), P. Christmas 1)
Reanalysis of Cs-137 beta dec	ay data
Improved fits to previously m Cs-137 (ref. 1) were obtained shape factor for the second-f single-particle estimates of ratios. Revised decay scheme including the new value (85.2 the gamma-ray intensity per d has been published (ref. 2).	using a more realistic orbidden decay, with nuclear matrix element data were deduced, 1 ± 0.07) per cent for
1: Metrologia 14(1978) 157. 2: Nucl. Phys. A399(1983) 131	•
	 Laboratory 2) Fachinformationszentrum Energie, Physik, Mathematik H. Behrens ²), P. Christmas ¹ Reanalysis of Cs-137 beta dec Improved fits to previously m Cs-137 (ref. 1) were obtained shape factor for the second-f single-particle estimates of ratios. Revised decay scheme including the new value (85.2 the gamma-ray intensity per d has been published (ref. 2).

Lab oratory and address:	Birmingham Radiation Centre	University of Birmingham P.O. Box 363 Birming ham B15 2TT United Kingdom
Names:	J.G. Owen, J. Walker, D.R. Weave	r
Facilities:	3MV Dynamitron accele rator (Birm Tandem Van de Graaff and IBIS (H	
Experiments:	Delayed neutron spectrum measure	ments following
	monoenergetic fast neutron induc and ²³⁹ Pu	ed fission in 235U
	Spectrum measurements of Am/Li se by the March 1979 Vienna Consulta Neutron Properties have been com round-robin of measurements of on (a 5 Ci one belonging to NPL Eng Requests to join this round-robin D.R. Weaver.	ant's Meeting on Delayed pleted. An international ne of these Am/Li sources land) is in progress.
Method:	³ He spectrometers; for delayed s cyclic irradiation and counting equilibrium contributions from a groups.	to give near-
Accuracy:	A full covariance matrix is calc	ulated.
Publication:	A paper on the measurement of the source has been published.	• NPL•s 5 Ci Am/Li

Laboratory and Address:	Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439
Names:	L. E. Glendenin, J. E. Gindler, J. W. Meadows
Facilities:	Fast-neutron generator facility (FNGF)
Experiment:	Determination of fission yields for monoenergetic neutron-induced fission as a function of incident neutron energy over the range 0.1 to 8 MeV.
Method:	Yields determined (1) radiochemically with either β - or γ -counting (RC) and (2) by γ -counting irradiated foils of fissionable material (γ). Neutrons produced by Li-p or D-d reaction. Flux monitored with fission chamber utilizing as the fission source the same material as that being irradiated. Absolute yields determined from flux measurements and/or 200% normalization of mass-yield distribution.
Accuracy:	Yields > 1% determined by γ -counting: 3-5% Yields < 1% determined by γ -counting: 5-20% Yields determined radiochemically with β -counting: 10-20%
Completion date:	Measurements completed and published or in press for ²³⁸ U(n,f), ²³² Th(n,f), ²³⁵ U(n,f) and ²³⁹ Pu(n,f).
Publications:	"Mass distributions in monoenergetic-neutron-induced fission of ²³⁸ U", S. Nagy, K. F. Flynn, J. E. Gindler, J. W. Meadows, and L. E. Glendenin, Phys. Rev. <u>C17</u> , 163 (1978).
	"Mass distributions in monoenergetic-neutron-induced fission of ²³² Th", L. E. Glendenin, J. E. Gindler, I. Ahmad, D. J. Henderson and J. W. Meadows, Phys. Rev. <u>C22</u> , 152 (1980).
	"Mass distributions for monoenergetic-neutron-induced fission of ²³⁵ U", L. E. Glendenin, J. E. Gindler, D. J. Henderson and J.W. Meadows, Phys. Rev. <u>C24</u> , 2600 (1981).
	"Mass distributions in monoenergetic-neutron-induced fission of ²³⁹ Pu", J. E. Gindler, L. E. Glendenin, D. J. Henderson, and J. W. Meadows, Phys. Rev. C27, 2058 (1983)

<u>U. S. A.</u>

(completely revised)

Laboratory and address:

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 U.S.A.

Research:

Fast neutron elastic scattering and total cross section studies for the Z=39 to 52 region and development of a regional optical model.

Authors:

A. B. Smith, P. T. Guenther, J. F. Whalen and C. Budtz-Jørgensen.

Facilities:

Argonne FNG (Fast-Neutron Generator), 10-angle Time-of-Flight Facility.

Status:

Total cross section measurements for Y, Nb, Rh, Pd, In, Sn and Sb from 0.8 - 4.5 MeV and elastic scattering cross section measurements for Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn and Sb from 1.5 - 4.0 MeV have been completed. A series of reports on results for specific elements have been either issued (see below) or are in the final stages of completion. A regional optical model has been developed. Furthermore, a journal article summarizing all this work is in preparation.

Publications:

1. A. Smith, P. Guenther and J. Whalen, ANL/NDM-70 (1982). A. Smith, P. Guenther and J. Whalen, ANL/NDM-76 (1982). 2. 3. A. Smith, P. Guenther and J. Whalen, ANL/NDM-68 (1982). A. Smith, P. Guenther and J. Whalen, ANL/NDM-71 (1982). 4. A. Smith and P. Guenther ANL/NDM-66 (1982). 5. A. Smith and P. Guenther ANL/NDM-72 (1982). 6. A. Smith, P. Guenther and J. Whalen, ANL/NDM-78 (1982). 7. C. Budtz-Jørgensen, P. Guenther and A. Smith, 8. ANL/NDM-73 (1982). 9. A. Smith, P. Guenther and J. Whalen, ANL/NDM-75 (1982).

(completely revised)

Laboratory and address:

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 U.S.A.

Research:

Neutron total cross section data have been measured for 11 fissionproduct elements (Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn and Sb) in the energy range 47 keV to 20 MeV using both white and monoenergetic spectrum techniques.

Authors:

W. P. Poenitz and J. Whalen

Facilities:

Argonne FNG (Fast-Neutron Generator). Automated sample changer.

Status:

Measurements have been completed and a summary report is in the final stages of preparation.

- 99 -

<u>U. S. A.</u>

(completely revised)

Laboratory and address:

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 U.S.A.

Research:

Measurement of capture activation cross sections for 94 , 96 Zr and 98 , 100 Mo at Thermal and 30-keV energies and fast-neutron capture measurements and model calculations for 110 Cd(n, γ) 111m cD have been performed.

Authors:

W. P. Poenitz, D. Smith, J. Meadows, P. Moldauer and J. Wyrick

Facilities:

Argonne FNG (Fast-Neutron Generator)

Status:

Results from this work were reported at the NEANDC/NEACRP Specialist's Meeting on Fast-Neutron Capture Cross Sections which was hosted by Argonne National Laboratory.

Publications:

- 1. J. Wyrick and W. Poenitz, NEANDC(US)-214/L p. 196 (1983).
- D. Smith, J. Meadows, P. Moldauer and W. Poenitz, NEANDC (US)-214/L, p. 186 (1983).

- 100 -

```
<u>U. S. A.</u>
(new)
```

Laboratory and address:

Argonne National Laboratory 9700 S. Cass Avenue Argonne, Illinois 60439 USA

Research:

Fast-neutron capture cross sections have been measured, using a prompt detection technique, for Y, Zr, Mo, Ag, Cd, In, Sb, La, Eu, Gd, Tb, Dy, Er, Yb, Hf, W, Re and Pt in the 0.5-4.0 MeV neutron energy range. Included among these are several fission-product nuclei. Furthermore, the data on other nuclei are of interest for the development of nuclear models for the capture process in the fission-product mass region.

Authors:

W. P. Poenitz

Facilities:

Argonne FNG (Fast-Neutron Generator), Large-liquid-scintillator tank.

Status:

Work has been completed and reported at the NEANDC/NEACRP Specialist's Meeting on Fast-Neutron Capture Cross Sections (see below).

Publications:

1. W. P. Poenitz, NEANDC(US)-214/L, p. 239 (1983).

U.S.A.

Laboratory and Address:	Brookhaven National Laboratory Upton, New York, 11973
Names:	R. E. Chrien, R. L. Gill, Z. Berant, A. Piotrowski, R. Petry, D. D. Clark, Y. Y. Chu, R. F. Casten and D. D. Warner
<u>Facilities</u> :	On-Line Mass Separator "TRISTAN" Surface Ionization Source for Production of Alkaline Metals High-Temperature Thermal Ionization Source High-Temperature Plasma Source Febiad Source PDP-11-based Data Acquisition System
Experiments:	 β and γ spectroscopy of fission product nuclei Nuclear masses far from stability Delayed neutron production and spectra Time-of-flight, recoil and He 3 spectrometer Angular correlations and perturbed angular correlations
Accuracy:	State-of-art precision for spectroscopic experiments $\pm 10\%$ in delayed neutron probabilities $\pm 2\%$ in half lives, typical $Q_{\beta} \pm (10 \text{ to } 100 \text{ keV})$
Comments:	TRISTAN is a multi-user facility with participants from the following institutions, in addition to the local group:
	Clark University Cornell University Idaho National Engineering Laboratory Iowa State University Los Alamos National Laboratory Lawrence Livermore National Laboratory Louisiana State University McGill University Pacific Northwest Laboratory Texas A&M Lafayette College University of Maryland University of Oklahoma
	For detailed publication list and participant list, please refer to individual contributions. A summary of the program is available in the DOE-NDC Progress Reports, available from the National Nuclear Data Center.

$$\frac{U.S.A.}{(cont'd)}$$

- Recoil spectrometer measurements of beta-delayed neutron spectra (⁹³⁻⁹⁵Rb) (INEL/BNL)
- Delayed neutron spectra by time-of-flight (⁹⁵Rb) (Cornell/BNL)
- Precise Q-values for neutron-rich Rb and Cs isotopes and ¹⁴⁶La, ¹⁴⁸La (Clark/Lafayette/Ames/Oklahoma) [1]
- Angular correlation studies of the transitional nuclides $^{142-146}$ Ce and the low lying 0⁺ excited states
- Band structure in ¹⁴⁸Ce (Maryland/Clark/BNL/Ames) [2]
- Levels of ¹⁴⁶Ce from the decay of ¹⁴⁶La (Ames/Maryland/Oklahoma/BNL)
- The decay of mass-separated ¹⁴⁴, ¹⁴⁶, ¹⁴⁸Ba to levels in ¹⁴⁴, ¹⁴⁶, ¹⁴⁸Ba (Maryland/BNL/Clark)
- Low-lying levels in the N=85 isotone ¹⁴¹Ba (Ames/Maryland/BNL) [3]
- 99 Rb and 99 Sr decay (Oklahoma/Maryland/BNL)
- Studies of the decay of 145, 147Cs and 145, 147Ba and a reinvestigation of the decay of 147La (Oklahoma/BNL)
- Neutron emission probabilities Cu, Ga, Br, Kr and Rb precursors (A=75-104); Ag, In, I, Xe, Cs (A=121-149) (PNW/BNL) (see also PNW)
- β -spectra and β -strength functions with a E-AE coincidence telescope (McGill)
- Perturbed angular correlation studies g-factor measurements; ^{144,146}Ba, ⁹⁸Sr, ⁹⁷Zr, ¹²⁴Sn (BNL/Ames/Maryland)
- Decay of low spin ¹⁴⁸, ¹⁵⁰, ¹⁵²Pr (Ames/Maryland/BNL)
- Levels in ¹²²Ag from ¹²²Cd (BNL/Clark/Ames)
- 124 Ag level scheme (BNL/Clark/Ames)
- 142, 144 Ce angular correlation studies (Maryland/BNL/Clark/Ames/Oklahoma)
- [1] D.S. Brenner et al., "Q values for neutron-rich rubidium and lanthamum isotopes", Phys. Rev. C <u>26</u> (Nov. 1982) 2166 (incl. ^{88,94,96,98}Rb)
- [2] R.L. Gill et al., "Levels in ¹⁴⁸Ce from the decay of mass separated ¹⁴⁸La" Phys. Rev. C<u>27</u> (April 1983) 1732.
- [3] H. Yamamoto et al. "Decay of mass-separated ¹⁴¹Cs to ¹⁴¹Ba and systematics of N=85 isotones" Phys. Rev. C <u>26</u> (Sept. 1982) 1215.

<u>U.S.A.</u>

	Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415 USA
1.	Names:	R.C. Greenwood, R.J. Gehrke, J.D. Baker, V. J. Novick
	Experiment:	Nuclear decay properties (T½, $_\gamma\text{-branching}$, $_\beta\text{-branching}$) of short-lived fission products.
	Facility:	Two $600-\mu g$ ²⁵² Cf fission-product sources coupled via He-gas jet transport to a chemical separation laboratory and an on-line mass separator.
	Method:	Fast on-line chemical or mass separations followed by $_{\gamma}\text{-}$ and $_{\beta}\text{-}\text{ray measurements.}$
	Measurements Completed:	New isotopes ¹⁶⁵ Tb and ¹⁶⁸ Dy have been discovered and decay properties measured. ^{152, 153,154} Pm measurements in progress.
	Publications:	R.J. Gehrke, R.C. Greenwood, J.D. Baker and D.H. Meikrantz, "Identification of a New Isotope, ¹⁶⁸ Dy" Z. Phys. A <u>306</u> , 363 (1982).
		J. D. Baker, R. J. Gehrke, R. C. Greenwood and D. H. Meikrantz, "Advanced System for Rapid Separation of Rare Earth Fission Products," Journal of Radioanalytical Chemistry <u>74</u> (1982) 117.*
		R.C. Greenwood, R.J. Gehrke, J.D. Baker, D. H. Meikrantz, and C.W. Reich, "Identification of a New Isotope, ¹⁶⁵ Tb" Phys. Rev. C <u>23</u> , 1266 (1983).
		R.J. Gehrke, R.C. Greenwood. J.D. Baker and D.H. Meikrantz, "A New Iosotpe ¹⁶³ Gd; Comments on the Decay of ¹⁶² Gd," Radiochimica Acta <u>31</u> 1 (1982).
		R.C. Greenwood, R.J. Gehrke, J.D. Baker and D.H. Meikrantz, "Identification of a New Isotope, ¹⁵⁵ Pm, Produced in Spontaneous Fission of ²⁵² Cf," Radiochimica Acta <u>30</u> 57 (1982).

^{*}Half-lives given for 155 Pm, 163 Gd and 160 Hu.

<u>U.S.A.</u>

(cont'd)		
2.	Names:	R.J. Gehrke, R.G. Helmer
	Facilities:	l) 4 π β-γ coincidenc e counting system 2) Calibrated Ge(Li) spectrometers
	Experiment:	Determination of absolute γ -ray emission probabilities for important fission-product isotopes.
	Method:	The decay rates are determined by the $4\pi \beta - \gamma$ coincidence counting system, which has two separate pulse-processing systems. One system is based on fixed pulse widths and an overlap coincidence circuit. The γ -ray emission rates are determined by Ge(Li) spectrometers whose efficiencies have been measured to an accuracy of $\pm 1-1/2\%$ (1 σ) between 0.3 and 2 MeV.
	Accuracy:	$\pm 1\%$ to $\pm 5\%$ (lo uncertainty).
	Measurement Completed:	Emission probabilities of the 316keV γ ray emitted in the decay of ¹⁴⁶ Ce measured to an accuracy of ~3% (1 σ level).
	Publications:	R.J. Gehrke, "Emission Probability of the 316-keV _Y -Ray Emitted in the Decay of ¹⁴⁶ Ce," submitted for publication in Int. J. Appl. Radiat. and Isotopes (in press).
		R. J. Gehrke, "Gamma- Ray Emission Probability for the Decay of ¹⁴³ Ce," Int. J. Appl. Radiat. and Isotopes <u>33</u> 355 (1982).
		R.J. Gehrke and L.O. Johnson, "A $4\pi \beta - \gamma$ Coindicence System with Minimally Broadened Pulses for High Count Rates," Nucl. Istr, and Methods 204 191 (1982).

<u>U.S.A.</u>

(cont'd)
(same as INDC(NDS)-130)

3.	Names:	R.G. Helmer
	Experiment:	Precise $\gamma\text{-ray}$ energy measurements for energy calibration standards.
	Facility:	γ -ray spectrometers using Ge detectors.
	Method:	Comparison of $\gamma\text{-ray}$ energies by measurement of spectra including lines of known and unknown energies.
	Publications:	R.G. Helmer, A.J. Caffrey, R.J. Gehrke and R.C. Greenwood, " γ -Ray Energies from the Decay of ⁹⁹ Mo, ¹³³ Ba and ²¹⁰ Pb," Nucl. Instr. and Methods <u>188</u> , 671 (1981).

- 106 -

<u>U.S.A</u>

Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P. O. Box 1625 Idaho Falls, Idaho 83415 USA
Names:	R. A. Anderl, Y. D. Harker
Experiment:	Integral cross-section measurements in fast- reactor-type environments.
Completion date:	This measurement programme has been terminated. The last publications are given again below.
Publications:	Y. D. Harker, R. A. Anderl, "Integral Cross-Section Measurements on Fission-Products in Fast Neutron Fields," in the Proceedings of Specialists' Meeting on Neutron Cross Sections of Fission-Product Nuclei, Bologna, Italy, December 12-14, 1979, NEANDC(E)209"L" (June 1980).
	J. M. Ryskamp, R. A. Anderl <u>et al</u> ., "Sensitivity and Uncertainty Analysis of the CFRMF Central Flux Spectrum," Nucl. Tech. <u>57</u> ,20 (1982).
	R. A. Anderl, "Integral Data-Testing Report for ENDF/B-V Fission-Product and Actinide Cross Sections," U. S. DOE Report EGG-PHYS-5406, April, 1981.
	R. A. Anderl, F. Schmittroth, Y. D. Harker, "Integral- Capture Measurements and Cross-Section Adjustments for Nd, Sm and Eu," U. S. DOE Report EGG-PHYS-5182, INEL, July, 1981. *)
*) 143-146,148,150 _{Nd} ,	$147,149_{\text{Sm}}$, $151-154_{\text{Eu}}$

<u>U. S. A.</u>

Laboratory: Idaho National Engineering Laboratory

Address: Exxon Nuclear Idaho Company, Inc. P.O. Box 2800 Idaho Falls, Idaho 83401 United States of America

Name: T.C. Chapman, R.L. Tromp

Experiment: Fast Reactor Fission Yield Measurement in FFTF

For many years, personnel at the Idaho Chemical Processing Plant (now operated by Exxon Nuclear Idaho Company, Inc.) at the Idaho National Engineering Laboratory, have been involved in the accurate measurement of absolute fission yields for use on the determination of burnup in fast reactor fuels. As a continuing effort of this program, an irradiation of heavy element nuclides (233 U, 235 U, 239 Pu, and 241 Pu) was conducted in the eight-day full-power run associated with the FFTF Reactor Characterization Experiment at Hanford, Washington.

The primary purpose is to generate a group of heavy element reference standards for which the number of fissions and burnup are well known. By combining this experiment with others of a similar nature, these samples will serve as reference and comparison standards. A secondary purpose is to verify the fast reactor fission yields measured in EBR-II and to assess the validity of using EBR-II values for irradiations conducted in FFTF.

For this experiment, ten samples each of highly-enriched 233 U, 235 U, 239 Pu, and 241 Pu (as oxides), sealed in high-purity nickel capsules were irradiated. Capsules were placed axially in one of the removable pins in Rows 1, 4, 5, and 6. Each pin was located immediately adjacent to an ILLR dosimetry package pin. The amount of material in each sample capsule was adjusted such that each individual sample will give about 10^{19} fissions.

<u>Schedule</u>: The irradiation was completed in November 1981. Analysis is planned to begin in Idaho when funding is available.

<u>Mëthod</u>: The samples in Rows 1 and 6 will be dissolved and analyzed for the following fission product elements using isotope dilution mass spectrometry: Kr, Rb, Sr, Zr, Mo, Ru, Xe, Cs, Ba, La, Ce, Nd, and Sm. The absolute number of fissions will be established by summing the number of fission product atoms in the heavy mass peak. The samples in Rows 4 and 5 will only be partially analyzed principally for Nd, Cs, Kr, and Xe to establish relative fission yield values for the intermediate reactor positions.

<u>Special Comment:</u> Funding for this experiment was discontinued in 1982. Work will be resumed when funding is made available.

LABORATORY	Lawrence Livermore Laboratory University of California P.O. Box 808 Livermore, CA 94550, U.S.A.	+ McClellan Central Laboratory 1155th Technical Operations Squadron McClellan AFB, CA 95652
NAMES	D. R. Nethaway A. L. Prindle D. H. Sisson	+ M. V. Kantelo ¹ + R. A. Sigg ¹
FACILITY	FLATTOP Critical Assembly (Pu), Los	a Alamos Scientific Laboratory
1. EXPERIMENT	Measure fission yields for fission spectrum neutrons.	of Am-241 induced by fission-
METHOD	Measurements were made by doing che irradiated Am-241 samples and by us technique. Absolute yields are bas mass-yield curve, and on the use of monitor reactions. The accuracy of \pm 5%.	sing the recoil catcher-foil sed on a normalization of the the ²³⁵ U(n,f) and ²³⁸ U(n,f)
COMPLETION DATE	The experiment is finished.	

PUBLICATION R.A. Sigg et al., Phys. Rev. C 27 (1983) 245. (Preprint: UCRL-85195 (Dec. 1980))

¹Present address: E. I. duPont de Nemours and Co., Savannah River Laboratory, Aiken, SC 29808.

U.S.A.

(cont'd)

LABORATORY	Lawrence Livermore National Laboratory University of California P. O. Box 808 Livermore, CA 94550, U.S.A.

NAMES	D.	R.	Nethaway
	F.	F.	Momyer
	С.	F.	Smith
	N.	A.	Bonner

FACILITY Livermore RTNS-2 Accelerator (D-T Neutrons)

- 2. EXPERIMENT Measure fission yields of rare gases, especially 10.7-y 85_{Kr} , for fission of 235_{U} , 238_{U} , and 239_{Pu} induced by 14-15 MeV neutrons. Several rare-earth yields will also be measured, such as 156_{Eu} and 161_{Tb} .
 - METHODMeasurements will be made by separating and counting the
gaseous products from the dissolved target. Other pro-
ducts will be measured by direct Ge(Li) counting of an
aliquot of the solution, and by chemically separating
and counting various rare-earth products. Fission yields
will be measured relative to known yields of products
such as 95Zr, 99Mo, and 147Nd. We plan to have about
 10^{14} fissions in each target of 1 g of uranium or
plutonium. The relative fission yields will be measured
with an accuracy of about 2-5%.
 - $\begin{array}{c|c} \hline \textbf{COMPLETION DATE} & We have finished several irradiations so far: 235U at 14.3 and 14.7 MeV, 238U at 14.4 MeV, and 239Pu at 14.8 MeV. We plan to have two more irradiations this year, 238U at 14.8 MeV and 239Pu at 14.4 MeV, and then prepare a report on the results. \\ \hline \end{tabular}$

<u>U. S. A.</u>

Measurements

Laboratory	Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee USA 37830
Name:	R. L. Macklin
Facility:	Oak Ridge Electron Linear Accelerator (ORELA)
Experiment:	Neutron Capture Cross Sections 2.6-2000 keV*
Method:	Neutron Time-of-Flight; prompt gamma cascade energy by liquid scintillator pulse height weighting
Accuracy:	Estimated 5% or less
Completion Date:	Experiment 1983; Analysis and Report 1984-5
Publications:	R.L. Macklin, "Cesium-133 Neutron Capture Cross Section", Nucl. Sci. Eng. <u>81</u> , 418 (1982)
	R.L. Macklin, "Technetium-99 Neutron Capture Cross Section", Nucl. Sci. Eng. <u>81</u> , 520 (1982)
:	R.L. Macklin, "Neutron Capture Cross Sections of the Silver Isotopes ¹⁰⁷ Ag and ¹⁰⁹ Ag from 2.6 to 2000 keV", Nucl. Sci. Eng. <u>82</u> , 400 (1982)
	R.L. Macklin, "Fission Product ¹²⁹ I and Natural ¹²⁷ I Neutron Capture Cross Sections and Resonances", Nucl. Sci. Eng. (to be submitted) 1983
	S. Raman, B. Fogelberg, J.A. Harvey, R.L. Macklin, P.H. Stelson, A. Schröder, and KL. Kratz, "Overlapping β Decay and Resonance Neutron Spectros- copy of Levels in ⁸⁷ Kr", Phys. Rev. C (in press) 1983
	A recent review paper including fission product nuclei and many capture results from this experimental apparatus is: F. Käppeler, H. Beer, K. Wisshak, D.D. Clayton, R.L. Macklin, and R.A. Ward, "s-process Studies in the Light of New Experimental Cross Sections: Distribution of Neutron Fluences and r- process Residuals", Astrophysical Journal <u>257</u> , 821 (1982)

* 86 _{Kr}, 127,129 _I, 136 _{Xe}, 151,153 _{Eu}.

- 111 -

<u>U.S.A.</u>

Laboratory and Address		Oak Ridge National Laboratory P. O. Box X, Building 6010 Oak Ridge, Tennessee 37830, USA
1.	Names:	J. K. Dickens and J. W. McConnell
	Facilities:	Fast Rabbit Transport Station at the ORR.
	Experiment:	Absolute yields of 37 fission products having half-lives between 7 min and 65 days, representing 25 mass chains created by thermal-neutron fission of ²²⁹ Th have been determined.
	Method:	A 15 µgram sample of 229 Th was irradiated three times, once for 150 sec, a second time for 1200 sec, and a third time for 120 sec, with thermal neutrons. Counting intervals were between 10 min and 0.4 yr following the end of the irradiation. Gamma-ray measurements following the first two irradiations were performed using a 90 cc Ge(Li) detector; measurements following the third irradiation were performed using a high-resolution intrinsic-Ge detector.
	Accuracy:	Relative lo uncertainties range between 2 and 15%; absolute uncertainties are dominated by an 8% uncertainty in absolute normalization, which is based on good agreement of the total mass yield for A between 76 and 152 with the expected 200% total yield.
	Discrepancies:	Deduced fission yields are in reasonably good agreement with previous measurements. Deduced mass yields agree with evaluation for $A \le 100$ and $138 \le A \le 141$, and disagree for $129 \le A \le 137$ and $A \ge 141$.
	Completion date:	April 1982.
	Publication:	J. K. Dickens and J. W. McConnell, "Yields of Fission Products Produced by Thermal-Neutron Fission of ²²⁹ Th," Phys. Rev. <u>27</u> , 253 (1983).
2.	Names:	D. G. Breederland, J. K. Dickens, and J. W. McConnell
	Facilities:	Fast Rabbit Transport Station of the High Flux Isotope Reactor (HFIR)
	Experiment:	Absolute yields of 23 fission products having half-lives between 6 hr and 65 days, representing 16 mass chains created by thermal-neutron fission of a sample enriched in the isotope ²⁴³ Cm have been determined.

- 112 -

U.S.A. (cont'd)

- Method: A 0.077 μ gram sample of ²⁴³Cm (in the form of curium nitrate) was irradiated for 150 sec by thermal neutrons. Unseparated fission-product γ -ray spectra were obtained between 22 hrs and 79 days after the end of the irradiation.
- Accuracy: Relative 10 uncertainties are between 1 and 25%. Absolute uncertainties have not yet been determined.
- Completion date: First part, December 1981. Completion of the total data | reduction is anticipated by December 1983.
- Discrepancies: There are no prior measurements for ²⁴³Cm(n,f) fissionproduct yields.

Publication: David G. Breederland, "Fission Product Yields for Thermal-Neutron Fission of Curium-243," ORNL/TM-8168 (1982).

U. S. A. (some as INDC(NDS)-130)

Laboratory and Address:

Pacific Northwest Laboratory P. O. Box 999 Richland, WA 99352 USA

Names: P. L. Reeder and R. A. Warner

Facilities:

SOLAR - Spectrometer for On-Line Analysis of Radionuclides. This is an on-line mass spectrometer which incorporates a 235 U target in a surface ionization source located in the thermal column of a 1 MW TRIGA reactor at Washington State University, Pullman, WA.

Experiment:

Isomer yield ratios for $^{235}U + n_{th}$.

Method:

Ratios of independent yields of fission product isomers are being measured for thermal neutron fission of ^{235}U by use of an on-line mass spectrometric technique. A short burst of neutrons from the TRIGA reactor is used to produce various isomers of Br, Rb, In, I and Cs fission products within the surface ionization source. Selective ionization performs the rapid chemical separations and magnetic analysis performs the mass separation to give the desired nuclides as a beam of ions. Ions are collected on a moving tape collector system for a short time interval during and after the neutron pulse. The radioactive decay of the two isomers is followed by beta and gamma counting to determine the relative yield of each isomer.

Accuracy:

The final accuracy will probably depend more on how well the decay schemes are known for particular cases than on statistical uncertainties.

Completion Date:

Work is continuing.

- 114 -

Laboratory and Address:

Pacific Northwest Laboratory P. O. Box 999 Richland, WA 99352

Names: P. L. Reeder and R. A. Warner

Facilities:

TRISTAN - This is an on-line isotope separator located at the High Flux Beam Reactor at Brookhaven National Laboratory, Upton, NY

Experiment:

Half-lives, P_n values, average energies, and neutron gated gamma spectra are being measured for separated delayed-neutron precursors.

Method:

Delayed neutrons from separated precursors are counted in a polyethylene moderated counter containing 3 rings of counter tubes. Beta and neutron growth and decay curves are measured to determine half-lives and P_n values. Data have been obtained for Sr and Y precursors at masses 97-99, Ba and La precursors at masses 146-148, Ag precursors at masses 121-124, and In precursors at masses 127-130. Work is continuing on precursors at other elements. Gamma spectra in coincidence with delayed neutrons are being measured to provide partial neutron emission probabilities to excited states of the (A-1) daughter. The P_n i are being compared to predictions of a beta-decay model.

Accuracy:

The accuracy of the P_n measurements depends primarily on the accuracies of the neutron and beta counter efficiencies. The overall accuracy is expected to be about $\pm 7\%$.

Discrepancies:

 P_{η} values for Sr, Y, Ba, and La precursors at masses 97-99 and 146-148 are found to be very small (<1%).

Completion Date: Work is continuing.

Publications:

- P. L. Reeder, R. A. Warner, and R. L. Gill, "Half-lives and Emission Probabilities of Delayed Neutron Precursors ¹²¹⁻¹²⁴Ag", Phys. Rev. C (to be published).
- P. L. Reeder and R. A. Warner, "Delayed Neutron Precursors at Masses 97-99 and 146-148", PNL-SA-11065, November 1982.

- Laboratory and address: University of Illinois Nuclear Radiation Laboratory 214 Nuclear Engineering Lab. 103 South Goodwin Ave. Urbana, Illinois 61801 U.S.A.
- Names: Bernard W. Wehring
- Facilities: Illinois Advanced TRIGA 1.5-MW Nuclear Reactor, HIAWATHA Fission-Fragment Mass Spectrometer.
- Experiment: Direct Physical Measurement of the Primary Postneutron-Emission Nuclide Yields in Thermal-neutron Fission of U-235, Pu-239, U-233, and Th-229.
- Method: The fission-fragment recoil mass spectrometer HIAWATHA, consisting of a cylindrical focusing electrostatic analyzer and time-of-flight system, is used to determine fragment masses while fragment energy loss is used to identify fragment atomic numbers in multiparameter experiment. All fragment velocities and charge states are measured.
- Accuracy: <0.5-amu mass resolution, achieved, about 1-Z atomic-number resolution, achieved, 1% standard error (relative error) in largest mass yield, achieved, 0.02-0.1% standard error (absolute error) in nuclide yields, achieved.

Completion date: Work is continuing

Publications:

- Gino DiIorio and B. W. Wehring, "HIAWATHA, A Fission-Fragment Recoil Mass Spectrometer," Nucl. Instr. Methods 147, 487 (1977).
- R.B. Strittmatter, "Nuclide Yields for Thermal Fission of Uranium 235," Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1978.
- R.B. Strittmatter and B.W. Wehring, "Direct Measurement of Nuclide Yields in Thermal-Neutron Fission Using HIAWATHA," Proceedings of the International Conference on Neutron Physics and Nuclear Data for Reactor and other Applied Purposes, Harwell, September 25-29, 1978.
- R.B. Strittmatter and B.W. Wehring, "Fragment Atomic-Number Identification Using a Gas Ionization Chamber in Fission Yield Measurements," Nucl. Instr. Methods <u>166</u>, 473 (1979).
- B.W. Wehring, S. Lee, G. Swift, and R.B. Strittmatter, "Light-Fragment Independent Yields for Thermal-Neutron Fission of U-233," UILU-ENG-80-5312 (May 1980); Trans. Am. Nucl. Soc. 35, 551-552 (1980).
- Shengdar Lee, "Yield, Kinetic Energy, Pairing Effect, and Shell Effect of Light Fission Products for Thermal-Neutron Fission of Uranium-233," Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1983.

Laboratory and address:	University of Lowell, Lowell, Mass. 01854
Names:	G. Couchell, W. Schier
Facilities:	5.5 - MV Van de Graff, 1 MW swimming pool reactor, helium gas jet and tape transport system
Experiment:	Delayed neutron energy spectra as a function of time following fission; initially for 2350 and 239 Pu.
Method:	Beta-neutron time-of-flight method using helium jet and tape transport system together with Pilot U plastic and 6 Li-glass scintillators. Initially accelerator, later reactor neutrons are used.
Completion date:	In progress; composite spectra were measured with Pilot U plastic scintillators for six delay times (mean times range from 0.55 to 60.0 s) following fast fission of 235U.

<u>U.S.A.</u>

Laboratory and address	Washington University, Department of Chemistry, St. Louis, MO 63130 U.S.A.
Names	A.C. Wahl, T. Semkow, L. Robinson
Facilities	Cyclotron and 14-MeV neutron generator
Experiment	Determination of independent yields for near symmetric fission of 235 U by thermal and 14-MeV neutrons and of 238 U by 14-MeV neutrons.
Method	Fractional independent or cumulative yields of tin, indium, cadmium, and silver fission products are being determined to learn about nuclear-charge-distribution systematics for near symmetric modes of fission. Rapid (~1 sec), continuous solvent-extraction separations of short-lived fission products from their beta-decaying precursors are being carried out using a SISAK-2 system containing H-10 centrifuges. Relatively long-lived descendents in each phase are purified and measured radiochemically for yield determinations.
Completion date	Measurement should be complete by the end of 1983, and publication is planned for 1984.
Publications	 T. Semkow and A.C. Wahl, "Extraction of Ag(I), Cd(II), In(III), Sn(II), Sn(IV), Sb(III), and U(VI) from Aqueous Solutions by Ketone Solutions Using Single-Step Batch and Continuous SISAK Mehtods," J. Radioanalyt. Chem. <u>79(1)</u>, (1983), in press.
	 E.N. Vine and A.C. Wahl, "Fractional Independent Yields of ¹⁰⁴Tc and ¹⁰⁵Tc from Thermal-Neutron-Induced Fission of ²³⁵U and ²³⁹Pu," J. inorg. nucl. Chem. <u>43</u>, 877 (1981).
	 M.M. Fowler and A.C. Wahl, "Yields and Genetic Histories of ¹²⁸Sb, ¹²⁹Sb, and ¹³⁰Sb from Thermal-Neutron-Induced Fission of ²³⁵U," J. inorg. nucl. Chem. <u>36</u>, 1201 (1974).
	 B.R. Erdal, A.C. Wahl, and R.L. Ferguson, "Modes of Formation of Tin Fission Products," J. inorg. nucl. Chem. <u>33</u>, 2763 (1971).

USSR

I.V. Kurchatov Atomic Energy Institute A.A. Borovoj, Yu.V. Klimov, V.I. Kopejkin

Measurement of electron spectra of fission fragments resulting from thermal-neutron fission of ²³⁵U and ²³⁹Pu

A "disc" facility was used. Around the rim of the organic glass disc were placed targets consisting of 235 U and 239 Pu. The disc was rotated at 13 rpm. The neutron source (252 Cf) was placed on one side of the axis in a paraffin block, the electron spectrometer on the other side with a protective shield of lead and polyethylene positioned between them. The spectra of the fissioning isotopes and the background (the empty third of the disc) were measured simultaneously.

Ratios between the electron spectra from the fission fragments of 235 U and 239 Pu were obtained to an accuracy of ~ 5%. The following absolute spectra were established:

235 _U		239 _{Pu}	
E MeV	N _e (E)	N _J (E)	N _e (E)
1.5	1.32 (0)	1.65 (0)	1.14
2	9.11(-1)	1.28 (0)	7.70(-1)
3	4.41(-1)	6.66(-1)	3.42(-1)
4	1.83(-1)	3.15(-1)	1.26(-1)
5	6.72(-2)	1.23(-1)	4.04(-2)
6	2.23(-2)	4.46(-2)	1.22(-2)
7	5.62(-3)	1.27(-2)	2.86(-3)

Note: The values of N are given per MeV interval; the order is given in brackets. E is the kinetic energy of the electron. The following accuracies were obtained: $2-4 \text{ MeV} - \pm 5\%$ $6 \text{ MeV} - \pm 10\%$

The spectra obtained in the present experiment were harder than those obtained by Schrekenbacl et al., Phys. Lett. 99 B (1981) 251.

Reference: A.A. Borovoj, Yu.V. Klimov, V.I. Kopejkin, Preprint IAEh-3465/2 (1981). A.A. Borovoj, V.I. Kopejkin, L.A. Mikaeljan, Pis'ma Zh. Eksp. Teor. Fiz. 33 (1981) 426 (Engl.: JETP Lett. 33 (1981) 408).

U.S.S.R.

Laboratory and address:	Lensoviet Institute of Technology Leningrad 198013, USSR			
Names:		M.YA.Kondrat ko, A.V.Mosesov, K.A.Petrzhak, O.A.Teodorovich		
Facilities:	Ge(Li) Y	-ray spectron	neter, 4ng	-counters
Expertments:		ents of produ 7 induced by	-	for the fission emsstrahlung
Method:	Al catch bremsstr determin of unsep radioche γ -ray sp Absolute by norma	ers were irra ahlung. Radio ed by means o	diated wi pactive nu of γ-ray s ts in cat ion with d 4πβ-cou rields wer	clides were pectrometry cherfoils and/or subsequent nting. e determined
Accuracy:	yields i products low yiel	s within 3-9% and within 5	, mean 4. -15%, mea he accura	lute cumulative 4%(IG) for peak n 8%(IG) for cy of fractional -25%.
Results:	Kr- 85m Kr- 88 Sr- 91 Sr- 92		2r- 97	yield, % 5.26 <u>+</u> .15 5.54 <u>+</u> .16 5.90 <u>+</u> .23 4.39 <u>+</u> .17

(continued)

		- 120 -		
		<u>U.S.S.R.</u> (cont'd)		
Results: (continued)	Fission product	Cumulative yield,%	Fission product	Cumulative yield, %
	Ru-106	2.56 <u>+</u> .23	Ca- 136	•538 <u>+</u> •02I
	Ag-III	•665 <u>+</u> •040	La-140	4.87 ±.14
	Ag-II2	•575 <u>+</u> •033	Ce-141	4.59 ±.26
	Cd-115	•460 <u>+</u> •028	Ce-143	3.73 ±.13
	Cd-117m	•124 <u>+</u> •007	Ce-144	3.3I <u>+</u> .19
	Cd-117g	•271 <u>+</u> •021	Pr-145	2.87 ±.17
	Sb-127	1.49 <u>+</u> .06	Nd-147	I.864 <u>+</u> .059
	Sb-129	I.97 <u>+</u> .12	Pm-I49	1.496 <u>+</u> .096
	I -13I	4.53 <u>+</u> .14	Pm-151	•722 <u>+</u> •045
	I-13 2m	.20 <u>+</u> .13	Sm-153	•380 <u>+</u> •022
	I -132g	4.66 <u>+</u> .12	Sm-156	•II5 <u>+</u> •0I3
	I - I33	5.49 <u>+</u> .20	Eu-157	.068 <u>+</u> .010
	Te -135	6.28 + T8		

Xe-I35 6.28 <u>+</u>.18

Fission	Fractional		
product	independent		
	yie ld		
I -132(m+g)	.183<u>+</u>.0 32		
Ie- I35	•249 <u>+</u> •025		
Св-136	•085 <u>+</u> •008		
La-140	•016 <u>+</u> •004		

Publications: Atomnaja Energija (USSR), 53, 164-167 (1982).

Laboratory and address:	Moskovskij Inzhenerno-Fizicheskij Inst. (Moscow Institute of Engineering and Physics - MIFI), Moscow, 115409 USSR
Names:	A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko
Facilities:	<pre>IRT research reactor: pneumatic transport system, calibrated coaxial Ge(Li)-detector.</pre>
Experiment:	Measurement of cumulative yields of the short- lived ($T_1 = 7.1 - 54$ s) products resulting from thermal-neutron-induced fission of ²³³ U.
Method:	Semiconductor gamma-spectrometry of the irradiated sample in a cyclical regime without prior chemical separation.
Sources of information:	A.N. Gudkov, V.V. Kazantsev, A.B. Koldobskij, V.M. Kolobashkin, "Cyclical pneumatic transport system in the IRT-2000 MIFI reactor", in Experimental Methods in Nuclear Physics 7, Atomizdat, Moscow (1980) 30-34.
	M.E. Meek, B.F. Rider, Compilation of fission product yields, Report NEDO-12154-2 (1977).
Other information:	Cumulative yield values were obtained for eight short-lived fission products.
Accuracy (mean):	~ 10%
Publications:	A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko, "Fission product yields from thermal-neutron 233 U fission measured by a γ -spectrometric method in a cyclical regime".
	Voprosy Atomnoj Nauki i Tekhniki (Questions of Atomic Science and Technology) <u>42</u> <u>3</u> (1981) 49.

Laboratory and address:	Moskovskij Inzhenerno-Fizicheskij Inst., Moscow, 115409 USSR
Names:	A.G. Golovanov, A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, S.I. Lifanov, A.I. Slyusarenko
Facilities:	IRT research reactor; pneumatic transport system; calibrated coaxial Ge(Li)-detector.
Experiment:	Measurement of cumulative yields of short- lived ($T_{\frac{1}{2}} = 7.1 - 48$ s) fission products from plutonium-239 thermal-neutron fission.
Method:	Semiconductor gamma-spectrometry of the irradiated sample in a cyclical regime without prior chemical separation.
Sources of	
information:	M.E. Meek, B.F. Rider, Compilation of Fission Product Yields, Report NEDO - 12154-2 (1977).
Other information:	Cumulative yield values were obtained for eight short-lived fission products.
Accuracy (mean):	~ 18%
Discrepancies compared with published data:	The results agree with published theoretical data to within the error limits.
Publications:	A.G. Golovanov, A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, S.I. Lifanov, A.I. Slyusarenko, Determination of cumulative yields of short-lived fission products from thermal-neutron fission of ²³⁹ Pu by a gamma-spectrometric method in a cyclical regime. Atomnaja Ehnergija <u>53</u> 2 (1982) 117 (English: Soviet Atomic Energy <u>53</u> (Feb. 1983) 576.)

- 123 -

Laboratory and address:	Moskovskij Inzhenerno-Fizicheskij Inst., Moscow, 115409 USSR.
Names:	A.N. Gudkov, V.M. Zhivun, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, V.N. Kosyakov, S.V. Krivasheev
Facilities:	MIFI IRT research reactor; calibrated coaxial Ge(Li)-detector.
Experiment:	Absolute measurements of independent and cumulative fission product yields from californium-249 in thermal-neutron-induced fission.
Method:	Semiconductor gamma-spectrometry of the irradiated sample without prior chemical separation; measurements at successive time intervals.
Other information:	Values were obtained for 32 cumulative and 7 independent yields.
Accuracy (mean):	~ 8% for the cumulative and ~ 12% for the independent yields.
Discrepancies compared with published data:	Within the experimental error range quoted the values obtained in the present study diverge from previously published results of radio- chemical measurements for the cumulative yields of ⁹² Sr, ⁹⁷ Zr, ¹¹² Pd, ¹²⁷ Sb, ¹³² Te and ¹⁴³ Ce.
Publications:	A.N. Gudkov, V.M. Zhivun, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, V.N. Kosyakov, S.V. Krivasheev, "Measurement of fission-product yields from thermal-neutron fission of californium-249 by semiconductor gamma-spectrometry", Atomnaja Ehnergija 50 5 (1981) 355 (English: Soviet Atomic Enegy 50 (Nov. 1981) 331.

- 124 -

Laboratory and address:	Moskovskij Inzhenerno-Fizicheskij Inst. Moscow, 115409 USSR.
Names:	A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko.
System:	IRT research reactor; pneumatic transport system, calibrated coaxial Ge(Li)-detector.
Experiment:	Measurements of absolute quantum yields from the gamma-radiation of short-lived (T ₁ < 1 min) fission products. *)
Method:	Semiconductor gamma-spectrometry of the irradiated sample in a cyclical regime without chemical separation.
Information sources:	1. A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, et al., Measurement of short-lived fission products resulting from thermal-neutron fission of ²³³ U by a gamma-spectrometric method in a cyclical regime, Voprosy Atomnoj Nauki i Tekhniki, Ser. Yadernye Konstanty <u>42</u> <u>3</u> (1981) 49.
	2. M.E. Meek, B.F. Rider, "Compilation of Fission Product Yields", Report NEDO - 12154-2 (1977).
Other information:	Values were obtained for 13 absolute quantum yields, 5 of them for the first time.
Accuracy (mean):	~ 10%
Published data:	The results obtained in the present study do not agree, within the experimental error limits quoted, with those published earlier for the quantum yields of the following γ -lines: 775.2 keV ⁸⁸ Br, 469.2 keV ⁹⁹ Zr, 504.3 keV ¹⁰⁰ Zr, 174.92 keV ¹³⁹ Xe, 218.59 keV ¹³⁹ Xe, 211.5 keV ¹⁴³ Ba.
Publications:	A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko, Determination of absolute quantum yields from the γ -radiation of short-lived fission products by a γ -spectrometric method in a cyclical regime, Voprosy Atomnoj Nauki i Tekhniki, Ser. Yadernye Konstanty, <u>42</u> <u>3</u> (1981) 47
*) ⁸⁸ Br, ⁹⁰ Kr, ^{99,100} Zr,	99,101,102 _{Nb} , 103_{Tc} , $139,140_{\text{Xe}}$, $143,144_{\text{Ba}}$, 144_{La} .

II. COMPILATIONS AND EVALUATIONS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.

BELGIUM

Laboratory and address : Nuclear Physics Laboratory Proeftuinstraat 42 B-9000 Gent, Belgium

Names : P.De Gelder, D.De Frenne, E.Jacobs

Evaluation : Nuclear Data Sheets for A = 102, 110 and 105.

Method : cfr. Nuclear Data Project

Major sources of information : Recent References of NDP

Deadline of literature coverage : 102 : March 1982 110 : October 1982

Computer file of evaluated data : ENSDF

Completion date : 102 : March 1982 110 : December 1982 105 : probably end of 1983

Publications : - P.De Gelder, D.De Frenne, E.Jacobs, Nucl.Data Sheets, 35, 443 (1982).

FRANCE

Laboratory and address :	Département de Recherche Fondamentale Laboratoire de Chimie Physique Nucléaire Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX - France.
Name :	J. BLACHOT
Cooperation :	C. FICHE ^{XX} for developping the file and J.C. NIMAL ^X , B. DUCHEMIN ^Y , for the applications in summation calculation.
Compilation and Evaluation :	Radionuclide decay data : - to provide a comprehensive data bank of radioactive decay data with : half lives, Q-values, branching ratios, nuclear and spectra α , β , γ , energies and intensities with associated uncertainties.
Purpose :	 Decay data file for summation calculation of decay heat (Pepin code). Data bank for all people using decay data parameters.
Sources :	ENSDF file mostly and new recent works on short lived F.P. not yet evaluated in ENSDF.
Computer file and programs :	- EDIBIE, TRIGAL, ISOTAB Programs - Magnetic tape available on line for those using the French CISI Network. - Off line from the NEA Data bank (Saclay).
-	AT. Data and Nucl. Dat. Tab. Vol. 20 (1977) p.241. Annales de Physique Vol 6S (1981) Int. Conf. on Nuclear Data for Science and Technology,
	Anwerp, Belgium, 6-10 Sept. 1982; proceedings page 249.

CEN/CADARACHE % C.E.A - BP.1 - 13115 St-PAUL LES DURANCE

CEN/SACLAY-C.E.A - BP.2 - 91190 GIF SUR YVETTE -

FRANCE

Laboratory and address:	Laboratoire de Métrologie des Rayonnements Ionisants C.E.N. de Saclay B.P. No. 2, F-91190 Gif sur Yvette
Names:	F. Lagoutine, N. Coursol, J. Legrand
Evaluation:	Radionuclide decay data
Purpose:	Preparation of a document providing recommended values of the principle decay scheme parameters; half-life, energies and intensities of various radiations emitted (e.g. β , γ , c.e., X-rays)
Method:	- critical analysis of published results
	- determination of mean values and associated uncertainties
Source of information:	Nuclear Data Sheets, INIS-Atomindex, other recent publications
Publications:	Table de radionucléides, edition CEA-LMRI, containing among other radionuclides, the following fission products:
	- Vol.1: Kr-85, Mo-99, Tc-99, Ru-103 + Rh-103m, Sb-125 + Te-125m, Xe-133, Xe-133m, Ce-144 + Pr-144 (revised publication 1982)
	- Vol. 2 : Rb-86, Rb-88, Sr-89, Sr-90 + Y-90, Y-91
	Ru-106 + Rh-106, Te-127m + Te-127, I-129,
	Te-131m + Te-131, Xe-131m, Ba-140 + La-140, Pr-143.
	Zr-95 + Nb-95, 95m, I-131, Cs-137 + Ba-137m
	Ce-141 (revised publication by the end of 1983)
	- Vol. 3 : first part : Sr-92, Y-92, Pm-147, Ra-266 +
	chain of daughters Pu-239, Pu-240, Pu-241, U-236,
	U-237. (publication second half-year 1983)
	second part : Kr-88, Te-129m, Nd-147, Sn-151, Pu-238,
	Cm-244 (publication by the end of 1983)
	in preparation : Th-228 + chain of daughters

4

,

GERMANY, DEM. REP. (same as INDC(NDS)-130)

Laboratory Zentralinstitut für Kernforschung and address: Rossendorf DDR 8051 Dresden Postfach 19

Names: H.-C. Lehner, E. Franke

- Evaluation: Effective resonance integral of ¹³³Cs in reactor fuel elements
- Purpose: To clear differences between experimental and calculated fission product concentrations of ¹³⁴Cs observed in investigations of burnt fuel elements
- <u>1. Lethod:</u> Calculation of effective resonance integral of ¹³³Cs taking into account shielding by ²³⁸U resonances and self-shielding using Breit-Wigner formalism with Doppler broadening

Major sources BNL-325, 3rd. ed. 1973

of information:

Status: Completed

Publication: Radiochem. Radioanal. Letters 43 (1980) 77

- 2. Method: Calculation of the effective resonance integral of ¹³³Cs with the cell-code PEACO-II
- Major sources of Y. Ishiguro, PEACO-II, JAERI-M 5527 (1974) information: - ENL-325, 3rd. ed., 1973 for 133 Cs data - JAERI-1255 (1978) for 238 U data

Status: under work

Publication: in plan

- 130 -

GERMANY, FED. REP.

Laboratory	Inst. for Nuclear Chemistry
and adress:	Philipps-University Marburg
	Hans-Meerwein-Straße
	D-3550 Marburg
Names:	U. Reus and W. Westmeier

Compilation: Gamma-Ray Catalog[§]

Type of data: Compulation of energies and intensities of gamma-rays originating from the radioactive decay of nuclides, as well as other important decay properties of these nuclides.

<u>Arrangement:</u> Part I is a listing of ca. 32,000 gamma-rays ordered by increasing energy with the corresponding nuclei and other information needed for identification purposes. <u>Part II</u> is ordered by nuclides (A,Z) and contains the complete data sets for 2526 nuclides and isomers (i.e. more than 47,000 gamma- and X-rays), decay data, references, comments etc.

<u>Purpose:</u> Identification of gamma-rays, data for cross-section calculations, activity determination, activation analysis etc.

<u>Major sources of information:</u> Nuclear Data Sheets and almost all important journals in nuclear physics and chemistry.

Deadline of literature coverage: All information received before June 30, 1982, has been included.

- Other details: Intensities are given as gamma-rays (or X-rays) per 100 decays where possible to allow the determination of absolute quantities. K-X-ray intensities have been calculated where no experimental data were available.
- <u>Current status:</u> Revision of the data has been completed. By changing the printing format, the size of the catalog has been reduced to 400 pages to meet publication requirements.
- Publication: The catalog is scheduled to appear in Atomic Data and Nuclear Data Tables, Volume 29, which is to be issued in the second half of 1983.

⁹Work performed with the support of GSI (Gesellschaft für Schwerionenforschung mbH, D-6100 Darmstadt).

C.E.C. GERMANY, FED. REP.

Commission of the European Communities Joint Research Centre Karlsruhe Establishment European Institute for Transuranium Elements Postfach 2266 7500 Karlsruhe Federal Republic of Germany

Names: I. Broeders, KfK Karlsruhe, FRG L. Koch, M. Robin, CEA Cadarache, France R. Wellum

EVALUATION

- Evaluation: In the TACO experiment described previously (purpose and method) integral neutron cross-sections of selected actinides and fission product nuclides were determined. The total neutron flux was measured and the neutron spectrum as a function of axial position in the irradiation pins was known. Differential cross-sections for the isotopes concerned were taken from the KEDAK library From the flux and differential cross-sections the integral (n, γ) , fission, and in some cases (n, 2n), cross-sections have been calculated. The experimentally determined and the calculated values are compared.
- Publication: International Conference on Nuclear Data, 6-10 Sept 1982, Antwerp, Belgium; proceedings page 175.

INDIA

Laboratory and address	:	Department of Physics, Panjab University, Chandigarh -160014 (INDIA)
Names	:	D.R.Saroha, R.Aroumougame, R.K.Gupta
<u>Evaluation</u>	:	Charge distribution yields in the spontaneous fission of 236 U and 252 Cf nuclei.
Purpose	:	To predict the charge distribution of fission fragments of the naturally fissioning nuclei by using Fragmentation theory and two-centre shell model.
Method	;	 (i) An analytical solution of the time- dependent Schrödinger equation leads to an explicit expression for charge distribution yields as a Gaussian function which gives the most probable charge and the width of distribution. The hypothesis of unchanged charge dis- tribution and minimum potential energy are included as limiting cases.
		 (ii) Charge distribution yields of light mass products (A = 97-104) in the spontaneous fission of 2360 are obtained by solving a stationary Schrödinger equation numerically. The width of distribution and the most probable charge are also calculated.
Major sources of information	:	Journals and reports.
Deadline of literature coverage	:	19 81 .
Status	8	Comparison of theoretical results with the experimental data for the charge distribution yields in ²³⁶ U and ²⁵² Cf nuclei is shown to be good and the most probable charge is comparable with that of potential energy hypothesis.
		Strong odd-even charge effects are obtained in the charge distribution yields of light mass products (A = 97-104) of $236U$ which are in good agreement with experiments.
Publication <i>s</i>	:	 (i) D. R. Saroha, R. Aroumougame and Raj K.Gupta, Phys. Rev. C <u>27</u> (3) (1983). (ii) Results for light mass products charge distributions are submitted for publication.

- 134.-

ITALY

Laboratory and address:	ENEA, Laboratorio Dati Nucleari e Codici, Via Mazzini 2 - 40138 Bologna, Italy.
Names:	F. Fabbri, G. Maino, E. Menapace, G.C. Panini, G. Reffo, M. Vaccari, A. Ventura.
Work in Progress and Methods:	i) Model calculations of $\sigma_{n,\gamma}$ for the following isotopes: (76-78-79-80)Se, (79-81)Br, (78-79-80- 81-82-83-84)Kr in the energy range 1 KeV-1 MeV, (128-129-130-131-132-134)Xe in the energy range 1 KeV-200 KeV and (147-148-149-150-151)Sm and (147-148)Pm in the range 1 KeV-100 KeV. Isomeric ratios calculations for ⁷⁹ Se.Works to be published. ii) Model calculations of $\sigma_{n,\gamma}\sigma_{n,n}$, $\sigma_{n} el^{\sigma}_{tot}$ in the energy range 1 KeV-4 MeV for 93_{Nb} , 103_{Rh} , 181_{Ta} , 197_{Au} . Total γ ray spectra calculated, isomeric ratios for $\sigma_{n,\gamma}$ given for Nb, Rh and Ta average γ ray multiplicity given. Work published on N.S.E. <u>80</u> , 630(1982). iii) New evaluations of Pd-105 and -107, as maximum priority nuclei for fast reactors, were completed and group constants in CARNAVAL scheme were produced. Work published as ENEA report RTE/FIMA(82)4. iv) A critical intercomparison was performed on recent evaluations of Gd isotopes, with main care to the data for thermal reactor purposes. Work documented on ENEA report TIB/FICS(82)7.
Purpose:	Evaluation of reliable FP data, mainly capture cross sections, for estimating of long term reactivity effects in fast reactors.
Major sources of informatio	on: EXFOR, CINDA up to 82 supplement, Nuclear Data Sheets.
Deadline of literature cove	erage: December 1982.
Status:	see above text.
Cooperation:	CEA-Cadarache, KfK Karlsruhe and ECN-Petten.

JAPAN

Japanese Nuclear Data Committee, Decay Heat Evaluation Working Group Secretariat address: Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan Names: R. Nakasima (Hosei University) M. Yamada (Waseda University) T. Tamai (Kyoto University) M. Akiyama (University of Tokyo) I. Otake (Fuji Electric Co., Ltd.) A. Zukeran (Hitachi Ltd.) S. Iijima, T. Murata, T. Yoshida (Nippon Atomic Industry Group Co.) T. Hojuyama (FBR Engineering Co.) K. Umezawa, K. Tasaka, Z. Matumoto, T. Tamura, H. Ihara, J. Katakura (JAERI) 1. Compilation: Decay data and delayed neutron data Purpose: Revision of a FP decay data library completed in 1981 for summation calculation of decay heat Major Sources of Information: Journals, Nuclear Data Sheets, and ENSDF Expected Completion Data: Continuous compilation 2. Evaluation: (1) Evaluation of raw decay data by comparing calculated decay heat curves with available measurements (2) Deduction of analytical fitting equations Purpose: (1) Update JNDC FP Decay and Yield Data Library (2) Preparation of simple analytical function for the easy application of the present result of decay power calculation Major Source of Information: Own compiled data Status: | (1) Satisfactory agreement was obtained between calculated decay heat and measured data of 235 U, 239 Pu and 241 Pu from ORNL, 235 U, 233 U and 239 Pu from LANL and 235 U from Univ. of Tokyo. (2) Calculated results have been fitted to an analytical function with 31 exponential terms for thermal neutron fission of ^{235}U , ^{239}Pu , ^{241}Pu , ^{233}U , fast neutron fission of ^{235}U , ^{238}U , ^{239}Pu , ^{232}Th , and 14 MeV neutron fission of ^{235}U , 238₁₁ Computer File of Evaluated Data: JNDC Nuclear Data Library of Fission Products Discrepancies encountered: Some discrepancies still remain at coolingtimes around 3000 second. Availability of Nuclear Data: Contact Dr. Z. Matumoto, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken 319-11, Japan Publication: | Y. Ando, M. Uno and M. Yamada, JAERI-M 83-025 (1983) T. Yoshida, JAERI-M (in preparation) K. Tasaka et al., JAERI report (in preparation)

JAPAN

Laboratory and address :	Japanese Nuclear Data Committee/FPND W.G., Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki, Japan
Name :	S. Iijima, M. Kawai (group leader) (i), S.Igarashi Y. Kikuchi, Y. Nakajima, H. Nishimura (ii) H. Matsunobu (iii), T. Aoki (iv), A. Zukeran (v), T. Watanabe (vi), M. Sasaki (vii), T. Nishigori (viii)
Evaluation :	 Neutron cross sections of about 80 FP nuclides (Z=35 to 64), forJENDL-2 FP Library. Integtal test of JENDL FP library.
Purpose :	Fast breder reactor and thermal reactor calculation.
Method :	(1) Calculation with spherical optical model and statistical theory. Single and muti-level BW formula in thermal and resonance regions. Optical model paremeters are determined by SPRT method. Level density parameters are re-evaluated, deriving systematics of parameters.
	(2) Calculation using JAERI-FAST type 70-group cross sections with resonance self-shielding factors, and the neutron spectrum data from STEK and CFRMF data.
Major sources of information :	EXFOR Library, CINDA, BNL-325 and recent literature. Integral data from STEK, CFRMF and EBR-II.
Status :	(1) Re-evaluation for about 80 FP nuclides. Optical model parameters were re-determined in element-wise way for Rb-Gd. Level density parameters were determined for about 130 nuclides based on level spacing data, level scheme data, and the systematics. Compilation and evaluation of resonance parameters are in progress.
	 (2) Analysis of STEK reactivity data for weak absorbers was completed. Revised calculation of CFRMF activation rates is planned using ENDF/B-5 spectrum field. (3) FP data library for thermal reaction application was prepared, and the fission product model was investigated for LWR calculation.
Other relvant det	ails : File preparation for storing the re-evaluated data are in progress. Cross section adjustment based on integral data will start soon.

(i) Nippon Atomic Industry Group Co., Ltd. (ii) JAERI (iii) Sumitomo Atomic Energy Industries, Ltd. (iv) Fuji Electric Co. (v) Hitachi Ltd.
(vi) Kawasaki Heavy Industries (vii) Mitsubishi Atomic Power Industries, Ltd.
(viii) Osaka University

```
(cont'd)
Computer file
                     JENDL (ENDF/B-IV Format).
of evaluated data :
Expected completion date : End of 1983
Publications :
                     (1) S. Iijima, M. Kawai : Systematics of neutron
                     total cross sections of fission product nuclei,
                     J. Nucl. sci. Technol. 20 (1983) 77 (short note)
                     (2) T. Yamamoto, T. Takeda, T. Yoshida,
                     S. Iijima : Extension of fission product model
                     for use in lattice calculation of thorum fueled
                     BWR, J.Nucl. Sci. Technol. (to be published), 1983
                     (3) S. Iijima, T. Yoshida, T. Aoki, T. Watanabe,
                     M. Sasaki : Study of systematics and the determination
                     of level density parameters of fission product nuclei,
                     submitted to J. Nucl. Sci. Technol.
```

JAPAN

- 138 -

NETHERLANDS

Laboratory and address	Netherlands Energy Research Foundation (ECN) P.O. Box 1, 1755 ZG Petten, The Netherlands. Telephone: (02246)-6262, telex: 57211 reacp nl.
Names	H. Gruppelaar, H.A.J. van der Kamp, R.J. Heijboer.
<u>Evaluation</u>	 RCN-2 and RCN-3 evaluations of neutron cross sections for fission-product nuclides and natural elements in the fission-product mass range 1-3 . The RCN-3 evaluation is a revised version of the published RCN-2 evaluation (see previous newsletters). The capture cross section has been adjusted to fit integral STEK and CFRMF data. The format of the library is that of KEDAK. Pseudo fission-product group cross sections in 26-group ABBN format 4 .
Purpose	Fast breeder power-reactor data needs.
Method	Calculation with multilevel Breit-Wigner formula, optical model and statistical model, taking into account all available experimental information. Adjustment of point-wise given capture cross sections to integral data (STEK+CFRMF); see Refs. 1-3 .
Major sources of information	BNL-325, EXFOR, CINDA, Nuclear Data Sheets, recent literature, integral data from STEK and CFRMF.
Status	 (1) RCN-3 evaluation completed for : Nb-93, natural Mo, Tc-99, Rh-103, Pd-102, Pd-104, Pd-105, Pd-106, Pd-107, Pd-108, Pd-110, Ag-107, Ag-109, natural Ag, I-127, I-129, Cs-133, La-139, Pr-141, Nd-142, Nd-143, Nd-144, Nd-145, Nd-146, Nd-147, Nd-148, Nd-150, natural Nd, Pm-147, Sm-148, Sm-149, Sm-150, Sm-151, Sm-152, Sm-154, natural Sm. Planned: Zr-isotopes, Xe-131, Cs-135, Ce-140, 142, Eu-153. (2) Completed: Pseudo fission-product cross sections 4 , based upon adjusted RCN-2A data, supplemented with ENDF/B-IV data and charged-particle emission cross sections 5 ; comparison with ENDF/B-V data 3 .
Computer file	RCN-2 and RCN-3 libraries in KEDAK-format, available from NEA Data Bank.
Completion date	1985
Recent publications	 Plakman, J.C. (comp.), Fast reactor programme. Annual progress report 1980, ECN-115 (1982), other progress reports in press. Gruppelaar, H. and J.B. Dragt, Cross section adjust- ments using integral data, Conf. on <u>Nuclear Data</u> <u>Evaluation Methods and Procedures</u>, Brookhaven, Sept. 22-25, 1980, BNL-NCS-51363, vol. 1, p. 133 (1981).

I

NETHERLANDS

(cont'd)

1

- H. Gruppelaar, Status of recent fast capture cross section evaluations for important fission product nuclides, NEANDC/NEACRP Specialists' Mtg. on Fast-neutron capture cross sections, Argonne, 20-23 April, 1982. NEAN DC(US)-214 (1983) 473.
- Heijboer, R.J. and A.J. Janssen, Status of pseudo fission-product cross sections for fast reactors; sensitivity study for sodium void effect, Proc. of the NEANDC Specialists' Meeting on <u>Neutron Cross</u> <u>Sections of Fission Product Nuclei</u>, Bologna, Dec. <u>12-14</u>, 1979, NEANDC(E)209"L" (1980), p. 375.
- [5] Gruppelaar, H. and B.P.J. van den Bos, The contribution of (n,p) and (n,α) reactions to fissionproduct capture cross sections, ibid, p. 285; extended report: ECN-78 (1979).

NETHERLANDS

Laboratory	:	Netherlands Energy Research Foundation ECN, Postbus 1, 1755 ZG Petten, The Netherlands.
Names	:	Willem L. Zijp and J.H. Baard.
Compilation	:	Selected fission yields and fission product decay data for reactor neutron metrology application.
purpose	:	Creation of a common data set for all laboratories working in the field of reactor neutron metrology. The guide was prepared on behalf of the Euratom Working Group on Reactor Dosimetry.
Major sources of information	:	 Cuninghame, J.G., Technical Report IAEA-213 (IAEA, Vienna, 1978); Gilliam, D.M., et al., Report NUREG/CP-004 (NRC, Washington D.C., 1978); Data supplied by the computer program MEDLIST from the Evaluated Nuclear Structure Data File (ENSDF); Data supplied by the Physikalisch Technische Bundesanstalt, Braunschweig.
Deadline of literature coverage:		Spring 1979. A revision is planned.
Cooperation	:	Members of Euracom Working Group on Reactor Dosimetry.
Other relevant details	:	Fission yields and decay data and decay schemes are given for the following fission products: ⁹⁵ Zr, ⁹⁷ Zr, ¹⁰³ Ru, ¹³¹ I, ¹³² Te, ¹³⁷ Cs and ¹⁴⁰ Ba. The fissionable isotopes considered are: ²³⁵ U, ²³⁸ U, ²³⁹ Pu, ²³⁷ Np.
Computer file	:	Not present.
Completion date	:	August 1979. For planned revision: fall 1983.
Publicati o ns	:	Report ECN-71, also as EUR 7164, part II. Revision: planned for 1984.

(same as INDC(NDS)-130)

Laboratory and Address:	AERE Harwell	UKAEA AERE, Harwell, Oxfordshire, Oxll ORA
Name:	E.A.C. Crouch (now retired)	
Compilation:	Chain, Cumulative and Independ yields for all neutron induced with neutrons of energy up to spontaneous fission. Ongoing	l fission reactions 14 MeV, including
Purpose:	Basic data for fission yield e	evaluation.
Sources:	Journals, Proceedings of Learn other open literature, Project work is complete but unlikely	reports if the
Deadlin e:	No results prior to 1950 are o	collected.
Cooperation:	We are prepared to exchange fi	les with other groups.
Computer File:	Information held in standard f	forms on Computer Files.
Completion Date:	Continuous compilation.	
Publications:	AERE R6642 'A library of neutr product yields maintained and computer methods". 'Part I: The establishment of E.A.C. Crouch, December 1970.	interrogated by
	AERE R7207 'A library of neutr product yields maintained and computer methods'. 'Part II: The interrogation of E.A.C. Crouch, August 1972.	interrogated by
	Fission Product Yields from Ne E.A.C. Crouch. Atomic Data and Nuclear Data 7 May, 1977. Contains experimental values a after fitting to conservation	Tables, Vol. 19, 5, and adjusted values

(same as INDC(NDS)-130)

	Laboratory and Address:	AERE	Harwell	UKAEA AERE Harwel, Oxfordshire OX11 ORA
	Name:	E.A.(CCrouch (now retired)	
1.	Evaluation	(1)	Neutron induced fission pro- fissile nuclides at neutron MeV; chain yields and indep	energies up to 15
		(2)	Adjustments of the chain yi independent yields to force conservation laws i.e. to f	agreement with the
	Purpose:	UKND	File to be used in Reactor	design and operation.
	Method:	(1)	The individual yields for a chain and independent), are and the means calculated to	examined, weighted
		(2)	The evaluated yields are au ation to fill missing value independent yields by calcu meters estimated from known are fitted by least squares conditions to give adjustme and independent yields.	s or in the case of lation based on para- values. The results to the conservation
			Complete - the fitting of c equality of yields of compl set will be tested for its estimate of after heat from experimental values than pr	ementary elements. The ability to produce an 2 ³⁹ Pu Fission nearer to
	Sources:	Comp	ilation mentioned above.	
	Deadline:	beli	esults prior to 1950 are col eved to be complete up to en lts included.	-
	Status:		uation and Consistent set co . Further development conti	
	Cooperation:	We a	re prepared to exchange file	s with other groups.

(cont'd, same as INDC(NDS)-130)

- Compilation as above. Computer Files of Compiled Data: Computer File of Magnetic tape or punched cards of the consistent Evaluated data: set in ENDF/BIV format. Discrepancies Files are compared with those of B.F. Rider and found: discrepancies found are resolved. Publication: Fission Product Yields from Neutron-Induced Fission. E.A.C. Crouch. Atomic Data and Nuclear Data Tables, vol. 19, 5, May 1977.
- 2. Evaluation: Compilation and evaluation of the half lives of delayed neutron emitter precursors and emission probabilities of the delayed neutron emitters. Hence, using the fission product consistent sets, calculation of the delayed neutron yields ... Proceeding.
 - Purpose: UK Nuclear Data File for use in Reactor design and operation calculations.
 - Sources: The open literature
 - Deadline: Continuous compilation.
 - Status: Compilation of delayed neutron data proceeding.
 - Cooperation: We are prepared to exchange information with other groups.
 - Computer files: Not yet implemented.

CEGB Berkeley Berkeley Nuclear Laboratories, Laboratory and Address: Nuclear Laboratories Berkeley. Gloucestershire GL13 9PB Working Group: A. Tobias CEGB, BNL A.L. Nichols AEE, Winfrith M.F. James, AEE, Winfrith H.E. Sims, AERE, Harwell K.M. Glover, AERE, Harwell V. Barnes, BNFL, Windscale D.G. Vallis, AWRE, Aldermaston Compilation and Evaluation: Radionuclide Decay Data Purpose: To provide a comprehensive, up-to-date data library of radioactive decay data including half-lives, Q-values, branching ratios, α , β and γ energies and intensities and associated uncertainties. Progress: a) Activation Products i) The activation product decay data library UKPADD-1, originally in ENDF/B-IV format, is also now available in ENDF/B-V format. ii) Work has begun on a revised activation product decay data library UKPADD-2 which will eventually contain data for over 400 nuclides. Evaluations for 60 nuclides have been completed so far and will be processed via the code COGEND to ENDF/B-V format. Fission Products b) i) The spectral data given for 390 nuclides in UKFPDD-2 have been extracted to provide an additional data base for the inventory/decay heat code FISP6, enabling the calculation of detailed radiation spectra emitted by irradiated fuel. ii) Data for ~ 300 fisson products, evaluated in 1979/1980 for UKFPDD-2, have been converted to ENDF/B-V format in preparation for UKFPDD-3.

(cont'd)

c) Heavy Elements

The heavy element decay-data library UKHEDD-1 is now complete and includes spontaneous fission data where appropriate. Data are given for 125 nuclides in ENDF/B-V format.

d) Data Retrieval

A retrieval system for spectral data has been developed for use with any ENDF/B-IV or V format decay data libraries - in particular UKPADD-1, UKFPDD-2 and UKHEDD-1. Spectral data can be presented in increasing energy order or by nuclide and with a variety of editing options.

Publications: i) "FISP6 - An Enhanced Code for the Evaluation of Fission Product Inventories and Decay Heat" by A. Tobias, CEGB Report TPRD/B/0097/N82.

ii) "Radioactive Heavy Element Decay Data for Reactor Calculations" by A.L. Nichols and M.F. James, UKAEA Report AEEW-R1407.

iii) "A Retrieval System for Spectral Data from ENDF/B Format Decay Data Files" by
A. Tobias, CEGB Report RD/B/5170N81.

	(same as INDC(NDS)-130)	
Laboratory and address:	Birmingham Radiation Centre	University of Birmingham P.O. Box 363 Birmingham B15 2TT United Kingdom
Name:	D.R. Weaver	
Evaluation:	Equilibrium and near-equilibrium of spectra	delayed neutron
Purpose:	For reactor physics calculations a delayed neutron yield measurements evaluation was recommended by the Vienna Consultants' Meeting on De Properties	s. The March 1979
Method:	Calculation of a full covariance r spectra	matrix for the
Deadline of literature coverage:	None. Raw experimental data from used either ³ He or proton recoil of obtained. Further data would be	counters has been
Status:	A method of obtaining a full covar been derived based upon the sensit obtained from unfolding to changes parameters of the detector and cou A paper describing the technique a Am/Li spectrum using a ³ He counter	tivity of the spectra in the calibration inting statistics. and measurement of an

U.S.A. (same as INDC(NDS)-130)

Laboratory and address:

Hanford Engineering Development Laboratory P.O.Box 1970 Richland, WA 99352

Names:

RE Schenter, FM Mann, DL Johnson, and F Schmittroth

Evaluation:

ENDF/B-V, Mods to ENDF/B-V, and ENDF/B-VI Fission Product Data File and Fission Yield Files

- A. Coordinate generation and testing of complete ENDF/B-FP files which will contain cross sections, decay data and fission yields for approximately 900 fission product nuclei and 20 fissionable nuclei. Coordination is part of the responsibility as Chairman of CSEWG (Cross Section Evaluation Working Group) Fission Product and Actinide Data Subcommittee. Two subcommittees related and contributing to this subcommittee are chaired by TR England (LASL) and CW Reich (INEL) and cover the areas of fission yields and experimental decay data, respectively. Evaluations to these files will be contributed by essentially all CSEWG member laboratories.
- B. Evaluate important FP cross sections for fast and thermal reactor application. These will mainly involve updating about 180 cross section evaluations from ENDF/B-V with emphasis on capture. Use will be made of combining recent integral and differential data results from CFRMF, STEK, RPI and ORNL.
- C. Evaluate delayed neutron spectra using summation method from individual precursors in cooperation with TR England (LASL) and CW Reich (INEL). Precursors without experimental spectra will be predicted using the computer code BETA.
- D. Evaluate decay data parameters \overline{E}_{β} , \overline{E}_{γ} for "theoretical" ("no line data") FP nuclides using BETA code, extrapolated "fits" to known data, and integral results of recent decay heat measurements.
- E. Analyze fission yield experimental results from FFTF.

Purpose:

Update ENDF/B Fission Product Data Files

Completion dates:

ENDF/B-V file was issued May 1980. ENDF/B-V Fission Yield Files issued April/May 1979. Mods to ENDF/B-V expected to be released Sep. 1982 and May 1983.

<u>U.S.A.</u> (cont'd)

References:

.

Results for delayed neutron spectra will be reported at the Internat. Conf. on Nuclear Data for Science and Technol., Antwerp, 6-10 Sep. 1982.

Other references related to this work may be obtained from R.E. Schenter.

For further information see also LANL contribution.

<u>U.S.A.</u>

Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415 USA
Names:	C. W. Reich, R. L. Bunting
<u>Compilation</u> :	Decay data for fission products. Quantities treated include: $T_{\frac{1}{2}}$; Q_{β} ; branching fractions for the various decay modes; energies and intensities of all emitted radiations (e.g., β , γ , c.e., x-ray); K-, L- and total ICC; delayed-neutron energy spectra for individual precursors; uncertainties in all measured values.
Purpose:	Decay data file for ENDF/B.
Major sources of information:	Nuclear Data Sheets, Table of Isotopes (7th Ed.), recently published papers, preprints of recent work.
Deadline of literature coverage:	Ongoing. For Version V of ENDF/B, cut-off date is approximately September, 1978.
Computer File:	Decay data are included in ENDF/B Fission Product File. Tapes available through normal ENDF/B procedures. Evaluated decay data sets for 318 fission- product nuclides (and isomeric states) have been prepared for inclusion in the ENDF/B-V Fission-Product File.
Publications:	R. L. Bunting and C. W. Reich, "Evaluation Procedures for Experimental Decay Data," in <u>Proceedings of the Conference on Nuclear</u> <u>Data Evaluation Methods and Procedures</u> , BNL-NCS-51363, Vol. 1, pp. 163-183 (March, 1981).
1	C. W. Reich and R. L. Bunting, "The Use of Data from Beta-Strength-Function Experiments to Obtain Average Decay-Energy Values for Short-Lived Fission-Product Nuclides," Nuclear Science and Engineering <u>82</u> (1982) 132.

U. S. A.

LABORATORY AND ADDRESS:

```
University of California
Los Alamos National Laboratory
PO Box 1663
Los Alamos, New Mexico 87545 (USA)
```

NAMES:

T. R. England (LANL) B. F. Rider (Retired) R. E. Schenter (HEDL)

COMPILATION:

Library of evaluated fission product yields for ENDF/B-VI files (preliminary).

DEADLINE OF LITERATURE COVERAGE

Mid-1983

COOPERATION

Subcommittee consisting of members from major USA commerical and government laboratories.

RELEVANT DETAILS

The new files are updated and extended to include 50 yield sets for 34 fissioning nuclides at one or more fission energies. Data are not yet in ENDF/B-V format and are now being updated at Los Alamos prior to further distribution and use in ENDF/B-VI.

PUBLICATIONS

- B. F. Rider, et al., "Evaluation of Fission Product Yields for the U. S. National Nuclear Data Files," Proc. of Conf. on Nuclear Data Evaluation Methods and Procedures, BNL, September 22-25, 1980. Report BNL-NCS-51363 [DOE-NSX-23, NEANDC(US)-209, INDC(USA)-85], March 1981.
- B. F. Rider, "Compilation of Fission Product Yields," General Electric Vallecitos Nuclear Center report (microfiche only) NEDO-12154-3(C), [ENDF-322] October 31, 1981 (modified at Los Alamos, 1983).

Editor's note: The contributions from LANL enclosed in the present issue do not reflect the full range of compilations and evaluations performed for the ENDF/B library, as several contributions on work already completed were not resubmitted (see also issue no. 8, INDC(NDS)-130, for completeness). A complete reorganized documentation of this work will appear in next year's issue.

<u>U.S.A.</u>

(cont'd, new)

LABORATORY AND ADDRESS:

University of California Los Alamos National Laboratory PO Box 1663 Los Alamos, New Mexico 87545 (USA)

NAMES:

T. R. England (LANL) W. B. Wilson (LANL) R. E. Schenter (HEDL) F. M. Mann (HEDL)

COMPILATION

A summary of the fission-product and actinide data contained in ENDF/B-V data files is presented in Ref. 1. All fission products (877) and actinides (60) in Rev. "O" are included. Appendices contain some additional augmentation of these data along with a presentation of probable data changes, errors, or existing revisions to date. Schematics of all coupled fission products and augmented actinides (144 total actinides) are included. Mass chain yields, decay parameters (halflives, branchings, beta, gamma, and alpha energies), processed one-group cross sections for fast reactor spectra, four-group cross sections for thermal reactors, and the resonance integrals and 2200 m/s cross sections are included, as well as other information pertinent to the ENDF/B-V files. We have prepared this document to serve as a relatively concise source for the most frequently requested data and as a convenient reference for the fission-product and actinide data contained in ENDF/B-V.

REFERENCE :

 T. R. England, W. B. Wilson, R. E. Schenter, and F. Mann, "ENDF/B-V Summary Data for Fission-Product and Actinides," Los Alamos National Laboratory informal document LA-UR-83-1285 [ENDF 332] (May 1983). [Final report to be published by EPRI.]

U.S.A.

(cont'd, new)

LABORATORY AND ADDRESS:

University of California Los Alamos National Laboratory PO Box 1663 Los Alamos, New Mexico 87545 (USA)

NAMES:

T. R. England (LANL) W. B. Wilson (LANL) R. E. Schenter (HEDL) F. M. Mann (HEDL)

COOPERATION: G. Rudstam (Studsvik)

COMPILATION/EVALUATION:

Aggregate delayed neutrons and spectra have been computed and compared with evaluations in Ref. 1. One-hundred and five precursors were used. The intent of this and continued theoretical work for unmeasured spectra and reevaluation of Pn values is to use summation calculations to improve and extend ENDF/B-VI delayed neutron evaluations. Results are given for each of the conventional six-time groups and for 11 fissionable nuclides at one or more neutron fission energies. [Pn values of Ref. 2 are being reevaluated (see the contribution prepared at HEDL).]

REFERENCES:

- T. R. England, W. B. Wilson, R. E. Schenter, and F. M. Mann, "Aggregate Delayed Neutrons and Spectra Using Augmented ENDF/B-V Precursor Data," Los Alamos National Laboratory informal document LA-UR-83-1270 (May 1983) [to be published in Nucl. Sci. Eng.].
- F. M. Mann, M. Schreiber, R. E. Schenter, and T. R. England, "Compilation of Neutron Precursor Data," K.H. Böckhoff, Ed., Proc. Int. Conf. Nucl. Data for Sci. Technol., Antwerp Belgium, Sept. 6-10, 1982 (D. Reidel Pub. Co., Boston), p. 272.

- 153 -

<u>U.S.A.</u>

Laboratory	and	Oak Ridge National Laboratory
Address:		P. O. Box X, Building 6010
		Oak Ridge, Tennessee 37830, USA

1. Name: J. K. Dickens

Purpose: To compute gross fission-product β -ray spectra obtained, e.g., following fission of ^{235}U so as to determine the associated "reactor antineutrino" spectrum to be used in experimental measurements of antineutrino-induced reactions.

Major sources of Nuclear Data Sheets, Table of Isotopes (7th Edition), and Information: recent published literature.

Deadline January 1982 for the current compilation.

Status: Data file is available from the ORNL Radiation Shielding Information Center.

Publications: J. K. Dickens, "Electron Spectra from Decay of Fission Products," ORNL/TM-8285 (September 1982); J. K. Dickens, "Electron Antineutrino Spectrum for ²³⁵U(n,f)," Phys. Rev. Lett. <u>46</u>, 1061 (1981); J. K. Dickens, "Calculated Beta-Ray Spectra from Decay of Fission Products Produced by Thermal-Neutron Fission of ²³⁵U," Phys. Lett. <u>113B</u>, 201 (1982); J. K. Dickens, "Microscopic Beta and Gamma Data for Decay Heat Needs," (in preparation).

2. Name: J. K. Dickens and P. T. Perdue

<u>Compilation</u>: Data file of radioactive γ -decay information including energies and absolute intensities when available, or relative intensities when absolute values are not available.

Purpose: Identification of responsible radionuclides for data reduction of high-resolution Ge(Li) spectroscopy.

Major Sources: Nuclear Data Sheets and Table of Isotopes (7th Edition).

Deadline: Continuing.

- 154 -

U.S.A. (Cont'd)

Status:
Three data files contain data for 774 radionuclides between ⁷Be and ²⁵⁴Es. About 65% of the 3200 entries are up to date (February 1983). The remainder are being upgraded on a continuous basis. The primary file is ordered by increasing Z and A; the file contains information useful for neutron activation analysis (NAA). There is a secondary file consisting of all γ rays ordered by increasing γ-ray energy; for each entry a second γ ray is included if available. There is an additional secondary file of the 774 radionuclides ordered by increasing half life; no γ-decay information is in this file. These data files are available from the ORNL Radiation Shielding Information Center.
Publication: Radiation Shielding Information Center Document No.

Publication: Radiation Shielding Information Center Document No. DLC088/TPASGAM, "Informal Notes," J. K. Dickens and P. T. Perdue (April 1982); J. K. Dickens, "Microscopic Beta and Gamma Data for Decay Heat Needs " (in preparation).

(same as INDC(NDS)-130)

Laboratory and address	Washington University, Dept. of Chemistry, St. Louis, MO., USA
Name	A. C. Wahl
<u>Compilation</u> and <u>evaluation</u>	Independent yields and other data related to nuclear-charge distribution in fission are compiled and evaluated for low- energy fission reactions (excitation energies up to ~ 20 MeV). The current compilation includes data for thermal-nuetron- induced fission of 233 U, 235 U, and 239 Pu and for spontaneous fission of 252 Cf. Data for other fission reactions are to be added.
Purpose	Systematic trends in independent yields (IN) are derived from the data by use of models, which allow reasonable estimates to be made of independent yields for all fission products and increase knowledge of fission-reaction mechanisms.
Sources of information	Journals, reports, preprints, other compilations, and personal communications
Method	Original values of experimental data and uncertainties are maintained in a file, and average values are calculated and normalized for each A, when sufficient data exist, so that the sum of fractional independent yields (FI) is unity. The set of FI values for each fission reaction, or IN values derived from them, are treated by the method of least squares to derive systematic trends in the yields described by the Z_p and A_p^{\prime} models.
	Experimental yield data are evaluated by comparison with other data, with average yield values, and with yields cal-culated from the models.
Cooperation	We are prepared to exchange files with other groups.
Computer file	Information is held in standard forms on computer files.
Completions	Compilation is continuous.
Publications	A.C. Wahl, "Systematics of Nuclear Charge Distribution in Fission - The Z _P Model," J. Radioanal. Chem. <u>55</u> , 111 (1980).
	A.C. Wahl, "Nuclear-Charge distribution in Fission - Inves- tigation of Systematics and Methods of Estimation of Inde- pendent Yields," Contribution to IAEA Petten Panel on Fission Product Nuclear Data - Sept., 1977. Published in: INDC(NDS)-87 (1978), 215.
	A.C. Wahl, A.E. Norris, R.A. Rouse, and J.C. Williams, "Pro- ducts from Thermal-neutron-induced fission of ²³⁵ U: A cor- relation of Radiochemical Charge and Mass Distribution Data," in Proceedings of the Second International Atomic Energy Sym- posium on Physics and Chemistry of Fission, Vienna, Austria, 1969 (I.A.E.A.), p. 813.

USSR

Laboratory and address	Fiziko-Energeticheskij Institut, Obninsk , and Institut Atomnoi⁄j Energii J.Y Kurchtova, Plochad I.V. Kurchatova, 46, Moscow, 123182 USSR
Names	Abagyan L.P., Zakharova S.M., Yudkevich M.S.
Evaluation	Capture cross sections for Pm isotopes.
Purpose	Production of the 21,80 and 26-group capture cross section fission product library for thermal, epi- thermal and fast reactor calculations.
Method	Re-evaluation of resonance parameters and average resonance parameters, thermal and epithermal neutron cross sections and capture resonance integrals. Calculation of capture cross sections using the recommended parameters in thermal and resonance region. Review of available \mathfrak{S}_{C} evaluations in the unresolved resonance region to choose the best of them for Pm isotopes.
Major sources of information	Original papers on experimental data, and available evaluations.
Publication {,	Zakharova S.M., Abagyan L.P., Kapustina V.F. The multi-group capture cross section library for fission products, P.2. Pm isotores. The evaluation of energy dependence of capture cross section for Pm-147 Analytical review - 120, Obninsk, 1981, 82p.
2,	Zakharova S.M., Abagyan L.P., Yudkevich M.S., Ka-pustina V.F. The multi-group capture cross section library for fission products, P.3. Pm isotopes. Analytical review - 142, Obninsk, 1981, 41p.

- 157 ;-

USSR

Laboratory and address:	Moskovákij Inzhenerno-Fizicheskij Inst. Moscow, 115409 USSR
Names:	A.N. Gudkov, A.B. Koldobskij, V.M. Kolobashkin, E.V. Semenova.
Evaluation:	Mass yields of fission products.
Purpose:	Prediction of the mass distributions of fission-fragment nuclides resulting from the fission (by neutrons of arbitrary energy) of heavy nuclei for which mass distributions are known experimentally for two or more fissioning neutron energies.
Method:	The "five Gaussian" method was used, the reference parameters being determined by the method of least squares.
Sources of Information:	M.E. Meek, B.F. Rider, NEDO - 12154-2 (1977).
	E.A.C. Crouch, At. Data Nucl. Data Tabl., 19 (1977) 417–432; original publications.
Results:	Recommended parameter values were obtained for calculating the mass distributions for 233 U, 235 U and 238 U resulting from fission by neutrons of arbitrary energy.
Discrepancies compared	
with published data:	The calculation formulae and values for most of the parameters differ widely from those recommended in the following: A.R. Musgrove et al., Proc. IAEA Panel of FPND, Vol. II Bologna (1973) 163, Vienna (1974); J.L. Cook et al., Austr. J. Phys. <u>29</u> (1976) 125.
Publications:	A.N. Gudkov, A.B. Koldobskij, V.M. Kolobashkin, E.V. Semenova, "Calculation of mass distributions for the fission products of heavy nuclei resulting from neutron-induced fission", Radiation Safety and the Protection of Nuclear Power Plants 5, Atomizdat, Moscow (1981) 59.

III. RECENT PUBLICATIONS RELATED TO FPND

The publications listed below refer to activities related to FPND which are not covered by the contributions contained in this issue. They are sorted according to

- 1. Fission yields and charge distribution
- 2. Neutron reaction cross sections
- 3. Decay data
- 4. Delayed neutron data
- 5. FP decay heat
- 6. Reviews and summaries

Completeness of this section has not been attempted. For papers presented at meetings see section IV.

III.1. Fission yields and charge distribution

(For fission yields of delayed neutron precursors see also "delayed neutrons")

Fission Yields of In Isotopes in the Thermal Neutron Fission of 235U

M. Shmid, G. Engler Z. Phys. A <u>311</u> (1983) 113

(including: T1/2 of 124-131In)

The absolute determination of cumulative yields of several nuclides from fission of $^{235}\mathrm{U}$ induced by neutrons of spontaneous fission of $^{252}\mathrm{Cf}$

Institute of Atomic Energy He Huaxue Yu Fangshe Huaxue (=J. Nucl. > Radiochem., Beijing) Vol. 4 (Feb. 1982) 44

(in Chinese with English abstract)

Comparison of the Spontaneous Fission of $^{244}\mathrm{Cm}$ and $^{252}\mathrm{Cf}$ (I). Fragment masses and kinetic energies

R. Schmidt, H. Henschel Nucl. Phys. A395 (1983) 15 Measurement of the total neutron cross-section of selenium at neutron energies below 2 eV

M. Salama Atomkernenergie - Kerntechnik 42 (1983) 187

Neutron-capture resonances for ⁸²Se

J.C. Browne, B.L. Berman Phys. Rev. C <u>26</u> (1982) 969

In Situ Neutron Activation Analysis of and the Neutron Capture Cross-Section for $^{90}\mathrm{Sr}$

L.A. McVey, R.L. Brodzinski, T.M. Tanner J. Radioanal. Chem. <u>76</u> (1983) 131

(discrepancy to old accepted value !)

Spectroscopy of 100Ru and 102Ru by resonance neutron capture

C. Coceva, P. Giacobbe Nucl. Phys. <u>A 385</u> (1982) 301

Mesurement of the neutron total cross sections of $^{109}\mathrm{Ag}$ and $^{110\mathrm{m}}\mathrm{Ag}$

V.A. Anufriev, S.I. Babich, V.N. Nefedov At. Energ.(USSR) <u>53</u> (1982) 29 (Engl.: Soviet At. Energy <u>53</u> (1982) 478)

Interaction of neutrons with even-A tin isotopes. I. total cross sections for $E_n = 0.3-5.0 \text{ MeV}$

R.W. Harper, T.W. Godfrey, J.L. Weil Phys. Rev. C <u>26</u> (Oct. 1982) 1432

III.3. Decay data

(for delayed neutron precursor decay data see also "delayed neutrons")

The Decay of 76As

Weng Peikun, Liu Fengying, Yuan Guanjun, Li Shenggang, Lu Xiane, Cheng Shiping Chinese J. Nucl. Phys. 4 (1982) 201

(in Chinese with English abstract)

Calorimetric Redetermination of the Half-life of 90Sr H. Ramthun Nucl. Instr. Meth. 207 (1983) 445 Evidence for a Rotational Band in 99YE. Monnand, J.A. Pinston, F. Schussler, B. Pfeiffer, H. Lawin, G. Battistuzzi, K. Shizuma, K. Sistemich, Z. Phys. A 306 (1982) 183 Praezisionsbestimmung der Halbwertzeit des Nuklides ^{99m}Tc im Pertechnetat-Ion mittels eines Variationsverfahrens K.P. Dostal Isotopenpraxis 18 (1982) 201 (T1/2)The Beta Decay of 104Nb and the Level Scheme of 104Mo B.D. Kern, K. Sistemich, W.D. Lauppe, H. Lawin Z. Phys. A 306 (1982) 161 Precision Measurement of gamma-ray Energies in the Range 450-600 keV H. Kumahora, H. Inoue, Y. Yoshizawa Nucl. Instr. Meth. 206 (1983) 489 (including: ¹⁰⁶Ru, ¹⁴⁷Nd) Calibration of High-purity Germanium Detectors in the Energy Range from 25 to 122 keV K. Debertin, W. Pessara Int. J. Appl. Radiat. Isot. 34 (1983) 515 (I_Y; including low energy gammas or X-rays of: 108 mAg, 131 I, 137 Cs, 152 Eu) The gamma-gamma angular correlation studies in ^{132}Xe S.S. Sooch, R. Kaur, N. Singh, P.N. Trehan J. Phys. Soc. Jpn. <u>52</u> (Jan. 1983) 61 Population of 133I from the beta decay of fission product 133Teg and the cluster-vibration model H.G. Hicks, J.H. Landrum, E.A. Henry, R.A. Meyer S. Brandt, V. Paar Phys. Rev. C27 (1983) 2203

Shell model description of N = 81 five-exciton $^{135}\mathrm{Xe}$ and the decay of $^{135}\mathrm{I}$ W.B. Walters, S.M. Lane, N.L. Smith, R.J. Nagle, R.A. Meyer Phys. Rev. C 26 (Nov. 1982) 2273 $(^{135}I: T1/2, E_{\gamma}, I_{\gamma})$ The radioactive decay of Isobars with A = 140I. Adam et. al. Izv. Akad. Nauk. SSSR, Ser. Fiz. 46 (1982) 2 (Engl.: Bull. Acad. Sci. USSR, Phys. Ser. 46 (1982) 1) The decay of 144Ce Yu Banshui, Liu Fengying, Lu Xiane, Li Shenggang, Yang Chunxiang Radiochem. Radianal. Lett. 53 (Oct. 1982) 351 Opposing properties of particle-hole and intruder-hole bands in N=87 nuclei and $149 \, \text{Sm}$ levels populated by $149 \, \text{Pm}(_{B}^{-})$ and $149 \, \text{Eu}(\text{EC})$ R.A. Meyer, J.W.T. Meadows, E.S. Macias J. Phys. G. 8 (1982) 1413 (E_{γ}, I_{γ}) The Radioactive Decay of 152Eu H.A. Ismail, H. Hanafi, M. Morsy, A. Nada, H. Abu-Leila Acta Phys. Ada. Scient. Hung. 50 (1981) 391 The decay of 160_{Tb} M.L. Hasiza, K. Singh, H.S. Sahota Indian J. Phys. 56A (1982) 221

Internat. Conf. on Nuclear Data for Science and Technology

Antwerp, Belgium, 6-10 Sept. 1982

Proceedings published by D. Reidel Publishing Company (ISBN 90-277-1560-2) Editor: K.H. Boeckhoff (CBNM Geel)

- page selected papers:
 - 9 ²³⁸U, issues resolved and unresolved

G. DeSaussure, A.B. Smith

(review; including total delayed-neutron yields)

85 Convergence of integral and differential cross-section data for structural materials

J.L. Rowlands, R.W. Smith, J.M. Stevenson, W.H. Taylor

(including: Zr, Nb, Mo, Sn)

98 The integral check of neutron cross section data for reactor structural materials by measurement and analysis of neutron spectra

I. Kimura, S.A. Hayashi, K. Kobayashi, S. Yamamoto

(including: Nb, Mo)

143 Total cross section measurements of thermal and 24 keV neutrons for crystalline materials

O. Aizama, T. Matsumoto, H. Kadotani

(including: Zr, Nb)

147 Search for gas producing reactions in thermal reactors

P. D'hondt, C. Wagemans, E. Allaert, A. DeClercq, A. Emsallem, R. Brissot

(including: (n, α) cross sections for 95,97_{Mo}, 101_{Ru}, 105_{Pd}, 113_{Cd}, 115_{Sn}; see also contribution on page 8)

- 152 Gamma-rays from capture of 400-keV neutrons
 - N. Yamamuro, H. Kitazawa, M. Igashira, T. Maruyama,
 - K. Hashimoto

175 The TACO experiment for the determination of integral neutron cross-sections in a fast reactor

A. Cricchio, R. Ernstberger, L. Koch, R. Wellum

(see also contribution on page 49)

185 Reactor Irradiations of ²⁴²Pu, comparison of measured and calculated yields of ²⁴⁴Pu, ²⁴³Am and ²⁴⁴Cm, and study of the fission product yields

C. De Raedt, P. De Regge, T. Babeliowsky, E. Wattecamps

Average capture cross section of the fission product nuclei 104,105,106,108,110pd

E. Cornelis, C. Bastian, G. Rohr, R. Shelley, T. van der Veen, G. Vanpraet

(see also contribution on page 15)

226 Neutron radiative capture and transmission measurements of 107Ag and 109Ag

M. Mizumoto, M. Sugimoto, Y. Nakajima, M. Ohkubo, Y. Furuta Y. Kawarasaki

(see also contributions on pages 69,70)

230 Capture cross section, energy dependence of total cross section of ^{152}Eu isomer with T1/2=9.3 h for thermal neutrons

V.A. Pshenichniy, V.P. Vertebnyi, E.A. Gritzay

233 Mesures par activation d'isotopes separes de produits de fission dans des spectres de reacteurs a neutrons rapides

L. Martin Deidier, M. Darrouzet

(including: 98,100_{Mo}, 102,104_{Ru}, 108_{Pd}, 139_{La}, 141_{Pr}, 142_{Ce}, 146,148,150_{Nd}, 152_{Sm})

237 Measurements of fission-product decay heat for fast reactors

Masatsugu Akiyama and Shigehiro An

(see also contribution on page 77)

245 A brief survey of experimental and theoretical data on fission product decay heat from U-235 and Pu-239

M.F. James

249 Calculs de puissance residuelle a l'aide de la bibliotheque CEA de donnees radioactives et du code PEPIN

B. Duchemin, J. Blachot, B. Nimal, J.C. Nimal, J.P. Veillaut (see also contribution on page 128)

261 High resolution measurements of delayed neutron emission spectra from fission products

T.R. Yeh, D. CLark, G. Scharff-Goldhaber, R.E. Chrien, L.-J. Yuan, M. Shmid, R.L. Gill, A. Evans, H. Dautel, J. Lee

(see also contribution on page 101)

265 Delayed neutron spectral measurements and covariance error analysis for fast fission in ²³⁵U and ²³⁹Pu

J. Walker, D.R. Weaver, J.G. Owen

(see also contribution on page 95)

268 Integral measurements of delayed neutron average energies for 235U

S. Synetos

- 272 Compilation of neutron precursor data
 - F.M. Mann, M. Schreiber, R.E. Schenter, T.R. England

(see also contributions on pages 147,152)

281 The UK Chemical Nuclear Data Libraries: evaluated nuclear decay data for reactor applications

B.S.J. Davies, A. Tobias, M.F. James, A.L. Nichols, E.A.C. Crouch

(see also contributions on pages 141-145)

284 Computer interpretation, analysis and evaluation of a nuclear decay schemes

G. Evangelides

(computer programs for use in decay heat or shielding calculations, sensitivity studies, etc.)

- 287 Decay scheme data for 239U, 154Eu and 140Ba/140La
 - S.P. Holloway, J.B. Olomo, T.D. Mac Mahon, B.W. Hooton
- 360 Measurement of double differential neutron emission cross sections with 14 MeV source for D, Li, Be, C, O, Al, Cr, Fe, Ni, Mo, Cu, Nb, and Pb

A. Takahashi, J. Yammamoto, T. Murakami, K. Oshima, H. Oda, F. Fujimoto, K. Sumita

368 Measurement and evaluation of (n,t) cross sections

Z.T. Body, F. Cserpak, J. Csikai, S. Sudar, K. Mihaly

(including: ⁹³Nb)

400	Precise measurement of cross sections for the reactions ⁹⁰ Zr(n,2n) ⁸⁹ Zr and ⁵⁸ Ni(n,2n) ⁵⁷ Ni from threshold to 20 MeV
	G. Winkler, A. Pavlik, H. Vonach, A. Paulsen, H. Liskien
404	A measurement of the cross sections for the reactions $90 Zr(n, 2n) 89m+g_{Zr}$, $93 Nb(n, 2n) 92m_{Nb}$, $63 Cu(n, 2n) 62 Cu and 27 A1(n, \alpha) 24 Na by 27 A1(n, p) 27 Mg for the purpose of neutron spectrometry around 14 MeV$
	A. Chiadli, A. Ait Haddou, M. Viennot, G. Paic
411	Measurement of cross sections for the (n,2n) reaction of ⁵⁵ Mn, ⁵⁸ Ni, ⁵⁹ Co, 93 _{Nb,} 181 _{Ta and} 197 _{Au}
	Lu Hanlin, Huang Jianzhou, Fan Peiguo, Cui Yunfeng, Zhao Wenrong
414	Study of excitation functions around 14 MeV neutron energy
	J. Csikai
	(cross section between 13.5 and 14.7 MeV including: (n,2n) for 90Zr, 93Nb, 113In, (n,α) for 94,96Zr, (n,n') for 113,115In, and 92Zr(n,d))
418	Measurement of average cross section for 252 Cf neutrons
	Z. Dezso, J. Csikai
	(including: $93_{Nb}(n,\alpha)$, $113_{In}(n,n')$)
421	Measurement of some average cross sections for ²⁵² Cf neutrons
	H. Benabdallah, G. Paic, J. Csikai
	(including: (n, _y) for 86 _{Sr} , 115 _{In} , 134,138 _{Ba} , (n,n') for 87 _{Sr} , 111 _{Cd} , 113,115 _{In} , 135 _{Ba})
425	Integral reaction rate measurements in 252 Cf and 235 U fission spectra
	G.P. Lamaze, E.D. McGarry, F.J. Schima
	(including ¹¹⁵ In(n,n'))
429	Measurement and evaluation of integral data in the Cf-252 neutron-field
	W. Mannharu
	(including ⁹⁰ Zr(n,2n))
460	Fission fragment angular distribution data for neutron induced fission of ²³⁵ U

S.S. Kapoor, K.N. Iyengar, D.M. Nadkarni, V.S. Ramamurthy

537 Calculation and processing of continuum particle-emission spectra and angular distributions

H. Gruppelaar, C. Costa, D. Nierop, J.M. Akkermans

(including ⁹³Nb)

543 A model for angular distributions in preequilibrium reactions

S.K. Gupta, A. Chatterjee

(including ⁹³Nb(n,n'))

547 Role of preequilibrium emission on (n,xn) cross sections

M.L. Jhingen, R.P. Anand, S.K. Gupta, M.K. Mehta

(including 89Y)

593 Population of delayed neutron granddaughter states and the optical potential

R.E. Schenter, F.M. Mann, R.A. Warner, P.L. Reeder (including: 96Rb, 144,145,147_{Cs})

- 597 Inelastic scatering cross sections in the energy range 2.0 to 4.5 MeV calculated with different formalismus for level width fluctuation corrections

E. Ramstroem

(including 89γ)

603 Further study of several physical effects on the calculation of angular distribution based on exciton model

Sun Ziyang, Wang Shunuan, Zhang Jingshang, Zhuo Yizhong

(including: ^{69}Ga , ^{80}Se , ^{79}Br , ^{90}Zr , ^{93}Nb , ^{114}Cd , ^{115}In , ^{120}Sn , ^{121}Sb , ^{127}I)

615 Present status and benchmark tests of JENDL-2

Yasuyuki Kikuchi and members of JNDC

(see also contribution on page 136)

632 Systematic of average total radiative widths for s- and p-wave resonances

Zhuang Youxiong, Wang Shunuan, Zhou Delin, Jia Zhize

(including many fission products)

Remark on the ENDF/B-V evaluations of the neutron capture cross 677 sections in the region around 10 MeV neutron energy F. Cvelbar, R. Martinicic, A. Likor (including: 89γ , 140_{Ce}) Analysis and evaluation of thermal and resonance neutron 681 activation data S.M. Jefferies, T.D. Mac Mahon, J.G. Williams, A. Ahmau (including ¹¹⁵In) 719 Nuclear fission: from saddle to scission J.P. Theobald (a review fragment mass distributions) Energy and mass distributions for $^{241}Pu(n,th,f)$, $^{242}Pu(s.f.)$ and $^{244}Pu(s.f.)$ -fragments 737 E. Allaert, C. Wagemans, C. Wegener-Penning, A.J. Deruytter, R. Barth≅1≅my (see also contribution on page 10) Fission fragment angular distributions and total kinetic energies for 235 U(n,f) from 0.18 to 8.83 MeV 740 J.W. Meadows, C. Budtz-Jorgensen Isotopic distributions and element yields in the photofission of 235 U and 238 U with 12-, 15-, 20- and 30-MeV bremsstrahlung 748 D. De Frenne, H. Thierens, B. Proot, E. Jacobs, P. De Gelder, A. De Clerco (see also contribution on page 7) 758 Radiation widths of iodine. cesium and iridium neutron resonances A.B. Popov, K. Trzeciak, Zo In Ok 759 Mesure de la section efficace de capture radiative du lanthane, du bismuth, du cuivre naturel et de ses isotopes pour des neutrons d'energie comprise entre 0,5 et 3 MeV J. Voignier, S. Joly, G. Grenier 773 Resonance enhancement of parity violation effects in neutron-nuclear interaction V.P. Alfimenkov, S.B. Borzakov, Vo Van Thuan, Yu. D. Mareev, L.B. Pikelner, A.S. Khrykin, E.I. Sharapov (including: 81Br, 111Cd, 117Sn, 127I, 139La)

V.G. Nikolenko, A.B. Popov, G.S. Samosvat

818 IBA Description of collective states in neodymium isotopes

G. Maino, E. Menapace, A. Ventura

863 The measurement of short-lived radionuclides using a cyclic activation system

C.A. Adesanmi, N.M. Spyrou

(short lived fission products)

866 On neutron capture cross section measurements with the activation technique in the MeV region

P. Andersson, R. Zorro, I. Bergqvist,

 $(115In(n,\gamma)^{116m}In$, see also contribution page 85)

873 Measurement of reaction cross-section radios of some neutron reactions using gamma and x-ray spectrometry

A. Reggoug, G. Paic, A. Chiadli

(113, 115In(n, 2n) at 14.7 MeV)

987 Nuclear data activities in China

Zhou Delin

(including FPND; review)

991 The European-Japanese joint programme on neutron data evaluation

C.G. Campbell, C. Nordborg

(including many fission products)

1005 Evaluation et mesure de donnees nucleaires, programme et perspectives

N. Coursol, F. Lagoutine

Announcement of a

Specialists' Meeting on

"Yields and Decay Data of Fission Product Nuclides"

to be held at Berkner Hall, Brookhaven National Laboratory, Upton, N.Y.

24th - 27th October 1983

1. Organisation

This specialists' meeting will be held at Brookhaven National Laboratory (BNL), U.S., from Monday, 24th October to Thursday, 27th October, 1983. The meeting is sponsored by the NEA Nuclear Data Committee (NEANDC) and the U.S. Department of Energy (DOE), and its scientific programme has been established by a programme committee uder the chairmanship of Dr. R.E. Chrien of BNL. The scientific secretary will be Dr. T.W. Burrows of the National Nuclear Data Centre.

2. Programme of the meeting

The plan for the meeting is to have eighteen review talks scheduled over three and a half days. The last half day (Thursday afternoon) of the meeting will be devoted to a round table dicussion and a conference summary. The round table will be composed of four delegates from each of four separate workshops on the main areas of fission yields, delayed neutron applications, decay heat and microscopic data for modelling. These workshops, to which all registrants are expected to contribute, will meet in two evening sessions, Monday and Wednesday, to prepare overall assessments on the status of, and need for, nuclear data in the different areas. The conclusions are to be provided verbally in the round table discussion.

The detailed programme of review papers is given in Annex 1. Fifty minutes each have been allowed for these talks, plus ten minutes discussion. Participants are invited to submit titles and a very brief abstract for poster presentations: three one-hour periods have been set aside for discussion of posters, and the posters will be on display throughout the meeting. The posters, which replace individual presentation of shorter contributed papers, are an important feature of the meeting, and it is expected that new results of importance will be presented in this way.

3. Participation

Participation in the meeting is restricted to scientists nominated, in the case of OECD Member countries, by national representatives on NEANDC. The International Atomic Energy Agency (IAEA) was invited to submit nominations for a limited number of participants from non-OECD countries, and scientists from such countries wishing to attend the meeting should contact IAEA through their appropriate national channels. A total attendance of between 70 and 100 persons is expected. The closing data for accepting nominations will be the 15th September 1983.

A registration fee of \$80 U.S. will be charged, and should be paid on registration at the meeting. This fee will include the cost of the buffet and conference banquet, and conference proceedings.

5. Languages

The working language of the meeting will be English.

6. Papers and Posters for the Proceedings

Three copies of each review paper are needed for preparing the proceedings: one <u>original</u> typed on the composing sheets sent to authors from BNL (6 $1/2 \times 8 1/2$ inches = 16.5 x 21.6 cms. page frame for reproduction full size in the proceedings), and at least two clear and legible copies. Two-page extended summaries of posters should be prepared in the same way for inclusion in the proceedings. Authors may bring their photo-ready text to the meeting, or send it sufficiently in advance to Dr. T. Burrows at the National Nuclear Data Center, BNL.

7. Registration and Lodging

After nomination of national representatives on NEANDC, or through IAEA, participants should return their completed Participant Registration Forms (two copies: one each to Dr. T. Burrows, BNL, and Dr. C. Nordborg, NEA Data Bank) and the Participants Lodging and Local Transport form to Dr. T. Burrows.

A package will be sent to authors and participants containing:

- Information about access to BNL and a map of the laboratory site,

- Instructions to authors, and

- Composing sheets (form 2303) where a paper or a poster has been submitted.

8. Detailed Provisional Programme

All review talks are 50 minutes plus 10 minutes discussion.

AM sessions: 09.00 - 12.30 PM sessions: 14.00 - 17.30

Sunday, 23 October

Preregistration and Buffet: Brookhaven Center 17.00 - 21.00

	AM	1.	Independent Fission Yield Measurements H.O. Denschlag (Mainz)
	AM	2.	Status of Fission Yield Measurements T. England (Los Alamos)
		3.	Poster Discussion: "Yields"
	РМ	4.	Systematics of Neutron-induced Fission Yields J.P. Blachot (Grenoble)
	РМ	5.	Correlation of Fast Reactor Fission Yield`with Neutron Energy W.J. Maeck (Idaho)
	PM	6.	Fission Yield Data for Dosimetry A.J. Fudge (Harwell)
	Evening:		Workshops
	Tuesday,	25th	October
	AM	7.	Theories of Beta Strength Distribution in Nuclei K. Takahashi (Darmstadt)
	AM	8.	Measuring Beta-ray Strength Functions K.L. Kratz (Mainz)
	AM	9.	Poster Discussion: "Spectroscopy"
	РМ	10.	Problems in Decay Heat Measurement and Evaluation M.F. James (Winfrith)
t	PM	11.	Microscopic Beta and Gamma Data for Decay Heat Needs J.K. Dickens (ORNL)
	PM	12.	Decay Heat Data Needs T. Yoshida (Japan)
	Evening:		Buffet, Brookhaven Center Workshops
	Wednesday	, 261	th October
	AM	13.	Delayed Neutron Emission Probabilities P. Reeder (Pacific NW)
	AM	14.	Measuring Delayed Neutron Spectra - A Comparison of Techniques R. Greenwood (Idaho)
	AM	15.	Poster Discussion: "Delayed Neutrons"

Monday, 24 October

- Calculating Delayed Neutron Spectra F. Mann (Hanford) AM 16.
- Analytical Applications for Delayed Neutrons PM 17. G. Eccleston (Los Alamos)
- Prompt Fission Neutron Spectra and Averge Prompt Neutron PM 18. Multiplicities D. Madland (Los Alamos)
- Reception and Banguet, Berkner Hall 19.00

Thursday, 27th October

AM	19.	Nuclear Masses far from Stability D. Brenner (Clark University)
AM	20.	Applications for Fission Product Data to Problems in Stellar Nucleosynthesis G.J. Mathews (Livermore)
AM	21.	Spins and Moments of Fission Product Nuclei C. Ekstroem (CERN)
PM	22.	Workshop Round Table a. Fission Yields b. Decay Heat

- c. Delayed Neutron Applicationsd. Microscopic Data for Modelling
- Meeting Summary G. Rudstam (Studsvik) PM 23.