International Atomic Energy Agency

INTERNATIONAL NUCLEAR DATA COMMITTEE

REPORT ON THE IAEA CROSS SECTION PROCESSING CODE VERIFICATION PROJECT

by

D.E. Cullen Nuclear Data Section International Atomic Energy Agency Vienna, Austria

May 1985

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

Printed by the International Atomic Energy Agency Vienna, Austria

INDC(NDS)-170/NI

REPORT ON THE IAEA CROSS SECTION PROCESSING CODE VERIFICATION PROJECT

by D.E. Cullen Nuclear Data Section International Atomic Energy Agency Vienna, Austria

May 1985

Report on

The IAEA Cross Section Processing Code Verification Project

by

D.E. Cullen, Nuclear Data Section, IAEA, Vienna, Austria

Abstract

The IAEA is presently engaged in a project which is designed to use a step-by-step approach to verifying the accuracy of neutron cross section processing codes. This report presents the results of the first step, or round, of comparisons. The first round of comparisons is intended to test the ability of processing codes to accurately produce, cold (O Kelvin), unshielded, flat weighted multigroup cross sections; in principle this should be the simplest quantity that can be derived from evaluations. At present contributions to this project have been received from forty-two participants using thirteen different processing codes. In the initial comparisons not one participant has been able to obtain agreement with benchmark results; differences varied from 2% to a factor of over 50. However, this project has already in its initial phase been successful in detecting and correcting problems with a number of cross section processing codes and, in particular, has led to the practical result of identifying accurate codes and of improving the ENDF/B-V dosimetry library as distributed in 620 groups.

Introduction

The International Atomic Energy Agency (IAEA) has begun a project for the intercomparison of neutron cross section processing codes in order to verify their ability to reproduce proven correct numerical benchmark results. In this report this reproducibility aspect is referred to as the "processing accuracy" of a code. This paper will discuss: the scope of this project, the most prominent areas and sources of disagreement between processing codes and the current status of this project concerning improving the reliability of the output from processing codes.

The neutron cross section processing code is merely a link between evaluated data on the one hand and transport or adjustment codes on the other hand. This fact has been used in order to simplify the verification task; specifically, the IAEA project attempts to assure that for a given input of evaluated data and physical assumptions, the output of the cross section processor is accurate. This project does not address the "evaluation accuracy" of the evaluated data (which are used as input to the processor), nor the "model accuracy" of the transport or adjustment code (which uses the output of the processor).

The objectives of this project are: (1.) to test the accuracy of processing codes, (2.) to understand and eliminate the sources of discrepancies, (3.) to arrive at the point where we have a number of cross section processing codes which can be used as safely as possible as

"black boxes", without worry, to accurately process cross section data, for use in a variety of applications. At the present time, this project has been successful in the sense that starting from a variety of processing codes which produced multigroup cross sections which were not the same from any two codes, we have now arrived at the point where a number of the codes produce results which agree with benchmark results.

Background

In 1981 a report was published (1) on a comparison (performed in 1980) between the 620 group (SAND-II structure (2)) averaged cross sections derived from the ENDF/B-V Dosimetry Library (3) at Brookhaven and those derived at ECN Petten, Netherlands. These 620 group cross sections were both derived from the same evaluated data and the group constants corresponded to cold (O Kelvin), unshielded, flat weighted results. Of the twenty-five materials in the ENDF/B-V Dosimetry Library large differences were found in fourteen reactions. In individual reactions, in specific groups, differences were found of up to a factor of twenty (not twenty per-cent, a factor of twenty). Fig. 1 illustrates the ratio of the 620 group ^{237}Np fission cross sections calculated at Brookhaven to those calculated at Petten (1). From fig. 1, in the unresolved resonance region there appears to be no correspondence between the multigroup results generated by the two codes starting from the same evaluated data. Unfortunately this study (1) could not address the question of which of these two sets of data is correct.

In order to determine which of these two sets is correct the IAEA obtained additional multigroup data sets from a number of laboratories in the United States and Europe. Comparison of data sets generated at eight different laboratories showed general agreement and confirmed that the cross sections generated at Brookhaven were incorrect. In none of these eight sets were differences seen that were anywhere near those found in the Brookhaven/Petten comparison. However, in no case did any two of the data sets agree for all reactions, in all groups to within 6%. This was a very surprising result, since generally these data sets were purported to be accurate to within a small fraction of one per-cent.

IAEA Verification Project

Based upon the disagreement that was seen between the output data generated by a variety of cross section processing codes the Nuclear Data Section of the IAEA decided to initiate a project to methodically examine and compare the output of cross section processing codes in order to determine the current accuracy of these codes. These comparisons could then be used to improve the codes in order to reach the ultimate goal of this project, which is to identify those processing codes which can be reliably used to process evaluated cross section data. Potential users of cross section processing codes would be periodically informed by an IAEA publication specifying those codes which have been tested and in particular those that have passed a set of benchmark tests and can be recommended for reliable use. This verification project is based on asking one simple question "Given a set of evaluated data can the existing cross section processing codes reliably produce output to some specified accuracy for use in applications?" Based upon the initial comparisons performed at the beginning of this project the answer to this question was a resounding NO! Fortunately this project has demonstrated that by intercomparing codes it is possible to greatly improve the reliability of results.

It is important to understand that this verification project is not designed to examine the quality of evaluated data which is used as input to processing codes, nor is it designed to examine the transport methods that use the output from these codes. It should be realized that since the results of transport calculations are often used in an attempt to improve evaluated data (e.g. sensitivity calculations), the evaluated data, cross section processing and transport calculations are not completely independent. However, this verification is only designed to guarantee the accuracy of the output from cross section processing codes. If this can be achieved, then any differences between the results of transport calculations and experimental measurements can be truly identified as due to either the evaluated data, transport model or both. In this case the result of transport calculations can be used to improve evaluations and/or transport methods. However, as long as processing codes introduce large uncertainties into the multigroup data, any differences between calculated and measured results may be due to error in processing, which would prevent any attempt to improve evaluations or transport methods.

Establishing Benchmark Results

In order to verify the accuracy of the results provided by cross section processing codes it is necessary to establish benchmark results which can be used as a standard for comparison. Because of the complexity and volume of data included in modern evaluations, cross section processing codes have become correspondingly complex making it difficult, if not impossible, to verify that any given processing code will produce accurate results for all combinations of cross section representations encountered in modern evaluations. To give but one example, ENDF/B format cross sections may be represented by a combination of tabulated data and resonance parameters. The tabulated data may use up to five different types of interpolation laws. Both resolved and unresolved resonance parameters may be given. Resolved parameters may be given in terms of one of four representations and unresolved parameters in terms of one of three representations. In addition the ENDF/B formats and conventions which specify how to interpret resonance parameters are not the same for all versions of the ENDF/B library. From this one example one can appreciate the difficulty of attempting to verify that a processing code can accurately process all possible combinations of tabulated data and resonance parameters, let alone all of the other data required for a transport calculation.

In the past attempts have been made to establish idealized evaluations which would be simple to process and compare results. Generally these efforts have failed because (1.) the evaluations were too idealized and although they tested basic representations of evaluated data they did not correspond to or simulate the complexity of modern evaluations, (2.) since the evaluations were idealized the results were not of practical interest which made it difficult to generate enthusiastic support from code designers and made it equally difficult for code designers to justify spending their time, efforts and computer expense involved in processing these idealized data.

For this project it was decided to take a more pragmatic approach in which real evaluations would be used to generate results. Establishing benchmark results by this approach presented a problem since as pointed out earlier initial comparisons of the results generated by a variety of processing codes demonstrated that no two codes initially generated the same results.

In order to establish benchmark data the results of comparisons were returned to each processing code designer. Each code designer was asked to independently examine the comparisons, investigate the sources of observed differences, implement code improvements and submit improved results. Even the initial code comparisons made it possible to identify a number of generic problems that existed in most or all codes and allowed the code designers to focus on the source of problems and to improve their codes. Using this approach it was possible to arrive at the point where a number of processing codes can now each produce the same multigroup results to within a small fraction of 1% for all reactions, in all groups. More important than the absolute differences in the results generated by these codes is the observation that differences in the results are now significantly smaller than the uncertainty in the evaluated data. As such it is now possible to interpret the multigroup data as having the same uncertainty as the Therefore any differences between calculated and evaluated data. experimental results obtained using this data may now be interpreted as due to either the evaluated data or transport method, which in turn may be used to improve the evaluated data and/or transport method.

This benchmark approach does not lead to absolute benchmark results where we can say one or more codes exactly reproduce the standard results. Rather it leads to practical benchmark results which can be reproduced to within a required accuracy. Therefore within this report we will not identify the results obtained by one single code as a standard, nor will we attempt to distinguish between the codes which can reproduce the standard to high accuracy; we will merely present the results of initial and current comparisons and identify those codes which can presently reproduce the benchmark results within an acceptable accuracy.

Problem Areas

The results of initial comparisons indicated large differences in the cross sections generated by various codes, primarily in the resolved and unresolved resonance regions. These differences will affect both the self-shielding and Doppler broadening properties of the cross sections. Similarly, recently Perez (4) has shown an inconsistency in the methods normally used to calculate group averaged cross sections in the unresolved resonance region. By calculating self-shielded cross sections in the resolved resonance region first directly from the resolved data and then by treating the data as unresolved and using the equivalent average level widths and spacings Perez found differences in excess of 30%. In addition, Perkins (5) has recently investigated the numerical stability of the methods used to generate group-to-group transfer matrices and has found that if extreme care is not used severe round-off problems can occur.

A more subtle problem area is the effect of these inconsistencies on the many relatively new applications which use the uncertainties quoted for the evaluated data in order either to assign confidence limits to calculational results or to improve our knowledge of spectra or cross sections (6) (e.g. unfolding procedures (7)). The results of these calculations can be very sensitive to the uncertainties assigned to the cross sections used. If the cross section processor introduces an error which is large compared to the error assigned to the evaluated data (as occurred in the initial comparisons described above) the results obtained using the processed cross sections and only the uncertainties assigned to the evaluated data, without folding in the errors introduced by the cross section processor, are of questionable validity.

Step by Step Verification

Attempting to eliminate this multitude of deficiencies from processing codes in one fell swoop is too ambitious an undertaking and one that would be almost bound to fail. Therefore the IAEA has decided to begin a step-by-step verification project in an attempt to address first the most glaring areas of disagreement, using the simplest possible test cases. Then more subtle areas of disagreement will be addressed, using progressively more complex test cases.

Following this step-by-step philosophy at present two rounds of comparisons are being performed. In the first round of comparisons the areas of largest disagreement, which is the calculation of cross sections in the resolved and unresolved resonance regions, will be investigated. The simplest way to investigate this problem would be to compare the energy dependent point cross section values generated by a variety of processing codes. However, this information is not available from all processing codes. The next best, simple comparison is constant (flat-weighted), cold, unshielded cross sections using a fine group structure.

In the second round of comparisons those processing codes which have passed the first round of tests are asked to calculate complete sets of multigroup data for a variety of representative materials. This second round will allow us to investigate self-shielding, Doppler broadening, transfer matrices, to name but a few areas of interest.

First Round

The first round of comparisons is being coordinated directly by the IAEA Nuclear Data Section and anyone interested in participating or obtaining more information should contact D.E. Cullen Nuclear Data Section International Atomic Energy Agency P.O. Box 100, Wagramerstrasse 5 A-1400 Vienna, Austria

The first round is directed toward testing data which is used in general applications.

For the first round of comparisons the IAEA Nuclear Data Section is asking all those interested in participating in this exercise to use the same evaluated neutron data: ENDF/B-V Dosimetry Library (mod. 1), to calculate flat weighted, 0° Kelvin, unshielded cross sections using the SAND-II 620 group structure. Those who use energy-dependent cross sections (e.g. in continuous energy Monte Carlo calculations) will be asked to send energy-dependent cross sections and IAEA Nuclear Data Section will convert them to multigroup form for comparison. Anyone who uses neutron cross sections is encouraged to participate in this study.

Results should be sent to D.E. Cullen at the IAEA in the ENDF/B format (each reaction as a section of file 3 using the histogram interpolation law) (3).

The results of each comparison will be reported back to the participants. If there are any differences, participants will be asked to investigate and eliminate the sources of these differences and to then re-submit their results.

Second Round

Within the United States

The second round of comparisons is being coordinated within the United States by

N.M. Greene Union Carbide Corporation Nuclear Division P.O. Box X, Oak Ridge, TN. 37830 U.S.A.

For the second round of comparisons within the United States all those interested in participating should use ENDF/B-V data for H (MAT 1301), Fe (MAT 1326) and 238 U (MAT 1398). Two separate sets of comparisons will be performed, first involving neutron cross sections and second involving photon production cross sections.

For the neutron cross section comparison participants are asked to use a 100 group set of boundaries consisting of the GAM-II structure with one thermal group. This group structure has 49 groups equally spaced in lethargy between 14.91825 MeV and 110.9 keV, 50 groups equally spaced in lethargy between 110.9 keV and 0.414 eV and one thermal group from 0.414eVto 10^{-5} eV. Participants should use room temperature (293 K) and two different weighting spectra, one flat-weighted and the other fully shielded, i.e. $1/E\sigma_T$ weighted. Participants are asked to submit,

- Group-averaged values of as many processes (e.g. total, elastic, (n,2n)....etc.) as can be conveniently supplied.
- 2. Scattering matrices separated by process (if at all possible) with P₃ Legendre fits of processes with angular dependence.
- 3. A short description of any special treatments which the code may have used in generating the numbers. For example, the code could have used an analytic treatment for hydrogen elastic scattering which assumes the cross sections are isotropic in the center-of-mass system (as AMPX does), or within-group terms may have been transport-corrected, etc.

For the photon production cross section comparison participants are asked to use the same 100 group set for neutrons, described above, and a 20-group structure with 1 MeV increments from 20 MeV to 1 MeV and the bottom group extending to 25 keV. In this case participants are asked to submit scattering matrices separated by process for all gamma producing interactions. A P₃ Legendre fit should be used for those processes with angular dependence. If the matrices are in "yield" units, the average neutron cross sections of the processes should be supplied.

Results should be sent to N.M. Greene at Oak Ridge on magnetic tape in a BCD format which can be read on an IBM-computer, e.g. blocked in 80-character records in ASCII or EBCDIC, preferably labelled and written at 1600 or 6250 bpi.

As yet benchmark results for these materials have not yet been established.

Outside United States

The second round of comparison is being coordinated outside the United States by,

P. Vertes
Central Research Institute for Physics
Hungarian Academy of Sciences
P.O. Box 49
H-1525 Budapest, Hungary

For the second round of comparisons outside the United States the Nuclear Data Section of the IAEA will make available evaluated data in the ENDF/B format for the following materials, H, C, Fe, 232 Th, 235 U, 238 U, 237 Np, and 239 Pu (note, since the ENDF/B-V library is only available within the United States, these materials will be in the ENDF/B-V format, but not from the ENDF/B-V library). Only neutron data will be compared.

For this comparison participants are asked to use the ABBN 26 group structure, a flat weighting function and the following constants are to be submitted:

1. "Cold" (not Doppler broadened), self-shielded (i.e. $1/(\sigma_T + \sigma_0)$ weighted), group averaged cross-sections and/or self-shielding factors for each of the processes: total, elastic, (n,γ) , (n,f) as can be conveniently supplied. The following self-shielding conditions should be used:

Material	Bonda	Bondarenko σ_0									
 Fe (MAT=1192)	10	10 ²	10 ³	104							
²³² TH (MAT=1296)	10	50	10 ²	200							
²³⁵ U (MAT=1261)	10	10 ²	10 ³	104							
²³⁸ u (mat=1262)	10	50	10 ²	200							
237 Np (MAT=1263)	10	10 ²	10 ³	104							
²³⁹ Pu (MAT=1264)	10	10 ²	10 ³	104							

- Elastic scattering matrices with up to P₃ Legendre fits without self-shielding for the above materials plus for H (MAT=1301) and C (MAT=1306)
- 3. Group-averaged elastic slowing-down constants: - average scattering cosine in laboratory system - average lethargy change if they are calculated from elastic angular distribution
- 4. Inelastic scattering matrices for materials in the above table. These may be given either by inelastic processes separately, or in any "summed up" form (total inelastic scattering matrix, total discrete level matrix and matrix for unresolved inelastic levels, separately).

Results should be sent to P. Vertes, Budapest on magnetic tape.

As yet benchmark results for these materials have not yet been established.

Subsequent Rounds

The results of the first two rounds of testing will be used to identify specific problem areas that require additional investigation, e.g. spectrum weighting, Doppler broadening and self-shielding. However, each of these effects will be introduced in a step-by-step manner so that when we see differences we can isolate the cause of the difference, which will simplify the task of remedying the problem.

Each of these areas of verification requires a coordinator and if all areas are to be investigated volunteers are needed to provide leadership in these studies. Anyone interested in leading this verification effort in one or more subject areas is asked to contact D.E. Cullen at the IAEA, Vienna.

Round One Results

To date we have received contributions from forty-two participants using thirteen different processing codes. The thirteen processing codes include,

ENTOSAN - Petten, Netherlands RESEND/INTEND - Brookhaven National Laboratory, U.S.A. LINEAR/RECENT/GROUPIE - Nuclear Data Section, IAEA, Austria FOURACES - Bologna, Italy RESCAL - Greenwood, Argonne National Laboratory, U.S.A. RESENDD - JAERI, Japan FEDGROUP-3 - Central Research Institute for Physics, Budapest, Hungary FEDGROUP-C - Institut Jozef Stefan, Ljubljana, Yugoslavia NJOY (CDC) - Los Alamos National Laboratory, U.S.A. NJOY (IBM) - NEA Data Bank, Saclay, France AMPX - Oak Ridge National Laboratory, U.S.A. MINX - Oak Ridge National Laboratory, U.S.A. GRUCON - Obninsk, U.S.S.R.

As pointed out results have been obtained from forty-two cross section processing code users. Of these results thirteen results were obtained from the actual code designer or laboratory presently responsible for maintenance of the code. Presumably the code designer or maintainer should be the one most familiar with each code and should submit the best results for each code. In addition if we are to focus on the objective of this project, which is not just to detect errors in codes, but rather to improve codes, the most important contributions were from code designers and maintainers, since in general they are the only ones in a position to use the initial comparisons to improve their codes.

Therefore in this report we will only present detailed results of the initial and current status of the results obtained from the thirteen code designers or maintainers. The results obtained from other participants will only be briefly summarized.

In the initial comparison of data of those who submitted complete results not even one participant has obtained agreement with our benchmark results within every group, for every reaction; the closest agreement was 2% and the worst disagreement was more than a factor of 50 (that is a factor of 50, not 50%). However, the verification project has led to positive results in the sense that once differences in the multigroup cross sections are located it has been fairly easy to identify the source of the differences, eliminate problem areas and end up with improved processing codes. This has been demonstrated by improved results obtained from participants which show greatly improved agreement with our benchmark results. The initial and current maximum differences found in the results submitted by each code designer or maintainer are presented in Table I.

Table I

Summary of initial and current maximum per-cent differences for each code

(results are presented in the chronological order in which they were received from code authors)

code	init di	ial maximum fference	current maximum difference or status						
RESEND	2018	%	abandoned						
ENTOSAN	2	x	agreement						
LINEAR/RECENT/GROUPIE	6	% *	agreement						
FOURACES	2692	2	agreement						
RESCAL	113	%	87 % *						
RESENDD	5488	%	agreement						
FEDGROUP-3	188	% **	16 % **						
FEDGROUP-C	2482	% **	agreement						
NJOY(CDC)	19	% *	agreement *						
NJOY(IBM)	100	% *	19 % *						
AMPX	24	x	1.7 %						
MINX	2018	% **	no additional results						
GRUCON	2.5	% **	no additional results						

 this ignores large per-cent differences for small cross sections near thresholds

** - comparison based on only a portion of ENDF/B-V dosimetry library

Problem Areas

Our initial round of comparisons identified a variety of problem areas in the participating cross section processing codes. Since most of these problems occurred in more than one code they will be discussed in detail here, rather than separately for each code. For each code it will merely be mentioned which problems existed initially or currently. The problem areas identified included,

1. Programming errors

which lead to large differences, as illustrated in fig. 1. The complexity of modern processing codes makes it difficult to locate such errors without resorting to intercomparison of the results generated by a variety of codes. For example, the major cause of the programming error illustrated in fig. 1 was found to be due to switching two arguments in the subroutine in RESEND which interpolates unresolved parameters. Since RESEND is the father or grandfather of many processing codes it is possible to intercompare the results from several codes which are based on RESEND and to obtain agreement, even though all are generating the same wrong answer. Only by comparing the results from several codes, which are developed independently, is it possible to find such programming errors.

2. Inadequate representation of narrow resonances

leading to large differences in the resolved resonance region, as illustrated in fig. 2. Most of the codes which participated in this study first convert the resolved parameters to energy dependent cross sections and then group average the energy dependent cross sections. Even if cross sections are accurately calculated within a computer, when a code outputs the cross sections reconstructed from resonances in the ENDF/B BCD format the normal Ell.4 format can be totally inadequate to represent energies (e.g. 1234.56789 eV is output as either 1.2346E+3 or 0.1234E+3 depending on the computer). Extension of the format to six digit accuracy, as used in many codes, improves the accuracy (e.g., by not outputting "E" it is possible to output the above energy as 1.23457+3). However for heavy even-even isotopes which have milli-eV capture widths in the KeV energy range even six digits are inadequate to represent the shape of narrow resonances; the result can be to randomly either over- or underestimate the integral of narrow resonances. This effect has been avoided in several codes by either recognizing that energies are always positive and only require at most a one digit exponent, which allows energies to be output with up to nine digits of accuracy (e.g. the above energy can be output as 1.23456789+3) or by simply outputting energies in F format (e.g. output the above energy without an exponent in the form 1234.56789). Either of these representation is more than adequate to represent the energy well beyond the accuracy required. The magnitude of the error which results when the energy is output in the ENDF/B BCD format has been investigated (by the author) by using the entire ENDF/B-V dosimetry library. Internal to the computer all calculations were performed to the same accuracy, but the results were output to a different number of digits accuracy in the energy. Each result was then group averaged to 640 groups and results were compared. The maximum differences occurred, as expected, in ²³²Th and $238\overline{U}$ capture due to narrow resonances. When compared to the

FISSION CROSS SECTIONS **HAT 6337** 93-NP-237 101 STANDARD -97.7 TO 110. Z DIFFERENCES 100 10-1 BRRNS 10-2 10⁻³ 10-4 RESEND-80 (B. MAGURNO, BNL) 100 10-1 BRRNS 10⁻² 10-3 10-4 RESEND-80 (B. MAGURNO, BNL) / STANDARD 2.0 1.5 2 1.0 RAT 0.5 0.0 NR 18 -0.5 یلیہ 10[–] MEV 10-8 10-3 10 10 10 9 10-7 10⁻⁶ 10-5 Ц 10-2 10-1 100 101 93-NP-237 Fig.1

Fig. 2

results based on energies output to nine digits accuracy the following maximum differences were found in one or more group averaged cross sections,

5 digit energy - 72% 6 digit energy - 6% 7 digit energy - 0.3% 8 digit energy - 0.0%

Some codes have completely avoided this problem by simply using the ENDF/B binary format for intermediate storage between the resonance reconstruction and the multi-group calculation; this approach will maintain the complete accuracy of the internal representation of the cross section. Logically this is the simplest approach to avoid the problem. However, it may be difficult to implement in existing codes and impractical to implement in existing code systems where a number of codes are each designed to use the ENDF/B BCD format for a variety of different applications.

3. Failure to consider the competitive width

In earlier versions of ENDF/B the total width for each resonance was defined as the sum of the elastic, capture and fission widths. In more recent versions of ENDF/B the competitive width is defined as the difference between the total width and the sum of the elastic, capture and fission widths and the threshold for the competitive reaction is defined by a Q-value. This has led to two problems: (a) some codes were not updated to consider the competitive width, which effectively ignore the competitive width and underestimate the strength of each resonance, (b) several codes which consider the competitive width fail to consider the competitive reaction Q-value. To correctly consider the intended effect of the competitive width it is necessary to use the available energy (incident energy minus competitive reaction threshold) in calculating the penetration factor for the competitive reaction. If this is done properly the effective competitive width reduces to zero below the threshold of the competitive reactions and smoothly increases above the threshold.

4. Interpolation in the unresolved resonance region

as illustrated in fig. 3. In all versions of ENDF/B three possible representations have been available within the ENDF/B format for unresolved resonance parameters: (a) all parameters energy independent (i.e. all parameters constant over a given energy range), (b) fission widths energy dependent with an implied interpolation law and all other widths energy independent, (c) all widths energy dependent with a given interpolation law. Until ENDF/B-IV the convention was that between the energies at which unresolved parameters are tabulated unresolved parameters should be interpolated to each energy and cross sections should be calculated at each energy based on the interpolated parameters. This was a scheme which was applicable to all three representations of unresolved parameters at each energy.

Starting with ENDF/B-V it was decided that for practical reasons in applications since it is the cross sections rather than the parameters that are actually used-it would be simpler to adopt the convention, for a set of parameters tabulated at a given set of energies, to calculate cross sections at the energies at which parameters are given and define the cross sections at all other energies by interpolating the <u>cross</u> sections rather than the <u>parameters</u>.

Therefore starting with ENDF/B-V it was decided that the convention should be that in the unresolved resonance region one should interpolate cross sections rather than parameters. In addition in going from ENDF/B-IV to V it was decided, again for practical use in applications, that the implied interpolation law for the fission width energy dependent, all other widths energy independent representation should be changed from log-log (ENDF/B-IV) to lin-lin (ENDF/B-V) interpolations.

At the time these appeared to be minor changes which should have minimal, if any, impact on the evaluated data files. In practice this has resulted in introducing major uncertainties into the cross sections calculated by processing codes. If we examine the three possible representations of unresolved parameters and the equations that describe the cross sections that result at any energy from a given set of unresolved parameters we can see that the effect of a set of energy independent parameters is to produce a basically 1/v cross section.

It quickly became obvious to processing code designers that since the energy independent representation of unresolved parameters can represent parameters as constant over a number of energy decades the all parameters energy independent representation of unresolved parameters did not lend itself to simply calculating the cross section at both ends of the energy interval and linearly interpolating between these two points to define the cross section at all intermediate energies. For example, using exactly the same evaluations which appeared in ENDF/B-IV and which were carried forward without modification to ENDF/B-V if one uses the ENDF/B-IV or V conventions one can obtain differences in the cross section based on parameter vs. cross section interpolation of over 300%. Linearly interpolating the cross section leads to non-realistic, non-1/v variation. Therefore most code designers who implemented the ENDF/B-V conventions decided that for the all parameters energy independent representation interpolating cross sections is "nonsense" or rationalized that since parameters are not energy dependent, there is nothing to interpolate and the constant parameters should simply be used at each energy to define the cross section.

When we examine the fission width energy dependent, all other widths energy independent representation in ENDF/B we run into another problem. According to the ENDF/B-IV convention where cross sections were based on interpolating parameters this representation resulted in basically 1/v behavior for the elastic and capture cross sections and, due to the implied log-log interpolation of the fission widths, variations from 1/v based on the variation in the fission width. If one follows the ENDF/B-V convention of interpolating cross sections one obtains elastic and capture cross sections which are linearly interpolable over the entire unresolved region, which are non-realistic and fission cross sections which vary linearly with energy between the energies at which fission parameters are given, which are equally unrealistic. This situation was

not as simple to address by code designers as the all energy parameters energy independent case. On the one hand to obtain realistic elastic and capture cross sections it seemed obvious that one should treat them as identical to the all parameters energy independent representation (to which logically and physically they are identical) and merely calculate the cross sections at each energy based on the constant elastic and capture widths. However, if one does this and at the same time follows the ENDF/B-V convention to only calculate fission cross sections at the energies at which fission widths are given and then linearly interpolates the fission cross section to define the fission cross section at all other energies one obtains non-realistic capture to fission ratios. For example, using exactly the same evaluations which appeared in ENDF/B-IV and which were carried forward without modification to ENDF/B-V if one uses the ENDF/B-IV or V conventions one can obtain differences in the capture to fission ratio of over a factor of two (i.e. 200%). It should be noted that this effect would not have been nearly as large if the ENDF/B-IV convention of using an implied log-log interpolation law for this representation had been carried forward to ENDF/B-V; the log-log interpolation law reproduced a 1/v variation (similar to the capture) and produces reasonable capture to fission ratios. In contrast the ENDF/B-V convention of using an implied linear interpolation law for representation leads to non-realistic capture to fission ratios. this То reproduce realistic 1/v cross sections and capture to fission ratios requires interpolation of parameters, which violates the ENDF/B-V The results in the uncertainty of how to treat this convention. representation of unresolved parameters have led to confusion among code designers which has resulted in each designer implementing ad hoc conventions to obtain the results which each designer considered to be the most realistic.

Finally we come to the all unresolved parameters energy dependent representation which in principle should be the easiest to consider. For this representation at first glance the ENDF/B-V convention seems to be straightforward: in the ENDF/B formats and procedures manual it states that for ENDF/B-V one should calculate the cross sections at the energies at which parameters are given and define the cross sections at all other energies by interpolating cross sections, not parameters, according to the explicitly given interpolation law (what could be simpler). However. if one reads further into the ENDF/B formats and procedures manual one discovers that the situation is not that straightforward and clear. Specifically, in the manual it is stated that even though the new convention is to interpolate cross sections, not parameters, evaluators should provide parameters on a "dense enough" energy grid to insure that the differences in the cross sections obtained by parameter vs. cross section interpolation are small. The question arises as to what is "dense enough" and what should the code designer do if the evaluator does not provide parameters on a "dense enough" energy grid (as occurs in many ENDF/B-V evaluations). On the one hand one could assume that the evaluator knows best and whatever energy grid the evaluator provides for the unresolved parameters is "dense enough". In the other extreme the code designer could assume that the convention is that evaluators should interpolate their parameters to a "dense enough" energy grid to insure that subsequent interpolation to a finer energy grid yields essentially the same cross sections, regardless of whether parameter or cross section interpolation is used to interpolate to the finer energy grid. If this is the convention then code designers can automatically determine if

an energy grid is "dense enough" by simply interpolating <u>parameters</u> to a fine enough grid such that subsequent interpolation of <u>crops sections</u> or <u>parameters</u> yields essentially the same cross section at all energies. If this procedure is followed it is obviously equivalent to using the ENDF/B-IV convention of interpolating <u>parameters</u> (since one interpolates <u>parameters</u> to a fine enough energy grid such that it is irrelevant how one interpolates to a finer energy grid). Besides the two extremes of assuming the evaluator has provided a "dense enough" energy grid or the code designer insuring a "dense enough" energy grid by parameter interpolation, the code designer can merely insure that parameters are not given on too sparse an energy grid by insisting that the successive energies at which parameters are given not be more than a certain multiple of one another (e.g. 2 or 3, etc.). By considering different possible multiples from very large to very small one ends up with an infinite number of possible interpretations of the unresolved parameters extended from the two extremes of using the evaluator's energy grid (equivalent to using a very large multiplier) to interpolating parameters (equivalent to using a multiplier close to one).

How much difference does it make if one interpolates <u>cross sections</u> or <u>parameters</u> for actual ENDF/B-V evaluations? In the ENDF/B-V dosimetry library there is an excellent example which can be used to illustrate both the magnitude of the differences that result and the problem of trying to uniquely define a "dense enough" energy grid. For 237Np unresolved parameters are given over the energy range 130 ev to 40 Kev. Between 130 ev and 4.954 KeV parameters are given on a very fine energy grid that would pass most multiplier tests (e.g. 130, 198, 208, 231, 240, 249, 259, 278, 288, 330, 340 ev, etc.). Between 4.954 and 40 KeV parameters are only given at the two end points of this energy interval. An additional complication which effects results is that even though in the energy range 130 ev to 4.954 KeV the parameters are given on a very fine energy grid the fission widths vary dramatically between tabulated energies, by up to two orders of magnitude, e.g.

<u>E (ev)</u>	$\Gamma_{n,f}$ (ev)
130	5.4391E-6
198	3.0718E-4
208	2.8031E-6
231	9.1923E-5

From fig. 3 we can see that the effect of using the ENDF/B-V convention of interpreting <u>cross sections</u> (STANDARD result) or the ENDF/B-IV convention of interpolating <u>parameters</u> (AMPX result) results in almost a 20% difference in the fission cross section in the energy range between 130 ev and 4.954 KeV, where the parameters are given on a very fine energy grid. The maximum difference occurs near 140 ev. This indicates that it is impractical to attempt to eliminate the difference between the cross sections obtained by parameter or cross section interpolation by simply insuring that the successive energies at which parameters are specified are within a given multiple of one another. In the case of 237Np fission this would require a multiple very close to one, which would require the cross section to be calculated at an enormously large number of energies; far more energies than would be required by simply interpolating parameters.

For 237 Np in the energy interval 4.954 to 40 KeV where unresolved parameters are only given at the ends of this energy interval the fission widths increase almost exactly by v over the interval and the net effect is that the fission cross section calculated at 4.954 KeV is almost exactly equal to the fission cross section calculated at 40 KeV. Obviously in this case interpolation of the fission <u>cross section</u> over this energy interval will result in a constant fission cross section (see fig. 3 STANDARD results). In contrast interpolation of the fission parameters over this energy interval results in a fission cross section which decreases by about 18% over this energy interval.

To summarize the status of unresolved resonance parameter calculations,

- 1. At the beginning of this study very few codes had implemented cross section interpolation (ENDF/B-V convention) and almost all codes were still using parameter interpolation (ENDF/B-IV convention).
- 2. During the course of this study virtually all codes were converted to use cross section interpolation (ENDF/B-V convention).
- 3. Examination of the results obtained using strictly <u>cross</u> section interpolation indicates that for the three possible representations of unresolved parameters available in the ENDF/B system the results are often physically unrealistic. This has resulted in code designers implementing ad hoc methods in an attempt to make their results more physically acceptable, e.g. resorting to purely parameter interpolation or interpolating parameters to an energy grid where successive energies cannot exceed some multiple of one another.
- 4. The case of 237Np fission in the energy range 130 eV to 4.954 KeV indicates that it is impractical to insure that there will not be differences between the cross section obtained by parameter vs. cross section interpolation to a finer grid by simply starting from parameters which have been interpolated to an initial energy grid where the energies at which parameters are given are simply multiples of one another. If one attempts to find such a multiple which can be uniformly used for all ENDF/B-V evaluations, obviously the ^{237}Np case indicates that a multiple very close to one would have to be used to obtain a fine enough starting grid to eliminate significant differences between the cross sections obtained by subsequent cross section vs. parameter interpolation to a finer energy grid. The result of attempting to find a fine enough starting grid which can be used for all ENDF/B-V evaluations results in the situation where (a) since parameters are interpolated to define the fine enough starting grid this approach is physically equivalent to using the ENDF/B-IV convention of simply interpolating parameters, (b) defining a multiplier for use with all ENDF/B-V evaluations results in the situation where for most evaluations cross sections are calculated at far more energies than if one simply interpolates parameters. As such use of a multiplier offers no advantage over simply resorting to parameter interpolation.
- 5. The seemingly simple change in ENDF/B conventions between parameter interpolation (ENDF/B-IV) and cross section interpolation (ENDF/B-V)

has resulted in the situation where a variety of cross section processing codes can obtain completely different results and yet code designers can all claim that they are following the ENDF/B-V conventions. The differences that have been found in the unresolved region cross sections calculated in this study cannot be blamed on the code designers; rather the differences should be blamed on the ambiguity and impracticality of the current ENDF/B-V conventions concerning interpolation of unresolved data.

- 6. Many evaluations were carried forward from the ENDF/B-IV to the ENDF/B-V library without being modified. If one uses exactly the same evaluations from the ENDF/B-IV library or the ENDF/B-V library and the conventions associated with each of the two ENDF/B versions one can obtain a difference of a factor of three (i.e. 300%) in the cross sections derived from the unresolved parameters. Which is correct?
- 7. If one is given a single set of energy independent unresolved parameters and codes them into the ENDF/B format using each of the three possible representations of unresolved parameters available in ENDF/B (all of which can accommodate energy independent unresolved parameters) one can obtain three completely different unresolved cross sections. Which is the physically most acceptable? Obviously the l/v cross sections obtained using parameter interpolation.
- 8. In the author's view, the change in ENDF/B conventions between ENDF/B-IV and V, which was designed to simplify use of the unresolved data, has led to a more complicated situation involving ad hoc assumptions and procedures which can introduce large differences in the cross sections derived from unresolved parameters using different combinations of assumptions and procedures. The only procedure which is applicable to all three representations of unresolved parameters available in ENDF/B and leads to a unique averaged unresolved cross section is to interpolate <u>parameters</u> and not cross sections.

5. <u>Treating small cross sections as zero and/or not using the ENDF/B</u> interpolation law

as illustrated in fig. 4. For use in transport calculations when the cross sections for any reaction become small (e.g. in fig. 4 less than 10^{-6} barns) it is practical to ignore the ENDF/B interpolation law and assume that the cross section is linearly interpolable. This leads to the differences seen in fig. 4 in the energy range 500 Kev - 1 MeV. In addition when the cross section becomes very small (in fig. 4 less than 10^{-8} barns) the cross section may be considered to be zero. This leads to the differences seen in fig. 4 below 28 KeV.

Introducing either or both of these assumptions will have no effect on the flux or other reaction rates obtained from a transport calculation. As such it is a practical approach to reducing the complexity of transport calculations by minimizing the number of reactions that must be considered in any energy range. Therefore the differences seen here should not be considered to be due to errors in the code, but are rather the result of introducing a practical, physically acceptable approximation. The only point that the user should be aware of is that even though the flux in any transport calculation will not be affected, the reaction rate obtained using the calculated flux and the approximate cross section may be in error. For example, from fig. 4 we may see that any flux spectrum which has a peak at low energies (e.g. thermal reactor spectrum) and is essentially zero above 28 KeV will yield a small reaction rate using the standard cross section, but a zero reaction rate using the approximate cross section. It should be pointed out that the use of essentially threshold reactions for such purposes is inappropriate, but if the user insists on performing such calculations one can still obtain the appropriate reaction rate by using the calculated flux and the cross sections from a standard library, such as the ENDF/B dosimetry library.

6. Numerical instabilities near discontinuities in the cross section

as at resonance region boundaries, as illustrated in fig. 5. This problem is introduced by codes which calculate multigroup cross sections from energy dependent cross sections. In order to illustrate the source of this problem consider trying to integrate a linearly interpolable cross section over a small energy interval,

where A is the zero energy intercept cross section and B is the slope. This appears to be a trivial calculation to perform, but unfortunately in the resonance region A and B can be enormous numbers, generally of opposite signs, which leads to round-off problems. The result on short word length computers (e.g., IBM) is to generate essentially random results. For example, from fig. 5 we can see that in the one group which spans the resolved-unresolved resonance region boundary the calculated cross section is over 20 times too large. Admittedly this effect only occurs in the group where the discontinuity is located, but such large differences can affect both calculated fluxes and reaction rates if the flux spectrum is strongly peaked in the vicinity of this group.

This problem can be avoided by simply re-writing the above equation in a form which avoids numerical instabilities. For example defining the energy and cross section at the mid-point of the energy interval; $\langle E \rangle$ and $\langle \sigma \rangle$ and the change in cross section across the energy interval $\delta \sigma$ the equation can be written in the form.

$$\langle \mathbf{E} \rangle + \frac{1}{2} \, \delta \mathbf{E}$$

$$\int \left[\langle \sigma \rangle + \frac{1}{2} \, \delta \sigma \left(\mathbf{E} - \langle \mathbf{E} \rangle \right) \, \mathrm{d}_{\mathbf{E}} = \, \delta \mathbf{E} \, \langle \sigma \rangle$$

$$\langle \mathbf{E} \rangle - \frac{1}{2} \, \delta \mathbf{E}$$

This approach also works where the integrand is the cross section times a flux and for logarithmic variation.

Fig. 5

Note, that even when δE is very small, which leads to instability in the original equation, the result of using the re-formulated equation is still stable and leads to the average cross section times the width of the energy interval.

7. Different results based on different input operations

Modern cross section processing codes have many input options, generally to select one of a number of possible routes through the codes, specify processing accuracy or the use of certain approximations. Therefore it was not surprising to find that the results submitted by code users differed from the results submitted by code designers, even though both used the same code and evaluated data.

At the beginning of this study it was assumed that since the code designers should be the ones most familiar with their own codes they would submit the best results for each code. Therefore it was surprising to find that based on the initial round of comparisons four code designers stated that they used the wrong input options on their own codes and could have obtained better results simply by selecting a more appropriate set of input options.

These results indicate that code designers should attempt to make their codes more "user friendly" by recommending standard input options and documenting the range of validity and the influence of input parameters on calculated results.

Summary of problem areas

An important point to realize is that because of the complexity of modern evaluations, modern cross section processing codes are equally complex and the large volume of data output by these codes would have made it impossible to identify these problem areas without intercomparison of the results generated by a variety of codes.

A second point is that the author considers the designers of the cross section processing codes which participated in this project to be some of the best code designers in the world, yet in every case the participating codes were found to have one or more errors. This illustrates that the complexity of modern cross section processing codes makes it impossible for even experienced code designers to insure the accuracy of the results generated by their codes without intercomparison.

In this study once initial comparisons were performed it was fairly easy to identify and isolate problem areas in each code and for the code designers to improve their codes.

Based on the results of this study, since problems were found in every participating code, it is fair to ask: how accurate are the results generated by codes which did not participate in this study? In an attempt to answer this question and to nelp improve as many codes as possible, all code designers who have not participated in this study to date are still encouraged to participate in this study by sending results for the first round of comparisons.

Benchmark results

All participants were asked to use the ENDF/B-V dosimetry library to generate cold (O Kelvin), unshielded, flat weighted 620 group (SAND-II group structure) averaged cross sections in the ENDF/B format and to submit their results to the Nuclear Data Section, IAEA, Vienna for comparison to the benchmark results.

This study has extended over a number of years and during this time several versions of the ENDF/B-V dosimetry library were distributed by Brookhaven National Laboratory, namely: Mods. 0,1 and 2. In an attempt to insure that any differences in the results submitted by participants are due to the codes used, rather than the evaluated data, benchmark results have been established for each of the three mods. of the library. The following plots document the differences that are to be expected based on use of any mod. of the ENDF/B-V dosimetry library, specifically, the benchmark results for mod. 1 were compared to the results for mod. 0 and the mod. 2 results were compared with mod. 1 results. The following plots indicate those reactions for which differences in excess of 1% were found in the group averaged cross sections in one or more groups.

Mod. 0 vs. Mod. 1

The only differences between the cross sections in the ENDF/B-Dosimetry libraries mod. 0 and 1 is that for 238 U fission and 58 Fe capture two tabulated data points which were incorrect in mod. 0 have been corrected in mod. 1.

Mod. 1 vs. Mod. 2

Between mod. 1 and mod. 2 eight reactions were modified as follows,

- 237 Np fission Resonance region is 10^{-5} to 300 ev in mod. 2 (it was 0.3 130 ev in mod. 1) and new resonance parameters.
- ¹⁹⁷Au capture The resonance region is 10^{-5} to 5 KeV in mod. 2 (it was 10^{-5} to 4.827 Kev in mod. 1). The extension of the resonance region to 5 KeV without additional resonances causes the cross section in mod. 2 to be considerable lower in the energy range 4.827 to 5 KeV (resulting in the 80% difference seen in the following figures).
- ²³²Th fission For mod. 2 all resolved fission widths are zero (in mod. 1 they were small, but non-zero)
- 232Th capture Resonance parameters have been slightly modified. The biggest effect is seen near 70 ev where slightly shifting overlapping resonances between mod. 1 and 2 leads to a 216% difference in the cross section.
- ⁴⁷Ti(n,p), ⁵⁴Fe(n,p), ⁵⁸Ni(n,p) For mod. 2 the cross sections have been modified to have an effective threshold once the cross section falls to a low value. In mod. 1 these reactions were continued to low energies with very small, but non-zero cross sections.
- ¹¹⁵In capture mod. 2 has a completely new set of resolved resonance parameters.

- 24 -

- 25 -

.

Cross Section Processing Code Results

The following sections document the initial and latest results generated by each participating code compared to our benchmark results. In each case the submitted results have been compared to the benchmark results for the corresponding mod. of the ENDF/B-V dosimetry library. Therefore all differences presented in the following sections are due to the processing codes and not due to differences in the evaluated data.

Explanation of Results

Results for each code are presented in the chronological order in which the initial results were received from participants. Each code is identified by a name and a year (e.g. RESEND-80). The year identifies the year in which the <u>comparison was performed</u>; the year is <u>not</u> a version number for the code. For each code tabulated and graphical results are presented.

The tabulated results present a one line summary of the comparison for each reaction. Each line indicates whether or not the reaction was compared (i.e., all participants did not submit results for the entire ENDF/B-V dosimetry library). If compared, the line summarizes maximum negative and positive per-cent differences found in any group and the value of the average cross sections for the two sets of data in the group where the maximum negative and positive per-cent differences were found. An asterisk (*) following the per-cent difference indicates a difference in excess of 1%. The results for each reaction in which differences in excess of 1% were found are presented in graphical form following the tabulated results. For any reaction in which the per-cent difference could not be defined because the standard result is zero in a group where the other result is not, the tabulated results contain a warning and the reaction is plotted; this occurred for several threshold reactions.

The graphical results are presented as a series of plots, one per reaction. Each plot presents the standard (i.e. benchmark) results, the submitted results and the ratio of the submitted result to the standard. As in the case of the tabulated results each code is identified by name and the year in which the <u>comparison was performed</u>. The maximum negative and positive per-cent differences are listed in the upper right hand corner of each plot. The position (in energy) where these differences occurred are identified at the bottom of the plot by an up arrow (\uparrow) for the maximum ratio and a down arrow (\downarrow) for the minimum ratio. In order to assist in identifying the source of errors in each code the resolved and unresolved resonance regions (if any) are identified by vertical dashed lines at the region boundaries and the word RESOLVED or UNRESOLVED at the bottom of the plot.

For each code up to two sets of results may appear: the initial and latest comparison results. If the latest comparison results for any code agree with the benchmark results to within 1% for every reaction, in every group the latest comparison results are not presented; it is merely stated that the results generated by the code agree with the benchmark results.

Since all of the problem areas found in this study have been discussed in a preceding section, they will not be discussed in detail for each code. For each code it will merely be stated which problems were found and whether or not the problem has been eliminated.

RESEND

The RESEND code was designed to convert resonance parameters and background cross sections to energy dependent cross sections in the ENDF/B format. The RESEND results obtained in 1980 indicate that RESEND has major problems in the resolved and unresolved resonance regions. The differences found indicate that in the resolved region the energy grid used is inadequate to accurately represent narrow resonances, which leads to appreciable errors even in the average cross sections (s 23 Na-capture, 232 Th-fission and capture). The differences in unresolved region (see, 237 Np-fission) have been traced to (see. the а programming error which resulted in incorrect interpolation of the unresolved parameters. Another programming error which incorrectly interpolated background cross sections led to the differences seen in 58Fe-capture and 63Cu-capture. Another error is due to outputting the linearly interpolable resonance contribution using the interpolation law of the background cross section (e.g., a zero background with histogram interpolation leads to a resonance contribution in histogram form). Another error was introduced by the code which was used to convert the RESEND energy dependent cross sections to multigroup form. For 197Au-capture we can see that this code introduces a numerical instability due to the discontinuity in the cross section at the upper energy limit of the resolved resonance region. The result is an average cross section in one group which is a factor of over twenty (i.e. 2000%) too high.

As a result of these comparisons it was decided that the problems with RESEND were too extensive to remedy and the code has been abandoned.

The author would like to point out that the RESEND code was one of the first codes which was designed to process ENDF/B data into energy dependent form and it has now been in use for almost fifteen years. As the father or grandfather of many currently used cross section processing codes RESEND has made a significant contribution over this time period toward improving our ability to process ENDF/B data. Certainly without the existence of RESEND as a starting point half of the processing codes which participated in this project would not have been able to generate pointwise cross sections. As such even though RESEND was eventually found to contain errors its contributions toward processing ENDF/B data should be recognized and the author for one will mourn its passing on to computer code heaven.

+*****	TANASAT	56																														
TA2=R	ESEND	-80 (B.MA	gurno	, BNL)																										
DF/B	TAPE I	ABEL	.s																								·					
TA1=1/	AEA PI	ROCES	SING	CODE	VER	IFI(OJEC		AND/			0.0)		900	0														
											D. mr		NU, 	DINL		900)																==
	ERIAL		MAII	MA I Z	PUI		PUIN	2	MI	NIMU	наг M	MA	XIM	JM	PER	-CEN GATI	T D VE	IFFE POS	RENC	CES VE		OF DAT	055 MAX A1	XIM	JM PE	R-CE	INNE		EREN ATA1	CE	DA	TA
11-NA	- 23	102	6311	6311	1	280	124	10	1.00	00-	4	2.00	00+	7	-0- -0	. 103		16.	001	¥							2	.6231	0- 5	3.	04281	
13-AL	- 27	107	6313	6313		337	29	57	3.20	00+	ĕ	2.00	00+	7	-ŏ	. 122		ŏ.	001													
27-CO	- 59	16	6327	6327	•	189		49	1.06	00+	7	2.00	00+	7	-0 -0	.000	•	ğ.	000	•								4007			64700	••••
27-CO	- 59	102	6327	6327		291	2	+U 53 !	1.00	00+	6	2.00	00+	7	-1	.208	*	б. О.	042	Ŧ	5.99	952-	2	5.5	92700	5- 2	2.	.4627	0- 2	2.	61720	-
RNING TAI IS	S ZER	R ABU	IVE C	2 EN	ISON ERGI	ËŠ	JLD NO NHERE	DAT	EFIN A2 I	e Ra S No	TIO N~ŽE	AT RO.		ENE	ERGI	ES.			•••••	••••••••		·····	••••••	••••••••		••••••••••			•••••			•••••
RST 00 93-NP:	CCURRI -237	ENCE	AT 6337	5.400 6337	00+	6 E\ 280	/. 124	40	1.00	00-	4 2	2.00	00+	7	-97	.656	*	109.	727	*	2.07	430-	• 1	4.8	36301	1- 3	2	. 5557	'2- 3	5.	. 36003	-
79-AU	-197	102	6379	6379	1	280	12	40 10	1.00	00-	4	2.00	00+	7	-0 -0	. 193	2(D17.	552 662	<u>*</u>							<u></u>	2290	6+ 0	2.	.60260	<u>+</u>
RNING	FO	RABO	VĚ Č	OMPAR	ISON	ČO		DAT	EFIN	ËRA	TIO	AT	ALL	ÉNE	ERGĬ	ËŠ.		20.	002								-			0.		
RST O	CCURR	ENCE	AT	1,000	00-	4 E		10411	*****	3 140	·······								222							· · · · · · · · · · · · · · · · · · ·		*****				
90-1H 92-U	-232	102	6395	6395	1	280	124	40 40	1.00	00-	4	2.00	00+	7	-0	.545	*	9.	123	*	2.79	848+	• 0	2.7	72727	7+ 0	2	.7095	0+ 0	2	.95668	+
92-U 92-U	-238 -238	18 102	6398 6398	6398 6398	1	280 280	124 124	40 40	1.00 1.00	00- 00-	4 2	2.00 2.00	00+	777	-0 -4	.375 .184	*	5. 9.	151 616	*	7.11	360-	- 1	6.8	31597	7- 1	3.	.5641 .1177	3- 3 4+ 0	3. 1	.74771	Ŧ
94-PU 3-L1	-239 - 6	18	6399 6424	6399 6424	1	280 280	124	40 40	1.00	00- 00-	4 2	2.00	00+	777	-0 -0	.658		0.	886 091													
5-8 21-50	- 10	207	6425 6426	6425	1	280	124	40 40	1.00	00-	4 2	2.00	00+	7	-0 -0	.098		Ö.	053								2	9184	16- 2	, ,	99211	-
22-TI	- 46	103	6427	6427		369	3	29	1.60	00+	6	2.00	00+	7	ŏ	.0.7	•••••	Ö.	001		••••••	••••••		•••••••••	••••••••••				· · · · · ·	·		•••••
22-TI	- 47	103	6428	6428	1	280	12	49	1.00	00+	4	2.00	00+	7	-0	.000		0. 0.	002													
22-TI 22-TI	- 48 - 48	28 103	6429 6429	6429 6429))	169 337	2	29 97 :	<u>1.16</u> 3.20	00+ 00+	<u>7</u> 6	2.00 2.00	00+ 00+	<u>7</u> 7	0- 0	.099 .0		<u>. 0</u> .	042 001	•••••••			·····	····•··		••••••				····	•••••	••••
26-FE	- 54	103	6430 6431	6430 6431	1	280	124	40 13 ·	1.00	00-	4 2	2.00	00+	777	-0	.101		0.	085													
26-FE	- 58	102	6432	6432	1	280	12	4 <u>0</u>	1.00	00-	4	2.00	00+	<u>. 7</u>	ŏ	.379		ğ.	936	*	···· ··· ···					····· ··· ·	4	.6637	′3 - 3	1 5	. 12711	-
28-NI	- 58	103	6433	6433	1	280	124	40	1.00	00-	4	2.00	00+	7	-0	.095		ŏ.	074													
28-NI 29-CU	- 63	103	6434	6434	1	351	3 12	40	2.50 1.00	00+ 00-	4	2.00 2.00	00+	<u> </u>	0- -0	.101		94.	032	*				••••••			1	.0778	34- 2	2 2	.09163	-
29-CU 29-CU	- 63 - 65	107 16	6435 6436	6435 6436		367 201	3:	27 61	1.70	00+ 00+	6 2	2.00	00+	777	-0	.095		0.	070													
49-IN 49-IN	-115	51	6437	6437	, , 1	427 280	3	87 : 40	3.20	00+	5 4	2.00		777	-0 -0	.065		Ö.	001	*							2	2905	5 2- 1	1 2	.39037	·
53-1 16-5	-127 - 32	16 103	6438 6439	6438	NO C	217 OMP/	4RISO	77 9 N **	9.20 *	ŏŏ+	6	2.00	0 0 +	7	-0	.056	•••••	ŏ.	096	••••	•••••	••••					🗲 .	1,2000	· ••			
1	4 PLO	TS GI	NERA	TED																												
			CE DE		VCEE	ne	1 0		 D-CE																							

- 32

ENTOSAN

The ENTOSAN code was designed to convert resonance parameters and background cross sections directly into unshielded multigroup cross sections, without the intermediate step of reconstructing energy dependent cross sections. As pointed out earlier in this work, the ENTOSAN-RESEND results published by Petten were instrumental in initiating this verification project.

The ENTOSAN comparisons performed in 1980 indicated that ENTOSAN had no major problems. Only minor differences were found in the resolved resonance region and these were easily eliminated by the code designers by using more stringent convergence criteria in calculating integrals.

The latest ENTOSAN results agree with the benchmark results. It is worth noting that comparison of the initial results submitted by all codes indicates that of all the processing codes which submitted results for the entire ENDF/B-V dosimetry library the initial ENTOSAN results were eventually found to be closest to the benchmark results.

ATA1=STANDA ATA2=ENTOSA	RD N-80	(W.ZI	JP,PE	TTEN)															
NDF/B TAPE	LABEL	5																	
ATA1=IAEA P ATA2= ENTOS	ROCES	SING ENDF/	CODE V B-V D(VERIFIC	CATION P Ry Libra	ROJECT ST	ANDARD	(MOD.0 N,1980	3}	9	000 800								
MATERIAL	MT I	WATI	MAT2 I	POINTI	PO1NT2	ENERGY MINIMU	RANGE Im Ma	(EV) XIMUM	PER-C	MAXI	MUM DIFFE POS	RENCE ITIVE	CI S OF DA	ROSS MAX	SECTIO	N (BARNS) ER-CENT D ATA2	AT PO DIFFERE DATA	INTS NCE 1	DATA:
11-NA- 23 13-AL- 27 13-AL- 27 25-MN- 55 27-CO- 59 93-NP-237 79-AU-197 90-TH-232 90-TH-232 92-U -238 92-U -65 49-IN -115 53-I -127 16-S -32 	102 103 107 16 102 107 18 102 103 103 103 103 103 103 103 103	6313 6313 6313 6327 6327 6327 63399 63399 63399 63399 63399 63399 63399 63399 63399 63399 63399 63399 6422 64229 6429 6433 6433 6433 6433 6433 6433 6433 643	3 4 4 9 13 13 13 27 23 24 26 26 28 26 28 26 28 26 28 10 11 12 14 14 15 16 16 17 21 22 *** * * * * * * * * * * * * * * *	1280 365 337 193 189 291 1280 1280 1280 1280 1280 1280 1280 128	1280 365 337 193 189 1280 291 1280 1280 1280 1280 1280 1280 1280 128	1.0000- 1.800+ 3.2000+ 1.0400+ 1.0600+ 1.0000- 5.5000+ 1.0000- 1.2000- 1.20	$\begin{array}{c} 4 & 2.00 \\ 6 & 2.00 \\ 6 & 2.00 \\ 7 & 2.00 \\ 4 & 2.00 \\ 6 & $	$\begin{array}{c} 00+ 7\\ 00$		155 152 152 152 152 152 152 152 152 152		099 074 005 081 003 060 042 054 056 057 086 071 025 0057 090 053 0053 0053 0053 0001 0053 0001 0005 0041 0005 0005 0004 0005 0004 0005 0004 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0005 0000 0000 0000 0000 0000 0000 000000	1.08239 3.06708 4.96248 3.31479	- 2 - 4 + 1 :	1.0613	10- 2 10- 4 10+ 1 70+ 1			
- INDICATE	S DIF	FEREN	CE EX	CEEDS	1.00 F	ER-CENT													
ER-CENT DIF	FEREN	CE = DIFFE	100 RENCE	* ((D = LAR	ATA1-DA1 GEST PER	A2)/DATA	I) AT E	ACH EI	NERGY I	POINT OR N	ORE E	NERG	Y POINTS			****			

RECENT

The RECENT code was designed to convert resonance parameters and background cross sections into energy dependent cross sections.

The RECENT initial comparisons which were performed in 1980 identified two problem areas with the code. Failure to follow the ENDF/B interpolation law for small cross sections led to large errors for small cross sections close to thresholds (e.g., $2^{7}Al-(n,alpha)$). The program had an input option to allow energies to be output in the ENDF/B format to six or nine digit accuracy. The initial results were generated using the six digit option, which resulted in differences in the average cross section of up to 6% (e.g. $^{59}Co-capture$). The author must admit that this is an example of using the wrong input option with his own code.

RECENT was modified to use the ENDF/B interpolation law all the way to threshold. This did not lead to any numerical instability, nor did it cause significantly more energy points to be generated. The six-nine digit input option was eliminated; all energies are now output to nine digit accuracy. With these two modifications the current version of RECENT can now reproduce the benchmark results.

AIA IUENTIF																						
ATA1=STANDA	RD -80	(D.CU	LEN,	IAEA)																		
NDF/B TAPE	LABE	LS																				
ATA1=IAEA PO ATA2=ENDF/B	ROCE	SSING DSIME	CODE	VERIFI IBRARY	CATION P	ROJECT	STA (IA	NDAR EA,V	D (MOD. IENNA)	0)		900 900	0									
MATERIAL	MT	MATI	MAT2	POINTI	POINT2	ÉNE MIN	i MUM	RANG	E (EV) Maximum	PER	MA) CENT	KIMU T DI VE	M FFERE POSI		5	CROSS OF MA	SECT	ION PER DAT	(BAR -CEN A2	NS) AT PO T DIFFERE DAT	NCE	, DAT,
11-NA- 23	102	6311	6311	1280	1280	1.0000)- 4	2.	0000+ 7		. 194		0.30	54								
13-AL- 27 13-AL- 27 25-MN- 55	103 107 16	6313 6313 6325	6313 6313 6325	365 337 193	365 337 193	1.8000)+ 6)+ 6)+ 7	2.2.2.	0000+ 7 0000+ 7 0000+ 7	-0 -0 -0	0.003	2	0.00 47.09 0.00)3 98 *)7						4.83039-	17	1 .67 662-
27-C0- 59 27-C0- 59 27-C0- 59	16 102 107	6327 6327 6327	6327 6327 6327	189 1280 291	189 1280 291	1.0600)+ 7)- 4)+ 6	2. 2. 2.	0000+ 7 0000+ 7 0000+ 7	0 -2 0).0 2.190).0	*	0.0 5.50 0.0	59 *	1.9740	17- 2	1.93	8083-	2	2.42248-	2 2	2.55739-
93-NP-237 79-AU-197 90-TH-232	18 102 18	6337 6379 6390	6337 6379 6390	1280 1280 861	1280 1280 861	1.000)- 4)- 4)+ 0	2.2.2.	0000+ 7 0000+ 7 0000+ 7	-0 -0 -2).072).211 2.182	*	0.0	32 19 09 *	7.0004	17- 6	6.84	769-	6	6.02101-	6 (5.12992-
90-TH-232 92-U -235 92-U -238	102 18	6390 6395 6398	6390 6395 6398	1280 1280 1280	1280 1280 1280	1.000)- 4)- 4)- 4	2.2.2.2	0000+7 0000+7 0000+7	- 1 -0 -0	948 .057	*	1.54	15 * 19	1.3344	15+ Õ	1.30	846+	Ō	1.13697+	Ō	1.15454+
92-U -238 94-PU-239 3-LI- 6	102 18 207	6398 6399 6424	6398 6399 6424	1280 1280 1280	1280 1280 1280	1.000)- 4)- 4)- 4	2.2.2	0000+ 7 0000+ 7 0000+ 7	~0 -0 -0).191).073).063		0.09 0.00	93 53 51								
5-8 - 10 21-SC- 45 22-TI- 46	207 102 103	6425 6426 6427	6425 6426 6427	1280 1280 369	1280 1280 369	1.000)- 4)- 4)+ 6	2.	0000+ 7 0000+ 7 0000+ 7	-0 -0).001).055).0		0.00 0.0	51 16			•••••					
22-11-47 22-11-47 22-11-47 22-11-48	28 103 28	6428 6428 6429	6428 6428 6429	189 1280 169	189 1280 169	1.060)+ 7)- 4)+ 7	2.	0000+ 7 0000+ 7 0000+ 7	-0 -0	0.002		0.00 0.0) <u>5</u>)2							••••••	
22-11- 48 26-FE- 54 26-FE- 56	103 103 103	6429 6430 6431	6429 6430 6431	337 1280 343	337 1280 343	3.200)+ 6)- 4)+ 6	2.	0000+ 7 0000+ 7 0000+ 7	0 0- 0-).0).001		0.0 0.0	 <u>1</u>					•••			.,
26-FE- 58 28-NI- 58 28-NI- 58	102 16 103	6432 6433 6433	6432 6433 6433	1280 153 1280	1280 153 1280	1.000)- 4)+ 7)- 4	2.2.2.	0000+ 7 0000+ 7 0000+ 7	-0 0 -0	0.099 0.0 0.004		0.0)7)7								
28-N1- 60 29-CU- 63 29-CU- 63	103 102 107	6434 6435 6435	6434 6435 6435	351 1280 367	351 1280 367	2.500)+ 6)- 4)+ 6	2.2.2.	0000+ 7 0000+ 7 0000+ 7	-0 -0 -0	0.004 0.058 0.001		0.0)2)6)1								
29-CU- 65 49-IN-115 49-IN-115	16 51 102	6436 6437 6437	6436 6437 6437	201 427 1280	201 427 1280	1.000)+ 7)+ 5)- 4	2. 2. 2.	0000+ 7 0000+ 7 0000+ 7	-0 -0).0).001).082	•••	0.0)0 56								
53-1 -127 16-5 - 32	16 103	6438 6439	6438 ***	217 NO COMP	217 ARISON #	9.200)+ 6	2.	0000+ 7	C).0 		0.0									
4 PLO	TS G	ENERA FFERE	TED	XCEEDS	1.00 P	ER-CEN	 r															
ER-CENT DIF	FERE	NCE	= 10	0 * ((D	ATA1-DAT	A2)/DA	[A1)	A1	EACHE	NERGY		NT										

FOURACES

FOURACES is a multigroup processing system (unlike the codes previously described which only produce cross sections) designed to produce complete multigroup sets for use in calculations, starting from evaluated data in any of a variety of evaluated data formats (e.g., ENDF/B, KEDAK, UKNDL).

The initial FOURACES comparisons indicated major problems in the resolved region and some problems in the unresolved resonance region. Resolved region results indicated that the energy grid used was inadequate for isolated resonances (e.g., 58 Fe-capture-2400% error) and for narrow resonances at higher energy (e.g. 197 Au-capture, 232 Th-capture, 238 U-capture). The unresolved region results for 237 Np-fission, 235 U-fission and 239 Pu-fission indicated that FOURACES was using the ENDF/B-IV convention of parameter interpolation and that there was an error in the calculation of the fluctuation integrals.

FOURACES has been modified to use an improved energy grid in the resolved resonance region. In the unresolved resonance region FOURACES is now using the ENDF/B-V convention of cross section interpolation and the problem in calculating the fluctuation integral has been eliminated. The latest FOURACES results agree with the benchmark results.

TA1=STANDA	RD ES-8	1 (G.		I, BOLOGI	NE)								
DF/B TAPE	LABE	LS				•••••••••••••••••••••••••••••••••••••••							
TAT=TAEA P	ROCE	SSING	CODE F/B-V	VERIFIC	CATION PR	ROJECT STAN ARY (G.PANI	IDARD (MOD. C) 1981)	9000 8000				
MATERIAL	MT	MATT	MAT2	POINTI	POINT2	ENERGY A	ANGE (EV) MAXIMUM	MAX PER-CENT NEGATIV	IMUM DIFFERENCE POSITIVE	CROS S OF M DATA1	S SECTION (AXIMUM PER- DAT/	(BARNS) AT POI CENT DIFFEREN A2 DATA1	INTS ICE I DATA:
11-NA- 23 13-AL- 27 13-AL- 27 25-MN- 55	102 103 107 16	6311 6313 6313 6325	6311 6313 6313 6325	1280 365 337 193	1240 325 297 153	1.0000- 4 1.8000+ 6 3.2000+ 6 1.0400+ 7	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-1.638 -0.141 -0.114 -0.072	* 0.536 0.074 0.007 0.081	2.05039- 2	2.01680-	2	
27-CU- 59 27-CO- 59 27-CO- 59 93-NP-237	16 102 107	6327 6327 6327 6327	6327 6327 6327 6337	189 1280 291 1280	149 1240 251 1240	1.0600+7 1.0000-4 5.5000+6 1.0000-4	2.0000+7 2.0000+7 2.0000+7 2.0000+7	-0.001 -5.478 -0.003 -66 819	0.003 * 97.777 * 0.042 * 172 375 *	5.95111+ 2	5.62510+ 7 56550-	2 1.07758- 1	2.13120-1
79-AU-197 90-TH-232 90-TH-232 92-U -235	102 18 102 19	6379 6390 6390	6379 6390 6390 6395	1280 861 1280 1280	1240 821 1240 1240	1.0000 - 4 5.0000 + 0 1.0000 - 4 1.0000 - 4	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-6.222 -10.056 -6.997 -19 767	* 2.208 * * 5.315 * * 5.267 * * 13.049 *	5.65247+ 2 5.50765- 6 1.28684+ 0 1.01748+ 1	5.30080+ 4.95380- 1.19680+ 8.16350+	2 3.87084+ 6 8.62973- 5 0 1.25908+ 1 0 6.28265+ 0	3.95630+ 9.08840- 5 1.32540+ 7.15900+ (
92-U -238 92-U -238 94-PU-239 3-LI- 6	18 102 18 207	6398 6398 6399 6399 6424	6398 6398 6399 6399 6424	1280 1280 1280 1280 1280	1240 1240 1240 1240 1240	1.0000- 4 1.0000- 4 1.0000- 4 1.0000- 4	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-100.000 -8.067 -14.382 -0.098	* 97.797 * * 1.901 * * 18.324 * 0.090	1.07190- 2 1.09308+ 0 4.60839+ 0	0.0 + 1.00490+ 3.94560+	0 2.82507-10 0 1.97888- 1 0 4.51516+ 0	5.58790-10 2.01650- 5.34250+ (
5-8 - 10 21-SC- 45 22-TI- 46 22-TI- 47	207 102 103 28	6425 6426 6427 6428	6425 6426 6427 6428	1280 1280 369 189	1240 1240 329 149	1.0000- 4 1.0000- 4 1.6000+ 6 1.0600+ 7	2.0000+7 2.0000+7 2.0000+7 2.0000+7 2.0000+7	-0.098 -4.204 -0.002 -0.091	0.053 * 29.320 * 0.004 0.005	4.83496- 1	4.63170-	1 4.35881- 1	1 5.63680-
22-11- 47 22-11- 48 22-11- 48 26-FE- 54	103 28 103 103	6428 6429 6429 6430	6428 6429 6429 6430	1280 169 337 1280	1240 129 297 1240	$\begin{array}{r} 1.0000 - 4 \\ 1.1600 + 7 \\ 3.2000 + 6 \\ 1.0000 - 4 \end{array}$	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.003 -0.099 -0.002 -0.102	0.005 0.041 0.004 0.085				
20-FE- 50 26-FE- 58 28-NI- 58 28-NI- 58 28-NI- 58	103 102 16 103	6431 6432 6433 6433	6432 6433 6433 6433	343 1280 153 1280 251	1240 113 1240 111	$\begin{array}{c} 2.9000 + 6 \\ 1.0000 - 4 \\ 1.2400 + 7 \\ 1.0000 - 4 \\ 2.5000 + 6 \end{array}$	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.072 -0.988 0.0 -0.094	2691.591 * 0.000 0.074			2.85837- 1	1 7.97940+
29-CU- 63 29-CU- 63 29-CU- 63 29-CU- 65	102 107 16	6435 6435 6436	6435 6435 6436 6437	1280 367 201	1240 327 161 387	$\begin{array}{r} 1.0000 - 4 \\ 1.7000 + 6 \\ 1.0000 + 7 \\ 3.2000 + 5 \end{array}$	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-1.416 -0.096 -0.003 -0.067	* 0.532 0.070 0.002	8.01181- 2	7.89840-	2	
49-IN-115 53-1 -127 16-5 - 32	102 16 103	6437 6438 6439	6437 6438 ***	1280 217 NO COMP	1240 177 ARISON *	1.0000- 4 9.2000+ 6	2.0000+ 7 2.0000+ 7	-5.823 -0.057	* 0.844 0.093	5.42183+ 1	5.10610+	1	
14 PLC	DTS G	ENERA	TED	XCEEDS	1.00 PE	ER-CENT					· • • • • • • • • • • • • • • • • • • •		
R-CENT DIF	FERE	NCE	= 10	0 * ((D	ATA1-DAT	A2)/DATA1)	AT EACH EI	NERGY POIN	 T				

- 42

RESCAL

The RESCAL code is designed to calculate unshielded multigroup cross sections from resonance parameters and background cross sections. As an intermediate step the code calculates energy dependent cross sections on a dense fixed energy grid and then group averages the cross sections.

The initial RESCAL comparisons performed in 1980 indicate that the fixed energy grid leads to surprisingly good results in the resolved region (e.g. a maximum difference of about 2% for 23 Na-capture and 238 U-fission). The 237 Np-fission and 238 U-capture results indicated that RESCAL was using the ENDF/B-IV convention of interpolating parameters and there was an error in the calculation of the fluctuation integral. The peaks or holes in the average cross sections at resonance region boundaries (e.g., 59 Co-capture, 197 Au-capture, 235 U-fission, 238 U-fission, 45 Sc-capture and 58 Fe-capture) indicates a numerical instability in the group averaging algorithm used by RESCAL. From the 47 Ti(n,p), 54 Fe(n,p) and 58 Ni(n,p) results it can be seen that RESCAL treats all cross sections which are less than 10^{-9} barns as if they are zero. For 63 Cu(n,alpha) results indicate that RESCAL may not be following the ENDF/B interpolation law.

The latest RESCAL comparisons performed in 1982 included results for the entire ENDF/B-V dosimetry library. Most of the problems described above for the 1980 comparisons were still present in the 1982 comparisons. In addition a curious new phenomen was seen in the results for a number of reactions (e.g. 23 Na-capture, 59 Co-capture, 238 U-fission, etc.) where periodic, inexplicable peaks were observed in the ratio of RESCAL results to the standard.

DATA1=STANDA	RD -80 (L.(BREENWO	OD, ANL)						•			······			•••••			
ENDF/B TAPE	LABELS																	
DATA1=IAEA P	ROCESSI	VG CODE	VERIFIC	ATION PR	OJECT S	TAND	ARD (MOL).0) 980)		9000 800								
MATERIAL	MT MA	TI MAT2	POINTI	POINT2	ENERO	Y RAH	IGE (EV MAXIM	JM PE	MAX R-CENT EGATIN	(IMUM DIFFE /E POS	RENCES	CR(OF DAT/	DSS SE MAXIM A1	CTION UM PER DAT	(BARN -CENT A2	S) AT POI DIFFEREN DATA1	NTS CE	DAT
11-NA- 23 13-AL- 27 13-AL- 27 25-MN- 55	102 63 103 63 107 63 16 63	11 1 13 3 13 3 25 8	1280 365 337 193	1240 325 297 153	1.0000- 1.8000+ 3.2000+ 1.0400+	4 6 6 7	2.0000+ 2.0000+ 2.0000+ 2.0000+	7 - 7 - 7 - 7 - 7 -	2.826 0.146 0.132 0.078	* 0. 0. 0. 0.	126 068 042 083	2.39261-	4 2.	32500-	4			
27-CU- 59 27-CO- 59 27-CO- 59 WARNINGFO DATA1 15 ZER	102 63 102 63 107 63 R ABOVE O AT	27 12 27 12 27 12 COMPAR 2 EN	NU CUMPA 1280 291 ISON COU ERGIES W	1240 253 LD NOT 0 HERE DAT	* 1.0000- 5.4000+ EFINE F A2 IS N	4 6 ATIO	2.0000+ 2.0000+ AT ALL RO.	7 7 ENERO	0.834 0.003 31ES.	10. 0.	638 * 042				2	.41238- 2	2.669	00-
FIRST OCCURR 93-NP-237 79-AU-197 90-TH-232	ENCE AT 18 63 102 63 18 63	5.400 37 22 79 18 90 19	00+ 6 EV 1280 1280 861	1240 1240 821	1.0000-	- 4	2.0000+	7 -8	38.706 17.928	* 113. * 0. * 0	347 * 097 035	2.28005- 1.22906+	2 2. 0 6.	57500- 40000- 22300-	37 1	.60732- 3	1.623	00-
90-TH-232 92-U -235 92-U -238	102 63 18 63 18 63	90 19 95 20 98 21	1280 1280 1280	1240 1240 1240	1.0000- 1.0000- 1.0000-	4 4	2.0000+ 2.0000+ 2.0000+ 2.0000+	7 - 4 7 - 4 7 - 4	-1.319 17.805 -2.337	* 0. * 25. * 0.	036 821 * 067	1.26367+ 2.50598+ 2.03865-	0 1. 1 1. 4 1.	24700+ 30800+ 99100-	0 1 2 4	. 14194+ 0	2.695	00+
92-0 -238 94-PU-239 3-L1- 6 5-B - 10 21-SC- 45	102 63 18 63 207 64 207 64 102 64	90 21 99 *** 24 *** 25 *** 26 4	1280 NO COMPA NO COMPA NO COMPA 1280	1240 RISON ** RISON ** RISON ** 1240	1.0000- * * 1.0000-	- 4	2.0000+	7 - 7 -	-4.895	• 8. 63.	333 ¥	1.56985~	1 1.	49300-	ז ז 2	.52124- 1 2.77088- 2	4.541	00-
22-11-40 22-11-47 22-11-47 22-11-48 22-11-48	103 64 28 64 103 64 28 64	27 5 28 *** 28 6 29 ***	NO COMPA 1280 NO COMPA	RISON ** 351 RISON **	1.0000-	- 4	2.0000+	7 - 10	0.002	• 0.	946 00 <u>3</u>	7,98794-	10 0.	0 +	0			
26-FE- 54 26-FE- 56 26-FE- 58 28-FI- 58	103 64 103 64 102 64 16 64	30 9 31 10 32 11 33 ***	1280 343 1280 NO COMPA	373 303 1240 RISON **	1.0000- 2.90004 1.0000-	4 6 4	2.0000+	7 - 10 7 7	-0.002	* 0. 0. 3.	098 034 596 *	1.75750-	80.	0 +	0 2	.86690- 3	2.970	00-
20-NI- 58 28-NI- 60 29-CU- 63 29-CU- 63 29-CU- 65	103 64 103 64 102 64 107 64 16 64	33 13 34 14 35 *** 35 15 36 ***	351 NO COMPA 367 NO COMPA	3/3 311 RISON ** 327 RISON **	1.70004	6	2.0000+ 2.0000+ 2.0000+	7 -10	-0.139 39.072	• 0. 0. • 135.	027 467 *	5.38668-	ου. 23.	u + 28200-	2 1	.53397- 7	3.612	200-
49-IN-115 49-IN-115 53-I -127 16-5 - 32	51 64 102 64 16 64 103 64	37 16 37 *** 38 *** 39 ***	427 NO COMPA NO COMPA NO COMPA	387 RISON ** RISON ** RISON **	3.20004 * *		2,0000+	7 -	-0.092	0.	.037							
16 PLO * - INDICATE	S DIFFE	RATED	XCEEDS	1.00 PE	R-CENT							• • • • • • • • • • •						

. 48 -

- 50 -

MAXIMUM PER-CENT DIFFERENCE = LARGEST PER-CENT DIFFERENCE AT ANY ONE OR MORE ENERGY POINTS

	CATIC	INS						_					_				_ <u>.</u> .										
TA1=STANDA	₹D •82 (L	GREEN	WOOD , A	NL)																							_
NDF/B TAPE L	ABELS																										
ATA1=IAEA PF ATA2=RESCAL		ING CO	DOE VER DOSIME	IFICA	TION F	ROJE	CT ST GREEN	AND	ARD (I	MOD. ,198:	1) 2)		90 8	00													
MATERIAL	MT N	ATT M	AT2 P01	NT1 P	OINT2	Ë	NERGY INIMU	RAI	NGE (MAX	EV) IMUM	PER	MA CEN GATI	XIM T D VE	UM IFFE POS	RENC	ES Æ		CR OF DAT	055 MAX A1	SEC	TION A PEI DA	(BA R-CE TA2	RNS) AT DIFFI D	POIN ERENC	ITS E	DAT
11-NA- 23 13-AL- 27 13-AL- 27 25-AL- 27	102 6 103 6 107 6	311 313 313	39 32 32	280 365 337	1240 325 297	1.0	000- 000+ 000+	4 6 6	2.000	0+ 7 0+ 7 0+ 7	-2 -1 -2	.826	*	1. 2. 4.	830 517 482	* 2 * 5 * 7	.392 .488 .857	261- 377- 786-	4 2 2 2	2.3	2500 1300 7800	- 4 - 2 - 2	9. 5. 8.	7701 5600 0300	6- 2 3- 2 6- 2	9.94 5.70 8.39	900- 000- 000-
27-CO- 59 27-CO- 59 27-CO- 59 27-CO- 59 ARNINGFOR	16 6 102 6 107 6 107 6	5325 5327 5327 5327 /E COMF	45 17 42 1 17 PARISON	189 189 1280 291 1 COUL	149 1240 253 D NOT	1.0 1.0 5.4 DEFI	600+ 000- 000+ NE RA	7 4 6 TIO	2.000 2.000 2.000 2.000 AT A	0+ 7 0+ 7 0+ 7 0+ 7 LL E	-0 -0 -1 -0 VERGI		*	0. 10. 0.	000 638 036	* 6	.539	999-	4	6.4	4000	- 4	2.	4123	8- 2	2.66	900-
ATA1 IS ZER IRST OCCURRE 93-NP-237 79-AU-197	D AT NCE 4 18 6 102 6	2 AT 5.4 5337 5379	ENERG 40000+ 51 49	ES WH 6 EV. 1280 1280	1240 1240	1.0 1.0 1.0	15 NO 000- 000-	N-ŻI 4 4	ERO. 2.000 2.000	0+ 7 0+ 7	-17 -47	.565	*	24. 1.	312 759	* 1 * 1	. 150	579- 906+	2	9.5	3600 0000	- 3 - 1	9 . 5.	3554 7213	6- 3 6+ 2	1.16 5.82	300- 200+
90-1H-232 90-TH-232 92-U -235 92-U -238	18 6 102 6 18 6 18 6	5390 5390 5395 5398	55 55 53 54	861 280 280 280	821 1240 1240 1240	5.0 1.0 1.0 1.0	000+ 000- 000- 000-	0 4 4 4	2.000 2.000 2.000 2.000	0+ 7 0+ 7 0+ 7 0+ 7	-100 -1 -67 -2	0.000 1.319 7.399 2.288	* * *	0. 19. 40.	536 440 025 785	5 1 2 2 2	. 507	765- 867+ 194+ 365-	6 0 4	0.0 1.2 6.9	4700 8300 9200	+ 0 + 0 - 1 - 4	1. 2. 3.	2868 5059 0888	4+ 0 8+ 1 5- 5	1.53 3.50 3.14	700+ 900+ 400-
92-0 -238 94-PU-239 3-LI- 6 5-B - 10	18 6 207 6 207 6	399 399 424 425	50 52 28 29	280 280 280 280	1240 1240 1240 1240	1.0	000-000-000-	4 4 4	2.000	0+ 7 0+ 7 0+ 7 0+ 7	-66 -66 -1	.748 .333 .068	* * *	21.	058 780 800	* 1 * 3 * 5	. 649 . 209 . 183	981+ 979+ 935-	001	5.4 3.1 5.1	3600 3600 5700 2800	- 1 + 0 - 1	8. 1. 2.	9874 7311 2445	3+ 0 9+ 2 9+ 3	1.08	800+ 200+ 500+
22-TI- 46 22-TI- 47 22-TI- 47 22-TI- 47	103 6 28 6 103 6	427 428 * 1 5428	18 ** NO (20	369 COMPAR 1280	329 ISON 351	1.6	000+ 000-	6 4	2.000	0+ 7 0+ 7	-0 -100).036).000	*	03. 0. 0,	934 002_	7	.987	794-	10	0.0		+ 0	۷.	1100	0- 2	4.54	
22-T1- 48 26-FE- 54 26-FE- 56 26-FE- 58	103 103 103 103 102	429 430 431 432	22 30 33 57	337 1280 343 1280	297 373 303 1240	3.2 1.0 2.9	000+ 000- 000+ 000-	6 4 6 4	2.000 2.000 2.000 2.000	0+ 7 0+ 7 0+ 7 0+ 7	-0 -100 -2 -38	0.037 0.000 2.040 3.958	*	0. 3. 4.	000 601 006 784	* 1 * 6 * 2	.757	750- 300- 590-	82	0.0 6.7	2 300 5000	+ 0 - 2 - 3	1. 6. 2.	9594 9900 1241	4- 1 0- 2 0- 1	2.03 7.27 2.16	000- 000- 200-
28-NI- 58 28-NI- 58 28-NI- 60 29-CU- 63	16 103 103 103 102	6433 6433 6434 6435	24 38 34 43	153 1280 351 1280	113 373 311 1240	1.2	400+ 000- 000+ 000-	7 4 6 4	2.000 2.000 2.000 2.000 2.000	0+7 0+7 0+7 0+7	-100 -100 -1).025).000 .118).548	* *	4. 3. 2.	994 641 149 802	* 1 * 1 * 8 *	.294	199- 999-	6 2	0.0 7.9	6000	+ 0 - 2	4. 2. 8.	2850 1391 1450 3239	0-5 1-1 0-2 7+0	4.49 2.21 8.32 8.47	900- 700- 000- 400+
29-CU- 63 29-CU- 65 49-IN-115 49-IN-115	107 16 51 102	5435 5436 5437 5437	25 26 31 44	367 201 427 1280	327 161 387 1240	1.7 1.0 3.2 1.0	000+ 000+ 000+ 000-	6 7 5 4	2.000 2.000 2.000 2.000	0+ 7 0+ 7 0+ 7 0+ 7	-39 -0 -0	0.072 0.085 0.229 5.189	*	135. 16. 0. 2	467 053 454 958	* 5 * * 1	. 386	568- 184+	2	3.2	B200	- 2 + 2	ī. 5. 7.	5339 4164 3991	7- 7 7- 4 2- 4	3.61 6.28 7.61	200- 600- 800-
53-1 -127 16-5 - 32	16 6 103 6	5438 5439 * 1	27 ** NO (217 COMPAR	177 RISON	9.2	000+ 	6	2.000	0+ 7	ō-	0.071		Ō.	115												

1 A A

- 54 -

- 55 -

.

Ś õ

RESENDD

The RESENDD code is designed to calculate energy dependent cross sections from resonance parameters and background cross sections in the ENDF/B format.

The RESENDD comparison performed in 1981 indicate a problem in representing narrow resonances in the resolved region (e.g., 232 Th-fission and capture, 238 U-capture and fission, 58 Fe-capture), the use of the ENDF/B-IV convention of interpolating unresolved parameters (e.g., 237 Np-fission), an error in interpolating cross sections à la RECENT (e.g., 63 Cu-capture) and a numerical instability in the code which was used to calculate multigroup constants from the energy dependent cross sections (e.g., 197 Au-capture).

All of the above problems have been eliminated from RESENDD and the latest RESENDD results agree with our benchmark results.

COMPARISON OF EVALUATED DATA (PROGRAM COMPL	DT 84-2)		······································	·····		
DATA IDENTIFICATIONS						
DATA1=STANDARD DATA2=RESENDD-81 (S.IGARASI,JAERI)			****			
ENDE/B TAPE LABELS						
DATA1=IAEA PROCESSING CODE VERIFICATION PRO DATA2= RESENDDENDF/B-V DOSIMETRY LIBRARY	JECT STAN (S.IGARA	DARD (MOD.0 SI,JAERI,19) 81)	9000 9000		
MATERIAL MT MATI MAT2 POINT1 POINT2	ENERGY R MINIMUM	ANGE (EV) MAXIMUM	MAX PER-CENT NEGATIV	IMUM DIFFERENCES E POSITIVE	CROSS SECTION (OF MAXIMUM PER- DATA1 DATA	BARNS) AT POINTS CENT DIFFERENCE 2 DATA1 DATA2
11-NA- 23 102 6311 6311 1280 1240 1 13-AL- 27 103 6313 *** NO COMPARISON *** 13-AL- 27 107 6313 *** NO COMPARISON *** 25-MN- 55 16 6325 *** NO COMPARISON *** 27-CO- 59 16 6327 *** NO COMPARISON *** 27-CO- 59 102 6327 *** NO COMPARISON ***	.0000- 4	2.0000+ 7	-1.875	* 1.021 *	3.54688- 4 3.48037-	4 6.17795+ 0 6.24106+ 0
27-CO- 59 107 6327 *** NO COMPARISON *** 93-NP-237 18 6337 6337 1280 1240 1 79-AU-197 102 6379 6379 1280 1240 1 90-TH-232 18 6390 6390 861 1240 1 WARNINGFOR ABOVE COMPARISON COULD NOT DEI DATA1 IS ZERO AT 557 ENERGIES WHERE DATA	.0000-4 .0000-4 .0000-4 FINE RATI 2 IS NON-	2.0000+ 7 2.0000+ 7 2.0000+ 7 10 AT ALL EN ZERO.	-17.250 -0.564 -0.529 ERGIES.	* 18.273 * 2017.479 * 20.524 *	1.15840- 2 9.58571-	3 3.29277- 2 3.89445- 2 1.22906+ 0 2.60251+ 1 2.54758- 6 3.07044- 6
PIRST UCCURRENCE AT 1.00000- 4 EV. 90-TH-232 102 6390 6390 1280 1240 1 92-U -235 18 6395 6395 1280 1240 1 92-U -238 18 6398 6398 1280 1240 1 92-U -238 102 6398 6398 1280 1240 1 94-PU-239 18 6399 6399 1280 1240 1 3-LI- 6 207 6424 *** NO COMPARISON ***	.0000- 4 .0000- 4 .0000- 4 .0000- 4 .0000- 4	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.624 -1.582 -0.468 -0.761 -0.882	11.743 * * 1.788 * 5287.039 * 5488.309 * 1.936 *	1.56412+ 1 1.53937+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5-8 - 10 207 6425 *** NO COMPARISON *** 21-SC- 45 102 6426 6426 1280 1240 1 22-TI- 46 103 6427 *** NO COMPARISON *** 22-TI- 47 28 6428 *** NO COMPARISON *** 22-TI- 47 103 6428 *** NO COMPARISON *** 22-TI- 48 28 6429 *** NO COMPARISON *** 22-TI- 48 103 6429 *** NO COMPARISON *** 22-TI- 48 103 6429 *** NO COMPARISON ***	.0000- 4	2.0000+ 7	-0.747	0.968		
26-FE- 56 103 6430 *** NO COMPARISON *** 26-FE- 56 103 6431 *** NO COMPARISON *** 26-FE- 58 102 6432 6432 1280 1240 1 28-NI- 58 16 6433 *** NO COMPARISON *** 28-NI- 58 103 6433 *** NO COMPARISON ***	.0000- 4	2.0000+ 7	-0.274	125.297 *		5.30951- 1 1.19622+ 0
29-CU- 63 102 6435 6435 1280 1240 1 29-CU- 63 107 6435 6435 1280 1240 1 29-CU- 63 107 6435 6435 367 327 1 29-CU- 65 16 6436 *** NO COMPARISON ***	.0000- 4 .7000+ 6	2.0000+ 7 2.0000+ 7	-0.039 -0.856	94.002 * 0.889		1.07784- 2 2.09103- 2
49-IN-115 102 6437 6437 427 387 3 49-IN-115 102 6437 6437 1280 1240 1 53-I -127 16 6438 *** NO COMPARISON *** 16-S - 32 103 6439 *** NO COMPARISON ***	.2000+ 5	2.0000+ 7	-0.823	1.045 *		8.88480- 4 8.97761- 4
12 PLOTS GENERATED * - INDICATES DIFFERENCE EXCEEDS 1.00 PER	-CENT					
PER-CENT DIFFERENCE = 100 * ((DATA1-DATA2 MAXIMUM PER-CENT DIFFERENCE = LARGEST PER-C)/DATA1) ENT DIFFE	AT EACH EN RENCE AT AN	IERGY POIN IY ONE OR	IT More Energy	POINTS	

.

- 62

- 64

FEDGROUP-3

The FEDGROUP-3 code is designed to generate complete multigroup data sets for use in applications.

FEDGROUP-3 results have been submitted for only a portion of the ENDF/B-V dosimetry library. Comparison of the initial FEDGROUP-3 results performed in 1982 indicate large differences in the resolved resonance region (e.g., 23 Na-capture, 59 Co-capture, 232 Th-capture and fission) as well as in the unresolved region (e.g., 235 U-fission). In addition surprisingly large differences were found even at higher energies where the original evaluated data are tabulated (e.g., 59 Co-capture and 232 Th-fission) which appear to be due to interpolation.

The latest FEDGROUP-3 comparison performed in 1983 were also only for a portion of the ENDF/B-V dosimetry library. The latest results show improvement in the resolved resonance region treatment as well as at higher energies where the cross section is tabulated. The 235 U-fission results also indicate an improvement in the unresolved resonance treatment. The 237 Np-fission results indicate that FEDGROUP-3 is still using the ENDF/B-IV convention of interpolating unresolved parameters.

TA1=STANDARD TA2=FEDGROUP-3-82 (P.VERTES,KFKI)				
DF/B TAPE LABELS				
TA1=IAEA PROCESSING CODE VERIFICATION PR TA2=FEDGROUP-3 ENDF/B-V DOSIMETRY LIBRAR	OJECT STANDARD (MOD. Y (VERTES, BUDAPEST, 19) 9000 32) 9000		
MATERIAL MT MATI MAT2 POINT1 POINT2	ENERGY RANGE (EV) MINIMUM MAXIMUM	MAXIMUM PER-CENT DIFFERENCE NEGATIVE POSITIVE	CROSS SECTION (BARNS) AT POINT S OF MAXIMUM PER-CENT DIFFERENCE DATA1 DATA2 DATA1	S DATA2
11-NA- 23 102 6311 6311 1280 1240 13-AL- 27 103 6313 6313 365 325 13-AL- 27 107 6313 6313 337 297 25-MN- 55 16 6325 6325 193 153	1.0000-4 2.0000+7 1.8000+6 2.0000+7 3.2000+6 2.0000+7 1.0400+7 2.0000+7	-21,179 * 13.001 * -0.086 0.098 -0.034 0.160 -0.073 0.169	2.86942- 4 2.26170- 4 3.54688- 4	4.00800- 4
27-CO- 59 16 6327 *** NO COMPARISON ** 27-CO- 59 102 6327 6327 1280 1240 27-CO- 59 107 6327 *** NO COMPARISON ** 93-NP-237 18 6337 *** NO COMPARISON **	1.0000- 4 2.0000+ 7	-58.796 * 187.518 *	8.20313-3 3.38000-3 5.46852-2	1.57230-
90-TH-232 18 6390 6390 861 821 RNINGFOR ABOVE COMPARISON COULD NOT D TA1 IS ZERO AT 2 ENERGIES WHERE DAT ST OCCURPENCE AT 2 FOROLS F	5.0000+ 0 2.0000+ 7 EFINE RATIO AT ALL EN A2 IS NON-ZERO.	-30.733 * 63.065 * RGIES.	3.61400- 1 2.50330- 1 3.25753- 3	5.31190- :
90-TH-232 102 6390 6390 1280 1240 92-U -235 18 6395 6395 1280 1240 92-U -238 18 6398 *** NO COMPARISON ** 92-U -238 102 6398 *** NO COMPARISON **	1.0000-4 2.0000+7 1.0000-4 2.0000+7	-23.407 * 31.454 * -13.103 * 20.012 *	3.82500-1 2.92970-1 4.91008-1 3.24452+1 2.81940+1 1.01748+1	6.45450- 1.22110+
94-PU-239 18 6399 *** NO COMPARISON ** 3-LI- 6 207 6424 6424 1280 1240 5-B - 10 207 6425 6425 1280 1240 21-SC- 45 102 6426 *** NO COMPARISON ** 22-TI- 46 103 6427 *** NO COMPARISON ** 22-TI- 47 28 6428 *** NO COMPARISON ** 22-TI- 47 103 6428 *** NO COMPARISON **	* 1.0000- 4 2.0000+ 7 1.0000- 4 2.0000+ 7 * *	~0.072 0.181 ~0.090 0.175		
22-TI- 48 28 6429 *** NO COMPARISON ** 22-TI- 48 103 6429 *** NO COMPARISON ** 26-FE- 54 103 6430 *** NO COMPARISON ** 26-FE- 56 103 6431 *** NO COMPARISON ** 26-FE- 58 102 6432 *** NO COMPARISON ** 28-NI- 58 16 6433 *** NO COMPARISON **	* * * *			
28-NI-58 103 6433 *** NO COMPARISON ** 28-NI-60 103 6434 *** NO COMPARISON ** 29-CU-63 102 6435 *** NO COMPARISON ** 29-CU-63 107 6435 *** NO COMPARISON ** 29-CU-65 16 6436 *** NO COMPARISON ** 29-CU-65 16 6436 *** NO COMPARISON ** 49-IN-115 51 6437 *** NO COMPARISON ** 49-IN-115 102 6437 *** NO COMPARISON **	* * * * *			
53-I -127 16 6438 *** NO COMPARISON ** 16-S - 32 103 6439 *** NO COMPARISON ** 5 PLOTS GENERATED	* * 			

TA IDENTIFI		IONS																				~~~~						
TA1=STANDAR	10 JP-3-	-83 (P.VER	TES	KFK I)																						
IDF/B TAPE L	ABE	<u>_S</u>			•••••					·····						•••••••			••••			·····						
TA1=IAEA PE	ROCES	SSING	CODE /B-V	VE F	IFIC	ATION Y LIE	PRC	JEC1	STA	NDA		(MOD EST,	. 1) 1983)	9	000												
MATERIAL	MT	MATT	MAT2	POI	NTI	POIN	2	ENE	RGY	RAN	ige Ma	(EV) XIMU	VI PI	M ER-CE NEGAT	NT IVE	MUM DIFF P(EREN DSITI	CES VE	0	CROS	S SE		N (BAI R-CEI ATA2	RNS) NT DI	AT PO FFERE DATA	INTS NCE	DA	1TA2
11-NA- 23 13-AL- 27 13-AL- 27 25-MN- 55	102 103 107 16	6311 6313 6313 6325	6311 *** ***	ND (ND (ND (280 COMPA	124 RISO RISO RISO	0 ***	. 000	0- 4	2	2.00	00+	7	-0.17	1	;	0.910									· · · · · · · · · · · · · · · · · · ·		
27-CO- 59 27-CO- 59 27-CD- 59	16 102 107	6327 6327 6327 6327	*** 6327 ***	NO C	COMPA	RIŠČI 124 RISO	*** 0 1 ***	.000	0- 4	1 2	2.00	00+	7.	-0.76	i 1	(0.341	•••••					•••••			•••••		
93-NP-237 79-AU-197 90-TH-232	18 102 18	6337 6379 6390	6337 6379 6390		280 280 861	124 124 81	0 1 0 1 21 5	.000	0- 4 0- 4 00- 4		2.00 2.00 2.00	00+ 00+ 00+	7 - 7 - 7 -	15.58 -0.49 -0.98	12 <u>*</u> 14 11		6.223 0.157 0.437	*	. 1463	1- 2	9.	67690)- 3	5.68	8665-	26	.60920)- 2
90-TH-232 92-U -235 92-U -238	102 18 18	6390 6395 6398	6390 6395 ***	NO (280 280 2000	124 124 RISO	0 1	.000	0- 4 0- 4		2.00	00+ 00+	7	-1.02	5 * 7		0.248	*	.7194	2- 1	1.	70180	D- 1	2.5) 598 +	12	.55360)+
92-U -238 94-PU-239 3-LI- 6	102 18 207	6398 6399 6424	*** *** ***	ND (ND (NO (COMPA	RISO RISO RISO	**1 **1 **1	t t t																				
5-8 - 10 21-5C- 45 22-TI- 46	207 102 103	6425 6426 6427	***	NO C NO C NO C	COMPA	RISO RISO RISO		r r																				
22-11-47 22-11-47 22-11-48 22-11-48	103 28 102	6428 6428 6429	***	NO C		RISO	***			••••••	••••••							•••••								••••••	······	••••••
26-FE- 54 26-FE- 56 26-FE- 58	103	6430 6431 6432	*** *** 6432		COMPA	RISO RISO 12	**			1 2	> ∩∩	00+	7	-0 13			n 145											•••••
28-NI- 58 28-NI- 58 28-NI- 58	16 103	6433 6433 6434	***	ND (ND (ND (COMPA	RISO							•	••••									••••••					
29-CU- 63 29-CU- 63 29-CU- 65	102 107 16	6435 6435 6436	*** *** ***	NO (NO (NO (COMPA	RISO	i *** *** ***	t 1 1																				
49-IN-115 49-IN-115 53-I -127 16-S - 32	51 102 16 103	6437 6437 6438 6439	*** 6437 *** ***	NO (NO (COMPA 1280 COMPA COMPA	RISO 124 RISO RISO	** 0 ** **	.000)0- 4	1 2	2.00	000+	7	-0.71	6		0.111)										
3 PLO	TS G	ENERA	TED		·										· •													
- INDICATE	S DI	FFERE	NCE E	XCE	EDS	1.0) PEP	R-CEI	NT.								·····											

FEDGROUP-C

FEDGROUP-C is designed to generate complete multigroup data sets for use in applications.

The initial FEDGROUP-C comparisons performed in 1982 were for only a few reactions. The initial comparisons indicated that FEDGROUP-C was still using the ENDF/B-IV convention of interpolating unresolved parameters (e.g., 237 Np-fission) and that it had a problem in calculating fluctuation integrals (e.g., 232 Th-capture). The 232 Th-fission results indicated some problem in representing narrow resonances in the resolved region. The 63 Cu-capture results indicate a problem in selection of the energy grid in the resolved region, particularly in extending the grid a long distance from isolated resonances.

The latest FEGROUP-C results are for the entire ENDF/B-V dosimetry library. All of the problems described above have been eliminated and the latest FEDGROUP-C results agree with the benchmark results.

							. برد بن ها ها برا با کا شاه در برد منه	
ATAT=STANUAKU ATA2=FEDGROUP-C-82 (A.TRKOV,LJUBLJANA)								
NDF/B TAPE LABELS								
ATA1=IAEA PROCESSING CODE VERIFICATION PR ATA2= FEDGROUP-CENDF/B-V DOSIMETRY LIE	ROJECT STAN	NDARD (MOD.0 RKOV.LJUBLJA)) 9 NA.1982) 9	000				
MATERIAL MT MATI MAT2 POINT1 POINT2	ENERGY F	ANGE (EV)	MAXI	MUM	CROSS	SECTION (BA	RNS) AT POIN	tš
	MINIMUM	MAXIMUM	PER-CENT NEGATIVE	DIFFERENCES POSITIVE	OF MA DATA1	XIMUM PER-CE DATA2	NT DIFFERENCI DATA1	E DATA2
11-NA- 23 102 6311 *** NO COMPARISON **	*							
13-AL- 27 103 6313 *** NO COMPARISON **	1 1							
25-MN- 55 . 16 6325 *** NO COMPARISON **	• •							
27-C0- 59 16 6327 *** NO COMPARISON *	↓							
27-CO- 59 102 6327 *** NO COMPARISON **	• *							
93-NP-237 18 6337 6337 1280 1280	1.0000- 4	2.0000+ 7	-23.832 *	18.918 * 1	1.15840- 2	8.82330- 3	3.29277-2	3.91570- 2
90-TH-232 18 6390 6390 861 861	5.0000+ 0	2.0000+ 7	-4.756	1.881 * 5	5.58840- 5	5.32260- 5	4.44665- 8	4.53030- 8
ARNING FOR ABOVE COMPARISON COULD NOT I	EFINE RAT	O AT ALL EN	ERGIES.					
IRST OCCURRENCE AT 4.00000+ 3 EV.	AZ IS NUN-	-ZERU.				·····		
90-TH-232 102 6390 6390 1280 1280	1.0000- 4	2.0000+ 7	-4.718	27.491 * 9	9.03857+ 0	8.61210+ 0	4.48675- 1	5.72020- 1
92-U -235 18 6395 *** NU COMPARISON ** 92-U -238 18 6398 *** NO COMPARISON **	· •							
92-U -238 102 6398 *** NO COMPARISON **	•	*****				••••••		
3-LI- 6 207 6424 *** NO COMPARISON **	τ.# Ι.\$							
5-8 - 10 207 6425 *** NO COMPARISON **	*							·····
21-SC-45 102 6426 *** NO COMPARISON ** 22-TT-46 103 6427 *** NO COMPARISON **	τ π τ π							
22-TI- 47 28 6428 *** NO COMPARISON **	**							
22-11-47 103 6428 *** NO COMPARISON **		·····	·····		···· ·····		·····	
22-TI- 48 103 6429 *** NO COMPARISON **	**							
26-FE- 54 103 6430 *** NO COMPARISON **	: :							
26-FE- 58 102 6432 6432 1280 1280	1.0000- 4	2.0000+ 7	-0.130	0.555		·····		
28-NI- 58 16 6433 *** NO COMPARISON **	⊧ ‡ ⊧•							
28-NI- 60 103 6434 *** NO COMPARISON **	*							
29-CU- 63 102 6435 6435 1280 1280	1.0000- 4	2.0000+ 7	-3.097	2482.176 * 8	3.01181- 2	7.76370- 2	1.10980- 2	2.86570- 1
29-CU- 65 16 6436 *** NO COMPARISON **	• •							
49-IN-115 51 6437 *** NO COMPARISON **	:			······				
- 49-1N-115 102 6437 *** NO COMPARISON ** 53-1 -127 16 6438 *** NO COMPARISON **	• • • •							
16-5 - 32 103 6439 *** NO COMPARISON **	* *							
4 PLOTS GENERATED								
- INUICATES DIFFERENCE EXCEEDS 1.00 PE	K-CENI							
ER-CENT DIFFERENCE = 100 * ((DATA1-DAT)	2)/DATA1)	AT EACH EN	ERGY POIN					

NJOY

The NJOY system is designed to calculate complete multigroup data sets for use in applications.

The initial NJOY comparisons performed in 1981 showed excellent agreement in the resolved resonance region (the best initial results submitted by any participating code). The unresolved results for ^{237}Np -fission indicated that NJOY was still using the ENDF/B-IV convention of interpolating unresolved parameters and the ^{235}U -fission and ^{239}Pu -fission results indicated some problem in calculating fluctuation integrals. The only other observed differences were due to the NJOY convention of assuming that small cross sections (10⁻⁹ to 10⁻⁶ barns) are linearly interpolable (e.g. ^{54}Fe (n,p), ^{56}Fe (n,p), $^{60}Ni(n,p)$, $^{63}Cu(n,alpha)$) and treating very small cross sections (less than 10^{-9} barns) as zero (e.g. $^{27}Al(n,alpha)$, $^{47}Ti(n,p)$, $^{54}Fe(n,p)$, $^{58}Ni(n,p)$).

The latest NJOY results performed in 1984 indicate that in the unresolved resonance region NJOY is now using an improved method calculating fluctuation integrals (e.g. 235_{U} and 239_{PU} fission) and a modified interpolation scheme. Where the parameters are given at closely spaced energies NJOY is interpolating cross sections (e.g. 237_{NP} -fission below 5 KeV) and where parameters are given at widely spaced energies NJOY is first interpolating parameters to a fine energy grid and then interpolate cross sections to a finer energy grid (e.g. 237_{NP} -fission 5 to 40 KeV). As pointed out earlier in this work the differences obtained in the unresolved resonance region by various codes are due to the uncertainty introduced by the change in ENDF/B conventions between ENDF/B-IV and V, rather than due to errors in the cross section processing codes. As such, as yet it is not possible to say which codes are generating the most consistent and physically reliable results. However, it should be mentioned that the unresolved resonance treatment as seen in the latest NJOY results corresponds to the method recently recommended by the Cross Section Working Group (CSEWG).

Small cross sections $(10^{-6} \text{ to } 10^{-9} \text{ barns})$ are now interpolated using the ENDF/B interpolation law (e.g., $^{54}\text{Fe}(n,p)$, $^{56}\text{Fe}(n,p)$, $^{60}\text{Ni}(n,p)$, $^{63}\text{Cu}(n,alpha)$) yielding results which agree with the benchmark results. For practical reasons, as explained earlier, NJOY will continue to treat very small cross sections as equal to zero.

DATA	IDE	NTIF	ICAT	IONS																
DATA	1=51/ 2≠NJ(ANDA OY-8	RD 1 (R	MACF		E,LANL)														
ENDF	<u>/В Т</u> /	APE I	ABE	LS																·····
DATA	1=IA0 2= E	EA PI NDF/I	ROCE B-V	SSING DOSIM	CODE ETRY I	VERIFIC IBRARY	CATION P FROM NJ	ROJECT OY/CDC	STANDA (MACFA	RD (MOD. RLANE,LA	1) NL }	9000)							
	MATE	RIAL	MT	MATI	MAT2	POINTI	POINT2	ENER MINI	GY RAN MUM	GE (EV) MAXIMUN	PER-CE NEGA	AXIMUN NT DIF	FEREN	CES VE	CROSS OF M/ DATA1	SECTI XIMUM	ON (BA PER-CE DATA2	RNS) AT POIN NT DIFFERENC DATA1	ITS CE DAT	A2
11 13 13 25 27 27	-NA- -AL- -AL- -MN- -CO- -CO-	23 27 27 55 59 59	102 103 107 16 16	6311 6313 6313 6325 6327 6327	6311 6313 6313 6325 6327 6327	1280 365 337 193 189 1280	1278 357 313 191 187 1278	1.0000 1.8000 3.2000 1.0400 1.0600	- 4 2 + 6 2 + 6 2 + 7 2 + 7 2 - 4 2	.0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7	-0.07 -100.00 -100.00 -0.08 -0.14	8)0 * 3)0 * 30 12	0.785 31.981 5.786 0.082 0.000 0.204	* 4.8 * 4.7	1401-11 2629-10	0.0 0.0	+ 0 + 0	1.62941- 8 2.90406- 9	2.15051- 3.07210-	8 9
27 93 79 90	-CO- -NP-: -AU- -TH-:	59 237 197 232	107 18 102 18	6327 6337 6379 6390	6327 6337 6379 6390	291 1280 1280 861	289 1278 1278 675	5.5000 1.0000 1.0000 5.0000	+ 6 2 - 4 2 - 4 2 + 0 2	.0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7	-0.00 -17.37 -0.00 -0.10	0 76 * 50 56	0.042 8.738 0.082 0.070	* 1.1	5679- 2	9.557	86- 3	3.29277- 2	3.90978-	2
92 92 92 92 94	-U - -U - -U - -U -	235 238 238 238 239	18 18 102 18	6395 6398 6398 6398 6398	6395 6398 6398 6398 6399	1280 1280 1280 1280 1280	1278 1278 1268 1278 1278	1.0000	- 4 2 - 4 2 - 4 2 - 4 2 - 4 2	.0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7	-1.90 -1.90 -100.00 -0.10	9 * 00 * 05	2.271 0.055 1.294 2.309	* 1.5 9.3 *	6412+ 1 9702-10	1.534 0.0	12 <u>6+ 1</u> + 0	2.48513+ 1 3.68240- 1 3.03207+ 0	2.54156+ 3.73005- 3.10209+	1 1 0
212222222222222222222222222222222222222	-LI- -B - -SC- -TI- -TI- -TI- -TI- -TI- -TI-	10 45 46 47 47 48 48	207 207 102 103 28 103 28 103	6424 6425 6426 6427 6428 6428 6428 6429 6429	6424 6425 6426 6427 6428 6428 6429 6429	1280 1280 1280 369 189 1280 169 337	1278 1278 1278 367 187 387 167 333	1.0000 1.0000 1.0000 1.6000 1.0600 1.0000 1.1600 3.2000	- 4 22 - 4 22 + 6 22 + 7 22 + 7 22 + 7 22 + 6 2	.0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7	-0.0 -0.0 -0.0 -0.6 -10.0 -10.00 -10.00	4 90 94 77 50 * 90 * 93 * 90 *	0.090 0.053 0.245 0.001 0.223 0.001 0.221 0.001	9.3 8.8 2.2 3.4	7500- 6 7585-10 3744- 6 4827-10	5.554 0.0 1.993 0.0	166- 6 + 0 349- 6 + 0			
26	-FE- -FE- -FE- -NI- -NI-	54 56 58 58 58	103 103 102 16 103	6430 6431 6432 6433 6433	6430 6431 6432 6433 6433	1280 343 1280 153 1280	521 341 1278 151 691	1.0000 2.9000 1.0000 1.2400 1.0000	- 4 22 + 6 22 + 7 22	.0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7 .0000+ 7	-100.00 -0.01 -0.1 -1.3 -100.00	00 * 10 37 8 10 11 * 20 *	0.748 2.528 0.425 0.000 2.300	* 9.9 * 4.2 * 9.7	8500- 5 9989-10	0.0 4.22 0.0	+ 0 752- 5 + 0	2.90221- 7 1.96579- 8 2.92430- 6	5.82615- 1.91179- 3.57642-	7 7
29		63 63	103	6439 6435 6435	6434 6435 6435	1280 367	1278 365	1.0000	+ 6 2	.0000+ 7	-0.00	51 4.)5 77	0.053	•				4.63949- 7	5.05422-	0 · 7
29 49 49 53 16	-IN- -IN- -I - -S -	05 115 115 127 32	10 51 102 16 103	6430 6437 6437 6438 6439	6436 6437 6437 6438	427 427 1280 217 NO COMP	425 1278 215 ARISON *	3.2000 1.0000 9.2000	+ 7 2 + 5 2 - 4 2 + 6 2	.0000+ 7 .0000+ 7 .0000+ 7	-0.0 -0.0 -0.1	52 58 56	2.512 0.579 0.096	*				1.33523- 4	1.36877-	4
	18	PLO	TS G	ENERA	TED															
* -	INDI	CATE	S DI	FFERE	NCE E	XCEEDS	1.00 P	ER-CENT												
PER-	CENT	DIF PER-	FERE	NCE DIFF	= 10 ERENC	0 * ((D E = LAR	ATA1-DAT	A2)/DAT	A1) A	T EACH E	ENERGY PO	DINT	EENER	GY PO1						

76 .

- 77 -

~ œ

TA1=5TA	NDARU Y-84) (R.	MACF		,LANL)	••••••••••••••••						·····		•••••••				••••••				••••••
DF/B TA	PE LA	ABEL	s																			
TA1=IAE	A PRO	CES	SING	CODE	VERIFI	CATION	PROJEC	T STA	NDA	RD (MOD.	_ 1)		9000	2				~				
		- V ,	MUU.	1 00:	BATIT		640 (HOUPS	- (M)		C.LAN	- /							78381			
MATER		M I	MAI1	MATZ	PUINII	PUINIZ	Er Mi	INIMUM		HAXIMUM	PER- NE(MAX -CENT GATIV		N FERENCES POSITIVE	S OF	RUSS F MAX TA 1	XIMUM	PER	-CENT A2	DIFF	ERENCE	DATA:
11-NA- 13-AL-	23	102	6311	6311	1280	1280	1.00	00 - 4	2	.0000+ 7	-0	. 146	*	0.094	A 81401	-11	0 0	 +	0			
13-AL-	27	107	6313	6313	337	315	3.20	000+6	22	.0000+7	-100	.000	*	0.006	4.72629	- 10	0.0	÷	ŏ			
27-CO-	59	16	6327	6327	189	189	1.00	500+7	2	.0000+7	-0 -0	. 153	••••	0.000	•••••					••••••		
27-CO-	59 37	107	6327	6327	291	291	5.50	000+6	22	.0000+ 7	-0	.000	*	0.042	1 15670	- 2	0 55	786-	3			
79-AU-1	97 97		6379	6379	1280	1280	1.00	000 - 4	2	.0000+7	-0	.064		0.080	1.15019	····· • ····	3.33					••••••
90-TH-2	32	102	6390	6390	1280	1280	1.00	000 - 4	22	.0000+ 7	-0	. 153		0.059								
92-U -2	38	18	6398	6398	1280	1270	1.00	000 - 4	2	.0000+ 7	-100	.000	*	0.049	9.39702	-10	0.0	+	0	•••••	•••••••	••••••
92-0-2 94-PU-2	39	18	6399 6424	6399	1280	1280	1.00	000 - 4	22	.0000+ 7	-0	. 098		0.124								
5-B -	10	207	6425	6425	1280	1280	1.00	000 - 4	2	.0000+7	-0	.090		0.053	•••••			•••••••	••••••	•••••		••••••
22-TI-	46	103	6427	6427	369	369	1.60	000 + 6	2	.0000+ 7	-0	.679	•	0.001	0 27500	_ 6	5 55	409-	E			
22-11-	47	103	6428 6428	6428	1280	389	1.00	000 - 4	2	.0000+7	-100	.000	*	0.001	8.87585	-10	0.0	-100 + 225-	ě			
22-TI-	48	103	6429 6429	6429	337	335	3.20	000+6	22	.0000+ 7	-100	.000	*	0.001	3.44827	-10	0.0	52J + 	ŏ			
26-FE-	56	103	6431	6431	343	343	2.9	000+6	2	.0000+ 7	-0	.090		0.007	9,91400				v		••••••••••••••••••••••	
28-NI-	58	16	6433	6433	153	153	1.24	400+7	2	.0000+ 7	-1	.354	*	0.000	4.28500	- 5	4.22	700-	5			
28-NI-	50 60	103	6434	6434	351	351	2.5	000- 4 000+ 6	2	.0000+7	-100	.081		0.048	9.19909	- 10	0.0					••••••
29-CU-	63	107	6435	6435	367	367	1.70	000-4	2	.0000+ 7	-0 -0	.077		0.086								
49-IN-1	15	51	6437	6437	427	427	3.2	000+7	2	.0000+7	-0	.062		0.025		····· ·						
49-1N-1 53-1 -1 16-5 -	27	16	6437 6438	6437 6438	217	217	9.2	000- 4 000+ 6	2 5 2 5 2	.0000+ 7	-0 -0 -0	.056		0.096								
11	PLOT	S GE	NERA	TED																		
- INDIO	ATES	DIF	FERE	NCE E	KCEEDS	1.00	PER-CI	ENT														
R-CENT	DIFF	EREN	ICE	= 10) * ((D	ATA1-DA	TA2)/	DATAI	Α	T EACH E	NERGY	POIN	1T									
XIMUM	PER-C	ENT	DIFF	ERENČ	Ě = LÀR	GEST PE	R-CÉN	T DIFF	ERE	NCE AT A	NY ON	EŎŔ	MOR	EENERGY	POINTS							

. 82

NJOY/IBM

In this report results have been presented for only one version of each code, because it was felt that only by working with the code author would it be possible to not only identify problem areas in codes, but to actually improve each code. Because NJOY, which was written for use on a CDC-7600 computer (a long word length computer), is widely used on a number of different computers it was decided to include results obtained from NJOY as implemented on an IBM computer (a short word length computer). For this purpose the version of NJOY implemented at the NEA/Data Bank on an IBM computer was used.

The objective of the NJOY/IBM comparisons was somewhat different than our other comparisons. In the other comparisons we attempted to identify problems in each code and to have the code designer correct the code in order to obtain agreement with our benchmark results. Since NJOY was already participating in this study it was decided to use the NJOY/IBM results to identify computer dependent problems in NJOY, particularly those due to numerical instability and round-off on the shorter word length IBM computer. E. Sartori, NEA Data Bank, would then use the NJOY/IBM results to identify and eliminate computer dependent problems in an attempt to reproduce the <u>initial NJOY results</u> (rather than our benchmark results). Using this approach it was hoped that the improvements being implemented by NJOY's author could be combined with the improvements implemented by E. Sartori to obtain an improved version of NJOY which could be used on a variety of computers.

When compared to the initial NJOY results the NJOY/IBM results showed a numerical instability close to resonance region boundaries (e.g. ^{237}Np -fission, ^{232}Th -fission and capture, ^{238}U -fission and capture, ^{239}Pu -fission and ^{63}Cu -capture). Unlike the numerical instability found in other codes, where the effect was isolated to a single group, this instability extended over a number of groups.

E. Sartori, NEA/Data Bank, was available to sucessfully modify NJOY/IBM to eliminate the numerical instability problem and to reproduce the initial NJOY (CDC) results. In addition E. Sartori lowered the minimum cut-off cross sectons used by NJOY, which eliminated or reduced the differences found for low cross sections near thresholds.

COMPARISON	OF	EVALUATED	DATA	(PROGRAM	COMPLOT	84-2)
------------	----	-----------	------	----------	---------	-------

9000 9000

4

DATA IDENTIFICATIONS

DATA1-STANDARD

DATA2=NJOY/IBM-82 (E.SARTORI,NEA/DB)

ENDF/B TAPE LABELS

DATA1=IAEA PROCESSING CODE VERIFICATION PROJECT STANDARD (MOD. 1) DATA2=NJOY/IBM...ENDF/B-V DOSIMETRY LIBRARY (E.SARTORI,NEA/DB,1982)

MATERIAL	MT	MATI	MAT2	POINTT	POINT2	ENERGY MINIMUM	RANGE (EV) MAXIMUM	MAXII PER-CENT I NEGATIVE	DIFFEREN POSITI	CROS CES OF M VE DATA1	S SECTION (BA AXIMUM PER-CE DATA2	RNS) AT POIN NT DIFFERENC DATA1	ITS E DAT/
11-NA- 23 13-AL- 27 13-AL- 27 25-MN- 55	102 103 107 16	6311 6313 6313 6325	6311 6313 6313 6325	1280 365 337 193	1240 325 297 153	1.0000- 4 1.8000+ 6 3.2000+ 6 1.0400+ 7	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.079 -1.454 * -0.034 -0.073	0.992 173.884 247.102 0.082	* 6.65345-18 *	6.55669-18	4.81401-11 4.83039-17	1.31848-1 1.67664-1
17-CO- 59 17-CO- 59 17-CO- 59	16 102 107	6327 6327 6327	6327 6327 6327	189 1280 291	149 1240 251	1.0600+ 7 1.0000- 4 5.5000+ 6	2.0000+7 2.0000+7 2.0000+7	-0.150 -0.135 -0.001	0.007 0.181 0.042				
13-NP-237 19-AU-197	18	6337 6379	6337 6379	1280	1240 1240	1.0000 - 4 1.0000 - 4	2.0000+ 7 2.0000+ 7	-77.036 *	18.737	* 3.31167- 3	7.60508- 4	3.29277- 2	3.90974-
10-1H-232 10-TH-232 12-U -235	102 18	6390 6395	6390 6395	1280 1280	1240 1240	1.0000 - 4 1.0000 - 4	2.0000+ 7 2.0000+ 7 2.0000+ 7	-27.977 *	0.465	3.02312- 1 * 7.41516+ 1	2.17733-1 4.49544+ 1	2.48513+ 1	2.54153+
92-U -238 92-U -238 94-PU-239	18 102 18	6398 6398 6399	6398 6398 6399	1280 1280 1280	1240 1240 1240	1.0000- 4 1.0000- 4 1.0000- 4	2.0000+ 7 2.0000+ 7 2.0000+ 7	-100.000 * -91.248 * -42.543 *	77.752 1.294 2.309	* 6.11938- 7 * 4.91881- 1 * 3.53280+ 1	0.0 + 0 4.30510- 2 2.02983+ 1	2.82507-10 3.68240- 1 3.03207+ 0	5.02161- 3.73005- 3.10207+
3-LI- 6 5-B - 10 21-SC- 45	207 207 102	6424 6425 6426	6424 6425 6426	1280 1280 1280	1240 1240 1240	1.0000- 4 1.0000- 4 1.0000- 4	2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.074 -0.090 -0.094	0.090 0.053 0.245				
2-TI- 46 2-TI- 47 2-TI- 47	103 28 103	6427 6428 6428	6427 6428 6428	369 189 1280	329 149 1240	1.6000+6 1.0600+7 1.0000-4	2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.679 -40.755 * -0.001	0.000 0.223 0.002	9.37500- 6	5.55425- 6	•••••	
2-TI- 48 2-TI- 48 6-FE- 54	28 103 103	6429 6429 6430	6429 6429 6430	169 337 1280	129 297 1240	1.1600+ 7 3.2000+ 6 1.0000- 4	2.0000+ 7 2.0000+ 7 2.0000+ 7	-10.782 * -3.786 * -0.080	0.221 0.001 100.748	2.23744- 6 3.44827-10	1.99621- 6 3.31773-10	2.90221- 7	5.82614-
6-FE- 56 6-FE- 58 8-NI- 58	103 102 16	6431 6432 6433	6431 6432 6433	343 1280 153	303 1240 113	2.9000+6 1.0000-4 1.2400+7	2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.084 -0.110 -1.354 *	872.520 0.425 0.006	* 4.28500~ 5	4.22700- 5	1.96579- 8	1.91177-
8-NI- 58 8-NI- 60 9-CU- 63	103	6433 6434 6435	6433 6434	1280 351	1240 311 1240	1.0000- 4	2.0000+7 2.0000+7 2.0000+7	-0.073 -0.081	22.299	* * * 2 17220- 1	2 22200 0	2.92430- 6 4.04948- 7	3.57640- 2.32000-
9-CU- 63 9-CU- 65	107	6435 6436	6435 6435	367	327 161	1.7000+ 6 1.0000+ 7	2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.070	8.939	*	2.22327 2	4.63949- 7	5.05420-
9-1N-115 9-1N-115 3-1 -127	51 102 16	6437 6438	6437 6438 6438	427 1280 217	387 1240 177	3.2000+ 5 1.0000- 4 9.2000+ 6	2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.002 -0.108 -0.056	0.193				
19 PLO	rs G	ENERA	ted	305	345	9,2000+ 5	<u> </u>	-0,001	0.001				
INDICATES	5 DI	FFERE	NCEE	XCEEDS	1.00 PE	R-CENT							
-CENT DIF	ERE	NCE	= 10	0 * ((D	ATA1-DATA	2)/DATA1)	AT EACH EN	NERGY POINT					

. 88

ĊĊ	MPA	RIS	ON ()≓ `ë	VA	LUAI	ËĎ	ĎA	TA (PRÖ	GRA	M CC	MPL	ÖŤ	84-	2)										······	·····										
DA	TA	IDE	NTI		TI	ONS																															
D/ D/	TA1	=S1 =NJ	AND OY/	ARD I BM-	83	(E.	SA	RTO	RI,M	JEA/	DB)						,																				
EN	IDF /	BT	APE	LAE	EL	S																															
	TA1	=IA	EA I OY/	PROC	ES	S I NO	6 CC) DE -V	VEF	RIFI	CAT RY	ION	PRO	JE(' (E	T S	TANE)AR 71,	NEA/	DD. DB.	1) 1983)	9	900 900	0													
	N	ATE	RIA	. N	IT	MATI	M	172	PO	INTI	PC	INT:	2	ˆ M]	ERG	V RA UM	ANG	MAXI	V) MUM	PE	R-CE EGA	MAX ENT TIV	IMU DI	M FFERI POSI	ENCE	S	 C	CRO OF	SS MAX 1	SECT	ION PER DAT	(BAR -CEN A2	NS) T DI	AT P FFER DAT	DINT ENCE A1	5	DATA2
	11- 13- 13- 25- 27-	AL- AL- MN- CO-	23 27 27 59	10	2 3 7 6 6	631 6313 6313 632 632	66666	11 13 13 25 27		280 365 337 193 189		124(32) 297 155		.00 .80 .20 .04	000- 000+ 000+ 000+	4 6 7 7	222222	0000 0000 0000 0000 0000	+ 7 + 7 + 7 + 7		0.0	78 54 34 80	•	0.7 0.0 0.1 0.0 0.0	86 91 94 82 00	6	6534	5-1	8 (6.55	669-	18					
W	27- 27- 93- 79- 90- RNI	CO- NP- AU- TH- NG	59 59 237 197 232 F	10 10 10 10 0R A)2 8 8 8 8	6327 6337 6379 6390 VE		327 327 337 379 390 98 890	ISO)	291 291 280 280 861 861 N CO		25 124(124(82(82(NO) 1) 1) 1 } 4	.00 .00 .75)00-)00-)00-)00- 500+ ME R	4 4 0 ATI(0000 0000 0000 0000 0000	+ 7 + 7 + 7 + 7 + 7 + 7 L E	- 1 - 1 	0.00 7.3 0.09 0.19 1ES	35 01 77 55 53	*	0.3 0.0 18.7 0.0 0.4	42 36 * 79 98	. 1	1567	'9-	2	9.55	779-	3	3.29	277-	2	3.909	/1- 2
FJ	RST 90- 92- 92- 92- 92- 92-	00 TH- U - U - PU- LI-	CUR 232 235 238 238 238 239 10	RENC 10 10 10 10 20	E2882877	AT 6390 6395 6398 6398 6398 6398	4 6 6 6 6 6 6	750 390 395 398 398 398 398 399 124	00+	0 E 1280 1280 1280 1280 1280 1280	v.	124(124(124(124(124(124(124(124(.00 .00 .00 .00)00-)00-)00-)00-)00-	4 4 4 4 4	2222222	0000 0000 0000 0000 0000 0000	1+ 7 1+ 7 1+ 7 1+ 7	- - - - -	0.4 1.9 0.0 0.1 0.8 0.8	37 10 82 07 47 74	*	0.3 2.2 51.8 1.2 2.3 0.0	86 69 * 18 * 94 * 09 * 90	1.	5641	2+	1	1.53	425+	1	2.48 2.82 3.68 3.03	513+ 507- 240- 207+	1 10 1 0	2.541 4.288 3.730 3.102	53+ 1 96-10 95- 1 95- 1 97+ 0
	22-22-22-22-22-22-22-22-22-22-22-22-22-	SC- TI- TI- TI- TI- TI- FE-	45 46 47 48 48 54	10	2 3 28 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6426 6427 6428 6428 6428 6429 6429 6429		126 127 128 128 129 129 129		1280 369 189 1280 1280 337 1280		124(329 149 124(129 124(129)		.00	000- 000+ 000+ 000- 000+ 000+	74674 764	~~~~~~~~~~~	0000 0000 0000 0000 0000 0000 0000	+ 7 + 7 + 7 + 7 + 7	-4 -4 -1 -1	0.0	94 79 57 00 14 86	• •		83 00 25 02 84 01 85	9 2 3	3750 2374 4482	90- 14- 27-1	6 6 0	5.55 1.99 3.31	407- 325- 773-	6 6 10					
	26- 28- 28- 28- 29- 29-		56 58 58 58 60 63 63 65	10 10 10 10)3)2)6)3)3)2)7	643 643 643 643 643 643 643 643		131 132 133 133 135 135	1	343 1280 153 1280 351 1280 367		30 124(11; 124(31 124(32 15		· 0 · 0 · 0 · 0 · 0)00+)00-)00+)00-)00+)00+	6 4 7 4 6 4 6 7	~~~~~~~~~	. 0000 . 0000 . 0000 . 0000 . 0000 . 0000 . 0000	+ 7 + 7 + 7 + 7 + 7		0.01 0.1 1.30 0.01 0.01 0.10	87 10 65 72 81 05 70	*		07 35 00 78 48 52 86	4	2850	0-	5	4.22	650-	5					
	49- 49- 53- 16-	IN- IN- I S	115 115 127 32	10	51 16 13	6437 6437 6438 6438		137 137 138 138		427 1280 217 385		38 124 17 34		.0)00+)00-)00+)00+	5 4 6 5	2222	0000)+ 7)+ 7)+ 7)+ 7	-	0.0	62 08 56 01		0.0	25 13 96 01												
			PL	115	66			, 																											-		
Pe M/	- I R-C		DI		REN	CË DIFF	ERI	10 10	XCEE 0 * E = 	((D LAR	ATA GES	1-D/ 57 Pl	R-C	(-Cl 2)/(EN		1) FFEI	AI	I EAC	H E	NERG NY O	Y P(NE (DIN OR	T	REEN	ERGY	/ P(DINTS	;									

Q Ŧ

- 95 -

AMPX

The AMPX system is designed to calculate complete multigroup data sets for use in applications.

The initial AMPX comparisons performed in 1982 showed generally good agreement in the resolved region; the only exception being 58 Fe capture where 24% differences were found in the minima between resonances. The unresolved resonance results illustrated that AMPX was still using the ENDF/B-IV convention of interpolating unresolved parameters (e.g. 237 Np fission), but there were additional problems with 235 U fission, 238 U capture and 239 Pu fission which resulted in differences of up to 17.5%. The agreement for all other reactions was excellent.

The latest AMPX results show improvements in the resolved resonance region (note, the agreement for 58 Fe capture). In the unresolved resonance region AMPX is now using the ENDF/B-V convention of interpolating cross sections and has an improved algorithm for calculating fluctuation integrals, which has resulted in greatly improved results. In general the latest AMPX results agree closely with our benchmark results.

		IONS																
DATA1=STAN DATA2=AMPX	DARD -82 (1	I.GREE	NE,ORN	L)														
NDF/B TAP		LS	~~~~															
DATA1=IAEA DATA2= AMP	PROCE	SSING PUT	CODE ENDF/B	VERIFIC	CATION P	PROJECT IBRARY	STAND (M.GR	ARD (MOI	D. 1) RNL, 1	982)	9000 9000							
MATERI	AL MI	MATI	MAT2	POINTI	POINT2	ENER MINI	gy Ra Mum	NGE (EV Maxim) UM PE N	MAX R-CENT EGATIN	DIFF	ERENCE	S OF	ROSS MAX TA 1	SECTION (IMUM PER DAT	(BAR -CEN A2	NS) AT POINT T DIFFERENCE DATA1	S DATA2
11-NA- 2 13-AL- 2 13-AL- 2 25-MN- 5	3 102 7 103 7 107 5 10	6311 6313 6313 6325	6311 6313 6313 6325	1280 365 337 193	1240 325 297 153	1.0000 1.8000 3.2000 1.0400	- 4 + 6 + 6 + 7	2.0000+ 2.0000+ 2.0000+ 2.0000+	7 - 7 - 7 - 7 - 7 -	1.877 0.152 0.120 0.088	* ().306).074).004).080	1.31295	- 4	1.28830-	4		
27-C0- 5 27-C0- 5 27-C0- 5 93-NP-23	9 10 9 10 9 107 7 18	6327 6327 6327 6327 6337	6327 6327 6327 6337	189 1280 291 1280	149 1240 251 1240	1.0600 1.0000 5.5000 1.0000)+ 7 - 4 + 6 - 4	2.0000+ 2.0000+ 2.0000+ 2.0000+	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	0.003 8.855 0.003 6.529	* (0.003 0.672 0.042 9.705	5.85290	+ 2	5.33460+ 9.65580-	2	3.29277- 2	3.94160- 2
90-TH-23 VARNINGI DATA1 IS ZI IRST OCCU	2 18 FOR AB ERO AT RRENCE	6390 BOVE C	6390 OMPARI 2 ENE 4.0000	861 SON COU RGIES N 0+ 3 EV	821 JLD NOT VHERE D/	5.0000 DEFINE	+ 0 RATIO NON-Z	2.0000+ 2.0000+ AT ALL ERO.	7 - ENERG	8.674 IES.	* ().741	6.56278	- 7	5.99350-	3 7		
90-TH-23 92-U -23 92-U -23 92-U -23	2 102 5 18 8 18 8 102	2 6390 3 6395 3 6398 2 6398 6 6398	6390 6395 6398 6398 6398	1280 1280 1280 1280 1280	1240 1240 1240 1240	1.0000)- 4 - 4 - 4	2.0000+ 2.0000+ 2.0000+ 2.0000+	7 - 7 - 7 -1	2.872 1.344 6.458 7.489	* (0.639 2.888 1.432 0.647	3.02312 1.56412 6.11938 1.56985	- 1 + 1 - 7 - 1	2.93630- 1.54310+ 5.72421- 1.29530-	1 1 7 1	2.48513+ 1 2.85364- 7	2.55690+ 1 2.89450- 7
3-LI- 5-B - 1 21-SC- 4 22-TI- 4	6 20 0 20 5 10 6 10	6424 6425 6425 6426 6427	6424 6425 6426 6427	1280 1280 1280 1280 369	1240 1240 1240 1240 329	1.0000 1.0000 1.0000 1.6000	- 4 - 4 - 4 + 6	2.0000+ 2.0000+ 2.0000+ 2.0000+ 2.0000+	7 - 7 - 7 - 7 - 7 -	0.100 0.101 0.750 0.003		0.090 0.053 0.267 0.004				•		
22-TI- 4 22-TI- 4 22-TI- 4 22-TI- 4 22-TI- 4	7 20 7 10 8 20 8 10	3 6428 3 6428 3 6429 3 6429 3 6429	6428 6428 6429 6429	189 1280 169 337	149 1240 129 297	1.0600 1.0000 1.1600 3.2000)+ 7)- 4)+ 7)+ 6	2.0000+ 2.0000+ 2.0000+ 2.0000+	7 - 7 - 7 - 7 - 7 -	0.091 0.003 0.099 0.002		0.001 0.005 0.041 0.004				········ ·,.		
26-FE- 5 26-FE- 5 26-FE- 5 28-NI- 5 28-NI- 5	6 103 8 103 8 103 8 103	6431 6432 6433 6433 6433	6431 6432 6433 6433	1280 1280 153 1280	303 1240 113 1240	2.900 1.000 1.240 1.000)- 4)- 6)- 4)+ 7)- 4	2.0000+ 2.0000+ 2.0000+ 2.0000+ 2.0000+	7 -2 7 -2 7 - 7 -	0.072	*	0.003 0.106 0.005 0.072	1.75315	- 3	1.33290-	3		
28-NI- 6 29-CU- 6 29-CU- 6 29-CU- 6 29-CU- 6	0 10 3 10 3 10 5 10	6434 6435 6435 6436 6436	6434 6435 6435 6436 6436	351 1280 367 201	311 1240 327 161 287	2.5000 1.0000 1.7000 1.0000)+ 6)- 4)+ 6)+ 7	2.0000+ 2.0000+ 2.0000+ 2.0000+ 2.0000+	7 -1 7 -1 7 - 7 -	0.108 0.118 0.096 0.022	¥ (0.023 0.143 0.070 0.001	2.17329	- 1	1.95340-	1		
49-IN-11 53-I -12 16-S - 3	5 10 7 10 2 10	2 6437 5 6438 3 6439	6437 6438 6439	1280 217 385	1240 177 345	1.000 9.2000 9.2000)- 4)+ 6)+ 5	2.0000+ 2.0000+ 2.0000+	7 -1 7 - 7	1.347 0.055 0.0	*	0.111 0.093 0.014	2.52974	+ 3	2.24270+	3		
13 P	LOTS (TED		1 00	PER-CENI												
PER-CENT D	IFFER	INCE	= 100	* ((D/	ATA1-DA	TA2)/DA	A1)	AT EACH	ENERG	Y POI	 NT							

- 99 -

DATA1=STANDA DATA2=AMPX-8	ARD 33 (M.GREE	NE, ORNIL)								•••••
ENDE B TAPE	LABELS									
DATA1=IAEA P	ROCESSING	CODE VERIFI	CATION PRO	JECT STAN	DARD (MOD.	1) 9	000			
MATERIAL	MT MATI	MAT2 POINT1	POINT2	ENERGY R MINIMUM	ANGE (EV) MAXIMUM	MAXI PER-CENT NEGATIVE	MUM DIFFERENCES POSITIVE	CROSS SECT OF MAXIMUM DATA1	ION (BARNS) AT POINT PER-CENT DIFFERENCE DATA2 DATA1	S
11-NA- 23 13-AL- 27 13-AL- 27 25-MN- 55	102 6311 103 6313 107 6313 16 6325	*** NO COMP *** NO COMP *** NO COMP *** NO COMP *** NO COMP	ARISON *** ARISON *** ARISON *** ARISON ***							
27-C0- 59 27-C0- 59 27-C0- 59 93-NP-237	16 6327 102 6327 107 6327 18 6337	6327 189 6327 1280 6327 291 6337 1280 6337 1280	149 1 1240 1 251 5 1240 1	.0600+ 7 .0000- 4 .5000+ 6 .0000- 4	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.003 -0.386 -0.003 -0.445	0.003 0.671 0.042 1.574 *		8.69192- 2	8.82870-
90-TH-232 WARNINGFC DATA1 IS ZEF FIRST OCCURE	18 6390 DR ABOVE C RO AT RENCE AT	6390 861 OMPARISON CC 2 ENERGIES 4.00000+ 3 E	821 5 NULD NOT DE WHERE DATA	.0000-4 .0000+0 FINE RATI 2 IS NON-	2.0000+ 7 2.0000+ 7 0 AT ALL E ZERO.	-0.430 NERGIES.	0.743			
90-TH-232 92-U -235 92-U -238 92-U -238	102 6390 18 6395 18 6398 102 6398	6390 1280 6395 1280 6398 1280 6398 1280 6398 1280	1240 1 1240 1 1240 1 1240 1	.0000- 4 .0000- 4 .0000- 4 .0000- 4	2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7 2.0000+ 7	-0.387 -0.331 -0.388 -0.389	0.656 1.120 * 1.418 * 0.661		3.10750+ 0 2.85364~ 7	3.14230+ 2.89410-
94-PU-239 3-LI- 6 5-B - 10 21-SC- 45	18 6399 207 6424 207 6425 102 6426	6399 1280 *** NO COMF *** NO COMF *** NO COMF	ARISON *** ARISON *** ARISON ***	.0000- 4	2.0000+ 7	-0.348	1.667 *		3.68446+ 0	3.74590+
22-TI- 46 22-TI- 47 22-TI- 47 22-TI- 47 22-TI- 48	103 6427 28 6428 103 6428 28 6429	*** NO COMF *** NO COMF *** NO COMF *** NO COMF *** NO COMF	ARISON *** ARISON *** ARISON *** ARISON ***							
22-TI- 48 26-FE- 54 26-FE- 56 26-FE- 58	103 6429 103 6430 103 6431 102 6432	*** NO COMF *** NO COMF *** NO COMF 6432 1280	ARISON *** ARISON *** ARISON *** 1240 1	.0000- 4	2.0000+ 7	-0.343	0.106			
28-NI- 58 28-NI- 58 28-NI- 60 29-CU- 63	16 6433 103 6433 103 6434 103 6434	*** NO COMF *** NO COMF *** NO COMF *** NO COMF *** NO COMF	ARISON *** ARISON *** ARISON *** ARISON ***							
29-CU- 63 29-CU- 65 49-IN-115 49-IN-115	107 6435 16 6436 51 6437 102 6437	*** NO COMP *** NO COMP 6437 427 *** NO COMP	ARISON *** ARISON *** 387 3 ARISON ***	.2000+ 5	2.0000+ 7	-0.067	0.004			
53-1 -127 16-5 - 32 5 Pl (16 6438 103 6439	*** NO COMF *** NO COMF	ARISON *** ARISON ***							
+ - INDICATE	ES DIFFERE	NCE EXCEEDS	1.00 PER	-CENT						

MINX

MINX is a complete multigroup processing system which is designed to generate complete multigroup data sets for use in applications.

The MINX comparisons performed in 1983 indicate excellent agreement in the unresolved region and good agreement in the resolved region. The only major differences seen were for 238 U-capture and fission and 63 Cu-capture which appear to be due to an error in interpolating cross sections à la RESEND. The 197 Au-capture results at the resolved region boundary indicate a numerical instability in the multigroup averaging scheme used.

The error which led to the 238 U-capture and fission and 63 Cu-capture differences as well as the instability that led to the 197 Au-capture results have been reported to have been remedied in MINX. However, no later results were submitted for comparison.

DATA2=MIN>	(~83 (\	J.WHIT	E, ORNI	.)				********					
ENDE TAP	PE LABE								****				
DATA1=IAEA DATA2= MIN	A PROCE	SSING	CODE V DOS	VERIFI IMETRY	CATION P LIBRARY	ROJECT STA	ANDARD (MOD. ORNL)	1)	9000 9000				
MATERI	TAL M	T MATI	MAT2	POINTI	POINT2	ÉNERGY MINIMUN	RANGË (EV) M MAXIMUM	MAX PER-CENT NEGATIVE	IMUM DIFFERENCE E POSITIVE	CROSS S OF MAX DATA1	SECTION (BAR (IMUM PER-CEN DATA2	NS) AT POIN T DIFFERENCE DATA1	ts DA
11-NA- 13-AL- 13-AL- 25-MN- 27-CO- 27-CO- 93-NP-23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 6311 3 6313 7 6313 6 6325 6 6327 2 6327 7 6327 8 6337	6311 6313 6313 6325 6327 6327 6327 6327 6337	1280 365 337 193 189 1280 291 1280	1240 325 297 153 149 1240 251 1240	1.0000- 1.8000+ 3.2000+ 1.0400+ 1.0600+ 5.5000+ 1.0000- 1.0000-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.302 -0.170 -0.180 -0.055 -0.000 -0.847 -0.173 -0.262	* 0.375 0.163 0.158 0.099 0.000 0.562 0.001 0.269	1.54897- 3	1.52880- 3		
79-AU-19 90-TH-20 WARNING. DATA1 IS 7 F IRST OCCU 90-TH-20	97 10 32 10 FOR AL ZERO A JRRENCE 32 10	2 6379 8 6390 80VE C 1 4 5 AT 2 6390	6379 6390 0MPAR 22_EN 1.000 6390	1280 861 ISON CO ERGIES 00- 4 E 1280	1240 1240 ULD NOT WHERE DA V. 1240	1.0000-4 1.0000-4 DEFINE RAT TA2 IS NOT	4 2.0000+7 4 2.0000+7 110 AT ALL E N-ZERO. 4 2.0000+7	-0.349 -0.882 NERGIES.	2017.561 * 0.434			1.22906+ 0	2.60261
92-U -2; 92-U -2; 92-U -2; 94-PU-2; 3-LI- 21-SC- 22-TI- 22-TI- 22-TI- 22-TI- 22-TI- 26-FE- 26-FE-	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	8 63998 8 63999 63999 6425 6426 64227 8 64226 64227 838 64228 64229 8 64229 8 64229 8 6429 9 6433 6433 6433	6395 6398 6398 63994 63994 6425 6426 6427 6428 6429 6429 6429 6429 6429 6431 6431	1280 1280 1280 1280 1280 1280 1280 1280	1240 1240 1240 1240 1240 1240 1240 329 149 1240 129 297 1240 303 1240	1.0000- 1.0000- 1.0000- 1.0000- 1.0000- 1.0000- 1.0000- 1.6000+ 1.0600+ 1.0600+ 1.1600+ 3.2000+ 1.0000- 1.00000- 1.00000000- 1.00000- 1.0000- 1.0000- 1.0000- 1.0000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.022 -5.123 -2.092 -0.982 -0.142 -0.129 -0.565 -0.000 -0.024 -0.024 -0.064 -0.000 -0.165 -0.100 -0.870	* 0.708 * 14.912 * * 12.869 * 0.747 0.180 0.184 0.556 0.000 0.123 0.002 0.138 0.001 0.162 0.083 0.556	1.40193+ 1 5.12500- 5 9.75215- 1	1.38760+ 1 4,86245- 5 9.54811- 1	4.32594- 7 1.84121- 1	4.97101 2.07816
28-NI- 28-NI- 28-NI- 29-CU- 29-CU- 49-IN-1 49-IN-1 53-I-1 16-S-	58 10 58 10 58 10 60 10 63 10 63 10 65 10 55 10 15 5 15 5 15 10 27 10 32 10	6 6433 6 6433 6 6434 2 6435 7 6435 6 6436 1 6437 6 6437 6 6438 6 6435 6 6436 6 6437 6 6437 6 6438 6 6438	6433 6433 6434 6435 6435 6435 6437 6437 6438 6439	153 1280 351 1280 367 201 427 1280 217 385	113 1240 311 1240 327 161 387 1240 177 345	1.2400+ 1.0000- 2.5000+ 1.0000- 1.7000+ 1.0000+ 3.2000+ 9.2000+ 9.2000+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.000 -0.168 -0.122 -0.090 -0.150 -0.176 -0.200 -0.447 -0.149 -0.209	0.000 0.134 93.065 * 0.138 0.000 0.158 0.565 0.081 0.106			1.07784- 2	2.08093
7	PLOTS	GENERA	TED										
+ - INDIC	ATES D	IFFERE	NCE E	XCEEDS	1.00 P	ER-CENT							

07

Ь

GRUCON

GRUCON is designed to calculate complete sets of multigroup data for use in applications.

GRUCON results were submitted for only four reactions, and comparisons performed in 1983 to our benchmark results showed generally good agreement. In particular the 237 Np fission results indicate that GRUCON is using the ENDF/B-V convention to interpolate cross sections.

Unfortunately, since only four reactions were submitted for GRUCON even though the agreement for these four reactions is quite good it is not possible at this time to draw any conclusions regarding GRUCON's ability to reproduce the benchmark results for the entire ENDF/B-V Dosimetry library.

ATA2=GRUCON-	10 -83 (1	V.MANOKHIN,	, OBNINSK)			·····	
NDF/B TAPE L	ABEL	5					
ATA1=IAEA PF	OCES	SING CODE V NDF/B-V DOS	ERIFICATION PRO	JECT STANDARD (MOD.0 (V.MANOKHIN.OBNINSK.) 9000 1983) 9000		
MATERIAL	MT I	MATI MATE P	POINT1 POINT2	ENERGY RANGE (EV) MINIMUM MAXIMUM	MAXIMUM PER-CENT DIFFERENC NEGATIVE POSITIV	CROSS SECTION (BARNS) AT POINTS ES OF MAXIMUM PER-CENT DIFFERENCE E DATA1 DATA2 DATA1	DATA2
11-NA- 23 13-AL- 27 13-AL- 27 25-MN- 55 27-CO- 59 27-CO- 59 27-CO- 59 27-CO- 59	102 103 107 16 16 102 107	6311 *** NO 6313 *** NO 6313 *** NO 6325 *** NO 6327 *** NO 6327 *** NO 6327 *** NO 6327 *** NO	COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON ***	0000- 4 2 0000 7	. 1 026 + 2 460	• 0 56100- 1 0 20517 1 2 12012 0 2	20010 0
93-NP-237 79-AU-197 90-TH-232 90-TH-232	102 18 102	6379 *** NO 6390 *** NO 6390 6390	1280 1238 COMPARISON *** COMPARISON *** 1280 1238 1280 1238	.0000- 4 2.0000+ 7	-0.383 0.109	* 8.50108- 2 8.39617- 2 3.13213- 2 3.	20919- 2
92-U -235 92-U -238 92-U -238 94-PU-239 3-LI- 6	18 102 18 207	6398 6398 6398 6398 6398 6398 6399 *** NO 6424 *** NO	1280 1238 1280 1238 1280 1238 10 COMPARISON *** 10 COMPARISON ***	.0000-4 2.0000+7 .0000-4 2.0000+7	-0.413 0.739 -0.415 1.047	* 5.63688-1 5.	69588- 1
5-B - 10 21-SC- 45 22-TI- 46 22-TI- 47 22-TI- 47 22-TI- 48 22-TI- 48	207 102 103 28 103 28	6425 *** NC 6426 *** NC 6427 *** NC 6428 *** NC 6428 *** NC 6429 *** NC 6429 *** NC	D COMPARISON *** D COMPARISON *** D COMPARISON *** D COMPARISON *** D COMPARISON *** D COMPARISON *** D COMPARISON ***				
26-FE- 54 26-FE- 56 26-FE- 58 28-NI- 58 28-NI- 58 28-NI- 60	103 103 102 16 103	6430 *** NO 6431 *** NO 6432 *** NO 6433 *** NO 6433 *** NO 6433 *** NO	COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON ***	•			
29-CU- 63 29-CU- 63 29-CU- 65 49-IN-115 49-IN-115 53-I -127	102 107 16 51 102 16	6435 *** NC 6435 *** NC 6436 *** NC 6437 *** NC 6437 *** NC 6437 *** NC 6438 *** NC	COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON *** COMPARISON ***	1 5 7 7 7			
16-5 - 32 2 PL0	103 IS GE	6439 *** NO	COMPARISON ***				
	5 DIF	FERENCE EXC	CEEDS 1.00 PEF	R-CENT			

•

- 112 -

CONCLUSIONS

This report presents the results of the first step, or round, of verification comparisons. The first round of comparisons is intended to test the ability of processing codes to accurately produce, cold (0 Kelvin), unshielded, flat weighted multigroup cross sections; in principle this should be the simplest quantity that can be derived from evaluations. At present contributions to this project have been received from forty-two participants using thirteen different processing codes. In the initial comparisons not one participant has been able to obtain agreement with benchmark results; differences varied from 2% to a factor of over 50. However, this project has already in its initial phase been successful in detecting and correcting problems with a number of cross section processing codes and, in particular, has led to the practical result of identifying accurate codes and of improving the ENDF/B-V dosimetry library as distributed in 620 groups.

Of the thirteen cross section processing codes which participated in this project seven have been improved to the point where they can currently reproduce the benchmark results for the entire ENDF/B library (ENTOSAN, RECENT, FOURACES, RESENDD, FEDGROUP-C, NJOY AND AMPX). Based upon our experience in this project code comparisons can be used to easily identify and allow problems to be eliminated from codes. The fact that problems were found in every code which participated in this project indicates that all processing codes should participate in this project. Code users and designers are still encouraged to submit results for the first round of comparisons.

ACKNOWLEDGEMENTS

The author thanks Miss Sabine Schmied for preparing the text and figures which appear in this publication. The author thanks each of the forty-two participants who contributed results for this project. It is worth noting that even though the combined effort of the forty-two participants to perform calculations and correct processing codes involved several man-years of effort all participation in this project was on a voluntary basic and the entire project was conducted at no cost to the International Atomic Energy Agency.

- 113 -

REFERENCES

- ZIJP, W.L., et al., "Comparison of two fine group cross section libraries resulting from the ENDF/B-V dosimetry file", Report ECN-97, Netherlands Energy Research Foundation, ECN, Petten, August (1981).
- [2] SIMONS, R.L., and MCELROY, W.N., Evaluated reference cross section library, BNWL-1312 (1970), Richland.
- [3] GARBER, D., et al., Data Formats and procedures for the evaluated nuclear data file, ENDF, BNL-NCS-50496 (ENDF-102) (1975). Brookhaven.
- [4] PEREZ, R.B., et al., Trans. Amer. Nuc. Soc., TANSAO 39, pp. 883 (1981).
- [5] PERKINS, S.T., Multigroup Transfer Matrices for Charged Particle and Neutron Induced Reactions", UCRL-86106 and UCRL-86782 (1981), Livermore.
- [6] PEREY, G.F., Least Squares Dosimetry Unfolding, The programme STAY'SL, ORNL/TM-6062, ENDF-254 (1977), Oak Ridge.
- ZIJP, W.L., NOLTHENIUS, H.J., "Comparison of four neutron spectrum unfolding codes", Contribution to Rottger, H. (editor), Proc. ASTM-EURATOM Symposium on Reactor Dosimetry, Report EUR 6813, Vol. II, p. 787 (CEC-JRC, Petten, 1980).