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I. ORGANIZATION OF THE MEETING

I. First Reasearch Coordination Meeting on
METHODS FOR THE CALCULATION OF FAST NEUTRON NUCLEAR DATA
FOR STRUCTURAL MATERIALS
in co-operation with the Centro di Calcolo del E.N.E.A.

Bologna, Italy, 7-10 October 1986

The first meeting of the TAEA CRP was convened by the IAEA Nuclear Data
Section in co-operation with the Centro di Calcolo del ENEA in Bologna,
Italy. It was run by the Scientific Secretary V. Goulo with the assistance of
Dr. D.E. Cullen (NDS) and the local organizing committee consisting of Dr. G.
Reffo (Chairman), Dr. E. Menapace, Ms. P. Cenni.

The main objectives of the meeting were the following:

1. Bringing together all participants to review the status of the
activities of the CRP.

2. Discussion and intercomparison of the various calculation methods
used.

3. Summary of the results of these intercomparison assessments of the
reliability of the calculational methods to recommend them for use in
calculations of neutron cross sections of the structural materials of
fission and fusion reactors.

The programme of the meeting based on the Adopted Agenda (enclosed in
Appendix 1) consisted of 9 sessions including opening, presentation of reports
and working pgroups. Presentation of reports was divided among 5 sessions
devoted to different aspects of nuclear theory for evaluation of fast neutron
data:

Session 1I. Development of Multistep Compound Reaction Models
Session III. Exiton, Hybrid, Unified Pre-equilibrium Models

Session 1IV. Description of Direct Processes

Session V. Parametrization of Optical Model, Level Density

Functions, Gamma-Ray Strength Functions
Session VI. Methods of Cross Section Evaluation

Two working pgroups dealt with methods for the calculations, their
parametrization, and working programme for next year and international
co-operation. ’

Reports of the Working Groups were done by their Chairmen: Dr. M,
Blann (Lawrence Livermore Laboratory, USA) and Dr. H. Gruppelaar (ECN,
Petten, the Netherlands).

The meeting was attended by 18 participants. (The List of
Participants is attached). Three participants of the CRP were absent.

The next RCM in the frame of the CRP is planned to be convened 8-11
February 1988 in Vienna.



The Working Group 1 was devoted to the discussion of the status of
semi-classical and quantum mechanical theories of multistep compound and
multistep direct processes, the wuse of neutron and proton induced
reaction data for model calculation testing, problems of level density
functions.

During Working Group 2 number of unified model aspects, description
of photon production spectra, parametrization of models were discussed.

Working programme for the next year has included the following items:

1. Improvement and parametrization of pre-compound models for the
main structural material elements, Al, Fe, Cr, Ni, Nb, Pb.

2. There was an interest expressed by different scientific groups in
calculations of double differential neutron and particle emission
spectra and photon production data.

3. It was decided to try to make some intercomparison of model
calculations to demonstrate their reliability but not to overlap
this work with NEA-DB intercomparison exercises.

4. Special interest was expressed in the planned programme of the
forthcoming CRP on the measurement and analysis of 14 MeV neutron
induced double differential neutron emission cross sections and
{n,n'x) cross sections.
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III. WORKING GROUP 1 REPORT

Dr. M. Blann
Lawrence Livermore Laboratory, USA

We have enjoyed and learned from the presentation of members of the
CRP during the past three days. We have focused on areas which have
promise for the future, on problem areas for immediate scrutiny. and
perhaps, most importantly have, with help from Dr. Gruppelaar, mapped out
a program for the next year which should both provide some of the
evaluated data and encourage collaborations between members of this
group. The latter exchange of 1ideas is very important, as there is
usually a coherent addition of ideas with a constructive interference
pattern.

We had an interesting discussion with help from Adrian Marcinkowski
on the status of quantum mechanical theories such as due to Feshbach,
Kerman and Koonin or to Tamura, Udagawa and Lenske. The conclusions were
that these theories are not yet developed to the point of being
trustworthy, predictive tools for data evaluation. Rather, if they work
reasonably well for (p,n) reactions, they may give very poor results for
(p,p') or (n,n') reactions. Prof. Ignatyuk emphasized the importance of
a thorough testing and further development of the multistep direct and
multistep compound models so that they may become useful applied tools
for the future. The consensus was that we must rely on our present
semi-classical models for our current data needs, while continuing
development of the quantum mechanical treatment.

The models we use for continuum precompound phenomena provide good
angle integrated cross sections, but have difficulty in reproducing the
back angle yields of the angular distributions. The quantum theoretical
formulations have shown that this is a reasonable result, as the extreme
back angle yields result from nucleon-potential rather than
nucleon-nucleon scattering processes. Nonetheless, we realize that the
back angle yields which we do not get well in our semi-classical models
are not important for purposes of evaluation, so that our models which
are computationally fast and easy to perform and which permit 1large
“throughput", are well suited to providing evaluated data. We recognize
that we must link our calculated results very well with experimental
results when the latter are available.

Prof. Ignatyuk stressed the importance of treating transitions to
collective levels by appropriate means, e.g., DWBA. We heard several
examples of this and saw a good illustration in Dr. Reffo's calculations
for Al. In this example, few quasi-particle densities were used to
identify the collective excitations by their absence in calculated
intrinsic excitations. 1Inclusion of these provided a great improvement
in the calculated result. Other members of this CRP have also emphasized
the importance of treating transitions to collective levels.

An important general point was made by Dr. Jahn: there is a much
broader range of data available, and of higher quality, for proton
induced reactions than for neutron induced reactions. We should make use
of these data for testing our model calculations, in addition to use of
good quality neutron data when available.



We had a good discussion on the topic of precompound decay models as
to the way that the single particle level density "g" and single particle
level density parameter "a" should be defined. We found a broad range of
ideas on this topic. A good computer experiment to help resolve this
question and form a consensus of opinion would involve computer generation
of few quasiparticle densities using realistic single particle levels
using the approach of Williams or of Reffo, and of fitting these results
with an Ericson-Williams particle hole prescription. We can then see
what "g" values for precompound states are necessary to reproduce the
more realistically generated densities, and see how these values compare
with corresponding "a"™ values for the equilibrated nuclei.

It was suggested that it would also be a worthwhile exercise to test
the energy dependence of the exciton model *k'" parameter by analysing
data at higher energy than 14 MeV. Likely candidastes are high quality
data sets measured by Galonsky on a series of targets for incident proton
energies of 25, 35 and 45 MeV (Nucl. Phys. A 257, 15 (1976).

A problem of compound nucleus decay for S0 years has been the
question of level densities. A major contributor to good answers on this
problem has been Prof. Ignatyuk, and several of the model codes

represented by members of this CRP have incorporated his theories. We
have, however, heard here of his additional unew contributions in this
area, and several groups hope to <collaborate more closely with

Prof.<Ignatyuk in order to 1incorporate his 1latest work into their
modeling codes, and also to cooperate on further developments on theory
of level densities.

Most importantly, we have met and gotten to know one another. We
have tasks for the next year with some overlap. It is important that we
exchange correspondence on progress with those with whom we have an
overlap in assignments. From this and from meetings of this CRP, we will
forge mutually beneficial collaborative efforts.
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IV. WORKING GROUP 2 REPORT

Dr. H. Gruppelaar
ECN, Petten, the Netherlands

1. UNIFIED -~ MODEL ASPECTS

At the meeting there was considerable interest in the unification of
the Hauser-Feshbach and the exciton model (see papers of Zhang,
Avrigeanu, Reffo, Gruppelaar et al.). Progress was reported on the
simplification of Iwamoto's cluster method for practical use (Zhang), the
use of spin-dependent GDHM models (Avrigeanu) the introduction of
microscopic 1level densities into PENELOPE (Reffo) and computational
procedures that speed-up the calculations, while satisfying consistency
requirements (Gruppelaar et al.).

Also the physical basis of the model is better understood (Gruppelaar
et al.): there is a close relation with the model of Agassi et al. and
the MSC model of FKK (Feshbach, Kerman, Koonin).

In practice the "HF - models with pre-equilibrium correction" such as
GNASH or STAPRE may give results similar to the more unified models
(PENELOPE, etc.) for the energy spectra. However, the unified models are
more attractive from a conceptual point of view and may be easier to
extend to predict angular distributions.

It was stressed that in order to describe multi-particle emission
near thresholds discrete levels are required (HF-type model).

For further development of the unified model simple parametrizations
of the particle-hole level-density formula are required that are
consistent with microscopic calculations and experimental data, cf. Sect.
3. 1In particular it is required that the sum over (p,h) states gives the
experimental level density.

From calculations of Gruppelaar et al. it follows that oZ(n,E) is

a crucial parameter that determines the spin-dependence of calculated
quantities.

2. PHOTON PRODUCTION SPECTRA

There were four reports on Y-ray emission.

The simple method described by Blann is useful for very fast
calculations and yet there are quite good results. Zhang reported on the
introduction of pre-equilibrium Y-ray emission based wupon Betak's
method. A slightly better method, that is consistent with the Brink-Axel
approach in equilibrium calculation, is that of Akkermans et al.

Reffo has extended this method for use into the unified model by
adding the J-dependence. This was also performed recently by Oblozinski
for inclusion in MSC-type of calculations (FKK-model). The results are
surprisingly good, in agreement with experimental data (the data base may
be too small) and with direct/semi-direct model calculations reported by

11



Longo. In fact the calculations with pre-equilibrium Y-ray emission
also explain the left-hand part of the giant-dipole peak in the spectrum,
where previous methods gave large underpredictions. It was concluded
that the "Akkerman's method" (with J-dependence) is a simple and useful
method to introduce y-ray emission into the pre-equilibrium models.

3. PARAMETRIZATION

3.1. Optical model

Details on the optical-model parametrization were presented by Lawson
(this meeting) and on previous meetings (CRP, Optical-model meeting in
Paris). Some observations of this meeting are:

1) for the structural materials regional model parameters are
needed.

2) Spherical optical-model parameters can be used to fit dg,
Oel(e) .

3) Due to collective effects the imaginary part may be enhanced, if
a spherical model is used.

Work at Argonne was reported (Lawson) for the A=90 and A=60 regions
with substantial differences 1in the real potential. For both regions
different parametrizations are required. Within each region the
imaginary part may change from nucleus to nucleus,

Although the energy range may be extended up to 20 MeV the extra-

polation down to low energies is probably limited to about 1 MeV. Below
this range an unresolved-resonance treatment could be followed.

3.2. Level density

In various papers the topic of level density was discussed. 1Ignatyuk
gave a description. of collective enhancement factors; Reffo discussed his
combinatorial calculations and Avrigeanu focused on phenomenological
descriptions of the energy dependence of p for practical use. In many
discussions the level density played a central role.

With respect to the energy dependence of p (usually described in
the HF-model with the Gilbert-Cameron or BSFG formulae) it is clear that
above about 10 MeV the BSFC model gives too low results. Better
descriptions are available: see the paper of Avrigeanu and recent work of
Ignatyuk. There is also work going on at Karlsruhe in this direction
(Anzaldo).

The (p,h)-densities, presently described in EM by the Williams
formula with various corrections (e.g. for finite-hole depth to include
geometry dependence) were discussed by Reffo. The shape of the results
of combinatorial calculations is very much like the Williams prediction,
apart from the low-energy side where the gap (A) is difficult to
parametrize.

12



Also the absolute values turn out to be quite different, but in EM
calculations often only ratios of 1level densities are the critical
quantities. The spin cut-off parameter is easy to parametrize and was
shown to be proportional to n. At high n-values, near equilibrium,
Oz(n.E) is expected to become <close to the value wused in HF
calculations, see work of Fu and of Ignatyuk. The parity-distribution,
important in Y-ray cascade calculations, is irregular and difficult to
parametrize. The large amount of microscopic results needs to be
summarized in a simple form, useful for applications. Also existing
schemes such as the methods of Ignatyuk, Fu and the Williams recursive
formula (part of the ALICE subroutine library) need to be considered.

3.3. y-ray strength functions

For modification of the approach of Gardner the reader is referred to
the paper of Avrigeanu. There was no further discussion on this topic.

4, WORKING PROGRAMME FOR NEXT YEAR AND INTERNATIONAL CO—-OPERATION

Table 1 lists the various topics on which the CRP laboratories are
active. Most of the work is performed on improvement and parametrization
of pre--compound models, in particular for Al, Fe, Cr, Ni, Nb and Pb, but
also for some other materials. It was decided that the emphasis for the
next period is still on further development of methods and models,
although the final goal of application of these tools to obtain reliable
nuclear-data evaluations is nearby.

In this respect some intercomparisons of produced data files may
become possible at the next meeting. Most groups are working on data in
the high-energy range above a few MeV, concentrating on double-
differential neutron and particle emission spectra and on photon-
production data.

It was decided to try to make some comparisons between calculated
data at the next meeting, in particular for Fe at 14.6 MeV and at 25.7
MeV, where measurements are available. Without specifying all parameters
(in order to avoid duplication with the NEA-DB intercomparison activities
already performed for Nb and Co) it was suggested that one calculation at
least should be made with g=A/13 MeV. This would allow the experts to
relate the differences in the results (if any) to differences in the
models. Also photon-production data should be included 1in this
intercomparison.

Table 1 may also serve as a guide for the participants to contact the
various CRP-members for 1information and exchange of data. It 1is
recommended to optimize the contacts.

In order to compare results of microscopic level-density calculations
it was recommended to use at different institutes a comnmon shell-model
base. Blann, Reffo, Ignatyuk and Anzaldo (KFK) are interested in such an
intercomparison.

For practical applications results of microscopic level-density
calculations are needed. Available material for Fe, Cr, Ni will be
distributed by Reffo, whereas Blann will make available a version of a
code to perform calculations with Williams recursive formula.

13



Finally, it was stressed that the situation with respect to
experimental data is not always ideal. There may be large discrepancies
in experimental {(n,n'x) data and also there may be substantial
differences between the angular distributions measured in the lab. and
c.m. systems (relation with other CRPs). For theoretical studies the
(p,ux) data base may have to be preferred.

14
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RECENT DEVELOPMENT OF THE
MULTI-STEP COMPOUND REACTION MODEL

A. Harcinkovski
Institute for Nuclear Studies, Warsaw, Poland

ABSTRACT

Two-body interaction matrix elements in the frame of
multi-step-compound reaction theory of Feshbach-Kermann-Koonin taking
into amount the Pauli blocking and the Fermi energy constraint have been
obtained for practical computations of nuclear data of structural
materials,

1. Introduction

Since the quantum theory of precompound reactions has been formulated

1)

by Feshbach, Kerman and Koonin in 1980 several model calculations of

- : 3
multi-step compound (MSC) emission in (p,n), (n,p), ( He,p) and (n,2n)

25 The experimental verification is in

reactions have been reported
favour of the MSC mechanism, which describes the symmetric portions of
the angular distributions of reaction products emitted from a sequence of
states of increasing complexity, involving only bound particle orbitals.
The application of the quantum-theory in practical computations of the
MSC reaction yield contains numerous abbreviations, e.g. use of the
two-body interaction matrix elements for spin-less particles or the
well-known Ericson formula for unconditional particle-hole state
densities. Quite recently these problems have been addressed in a few
papers. The matrix elements of a &-function interaction for one-half
spin particles have been derived and subsequently the X-factors of all
widths <F(U)p(U)>=X:§nY(U) involved in the process containing
the angular momentum structure embodied in the S8-force and the assumed
gpin distribution of the single-particle levels were obtained in closed

5)

analytical form™ . Similarly formulae were obtained for the

Y-functions, being the densities of particle-hole bound states accessible

in different MSC emission modes. The latter factors have been derived
recursively by Stankiewicz et 31.6) who ignored the Pauli exclusion
principle and effect of the finite potential well on hole scattering.
These drawbacks have been removed in ref.7), were Oblozinsky derived
the densities of the oparticle-hole bound states by applying the
equidistant-spacing approximation and the Darwin-Fowler statistical
method. The Pauli blocking and the Fermi enecgy constraint are
consistently observed within this theoretical approach. The final
relations are compact and can be viewed as built of the usual Ericson

state densities with additional correction term.

2. The Energy Dependence of the Widths for the MSC Process

The Y-functions contain all the excitation energy U dependence of the
width originating in the final-state 1level density. The energy
dependence of the X-factors is weaker and due to the angular momentum
barrier for the outgoing nucleon. In evaluating of the Y-function one
considers it to be a product of three terms: the number of ways to choose
the interacting exciton pair in a system of p-particles and h-holes, the
density of states for the active excitons remaining in the system after
emigssion and the probability that the noninteracting core-excitons have
appropriate energy. The latter probabilities are expressed as simple

7
ratios of state densities6’ ).

Let us consider for simplicity a particle emission mode involving a
creation of a particle~hole pair in the system via scattering of a hole.

In this case one obtains

waﬁb, /L'/f,u) (1)
wip, hE)

Le g™

}/4141= é% /p(/uafﬁt);z

6
when neglecting the finite depth F of the potentisl well ) or

3
"‘Nf49

>/ = — w%}/,-f) 0/6‘*)* df&é‘ﬂff‘ﬁybﬂ‘/_ (AJB?;,A”,K‘F)M;;Z
7 A PAE) (prhkpis-Y) #+4) (peh-1) 2
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when the F constraint on hole scattering is imposed. 1In eq.(2) 6 =1
for F + U = E > 0 and equals O otherwise. The particle-hole bound state
densities QB and QBF are reported in ref.6) and ref.”
respectively. The symbol UBF* denotes a modified density notation
explained in ref.7). In fig. 1 the effect of the finite well depth
(solid lines) is compared with the results of eq.{(l) (dashed lines). It
is seen that if F < E the phase space for emission is reduced and the

energies available after emission are limited.

Accounting for Pauli blocking brings into the state density
--_.(CB.tﬁL # A’ é;) in

addition to the excitation energy shift 1ntroduced already by

expression & correction term

williamSS).

T T
At ) beitl
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«
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Figure 1. Taken from ref.

3. The Angular Momentum Structure of the MSC Widths

The matrix elements for a two-particle residual interaction, of the
U o -
form Vo(gﬁ‘f;)f(’), 7},)

, represented graphically in fig. 2,
S

aja

'{14?4 ;.jb

9)

Figure 2. The angular diagram for particle-particle scattering reads

.1‘57(2?(-'4.?11*1 AAA 3 17 Y7 . :g
AT S B TG D),

for 1L + 1_ + Q and 11 + 1. + Q even and O otherwise. Here j = (2j

. 3 2
+1)U2 and I is the overlep radial-integral of wavefunctions U for the

four interacting orbitals,

4 gr
Loeqy = / ’“"//% %yl = @)

?

Assuming Bethe's spin distribution RN of nuclear states, with a spin
cut-off factor depending on the number of excitons N, one obtains,
following the prescription of Feshbach, Kerman and Koonin, the
X-functions for damping as well ass for the possible exit modes in the MSC
processS). For the particle-particle scattering case, which does not

alter the number of excitons, the X-function is
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X d (})J, a4, Z Are)ir M{// ¢ / /’,f
it F/é?)'z -/ vg;//;fzfg,,j( A -10 -

For the interaction creating a particle-hole pair, considered in the

preceding section, one gets

xsj}w M)Z&/{L/ZQU@’ ;y)W) éz)f//&&

with —3','== A w5 A , /,/4/.; <
F153) %/qlte?//qugz)/{_i 0)
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FORMATICN AND EMISSION OF LIGHT PARTICLES IN FAST NEUTRON INDUCED
REACTION--~A UNIFIED COMPOUND PRE~EQUILIBRIUM MODEL(2)

«
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Abstract
For fast neutron-induced reactions for structural

materiale by using the unified compound pre-equilibrium
model, the light composite particles emissions have to

" be taken into account properly. The mechanism of cluster
formation and emission have been investigated., Estimated
results with considering secondary emission process have
compared with experimental data. It shows that the unified
compound pre-equilibrium model can be successfully used to
evalute nuclear data.

Key words: low energy nuclear reaction, exciton model
cluster formation factor

1. Introduction

In fast neutron-induced reactions for structural materials the
charged particles emissions estimation has to be taken into account
properly. Besides the proton emissions, the other light composite
particles emission, for instance, &, 3He, d,t emissions will be
taken place during the reaction process. Thus, how to form such
composite particles inside the excited compound system needs to be
described. Although pre-equilibrium emission of light composite par-
ticles in the framework of the exciton model has gotten some success
for years, there still remains some ambiguties in the formulation.
C.K.Cline first derived the formulation of composite particle for-
mation probability in ref.(1). The main idea in ref(1) is that
while the particle number above Fermi sea is equal to or greatsrthan
the composite particle number, the composite particle will be cons=-:
tituted and its formation probability will be given according to
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some simple arrangement factors. The calculated composite particle
spectra are much smaller in absolute values than the experimental
data, In order to improve the results, several formulisms have been
considered. E. Betak et al.(a)
factor concept and derived the factor and the formation probability

proposed the intrinsic phase space

for each configuration. Although their results are quite good in
fitting the experimental data, the assumption of constant formation
probability is reasqnless from the physical point of view. A.Iwamoto
et al.[6] proposed a model based on the statistical phase space argu-~
ment by means of the Fermi gas model to derive the analytical expre-
ssion of the formation probability of the complex particle. Their
main physical point is that some of Pparticles which form the compliex
particle may come from the levels below Fermi sea. The consideration
is quite similar to the pick-up process in direct reaction theory.
This physical picture is more reasonable. The calculated results
have been improved a lot and the experimental data can be reproduced
well., It may be seen that their derivations of the formulation are
very complicated and t#dious In the paper , we adopted their phy-
sical idea and simplified the derivations. Almost the same results
have been obtained. The physical assumption of the formation proba-
bility, calculated results as well as their dependance on some phy-
sical parameters are.given in sec.2. In order to emphasize the con-
sidering formation factor, we only calculated emitted particles
cross section. In sec.3 the emitted chargéd particles_spectrium,
cross section formulations and calculated results are presented.

As the matter of convenince, we have calculated cross section for
structural material;suFe induced reactions by neutron with energy

in the range of En 20 MeV to avoid the third particle emission
process, Finally a brief summary discussion is illustrated.

2. Formation Probability of Light Nuclear Cluster in Excited Com-

pound System
AS in cluster model, we define the center of mass coordinate of

a cluster composed of N nucleons at R as the coordinate system of
the cluster associated with a harmonic oscillator potential.

(2:1)

Suppose the intrinsic wave function of the cluster corresponds
to the ground state of the potential. Thus the total wave function

of the cluster reads

~
YW= [ Pr) = PrRIOns (2.2)
with e
Yz 3/4 -_"Z. 1 (2.3)
gé(yy = (=) 5”70{ =7 }

3/4 ﬁ I3 (2-1})
dw= () exp [~ THRS
Heregb(R),gbint,qb(ri)stand for the mass center normalized wave
function, intrinsic wave function, single particle wave function,
of the cluster, respectively. The relative coordinates for N=2,3,4

are defined as follows

A/::-a.. ?-'?;'I“'F; .
N=3; fl:ﬁ'?& ’ F/"'EL"T*’::)'):'~
a - =7 A = = = o 2
e Vafi-r , Feh-f , r=di(nen)-1h-%)] (5.5
The corresponding momentum for N=2,3,4 are given by
W22, FH=dB-4F
- -— /-l 7 —r
A/‘J: Pf"“",{?l"_‘{'?z’
fad - - —)
BomFE eda-5F. (2.6)
- - ] = [ — A 2
Weds  F=dPoThA, Predb-{h
-t / - P — -k
Fre=g[tBt B (Br42u)] |
Thus the intrinsic wave function can be expressed as
- . ﬁ 3/ Py
V=2, ¢mt“(’l'7‘(‘) (‘cx/a[-—g)’ I3
=3, L 2 3y N 2
N=23: ¢,,,t._(7%;—) ex/:/~—g/- fr, f} (o
- ., B v N )
N=4, ¢mt‘— (47?-’-) gz//_.zé_(f*)u‘)_{/gl}'
The r.m.s. radius ofythe ¢luster is
2=' ; 2- ﬁ"é‘)k ” ! =
R A/./L'A/(" 1@ivel A 3y (2.8)

Here dj, stands for 3(N=1) dimensions of intrinsic¢ coordinate.



the cluster. In the present model, we take the mass center coordi-
nate R is arbitrary. By means of this condition the derivation of
the formation factor of the cluster can be simplified more obviously,

Substituting the intrinsic wave function into eq.(2.8), we have
the relation between the r.m.s. radius and the parameters of the
cluster harmonic oscillator potential,

),/.’:'z e 3 - %_ and the formulation is very much similar to the one of ref(4-5).
A i, Thus it can be concluded that the derivation with the restriction
3 of R is more tedious, but no more physical results could be obtained.

T /

Fzs = 7= mu

g Some of particles which form the cluster come from the levels
f.v:«"' 76 = Tt above as well as below the Fermi surface have been taken into ac~

N3k . .
“nus, the parameterw, of the cluster harmonic oscillator can be count, We take [1,m] to express the particle number above and below
determined by the r.m.s. radius of the cluster., Because of the con- the Fermi surface,respectively, and have l+m=N. Thus the conditions
dition of the cnergy conservation in the harmonic oscillator poten~ are following. - .
1Bl 2P, (=024

tial, each related degrees of freedom provides energy of 3/23‘!4/N, -

(2‘9)

’

l;l‘ﬁ; s }=/1¢“""’-

i.e.,

- L Lt gt
V=2, "(ﬂg 2 m T ’33“4’4 Y, The formation factor of the cluster can be obtaine by the integ-
”m 4 / . ration of phase space, which take “he form of
s UnZ Bt e o
« V=2, Fomtsa) = ,j‘ .44
o2 3 Ay Qni) 2 fixed ™)
ME==m, = + muyis 4 Jixed,
3 P2 I R N A YO
2
sge wmZ B g .
2 . ] *«muhf t#w“/ . IV""JI /LJM(E-’):-}_:I—"L K/D;d/,ldfﬂ(//
L= 2t . (2.10) (2R%) 7 Jrred, 14n] ’
2, ',—77—-4-4-—ML(./4)‘/ =:g_—7ftd4, <
s — _ / a4 Y o el (2 ]2)
e LA O S Mado  Fomt(E)=T37757 Afy apy dpy- IRV AT .
A= m, —éf AW = LA (2R%)7 {,}_ﬁ(ﬂ/}{ﬁr} L
Here u is for the reduced mass.
We take £,, as the emitted energy of the cluster composed of N with the normalized condition
nucleons. Accordingz to the energy conservation we have 12' 17_:(”’ (Ev) = 7 (2.13)
2 34 m .
Ev alyr ik 2‘—;‘“/”(”,_,)_,4/[; ;N (2.11) The parameters are shown in table 1.
Here, P is the momen_t;,um %f mass center of the cluster. Table | Parameters
P=;§ 2 N cluster ry(fm) Fi) y(NeV)
EF is the single-particle Fermi energy(30-35MeV) and BN is the (for free cluster)
binding energy of the cluster in the composite nucleus. It can be > ) 1.96 8.1
see clear from eq.(2.11) that after determining emitting energy& 1
N, 3 t 1.7 4.l
the momentum of the mass center of the cluster also can be deter- 3 5He 1.88 11,7
mined., On the restriction one can count the number of states of the 4 o 1.6 18.2

23 intrinsic freedom of the cluster to obtain the formation factor of



94 The expressions of F, n(€q) for d cluster are

L 2BriEm) P
Q, (é?"ff} 'f'&a.(ff"ﬁ}’ 2Pc<? ‘0;;-“/;)4\’2

FalP)= 1 0, (A 42% ), 2YBEm < P< 2k
2, 7<4-J/,’:“-£,m (2.14)
o 2 2/ 22)Bm <P
- br- )Gt A, B < Perpun B
T (p)m el .
Ay ) /*-ZQL{J&‘;;‘(Z‘E)-*&; (&-,J-A)/ (/F'a'-@ﬁ//%*-&'ﬂ<£<*/;
/+Qzl/f‘5?)"6?/ (&“5)/ ;};.da(f({/&tﬁm
0. pespeajBm,
f g 3 rewr AL
7;" (Pr= &/('%-a.j:&a (J/#{fp‘}*ﬂ): (/;:-f_)’ '2./’}’-'-5») <f<"'/’:
&p-fo-an-£) spezfom<perBiEm
:, Pty -2 fEim
0. try = g (357 (1= g =g P10
il 01 2z " (2.15)
ba (0 =P BR (E (m = F g F e
The relationship between F and Ed is given by eq.(2.11).

The expressiong of formation factor for N=3 are

2 jL.f"/} e H / ~
ES )= T ap prtdam=pry ™ | deasp B (£
=

ex g’ {
——

35 % [° >
+ }j’ ap'o ($mp ) [ deap Bou 50
Fr ~ ’

L 4
’ -& J-I- -~
f;:”zf)—ﬂ‘ —2Z {]’d/'ﬂ’:(}ﬁé'"'/“//.j, Aps o P2

AT
r/}‘:é"? 3 8 ’
- / 0//,,z(}fén./,,x)f{[/dwp,r,,/,@ +/x(g,a;—3,z,o“)Jj
.-?Lf"/} 5 }12_& —,¢ , 0/ P
¢ * , - 2 % A
Fo )= m[/f//"ff%m// ‘_/,'(("-’ﬁ/‘:z %
J_;ﬁE,m y ¥ ,
':L//d//’olz(}é_ ”’_/,/f) 4[/d/ﬂﬂz‘l(lb*“/eo/(l.f/3£/{,3-)])
FR ey yo— -

(3 a7 7 -m, %,
Fis g, =¢m/jd/ ,0’2{35‘2_}07-/’1') / g Fos {/’ﬁ')j‘ .
with Pl Y

~~ 2 _4 1 !
4 =[§f sSpprep 1
6= (3PP ) 3pp

Here 8 is the angle between P and p'.

(2.16)

(2.17)

The expression of formation factor for N=4(& particle) are

— o) 2 Jkam /
E B e 2 )
Fao () T (Egmy* ./df P’ (2 ~/>/f)/‘{/ /(to/e;;‘(/’,)/;» &)
[ -7 -

o) 2 Eem L Iy
o B mm | PP

{-'-/I ;'(0/8 (/;:v o dFon (P2 7 (Pe) Fay (/-.)]} >

2 Egm

&) 2 V4 - 24

Far (P)= e jd/ Ilf”'(&tuﬂ-//'y <
b

{/ Ia’m/a [P OastPe ) sl fad o (Ped * Fpz () P (/’—)Jj',
-’

by 2 ,/JEA*) n
;'73 &= T (Zom)b /d/’p’)(liam-ﬁ”_)

{/ I‘(U’Jﬂ [/;I Cfe) Fos tPo ) v Por 1/l Fun //’_JJ}

(2.18)
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JeEwm /
. 2 ., ,
Fowl2)= m/" Ap’ prt (2 Fym- pt chosﬁ,l..(/,/;;,r/./'

with P=d 2% 4pplenp

,Q. =é2’17’)—2P’(ojlﬂ . (2.19)
The calculated results of cluster formation factors are shown

in fig.1, . It can be seen well that when the emitted charged

particle energy is not so high, the pick~-up process to form the

cluster plays a important role, and occurs at the very begining of

the equilibrium process, i.e. at the small exciton number state which

has more high emission probability. Thus such pick-up process give

a dominat contribution to the complex particle emission and the expe-

rimental data can be fitted well with this model.

3. Formulations of Emitted Particle Spectrum and Cross Section

We have calculated charged particle spectrum of n+5“Fe in order
to see the validity of this model.
The compound system has the excitation energy as

M ~_ 4
En Yy Zn-fB'(#-H)r-?ﬂ—[,,?ﬁ,, (4?/). (3.1)

Where En is the incident energy in L-system, A is the mass number
of the target, B, is the binding energy of the incident neutron in

the compound system.
The life time master eqiation for first emission reads

— San, =AY 2, EOT Yens, 202 A n-2, E0T Y (01, B

-[3‘1'/(”’5)4.,)'_'/(”‘5/7#-Wr“)(ﬂ,EJJ Zl'/(ﬂ, EJ. (3.2)

with initial exciton number ng2for neutron induced reactions. We
consider first and second emissions of n,p, ,d,t,BHe, for neutron
induceg/ structural material reactions.

The normalized condition is

g.- T, 2 )WY en ) = 1
(3.3)

Table 2 shows the parameters related with n+ %7 reaction.

Table 2, The spin and the binding energy of
the emitted particles (in Mev)

1 2 3 4 5 6

n P . d t BHe

¥ + 0 1 % 3
>Fe 5.297 9.212 B.555 15.926 21.725 16.992
HMFe(77Fe-n) 13.318 8.853 B8.418 18.684 22.961 19.734
Shyn(OFe-p)  8.938 7.560 8.759 13.275 19.056 18.285
22Mn(PFe-d) 12.055 6.561 9.156 16.375 19.379 20.398
52n(?Fe-t) 10.534 6.544 8.656 13.581 20.324 17.678
520r(97Fe~"He) 12,058 10.524 9.353 19.331 22,409 21,788
21cr(PPFe- ) 9.261 9.510 8.941 16.628 21,926 17.892

Frow the physical point of view, the cluster will be constituted
according to the arrangement of particles above and below the Fermi
surfacefg,m] . Actually, the m particles below Fermi surface do not
come from the collision process. Thus, the increase of the hole
number m to form the emitted cluster does not influence the change of
exciton state density. By means of the detail balance princeple the
emission rate for f particles above Fermi surface can be expressed as

2244/
W LhEG) =SBy & OO G ()RS (24 £.5)  (3u1)
with . w y
£ (F-L, 4. E-{b~‘€4,)
'Qﬂ (/'4’5'2/}): Wip b
Where I4 is the spin of emitted 8 particle, & is the exciton state

density, az%E,g) is the inverse cross seation of emitted 8 particle

with energyg)at compound system excitation energy E which can be
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is the binding energy of @ particle
Here the renormalized

calculated from optical model, B

in the system, which are shown in table 2.

Williams formula is employed for the exciton state density.
The emission rate for all case of #,m reads

5" £
w, =2 W VE, £ .
B (PhEE)=E We (P h E, £5 ) (3.5)
Here -Z(ﬁ) stands for sum over all of the possible § values.
The total emission rate is
- 5 £ -
W phE)mZ X JWir 4 5 zpodss
— (3.6)
z 2 L p,
,Zazxr,e) £ Pk, £,
For y'-ray emission(g= 7), the Weisscopf strong coupling model
has been adopted. 6)
After first parti le emission with energyz;, the residual
excitation energy is
£, (3.7)

B = L= 55~ 8ctrs
Taking into account the second emission process, the master equia-

tion for residual system takes the form of

2 pay ,{5ft}""3 NPt ) Pt b1, &

Sl A “e w3l (/u/,f,a/)/df(/{f/z-'/,c)
(AL P A IR AP b« WP A, Es0) P10t A £ Vr) (2-8)
* "‘Jp Prd, 4,5, Zg )P prl b0,
with imitial condition as PYp b peaymo
and  PYyp ) EL terre) o,
(3.9)
The life time master equiation of eq.(3.8) reads
—u)/g'p(,o-mﬁ 5 E g0 TYepr kb, 4, 2
=S (Pl hot) LLpet hrt &)+ X5 Pt A0 T 21 p-, bl z/’)
(3.10)

~[ 3V cph) + AP L A + W(/(A £,)] Tl eph, c/)

Summing over exciton state one gets

= £ )
/:Z}; wﬂ (Pt h, E, &) Tl prd b E
ﬁ)_ W (3.11)

c/’l Z(/(/’,j,,_t/‘d')
The normallzed comdition can be obtained in the followed way

5> ) 3, ’
> /Mw "k BTG P B Ay = 7

£ 28 (3.12)

The double energy spectrum of two particle emissions with energyg‘
and &r, respectively,is given by

g =
—-——-=o~.>_2z b 2w (4 £
Aigdss 1(/) A 4 /,)a) (2.4 5.5) (3.13)
With the normalization condition(}.IZ), one can easily get
//d ATy 425 = (3.14)

Spd )

For different first particle emission, Bg as well (4,m]
(at same.Bp) is diffrent. Thus we have to solve master equiations
one by one for second emission process,which are independent each

other.
For gor§ =7 process, the spectra are
q’(}\ dlﬁN ’ (A
= ASp 0"2_ 2 T Pk, Eg I Wy Ap4E,)
Atp ~ 7 dss A5y gk P2 Gpd W g2 (3.15)
s Eog-is
,,Q.; "/4{ A7s Az = 6‘/& £™ep b, x- 2’;)14)/5 hAE-GEILE (3.15)

Thus the cross section of one particle emission process can be
written as

Uenpo= o*,,ﬂ/v y T (P h. &0 W pi b, £47)

£- Er"/d (3-16)
5 (3) s
10 ) BT RR -5 W p 4 Fp gy ds,

14
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Infact, for g=7,5=1,2,3,4,5,6 process the results are quite small
(¢1mb) to be neglected.
The normalized spectrum is

a(ge)ﬁ[g(”'/”‘)"' ag (”""/9/.7/6"(»/9.)

(3.17)
We also have O'(n,r) for,g:SZ:? as
O“(ﬂ,f‘)ﬁi/q,: pza AL, oty
(3.18)
=2 Z 2y ()/ ) -
ﬁ/t,/m T P4 eIW P K East s
The spectra for,g,S*? are
daﬁ\ df Z 2. (/ 4 W -t
o{,zﬁ ALe 4:; 5= «"WM 7L /4/ 2.4 By (3.19)
Za-tr
= ’ k) ,
dz‘; /d%d‘? Ay = 0 ,e‘;“v)’?; 22 b 5wy (P4 &' £1AEf 5-20)
th
Wi Ema £ -B/, G108y (4+1-Np ),
Here Nﬂ is the mass number of the first emitted particle .
The cross section for twoparticle emissions is given by
A0~
Tnps) "".// ATy AT) ALy A5
Em
=0, 2 ZTh 2 W p 4,5 5Hel g, (3.21)
A s 203 PA < (P4 74 £ Vad
The normallzed spectrum for (n,2n) reactioan:S;l) takes
Fant2) = 7 w/df,a Y /;”]‘ (3.22)

The parameter of the internal transition K takes the value
of K=400 MeVS. The pair correlation parameters A (A.Z) are
the fit parameters. Lack of the experimental data on some
reaction channels, we setA =0 temporarily except the reaction
channels of (n,p) and (n,& ) in which A ( 4Mn)=—o.75MeV and
(5“Fe) {.2vev are taken to fit the data.

The calculated results of n+ 5L’l"‘e are shown in Fig.2.

The contributions from F, (€4 ) in the (n,ol ) reaction
are shown in Fig.3,4,5 for the incident reutron energies
of En=12,16,20, respectively. The results indicute that the
dominant pickup components are from l=1 and 2, which are
corresponds to three and two particle pickup-type reaction.
It turns out that the previous calculations, in which the
particle emission only starts at the particle number P2 4,
always produce much smaller composite particle spectra in
absolute value than the data. In our work the degree of fit-
ting to the data of & -outgoing energy spectra is excellent
without any adjuctive parmeter, We belive that the pickup
- type machanism mast be taken into account for composite
particle &missions.

3, Discussion

The UCP model presents a clear physical picture. The pre-equi~
librium process transites into the equilibrium process smoothly
instead of the combination of two models. The formulas are straight-
forward -
model is less than that in the combination modsel.

There are some problems remained in the UCP model. One is the

and the number of the conjuctable parameters in the UCP

spin population factor f(n,E,I) which counts the contribution of
paper we set f=1 unless we
Another is the determination

formation factors of the cluster

spin and angular momentum. In present
learn the exact effective expression.
of the value of the parameters in the
for instance, the value of the Fermi energy of single particle £ £
In a uniformed level model the value of £, should differ from that of
the shell model and other models, and the oscillator parameter %A
should also be different from that of a free cluster. Under reaso-
nable physical conditions they can be treated as the conjuctable
parameter,

The enhansment factor is exclusived in the UCP model because
the formation factors are taken into account. Based on the frame-
work worked out by now the code of the calculation of the double
differential cross section will be disigned with the consideration
of the Fermi motion, Pauli principle, and the energy correlation.



B In addition, the code for transition from C.M, system to the Lab,

system of the formulas mentioned above ready already.
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ABSTRACT
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A multi-step direct multi-step compound model free of the
criticisms suffered by that of Feshbach, Kerman and Roonin
is defined in terms of the statistical hypotheses made about
the interaction matrix elements. The model is briefly de-
scribed and discussed. Alsoc described are our unsuccessful
attempts to parametrize the level and transition strength
densities needed in pre-equilibrium calculations in terms of
their moments,
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1.0 INTRODUCTION

In the last decade, an intense effort has been made to ob-~
tain a consistent quantum mechanical description of pre-
equilibrium reactions. This has been motivated in great
part by the growing body of experimental cross section data,
differential in energy and angle, which has been obtained
over the same period. The early pre-equilibrium models (1),
using emission rates based on the Weisskopf model, were able
to describe the energy spectra observed but were not pre-
pared to deal with their forward peaked angular distrib-
1 utions, More recent versions of one of these , the exciton
model, have succeeded in describing well the experimental
s 5 7 4 " ' ' "7 ' a angular distributions (2,3). The pre-equilibrium and Hauser-
Peshbach equlibrium compound emission have also been unified
within this model through the inclusion of the effects of
angular momentum in the emission rates (3). Despite their
successes however, these models remain semiclassical ones
based on hypotheses which are intuitively reasonable but
difficult to evaluate or improve.

L S llllll

ol = Outgoing Energy (MeV)

FIG. 5.

The f£irst major step towards a quantum mechanical model of
pre-equilibrium reactions was taken by Agassi, Weidenmuller
and Mantzouranis (AWM) (4). Using well defined hypotheses on
the statistical nature of the matrix elements coupling con-
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figurations, they obtained a unified nodel of pre-
equilibrium and equilibrium reactions. Their hypotheses
however yield angular distributions symmetric about 90° and
can only describe the multi-step compound part of the re-
action.

A quantum mechanical model providing the obaerved anisotropy
was developed shortly thereafter by Tamura and Udagawa (TU)
(5,6). Applying statistical hypotheses similar to those of
AWM to the states excited in direct reactiona, they obtained
a good description of the multi-step direct component of the
pre-equilibrium reaction.

One of the first works to attempt to unite the direct and
compound processes in one formalism was that of Peshbach,
Kerman and Koonin (FRK) (7). Although their model has been
used successfully to describe a large body of experimental
data (8), it has also justly suffered many criticisms.
Their model of the multi-atep compound component makes use
of a "never come back” hypothesis which prohibits the uni-~
fled description of the pre-equilibrium and equilibrium con-
tributions. The latter must be included by hand. Several
authors (9,10) have noted that the multi-step direct compo-
nent cannot be written in terms of DWBA matrix elements as
done by PKK. Feshbach claims to have shown that this can in
fact be done (ll). The fact that all successful comparisons
with experimental data have been made using DWBA matrix ele-
ments certainly provides strong motivation for such an at-
tempt. However, Udagawa, Low and Tamura have pointed out
other approximations in the model's multi-step direct compo-
nent which would still leave its accuracy in doubt (10).

Here, we will draw on the works of the Heidelberg (4,12) and

. University of Texas (5,6) groups to show how the FRK model

can be modified so as to satlisfy the criticisms above. We
will then discuss our not 8o successful attempts at
parametrizing the level densities and transition strength
densities necessary for its use.

2.0 AN IMPROVED MULT1~-STEP DIRECT MULTI-STEP COMPOUND MODEL

We can lmprove the multi-step direct multi-step compound
model of _PKK by modifying the astatistical hypotheses on
which it is based, We will use hypotheses consistent with
those of AWM and of TU. The multi-step direct reaction
model of deeply inelastic heavy ion collisions developed by
Agassi, Ko and Weldenmuller (12) serves as a useful gulde in
restating the statistical hypotheses used by TU in terms of
the interaction matrix elements. In particular, we note
their emphasis of the requirement that all statistical hy-

potheses be made in terms of reduced matrix elements in or-
der toO conserve angular momentum,

As in the FKK model, we divide the aspace of astates to be
considered into a part in which all particles are in bound
single particle states and another in which one and only one
of these particles is in a continuum state. We label these
by € (for compound) and D (for direct) respectively. We take
as statistical hypotheses on the reduced matrix elements the
following:

- For the bound state to bound state interaction, LA

ORNELS ERAEFIIANER I TN

= g*.’(; g‘“,(‘" SII' S-un‘

o (SONNTEINOY (K INTERN

e,

- Por the continuum to bound state interactlion, %‘{_,
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with all other possible pairs averaging to zero. In summary,
we suppose that the average coupling is non-zero only for
pairs of interactions that couple the same continuum chan~
nels and/or bound states.

Let us now briefly discuss the pre—~equilibrium model which
we obtain using these hypotheses. We start with the Born ex-
pansion of the Llippmann-Schwinger equation for the Green's
functions.

GI. Gh LG O\ [¥ee Yoo\ foI. ©
G’;‘; (‘?! [} (:,‘ o (:::t Vae Ngg o) G..LA

LY

G . © Nee Ve (C:L \!u_ Vea -
* o 62‘ VQL \)‘l c Q“‘ \JGL qd sa

Since the terms in the expansion which couple continuum to
bound states involve an odd number of like interactions,
they will be zero on the average.

Gee = G =©

We obtain equations for the average continuum and bound
state components of the Green's function by keeping the low-
est order terms in the asymptotic expansion of their average
as described in the work of the Heldelberg group. We will
use their notation of a bar joining two matrix elementa to
denote the average.

Por the average continuum state Green's function, we obtain

-

Gi = G, + GIL VTG,

where the optical potential, given by

- — —
U = Ny Gy Vae + Nee GE Ved

depends again on the average Green's functions. This optical
potential 1is nonlocal and generally quite complicated, de-
pending on the energy, excitation energy, angular momenta
and configuration. To our knowledge, only its ground satate
elements have been studied (13).

We obtain a similar Lippmann-Schwinger equation for the av-
erage continuum wavefunction

[#ES 2 [@tS + Qo Ut >

which we can write in differentidl foram as

(E=T- & -Var VEYI IS =0

where £_ 1s the channel excitation energy and V., is the ini~
tial distorting potential which we take to be ceal.

The average bound state Green's function is determined by
the equation

b * t . +
GL = Gl v GhL (& =i(mtr9))CE
where the shift factor and‘eacapc'width are determined by
4t U
r = Neca G° \/u_

tﬁk -+ ?5?



while the ‘spreading’width is given by

) —
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To calculate average cross sections, we first express them
in terms of the Born series expansion of the transition ma-
trix.

e

Teo = d# LT loro&er | T1ge>
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Beside the average shape elastic cross section, we f£ind in
general contributions from multi-step direct and multi-step
compound processes.
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The average shape elastic cross section is determined by the
average transition matrix.

— — 1
e = L2 1T 1ol
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The multi-step direct contribution can be written as
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The first term in this expansion is the one-step DWBA while
the second is the two-step process (neglecting any
nonorthogonality terms) 380 that the two together reproduce
the model of TU. There are, of course, higher order terma
that could be included although care should be taken with
nonorthogonaltity terms that also might be necessary.

In the multi-step compound contribution to the cross sec~-
tion, the formation of the compound nucleus and the
posterior particle emission are described by the factors

Tuc = Po LR INGAIND amp Nl R

] — R\ < z
-+ P\’ < %f‘ V\A 6;:' v‘oc \YS 1T.Ps<4‘( \\]‘_g e; \)BQ\‘*“’>

while the transitions between classes of states in the com-
pound nucleus are determined by the matrix 7T where

7).y = g A () - T <7

Here, the external mixing matrix is given by

-1 T y !
ap = R pLA NG QY Noe LA 27t pp CAING 63 Vo (>
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while the internal one is
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We note that the multi-step compound component depends on
the continuum-continuum {interaction which modifies the
formation/emission factors, the external transition matrix
and the escape widths. It is easily seen however that these
modificationsa do not effect the symmetry about 90" of the
compound angular distribution. This symmetry is a result of
the statistical hypothesis on the continuum to bound state
interaction which requires that partial waves differing {n
total angular momentum or parity contribute lncohereatly to
the cross section.

In the limit in which the coatinuum to continuum interaction
goes to zero, the multi-step compound component almost re-
duces to the AWM expression for the cross section. The only
difference is the elastic enhancement factor which is misg-
ing here. This reflects a deficiency in our statistical hy-
potheses which do not yet contain all of the symmetry to be
expected. We are studying the extension of the statistical
hypotheses necessary to include this symmetry, although we
expect the resulting modifications to have little effect at
the energies at which pre-equilibrium reactions are impor-
tant.

The statistical hypotheses we have given thus define a pre~
equilibrium model which yields cross sections having a
multi~step direct component equal to that of TU and a uni-
fied multi-~-gtep compound component similar to the one ob-
tained by AWM. The model also specifies the average optical
potentials, Green's functions and wave functions requiring
only the average interaction matrix elements as input param-
eters.

We admit that the model is exceedingly complex, even more 8o
than the original multi-step model of FKK. Given present
computational possibilities, it will be necessary to approx-
imate it in some manner before it can be usefully applied.
As it stands however, it could prove useful as a context
within which we can better understand and evaluate the ap-
proximations and models which we use.

3.0 A MOMENT METHOD APPROXIMATION OF LEVEL AND TRANSITION

STRENGTH DENSITIES

The most important quantities which eater pre-equlibrium
calculations are the average interaction matrix elements and
the level densities. An alternative description uses the ap-
propriate product of the two, the density of interaction ma—-
trix elements, which we will call the transition strength

density.

Combinatorial methods can calculate densities to within the
accuracy of the set of single particle states and the resi-
dual interaction used. Such calculations become prohibitjive
for large energies and/or complex configurations however.
We have thus studied the possibility of using a simple mo~
ment method to reproduce the average trend of combinatorial
calculations.

3.1 LEVEL DENSITIES

We will {llustrate the moment method calculation of level
densities with a simple case involving one type of particle
and hole. We will assume that we have N particle states and
N hole states and will write their energies as positive
ones with respect to the Fermi energy.

We first define an appropriately unnormalized one-body den-
sity operator for the system.

Ke
) = 7 (e ey F5 )

=

N > A -
x TC (efey T NS * 1\>
1=t

We note that when A= . for fixedX, this becomes the den-
sity operator for the independent particle ground state, We
obtain the partition function by taking the trace of this
operator.

Z(px) = Te L= (A ,%\’l

~———
/
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A power expansion in the factors X, and x,, a device first
used by Bloch (14), then permits us to identify the parti-
tion function of each configuration.

N
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The density of states could be obtalned by performing the
inverse Laplace transform of the partition function.
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In terms of a configuration's partition function, we can
calculate its moments using

oS, = g <'§;\1(‘§7\&?<MW\

Pw

== 0

where
Ny = 7:(9.\;#,\(\};__“0

It turns out, however, to be easier to calculate the moments
for all configurations at the same time using

Azx=0d

For example, we have

Etg‘x\\ = (1~ x,\ﬂ'(\-»x“\n“
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s0 that the number of states with p particles and h holes is
N Nw
Ny, = ( '\L \«\
f
Likewise,
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so that the centroid in energy of the p particle h hole con-
figuration is

<U>P.,\ T p L, ~ WL

where Li)P and 4{7\_are the average energies of the single
particle and single hole states, respectively.

Other low moments of interest are the variance in energy

VT~ {5, = RLAYP («e, - aﬁs o B (L~ 0.):\
-1

Ny=1 AN,

and the variance of the spin projection,the spin cutoff fac-
tor,
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36 The reconstruction of the density is most easily performed In the calculations performed, we have distinguished between
in terms of the cumulants rather than the moments. These are protons and neutrons permitting Iindependent particle and
defined as hole states for each. As the cumulants of the state densi-

ties for noninteracting particles are additive, the gener-
alization to this case i3 trivial.

4 Y
.0 ' .
(\4,}‘\?\: (‘ O-D—;\ (0_—-‘(\3 La % LP\‘*\.;A“\ We have compared the moment method densities with combina-

/;,—.\{1 (o) torial ones obtained using the same sets of single particle
states. Although protons and neutrons were distinguished in
the calculations, this distinction was not investigated. We
have compared densities summed over all configqurations with

and are simple polynomial functions of the moments. the same number of particles and holes.
We calculate the cumulants through sixth order in and ¥ In Flgures 1 and 2, we show two examples of the relatively
and approximate the configuration partition function as good agreement obtained for the density of four particle two
hole levels in “d2r. Similar results were obtained for other
4 « values of the angular momentum. We note however that the os-
"i = i (K.\\L\ (._IA\ (-‘(\ cillations in the combinatorial densities due to shell ef-
(P.\\:ﬁ.\‘\ - e'iP Joil LS —j-\“— "'ZT fects are not reproduced by the moment method results.

We would expect the shell effects to become less important
for more complex configurations. Indeed, as we can see in

We can then write the density of states as a derivative ex- Figure 3, the combinatorial total level density of five par-
pansion about a Gaussian, ticle three hole states in '2r ls much smoother than the
. A, % four particle two hole one. However, we encounter here the

\ NM\ e L __.‘, ('K.N\ (a\(—é_ principal drawback of the moment method. It can describe the

f (Q.\\;O\M - e y‘e Jayeis b ‘.\‘,l\. te 5\-)-/ 2 energy dependence of the density only within the first few
PICRF P § L - standard deviations of the centroid. Although the density

falls about four orders of magnitude from its centroid value
in this range, we can see from the figure that the error is

U-<\>>P still extremely large. Similar results, using up to 18 mo-
x e,s.L{_s, - (U-<U> q[\-(«(\, \ __)l?__ = ments, have been reported recently by Jacquemin and Rataria
Pwh A Y WM - L0y, (15). We thus cannot hope to solve the problem by simply ex~
AN . tending the expansion to include higher moments.
where 3.2 TRANSITION STRENGTH DENSITIES
%
by
(X 15\ : (K\\\§ < Dvé\: N \bp\ <0M\§C Qbubbh

~ Pw A We have also applied the moment method to the calculation of

= the average spectroscopic amplitudes to be used in the DWBA
calculation of one-step direct reactions. Following TU we

7 N QO
(KAP\ (V\“}Pk <\)M\?\h 40»?\4\'““ (‘“\A%\— 4“»9 assume a Wigner form for the residual interaction and write

its reduced matrix elements as

K,

We expand the exponential derivative keeping terms through - 12 L - -({\ <
sixth order. Finally, we obtain the level density using (\’ lbtgnt‘\lp IR OV T lse 51) Y

Bethe's difference formula.
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We use a single form factor f£(r), proportional to the radial
derivative of the optical potential, for all angular momen-
tum transfers and all excitation energies.

As we will look only at the one-step excitation from the
ground state, we write the spectroscopic amplitudes as

S &0
&1C = dye = 8

L

To be consistent with the statistical hypotheses discussed
earlier, we must have

vIx 4

AP ag = A S SS, (T

The total one-step angular distribution will then take the
form

o —
T VCIE JUND LR
an L AN

As a single application of the residual interaction will
only excite one particle one hole states,

18> = L gty (1130 Lwy

the necessary squared spectroscopic amplitudes are simply
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In general, to calculate moments of the distribution of
spectroscopic amplitudes, we would start with a partition
function

2l = T OFL 0 0T R ]

where F, is the one body density operator described earlier
and & is the appropriate transition operator. The function 2
now has two pairs of arguments, referring to the initial and
final states respectively. For arbitrary configucations, the
calculation of such a partition function is an extremely
difficult pcoblem. Fortunately, it simplifies considerably
in the case of interest nere. Because we specify the angular
momentum transferred and the initial state, the number of
arguments reduces to one.

Zo(g) = T AT oAl

We can then calculate the moments as before.

We have used the moment method to calculate the density of
spectroscopic amplitudes in “Ni. The same set of single
particle states, shown in Figure 4, were used for protons
and neutrons., The resulting one particle one hole spectrum
and the allowed angular momentum transfers are also shown
there, We note that, because of the Wigner form assumed for
the residual interaction, only natural parity transitions
are possible,

We have used the resulting spectroscopic densities to calcu-~
late the energy-angular distributions for f®pe at 14.6 and
25.7 MeV. We introduced two free parameters, A‘ and r,
which multiplied the contributions to the angular distrib-
ution of even and odd transferred angular momenta, respec-
tively. These were adjusted to obtain the best fit to the
data at 25.7 MeV (16). The strength density so obtained (ﬁ:
times the spectroscopic density) can be seen in Figure 5.

The £it to the 25.7 MeV data can be seen in Figure 6. In
Figure 7, we show the results obtained at 14.7 MeV, where
the same parameters, A7 and 8% , have been used but an
isotropic Hauser-Feshbach component has been added at the
higher energy logses. We see that the resulting fits are not
at all good. Comparing the results at the two energies how-
ever, we find the poorness of fit, at a given excitation en-
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ergy, to be about the same for the ¢two. A look at the
combinatorial spectroscopic distribution suggests that it
could better reproduce the experimental cross sections. The
moment method has failed here because it cannot reproduce
the structure of the combinatorial density but only its
global trend.

We thus conclude that the moment method will not provide an
immediate solution to the problem of precision in level and
transition strength densities, The combinatorial method
could provide the necessary precision for simple configura-
tions or at low energy. In some cases, such as that of the
one particle one hole transition strength, even more precise
methods could be warranted (6,18). Such methods cannot offer
a complete solution to the problem however. They are too
time consuming to be practical for the calculation of densi-
ties involving complex configurations. We believe that the
moment method could still provide a partial solution in
these cases (19). It will be necessary though to supplement
it with other approximate expressions in order to describe
these densities over the entire energy range.

4.0 CONCLUSIONS

We have given statistical hypotheses on the interaction ama-
trix elements which define a multi-step direct multi-astep
compound pre-equilibrium model. The model specifies the av-
erage optical potentials, Green's functions, wave functions
and cross sections in terms of the average matrix elements.
The resulting cross sections have the multi-step direct com-—
ponent of TU and a multi-step compound component similar to
that of AWM. As it stands, the model is too complex to be
ugseful for practical calculations but it can furnish a con-
text within which more approximate models could be under-
stood and evaluated.

The most important quantities which enter pre-equilibrium
calculations are the average matrix elements and the level
densities or, alternatively, the transition strength densi-
ties. We have studied the possibility of using the moment
method as a means of efficiently parametrizing these and
found it to be generally unsuccessful., The method does not
succeed in reproducing the structure observed in densities
involving simple configurations and, for more complex ones,
can describe the densities only near their energy centroids.
We have not completely discarded the method however but con-
tinue to look for some combination of methods (combina~-
torial, =oment and others) which c¢ould provide a good
approximation to the necessary densities.
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Count of p-h configurations by combinatorial method Iin
frame of BCS theory

G. Reffo M, Herman' R. A. do Rego"
ENEA
via G, Mazzini 2 40138 Bologna Italy

Abstract

A microscopic approach is described for the calculation
of exciton level densities based on combinatorial method for
the determination of the various configurations generated
according to a given shell model spectrum of single particle
levels, The total configuration energies are determined in
the frame of BCS theory.

The method allows for the spin and parity distribution
and can be used indifferently both for spherical and deformed
nuclei,

We confine ourselves mainly to the results for aluminium to
be used in preequilibrium calculations.

Introduction

The nain deficiencies of usually adopted exciton
level density formulae are known, They mainly depend on the
underlying statistical assumptions which fail in particular
at lower excitation energies and exciton numbers. In order to
avoid this type of difficulty we included the details of the
nuclear structure using a microscopic approach.

Accordingly in this paper we describe an attempt to
deal with our problem in terms of coabinatorial calculations
applied to a shell model basis of single particle states. The
total configuration energy being estimated in the frame of
the BCS theory.

' Work performed under ENEA contract 12498 April 23rd 1985
* Guest researcher under I1AEA fellowship BRA/8515.

the

The model

We used combinatorial calculations to determine the
number of configurations which can be generated at a given
excitation energy starting from a given shell model spectrums
of single particle sates (sps). 1In order to account for the
pairing interaction BCS theory was used.

The great flexibility of the method allowed us to
determine for fixed exciton numbers of both neutron and
proton type, the exciton level density, the distribution of
levels according to the spin projection and the parity
distribution.

For apherical nuclei we used shell model single partic-
le levels (spl) and for deformed nuclei we used Nilsson model
sps.

The pairing force was introduced as a residual interac-
tion in the frame of the BCS with use of the blocking method.

To determine the parameter G of the pairing interaction
strength, we iterated over the solution of the BCS equations
for the state with the lowest energy until a G-value repro~
ducing the experimental pairing energies as given in /1/ was
found.

Wle treated protons and neutrons separately and assumed
no interaction between neutron and proton gasses.

The method adopted is the same already illustrated in
ref. 1, where we investigated the dependence on energy and
exciton number of the spin cut-off parameter. In this paper
we want tOo show that the method is useful also to investigate
pairing effect for even and odd systems and parity distri-
butions.

In what it follows we indicate the configuration type
with 4 digits corresponding to p~h configurations for neu-
trons and protons respectively.

More details will be found in refs. 2, 3 and 4.

Results and discussion

Deformation effects. Calculations using shell model approach
without BCS are shown in fig. 1. As one can see, the gaps in
shell model sps spectrum are propagated to the energy beha-
viour of the density of exciton states and to that of the
spin cut-off parameter, giving place to fluctuations cha-
racterized by large deeps more pronounced at lower exciton
numbers and at lower axcitations., This typical nuclear
structure effect cannot be accounted for in the frame of the
usual statistical approaches like the Williams' formula /6/.

Por a deformed nucleus it is more appropriate to use
(sps) according to Nilsson model. The effect of deformation
is to remove degeneracles in spl producing in the state
density a more uniform distribution as one can see in fig. 1.
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Use of sps instead of spl has consequences also on the
‘minimum. configuration energy. Since the effect of introducing
-deformation. is to split spl, thresholds are generally lowered
~as shown in fig. 2.

Obviously, similar consequences are observed also in the

behaviour of the spin cut-off parameter, see fig. 3

Pairing effects. One result of introducing the pairing inte-
raction is to decrease the total configuration energy.
The difference between the total energy of a system of free
nucleons and the energy calculated with the pairing interac-
tion is called the condensation energy.

For a given configuration type in even systems, the condensa-

.tion energy has its maximum value for the groud state and
decreases for excited states.

o One consequence of this property .is that the excitation
energy of an ‘even system .with.the pairing interaction will
always be greater than that of the system without.

o For.an odd system .this is not always true. It is possgi~
ble that the condensation energy for the ground state be
lower than that of an excited one. This can occur when the
unpaired nucleon blocks an orbital important for the pairing
correlation. Thus the excitation energy of an odd system with
inclusion of the pairing interaction E(BCS), can be lower
than that without pairing E , making the difference E(BCS)-E

* negative,

An example of the spectrum of the energy shifts for an
odd system can be seen in fig, 4, where one can note both
positive and negative energy shifts. On the contrary, in the
lower part of fig. 4 we see an example of an even system,
where only positive shifts are possible.

"' since the effect of the pairing interaction is to shift
the energy spectrum of the state density a first possible
consequence is to change the configuration thresholds, as
shown in fig. 5.

N In addition the shifts in the spectrum which result from
the pairing interaction can change the location and the size

" of " the gaps changing the fluctuations in the state density

see fig. 5.
' All the mentioned consequences of the inclusion of the
pairing interaction are also observed in the spin cut-off as
gshown in fig. 6. 1In particular, the trend of the spin cut-
off parameter with energy generally fluctuates about a more
or less costant value, see fig. 7. Fluctuations become more
pronounced at lower excitation energy and for configura=~
tions with lower exciton numbers as it is clearly seen from
the comparison of figs. 6 and 7.

For lighter nuclei and lower configurations it is not
easy to establish a general behaviour for the  spin cut-off
with excitation energy. We note however that at high exci-~
tation energy , the spin cut-off increases with energy. This
happens because the single particle states with higher sping
are becoming available with increasing E. At sufficiently

high energies the spin cut-off tends to a costant value that

- depends on the nucleus and on the ‘extiton configuration. -

Parity distribution. The method adopted allows for the deter-
mination of the parity distribution as well. 1In fig. 8 one
can see the parity distribution using the sps from ref. 9 and
BCS theory. : ‘

We note that, as expected from statistical considéra-
tions, the nuclear “"states tend to be equally distributed
between the two parities at higher excitation energies and
for configurations with higher exciton numbers. However, at
lower excitation energies and for configurations with low
exciton numbers the nuclear structure greatly influences the
parity distribution inducing strong fluctuations, which are
more pronounced for lighter nuclei as can be seen in fig. 8.

Conclusions

On a theoretical basis substantial differences are
expected between the results of Williams' formulation and our
combinatorial calculations. The effect of the nuclear
structure typical of a sps spectrum cannot be accounted for
by any statistical approach. Such an effect can be very
dramatic for configurations with lower exciton number. PFor
instance in fig. S, for 1 exciton configuration, Williams'
formula yields a constant level density given by the sps den-
sity g=2/13 /7/. )

: Also the gaps present in our microscopic calculations
are not reproduced by Williams® formula.
Another severe difficulty in using Williams' approach
comes from the necessity of introducing the appropriate n-
dependent excitation energy threshold i.e. the minimum energy
needed to excite a given n-exciton configuration. In terms of
our approach the latter is automatically given as the sum of
the shell gap and the pairing gap. '

In addition our calculations, soon above threshold,
exhibit a sharp increase with energy, while according to
Williams' formula the level density curve rise up more slow-
ly, see fig. 9. )

A draw back is that our calculations appear to be very
sensitive to the adopted shell model basis. This implies
detajiled analyses of the nuclear structure properties in or-
der to determine the best sps spectrum. As an example, using
Seeger and Howard /8/ or Nix-Moller /9/ the structure can be
very different with deeps remarkably displaced from one to

another, see fig. 10
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Single Particle Effects in Precompound Becay Reactions

M. B8lann and T. Xomoto
Lawrence Livermore National Laboratory
Livermore, California, U.S.A.

G. Reffo and F. Fabbri
ENEA, Bologna, Italy

and

S. M. Grimes
Physics Department
Ohio University
Athens, Ohio, U.S.A.

1. latroduction

Precompound decay models generally rely on use of a partial state density
(PSD) formula which is generated using an assumed equidistantly spaced sét of
single particle Yevels. We expect this to be a reasonable assumption for
mid-shell nuclei; however it has been demonstrated 1.2 that quite large
errors may be introduced by making the equidistant spacing assumption for
nuclet which have neutron or proton numbers near or at major shell closures,
In this work we wish to review the simple qualitative considerations of thase
deviations expected for near closed shell nuclei, compare these expectations
with experimental results, and then begin steps to implement use of partial
state densities calculated with more realistic sets of single particle levels

in precompound decay calculations. We will do this for the case of Ir targets.

2. Qualitative Considerations

A {p,n) precompound reaction should result primarily from neutron
emission from a three quasiparticle configuration characterized by a pnn-1

description, leaving a residual nucleus of pn-] character, Consider the

90,91,92.94Z

shell model representation of the target nuclei r in Figure 1,
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where the neutron levels are represented3. Consider a (p,n) reaction on
these térgets; In the case of 90Zr. any one of ‘ten (99/2) neutrons may be
ejected to give.a ground state product. For slightly more energy, 8 neutrons
(91/2' FS/Z’ may be ejected. We therefore expect the precompound

9 Ir(p,n) spectra to start with a large ground state cross section, and
continue to higher residual excitations with high cross sections.

For the 9‘Zr‘(r).n) reaction, we can only populate the ground state if
the single dS/Z neutron is ejected. [f this is not the case, there is 3 4
MeV gap in order to eject one of the ten 99/2 neutrons. We could therefore
expect a small ground state peak, a large gap, foliowed by a spectrum which

otherwise resembled that of 90Zr(p,n) .

For 92'94Zr(p,n) we would 2xpect larger ground state transitions than
for QIZr(p.n). Because nuclear deformation should increase with increasing
neutron number, we might expect the 4 MeY gap to decrease for the heavier
target isotopes.

-

In Figure 2 Le show experimental (p,n) spectra from these four target

; 4
isotopes compared with geometry dependent hybrid model calculations . The

qualitative expectations discussed above are observed, and it is seen that the

GOH model precompound calculations with equidistant level spacings (ESM) are

unable to reproduce the nuclear structure effects noted. This is not the case

for mid-shel) nuclei, as is shown in Figure 3. We therefore wish to replace
the esﬁ densities with values calculated using shell model single.particle
orbitals. The method used to do this was by use of recursion relationships,
as originally programmed by Williams, and later modified by Albrecht and by
Grimes.]'z's'6 A brief description of the method used is given below, much

quoted directly from (3).

3. Calculation of Few Quasiparticle Densities

The few exciton state densities w(Q,N) for N similar fermions above the
Fermi energy with a total excitation energy Q are calculated from a set of
single'particle energies ¢ = E1 - EF measured with respect to the target

Fermi eneergy2 EF using the recursion relation !

“i(Q'N)'“i-i(Q’N)+”i—](0-‘i'N'l)‘ (1

The recursion index 1| refers to the ith single particle energy. The state
density u(U.NH) for NH holes that share the excitation energy U can bg
similarly calculated. The recursion converges rapidly. Results are then
folded to give the particle-hole state density u(O,N,NH):

Q
Ww(Q NN = T w(U,N)w(Q-U,Ng). (2)
U=0

[f both kinds of nucleons share the excitation energy £*, an equivalent
calculation based on the corresponding set of single particle levels gives
u(O,Z.ZH). Folding of both results yields the final partia) state
density,

£x
w(E* N Ny, Z,Z8)> T «(Q,Z,2Zy)0(E* - QN,Ny). (3)

These densities are defined by energy only; no information is maintained on
the angular momentum distribution; this is one possible shortcoming of the

present approach. Work by Reffo and his collaborators offers the possibility

to remedy this situation.

The subroutines used presently allow a choice of any of three sets of
internally generated single particle levels, or the option of reading in an
arbitrary set of levels. The internally generated single particle sets are
those due to Nﬂsson,7 Seeger—Howard8 and Seeger—Perisho.9 A BCS
pairing treatment is used_,]0 and the nuclear deformation is an input
parameter. For pairing in this work we use & = 11/\ﬁ;7 unless otherwise
noted. The final state densfties are averaged over a Gaussian averaging
function which approximates various causes of level broadening, as well as
facilitating comparisons with data which are broadened due to experimental

resolution.



4. [Implementation of Few Quasiparticle Densities into Code ALICE Similarly, the spreading width will change. We might therefore

expect that the constant averaging width of our calculation might

figure 2 shows that the contribution of the 3 quasiparticle decay better be replaced by an energy dependent function.
dominates the high kinetic energy region of the spectra. We therefore will’

use 'realistic' partial state densities only for the two and three With these caveats in mind, our first goal s to get some improvement

quasiparticle configurations in our hybrid model precompound decay over results using ESM. We may then concentrate atiention on impraving the

calculation, using the equidistant spacing model for higher order terms. treatment of the partial state densities for some of the objections noted

above.
Before proceeding further, let us summarize some of the difficulties in
the calculation: ' . ]For ne$tron~:nduce? reaction? we csmpute the following PSD tables:
nan o, npp , nn , pp , and np . For proton induced reactions we
1. The calculation considers only the energies of the single particle compute ppp-]' gnn-]' pp'1, Dn-]. and nn—]. These results are
levels; however, each residual interaction and coupling of the calculated for excitation energies up to 20 Mev. Above that energy the ‘values
angular momenta of unpaired particles should yield different level at 20 MeV are extrapolated using the ESM energy dependence for each exciton
energies rather than the deqenerate results assumed in our codes. number. The epressions used for the decay of the three quasiparticle states
1 are given by the following:
2. The targets used, due to being closed shell or near closed shell in
nature, involve single particle orbitals which may have very large for n,n’
ranges of angular momenta to which they may couple. The reaction 2 . X (E
de 0.5s(nn"'y) . 0.75a(p0"'0) (8
kinematics may strongly select against population of some of these g = °R[ ¥ ol

(=%

2 - -1
Jevels due to the kinematically allowed orbital angular momentum p(n"n LE) s(pnp ,E) A (E)HA(E)
transfers. These restrictions are not considered (as yet) in our

codes for generating few quasiparticle densities. .
8 8 e where the second set of square brackets represents the fraction of the

. . nucleons at energy ¢ which are emitted;
3. positions calculated for excited single particle levels will be even

more sensitive to detaiis of the shape of the assumed potential well
. for (n,p), we use
than for lower Yying orbitails.

-1 x(E)
4. As particle orbitals become unbound, the shell model levels become Q% - GR[Q;léei%2_¢Ql][. A
questionable in meaning; the centrifugal barrier, and for protons plpon . E) A (E)RA(E)
the Coulomdb barrier may mitigate this point for a few Mev. (for
90,91,92,94 :
Nb, the proton binding energies are 5.2, 5.8, 6.0, and for (p.n) we use
6.8 Mev, respectively.)
150t -1 x (E)
5. As the single particle energies increase the lifetime decreases, and %% - UR[O. plpn 'UL][ c

-]
the natural width due to the Heisenberg princ¢iple increases. elpm n,E) XC(E)+§£E)
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and for p,p',

da |, (QlSe(nnTin) | Q.Seloo”i)  Me(®)

ptop 7106 s(p%7I0) A (©)m(D)

dE 7 °r

5. Results and Oiscussion

We present results of these calculations using single particle sets due
to Seeger-Houard8 and to Seeqer—Per1sho9 in fiqures 3-13. Several values
of the nuclear deformation parameter between 0 and 0.2 have been used to

illustrate the sensitivity of results to this parameter.

We find some success in reproducing the structure effects on precompound
spectra. The overall quality of fit is probably superior to the results of
ysing ESM in Figure 2: The precompound routine in ALICEn has been revised
to generate and use realistic partial state densities for the leading (3

exciton) term.

There is great room for improvement of these results.:  One goal for the
future is an improved set of single particle levels. A candidate to be tried
s a recent set due to P, Ho11er,]2 A next step would be use of PSD results
with explicit dependence on angular momentum.]3 finally, we must give
consideration to using known low lying excited states to overcome the
inevitable jnability to predict these levels accurately via Nilsson type

calculations.

Much work remains to be done in this area. We feel that these
preliminary results are encoyraging, and that further work is justified.
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jndicated by closed circles; level splitting due to several
deformation parameters & is shown.

figure 2:
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Calculated and experimental (p,xn) spectra for proton energies
of 18 and 25 MeY on targets of 90'9]'92'94Zr. Solid points
represent the experimental angle integrated data corrected for
background and for i{sotopic impurities. The solid curves are
results of the geometry dependent hybrid model plus evaporation
model calculations. The dotted curves are the contribution of
the first (n;-s) exciton number to the total calculated

neutron spectra. Arrows represent end point energies. Data
are from Ref. 3.
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Figure 3:
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solid curve is the (1b)(1n)_' two quasiparticle density for
159Dy with §=0.31 plotted as levels per 100 keV. Open

points joined by line segments are the experimental angle
fntegrated spectrum for 25 MeV proton energy. The dashed curve
is the result of the geometry dependent hybrid model (GDH).

The GOH and experimental results are plotted as mb/MeY vs.

residual excitation, O0ata are from Ref. 3.

Caleulated and experimental results for

Figures 4-14:

The heavy dots connected by a line represent the
experimentally measured angle integrated (p.,n) spectra on
90,91,92,94 3

Ir with 25 MeV incident protons. The dotted
1ines represent the spectra calculated as described in the
text, using single particle levels due to Seeger and Howard

(S-H) or Seeger and Perisho (S-P), with deformation parameter
& as indicated.
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EFFECTS OF ANGULAR~MOMENTUM CONSERVATIQN IN

UNIFIED PRE-EQUILIBRIUM AND_ EQUILIBRIUM REACTION MODELS

»
Shi Xiangjun , H. Gruppelaar and J.M. Akkermans

Netherlands Energy Research Foundation ECN,
P.0O. Box 1, NL-175%5 ZG Petten (NH), The Netherlands

ABSTRACT

The master-equation theory of precompound and compound nuclear decay is
generalized to the inclusion of the conservation of angular momentum.

It is demonstrated that the constructed model contains the Hauser-
Feshbach, Weisskopf-Ewing as well as standard exciton models as limiting
cases. This unified pre-equilibrium/Hauser-Feshbach model, which may be
considered as a practicable version of the quantum-statistical, so-called
AWM theory of Agassi et al., has been computationally optimized, such that
the related numerical effort has become comparable to or less than that of
a standard Hauser~Feshbach calculation. With this unified model the nature
and importance of gome spin effects in pre-equilibrium reactions has been
investigated. The main conclusion from numerical calculations is that the
standard precompound-model results are close to those of the angular-mo-
mentust conserving model, implying that the popular semi~-classical models

are quite reliable in this respect from a practical point of view.

1. INTRODUCTION

Semi-phenomenological models for pre-equilibrium decay, notably the exci-
ton and hybrid models, are globally successful in predicting emission
c¢ross-sections and spectra at bombarding energies above about 10 MeV
[1,2]. These models do not consider, however, the spin and parity conser-
vation laws and disregard information conerning angular momentum alto-

gether. In this respect their status is similar to that of the Weisskopf-

»
On leave from the Institute of Atomic Energy, Beijing, China.



52 Ewing model, rather than to the Hauser-Feshbach model. There exist more

basic quantum=-statistical theories of precompound reactions [3-6] to which

the above comments do not apply, but these are hardly amenable for prac-
tical use. An exception is the multi-step model of Feshbach et al. [4],
but even this model is quite complicated, whereby for practical applica-
tion it has to adopt several additional simplifications.

A common procedure for applied purposes is to introduce a separate (pheno-
menological) pre-equilibrium correction into Hauser-Feshbach model codes.
It has been pointed out [7] that such an approach is ad hoc and will lead
to inconsistencies. A similar remark applies to the model of Fu [8], who
proposed to use the spin population of exciton states at equilibrium also

for the pre-equilibrium region.

It is therefore not surprizing that not very much is known about the natu-
re and importance of spin effects in pre-equilibrium reactions. It is cer-
tainly of interest to investigate this problem, if only to gain some in-
sight into the reliability of existing pre-equilibrium models in this
regard. Furthermore, knowledge about the spin population of exciton states
during equilibration is needed in considering the de~-excitation to discre-

te levels.

The present paper is an attempt to address the question of the introduc-
tion and the assessment of angular-momentum effects in pre-equilibrium
reaction models. In addition to the results of quantum~theoretical studies
(3,4], it builds upon earlier, partial, investigations by Reffo et al.
{9,10] and preliminary studies by Gruppelaar et al. [7,11] and Fu [8,12].
Some of the results presented here have been reported in a letter [13].

Section 2 of this paper develops our model for unified pre-equilibrium and
equilibrium reaction calculations with conservation of angular momentum.
The framework chosen is that of the master-equation approach [3,141],
within which it is shown that a unified pre-equilibrium/Hauser-Feshbach
modellcan be constructed. In Sec. 3 it is proved that this unified model
contains the Hauser-Feshbach, Weisskopf-Ewing as well as the standard ex-
citon models as limiting cases. Section 4 outlines the’computational pro-
cedures, which have been designed such that the model is easy and practi-

cal to use (the coﬁputational effort being not greater or even less than

that of a normal Hauser-Feshbach calculation) and it still satisfies a set
of consistency rules discussed in the earlier part of the paper. Numerical
results and their physical interpretation are the subject of Sec. 5. Sec-
tion 6 summarizes our conclusions concerning the effects of angular-

momentum conservation in precompound decay.

2. THE SPIN-DEPENDENT MASTER EQUATION AND ITS SOLUTION

The different versions of the pre-equilibrium exciton model [1,2]} can all
be derived from a Pauli master equation describing the temporal evolution
of the occupation probabilities q(n,t) of the nuclear exciton states n.
The master equation of the standard exciton model reads [14]:

dq(n,t})/dt = A,(n-Z)q(n-?-.t)*A-(n*Z)q(n*Z.t%[h(n)*A_(n)*Nt(n)]q(n.t).
(1)

where Ai(n) and wt(n) are the internal transition and total emission ra-

tes. Average emission cross=-sections are calculated from:

g%(a.b) =o, 5 W (n,e)t(n). (2)

Here, a and b stand for the projectile and ejectile and 9, is the total
composite-formation cross section. The mean lifetimes t(n)= of.q(n.t)dt

are obtained from Eq.(l) integrated over time [3]:
a(n,t=o) = A (n-2)t(n-2)+A_(n+2)7(n+2)=[4 (n)+r_(n)+W (n)]t(n), (3)

for which exact analytical solutions [15] and very fast computational
schemes [16] exist. We note that the above formula yields both the pre-
equilibrium and equilibrium contributions to the nuclear reaction. Agassi
et al. [3] and Bunakov [17] have developed a quantum-mechanical founda-
tion with regard to the above (phenomenological) master-equation approach
to precompound decay, by connecting it with a microscopic random-matrix
model. of the nuclear Hamiltonian [3] and by considering the nucleus as a
finite open system [17].
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Below we set out to generalize the master-equation approach to the conser-
vation of angular momentum. First, we observe that during the equilibra-
tion process of the composite nucleus the transitions within the system
may not change the spin J and parity N of the composite nucleus. Since it
is this process that is described by the master equation, it is obvious
that the generalization of the master equation to spin effects is ob-

tained by simply subjoining indices J and N to the above equations.

Thus, the angular-momentum ccnserving precompound model is expressed by:

aa”(n,t)/dt = AT (n-2)q" " (n-2,t) a2 (ne2) g (ne2, t)
AT () a2 n) o] (n) 16" (n, 0 (4)
whence one obtains from integration over time:
-a"M(n,t=0) = ATM(n-2)e" M (n-2) 42T (ne2) 7N (ne2)
D ) a () ol (n) 157 ) (5)

and the average emission cross-sections are given by:

do JN Jn
= (a,b) =0 I I W (ne)t (n), (6)
de 8 7mn b
Jn
witho =% o .
a I a

Next, one needs to know the emission and internal transition rates as a
function of J and M. The emission rates can be written as:

W (n,e) = 35 Tg% 4 (810 (=D, I* 1 (E)Q(n) /o (.. MLE) . (7)

IIQ!J’“'

Here, and Pe indicate the residual and composite nuclear-level densi-

p
ties, deesignates the transmission coefficient, I' and ' denote the
spin and parity of the residual nucleus and £' and §' stand for the orbi-
tal angular momentum and the channel spin of the emitted particle b. Qb(n)
is a factor accounting for the memory of the projectile type by the nuc-

lear system during the pre-equilibrium stages [187; it is unity at equi-

librium. We remark that in the derivation of Eq. (7) no improper use of
detailed balance is implied; an energy average over final states has been
introduced, however. The internal transition rates can formally be ob-
tained from Fermi's golden rule:

AJH

an .2
N (n) by <M

I’ Pp(nt2,3.M) . (8)

In order to solve Eq. (5) for the mean lifetimes tJn(n) we further need an
expression for the initial condition. It is evidently given by:

0Jn
Jn
q" (n,t=0) = =& q(n,t=0), (9)
a
where q(n,t=0) 1s identical to the initial condition for the standard mas~

for the first emission.
LRE ]

ter equation, being equal to én
Equations (4)-(9) constitute a complete master-equation model for compound
and precompound decay with conservation of angular momentum. As it stands
now, however, it will also be quite involved for practical use, since for
each J and N1 a different set of coupled equations must be solved. Moreo-~
ver, the angular-momentum structure of the averaged squared matrix element
in Eq. (8) is not clear beforehand. Like in Ref. [4], a precise calcula-
tion will involve complicated angular-momentum coupling expressions. The
discussion of these computational questions will be deferred to Sec. 4,
where we will suggest some approximate, time-saving, but still physically
plausible procedures.

Finally, we want to point out that the angular-momentum conserving master-
equation model as developed here can be rewritten in a form that closely
resembles the Hauser-Feshbach formula. Equation (5) is a probability-ba-
lance equation, very similar to the one derived in Ref. [3]). Summing it
over all exciton states and inserting Eq. (9), it follows that:

Jn Jn Jn
E wt (n)x" (n) = o /oa. (10)



which is nothing else than the law of probability conservation. As a con-

sequence, the cross-section formula (6) may be written in the equivalent

form:
2w n,e)e’ ()
da Jn n
== (a,b) =¥ ¢ . (11)
de Jgn & ¢ win(n')tJn(n')

n'

Upon writing out Eq. (11) with the aid of Eq. (7), we find:

do 2 2J+1 a
p—ay = T i E
ge (a,p) =n £ §n (2s+1) (21+1) %j 25 (® =
5 Tg'j‘(c)pb(n-b,l',n',E‘)tJn(n)Qb(n)/Pc(n.Jv"vE)
I'z!.}'nan
z Ide'Ts;j"(C')Pb.(n'—b’.I".H“.E")TJ“(H')Qb'(n')/pc(n"J'H'E)
I"Q"j"l‘l";n'b'

(12)
Equation (12) is equivalent to Eq. (2). It is seen that this expression

for the combined pre~equilibrium and equilibrium emission cros-sections
is formally obtained from the usual Hauser-Feshbach expression by the

replacement:

b (L', ,E) » I py(a=b,I', 1" ,E) " (n)Qy (n)/p (0,3, 1.E). (13)
n

Hence, the model constructed in this section may be viewed as a unified
precompound/Hauser-Feshbach model. This will be further elucidated in the
next section. In addition, the above discussion has made clear that our
angular-momentum conserving master-equation model may be interpreted as a

practicable version of the AWM theory of Agassi et al. {31.

3. THE HAUSER-FESHBACH, WEISSKOPF-EWING AND STANDARD EXCITON MODELS AS
LIMITING CASES OF THE UNIFIED MODEL '

Pre-equilibrium models are intuitively expected to include the Hauser-
Feshbach cross-section, derived from standard statistical compound-
nucleus theory, as their equilibrium component. This can transparently
be demonstrated for the master-equation model developed in the previous
section. At equilibrium the exciton-state occupation probabilities are

directly related to the available phase space:

Jn
Ga pc(n'JvnlE)

o, p(J.1LE)

n
qJ (n,eq.)

(14)

with pc(J.n.E) = ¥ pc(n.J,n,E). Eq. {14) also corresponds to the statio-
n
nary solution of the spin~dependent master equation (4) (with, of course,

the emission set equal to zero). Further, Qb(n) = 1 at equilibrium and the
mean lifetimes are taken proportional to Eq. (14). (From an exact stand-
point there will be slight numerical deviations, since the Hauser-Feshbach
and Weisskopf-Ewing models explain nuclear decay with the presupposition
that there is strict equilibrium. This inconsistency is not present in the
dynamic master-equation approach: only a quasi-equilibrium can occur in
dissipative systems.) Inserting the above equilibrium conditions into the
generalized cross-section expression (12), we immediately obtain the

usual Hauser-Feshbach formula.

It is well known [19] that the Weisskopf-Ewing model can be derived from

the Hauser-Feshbach formula by means of the assumptions:
t t t = t t
pp(L'.M'LE') = (20'+1) w (E'), (15.a)

mb(E') denoting the state density, and:

Tg,j,(c) = Tz,(c). independent of j3'. (15.b)



The latter assumption is also often introduced into Hauser-Feshbach cal-
culations through an averaging procedure over j'. The first assumption is
less realistic, the level density being described by:

pp(I'.0",E') = L £(n,I') P(N') w(n,E'), (16)
n

where w(n,E') is the particle-hole state density, P(n') is the parity
distribution (assumed to be 1/2 here) and f(n,I') is the spin distribution

of exciton levels, given by:

' ' 2
f(n.I') - _%I;l)._— exp [_LLE.M%L_] . (17)
20°(n,E") 20 20“(n,E')

The spin cut-off parameter, which from the numerical calculations to be
presented will turn out to be a crucial parameter, is proportional with n
for small n [9]. It is important to point out that in this region the spin
cut-off parameter is essentially independent of the energy [9,12]. With
increasing exciton number, there will occur a saturation of the value of
o*(n,E'}, cf. [12]. Here, we assume a maximum value equal to the one taken
for standard Hauser-Feshbach calculations, i.e., o;q(E'). Accordingly, we
may use for o?{(n,E') the minimum of:

oireeq(n) ~ <o®>n = 0.24 A2/3n. {18.a)
2 oy a2
oeq(E ) <m™>gt, (18.b)

where g is the single-particle level-density parameter and t is the ther-
modynamic temperature. This very simple expression satisfies Eq. (16) in
good approximation., For more detailed calculations the formulae from the
recent study by Fu [12] could be used. Equation (18.b) leads to somewhat
higher values than usual, but is consistent with Eq. (18.a) (the current
value is probably too small, cf. Ref. [20]).

It follows from Eas. (16) and (17) that the assumption (15.a) 1s valid
only for very large values of the spin cut-off parameter. Application of
the assumptions (15), then, to the angular-momentum conserving model
formulae (6) or (12) yields the standard exciton model according to

Eq. (2), with t(n) = I tJn(n). This elegant relationship between the two
models is gratifying.Jgecause it coincides with the one expected

beforehand on the basis of fundamental statistical considerations.

Thus, the Hauser~Feshbach model as well as the standard exciton model can
be viewed as limiting cases of the spin-dependent master-equation model
proposed in Sec. 2. A diagram clarifying the relationships between the
various models is presented in Fig. 1. We conclude that the proposed model
may genuinely be called a unified pre-equilibrium/Hauser-Feshbach model.

4, COMPUTATIONAL PROCEDURES: THE MEAN-LIFETIME ANSATZ

As has already been remarked in Sec. 2, the unified model, as represented
by Eqs. (4) to (9), is not yet a really practical one. For each J and NN a

IR (n), while within each set a

set of master equations must be solved for t
collection of transition and emission rates has to be computed, each one
on i{ts turn requiring the evaluation of involved angular-momentum coupling
functions. As compared to Hauser-Feshbach calculations, we further need to
carry out additional summations over exciton states, cf. Eq. (12). This
situation is similar to that with respect to the multi-step compound model
[4, 21, 22]. Introduction of the never-come-back approximation into Eq.
(12) indeed leads to an expression that bears much resemblance to the FKK
multi-step compound model; compare also Refs. {6] and [15].

Consequently, one may look for approximative expfessions for the mean
lifetimes TJn(n) that avoid the computational difficulties indicated
above. As a physically plausible and numerically very convenient approxi=
mation we suggest the following mean-lifetime Ansatz:

Jn
J"(n - SQ_ Wt(n)

o Jn
a wt (n)

t(n), {19)

where wt(n)t(n) is computed from the standard exciton model, Eq. (3).
Expression (19) may be made plausible as follows. The exciton state
no=n, which is mainly responsible for the pre-equilibrium emission, is
strongly occupied only when the time t is close to zero. Assuming that the
transition and emission rates do not depend strongly on J, Eq. (9) for

the initial condition will also approximately hold for n = n0 at t > 0.

Integrating over t we get:
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an
Nng) = 2= t(ng) (20)
a
which is close to Eq. {19), due to the rather weak variation of wi"(n)
with the spin. Next, we look at the high-n values, n > n, which produce
the equilibrium part of the emission. In this case Eq. (1l4) holds, and we
add that the ratio p(n,J,N,E)/p(J,N,E) is8 irdependent of the spin for
n = n, since for these values of n the spin cut-off factor does no longer
depend on the exciton state (see the discussion related to Eq. (18)).
This brings us to the conclusion that, for exciton states close to the
equilibrium value n, Eq. (19) will be valid. Combination of this observa-
tion with Eq.(20), with the probability-conservation property (10) and its
spinless equivalent I wt(n)t(n) = 1, yields the approximation (19).
It may be further deBonstrated that Eq. (19) does not destroy the attrac-
tive limiting properties of the unified model as discussed in Sec. 3.

We have checked the correctness of the above Ansatz by directly calcula-
ting the J-dependence of the transition and emission rates and, on this
basis, of the mean lifetimes. Results are presented in Fig. 2. Figure 2.a
demonstrates that the transition and emission rates are indeed only weakly
dependent on J. Not shown are the An=-2 rates. At low n their J-dependence
is stronger than that of the An=+2 rates, but in this case their influence
on the mean lifetimes is negligible, as a result of their being several
orders of magnitude smaller. At high n there is essentially no J-dependen-
ce both for the An=+2 and An=-2 rates. Figure 2.b compares the calculated
results of Eq. (19) (dashed lines) with the full solution of the spin-
dependent master equation (5). It is concluded that the Ansatz (19) re-
presents an excellent approximation to the exact solution for the mean

exciton~-state lifetimes.

The expression (19) considerably reduces the computational effort related
to the unified model as represented by Eq. (12). If we insert Eq. (19) to-
gether with the probability-conservation property (10) into Eq. (12), we

obtain an expression for the emission cross-sections according to the uni-
fied model, that is also the most suitable one for numerical calculations:

do 2
= (a,b) = n x° } -
de In (2s+1) (2I+1) 0

a
15 (B)

b
¥ T,,..(e)p (n=b,I' A" ,E') Q (n)
I'Eljln' 2 J b b

I W (n)t(n) . (21)
n

b'
I"gnyune b'jdc' Tinjn(c. )pb' (n-b' .I".H".E")Qb' (n)

add that the ratio p(n,J,.N,E)/p(J,N,E) is independent of the spin for

n s ﬂ, since for these values of n the spin cut-off factor does no longer
depend on the exciton state (see the discussion related to Eq. (18)).

This brings us to the conclusion that, for exciton states close to the
equilibrium value n, Eq. (19) will be valid. Combination of this observa-
tion with Eq.(20), with the probability-conservation property (10) and its
spinless equivalent Y Ht(n)t(n) = 1, yields the approximation (19).

It may be further defionstrated that Eq. (19) does not destroy the attrac-
tive limiting properties of the unified model as discussed in Sec. 3.

We have checked the correctness of the above Ansatz by directly calcula-
ting the J-dependence of the transition and emission rates and, on this
basis, of the mean lifetimes. Results are presented in Fig. 2, Figure 2.a
demonstrates that the transition and emission rates are indeed only weakly
dependent on J. Not shown are the An=-2 rates. At low n their J-dependence
is stronger than that of the An=+2 rates, but in this case their influence
on the mean lifetimes is negligible, as a result of their being several
orders of magnitude smaller. At high n there is essentially no J-dependen-
ce both for the An=+2 and An=-2 rates. Figure 2.b compares the calculated
results of Eq. (19) (dashed lines) with Ehe full solution of the spin-
dependent master equation (5);'1t is concluded that the Ansatz (19) re-
presents an excellent approximation to the exact solution for the mean

exciton-state lifetimes.

The expression (19) considerably reduces the computational effort related
to the unified model as represented by Eq. (12). If we insert Eq. (19) to-
gether with the probability-conservation property (10} into Eq. (12), we

obtain an expression for the emission cross-sections according to the uni-
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fied model, that is also the most suitable one for numerical calculations:

2J+1

do - 2
ac (ab) = m £ En (2s+1) (21+1

a
IR

b - "o g
T I

) wt(n)r(n) . (21)
n

b'
fde' T, . nle' , (n=b*,I" n" E" n
prgriugn e Tangn (1P 9 (n)

As compared to a standard Hauser-Feshbach calculation, the additional sum-
mation over the exciton states cannot be avoided. Nevertheless, it appears
possible to strongly speed up some of the spin summations in Eqs. (12) and
(21) (as well as in the usual Hauser-Feshbach formula) by means of highly
accurate analytical approximations. These are derived by exploiting the
factorization properties of the level-density formula (16). Details are
found in Ref. [23]. The combined result of the optimizations with respect
to the computational procedures, as indicated in this section, is that the
computational effort related to the unified model becomes comparable to

and in many cases less than that of a normal Hauser-Feshbach calculation.

The above equation (21) has been coded in a programme called UNIMOD. To
ensure compatibility between the precompound and Hauser-Feshbach calcula-
tions (a feature usually not present in model codes), the Williams
particle-hole state density [24] has been renormalized to the back-
shifted Fermi~gas formula of Dilg et al. [25], as follows [26]:

p(n,I,N,E) = £(n,I)ir(U)w(n,U), (22)

where «(n,U) denotes the usual Williams formula
n-1
o(n,U) = gleu-a(p,h) )"

R, (23)
pth!(n=-1)1

where r(U) is a renormalization factor:

ey o T (24)

3 31/u(u’t)5/u

After summation over all possible values of n Eq. (22) becomes asymptoti-
cally equal to the level-density formula of Dilg et al. [25].

Further details about this renormalization procedure are found in Ref,
{26]. We remark that Eq. (16) is obeyed. The symbols used in Eqs. (22) to
(24) have their usual meaning, cf. [24,25]: U = E-a (4 1s the energy
shift); a and g are level-density parameters (a=n!g/6): t is the thermo-
dynamic temperature and A is a Pauli correction.

In the present version of the code the emission probabilities wt(n)r(n)
have to be given as input. These are computed with the GRAPE code [27],
that is completely consistent with UNIMOD. The model in GRAPE is based
upon Eqs. (1) to (3), whereby instead of the level densities (22) the
state densities r(U)w(n,U) are used throughout the code. It has been
checked numerically that insertion of Eq. (15) into UNIMOD leads to
virtually the same results as those of GRAPE. This also guarantees a sound
methodological basis on which the numerical differences between semi-
classical and quantum-mechanical models for precompound decay can be
evaluated.

5. DISCUSSION OF NUMERICAL RESULTS

A number of sample calculations with the unified model presented above has
been carried cut for neutron-induced reactions on **Nb (I=9/2) and !*%Ru
(I=0). One of the angular-momentum effects which cannot be reproduced by
the standard pre-equilibrium models might be due to variations in the
ground-state spin, cf. also Ref. [11]. For this reason also some calcula-
tions were performed with the fictious target-spin values I'=1/2

for '’Nb and I'=4 for *®2Ru, keeping a1l other model parameters the same.

Calculated results for the neutron inelastic scattering spectra according
to the unified model (UM) and the semi-classical exciton model (EM) are
shown in Figs. 3 and 4. It is seen that the difference between these two
models is related to the value of the ground-state spin of the target nuc-
leus. For high target spins the emission spectrum according to the unified
model turns out to be very close to that of the exciton model.

At low target spin the UM spectrum is slightly softer than the EM one,

but the difference is quite small. These obsecrvations pertain to the high-
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energy end of the spectrum, i.e., the region that is dominated by pre-
equilibrium emission. Calculations show, however, that this situation is
reversed for the equilibrium emission region, where the spectrum becomes
harder with decreasing target spin. This is brought out more clearly in
Fig. 5, where we have plotted the UM results for the initial exciton
state (i.e., pure precompound decay) against those according to the
Hauser-Feshbach (HF, i.e, pure equilibrium emission) model. We conclude
that in considering angular-momentum effects a distinction needs to be

made between the precompound and compound decay mechanisms.

The key to physically understand these results is the behaviour of the
spin cut-off parameter. In HF calculations ¢! is an increasing function
of energy which implies that there are more final states with high spins
at low emission energy than at high emission energy. Accordingly, a high
target spin leads to increased low-energy and decreased high-energy emis-
sion in HF calculations. On the other hand, in UM calculations

the value of 0! in the precompound region is both small and independent of
energy, compare the discussion related to Eq. (18). This means that in

the case of a high ground-state spin relatively high outgoing orbital an-
gular momenta (£') are needed to excite the low-n states, independent of

their energy.

Since transitions with high £' are easier with high outgoirg energies, the
excitation of low-lying states is favoured. This explains the increased

high-energy emission.

It has been confirmed through a numerical analysis that these effects are

indeed due to the behaviour of the spin cut-off parameter. In particular,
if o; (no n-dependence) is inserted in the UM the target-spin dependence
is reversed (like in HF). It is noted that this incorrect assumption

has been employed in several, for pre-equilibrium effects corrected,

HF codes, cf. [2].

We have further investigated the relative contributions of the incident
partial waves with different orbital angular momenta (£) to the equi-
1ibrium and pre-equilibrium emission cross-sections. It has been claimed
(e.g., [1]. [28]) that in pre-equilibrium decay surface reactions contri-
bute significantly as compared to the evaporative stage.

This assumption has motivated the development, notably by Blann [28], of
so~-called geometry-dependent pre-equil:brium models. The unified model
presented in this paper is able to give an independent check on the vali-
dity of this assertion. Figure 6 presents calculated results for
192Ru(n,n'x) at incident energies of 14.5 and 30.0 MeV. First, it is shown
that with higher incident energy and, accordingly, higher pre-equilibrium
emission fractions, the relative contributions of the high orbital angular
momenta ¢ increase. Second, it 1s observed that, for given incident
energy, the high-f contributions are somewhat enhanced for the pre-equi-
librium processes as compared to the equilibrium decay mechanism. At 14.5
MeV the difference between the contributions of the large ¢ waves (£>5) to
the two reaction mechanisms is near U4 per cent, whereas it amounts about
10 per cent at 30.0 MeV.

Thus, there is some evidence, especially at higher incident energies,

that the pre-equilibrium emissions occur at slightly higher angular-momen-
tum states of the composite nucleus relative to the equilibrium ones. Re-
formulated in quasi-classical terms this means that surface reactions are
somewhat more favoured in the precompound stages. Interestingly, numerical
simulations demonstrate that these differences between the compound and
precompound mechanisms are, again, essentially due to the behaviour of the
spin cut-off parameter as a function of the exciton number and the resi-
dual excitation energy. Since the spin cut-off parameter appears to be
such a crucial variable, it seems worthwhile to replace the present simple

estimates of oz(n,E) by more realistic ones.
6. CONCLUSIONS

The conservation of angular momentum has been included in a straight-
forward manner in a master-equation model, that gives a unified
description of precompound and compound decay. Efforts have been made to
computationally optimize this generalized model, so that it is easy and
fast to use for applications, without the need to admit an unfavourable
trade-off with respect to the various consistency requirements that can be
formulated. The resulting unified model may be considered as a practicable
version of the quantum-mechanical AWM theory [3] and contains the standard
exciton model as well as the Hauser-Feshbach and Weisskopf-Ewing models as
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limiting cases. The relationships between the various statistical models

have been clarified, see the diagram in Fig. 1.

Sample calculations have been pefformed for neutron-induced reactions on
*INb and '*2Ru in order to evaluate the importance of angular-momentum
effects in pre-equilibrium decay. The results show that the spin cut-off
paranmeter of the final states plays a crucial role. As a consequence of
the energy independence of this parameter at low exciton numbers it fol-
lows that the unified model predicts softer emission spectra for low
target spins than the semi-classical precompound models, although the
differences are small. Another consequence is that for pre-equilibrium
emission the average incoming orbital momentum is somewhat higher than
for equilibrium emission.

Further refinements of the unified model are possible, for instance by
introducing more realistic expressions for the spin cut-off parameter and
the particle-hole level densities, e.g., those proposed by Fu [12,29].
Other possible and quite straightforward improvements are: an extension of
the model to excitation of discrete levels, the introduction of Y-ray com-
petition and the inclusion of multi-particle emission. Finally, we mention
that it may also be of interest to generalize the model to predict angular
distributions. Immediate generalization, using the random-phase approxima-
tion, gives the symmetric (multi-step compound) component of the angular
distribution, consistent with the predictions of the HF model at equilib-
rium, To calculate the odd-order Legendre coefficients more involved as-
sumptions are needed, that are beyond the scope of this paper (see e.g.
Ref. [2]).

The central conclusion of this paper may be formulated as follows.

It goes without saying that quantum-mechanical models for precompound
decay (3,4] represent an important conceptual and theoretical improvement
over the older, phenomenological ones. The present work has, however,
provided evidence that the numerical differences between these models are
small, so that in this sense the semi~classical models can be considered
reliable. Therefore we expect that these fast and easy-to-use models will

continue to play a useful role in applications.

ACKNOWLEDGEMENT

This work has been supported by the European Commission (Fusion Technology
Programme) and the International Atomic Energy Agency at Vienna. One of us
{S.X.) is indebted to the IAEA for the opportunity to perform this work as
an IAEA fellow,

REFERENCES

[1] M. Blann, Annu. Rev. Nucl. Sci. 25 (1975) 123.

[2] H. Gruppelasar, P. Nagel and P.E, Hodgson, Riv., Nuovo Cim. 9 (1986) 1.

{3} D. Agassi, H.A. Weidenmiiller and G. Mantzouranis, Phys. Reports 22C
(1975) 145.

[4] H. Feshbach, A. Kerman and S, Koonin, Ann. Phys. (N.Y.) 125 (1980)
429,

[5] W.A. Friedman, M.S. Hussein, K.W. McVoy and P.A. Mello, Phys.
Reports 77 (1981) 47.

[6] K.W. McVoy and X.T. Tang, Phys. Reports 94 (1983) 139.

(7] H. Gruppelaar, in Proc. of the IAEA Advisory Group Meeting on
Basic and Applied Problems of Nuclear Level Densities, Report BNL-
NCS-51684 (Brookhaven National Laboratory, 1983) p. 143.

[8] C.Y Fu, in Proc. Int. Conf. on Nuclear Cross Sections for
Technology, Report NBS-Sp-594 (National Bureau of Standards, 1980)
p. 157.

[9] G. Reffo and M., Herman, Lett. Nuovo Cim. 34 (1982) 261.

[10] G. Reffo, F. Fabbri and C. Costa, Contr. to the Int. Conf. on Nuclear
Physics, Florence 1983, Report RT/FI(83) 10. (ENEA, Bologna, 1983).

{11] H. Gruppelaar, J.M. Akkermans and Shi Xiangjun, Investigation of
spin effects in exciton-model codes, contributed to the Conference
on Fast Neutron Physics, Dubrovnik, May 25-31, 1986.

[12] C.Y. Fu, Nucl. Sci. Eng. 92 (1986) 440.

(13] H. Gruppelaar, J.M. Akkermans and Shi Xiangjun, Phys. Lett. B, to
be squitted.

{147 C.K. Cline and M. Blann, Nucl. Phys. Al72 (1971) 57.

(15] J.M. Akkermans, Z. Phys. A292 (1979) 57.

(16] J.M. Akkermans, H. Gruppelaar and G. Reffo, Phys. Rev. €22 (1980) 73.



m {17] V.E. Bunakov, Z. Phys. A297 (1980) 323.

[18] C. Kalbach, Z. Phys. A283 (1977) 4o1.

[19] H. Goldstein, Statistical-model theory of neutron reactions and scat-
tering, in: Fast Neutron Physics, eds. J.B. Marion and J.L. Fowler
{Interscience Publishers, New York, 1963) Vol. II, p. 1525.

[20] U. Facchini and E. Saetta-Menichella, Energia Nucleare 15 (1968) 5i.

[21] R. Bonetti et al., Phys. Rev. C21 (1980) 816; C25 (1982) 717; C21

(1983) 1009. L B T
[22] M. Herman, A. Marcinkowsky and K. Stankiewicz, Nucl. Phys. A430 T r W
(1984) 69. 2ok A -
[23] J.M. Akkermans, Shi Xiangjun and H. Gruppelaar, Comput. Phys. Com- 2 . \ 300' : i : . : ‘ -
mun., submitted. t
[24] F.C. Williams, Jr., Nucl. Phys. A166 (1971) 231. o8 - ___513"“ _ i
[25] W. Dilg, W. Schantl, H. Vonach and M. Uhl, Nucl. Phys. A217 (1973) e TN/ I e
————————— - h
269. o6 b "‘*-'~---‘*~\\I{mN~ | § 200 L |
[26] J.M. Akkermans and H. Gruppelaar, Z. Phys. A321 (1985) 605. 2
[27] H. Gruppelaar and J.M. Akkermans, The GRAPE code system for the r 1 B
calculation of precompound and compound nuclear reactions -~ GRYPHON 04 b ]
code description and manual, Report ECN-164 (Netherlands Energy ] ] 100 - B
Research Foundation ECN, Petten, 1985). ,
[28] M. Blann, Phys. Rev. Lett. 27 (1971) 337. 02 mm e e WECR
[29] C.Y. Fu, Nucl. Sci. Eng. 86 (1984) 34i. L ]
[ spin effects; pre-equilibrium effects included? ] 00 He— L; e " YOI T T T
[yes; yes] UM o » HF [yes;no) R J ——
{15) {15}
Y Y
14) Fig. 2. J-dependence of transition and emission rates and mean lifetimes,
[no:yes ] EM » WE nosno] for the composite nucleus '*’Ru at E_ _ =20.6 MeV.
Fig. 1. Schematic of the relationships between the unified model (UM} pro- a. Results for the transition end emission rates. For clarity, a linear
posed in this paper, the Hauser-Feshbach model (HF), the Weisskopf-Ewing scale has been used and AQ(n'3) has been normalized to unity for J=4.5.
model {WE) and the usual exciton model (EM). The arrows denote a mathema- b. Comparison of the mean lifetimes, as exactly calculated from the
tical reduction by means of simplifying assumptions, the equation number J-dependent master equation (solid lines), with the approximation

of which is indicated between parentheses. according to Eq. (19) (dashed lines).



n

1.0 [T PP e e et
T c BNb(n,nx) ]
~ L £216 6MeV ]
= [ ¥
=
3T J
Sle 1

0.4k 1

- ]

i ]

- J

0.0t 4

L 1

[ )
0000 Lo g 0 v r e ae a0 g4

2 4 6 B 10 12 1% I

€ (MeV} ——»~

Fig. 3. Comparison between the unified model (UM) and the exciton model
(EM) for the reaction *’Nb(n,n'x) at 14.6 MeV. The full curve represents
the EM spectrum, the détted line‘represencs the UM with the target spin
I=?/,, and the dashed one corresponds to the UM with a fictitious target

spin I'=i.

1.0 — L e B e e e I e A S B
: e A e
T : 02Ru(n,nx) ]
L E=145MeV ]
s L
> .
£ |
£ 4
]
o'u ( T
Qo
0.1 ~
C ]
i :
5 -
0.01 s
‘ 3
L ]
b <
0.001 PR SUVNY ST TSN SUY ST YUY SO WU TPt S UUUNS SR USRS VT S VAL WS TR SOV S SUUUY W SO S|
2 4 6 10 12 16
€ (MeV) ——

Fig. . Comparison between the UM and the EM for the reaction '**Ru(n,n’x)
at 14.5 MeV. The full curve represents the EM spectrum, the dashed line
corresponds to the UM with the target spin I»0, and the dotted line (in
this case coinciding with the solid one) shows a UM calculation with a
fictitious target spin I'=U4.



1

1.0 . B T A A A A e e e T e S S AN S Ea aen s e B e s
T 3Nb {n, nx)
—~ £=z16.6 Mev
>
[
=
2
318 ]
4
— , : . A T S U S A S
0.001 2 4 [} 8 10 12 1% 16
€ (MeV) ——pom
Fig. 5. Comparison between the behaviour of the unified model (UM) and the

HF theory for different target spins. The reaction is **Nb(n,n'x} at
E=14.6 MeV. For the UM only the contribution from the initial exciton
gtate n=3 is given, which means that these curves describe the pure pre-

equilibrium emissiorn.

. 1 ] ¥ h] T T L T
T 024 (n, nx)
x  1.0F £=145 Mev ——=

——— E=300 MeV i

Fig. 6. Ratio of the contributions of the incident partial waves with
QSLM to the all-f contributions in the equilibrium and the pre~equilibrium
processes as a function of LM‘ The reaction is ***Ru(n,n'x) at 14.5 MeV

and 30.0 MeV, respectively. The ratio is defined as

L [4
R(LM) . zM do (E,c) do(E,e) .

0=0 &



£

Neutron capture in the frame of the exciton model and
total gamma-ray .spectra calculations
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Abstract

We realized the necessity of introducing the preequi-
librium contribution to the neutron capture process in order
to satisfy the need for gamma-ray spectra following neutron
induced reactions in the structural material of the fusion
technology.

In this paper we describe and discuss the theoretical
approach adopted. As an example, gamma-ray spectra calcula-
tions are shown for Nb, Co and Al.

Introduction

Gamma-ray spectra following neutron induced reactions
are needed for the structural material in fusion technology.

At the typical energies of fusion neutrons the important
reaction mechanisms include in particular preequilibrium one
in addition to collective capture and compound nucleus
processes.

In what it follows we shall deal with the description of
the exciton model adopted for the calculation of the pree-~
quilibrium contribution to the total capture. The contri-
bution from. the different reaction mechanisms will be shortly
discussed.

As an example the energy spectrum of total gamma-ray
emission following 14.5 MeV neutrons in Al will be
illustrated,

“ Work performed under ENEA contract 25888 dated sept.26
1986.

The model

According to refs.l1,2,3,4,5,6 the adopted generalized
master equation reads

ne2

d J,t

Yy P(E,J,1,n,0,t) = YI‘Z 2! n(s) JG(Q,Q')P(E.J,-,I\,Q’,t)dn' +
m =N,

(1)
J n+2 J,s
- P(E,J,%,n,0Q,t) [Z JV "(E,c n)de i (E)]
a a a a
man-2 n—»m

Here P(E,J, ¥,n, 2,t) is the occupation probability at
time t of the state characterized by n excitons, spin J,
parity x, total excitation energy E and by a leading nucleon
in the directiong.

: G( 8, 8) = (dofran)/ o being o the free nucleon-nucleon
scattering cross-section.

A *3:(3) is the transition probability from the exci-
ton con?iguration m to n when.the composite system is charac~
terized by the set of quantum numbers (E,J,%): wg.ﬁ(s,: ,n)is
the decay probability of the state (E,J,% ,n) by emission of
a".

Solution of the set of master equations gives the total
occupation probability

N, Q) -J P(E,J,1,n,0)dt (2)

The double differential cross section for the binary
reaction (a,b) is then given by

2
d ofa,b) [ J,r J.v
—— e . R R E'Q.
dc d g L.J.l NIRE TSI (eq) In'b (e Mt "
b b a a a a (3)
Where GS‘J Ja(;a) is the usual optical model compound

nucleus cross'sbbiﬁon in channel (%, J,1,, Jarey)-
The decay term Wl ﬂE,cb yn) is different for particles

or gamma-rays. b
For particles

D(U“bt an L] n'"b)

Jr
' E‘ ’ .
b B L bt o(U,d,1.0) (4)
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t1,4( €) being optical model transmission coefficients and u
the -total effective excitation energy of the composite
system. ’

For gamma-~rays, in the usual Hauser~feshbach theory, in
analogy to particle transmission coefficients from optical
model, gamma-ray trasmission coefficients are also introduced
by way of the detailed balance principle

2
c'(t)a: 01(‘7 W) (5)

The inverse El photo-absorption cross section othY)U) ’

for simplicity is approximated by a lorentzian curve o, (¢

Ve
under the assumption T

E E1
L 1(cY,U)z.o7 (tr'O). °L(t1) i (6)

namely that the ‘photo-abso:ptioﬁ cross section from ' an

excited state can be assumed to be very similar to that from

the ground state.

In the use of the exciton model further complications
arise becouse the inverse process of the photon absorption
takes place from various exciton configurations (U,n) of the
composite system.

Akkermans et al. /7/ suggests a factorization

El '
o (cv.n-bk)- oL(tY)b(h*k.CY) (7)

under the condition that eq.7 reduces to (6) in the limit
case of equilibrium and of gamma-ray scattering respectively.
This can be achieved uniquely if

I bln-ak,e )= 1 (8)
k *

According to the condition (8) the "b"'s are the
branching ratios which subdivide the total photo-absorption
crogs section into its various components.

Becouse the gamma-decay of the composite system takes
place either via a p-h anninhilationd n=z-2, or via an internal
transition A4 n=0 with partial deexcitation of one particle,
one has

o:l(g,n) = o (e) (b{nan=2,¢) + blnsn,c)] (9)

According to Betak et al, /8/ b(n- n-2,e)2]l and
b{nen,e)=gn/ p(2,¢) being gﬂ(:l/b).a and "a" the level
density parameter,

In order to satisfy the condition (8) the "b"'s by
Betak et al. must be normalized to give

b (nan=-2,c) = p(2.¢)/{p(2.¢)eg(n-2)] and

0
b (nwen,c) = gn/ [p(2,c)egn ] (10)

Accordingly the gamma-decay probability through EL
transitions become

2
J-1 ¢ a (c)
J,r g Yy L
E,c_, ¢ (1- .
Yy Bl it B8 00 Sa g )
(11)
n
x-)r:x-z blns k¢ Jo (k,Uey,J¢, )

Becouse not much i{s known about the parity distribution
of the exciton states, in the present calculations ‘the
additional assumption has been made of an equal distribution
of exciton states between the two parities.

In practice this leads to parity independent W by way
of a general cancellation of the factor 1/2 so introduced.

Results and discussion

In the compound nucleus picture, coapound nucleus capture may
take place after all the energy of the incoming projectile
has been statistically shared among all nucleons in the
composite system, i.e. when statistical equilibrium is rea-
ched, The equilibrium configuration represents the limit case
of the intranuclear cascade when the internal transition rate

n=2 and n=-2 become equiprobable.
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According to Lane /9/ the direct capture model is based
on the assumption that the incident nucleon during its move-
ment inside the mean nuclear potenzial field of the target
nucleus (lp~Oh state) is captured into an unoccupied bound
state, emitting a gamma-ray.

In terms of exciton model one expects the direct nucleus
capture corresponds to the n=1 contribution to nucleon
capture.

According to ref. /l0/, /lY/, /12/, in the direct
semidirect capture model the collective modes of the target
may be excited. The incoming nucleon may be scattered into
some empty particle state with excitation of a 2p~lh
configuration before a gamma ray is emitted.

In fig. 1 the gamma-ray spectrum following the radiative
capture of 14.1 neutrons by 93Nb is shown. The results of the
calculations according to the exciton model described in the
present paper are compared with the measurements /14/ and
/15/.

The various components corresponding to the gamma decay
of different exciton configurations nal,..,,n29 are given
separately. As it can be seen, the high energy tail of gamma-
ray spectrum is dominated by the n=3 preequilibrium
component.

In fig. 1 arrows indicate the gamma-energies
corresponding to the maxima of each preequilibrium component
plotted. It is interesting to note how these energies de-
crease at encreasing exciton numbers. This being consistent
with our knowledge that the maximum of equilibrium gamma-ray
emission spectrum lies at very low energies. The nal and na3l
stand in the ratio 1/10 as predicted by /13/ and /16/ even if
the energy of the respective maxima are reverted with respect
to the exciton model predictions. On the whole around 14 MeV
the contribution from all the components other than n=3 |is
1/3 of the total capture process and it is dominated by the
na5 component. This indicates that compound nucleus, direct
and semidirect capture are not completely adequate to des~
cribe the neutron capture gamma-ray spectrum in the whole
energy range.

In fig. 2 and 3 with the examples of 938b and 59Co
respectively at 14.1 MeV neutron energy the direct semidirect
calculations by /14/ and /15/ are compared with the sum of
the n=l and n=3 contributions according to the present exci-
ton model calculations. Measurements are also shown for com-~
parison.

The discrepancies which can be observed at both tails of
the gamma-ray spectrum are an exciton level density effect.
In the hard tail of the spectrum corresponding to gamma-rays
from transitions to the discrete level, the direct-semidirect
calculations take into account discrete levels separately,
whereas our adopted exciton level density treats the discrete
levels very roughly. On the other hand at the lower energy
tail corresponding to gamma-transitions to continuum levels,

our level density formula (based on statistical assumptions)
holds better, while the Longo and Saporetti treatment fails
becouse it doesn't include transitions to continuum levels.

In Eig. 4 and 5 the total gamma-ray spectrum following
14.5 MeV neutron induced reactions on 27Al is shown. Measure-~
ments are also given for comparison. As it can be seen a
reasonably good agreement could be obtained in the whole
energy range by use of equilibrium and preequilibrium con-
tributions only.

Conclusions

In view.of the fact that no free parameters are invol-
ved, the unified exciton model offers a valid tool for a
reliable and consistent description of nucleon capture pro-
cesses, oOtherwise described 1in terms of several different
reaction mechanism models. This seems to be an interesting
step forward in the theoretical description of the capture
mechanism.

From the technological application view point this model
is an important tool for shielding and radiation damage
calculations in fusion technology.

The direct semidirect models are much more involved and
do not include contributions neither from n=3 exciton states,
nor from transitions to continuum exciton states.

Introduction of the total angular momentum conservation
is a necessary improvement in particular for the description
of the particle capture process. ’
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ROLE OF DIRECT AND PRE-EQUILIBRIUM
PROCESSES IN THE DESCRIPIION OF THRESHOLD
REACTION EXCITATION FUNCTIONS

0.T.Grudzevich, A.V.Ignatjuk, V.N.Manokhin,
A.B.Pashchenko
INSTITUTE OF PHYSICS AND POWER ENGENEERING, OBNINSK

Abstract

This paper gives consideration of the method of threshold re-
action calculations which takes into account phenomenologically the
integral contribution of direct processes in inelastic scattering
of particles.

INTRODUCTION

The statistical approach which describes decay of equilibrium
compound nucleus is widely used at the present for the calculations
of the threshold reaction excitation functions. However the analy -
g8is of observed energy spectra and angular distributions of emitted
particles shows that already at the sufficient low energy of inci -
dent particles the hard coﬁponent of emission sbectre is formed as
a results of nonstatistical mechanism of reactions. The integral
contribution of the nonstatistical component in the cross sections
of different reactions grows quickly enough with the increasing of
incident particle energy.

The nonstatistical component of nuclear reactions is often tre-
ated as sum of multistep direct and mmltistep compound transitions
/1/. It is seen from the angular distributions of secondary partic -
les that the direct mechanism plays leading role in the formation of
nonstatistical component of the cross sections of different reacti -
ons /2/.

Exact calculations of multistep direct trensitions appear howe-
ver to be very complicated. That is why more simple exciton model of
pre-equilibrium particle emission is broadly used now for descripti-
on of various experimental data /3,4/.

ANALYSIS OF THE ENERGY SPECTRA OF SECONDARY PARTICLES

The recent formulation of the exciton model uses many ideas
of the intranuclear scattering cascade /4/. That enables to con-
sider the exciton model as phenomenological description of mul -
tistep. 1incoherent direct transitions.

The main parameters of pre-equilibrium model ere the single-
particle state density g, specifying the number of intermediate
n - quasiparticle configurations of nucleus, and the square of mat-
rix element /M/z, which characterizes probvabilities of intranuclear
transition. Usually /3/ the dependence of matrix element on nucleus
excitation energy U is approximated by expression.

/4% =k a3 v (1)
As for as the quasiclassical estimation of g = 0.075 A Mev*1is adop~
ted more often for single - particle state density the coefficient X
appears to b¢ one parameter of pre - equilibrium model which deter -
mines the nonstatistical component of nuclear reactions.

It was early remarked /2/ that for inelastic scattering of neu-
trons or protons the pre - equilibrium model does't enable to desg-
cribe the observed energy spectra the hard part of which is formed
as a results of intensive coeherent direct transitions. It was also
shown /5/, that it is impossible to achieve the consistent simlta -
neous description of the pafticle spectra and excitation functions
of (n,ot), (n,p) and (n,2n) = reactions at any choice of parameter K.

To remove discrepancy in the choice of coefficient K it is ne -
cegsary to add to the pre ~ equilibrium model calculations the cont -
ribution of direct coeherent transitions, which excite collective
gtates of the target by inelastic scattering. Microscopic calcula =~
tiong of such transition intensities using theory of direct reac -
tions give the sufficiently good description of observed hard "pla-
teau - like" component of energy spectra /2/. It was noted in /6/,
that comparatively weak dependence of hard part of spectra on inci-
dent particle energy Eo allows to obtain simple empirical estimati-
on of integral contribution of direct coeherent transitions:

Caiw (E2) = (57) oy (Eo-Eeow) (2)

whare (d6/clE')ogs - the observed differential inelastic scatte-
ring crogs section in the "plateau" region and Ep,., - the effec-

tive boundary energy of direct transitions.
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The analysis of the neutron inelastic spectrum fives the va-
lues (dS/dE’ ), 20 "P/MeV and E,,~ 5 MeV.

THE CALCULATIONS OF BXCITATION PUNCTIONS

Adding the description of direct transitions with the formula
(2) to the calculations of pre - equilibrium model, we can obtain
the threshold reaction cross sections which is in good agreement
with experimental data available. As example Fig. 1 and 2 show the
excitation functions of 56Fe(n,Zn) and ° Pe(n,p) reactions and se-
condary particle spectra from these reactions correspondently. The
phenomenological representation for the contribution of direct pro~
cesses allows to describe the excitation functioms of (n,2n) =-,
(n,p) - reactions with consistent set of the level density parame ~
ters g and the coefticient K = 700 Mevd. Similar description was
obtained by authors also for the same reactions on other neighbou -
ring nuclei.

Our analysis in spite of simplifyed . features display quali~
tatively the main results of time consuming theoretical calculati -
ons /2/. This ig a reason that the phenomenological account of di -
rect collective transitions is more logical aa compared with the
description of the same data in the frame of pure pre -~ equilibrium
model using adjustment of coefficient K . This adjustment does not
enables to avoid disagreement in the description of the neutron
spectra and {5,2n) - reaction cross sections together with the sa-
me data for {(n,p) - reaction.

It is necessary to remark that the choice of level density pa-
rameters plays important role for consistent description of cross
gections of different threshold reactions. The using of the back -
shifted Permi-gas formula with parameters, obtained from experimen-~
tal data on neutron resonance density, does not give as a rule good

agreement with the observed excitation functions of (n,p) and (n,o ) -

reactions. The example of such calculations is shown for the

56Fe (n,p) - reaction on Pig.1 b ( dotted line). The qreat discre-
pance between the calculated and the experimental data in low energy
region is directly connected with the value of level density parame-
ter of the residual nucleus., Of course the similar discrepancies can
be removed always by the renormalization of level density parameters

(Fig. 1b, solid line), but in this case the inconsistense in fit-~

ting of different experimental data does not eliminate. This conte
radiction can be resolved only by the using more physical approach
for level density taking into account the shell, superfluid and

collective effects. The example of such calculations is shown in

Fig. 1b (deshed ~ dotted line) where for the description bf level

density it was used the modeél described in /5/.

CONCLUSION

We have considered the method of calculation of threshold re-
action cross section which phenomenologically takes into account
the contribution of direct process in entrance channel. The method
proposed enables to obtain in a simple way a consistent descripti-
on of the excitation function and particle emission Spectrum of
different reactions. Barly the similar description was obtained on-
ly as a result of using essentially different values of the main
parameter X of pre ~ equilibrium model for inelastic sca?tering
and exchange reaction channels.
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Pig. 1. The excitation functions of (n,2n) - and (n,p) - re -
actions for 56Pe. The experimental data are taken from /7/,
theorgtical curves were obtained by account of pre - equilib-
rium decay and direct mechanism. The solid curve -~ calculati-~
on using the back - shift Permi-ges model wich adjustment of
parameters on excitation functions, The dash curve - calcula-
tion using the back-shift Fermi-gas model without parameter
adjustment. The dash - dotted curve - calculation using super-
fluid model.
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Fig. 2. The secondary particle sgpectrum of the reactions
Fe (n,2n) (a) and 5 Fe (n,p) (b) for incident neutron
energy 14,6 MeV. The theoretical curves are obtained
taking into account of the direct and pre-equilibrium pro-
cessea. The experimental data are taken from / 9 /.

On Methods for the Calculation of Neutron
Induced Reactions

8. Gmuca and R. Antalik

Institute of Physics EPRC
Slovaek Academy of Sciences
Bratislava, Czechoslovakia

1. Anelyeis of neutron induced resctions on Cr isotopes

In the first part of this work a complete and consistent
anelysis of the more important interactions of neutrons with
Cr isotopes in the energy range 2-20 MeV is presented.

As it 1s well known, in the energy range considered the
reaction mechanism changes in charscter. At lower excitation
energies, most reactions lsading to the particle emission are
well described by the compound-nucleus evaporation model (e.g.
Heuser~Feschbach or Weisskopf«Ewing theory),at higher excita-
tion energies, however, the contribution from the precompound
mechanism becomes eignificent and cennot be neglected., The ex-
citon model of preequilibrium decay has been widely used to
describe that fraction of cross sections.

In this work the integral cross sections end the emission
spectre are described using a combination of both the compound-
-nucleus and preequilibrium models. Emphasis is put on a simu-
ltaneous analysis of meny reaction channels involved in the
interactions of neutrons with Cr isotopes, using a consistent
set of parameters,

I.1 Optical model calculgtions

The optical model calculation constitutes an important
part of the nuclear data analysis. Usually it employs either
a phenomenologicel or microscopically derived optical poten-
tial.



In this work, the optical model calculations were made
using the spherical opticel model code SCAT2 of 0. Bersillon
(1981). The global optical potential parameteres of Perey
{1963) for protons, end those of McFadden and Satchler (1966)
for alphas were used, The neutron optical potential parame=-
ters for Cr and V were taken from the evealuations by Vozyakov
(1983) and Teneka (1982), respectively,

1.2 Statistical model calculations

All celculations were made using the Weisskopf-Ewing eva-
poration model in combination with the modified precompound
exciton model.

Since the Weisskopf~Ewing theory is well known, only the
relevant features of our precompound exciton model will be
briefly discussed here.

The emission rate.of the particle 3 from an n-exciton
state is given by the usual expression
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Here, the proton-neutron distinguishability factor Qn(p) makes
it possible to use the one-fermion density of exciton states,

We used the n-exciton state density UJ(p.h.E.EH) correc-
ted for the Pauli principle and ths finite depth of hole exci-
tation., This is given by

m
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where’ Ap p is the correction factor dus to the Pauli principle
(Meneses 1583)

Aptr = :7;”-[(:&~p(,»+4)/L/~A(»W)/4J, (3)

and E 1s the finite depth of hole excitation. In fact, the
inclusion of the correction for the finite depth of hole ex-
citation is the only major difference between the commonly

used exciton model and that used in thie work. It may be noted,
that euch a type of correction is in accord with the dominating
role of the nuclear surface in nucleer interactions. In terms
of energy this means that the depth of hole excitation is ex-
pected to be comparable with the strength of the effective re-
sidual interaction which amounts to a few MeV. This may be com-
pared with the total depth'of the Fermi sea i.e. several tens
of MeVv.

Indeed, the recent evaluation of the equilibration of fi-
nite fermion systems by Wolschin (1981) showed that during the
relaxation process, the occupation probabilities of only a
small part of the nucleons below the Fermi energy (holes) were
changed substantially, The remaining part of nucleus continued
to be inviolable. The width of the energy region influenced by
the equilibration was approximately equal to the thermodynamic
tempsrature of the resulting compound nucleus.

Thus, the following reletion based on the reasoning given
above was adopted for the evaluation of the effective finite
depth of hole excitation

£, = T,q,.:t £/a (4)

a being the level density parameter of the compound nucleus.

The next importent quantity in the closed-form exciton
model is the transition rate foraing the n+2 -~ exciton state.
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This is given by the "golden rule” as

X ime) = 2 M ey (mE, &) (5)
where we use the density of accessible final states a::(n,E,EH),
corrected for the finite depth of hole excitation as given by
Betak and Dobe3 (1976).

For the normalization of the absolute magnitude of the
transition rate it is necessary to know the averaged squared
matrix element lMlz. In this work lM]z is expected to behave
approximately as (Gmuca 1882),

AE Kg'z'f: (¢)

The single particle density g is related to the level density
parameter a by

€
3: "x"zQ/ (4)
The dimensionless free parameter K was determined to be 0.30
for neutron induced reactions {Gmuca 1982),

In Weisskopf-Ewing model calculations the level density
formula of the traditional Fermi-gas form

(U) = V| cxp[Z [a (U-'cf)]"/z]
!9 12 Q_4/:, (U_J)sm
was used at higher excitation energies, joining smoothly to

the constant temperature formula for excitation energies below
5 MeV.

(8)

1.3 Results and discussions

The model described above was used to calculate both, the
angle integrated secondary particle emission epectra and exci-
tation functions for the more important neutron threshold reac-
tions on Cr 1sotope§ in the energy range up to 20 MeV. At low

energies the reactions {n,p) and {(n,) dominate, while at hig-
her energies (n,2n), (n,pn), (n,n'p) and {(n,n’® ) become also
important. The remaining possible reactions, (n,3n), (n,2p) and
those embracing the complex particle other than &, do not con-
tribute appreciably below 20 MeV and were excluded from consi-
deration.

Resulte of calculation were compared with the available
experimental data (see Figs, 1-5). In general, the model is *
able to reproduce properly both, the angle integrated emission
spectra and integral cross sections with a consistently taken
set of parameters though some discrepancies remasin, Due to its
simplicity, the model is especially suitsd for evaluation pur-
poees, For a better understanding of underlying physics, howe-
ver, more microscopic models are needed.

I1, Microscopic description of direct contribution to neutron
inelastic scattering

The second part of this work ie devoted to the calcula-
tion of double-differential cross sections of neutron inela=~
stic scattering. We shall concentrate mainly on the calcula=-
tion of the direct continuum contribution to these spectra.

During the past decades, the direct reaction methods (DR)
have been used extensively and succesfully in analyzing a
large smount of experimental data for nuclear reactione. Thees
applications, however, have been limited mainly to processes
in which the reeidual nuclei were left in their respective dis-
crete states.

Contrary, the purpose of the present work is to apply the
DR methods to the calculation of continuum cross sections, We
shall focus our attention on the description of the inelastic
neutron scattering around 14 MeV on even-even targets.
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II1.1 Direct reaction methods

The simplest version 6f the DR methods is the distorted
wave Born approximation (DWBA).
distribution of inelastic scattering on a particular discrete
state is given as (Glendening 1983)

(42) (2= ) £ (a2) T8

oAl

In that epproach, the angular

me(9)
where
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and we use explicitly the collective form-~factor.

In the continuum region, there will be contained a lerge
number of states, even when a relatively narrow energy inter-
val is taken, and to calculate cross sections to excite these
states individually is impracticable. Rather an averaging pro-
cedure over a large number of these states has to be taken.
Thug, the continuum cross section per unit energy should be
interpreted as the incoherent sum of the energy averaged
cross sections for states contributing to the given energy
bin.

One may write

2 el o~ 4
(.5;:—3\[—1—),. ;<'(aﬁ~)o-u 2 Ps | (44)
where an index i stands for the i~th energy bin over which
an averaging is performed and terms on the right~hand side
of eqs 11 are given by eq, 9. The quantity e:repreeente the
nunbsr of states with a multipolarity 1 contributing to the
i-th energy bin,
The energy dependence of the right-hand side of eq. S

is contained mainly in the dynemic deformation parameters f3,
which fluctuate strongly with the excitation energy, while

= YR X2, (10)

ln vary smoothly and slowly (due to

the smooth and slow variation of the optical potential U).

the reduced amplitudes B

Thus, the problem of an energy averaging of eq. S is in fact,
reduced to an averaging of the ﬁh's. In the standard collec-
tive model of nucleus (Bohr and Mottelson 1974) the ﬁu"are
related to the reduced matrix elements and thus, tha problem
is further shifted to the field of the nuclear structure theo-
ry.

I1.2 Nuclear structure calculations

In this work we have used the quasiparticle=~phonon nuc-
lear model (QPNM) to predict energies, wave functions and
matrix elements of excited states. Since this model has been
described in detail elsewhers (Soloviev 1978, Vdovin and So-
loviev 1983) only the essential features will be given here.

The starting point of the QPNM is the Hartree-Fock-Bogo-
lyubov (HFB) theory. The model Hamiltonian of the QPNM used
in this work consist of the mean nuclear field (of the Saxon-
Woods form) and the effective interaction in the form of the-
monopols pairing interaction plus the separable multipole~mul-
tipole isoscalar and isovector forces.

One may write this Hamiltonisn in the second quantization
as

He 0 oy ™ o y® C T HO

PAIL Fm:.

(42)
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Transforming the model Hamiltonian (12)=(15) by the canonical
ngolygbov transformation, one passes from nucleon operators
BJT‘ aJm+ to quasiparticle crestion a:d ennihilation operators
Q.jm' ajm. The pairs of operators a’Jm -qu, and (x_j‘m"OLJm
are then expressed through phonon operators Qm#, OJVAU' and+
thus the quasiparticle operators remain only in the form CLJm‘
dj,m,.‘In such a way we have finally obtained the Hamiltonian
which contains tha free quasiparticles, free phononsand the
quasiparticle-phonon interaction. Then, the random phase appro-

ximation (RPA) method hes been applied to this Hamiltonian.

The RPA equations have been solved to determine the ener~
gles and wave functions of one-phonon states. It has been al-
ready demonstrated (see references cited above) that such an
approach is very useful for describing excited states. The one-
«~phonon states provide a unique description of collective, waa-
ky collective and two-quasiparticle states.

Having determined the energies and structure of one-phonon
states one may calculate the transition matrix elements, We are
interested in both, the proton and neutron reducsd matrix ele-
ments B(XA) (X=P,N) induced by external multipole fielda. For
this purpose we have calculated the RPA multipole response
functions for multipolarities A from 1 to 6. Typicel examples
of ths response functions for the neutron and proton syastems

of 56Fe of the multipolarities A «2 (for the 2% states) and

A =4 (for the 4% atates) sre given in Fig. 6 and Fig. 7, re-
spectively.

Please, nute a s8trong energy variation of the response
functions.

Since in OWBA celculations we use a collective form fac-
tor, for simplicity, we have to express the RPA reduced matrix
element for a particular state B(XA) (where X is N for the
neutron and P for the proton systems) in terms of the dynamic

deformation parameter

A -2
plxa) = BOA) [ENR] (46)

where N, is the number of particles of the type X. Finally,
for the effective dynamical deformetion of inelasticslly scat-

tered neutrons we may write

Vap No (3(PL) + T Vi Nu A(N2Q)
VMP NP t me Nm

Bm.m' (4) = ()

where N _, N_ are numbers of protons and neutrons building the

n
level under consideretion and V Van @re the strength (rela-

np’
tive) of n-p and n-n forces, respectively. The paremster I
represents the isoecalar (+1) or isovector (-1) excitation

of the given level.

I1I.3 Resulte gnd discusions

The model has been used to calculate the double-diffe-
rentiel cross sections of inelastic scettering of 14 MeV neu=-
trons on 52Cr, bre and seNi nuclei. Since this model gives
the direct contribution only, the compound nucleus portion of
the cross section has been added.

The results of calculations have been compared to the ex-
perimental date of Takehashi et al. (1983)., The asgreement is
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encouraging. The typical results may be seen in Figs, 8-12,
where the neutron inelastic spectra from the reaction 56Fe+n
are shown at sseveral angles. Similar results were obtained
also for 5%, and 38ny nuclei,

III, Conclusions

In the first part of this work the simple model for the
calculation of neutron threshold reactions is presented., The
model is based on a combination of the compound-nucleus Weis-
skopf-Ewing evaporation model and the modified exciton model
of the preequilibrium emission. In such an spproach the angle
integrated particle spectra as well as the excitation functions
of many competing reactions may be simultaneously described
using a consistent set of parameters. Due to its simplicity
the model is well suited for evaluation purposes.

The second part of this work is devoted to the microsco~
pic description of the direct contribution to neutron inelas-
tic séattering. The model coneists of one-step DWBA approach
and the quasiparticle=-phonon nuclear model for nuclear struc-
ture calculations. In fact, the model is very close to that of
Tamura, Udegawa and Lenske (1982) except the underlying model
of nuclear structure, Our one~phonon states contain collective,
weakly collective as well as two-quasiparticle states and thus
describe a good portion of the spectrum of excited states. At
this stage it eeems the model is well suited for the descrip-
tion of 14 MeV neutron inelastic scattsring, where one-step
DWBA approach is sufficient. At higher energies, however, two-
-step contributions may be required to correctly describe the
experimentsl data.
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GAMMA-RAY SPECTRA AND ANGULAR DISTRIBUTIONS
OF PHOTONS FOLLOWING THE CAPTURE OF FAST NEUTRONS
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Summary
It can be useful in fusion reactor research to obtain information
on the production of high energy photons. For this purpose an outline

of the direct~semidirect (DSD) model is given and the model is applied
to calculate the cross sections for the production of 10-50 MeV photons
following radiative capture of 4-50 MeV neutrons by 40Ca,48 Ti,nat Ni
and 120 g, It is shown that the model can allow useful predictions
about the relative yield of high-energy gamma-rays emitted in different
directions with respect to incident neutrons and that the angular
distributions depend greatly on the parameters of giant multipole
resonances and on the level structure of final nuclei.

1. Introduction

Fusion reactors require a large range of nuclear data for structural
materials at energies. above S MeV. Most of these .data are not
experimentally known so that nuclear model codes should be used to supply
the necessary information.

Neutron-induced photoproduction cross sections and angular
distributions of emitted high-energy photons can be of interest in
shielding, dosimetry and radiation damage problems connected with fusion
reactors and facilities that utilize neutrons up to about 50 MeV, e.g.
d+T, d+Li, or p+Li neutron sources. The (n,gamma) reaction, though
constituting only a small fraction of the non-elastic cross section
for high energy neutrons, becomes one of the dominant mechanisms for
producing photons with energies higher than about ten MeV. This hardest
part of the gamma-ray spectrum may be important not only to protect
fusion reactor components, but to satisfy biological safety requirements.

Since the necessary experimental information is rather scarce, one
must use model calculations to f£ill gaps and supply the energy-angle
data required.



Different mechanisms (statisticall) , valenceZ) . preequilibriuma) R
direct and semidirect“'e) have been proposed in attempts to account
for the experimental data of the nucleon capture reaction in the energy-
region of interest.

Among the different models proposed attention is here focused
on the direct-semidirect model which, up to now, seems the more adequate
to reliably calculate cross  sections and angular distributions for
radiative capture by heavy and medium-mass target nuclei of nucleons
with energies greater than about 5 MeV. The mechanism of nucleon capture
is essentially the same for neutrons or protons. However, taking into
account the purpose of the present Meeting the examples examined here
refer only to neutrons.

2. The direct-semidirect model

Following the direct capture model the incident neutron, during
its movement in the mean nuclear potential field of the target nucleus,
emits a gamma-ray undergoing a direct transition to an unoccupied particle
bound state.

In the semidirect model the capture proceeds through intermediate
states. In this picture the target nucleus may have shape oscillations
and an incident nucleon experiences a slightly deformed potential.
The interaction of the nucleon with the nucleus through such a potential
can excite collective modes of the target. In the capture process the
nucleon is scattered into an empty particle bound state and the nucleus
is excited to a giant resonance state. The latter then decays emitting
a gamma-ray. According to the direct or semidirect model the capture
of neutrons leading to bound final states by the emission of one photon
is favoured. Therefore a dominance of high-energy photons in the spectra
is expected.

In the present formulation the direct-semidirect differential
cross section for capture to a given final state is written as
o)
; -

ALP(E) x.L“(S.dﬁ)lg ' (1)

de z
Cu

1

|
&
where AL is the radiative capture amplitude for an electric multipole
transition of order L from an initial state ({'j') to a final bound
state (£j)

2 Y

A - (!".\1& 1+l kZLfl)i Z (iji"’-lg'.l’j'l)Z(l.J"lj;iL) z x':l._]'
L gt Lluelyitd i T=0,1

(2)

with k' and kK the nucleon and photon wave numbers, MTL , » the
direct~semidirect radial matrix elements, while X are tﬁje vector
spherical harmonics Ly

Lu®» = -ili@en]t@ny o . (3)
uTLj' in formula (1) is the radial part of the matrix element
| !y(c) iy Pt .
. . 1 (W CVeigif Ve Yine R I‘Lulvin>
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i~£ L
€., . 0w o

ST T

(4)

whose first and second terms correspond to direct and semidirect capture
respectively. Here ee. f and e are the initial and final nucleon
energies and Hw the excitation energy of the giant (TL) state in
the target nucleus (A,N,Z).

The initial, intermediate and final states are given respectively

by
, 7o iee i
¥, = L e st~ @il e, (., ()3
g !. ( )l IOHITH55 ¢ EEERLIAS
4
?iac-'°jmk“’d)u2j(r)QTL‘u ) (5)

yfin. ij(n,'a‘)ulj(r)oco .

with o“, + the Coulomb phase shift ( &,, =0 for incident neutrons),
@ the target functions and Q the spin-angular wave functions
P Z (2,4=X, 1,0 ""-M) Y]‘,.\(—/\xi,.\ ' (6)
A
The direct multipole transition operator in {(4) is given by

M

w A+l
ot P x

: (a0 (7}
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with Q4 = }4(1+13i )=1,0 for protons and neutrons respectively. To
estimate the direct transition matrix element an effective charge
e L s usually introduced:
- A+l v 1
=L f o= =L =27 =
e = ‘Z qr e LQ(fP £ e 2(rzr )]
i=l

with r s r and r = (r  +Ar }/(A+1) being the location vectors
in an %.rbitrary eysterg of cgordinates for the incident particle, the
target CM and_the_system (particle + target) CM respectively. With
the notation r = r - rt (rs-rt=r/(A+1)) this formula can be rewritten

as

L
L - eML(q* "‘) T ' (8)
(-a)"
where M is the reduced mass. It is immediately clear from formula

(8) that for L>1 the direct matrix element can be neglected in neutron
capture. It is this elimination of the non-El1 direct amplitudes that
highly increases the sensitivity of (n,y ) experiments to collective
radiation.

The particle-vibration coupling interaction for excitation of
giant multipole states in (4) can be written as

g, =

u g B (2,0) Y7 (D (9)

E S|

with \) =1; \J 1' ; ‘l‘Lp ; Ti (.Q) the collective coordinates

of the target. The radial form factor h E‘E ,r) i8 here expressed in
the general form

hyy (7,E) é-[vg(E)E(r)wg(E)ﬂ(t)*-iwg(z);'(r)*iwgﬂ.(r)_[ , (10

with L
o - s t o (1)
k - =l (o) /dr (11)
(r) 2 - 21 -
A (2L~1)<r2(L b,

v,S v,S
where v y W are the '"volume" or “"surface" depths of the

optical potential used, p(r)/p are Woods-Saxon form factors f(r)
with the same geometrical parameters as in the optical potential,
while the radial form factors & (r) and n(r) satisfy the normalization
condition

[ g " %r = [ ©tar (12)

t)

In order to evaluate the matrix elements of ]/.i.L
of the experimental values for the fractions of the EWSR exhausted
can be made, taking into account the relation:

direct use

- 2
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By introducing the operators mentioned into (4) the radial part
of the direct-semidirect matrix element MTL‘ , is found to be
J

< G C-.» '
M., =e 3 ., + S
Taj LoTL . _ s {14)
T MatTn
i - L
with E &Z'J"_st’.j , the energy of the photon emitted, e=e/er ' and
2 > 2,2 .
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where f3 is the fraction of the EWSR exhausted and D ’ C TLj are
the direct and semidirect {collective) integrals respectxé'ely-
L. 2
DLj' = f ulj(’.') T bl'j' dr
Lm0 T) i 2,00, . :2 H . 16)
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Thus, after calculating the bound-state wu, (r) and continuum~
state y,, wave functions, the radiative capture amplitude (2) and

the différdntial (n,y) cross section (1) can be obtained.

To analyse the angular distributions of photons following neutron
radiative capture the differential cross section is expanded in the
standard form

a (E) 2L

ds -2 %n (E ) P (cos 8 )
an (Fq &) 4 v 1ot w, Y1 an

T m=1

with . the cross section integrated over the 4% solid angle and
the a - coefficients expressed through combinations of the amplitudes
- s m

A .
iy .
The angular distributions of emitted photons are therefore obtained
as
2L
w(E ,8) =1 a(E )P (cos 8 . 18
(E_, &) “:‘—1 (E) P ) (18)

“To our knowledge no description of DSD codes for calculation
of angular distributions of emitted photons is presently available.
In the next section attention is focused on some results of angular
distribution calculations.

3. Productioh of high-energy photons

It has been pointed out in previous papers 9)t:hat: the available
experimental data associated with gamma-ray production chiefly concern
the thermal- and low-MeV neutron energy region. Such experimental
data are usually limited to photons below ~ 10 MeV, which is a very
large fraction of the total gamma-ray production cross section from
nonelastic and radiative capture reactions for fast neutrons. Knowledge
of this main part of the gamma-ray production is important for nuclear
heating. studies as well as for material damage estimates. For higher
enérgy photons, it is the transmission of the gamma-ray flux through
shielding that may be of interest, but information on production of
high-energy photons is rather scarce.

The main part of gamma-ray production from reactions induced
by neutrons is essentially due to nonelastic reactions that produce
photons. whose intensity rapidly decreases with energy. For producing
photons with energy above ~ 10 MeV, radiative capture is one of the

dominant mechanisms. In this energy region the use of DSD calculations
is required due to the lack of experimental data.

Following the model, the incident neutrons are captured to states
in the final nucleus that have a single-particle structure. This implies
that to a given neutron energy there should be a corresponding group
of monochromatic emitted gamma rays.

As an example the calculated 9) gamma-ray Spectra for radiative
capture of 9.2 and 13.2 MeV neutrons by 2 Pb is shown in fig. 1.
By introducing corrections for the detector gamma-ray efficiency and
spectrometer response function the calculated spectra can be compared
with experimental points , as fig. 2 shows. As can be seen, the
essential features of the spectral shapes are reproduced. In this
case, as in others, a discrepancy between measured and calculated spectra
generally remains for high excitation energies up to the neutron

separation energy BN .

This disagreement disappears taking into account the compound
nucleus contribution as shown in fig. 3 reproduced from ref. .

The gamma-ray spectra considered in figs. 1-3 refer to photons
produced over the 47 solid angle. Let us now illustrate the results
(part of which were presented at the Kiev and Santa Fel?) conferences)
for angular distributions of high energy gamma-rays due to radiative

ds/i(ﬂ,/’-,/, dy by s 9s, d,/ﬁ(gr"‘/l dybos fufy 9as

0.6F F
= P Ep® 9.2 MeV o En®13.2 MeV
£
= 04f -
>
£ L L
L

0.2+ -

[o] ll A | l 1 J , i l 1

10 12 14 14 16 18
Ebo(MeV)

9
Fig. 1. Calculated ! gamma-ray spectra for radiative capture of
monochromatic neutrons by 208Pb.
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40 48 at 120
capture of fast neutrons by Ca, Ti, n Ni and Sn  {natural nickel

is considered as an admixture of saNi and 60 Ni, neglecting the 6% of
other isotopes).

-7)

Calculations are performed by using the extended formulation of
the DSD model, which includes higher multipole contributions. The
differential (n,y) cross sections for E1+E2+E3 capture are calculated
versus the incident neutron energy E and the angle OY between incident
neutrons and emitted photons by using formula (17).

The explicit expressions for the a, -coefficients show that
interference between opposite-parity transitions gives rise to symmetry
breaking in the photon angular distributions.

The (“'Y) cross sections are obtained, as in ret‘.s). without re-
course to free parameters, that is: 1) EL contributions up to L=3 are
taken into account with energies, widths and strengths of giant states
taken directly from experimental data, 2) the same depths and geometrical
parameters are used both for the optical potential and the energy-
dependent complex coupling interaction having a mixed surface- and
volume~form, 3) the same potential geometry is adopted both for bound
and scattering states, 4) the depth of the bound-state potential is
adjusted to give the final-particle binding energies, obtained as the
centre of gravity of the nuclear levels listed in "Nuclear Data Sheets".

The reliability of the (n,y) cross sections thus obtained has
been checked: 1) by a comparison between experimental points for photons
emitted at a fixed angle (9Y=90°) and the corresponding curves calculated

Ni (see figa. 4 and 5);

for neutron capture in Ca and

20

d67/d (90" (b sr)
3 - &
T T

o
]

1 2 ) 1 !
-] 8 10 12 14 16

En(MeV)

40 16 17)
Fig. 4. The Ca(n,Yo)calculated ) crogs section compared with data .
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2) by a comparison between calculated curves and the experimental
points for angular distributions of photons following radiative capture
in 49ca  of neutrons at the fixed energies indicated in fig. 6.

From the (n,y) cross sections, the spectra of emitted y-rays
are obtained for En=4—50 MeV with AEn=O.2 MeV and for '9Y=O°-180°
with + A8, =10°. From these spectra the photoproduction cross sections
d26(EY, ef)/dEY df\ and the angular distributions ll(EY, §,) are obtained
as average values for photons produced in a one-MeV energy interval.

Of course, the case of strictly monochromati¢ neutrons is not
the most important in reactor technology. Attention should also be
devoted to those neutrons having a continuous spectrum of energies;
for example, resulting from scattering and  other nuclear reactions
after passing through the first wall, the blanket, and other structures

of a reactor.
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Fig. 6. Comparison between calculated 16) angular distributions and

17)

those measured in refs. for the 40Ca(n,Y ) reaction.
°

Therefore, for application purposes, knowledge of €'= ¢(En) 6(E-{) ,
the photoproduction cross section d(Er) weighted to the relative incident
neutron fluxes é(En) is of greater interest. As an example these
values are calculated for incident energy distributions corresponding
to neutron spectra from d+T and d+Li reactions.

In fig. 7 the calculated differential cross sections for gamma-rays

produced by neutron radiative capture on 40 Ca (fig. 7,a) and 120 g,

(fig. 7,b) are plotted versus the photon energy for three fixed angles
QY =90°, 30° and 150° corresponding to curves 1, 2 and 3, respectively.



T o : - A similar strong forward peaking of high-energy photons is obtained
for gamma-rays produced by neutron radiative capture in 48 1y and
natm as shown in fig. 9.

This asymmetry is particularly pronounced for capture to high-spin
final states, which in the nuclei considered have a great statistical
factor. For energies greater than about 20 MeV the asymmetry of the
L angular distributions would be further enhanced taking into account
o , ) , = the isovector quadrupole giant resonance. This resonance is here ignored,
’ its existence still being controversialle).

T

The three-dimensional representation of figa. 10 and 11 allows
4 one to take a general look at the angular-energy dependence of the
7 photoproduction cross section and angular distributions for the nuclei
+ considered.

a’o/dE,dg (,. b/MeV- sr)

10

The Y-ylelds, integrated over the 4T solid angle and weighted
to three different incident neutron energy distributions ranging from
wl "~ ~_ | 4- to 50 MeV, are plotted in fig. 12 for the 120 sn(n,y) reaction.
R S R . \‘ . T The incident fluxes shown in the inset to fig. 12 are: 1- a uniform
10 20 30 40 50 energy distribution, 2- a distribution corresponding to part
of the neutron energy spectrum from a d+T source, 3~ a

£, {Mev)

Fig. 7. Photoproduction differential cross sections for 40 Ca (a) and 10° . . 1.5 i
120gn (b): 1'°Y=9°°‘ 2-e¥=30°; 3—e‘=150°.

The curves reproduce the distinctive feature of the giant dipole
resonance, while no resonance-like shape can be connected to the position
of E2- and E3-giant resonances. The presence of E2- and E3-radiation,
however, highly influences the angular distributions of emitted photons.
The E2- and E3-giant resonances are weak in 4°Ca, so the angular
distribution of photons is almost symmetric in the whole energy range
conasidered (fig. 7,a). Conversely, the interference between opposite-
parity transitions for the 12°Sn(n,y) reaction gives rise to cross
section values which, for 9,:30". are greater in the high energy range

d6/4E , d0{ub/MeV-51)

by about a factor 2 with respect to those for OY=150° (fig. 7,b). <
05{/"
_ This situation is illustrated more distinctly in figs. 8,a (40 ca ) P ‘3‘/ :
and 8,b ( 12%n). on the left part of the figure photoproduction 10 3.7 ' ~
-~ \

differential cross sections are plotted versus the cosine of § for 0 : 0.0
three fixed energies equal, for 4°Ca, to 15, 25 and 50 MeV (curves -1 -1 1
1, 2 and 3, respectively) and, for 120 Sn, to 15, 22 and 35 MeV (curves
1, 2 and 3, respectively). On the right of fig. 8 the angular Fig. 8.
distributions are shown for the same photon energies. The latter Differential cross sections (left) and angular distributions (right) for gamma-r f
clearly indicateg_a forward peaking, growing with energy for photons calcium (a) and tin (b). a): 1-E = . O.F = . ~rays lrom

y ’ ) E =15 Mev; 2 By=25 MeV; 3-E,=50 MeV. b): 1-8,215 Mev;

produced in the sn(n,y) reaction. Z'EY"ZZ MeV; 3-EY=35 Mev.
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distribution corresponding to part of the neutron spectrum resulting
at 8° from 35-MeV deuterons incident upon 1lithium. As can be seen
from rig‘. 12, curve 1, obtained for a uniform neutron~energy distribution
and corresponding to those ‘of part b of figs. 7-8, shows a resonance-like
shape due to the presence of the giant dipole resonance. Curve 2,
corresponding to neutrons from the d+T source, exhibits strong enhancement
in the yield of 16- to 22 MeV photons with two distinct peaks both
due to the neutron distribution and the level structure of the target
nucleus. Curve 3, corresponvding to the d+L;i. source, shows enhancement
of the gamma-ray yield in the whole energy region from 10~ to 30-MeV
with a rapid decrease at higher energies.

The upper and lower sections of fig. 13 show the angular-energy
dependence, of the Y—yields corresponding to the neutron energy
distributions shown respectively in the insets 2 and 3 of fig. 12.

A similar plot is given in fig. 14 for the Y -yields from radiative
capture of neutrons by natural nickel. In the left and right sections
of fig. 14, the incident neutron fluxes correspond to the 4-20 MeV
part of a neutron energy spectrum from d:T and d+Li reactions
respectively. The left surface, corresponding to neutrons from the
d+T source, shows strong enhancement in the yield of photons with
E,> 18 MeV, the peak being displaced from ~ 17 MeV (fig. 9) to about
20 MeVv. The right surface, corresponding to the d+Li source, exhibits
a moderate enhancement of the y -ray yield at the peak, and a decrease
at higher and lower energies.

To our knowledge no experimental data on the cross sections
for the production of 10- to 50-MeV photons are available, so direct
comparison of the present calculations with experiment is not possible.
However, the reliability of the present estimates can be inferred
from the agreement of calculations with (n.y) experimental data for
capture of 6- to 15-MeV neutrons (see figs. 4-6).

d'o/dE. ¥ty MeVxsr)

WE,0,)

0.0 T T T T T T T T T T T T T T T T
0 10 2 3 40 50 80 70 80 60 100 N0 120 130 140 150 160 170 180
87

Fig. 9. Upper: photoproduction cross sectiohs for Ni, 8, =30°(~),
8 =90°(~ -), 9Y=150°(-.-). Lower: angular distributions for

43714, sr=12 MeV(—), E1=18 MeV(~- -}, EY=35 MeV (-.-).
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for y-rays from the 48Ti(n,y) and the natNi(n,x) reactions.
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Fig. 12.

12°Sn(n.\{) reaction. The Y-yields, integrated over the AT solid angle and
weighted to the incident neutron energy distributions shown in the inset:
1 - uniform energy distribution; 2 ~ d+T neutron source; 3 - d+Li neutron source.
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Fig. 13.

The angular-energy dependence of the Y-vields for the radiative
capture by Ca and Sn of neutrons from a) a d+T source,
b) a d+Li source.
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Fig. 14,

Gamma-yields for the radiative capture by natural Ni of neutrons from a d+T
source (left) and a d+Li source (right).

4, Conc¢lusions

These results show, that the strength and position of giant
multipole resonances and the level structure of the final nuclei highly
influence the angular distributiona of high—energy {~reays emitted by
the constituents of the structural materials. The reliability of
estimated angular distributions is closely related to the experimentally-
known values for <the GMR parameters taken as input values in the
calculations. The cross section magnitude depends mainly on the level
structure and giant-dipole state parameters adopted. To 4improve the
reliability of calculations more experimental data are needed on the
GMR parameters, especially IVQR, and on (n,‘ ) cross sections in the
high-energy range. It follows that DSD calculations based on the

. knowledge of the positions and strengths of giant multipole resonances,

can allow useful predictions about the relative yield of high-energy
Y -rays emitted in different directions with respect to incident neutrona.
These calculations can be of interest in problems connected with the
protection of fusion reactor components and with biological aafety
requirements.
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Calculation of y-ray Cascades in Code ALICE*

M. Blann
Physics Department
Lawrence Livermore National Laboratory
University of California
Livermore, California

G. Reffo and F. Fabbri
ENEA, Bologna, Italy

We describe the methods used to calculate y-ray cascades in the code

ALICE/LIVERMORE 300. Results are compared with experimgnta1 spectra for

Brb (n,xm), 27A1 (nyxy) and 'PTAu (n,xy) at ¢, = 9.5, 14
181

and 18.5 MeV (average bin energies), and for Ta (n,xy) at 14 MeVi

93 181

The ““Nb and Ta y-ray spectra are also compared with results of the

ENEA code PENELOPE.

I. INTRODUCTION

The code ALICE is a nuclear reactions code which was designed for
versatility and ease of use in the bombarding energy range of a few MeV to
several hundred HeV.’ The requirement of detailed input parameters was
sacrificed to achieve these goals. The minimum input required to rum ALICE
is the target and projectile charge and mass numbers, projectile energy, and
a title card.

Many options exist for types of reactions to be considered, e.g., heavy
jon fusion-fission with angular momentum dependent fission barriers, light
jon fusion-fission, precompound decay reactions and evaporation reactions.

* This paper was published as preprint UCRL-95374 (1986).

The ALICE code provides yields and spectra for all reactions populated by
all combinations of n, p, d and « decay, and can provide all input
parameters internally (with the exception of the minimum input parameters
listed above). The running time of the code is very short, being typically
0.5 sec on a CDC-7600 computer and 20 sec on a MICRO VAX.

The ALICE code has been'successfu11y used to reproduce data of
(HI, xnypzaf) reactions, (n,xnypzaf) reactions, photonuclear reactions
for c75140 MeV, and stopped pion capture reactions. In this paper,
we describe the addition of a routine to calculate y-ray spectra from
de-excitation of the excited nuclei formed during the precompound/compound
reaction cascade. Excellent codes exist to accomplish this task with
sophisticated physics and with detailed nuclear strutcture input. Our goal
is to see how well we can do within the framework of the ALICE code,
requiring no additional input information than required to run earlier code
versions. A listing of the y-ray subroutine and changes to the ALICE code
required for the y-ray calculation are in the appendix.

II. ADOPTED TREATMENT OF y-RAY CASCADES

A. Equilibrium_y-ravs

The primary assumption made in the present treatment is that the
preponderance of equilibrium y-rays come from excited but particle stable
nuclei. We therefore assume that where n or p may be emitted (i.e., the
excitation energy exceeds the neutron binding energy or the p or a binding
plus an increment for an effective coulomb barrfier) there is no y-ray

competition. If this is so, we may sum populations of all residual nuclei
as a function only of excitation, since we follow no discrete levels, nor do
we keep account of spin and parity population.

This situation is summarized in Fig. 1, where we indicate at the bottom
of the figure the summing up of all particle emission stable residual
cross-sections as a function of residual excitation. The upper part of the
figure pictorially represents the sequence with which the ALICE code
considers all de-excitation paths by n, p, and a decay, giving the
residual nucleus populations which we sum for the y-ray cascade
calculation. The summed populations o(u) at each excitation energy u are
next used to generate the y-ray cascade.
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We replaced the Fermi gas level density of ALICE
- / - €q. 1
p(u) au 5/4 c2 a(u-4) (€q. 1)

by a constant temperature,form

Eq. 2
plu) a % M7 a. 2)

for residual excitations below the average neutron binding energy of the
first two neutrons emitted. The constant temperature density was normalized
to the Fermi gas form at the matching excitation Ux' The temperature was

defineéd in- the ysual way as:

T =/Ux/a . (Eq. 3)

where a = A/9 and Ux is the average neutron binding energy referred to
above. These constant temperature level densities affected both particle
emission and y-ray spectra.

The y- ray spectra are calculated using a Lorentzian form for the

photon absorption cross- sect’ion,2

czrg (Eq. 4)

cL(c) =3 %

R=1 2

(cz—Es)H:zFR
where e =43.4 a0-218 1 (1-8/3)%, o,=0.0145 A/E1,
r1=0.232 E], E2=Eo (1-0.168), cz=0q0235 A/E2, and r, = 0.275 Es-

while 8 could be made an input parameter, we have simply set =0 internally.

We assume only E1 radiation, so that the relative y-ray cross-section
from de-excitation of a population at excitation energy U with cross-section
a(U) -1s given by

2
cY(:Y) a :Y

s (&) slu) stu), (Eq. 5)

and this expression is normalized to the total emission to give absolute
cross-sections.

Results of y-ray spectra calculated with this formulation were found
to be too soft. Prompted by this shortcoming, we made one additional
assumption, that the levels accessible for each y-ray transition were half
the total. This may be justified by the argument that generally half the
levels are even parity and half are odd parity, and £1 y-ray transitions
can populate only levels of a single parity for a given initial parity,
Results of calculations with this modification are shown in Figs. 2-11. The
agreement with experimental results is generally satisfactory, and we have
adopted this approach for the code.

B. Precompound y-rays

Some y-rays of energy 15-22 MeY have been seen in 14 MeV neutron
bombardment of several targets.5'6 We have taken a purely empirical
approach to reproduce these results for applications where high energy
y-rays, though in low abundance, may be important (e.g., in shielding
calculations).

Our first step was in plotting the log of the experimental
cross-sections versus log of residual excitation. This indicated a
proportionality of the precompound y-ray spectra to U and U3. simtlar to
3 and 5 exciton state densities. By considering the dimensiona11ty; we
parametrized the oY(c) as:

% cz 3 (Eq. 6)

cY(c) 2 [k u+ k2 E 2]

where a fit to the *°Co (n,xy) data gave k,=0.0011 and k,=0.028. In

Eq. 6, %R is the projectile + target reaction cross-section, A is the
target mass number, U the residual nucleus excitation energy and E the
compound nucleus excitation enerqy. This algorithm is applied only to the
compound nucleus. A total calculated 3Nb(n.xy) spectrum is shown in

Fig. 12, including the high energy precompound y-rays, compared with
experimental results.
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We shquld“émphas1ze that the pkocedurg used for these high energy
precdmpound v-rays is ad-hoc and arbitrary. It 15 not physics. The
method may be useful for reactions induced by neutrons of around 14 MeV.
Extrapolation to other regimes is unwarranted andvdangerous, until such time
as the algorithm may be tested versus experimental results for various
projectile energies and target mass numbers.

I1I. CONCLUSIONS

The Lorentzian line shape has been used for E1 radiation for
equilibrium y-ray emission in the code ALICE. No spins or parities are
followed or retained in the calculation, and no additional input parameters
are required with respect to the earlier code version. The results are in
quite reasonable agreement with experimental spectra for the wide range of

target masses considered.

IV. ACKNOWLEDGEMENTS

One of ‘the authors (M8) wishes to acknowledge the kind hospitality of
Dr. Enzo Menapace and ENEA, Bologna where this work was done. The help and
support of R. W. Howerton is also very much appreciated.

This work was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory under contract number
W-7405-ENG-48.

References

7. M. Blann and H. K. Vonach, Phys. Rev. C 28, 1648 (1983); M. Biann,
Lawrence Livermore National Laboratory, Report UCID 20169 (1984)
unpublished.

2. K. Wisshak, J. Wickenhauser, F. Kdppeler, G. Reffo and F. Fabbri, Nucl.
Sci. and Eng. 81, 396 (1982).

3. 0. M. Drake, E. 0. Arthur and M. G. Silbert, Nucl, Sci. and Eng. 65, 49
(1978).

4, J.

K. Dickens, T. A, Love and G. L. Morgan, Oak Ridge National

Laboratory Report ORNL-TM-4232 (1973) unpublished; G. L. Morgan and

E.
F.
G.

5. F.

Figure 1

Newman, ibid. ORNL-TM-4973 {(1975) unpublished; G. L. Morgan and
G. Perey, ibid. ORNL-TM-5241 (1976) unpublished; J. K. ODickens,
L. Morgan and E. Newman, ibid. ORNL-TM-4972 (1975) unpublished.

Rigaud, G. Longo and F. Saporetti, Nucl. Phys. A 113, 551 (197).

. A. Plyuyko and G. A. Prokopets, Phys. Lett. 168, 253 (1978).

A1, Z C.N.AZ
OU oU
-0 -t -t
LR
1) @
P P /// P
) ) Z-1, A-1§
%y
— —n PEEL ////.\\
1 T T
P i '
Y
Ju kY JEEY oln
U

olU) = 5 oy(A",Z))

Diagrammatic representation of the ALICE de-excitation
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by evaporation of n,p,d and a. Each nuclide has a population
cq versus excitation energy U. Following the conclusion of
all n,p,d,a emission processes, all particle stable populations
are added to give a single population distribution o(u), as
shown at the bottom of Fig. 1. This summed buffer is used to
calculate the y-ray cascade.
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CONSISTENT DESCRIPTION OF SHELL, SUPERCONDUCTIVE AND COLLECTIVE
EFFECTS IN THE LEVEL DENSITY OF STRUCTURAL MATERIALS

A.I. Blokhin, A.V. Ignatyuk
Institute of Physics and Power Engineering
Obninsk, Kaluga Region, USSR

ABSTRACT

The paper presents the results of a level density analysis
based on the superfluid nuclear model. Using the random phase
method, the temperature dependence of the coefficients of
vibrational enhancement of level density was studied. On the
basis of the results obtained, a phenomenological approach was
developed to describe the level density of spherical nuclei in
the mass number range A=50-65 in which the shell effects of the
single~-particle spectrum, the pair correlations of the
superconducting type and the increase in level density due to
collective vibrational modes are taken into account.

1. INTRODUCTION

The statistical approach has been used successfully for evaluating
particle spectra and cross-sections 1in nuclear reactions at 1low and
medium energies since in many cases the contribution of the compound
process is dominant [1,2]}. The state density of excited nuclei plays an
important role in all practical applications of the statistical theory of
nuclear reactions. Because of its simplicity, the Fermi-gas model is the
one most widely used for describing the density of nuclear levels. The
principal parameters of this model are the parameter ™a", which is
associated with the density of single-particle states near the Fermi
energy, end the phenomenological parameter &, which allows the
difference in the level dengity of even and odd nuclei to be taken into
account [3,4). However, analysis of the statistical properties of nuclei
based on microscopic methods developed in studies of ground and low-lying
states of nuclei has shown that the Germi-gas model does not tske into
account meny important effects due to the shell structure of the single-
particle spectrum, pair correlations of nucleions of the superconducting

type and coherent collective nuclear excitations [5-8].

The use of microscopic methods developed to describe ground and
low-lying nucleer stetes has enabled systematic celculations of nuclear
level density to be performed which include the shell structure of the
single-particle spectrum and the superconducting-type pair correlations
of -nucleons [5}. This approach has provided a better understanding of
the limitations of the Ferﬁi—gas model and an explanation of a number of
deviations from its predictions, in particular the features of the energy
dependence of the level density of near-magic nuclei and the weakening of
the influence of shell structure with increasing of excitation energy.
However, with correct selection of average field and superconducting-type
correlation interaction parameters, it has proved impossible with the
independent quasi-particle model to describe for most nuclei and absolute
value of level density at an excitation energy equal to neutron binding
energy. These discrepancies are a direct indication of the existence in
excited nuclei of fairly strong collective effects which are due to
residual interaction of a coherent nature and lead to an increase in the
excited state density of nuclei. Many examples of the experimental
ocecurrence of such effects in various nuclear reaction cross sections

have also now been stored (7).

The problem of consecutive separation of different types of coherent
collective motion of nucleons has not yet been fully resolved. It
sppears that the influence of rotational effects on excited state density
can be described for a wide range of excitation energies in an adiabatic
epproximation. The use of this approach has substantially improved the
theoretical description of the neutron resonance density of deformed
nuclei [9,10)} and enabled a number of earlier inconsistencies in the
interpretation of the energy dependence of nuclear fission cross sections
to be eliminated [11). Analysis of the contribution of vibrational
motion is complicated by the fact that the adiabatic approximation cannot
normally be used to evaluate it. These effects can be investigated using
the combinatorial microscopic approach generalized to the region of
highly excited nuclei by Solov'ev et al. [6). A similar study based on
thermodynamic methods of describing coherent excitations of heated nuclei
was conducted in Ref. [7]. Unfortunately, sufficiently vigorous methods
of calculating nucler 1level density are extremely laborious, what

severely limits their practical application.
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Research is urgently required to find a description of level density
which takes into account of the main ideas of theory on the structure and
pfépetties of highly excited nuclei and at the same time is sufficiently
simple and convenient for practical application. Ref. [9] is an example
of such an approach: the authors have succeeded in constructing a
phenomenological description of level density for heavy nuclei with A>150
which is in good agreement with the results of theoretical calculations
in a Woods-Saxon potential scheme and with experimental data on neutron
resonance density. Certain problems prevent the extension of such an
approach to the llighter nuclei region. First of all, the rotational
increase in level density is absent for spherical nuclei, and the
contribution of vibrational motion can vary strongly from one nucleus to
another. For transitional nuclei, both the adiabatic evaluation of
rotational motion, and the 1liquid-drop evaluation of the stiffness
coefficients which govern the average contribution of vibrational modes
in deformed nuclei (9] may prove to be too rough. To overcome these
difficulties it is very important therefore to have reliable experimental
data on 1level density behaviour over a wide range of excitation
energies. Unfortunately, direct experimental data on level density exist
only for limited energy ranges, namely near the ground state and at
neutron binding energy (3,4). Indirect information on level density can
be derived from an analysis of nuclear reaction cross sections and the

spectra of the particles emitted therein.

The aim of this paper is to study the role of the vibrational
increase in level density in a description of the existing set of

experimental data.

2. ANALYSIS OF NEUTRON RESONANCE DENSITY IN A NON-INTERACTING
QUASI-PARTICLE MODEL

Before examining the influence of collective effects, we shall
discuss the differences between experimental data and the results of
calculstions of level density in a non-interacting quasi-particle (NQP)

model.

E=2(2),+0) e 1 2h
N

In the statistical approach the nuclear level density at a given
excitation energy and angular momentum is calculated uging the relation
in Ref. [S5]:

234
-9NQP ! 83\'3‘63 Dd‘/i

A
ex \:J)_S (3'”/2'3 5 (1)

where the entropy S and the spin cut-off parameter 02 are determined
by:

RE ?}(awﬂ{{“‘zom + In(t-n )y

(2)

6%=35 S DR+, (-n0) /3

Here n, = [1 - exp (E.‘\’/t:)]-1 is the average occupation numbers

of quasi-particle states with energy E = [(e - N )2
vz v d N

A ] J“ and c“ are the angular momentum and the

energy of the corresponding single-particle 1level. The chemical

potentials - XT and the temperature of the excited (heated) nucleus ¢t

are determined by the equations of state:

S P (4- zm}

(3)

)]

and the excitation energy U is related to the total energy of the nucleus

@y
%12\’_ (2‘39”3[4

E by the relation U = E(t)-E(t = 0). At full length the expressions for
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the determinant of second-order derivatives Det as well as a more
detailed treatment of the relations for thermodynamic functions (2) and
(3) can be found in Ref. (12].

when calculating the 1level density, the correlation parameters
A , were used which depend both on the temperature of the nucleus
v
and the quasi-particle state energy. Both these dependences are derived

from the model considered in Ref. ([12],

Av(t) = A (cD - A7) °. (t),

EQ"X'\\ (4)

) s

(80 2a)= (84-20) s&’\(

.t’l L

where the function ¢T(t) characterizing the temperature of the
correlation parameters is defined by the equation:

t

e @ () | o

\?'i ('t>" ﬂ%[ +

The critical temperature tcr of the phase transition from the
superconducting to the normal state is related to the correlation

function at the Fermi surface A&(O) by the relation:

t = A_(0) /2, (6)
Ter T

The difference between this model and the traditional superfluid one

{15]), in which matrix elements of the pair interaction are replaced by s

‘constant. is manifested mainly in a slightly different connection between

the critical temperature and the correlation function Aro of the

ground state of the system

= . (7
t‘tcr 0,567 A'ro )

If for a given single-particle spectrum the correlation interaction
parameters are selected so that the c¢ritical temperatures in the two
models coincide, then the differences in the temperature and energy
dependence  of the level density and in other thermodynamic
characteristics of the system will be negligibly small. This conditions

satisfied by the parameter connection
AT {(0) = 1,134 » ATO' (8)

which we have used in all subsequent calculations. Figure 1 shows the
energy dependence of the entropy, the spin cut-off parameter and the
temperature of the 56Fe nucleus calculated using relations from both
models. It is clear that the differences in the thermodynamic functions
in the two approaches are very small. However, from the standpoint of
calculations, the model used is simpler and more convenient for the

purposes of analysing experimental data.

We calculated the neutron resonance density in the non-interacting
particle model wusing a spectrum of single-particle 1levels of the
Woods-Saxon potential and the correlation parameters obtained in Ref.
{13] from an analysis of a set of experimental data on proton and neutron
pair energies of spheriéal nuclei with 40 < Z < 60 and S0 < N < 90. A
similar analysis was conducted for nuclei with 50 < A < 70 in which the
parameters were assumed to the same as for the heavier nucleus range [13,
14]. The results of our calculations are given in Fig. 2a. The mean
neutron resonance spacing is related to the 1level dengity by the

correlation D , where

-1
theor. ™ Ptheor.

1/2 { p(Bn,I°+1/2) = p(Bn.IO-I/Z)} for 1,40,

theor. 9

1/2 p(Bn,1/2) for Io =0,
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Here Io is the target nucleus spin and Bn is the neutron binding
energy. The data given in Ref. [15] were used as the experimental values
Dexp.' It should be pointed out that for many of the nuclei studied,
and particularly the near-magic nuclei, the experimental errors for the
mean resonance spacing are very significant. The different systematics
of Dex for these nuclei diverge by sevefai ti@es. These divergences
are illustrated in Fig. 2c which shows the ratips of the experimental
data Dexp. from Ref. [16] to those in Ref. [15], which we use as
reference data. For purposes of comparison with our calculations, Fig.
2b sghows the results of similar calculations of Dtheor./Dexp. carried
out in Ref. [10] for the spectrum of single-particle levels of the
Woods~Saxon potential, but using somewhat different potential parameters
and another procedure for selecting the correlation functions. From an
analysis of the results presented in Fig. 2, it can be concluded that it
is not poésible whith the independent quasi—éarticle model to obtain a
self-congistent description of neutron resonance density for a wide class
of nuclei. However, the independent qupsi—particle model correctly
reflects the shell structure and the influence of pair correlations on
the level density energy dependence. It 1is natural to 1link the
discrepancies that exist in the description of the experimental data on
neutfbnb resonance dénsity to the existence of coherent effects of a
collective nature which are not taken into account in the independent
quasgsi-particle model. These effects will be considered in Section 4

below.

We should point out, however, that sufficiently rigorous microscopic
methods for calculating level density are extremely laborious, and this
severely restricts their practical application. Research is urgently
required, therefore, to find a description of level density which takes
into account the main ideas of theory and is at the same time simple

enough and convenient to be used in practice.

3. PHENOMENOLOGICAL APPROACH TO LEVEL DENSITY BASED ON THE SUPERFLUID
NUCLEUS MODEL
In the continuous spectrum approximation in Ref . (9] a

phenomenological method (model) was worked out for calculating level

density which includes both shell effects and correlation of the
superconducting type. Let us examine the main relations of this method,

which are similar to the Fermi-gas model.

One of the chief parameters in this model is the correlation function
Ao; according to (7), the critical temperature tcr. of the phase
transition from the superfluid to the normal state is directly related to
this parameter. At temperatures above critical (t > tcr.)’ the
equations of state differ from the Fermi gas equations of state only by

the shift of excitation energy on condensation energy Eco d.'
nd.

2
U = at™ + Econd'
172
S =2t =2faU-E 0] . (10)
2 6 -
8= 2. K _ AL 51 S
. am t : D - 12 3% .
It o

Below the phase transition point (t < tcr ) we use the method

developed in Ref. [12] to describe the same thermodynamical functions:

U:UWU‘\?Z) ; 5‘—5w%1(\-\‘223,

(11)

6% 65, (1-q™) , Db =D (1-92) (h+q2>®,

In relations (11) the index "cr.® denotes the corresponding values at the

critical point for t = tcr , namely:

V
o

k)Vf y s;cn' - 22 Clcf'{ e

(12)
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Here and above it 1is assumed that m2 = 0.24 A2/3. The function

¢2= (I - U/Ucr ) ig related to the temperature by the equation:

W= %(%_\93 (13)

Solving this equation allows us to obtain the temperature corresponding
to a particular excitation energy or, conversely, to find ¢ for a given
t <t ., and then - with the help of Eq. (11) - to determine the
remaining values. The condensation energy, which characterizes the
reduction in ground state energy due to the correlation interaction, is

determined by:

2
E%no‘ = > Qe bo
LT

(14)

In order to 1include shell effects in the consideration, it is
necessary in relations (10-14) to use the value of the level density
parameter, a, which has a certain depéndence on the excitation energy.

For this purpose we employ the relations:

~

alU,Z,N) =% (&) {1 + & Eo (Z,N) f(U)/(U—Econd)}.

T(A) = aa + BaZ/3, (15)

£(U) a1l -exp { ~ Y (U-E )},

cond

which was successfully used earlier for the ayétemétics of the level
dengity parameters in the Fermi-gas modél. " In relations (15), "a" is the
asymptotic value of the paraméter "a" at hish éxciiation energies,
é Eo is the shell correction at nuciear binding.'energies (nuclear
masses) and f(U) is the "universal" dimensionless function which

determines the energy dependence of the parameter.*a":' The influence of

shell effects on in the superfluid phase (11) is reflected by the
thermodynamical functions the value of the level-density parameter at the

critical point 8.0 which should be determined from the equation

Qer = 8\ &1 + Ség[l‘ - ex\)(-ﬁqw{'(‘t)]/a "-{:: 3 . 18

The differences in the 'statistical characteristics of even and odd
nuclei are determined by the ground state energy shift [9). They can be
obtained wusing the following values for the excitation energy in
relations (10,11)

( 0, for even-even nuclei;
U =U+ ( Ao' for odd nuclei; (17)
( 2A°. for odd-odd nuclei

For the subsequent discussion it is important to note the following

main features of the description used for the level density:

1. The correlation function for the ground states of nuclei was taken
to be Ao = 12/vA MeV. This choice of Ao agrees on
average with the nuclear mass systematics in Ref. ([17] and also
with the results of the analysis of neutron resonance density of
heavy nuclei [9].

2. The parameter Y = 0.064 Mev 'l was kept the same as in the
description of neutron resonance density of heavy nuclei in Ref.
[9l.

3. The asymptotic value of the 1level density parameter a = 0,III.A
Hev_l was determined by comparing the phenomenological approach
in question with the results of microscopic calculations of level
density for a spectrum of single-particle levels of the

Saxon-Woods potential {5).

4. In calculating the level density parameters (see (15)) for shell

correction, the values given in Ref. {17} were used.
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The above relations (10-16) of the superfluid model are, of course,
mofe complex than the simple expressions of the Fermi-gas model.
However, such complication 1is unavoidable if we wish to achieve a
consistent description of the level density over a wide range of
excitation energles. The number of parameters defining an excited
nucleus in the model considered remains the same as in the Fermi-gas
model. The use of this model for the analysis and the systematics of

experimental data thus seems highly promising.

4. ANALYSIS OF THE VIBRATIONAL ENHANCEMENT COEFFICIENTS IN A RANDOM
PHASE APPROXIMATION

A feature of vibrational excitations in heated nuclei is the damping
of collective low-energy modes due to the disintegration of coherent
excitation into close-lying incoherent states of quasi-particle pairs.
Using the temperature Green functions, it was shown in Ref. (7] that it
is possible in a random phase approximation to write the variations of
nuclear excitation energy and entropy induced by coherent effects in the

form

85,2x 2 (2>\+\)[ n

L

S (ash S0

(18)

SV =22 (awﬂ“(ﬂw‘-&)

where A 1is the multipolarity of the vibrational excitations studied.

The frequence spectrum o, is determined by the secular equations [19]:

o T (e
A (E.')'r'l:_:\\)a - N% a9
_o 2 (g -Elng-min |

where

Uggo = UVs, + VU,
i'i

' = -U-. - s Us

3 Vige gr 7 Vy¥yes Uy and Yy

are the variational coefficients of the superfluid nuclear model,
f;;i) are the reduced matrix elements of the effective multipolar

forces and ‘k is the corresponding strength constant. In Eq. (18)
the plus sign corresponds to the roots of the secular equation and the

minus sign to the poles.

With an accuracy of up to insignificant <changes in the
pre-exponential factor, the level density taking into account collective
effects can be presented in the form

pyU,J) = pNQP (U,J) x (u), (20)

vibe

where the coefficient of vibrational increase of level density is defined

by the relation

§ = exp (- oi /1) Dt

"" Q%?(“ (13\/'\3\

(21)

-

are the ctoots and poles of Eq. (19)

respectively. When the difference between @, and 0: is

Here @y and Q?
small, the corresponding factor in Exp. (21) tends to unity, and hence a
major contribution to the level density increase will be made only by
coherent excitations for which the roots of the secular equation are
shifted sufficiently strongly relative to the poles. The appearance in
Exp. (21) of the statistical sums of the poles reflects the non-adiabatic

nature of the effects under consideration,

The spectrum of solutions @y of secular equation (19) depends

strongly on the nuclear temperature, and this dependence is displayed

directly in the behaviour of « Figure 3 shows, for a number of

vibe,”
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nuclei, the temperature dependences of the coefficients of the level
density increase due to quadrupol xz and octupol K3 cohergnt
modes (20}. The solid curves represent calculations which inclqde
temperature variations in the root and pole spectrum of secular equétion
(19), while the dotted curves correspond to calculations for the spectrum
of roots and poles obtained at zero temperature. The effective force
form factors in both variants were based on the self-consistent approach
[21), but the strength constants were selected by the fitting to the
position of the first vibrational levels in the cold nuclei. Let us pay
attention to the characteristic maxi?:? in the temgerature dependence sf
120 }

K,+ at t = 0.7 HMeV in Fe  and Sn nuclei, This

non-monotonic dependence of the K, + coefficient 1is associated with
the reduction - in the 0.5-0.7 MeV temperature range - of the correlation
function A(t) and of the corresponding rearcangement of the coherggt
excitation spectrum. Hence the disruption in a heated nucleus of
pairing-type correlation effects leads to a considerable weakening of
coherent effects in the quadrupolar nuclear excitation spectrum, and
similar behaviour of K, can be expected in all nuclei with
well-developed pairing. In contrast, pair correlations have only a very
siight effect on the octupol excitation spectrum, and their disruption
does not affect the temperature dependence ra-(t). This _propertg qf
octupolar excitations already shows up in cold nuclei as a relatively
weak energy dependence of the first 3 level of spherical nuclei on tﬁe

nucleon composition.

In calculation of the selection of the effective

K
vibe.
interaction constants is of crucial importance. The influence of the

strength constants on « is similar to the analagous effect of

the constants on the poZitgén of low-lying phonon nuclear excitations
{22). Thus, although calculations using a theoretical value of constants
correctly depict the main qualitative characteristics of the behaviour of
Kvibr. coefficients, it is better for a quantitative presentation of
level density to correct the constant values on the basis of available
data on the energy of the lowest collective levels. 1In so doing, it is
advisable to retain the temperature dependence of constants [21] since

this dependence may be essential for « , calculations in

vibr.
far-from-magic nuclei.

The results of thermodynamic calculations of K,ibe, c@n be
compared with analogous values obtained from combinatorial calculations
of multiphonon nuclear excitations in Ref. {6}. Table 1 shows the
Kvibr. values obtained for a number of nuclei by us and in Ref. [6]
at an excitation energy equal to neutron binding energy. Ideologically,
the two approaches are close and are based on the same Hamiltonian.
However, since the relations used in the 1level density calculations
differ substantially, this is reflected to some extent in the Kvibr.
values obtained. On the whole the values of the level density increase
coefficients obtained in the two approaches are sufficiently close, at

least for the nuclei considered in Ref. [6].

In comparing theoretical calculations of 1level density with
experimental data, it is necessary to bear in mind that the description
of collective effects in the random phase approximation underestimates
the role of excitation damping. 1In cold nuclei low-lying collective
stqtes have a negligibly small damping width, while in heated nuclei the
collective low-lying mode must be considered as a resonance with a
significant width ~ 2-3 Mev. This width results from the interaction
of the collective mode with close-lying excitations of quasi-particle
pairs, in other words its damping mechanism is similar to that of plasma
oscillations [21). Broadening of collective modes should occur also as a
result of excited quasi-particle collisions. Strict treatment of
colliéioné is a falrly complicated problem for which no satisfactory
microscopic solution has yet been found in nuclear theory. However, a
rough estimation of the effects that occur can be received if the
relation defining the damping of zero-sound in Fermi-liquid theory [23)
is used for the parametrization of the damping of vibrational excitation
of heated nuclei:

YUY = ot W[ (225
W

(22)

Allowing for damping in secular equation (19) in the first approximation
is equivalent to replacing the roots and poles of Eq. (18) by complex

values, the imaginary parts of which are determined by the corresponding
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width values (22). For the coefficients of vibrational increase in level
density in this approximation, we obtained instead of Exp. (21) the

relation [24]

o Oy, . POV
I (N R T e

\ (14 e-u;/fvl_ 4 2-w/-?: %‘1(5/2_\:) (23)

Koige

As an example, Fig. 4 shows the results of calculations of x2+ in
the ‘SBFe nucleus using different constants in Exp. (22),
Phenomenologically, this constant can be evaluated from experimental data
oﬁl;he width of the giant quadrupol resonance Y = 2.5 - 3 MeV. It is
cié@r .that allowing for vibrational mode damping yields a significant
reduction in the coefficients of vibrational increase in level density
ohly at excitation energies U = 10 - 15 MeV. At lower excitation
energies the role of such damping is small compared with the

temperature-induced weakening of coherent effects.

5. DESCRIPTION OF NEUTRON RESONANCE DENSITY IN A MICROSCOPIC APPROACH

It was demonstrated in Ref. ([20] that neutron résonance densitles
calculated using the independent quasi-particle model depend strongly on
the correlation parameters employed. For this reason the calculation of
the neutron resonance density taking into account the coherent effects we
performed first of all for near-magic nuclei such as Ni, Zr, Sn and Pb
which have filled proton or neutron shells. This makes it possible to
lessen the dependence of the calculations on the parameters of the

superfluid model.

For these nuclei, the 1level density vibrational enhancement
coefficients were calculated at an excitation energy equal to the neutron
binding energy. For even-even nuclei, the effective interaction

constants were selected from the fitting of experimental values of first

vibrational 1level energy. The coefficients « X X

vibe. - S24 3
obtained are shown in Fig. Sb {20). When calculating these coefficients
for odd nuclei, the strength constants were determined by extrapolating

from adjacent even-even nuclei.

Dtheor./Dexp. obtained taking into

account the collective enhancement in level density. It can be seen that

Figure 5a gives the ratios

including collective effects in the description eliminates the systematic

excess of the D value over the experimental one which existed

theor.
earlier for near-magic nuclei.

Let us look at certain details of the theoretical description.

6
First, the value D /D for the 2Ni nucleus stands out, It
theor. “exp.

was already found in the non-interacting particle model that
D /D ~1, and that 1is why the 1inclusion of the collective
NQP “exp.

: . D
increase gives Dtheor./ exp.

though, that for this nucleus there are large discrepancies in the
exp.lla] = 0.5 x Dexp. [15]).
Accordingly, the lack of sufficiently accurate and consistent data on the

< 0.1. It should be pointed out here,
experimental data themselves D

experimental neutron resonance density values affects the magnitude of

D /D . Further, while agreement between
theor.  “exp.

theory and experiment may generally be considered satisfactory, the

the discrepancy in

situation is much worse for isotopes of tin and antimony with A > 120.
Characteristic for such nuclei is the 1low contribution of collective

modes of (x = 2-3, Fig. 5a). There are also large discrepancies

vibr.
between the D values calculated in the independent quasi-particle model
and experimental data (Fig. 2a). It is possible that, to achieve a more
congistent description of collective increase in level density, it will

be essential to take anharmonic effects into account.

It can be seen from Fig. Sa that the inclusion of collective effects
does not eliminate the irregular fluctuations of the ratio
: . : . 2
Dtheor./Dexp. which  appeared earlier in Fig a for nickel,
zirconium, tin and lead isotopes. To eliminate these fluctuations, it
seems necessary to conduct a more careful analysis of the average field

parameters and pairing interaction constants and to perform fuller



11

testing of the effective interaction constants with respect to both the
position of the vibrational 1level and the corresponding transition

probability.

6. PHENOMENOLOGICAL DESCRIPTION OF THE COEFFICIENTS OF VIBRATIONAL
INCREASE IN LEVEL DENSITY

It follows from an analysis of Eq. (21) that a major contribution to
Kyibe. is made only by those vibrational states whose energy N
is strongly shifted in relation to the energy of the two-quasi-particle
state w?. Besides only excitations with an energy below the
heated nucleus temperature (i.e. @ < t) make a notable contribution to
Kyibe. As nuclear excitation energy grows, so the coherent effects
of a vibrational nature diminish (19,21), and under these conditions
©, . approaches o?. The corresponding cofactor in Eq. (21)
thus tends to unity. It is therefore essential to take proper account of
temperature variations of °, in order to obtain the correct value

of the coefficient Kyibe ~1 at very high nuclear excitations [21].

It was shown in Ref. [19) that the following approach can be used to
study coherent effects in heated nuclei: within certain energy ranges,
the spectrum of vibrational states «® should be treated as a single
collective mode which has disintegrated into two-quasi-particle states.
Following the energetically weighted sum rule, it 1is possible to

determine the average energy of the collective mode

Q2w \eimg/ 2> gf;(wﬂ :

w,<wi<wi

(24)
W &Rk,

- where &, and ©, are the Boundariea of the energy region included

1
in this mode and Bi ( ol) are the deformation parameters.

It .is possible in the same way to determine the average
two-quasi-particle excitation energy 6?, which corresponds to

the set of non-collective modes with energies of. In Refs.

{19,25) a study was made of the temperature dependences of such modes and
it was shown that 5)‘ > 5‘;‘ at large excitation energies
(t > 1 MeV). For nuclei with A = 50 - 70, it was also demonstrated that
the overall contributions of vibrational states to level density, which
were calculated wusing all the solutions of °, from secular equation
(19) and the average energies Bx. are close to each other. In
congtructing a phenomenological description the temperature dependence

ox(t) was approximated by the following relations:

i T.o ~. a [ % A/R
w):wa-ﬂ’c\(w\-wx?ﬂ / (25)

Tz e (= et e )

3 (26)
where @) = 20877 e, o) = a1a”?  mev  and
Q;xp. are the experimental values of the energy of the first

collective levels 2* and 37,

We used relations (22-26) to describe the energy dependence of the
level density, with the constants of Exp. (22) and (26) obtained from an
analysis of experimental data on level density of 56Fe isotope. FPigure
6 at;c;wa the 6i:)empe:-ai:v.n:e dependences of Kvibr. = (x2+) x (t3-—)
for Fe and Ni nuclei. These dependences are close both to the
results of the corresponding microscopic calculations [20] and to the
behaviour of ‘vibr.(t) obtained 1in Refs. ([26,27] for the 56?e

nucleus on the basis of various empirical approaches.

The phenomenological description of the average energies (25) and the
damping of corresponding excitations (22) was used then for the

calculations of the coefficients (23) in many nuclei.
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7. ANALYSIS OF LEVEL DENSITY OF ATOMIC NUCLEI OF STRUCTURAL MATERIALS

Within .the framework of the phenomenological approach presented in

this paper, -experimental data on the level density of the.following
51,5 4, 5,56 8,5
nuclel - were analysed: 1,535 55cr 35, Mn, 55'56'57’? ’ 9Fe,

58'59’6°Co 58’59’60'61'62'65Ni, 6l"“’Cu. The reason for choosing

’

these nuclei was that enough experimental data on level density exist for
most of them both in the low excitatioﬁ eﬁergy range {28) and at neutron
pinding energy" [4,15,29]. For 56Fe, SSHn and . 6°Ni nuclei
experimental values of p(v) are also available in the high excitation
energy range 17-23 Mev [30]. Figures 7-10 .show the results obtained. 1In
these. Figures p(v) 'are presented in- the form of histograms close to
the. ground state. The histograms were constructed in accordance with
Ref. [28). Experimental data on .neutron resonance density as well as the
theoretical .description of such dengities are :shown in-the inserts. For
purposes - of comparison, the results of p(v) calculations in the

Fermi-gas model are also presented [4].

It i3 clear from Figures 7-10 that, in general, a satisfactory
description was achieved for level .density over a wide range of
excitation energies. However, attention should be drawn to the principal
differences in the selection of the .parsmeters used in the different
versions of the Fermi-gas model [3,4,15} and in the superfluid nuclear
model presented by us. In the back shift Fermi-gas model, for example,
the parameters for each nucleus considered were selected from existing
experimental data on p{v). 1In this case the ‘level density parameters
a and & lose their physical significance and become purely adjustment
values. 1In the level density model proposed by us the parameters are
determined from a detailed analysis of experimental and theoretical data
on collective excitations in nuclei and also from an analysis of shell
and superfluid effects. It is thus possible to conclude that our
description of level density is based on physically meaning parameters.
This i3 demonstrated clearly in those nuclei for which direct
experimental informatiocn is not available. Examples of such situations

55,57
ere the description of the level demnsity of '"'Fe (see Fig. 8) and

55 R .
Mn (Fig. 10) nuclei for which the experimental values of p(v) are

not described satisfactorily by the Fermi-gas model (4).

Thus a sufficiently good description of the energy dependence of the
level density of a number of spherical nuclei was obtained in the A=50-66
mass number range using the approach explained above. The choice of
pbysically meaning parameters presented in thus paper gives us reason to
hope that ourmodel yields correct level density values for those nuclei
for which the experimental values of p(v) are not known at present.
To study level density energy dependence further, it would be interesting
to analyse experimental data on evaporation spectra in 1inelastic
scattering reactions or in charged particle exchange reactions and to

study excitation functions of threshold reactions.

8. CONCLUSION

A method has been examined for calculating the density of excited
states of spherical nuclei in the A=50-65 mass number range in which
account is taken phenomenologically of shell effects and their reduction
as excitation energy grows, pair correlations of the superconducting type
and the levgl density enhancement due to collective vibrational models.
This method yields a good description of existing experimental data on
level density in the iron region close to the ground state and at neutron
binding energy. 1Its advantage compared with systematics based on the
Fermi-gas model relations are that it takes into account important
physical effects and makes it possible to select parameters to calculate
level density when direct experimental data are not available.
Information on particle spectra and the excitation functions of threshold
reactions may be an effective means of improving our knowledge of nuclear
level density in a wide range of energies. However, to achieve this it
will be necessary to carry out a detailed analysis of the whole set of
experimental data on both excitation functions and particle spectra in
all competing channels, in which being used the correct current ideas

regarding nuclear reaction mechanisms.
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Fig. 1: Dependence of entropy, spin cut-off parameter and temperature

on the excitation energy of the 36Fe nucleus in the
superfluid model with traditional  dependence  Ar(t)
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G.D.H. PRE-EQUILIBRIUM EMISSION MODEL AND STATISTICAL MODEL
PARAMETERS FOR STRUCTURAL MATERIAL FAST NEUTRON DATA CALCULATIONS

M.IVASCU, M.AVRIGEANU, V.AVRIGEANU

InstifuZle for Physics and Nuclean Engineening

Buchanrest, Romania

Absirnact

Inclusion of the angular momentum conservation in the Geometry
Dependent iybrid (GDH) pre-equilibrium emission subroutine of
the Hausar~Feshbach code STAPRE is discussed. The consistency

of the statistical model nuclear level density and the equi-

valent particle-hole state deﬂsity has been acyieved following

a unitary ugse of an energy dependent level density parameter.

The neutron and charge particles optical model potentials
gelected from literature are commented. The El gamma-ray
strength functions, used in the gamma-ray transmisdion coef-
ficient evaluation, have been taken from an empirically modified

energy~-dependent Breit-Wigner (EDBW) model.

The proper account of the nuclear level density over a large

o . [ L) [) 20
U,Mzh energy range has been obtained through the use of the empiri-
Pig. 10: As' above, for SbFe Ssnn 601 nuclel cal back-shifted Fermi gas (BSFG) model, at medium excitation
. - * 1] L] .

energies, and of a realistic analytical formula with miéros-
copic suggested parameters at the high excitation energies.
The necessary transition excitation range between the two
different density approaches,in the mass range 40 < A < 63,

has been discussed.
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Fig. 11




ITntroducectdion emission spectra from 15 MeV neutron induced reactions on 46"‘BTi isotopes

128

have given a first validation of the present approach.
The main goal of the Research Contract 3802/R1/RB is the

achievement of pre-equilibrium emission and statistical model Statistical model parametenrs
calculations of fast neutron activation cross sections and a, Neutron optical model potential

secondary particle energy distributions for the stable Fe, Cr,
, ' The spherical optical model potential (OPM) parameters for the

and Ni isotopes, in the incident energy range from threshold
neutron transmission coefficient calculation in the energy range

to 20 MeV. To improve the result accuracy a great care has been .
from few tens of keV to 20 MeV have been selected according to

taken fors(i) as suitable as possible nuclear models, however
the SPRT method (2]. The experimental values of the:

with well enough established or able to be derived parameter

{i) s- and p-wave neutron strength functions, 5. and S1

systematics including all the nuclei of interest, (ii) use of 0
[3, 41;

consistent sets of input parameters, determined or validated by .
. (ii) potential scattering radii [3];

means of various independent types of experimental data, and
(iii) total neutron cross sections of elemental chromium,

{(iii) unitary account of a whole body of related data (isotope ) 52
. from 1.0 to 4.5 MeV [5], of the isotope ““Cr, compiled

chains and neighbouring elements). The present progress report 8
between 1.0 and 9.0 MeV [6], of the isotope 5 N7,

concerns the first two points above,
from 1.0 to 4.5 MeV (7], of elemental nickel, compiled

Nuclear models : between 0.1 and 30 MeV (8] and of the even nickel

isotopes, compiled between 0.5 and 9.0 MeV [9]
The Hauser-Feshbach-Moldauer statistical model and the

Geometry Dependent Hybrid (GOH) pre-equilibrium emission model have been compared with the calculated values using the OMP

have been involved in these calculations, using a local version parameter sets of:

. . ) .
of the computer code STAPRE. In the present work 117 inclusion (1) Pasechnick et al. {10] (global OMP parameter set);

(ii) TUNL 82 [11}, including particular parameter sets for

of the angular momentum conservation in the GDH model is reported.
54,56Fe and 63,65

The consistency of the statistical model nuclear level density Cu isotopes, derived through the

and the equivalent particle-hole state density has been also analysis of the elastic and inelastic scattering of

achieved following a unitary use of an energy dependent level neutrons from 8.0 to 14 MeV, as well as a global

density parameter, GDH and Hauser-Feshbach calculations for proton parameter set finally deduced;

(ii1) Guenther et al. [5]1, obtained through a simultaneous

*) The references 1, 29 and 30 herein are counterparts of this
Progress Report. fit of the elastic and inelastic scattering angular
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(iv)

(v)

(vi)

The

distributions for elemental chromium from 1.5 to

4,0 MeV incident energies and reproducing the total
neutron cross sections;

Arthur and Young (121, resulted from a simultaneous
fit of the So and S1 strength functions and potential
scattering radii, total neutron cross sections from
2.0 to 40 MeV and elastic scattering angular distri-

butions from 6.0 to 14 Mev, for >%:56

Fe target nuclei;
Kawai [13], which has been reproducing the total
neutron cross sections of elemental nickel taking
account’ of the systematic trends among neighbouring
nuclei, from Ti to Cu isotopes, and has been also
successfully used to describe the total and elastic
and inelastic cross sections of the even nickel
isotopes from 0.5 to 9.0 MeV [9) as well as in the
JENOL-2 evaluation {1413 .

TUNL 85 18], deduced for the 2860

Ni isotopes and
neutron energies up to 80 MeV through an extension
of the SPRT method.

calculations have been performed with the spherical

optical model (SOM) computer code SCAT2 [15)}. The same OMP have
been used to describe the interactions of neutrons with both
the target nuclei (Fe, Cr, Ni isotopes) and the proton channel
nuclei {Mn, V, Co isotopes} able to be involved in the (n, pn)
reaction calculations. The comparison of the experimental and
calculated strength function$ and potential scattering radii is

shown in Fig. 1.

Finally, the following OMP have been selected to be used
in Hauser-Feshbach calculations for:
(i) the Cr isotopes: Guenther et al. [5) OMP for £, S 4 MeV

and Pasechnik et al. [10) OMP for higher energies,

where the latter one is giving total neutron cross
sections close to the experimental data and intermediary
between the predictions of the refs. (5] and [7]

OMPs;

(i3) the Fe tsotopes: the OMP of Arthur and Young {127,
confirmed by the particular OMPs of TUNL 82 [11] at
the energies E, 25 Mev (it is worthy of note the
intermediate total neutron cross sections given by
these OMP betﬁeen the global parameter set [10, 11]
predictions, at the higher energies);

(i11) the #7 fsotopes: the OMP of Kaway [13] for E s 10 MeV
and TUNL 85 parameter set at higher energies, where
the lower total neutron cross sections given by the

former underestimates the experimental data.
b, Charged particle optical model potentials

Special attention has been devoted to the low energy
behaviour of the proton OMP parameters and to the consistency
of the low and high energies optical model predictions. The main
point in the low energy region is the strong A - dependence of
the imaginary surface potential depth Wp (161, while at higher
proton energies questions arise from the differences between the
predictions of the well known global OMP parameter sets of Perey

[17] and Becchetti - Greenlees [18](as well as of those derived



130 on their base). The total reaction cross sections given by the

following OMPs have been compared in the present work:

(1)

(i)

(iii)

(iv)

the BARC potentials [16], for sub-Coulomb proton
energies, with an empirical variation of the imaginary
surface potential depth with the atomic number deduced
from fits of the {p,n) reaction excitation functions of

455c to 80Se and incident energies from a2

nuclgi from
to 5 MeV, as well as that covering the large proton
energy range between 4 and 180 MeV, for medium weight
nuclei;

the Arthur and Young [12] parameter set, acquires in-

the study of fast neutron interactions with the 54’56Fe

isotopes and derived from the OMP of Perey [17] to better

fit the experimental cross sections of the low energy
(psn) reactions and the (p,n) and (p,2n) reactions on
56Fe for incident energies up to 40 MeV (while this
goal has been realized through the addition of an
energy dependence to the imaginary potential depth,
Haetrick et al. [19] extended this OMP's use to the
study of the fast neutron interactions with the 63’65Cu
isotopes taking expl%citly into account the real
Coulomb correction term and isovector Strength);

the recent OMP of Romanovskii [20]}for the Sy nucleus
and energies % 10 MeV, fund to reproduce satisfactorily
the experimental differential elastic scattering cross
sections, polarization and total cross sections;

the OMP of Matsuzuki and Arai [21], derived from proton

strength functions (Ep « 3 MeV) in the mass region

30 <« A <70. The resulted energy dependence of the total
reaction cross sections has been found however ina-
dequate,

The following remarks have been made:

.(i) A proper account of the transition from the specific
sub-Coulomb behaviour to the high energy trends of the
global sets (17,181 is given by the particular BARC
parameters up to Ep = 5 MeV, followed by the global
BARC OMP [16) (see Figures 2 and 3 for the °1V and
55yn respectively).

(i) The total reaction cross sections given by the OMPs of
BARC and Romanevskii for 51V are in the same agreement
with the experimental data (20] (Fig. 2). Therefore,
in spite of the Romanovskii's criticism [20] with
reference to the BARC potential, the latter seems to
be preferably}taking into account its global attribute
and the purpose of the present work.

(11i) The total reaction cross sections calculated for the

6Mn nucleus (Fig. 3) with the OMPs of BARC ([16) and

Arthur and Young [12] are differing nearly by the same
amount as those obtained with the OMPs of Becchetti -
Greenlees (18] and Perey [17]) (from which the first
ones are derived) are. Consequently for n + Fe interac-
tions the proton OMP of Arthur and Young will be used
with priority.

The afpha panticle emission has been generally described

by means of the OMP of McFadden and Satchler [22], proved to be

more adequate in the mass region A = 50 [23]). The alpha particle
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OMP derived by Arthur and Young [12), adjusted to better fit the
low energy (a, n) data and also used by the ORNL group in the

n 4 83,65

Cu interaction study [19], is generating total reaction
cross sections in‘close agreement with those given by the para-
meters of Mc Fadden and Satchler. Therefore the OMP of Arthur and
Young [12} has been used in the calculations of neutron interac-

tions with the Fe isotopes and those of McFadden and Satchler [22]

for Cr (global set) and Ni (particular set number 2) isotopes.

. Gamma - ray transmission coefficients

The gamma-ray transmission coefficients have been related
to the gamma-ray strength functions which are showing a relatively
small variation for the isotopes of the same element [24]. The
strength function fEl(Ey) for the electric dipole radiation - the
dominant transition - has been taken according to the giant
dipole resonance (GDR) model [24], while the strength functions
for the M1, E2 and M2 transitions also taken into account are
normalized to the first one, at the neutron binding energy, using
the Weisskopf single-particle model [26]. Although the Lorentzian
curve parameters usually involved to describe the GDRs do not
greatly influence the Hauser~Feshbach calculations [27], the
energy-dependent Breit-Wigner (EDBﬁ) model (28] has been used
concerning this goal. As the EDBW model is better reproducing
the energy dependence of the experimeﬁtal strength functions,
compared to the Lorentz resonance shapes, but not also the abso-
lute values, a further analysis of this model and its parameter
systematics has been performed in the present frame [29]., Empi-

rical correction factors for medium mass nuclei are finally taken

as representing the result of the exchange term contributions to
the dipole sum rule and of the extent to which the sum rule is

exhausted.
d. Nuclear level densities [30]

Nuclear \evel densities of interest over a large excita-
tion energy range, as required in statistical model calculations,
are also investigated in the present frame [30]. A proper account
of the nugliear level density has been obtained through the use
of the empirical back-shifted Fermi gas (BSFG), at medium exci-
tation energies, and of a realistic analytical formula with
microscopic suggested parameters at the high energies. The BSFG
mode]l parameters have been determined by a least-squares fit of
recent experimental total numbers of the low-energy discrete
levels and s-wave neutron resonance spacings. The necessary tran-
sition excitation range between the two different density approa-

ches, in the mass range 40 < A < 65 has been discussed.

Work 4in phroghess

Based upon the above nuclear model parameters set up, GDH
pre-equilibrium emission and Hauser-Feshbach calculations are
performed for the (n,p), (n,a) and (n,2n) reactions on Ti, Fe,
Cr and Ni isotopes which are well experimentally described over
a large energy range, The main calculational aspects which are
investigated in these conditioﬁs are the pre-equilibrium approach
and the nuclear level density at energies above the neutron
binding energy. The former has to be Qalidated through the
analysis of the particle emission spectra, while the latter is

expected to be established by the excitation function analysis.



132 Furthermore the (n,p), (n,a), (n,2n), (n,3n), (n,n'p) and (n,n'a)

reaction cross sections will be calculated for all stable isotopes

on Fe, Cr and Ni from threshold to 20 MeV.
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Neutron Scattering on Nuclei Near A=60 and A=90%

R. D. Lawson and A. B. Smith
Applied Physics Division, Argonne National Laboratory
Argonne, IL 60439 U.S.A.

Abstract

Over a wide range of incident energies, the total cross section and
angular distributions for elastic scattering of neutrons from nuclei in
these mass regions are analyzed using the spherical-optical-statistical
model. The effect of a real-surface-peaked potential., predicted by
dispersion relations, is considered. It is found that when the data on a
given nucleus between say, 4.5 and 10 MeV, are analyzed simultaneously one
obtains a smooth energy variation of the optical model parameters.
Moreover, this parameterization may be used to predict, quite accurately,
at least the total cross sectidns up to 20 MeV. The parameters
characterizing the model are quite different in the two mass regions.

However, a comparison of the optical model results for 89Y and 93Nb

indicates that near A=90 the real well parameters are nearly the same for
the two nuclei and that the volume integrals of the imaginary potentials
are similar.

In this paper we report on the theoretical analysis of neutron
scattering data on targets in the A=60 and A=90 mass regions.
Experimentally, we have acquired high quality data over a wide energy
range {~ 2-10 MeV) on both the elastic angular distributions and the total
cross sections for several nuclei in these regions. This data has been
interpreted in terms of the spherical- optical-statistical model by use of

the ANL code ABAREX.(I) The “ground rules” for modeling the data have
been:

1. MWe require that the optical model parameters have a smooth energy
variation and that the paranqterization give the gross properties
(ototal) outside the energy region of the fit. .

2. The optical model parameters are determined by minimizing the
function

*Work supported by U. S. Department of Energy, Nuclear Energy Programs,
under Contract W-31-109-Eng-38.

2

1

N ‘o
xz -z expt
={ l 8 oexpt(l)

(1) (1)

B otheory

. (1)
i

where N is the number of data points and

2,172

P = ((s8)% ~ 52+ c% + 0% (2)

o]
expt

In Eq. (2) SN {is the systematic’ normalization uncertainty which is
independent of angle and is ~ 3%, S {s the statistical error which ls ~ 1%
except at the cross section minima, C is the uncertainty due to data
correction procedures (e.g., multiple scattering corrections) which is

~ 1% except at the minima of the distributions and 46 is the angular
uncertainty (in absolute value 46 = 0.50 ) which is obviously most
important where o(6) is changing rapidly.

We have actually used two different optical models to parameterize
the data:

Model I - Conventional Model
V, the real potential, is assumed to have the Woods-Saxon form with

diffuseness, a , radius, r (R =r AI/S), and depth, V .
v v v. v o

W, the imaginary potential, is taken to be a derivative Woods-Saxon
well characterized by a.r, and wo'

vspin orbit is the Thomas spin-orbit interaction which is assumed to

be real and have well parameters a , r and V_ .
so’ so so

The compound elastic scattering was calculated using the Moldauer

modification(z) of the Hauser-~Feshbach theory.(s) For odd A nuclei (which
we shall discuss in this report) discrete levels up to approximately 3 MeV
excitation energy were explicitly inoluded. Above 3 MeV the statistical
{4}

formalism of Gilbert and Cameron' 'was used.

Model II - Surface Real Potential Added
There 1is a dispersion relationship which connects the real and

imaginary parts of the optical model potential(s)

Ll
p W(r,E'} ..,
VIE.E) = Vygl(riB) + 3 f_m v 9 (3)
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where P implies the principal value integral. Thus, if W(r,E') is surface
peaked this implies that the real part of the optical model potential
should also have a derivative Woods-Saxon part. In Model II we include
this component.

1t should be stressed that the final optical model parameters,
particularly in the A=60 region, often depend on the starting guess that
one makes in the fitting procedure. Therefore, the parameters we quote
may not be unique.

A=90 Region

For the purposes of this meeting the most important data to analyze
would be the Zr results. However, we have not quite finished the
experiments and analysis on this nucleus. On the other hand, we have

: . 89
extensive data and the analysis completed on the neighboring nucleus Y.
In Fig. (1) we compare the angular distributions for 8 MeV neutrons

scattering from 89Y and a natural Zr target. It is clear that the angular
distributions are quite similar and, therefore. one would not expect the

. . 89

optical model parameters to change much in going from Y to 2r.
Therefore, in order to illustrate our methods and the quality of the
results we obtain in the A=90 region, we present an analysis of the Y
data.(s)

Thirteen energies were involved in the fitting: 2.75 (simultaneous
fitting of all results in the 1.5-4.0 MeV range), 4.5, 5.0, 5.5, 5.9, 6.5,
7.14, 7.5, 8.03, 8.4, 9.06, 9.5 and 10.0 MeV. At first we attempted a
nine parameter fit to the data using the conventional approach, Model I,
discussed above. The parameters were Vo, a, and ry for the real potential

and the analogous quantities for the surface imaginary and the spin-orbit
interactions. Although an excellent fit to the data could be obtained,
the parameters tended to spatter and one could detect no systematic energy
dependence of them, We, therefore, studied the sensitivity of the fits to

. uld be taken
the various parameters and found that . Vso aso and rso co

to be independent of energy and to have the values
r. = 1.24 fm
v
\ = 5,75 MeV (4)
so
r = 1,025 fm
so

a__ = 0.4 fm
s0

However, a fit to the data required that the geometry of the imaginary
potential vary with E, the incident laboratory energy of the neutron. An
adequate representation of this energy dependence is

r, = 1.5336 - 0.0255E fm

a, = 9.1661 + 0.0284E fm (5)

With these constraints, we then minimized xz of Eq. (1) as a function of
a, vo and wo. The angular distributions obtained by these fittings are

shown in Fig. (2-a). The values of av and the volume integrals of the

real and imaginary potential,

2
. na
in 2, 4 3 v
= j vinyrlar = 50y [1 . <__Rv> ] (6)
2 2
167IR"a na
_ 4n 2 . W oW 1 w
Jw =3 I W(r)r dr = % wo [1 "3 <—§—) ] . (7)
w
are shown 1n PFig. (3) for each value of E considered. The energy

dependence of these quantities was then determined by making a least
squares fit to the empirically determined parameters. In this way, one
finds that a, and Jw are energy independent, whereas Jv decreases linearly

with E,

a, = 0.7033 + 0.0049 fm
Jw = 66.47 + 1.29 MeV—fm3 (8)
Jv = 455.64 + 5.96 ~-(3.89 t 0.83)E MeV-fua.

The errors shown in Fig. (3) and gquoted in Egs. (8), are calculated on the
assumption that the uncertainty at energy E is proportional to the value

of xa/N. where N is the number of observables at energy E. The
proportionality constant was chosen separately for a . Jv and Jw so that

xz per degree of freedom was unity for each of these quantities.

In Fig. (2-b) we show the predictions obtained when the optical model

potential for 89Y is given by Egs. (4), (5) and (8). From comparison of

Figs. (2-a) and (2-b) we see that this characterization of the potential
reproduces experiment almost as well as does the explicit three parameter
fit at each energy.

As a test of the predictive powers of this potential, we have looked
at gross properties outside the 1.5-10.0 MeV region. In Fig. (4) we
compare the total cross section with the predicted values. Up to 20 MeV
the total theoretical cross section 1is always within 1.35% of

(n

experiment. Turning to low energies, theory gives a value of So’ the

(8)

s-wave strength function, of 0.1:~<10'4 whereas the experimental value is



(0.2720.05) x 10_4. Although the theoretical prediction {s outside the
experimental error, one must remember that So is small and that the

theoretical estimate is extremely sensitive to rw (in fact |if Pw is

changed by ~ 5%, theory and experiment are in agreement for So).

Thus we conclude that a good fit to the 89Y data can be obtained with
the smooth energy variation of the parameters given by Eqs. (4)., (5) and
(8). Moreover, this potential gives a good fit to the gross data from
0-20 MeV as well as a detailed fit to experiment in the 1.5-10 MeV range.

We now turn to fitting the yttrium data using Model II, which has a
surface peaked real potential added to the usual Woods-Saxon well.
According to Eq. (3), in order to estimate the strength of this added
potential, one must know W(r,E') for all energies E', while our
experiments only give information from 1.5 to 10 MeV, A further
complication is the energy-dependent geometry of W. To simplify matters
we have estimated the strength of the surface real potential using the
volume integral of the imaginary potential in the following way:

(1) In the range 0 < E £ 13.77 MeV we assume JW(E') is given by

Eq. (8).
(11) For 13.77 £ E' £ 57.22 MeV we calculate, from the potential of
Walter and Guss(g)
3, (E') = 87.54-1.538" MeV-£n®. ( 9)

At 13.77 MeV, Eqs. (8) and (9) give the same values of Jw so

the function is continuous, Also, the Walter-Guss potential
implies Jw vanishes at 57.22 MeV.

(1ii) On the basis of the dilute Fermi-gas model it can be Shown(lo)
that near the Fermi energy (approximately -9.1 MeV for 89Y)
W(E') is proportional to (E’-EF)z. Thus for -18.2 < E' < 0 MeV

we assume.
' 2 3
JW(E') = 0.8029(E'+9.1)" MeV-fm . (10)

With these assumptions JW(E') has a continuous value over the range -18.2

2 E' £ 57.22 MeV. When Eqs. (8), (9) and {10) are inserted into the
dispersion relationship, the volume integral of the surface peaked real
potentiai is given by

57.22 J (E')dE!
w

P
J(E) = = ———rees (11)
R m J-18.2 _E—E
Thus Eq. (3) becomes
V(r,E) = V . (r.E) + 4A(E)W a o ! (12)
’ Ws' o“w dr 173
l*cxp[(r—rNA )/aw]

where sz(r.E) has been taken to be the usual Woods-Saxon potential and

A(E) = Jo(E)/J (E) (13)

With this added potential and the constraints of Egs. (4) and (5), Vo’ a,

and wo were varied so as to give a best fit to the data. Since Wo was

allowed to vary., the fitting should have been done in an iterative manner,
i.e. after a fit the values of JR(E) should be recalculated, a new value

of A(E) computed, and then the fit repeated. .However. this effect |is
small and the self-consistency criterion was not imposed.

The fits to the experimental data obtained in this way are almost as
good as those arising when the conventional model is used. The values of
av and the volume integral of sz(r.E), denoted by J are shown in Fig.

Ws'
(5). In contrast to the constant value of a . Eq. (8), obtained with
Model I, a, now shows a quadratic dependence on energy. On the other
hand, st 1s independent of energy so that the entire energy dependence of

the real potential comes from the principal value integral of Eq. (3). In
Fig. (6) the wvolume integral of the imaginary and total real potential,
V(r,E) of Eq. (12), are shown. ' Jw now shows a slight increase with E

instead of the constant value 1t had in the conventional fit. The volume
integral of the real potential, Eq. (12)., has a complicated energy
dependence arising from the dispersion integral, Eq. (11). However,
within the energy range 1.5-10 MeV, Jv can be represented as a linear

function of E. The energy dependencies of the various parameters arising
when Model II is used to fit the yttrium data are summarized in Table I.
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To test the predictive powers of this model outside the 1.5-10 MeV
energy range, we have used the value of Jw given in Table I to calculate

new values for JR(E) and A{E) to be used in Eq. (12). When these results
are combined with the parameterization given ln Table I one predicts an

s-wave strength function of 0.257><10—4 in excellent agreement with the

-4
experimental value of (0.27 t 0.05) x 10 . As to the total cross
section, the model overestimates experiment by 0.26% at 11 MeV and at 20
MeV underestimates it by 3.73%. Thus we obtain nearly as good a

prediction for the total cross section using this model as ls obtained
with the conventional potential, despite the large differences in the
parameterizations.

A=60 Region

(11)

In this region we have excellent experimental data, ranging in

energy from 0.36 to 10 MeV, for the nucleus 59Co. Therefore, in this

section we present the results obtained when a fit is made to this data
base using a spherical-optical-statistical model in which the real
potential has a surface peaked component (Model II discussed earlier).
Because fluctuations are evident in the neutron total and
differential-elastic-scattering cross sections of cobalt to at least 4
MeV, we have been mainly concerned with fitting elastic scattering angular
distributions at energies 2 4.5 MeV.

At higher energies the cross section at the back angle minimum
{(~ 1300) 1is extremely sensitive to the spin-orbit interaction. The
parameters of this potential were determined from a detailed survey of the
9~10 MeV data and were finally taken to have the values VSO=5.5 MeV,

r =1.005 fm and a__=0.65 fm.
so s0

In determining the geometry of the real and imaginary potentials, we
required that not only the elastic scattering angular distributions be
reproduced but also that the predicted s-wave strength function and
low-energy total cross sections be close to their experimental values.
With these constraints [t was found that the radii of both the real and
imaginary wells could be taken to be independent of energy but that both
diffusenesses had to vary linearly with E. The values chosen for these
quantities are given in Table I. Having fixed seven of the nine optical-
model parameters, a least-squares fit to the angular distributions was

made minimizing xz of Eq. (1) as a function of Vo and wo. The added

surface potential in Eq. (12) depends on the value of Jw through the

dispersion integral, Eq. (2). In the case of Cobalt the added surface
potential was calculated self consistently. That is, after a f{t to the
data was made a new value of JR(E) was calculated and a new depth for the

surface potential was computed. This was carried through three iterations
and the final value for Jw was

)w = 124,12 * 3.73 - {3.73 t 0.50)E. (14)

In computing JR(E) it was assumed that Eq. (14) represented Jw between 0
and 33.28 MeV, the energy at which Jw becomes zero. It was further

assumed that Jw was continuous and symmetric about the Fermi energy, EF =

-13 MeV, and that between O and ~26 MeV Jw is proportlonal to (E—EF)Z.

The fits to the measured angular distributions, shown in Fig. 7, are

clearly comparable to those shown in Fig. (2-a) for 89Y. In Fig. (8-a)

the volume integral of Vw Eq. (12), is seen to be independent of the

g
bombarding energy. Thus, as in the A=90 region, the entire energy
dependence of the real potential comes from the dispersion integral. The

total real potential, Eq. (12), has a complicated energy dependence, but
within the 4.5-10 MeV range this dependence is more than adequately
approximated by the linear dependence shown in Fig. (8-b) and given in
Table I. Finally, from Fig. (8-c) one sees that the volume integral of
the imaginary potential decreases with increasing energy with a best fit
to the data being given by Eq. (14). Since the imaginary optical-model
interaction is introduced to “mop up" those open channels which are not
explicitly included in the analysis, one would expect the imaginary
potential would either remain constant or increase with increasing energy

since the number of open channels increases at higher energy.(lz) Thus.
although we obtain an excellent fit to the data, our imaginary potential
seems to be unphysical. We have examined the possibility that this may be
due to the neglect of volume absorption but find no evidence for this when
(13)

we fit the data. However, we have shown that if one trys to make a
spherical-optical-model fit. to "pseudo-data" obtained from a vlbrational
nucleus this unphysical energy dependence emerges. Thus the reason for

this strange E-dependence in 5900 may be due to the fact that this nucleus
is a vibrator.

Also shown in Fig. (8) are the results for JHS and Jv and Jw that

emerge from fitting the {iower energy data. In these cases, the
distributions in broad energy intervals were fitted using the geometrical
parameters and spin-orbit interaction given in Table I. However, the data
strongly suggest significant fluctuations and moreover the potential
strengths varied with the energy grouping. For these reasons, the values
obtained in the low-energy region were not used in determining the "best
fit" values for Jv and Jw given in Table I.

In Fig. (9) we show the predictions for the total scattering cross

sections based on this model for 59Co. The entire data base avallable

from the National Nuclear Data Center, augmented by the results of the
present work, were averaged (over 100 keV to 1.0 MeV. over 200 keV from
1-5 MeV and over 500 keV at higher energies) to smooth fluctuations and
reduce the number of experimental points to manageable proportions. The
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model calculations agree with the experimental averages to within a few
percent from 1.5 to 20 MeV. The calculated results are sllghtly larger
than observation about 12 MeV, but pass directly through the precision 14

MeV values.(14) From 0.5 to 1.5 MeV the model predicts significantly
higher average total cross sections than indicated by experiment. This
may, in part, be attributed to the absence of self-shielding corrections
to the data. Alternatively, the concept of the simple optical model may
not be valid at these low energies and, for example, the existence of

15
doorway states, which are known to occur in this mass-energy region.( )
should be included. Finally, the model gives an s-wave strength function
of 3.6x10-4 in excellent agreement with the experimental value,(a)

(3.9%0.5) x 10”4,

Thus, once again we have found a model that gives a good
representation of the data and extrapolates quite adequately out of the
energy range for which it was originally designed - particularly with
regard to the total cross section at higher energies.

Summary

From Table I it 1Is apparent that quite different optical model
parameters are needed for cobalt and yttrium. If one compares the
imaginary potentials, one sees that the interaction strength needed for

59Co is approximately twice that for 89Y‘ The energy dependence of thls

potential for yttrium is what one would expect physically, that is, in the
0-10 MeV incident energy range the imaginary strength Increases with E.
However, for cobalt the reverse happens, the strength goes down as E
increases. As we have said before, this unphysical erergy dependence may
be caused by our treatment of cobalt as a spherical nucleus whereas in
actual fact it may be a vibrator. A second major difference is in the

radius r of the two wells. For 5900 this radius can be taken to be
energy independent and is smaller than the real radius, £ whereas for
yttrium ry has a marked E~dependence and In the 0-10 MeV incident energy
range s always larger than r, Since the jimaginary potential “mops up”

those channel and deformation effects not explicitly Included in the
calculation, it is not surprising that it has a different character in the
two regions.

Turning to the real potential, once more there is a large difference
59

in the parameters required. The radius r, for Co Is about 7% larger

than the values needed in 89Y and although for the former nucleus only a
weak dependence of a, on E is required, for the latter a quadratic energy

behavior is indicated. Because st is energy independent for both cobalt

and yttrium (see Figs. (5-b) and (8-a))} the entire energy variation of Jv

is given by the second term in Eq. (12). Therefore, the difference in the
energy dependence of Jv in the two regions 1is due entirely to the

difference in the imaginary potentials. Although JNS {s constant in

energy for each of the nuclel studied, the numerical values differ
considerably in the two cases. The values read from Figs. (5-b) and
(8-a), however, cannot be directly compared becasue the contribution from
the dispersion integral was calculated differently in the two cases. For
5900 Jw was assumed to by symmetric about EF‘ the Fermi{ energy. whereas it
is clear from the integration limits - -in Eq. (11) that this was not taken
to be the case for 89Y. If one does take Jw to be symmetric about EF for
the yttrium calculation one finds that JR(E) is decreased by about 20

Mev--fma and this decrease is almost independent of E In the range 0-10

MeV. Thus instead of the value 410 Mev-fm3 one would read from Fig.
(5-b), the appropriate value {f the analyses had been done in the same
way, would be

89

wS( Y) = 430 MeV-fma. (15-a)

J

and this is to be compared with the cobalt value

S

3
HS(

J 9o} = 505 Mev-fm (15-b)

Thus it is clear that the concept of a global optical model is not
useful if one wishes to make a detailed fit to high quality data over a
large Incident energy range. However, it is possible that a reglonal
optical model can be used. In Table II we compare the results of a

conventional optical model fit (Model I) made to the 89Y and 93Nb data(ls)

in the incident energy range 1.5-10 MeV. {Unfortunately, these fits were
made using different assumptions about the experimental uncertainties,

ocexpt' of Eqg. (1}). For yttrium, as we have discussed, we attempted to
make a careful estimate of the errors invoived whereas In the niobium case
the uncertainty was assumed to be purely statistical. For our method of

172

taking data this means that &o (o )

expt~ expt

It is evident from Table 11 that the parameters of the real
Woods-Saxun potential are almost identical. On the other hand, the
imaginary potentials seem to be quite different In their geometry.
However, this may be artificial since in the niobium analysis rw and aw

were not allowed to have an energy dependence. Since the volume
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integrals, Jw, of the two potentials are similar in magnitude, it may turn

out that when these restrictions are removed the results for the imaginary
potentials in the two nuclei will be comparable. Finally, since the
spin-orbit interaction plays only a small role in the elastic scattering
angular distributions at these energies and in this mass region (i.e. the
back angle minima are not as deep as in cobalt) the differences shown in
Table Il are probably unimportant.

Thus from a comparison of these two nuclei it appears that a regional
optical model might be quite successful with perhaps minor changes in the
imaginary potential (to take into accout the different neglected channels
in going from nucleus to nucleus) being required if a very detailed fit to
the data is attempted.

Table 1
9

Parameter %9%¢o %y

r,(fm) 1.33 1.24
a, (fm) 0.62 - 0.001E 0.1916 + 0.0936E - 0.0043E°
JV(MeV~fm3) 490.22 - 8.27E 445.30 - 2.14E
r, (fm) 1.275 1.5336 ~ 0.0255E
a, (fm) 0.279 + 0.01412E 0.1661 + 0.0284E
. (MeV-tm>) 124.12 - 3.73E 55.73 + 2.00E

r (fm) 1.005 1.025

S0
a (fm) 0.65 0.4

sO
vV (MeV) ’ 5.5 5.75

so

A comparison of the optical model parameters used in the cobalt and

‘yttrium calculations when the real potential has a surface peaked

component as predicted by dispersion relations. r, and a, refer to the

radius and diffuseness of the Woods-Saxon part of the real potential
whereas Jv is the volume integral of the total real potential of Eq. (12).

J is a complicated function of the laboratory energy. E. measured in MeV.
v

However, in the range 1.5 - 10 MeV it can be approximated by the linear
E-dependence given in this table.

Table [

Parameter 89Y 93Nb

r, (fm) 1.24 1.25

, (fm) . 0.7033 0.70

Vo (MeV) 49.21 - 0.42E 47.34 - 0.25E
Jv (MeV-fma) 455.64 - 3:89E 445.34 - 2.38E
r, (fm) 1.5336 - 0.0255E 1.30

aw (fm) 0.1661 + 0.0284E 0.47

Jw (MeV—fma) 66.47 51.97 + 2.99E
Pso (fm) 1.025 1.25

a_, (fm) 0.4 0.7

Ve, (Mev) 5.75 6.0

A comparison of the optical model parameters used in the yttrium and
niobium calculations when the real potential is only a volume
Woods-Saxon interaction. E is the laboratory energy measured in MeV.
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Comparison of measured and calculated neutron differential-

elastic scattering cross sections of 89Y. The measured values

are jindicated by data symbols. Curves in (a) show the result
when a three parameter flt, in which a,. V0 and Wo were varied,

was made to the data. In this fit r,. the spin-orbit potential

and the imaginary geometty were given by Eqs. (4) and (5). The
curves in (b) are the results obtained when the optical model
potentjal was parametrized by Egs. (4), (5), and (8).
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The behavior, as a function of laboratory energy, of the

diffuseness, a,. of the real potentlal and the volume integrals
of the real, Jv. and imaginary. Jw' potentials for neutron

scattering from yttrium. The line In each case is the best fit
to the parameters, see Eq. (8) of the text.
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Comparison of measured and calculated total neutron cross

sections of 89‘1. The experimental values, indicated by the

curve, are taken from Ref. 7. The calculated results,
represented by ciréular symbols, are the optical model
predictions based on Eqs., (4), (5) and (8) of the text.
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The diffuseness, a,. and volume Integral, st' of the real
Woods-Saxon potential (vws(r.E) of Eq. ({12)}) as a function of

labortory energy for neutron scattering from yttrium. Both a
linear and quadratic (curve with “tick" marks) fit to the a,

data are shown. The error bars are assignhed as discussed in the

text and their magnitudes chosen to give a :(2 per degree of
freedom of unity for the quadratic fit to av and the constant

value of JWS'
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Comparison of the measured {symbols) and calculated (curves)
differential-elastic-scattering cross sections of neutrons on
cobalt. The optical model which includes the surface peaked
real potential predicted by dispersion relations (see Eq. (12))
was used. The geometric pareameters and spin-orbit strength are
given ln Table I. The . fitting at each energy was done by

minimizing )(2 of Eq. (1) as a function of Vo and Ho.
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for neutron scattering from cobalt. The line in each case s a
best fit to these quantities and the uncertainties are assigned
as discussed in the text.
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Energy-averaged neutron total cross sections (data symbols)
compared with the model calculations (curve) for scattering from
cobalt. The experimental data represent the complete flles of
the National Nuclear Data Center, augmented by the results of
the present measurements. The method of averaging is discussed
in the text.
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NEUTRON INDUCED REACTION CROSS-SECTIONSOF IRON IN THE ENERGY
RANGE 1 TO 20 MeV : A WORK PROGRAMME :

S.B. Garg and R.P. Anand
Bhabha Atomic Research Centre
Trombay, Bombay 400 085, INDIA

ABSTRACT

Iron is one of the main constituents of stainless steel which
is used as a structural material in nuclear reactors. In

fast and conceptual fusion and fusion-fission hybrid systems
the primary energy range 'of neutron interaction lies between
1 and 20 MeV which opens up several reaction channels. The

reaction cross~-sections in this energy range are important -

for dosimetry, radiation damage, neutronics and safety
studies of nuclear reactors. Keeping this in view Nuclear
Data Section of International Atomic Energy Agency has
sponsored a Research Co-ordination Programme on Methods for
the Calculation of Fast Neutron Nuclear Data For Structural
Elements.

Under this programme we propose to study (n,n'), (n,2n),
{n,3n), (n,p), {(n,np), (n,pn), (ne), (n,n), (n,dn) and
{n,¥) reaction cross-sections. Besides these, total, elgstlc
and discrete level inelastic scattering cross-sections,
angular distributions of neutron production cross-sections,
neutron emission spectrum and charged particle emission
spectra for protons and alpha particles will also be
estimated.

We propose to investigate the above mentioned neutron
interaction cross-sections with multistep Hauser-Feshbach,
Kalbach  exciton, Blann's  Geometry  Dependent Hybrid,
Weisskopf-Ewing evaporation and Brink-Axel giant dipole
models.

A literature survey of the measured cross-section data
of iron, optical model parameters used by other investigators
for neutron, proton and alpha particles and energy level
parameters has been made. Computer codes utilizing some of
the above listed nuclear models have been commissioned and
tested. A brief report will be presented on the planned
evaluation work programme and some of the preliminary results
obtained.

TRANSFORMATION FORMULAS FOR LEGENDRE COEFFICIENTS
OF DOUBLE-DIFFERENTIAL CROSS SECTIONS

R
Shi Xiangjun , d. Gruppelaar, J.M. akkermans

Netherlands Energy Research Foundatlon ECN, Petten, The Netherlands

Zhang Jingshang

Institute of Atowlc Energy, Beijing, China

ABSTRACT

Approximate analytical formulas have been derived for the transforma-
tion of Legendre coefficients of double-differentlal continuum cross
gectlions of two-body nuclear reactions from the center-of-mass to the
laboratory system. A difference with respect to the transformation of
elastic-scattering angular distribution coefficients is that the accu=-
racy depends not only upon the target mass, but also on outgoing ener-
gies. A fast code has been written to transform Legendre coefficients
of neutron inelastic scattering cross-sections. This code has been used
to check the results for some simple problems with analytical solu-
tions. For more complicated problems in which the energy spectrum is
either an evaporation spectrum or a spectrum obtained from a (pre-)-
compound model calculation comparisons have been made with a receatly
introduced numerical integration method. The results are quite satis-—
factory provided that the target mass or the outgoing energy is not too

low.

*
On leave from the Institute of Atomic Energy, Befjing, China
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L. INTRODUCTION

In this paper we consider two-body nuclear reactions of which the ejec-
tile is emitted into a continuum. The double-differential cross sec—

tions for these processes are denoted by:

2 2
d” o (E, €, Q) or d o (E, g, u)

ded?® d ed?#f ’

where E 18 the incident energy, ¢ is the emission energy and 2 is the
solid-angle direction at scattering angle @ (u = cos 0). The double-
differential reaction cross sections can be calculated with nuclear
models such as pre-equilibrium exciton models (see e.g. the review in
[L]). In most cases the results are convenlently expressed by a

Legendre polynomial series in the center-of-mass system:

[o] Y 2k + 1 [
de da LT F (e B (o) e (1)

In Eq. (1) we have droppedthe incident energy dependence (E) of the
cross section and the coefficients Fk; the index ¢ denotes that the
quantities are given in the center-of-mass system (c.m.). From a compa-
rison of calculated data with experimental results or for reactor cal~-
culations these data need to be expressed in the labcratory system

(lab.):

2
4" o, (e, u,)
L L 2 - 2k + 1 2
d ez d Qz = t Ln Fk.(el) Pk (ul) M (2)

For elastic scattering or for scattering to discrete nuclear states the

d oc do

T (M)t g ()
c L

transformation of the differential cross section

is well-known, see for instance the recent review of Bersillon et al.

[2]. In these cases the emission energy €. in the center-of-mass system

i3 a function of the incoming c.m. energy and the reaction Q-value.

After emission the energy €, is determined by the kinematics of the

2
reaction and has become a function of Wyo Q, E and the masses of the

pacticles involved Iin the reaction process. One could also eliminate Q

and congsisder €, as a function of u , E and the masses. In Eqs. (1)

L L
and (2) we conslider Ec and €, as continuous variables, implying that

also Q is a continuous variable. The relations between ec and ez remain

the same, of course. However, whereas in the elastic (and discrete-

€
c

inelastic) scattering cases the value of €, 1Is fixed, determined by u

2 2

and Q, we may select any values of ez and ", in Eq. (2) that are physi-

cally allowed. Since in the continuum description Q is an (implicit)
variable the relation between Eq. (1) and Eq. (2) is basically differ-

d cc d g,
ent from the one between r nc (uc) and 3_5; (”g)'

So far there are only two papers, dealing with the conversion of Eq.
(1) to Eq. (2). In [3] and [A] the problem is solved by straightforward
numerical integration methods, Here, we propose to follow a method
somewhat similar to the one used for elastic or discrete—inelastic
scattering by following a Taylor-series expansion. However, the small
parameter in the expansion (B) 1s different because it 1is a function of
both incoming and outgoing energy. The approximation will be shown to
work well for small values of B, this means for not too small target
masses and not too small cutgolng laboratory energies. This has been
checked against the numerical method of Gruppelaar et al. [3]. Advan-
tages of the present method are that no iterative procedures are fol-
lowed and that the approximative analytical formulas are easy to use
and lead to very fast routines. This means that the method could be
introduced directly into a nuclear model code for calculating double=-

differential cross sections.

In Section 2 the transformation problem is formulated by expressing the
laboratory Legendre coefficients into a serles expansion with coeffi-

cients T. These coefflcients are evaluated in Section 3. Some numerical
test calculations are discussed in Section 4. The conclusions are suam-

marized in the last section.
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2. FORMULATION OF THE TRANSFORMATION PROBLEM

In this section the following quantities are used:

E, = projectile energy in lab. system;

= ejectile energy in lab. system;

€ = ejectile energy in c.m. system;

u, = cosine of scattering angle OZ in lab. system;
u_ = cosine of scattering angle Oc in c.m. system;
m = projectile mass;

m' = ejectile mass;

M = target mass;

M! = residual nucleus mass.

The relation between Eqs. (1) and (2) can be written as:

d2 g (82, ul) d2 g (e , u)
———— = J (B, b)) e (3
d €y d Ql 2 d ec c

where the Jacobian is given by [5]:

1/2

I8, up = 1+ 80 - 2807 (4)

with:

- v// m m' '//E; 5

M+ m)(M' + a') €,

Note that as a rule of thumb B << 1 if €y > EZ/MZ, {.e. usually for
all emission energles except the very lowest. It 18 further noted that
the Jacobian (4) has a more simple structure than the one used in elas-
tic or discrete-inelastic scattering. For the relation between the

enargies and angles in the two systems 1t is found that:

2
€. €y (L + 8% - ZBui) s (6)

2 -
v ® (ul -B8)(1 + 8" - 28“1) vz, (ul - B8) J .- (@D)

We set out to determine the Legendre coefficilents F: which according to

their definitions aad Eq. (3) are equal to:

. 1d% o (€er w)
Fi (€5) = 21 -1I TEAn J(8, w) B (up)du, . (8)

This expression is calculated - in different ways - in [2] and [3].

Here we insert Eq. (1) into (8) to obtain:

K* 1
L 2k’ + 1 c
F = ———
L (g) E' 5 _lf Fe (50 J (B, u)) By (u)) B (uy) d oy,

(9

where K' is the maximum order of the c.m. coefficleants. In coatrast to
the situation in elastic or discrete-inelastic scattering we cannot
take FE, (ec) out of the integral, because €. depends upon Hge
In principle, the above problem can be solved by computing the integral
(9) numerically, cf. [3] and [4]. The central idea of the present paper
is, however, that we can gain more insight into the transformation
problem discussed here with the aild of analytical methods. Below we
will demonstrate that it is possible to obtain very accurate analytical
approximations to Eq. (9), and in some cases even exact results, by
taking advantage of the orthogonality and recurrence properties of the
Legendre polynomials combined with power-series expansions in the small

parameter 8.

Accordingly, we proceed by expanding the first factor of the integral
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[

of Eq. (9), Fk' (ec), into a power series as follows:

n n

c
c N 4" Fi, () (e, - €g)
Foo (8 = 1 - T (10)
n=0 d €.

Since (ec - 51)“ is of the order of Bn according to Eq. (6) and B 1is
small, it is justified to truncate this series at a small number N. In
addition, this is also acceptable {f the energy dependence of Fi (ec)

i{s weak.

Insertion of Eq. (10) into Eq. (9) now leads to the following result:

n [
N K d P, (g,)
L (n) k 2
Foo(e,) = § L Tope (8,) ————— (11)
k T2 1m0 Kk'=0 kk 20 8:

with generalized transformation coefficlents:

n
P 2+l Ty

k! 2 -1 n!

J (B, uy) By (uc) L (”z) d uye
(12)

For n=0 these coefficlents have a similar shape as those for elastic or
discrete-inelastic scattering, except that the expressions for J and Mo
are different. The evaluation af Eq. (12) 1is performed in the next
section. The derivatives in Eq. (ll) can be calculated from the known

functions F;,, which are usually given in tabular farm.

If the angular distribution is isotropic in the c.m. system Eq. (11)

reduces to:

n.c
N d'F
2 (n) 0
Fo (e) = ] T o == (&) - (13)
n=0 d e

Only one term (N=0) is needed If the energy distribution is uniform:
Fg (ec) = ¢c. For a triangular energy distribution two terms are needed.
In case of a realistic energy distribution three or more terms are

generally required, cf. Section 4.

3. EVALUATION OF TRANSFORMATION COEFFICIENTS

First we note that Eq. (12) can be expressed in terms of T(o) coeffi-

cients by the following recurrent expression:

B e
(n) 2 (n-1) Z2(k + 1) _(n-1) 2k (n=1)
Teer = 5 (B T T T Terl, k' T ¥ T Tkel, w9

This exact expression is easily derived by means of the following rela-

tion resulting from Eq. (6):

n -1

(6g =€) =8 e, (B =2u)(e, - e)" (15)

and the recurrence formula:
k + 1 k

My P () = T [ By (M) + 31 By, (0] (16)

For the evaluation of
(0)  2&' +1 1
Tt * 7 ol T B w) By (w) B (ny) doy (7)

we will express the first two factors of the integraand in a power se-~
ries {n B. The Jacobian J as given in Eq. (4) appears to be identical
to the generating function of the Legendre polynomials. Accordingly, we

have:

I8,y = Lo (8t (18)
n=0
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For the Legendre polynomial with argument u, an expansion into a Taylor

series in powers of (uc - uz) is followed:

p p

dv B, (u) (u, = uy)

Py (n) @ § e S , (19)
p d uz p!

The p-th order derivatives can easily be written a suam over lower-order

legendre polynomials in Hy using standard recurrence relations. The

factor (u - ul) can be expregsed as a power series, by employing Eqs.
c

(7) and (18):

° 1l 2 ' il
(ug = mp) = L = (g = 1) PpCug) B - (20)

m=

The final step is to calculate the integral (17) by inserting Eqs. (18)

to (20), applying the orthogonality property of the Legendre polyno~-
mials, and sorting with respect to the various orders in 8. The actual
evaluation 1s elementary but tedious. The result can be summarized in

the following expression:

ks Dl ratl)

182 w85 (i, k) 1

kk* 2 (g + 1)
2
2K - 2 (q ~1) K=-3q~ l] (21)
(2K + 3)(2K - 29 = 1) '
with K = max (k, k'), q = Ik ~ k'| and:
S (k, k') = 1 for k = k' , (22.a)

=l b g-21 -1

K [}
- for k > k 22.b
8 (ky k1) (q) 120 K - 21 + 1 or ’ ( )
e % Tl q-u
t = - ittt ot ' . .
S (k, k') = (~1) (q) 150 TR TR for k < k (22.¢)

The correctness of this formula has been directly checked up to q = 5.

It is seen that for any given pair of values k, k' = 0,1,2,... the
(9

Kk ! {s of the form:

matrix element T,
B\k - k'l s+ [1- a8 + 0o (sﬁ)] .

Thus, the relative accuracy isup to the order 83. However, for isotropy

in the ¢.m. system only the coefficlents Téo)o are required and these
’
results represent the exact solution:
k
Tég) =B /(2k + 1) . (23)

In general the c.m. distribution is isotroplc or almost isotroplec at
low emission energies. This means that even If B8 1s close to 1 the

approximation (21) will in practice be quite good.

For the calculation of Fé (Ei) the coefficiTnts Tész are required.
-l !
These coefficients are of the order 8" or 8 k& . So, the number of

terms N {n Eq. (1l1) should be N = lk-k" + 2 to keep the relative accu-
racy equal to the order of 83. In practice values of N = 3 or 4 are
often sufficient to obtain a small error in F: (ez), certainly if the
higher—order derivatives in Eq. (ll1) are small.

In simple cases there will be a maximum value of n = N, just because
the highest-order derivatives are zero. Trivial examples are isotropy
in the c.m. system (X' = 0) with energy distributions according to a
constant (N = 0) or a linear increasing function (N = 1). In these
cases the exact expressions are avallable [3, 4], which are reproduced

with the present method.

4. NUMERICAL TEST CALCULATIONS

A computer code has been written in which M (s equal to 4. If the
Legendre coefficients in the c.m. system are analytical functions their

n-th order derivatives can be supplied in a subroutine. This has been
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coded for some simple cases mentioned in the previous section. The
numerical results are virtually the same as those obtained from the

exact analytical results given in [3] and [4].

A somewhat more realistic test is to assume an evaporation energy dis~

tribution, still with isotropy in the c.m. system:

Fo (g,) = a € exp [-¢ /K] ,
(24)

c
Fioo (8) = 0.

Using the analytical functions for the derivatives in Eq. (13), cal-
culations have been made for neutron-inelastic scattering on a medium—
light target (A = 50) at incident energy Ez = 15 MeV¥. For the nuclear
temperature the value kT = 1 MeV was adopted. The results for the
coefficients uptok = 3 are given in Table 1 for outgoing energies €,
varying from 0.0l to 10 MeV. A comparison has been made with the
results of the GROUPXS code described in [3]. For 8 < 0.7 the differen-

ces between the two results given in Table 1 are mostiy less than 1Z.

We have made more test calculations also for the realistic energy and
angular distribution calculated with the GRAPE nuclear model code [6].
For this purpose a subroutine with our expansion method was introduced
in the GROUPYS code [3]. The results of these calculations were in
quite good agreement with those of GROUPXS. However, for the numerical
determination of the derivatives in Eq. (1ll) a rather fine emission~-
energy grid is required. In fact this 1is also required for the numeri-
cal integratiocn method employed in GROUPXS. Some results of this inter-
comparison are given in Figure 1 for continuum neutron-inelastic scat-
tering on lead at Ez = 15 eV and €, up to about 9 MeV (at higher ener-
gies a discrete-level excitation description is followed). The values
of 8 vary from 0.19 at 0.0l MeV to 0.006 at 9 MeV. In the GROUPXS cal-
culation the Legendre polynomials in the c.m. system are given by
points with a prescribed linear-linear interpolation scheme. In our

method the (higher—order) derivatives of Fi are determined numerically.

The small differences between the results of the two calculations
should be ascribed to the representation of the Legendre polynomials by
means of a discrete grid rather than by a continuous function. There-
fore, it is difficult to say which method is "best”, because the grid
size actually determines the uncertainties in both calculations. For
high values of B the present method fails, but this may be a less
interesting energy region in many applications. The calculation time
for our method is very short, about 10 times faster than that of the

integration method {3].
5. CONCLUSIONS

The transformation of Legendre coefficients of double~differential
continuum crosgs sectiong from the c.m. to the lab. system can be writ-
ten in the form of £q. (1l1) with coefficients that can be calculated by
means of Eq. (14) and (21). Eq. (ll) contains the (higher-order) deri-
vatives of the Legendre coefficents in the c.m. system, which should be
determined numerically or - in simple cases —~ from analytical repre~
sentations. The relative accuracy of the present method is of order 83,
provided that N in E£q. (11) is not too small (cf. discussion in Section
3). For isotroplc scattering the results of Eq. (21) are exact (equal
to Eq. (23)). The method can be applied for values of B8 (Eq. (5)) smal-
ler than 1, i.e. for not too low masses or not too low emission ener-
gies. Still good results may be obtained for B close to 1, if the dis~

tribution 18 nearly isotropic in the c.m. systeam.

Some tests have been made for simple problems e.g. an isotropic evapo-
ration spectrum in the c.m. system and for realistic energy-angle dis-
teibutions obtained from (pre=)compound model calculations. The results
have been compared with those of a numerical integration method {3].
The conclusions from these tests are very satisfactory within the

domain of validity of the approximation. The present method as well as

the integration method of [3] require a very fine emission-energy mesh

for the c.m. coefficients.
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The present method gives more insight into the transformation problem.
It is also very fast, which is convenient for the calculation of
multi-group transfer matrices. It could therefore be introduced into
nuclear model codes with the advantage that the transformation of c.m.
distributions could be computed not only for first-particle emission,
but also for secondary particle emission. This perspective 1s quite
important, since all kinematic information for the calculation is
available during the model calculation, whereas this information is
lost or incomplete after storing the results of the calculation. A fast
subroutine based upon the present approach may be very useful to obtain
inclusive double-differential cross sections of the total neutron emis-
sion, without the currently nade assumption that the secondary neutron

emission is isotropic in the laboratory system.
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T L 1 Table 1. Comparison of Fk (ez)(k=0,1,2,3)between the present transformation method and that of [3]. The
- ’ evaporation spectrum and isotropic angular distribution are assumed in c.m. system. The masses of
§ - 1 the target A, incident particle a and outgoing particle b are 50, 1, 1 respectively. The nuclear
g temperature kT = 1.0 MeV is used. The incident energy is El = 15 MeV.
x | .
1N3T // €, 8 Fo (mb/MeV) F1 (mb/MeV) F2 (mb/MeV) F3 (mb/MeV)
b [I
7 1 (MeV) Present | Ref. [3] Present | Ref. [3] Present Ref. [3‘ Present Ref. [3]
i work work work work
] ' 1 0.01 0.759 7.591 7.590 -1.393 -1.393 -0.194 -0.194 -0.0557 -0.0557
et | 0.05 | 0.340 31.74 J1.74 -3.038 -3.037 -0.269 -0.269 ~0.0358 -0.0358
L . 0.1 0.240 59.27 59.27 ~3.675 -3.675 -0.299 -0.299 ~-0.0278 -0.0278
+ 1 0.5 0.107 196.0 195.9 0.0161 0.0162 | -0.299 ~0.300 -0.0184 -0.0184
L . 1.0 0.0759 | 237.7 237.7 6.012 6.012 -0.0895 -0.0913 -0.0129 -0.0129
2.0 0.0537 175.4 175.4 9.396 9.396 0.237 0.235 0.00027 0.00025
L 4 3.0 0.0438 97.13 97.11 7.072 7.071 0.285 0.285 0.00676 0.00673
4.0 0.0380 47.82 47.81 4.215 4,215 0.214 0.214 0.00726 0.00724
e - 5.0 0.0340 22.07 22.07 2.234 2.234 0.133 0.133 0.00544 0.00543
" i 6.0 0.0310 9.779 9.779 1.103 1.103 0.0734 0.0737 0.00344 0.00344
i ] 7.0 0.0287 4.213 4.213 0.519 0.519 0.0379 0.0381 0.00197 0.00197
r i 8.0 0.0268 1.778 1.778 0.236 0.236 0.0186 0.0186 0.00105 0.00105
9.0 0.0253 0.7385 0.7386 0.105 0.105 0.0088t 0.00890 0.000534 0.000537
1 1 10.0 0.0240 0.3030 0.3030 0.0455 0.0455 0.00406 0.00410 0.000262 0.000263
10°5 ; L ¢ 3 0

0

€ (MeV) —m=

2
Comparison of coefficients Fk(el) for k = 1, 2 and 3 between

results of the present work (full lines) and those of GROUPXS

[3] (crosses). The dashed lines represent the c.m. coefficients

Fi(ec). These data were calculated [6] to obtain the angular

distribution of neutrons emitted after scattering on Pb at

15 MeV incident energy.

Fig. 1.




Neutron production from l4-MeV neutron on 27Al
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Abstract

Calculations of 14.5 Mev neutron cross sections on 27Al
were performed in the frame of Hauser-Feshbach theory, gene-
ralized optical model and the exciton model for preequili-
brium emission contributions.

in order to achieve a better agreement between theory
and experimental data the necessity of a microscopic level
density was shown.

Introduction

Aluminium is known to be a difficult case for the appli-
cation of usual nuclear modelling methods, becouse it s
carachterized by a pretty low mass number and by a pretty
large nuclear level spacing even at relatively higher exci-
tation energies. In addition aluminium is also deformed. All
this peculiarities indicate the necessity of a particularly
careful analysis.

We first analysed avalaible resonance parameter schemes
in order to determine the necessary average resonance parame-
ters and then, by use of ad hoc level density parameter
systematics, we determined the complete level density para-
metrization.

We assumed contributions from reaction mechanisms via
compound nucleus, preequilibrium and direct collective inela-
stic scattering .

The IDA /1/ modular system of codes was used to produce
the inherent total cross sections, energy spectra arnd angular
distributions.

The methods adopted are brievly summarized and results
are shown against experimental data and discussed. !

" Guest researcher under IAEA fellowship N. BRA./8515.

The nuclear modelling

The equilibrium contribution was calculated according to
the Hauser-Feshbach theory while the preequilibrium
contribution was determined by use of the exciton model of
ref.2 with inclusion of angular momentum conservation as in
ref.3.

At first we tried our calculations in spherical optical
model approximation according to Becchetti and Greenless/4/
parameters and with p-h level density described according to
the usual William's formula/5/. 1In fig.l our pure preequili-
brium calculations (dotted dashed line) are compared with
the data measured at Gaussig/6/ (full line). 1In order to try
to improve our theoretical results we performed calculations
with inclusion of Fermi motion and refraction, and using
generalized optical model according to the method and
parametrization in ref.7. As the latter attempt was unsa-
tisfactory as well, we performed unified exciton model
caculations (dashed line) with the inclusion, in addition,
of spin dependent transition rates. As one can see, in all
cases, very clearly,, theoretical results always give a wrong
trend. This c¢ould be improved by changing the transition
matrix element constant fom the usual value of 190 to at
least 400 as can be seen in fig.2 , dashed line.

This result seemed to us particularly unconvenient be-
couse if we had to use a different transition matrix constant
for different targets our nuclear modelling would loose much
of its reliability, expecially in consideration of those
cases where measurements are not available.

On the other hand, the idea that Aluminium has somewhat
isolated levels up to several MeV excitatjon energy induced
us to consider the effect of different p-h level density
approaches in our calculations.

A microscopic approach to p-h level density.

Recently L microscopic approach has been deve-
loped/8/,/9/ for the calculation of all p-h configurations
and their spin and parity distributions. this method is based
on combinatorial calculations of all possible p~h configura-
tions which can be generated from a shell model spectrum of
single particle states. In particular configuration energies
are determined in the frame of the BCS theory.

In fig.3 the ratio is considered of the final to initial
p~h level density for the two typical confiqurations domina~
ting the neutron prequilibrium emission in 28Al. The dashed
line gives the ratio calculated according to William formula
when no pairing correction is introduced. The dotted dashed
hystogram gives the ratio according to our microscopic ap-
proach, when the shell model basis is taken from Seeger-
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Howard/10/. The full line histogram gives the same when the
shell model basis is taken from Nix-Moller/ll/.

From what one can see, one can make immediately a few
very important observations. Microscopic calculations, much
more realistic then William's formula, exhibit large fluctua-
tions which directly come from the large spacings be-
tween Al nuclear levels. Such fluctuations will never be re-
produced by any statistical approach like Williams' one. This
nuclear structure effect, however, appears to depend on the
adopted shell model basis. In particular the energy gap, as a
sum of the shell and of the pairing gap, 1is 3 MeV according
to Seeger-Howard and 5 MeV according to Nix-Moller. As a
matter of fact this gap is rather important becouse it deter-
mines the threshold for the preequilibrium emissions and
therefore can be checked experimentally.

Here below we present results of cross section calcula-
tions by use of microscopic p-~h level density.

Results and discussion

In fig.4 results of our calculations are compared with
experiment. We found 33 and 126 degrees two very signi-
ficative angles. In this calculations we wused the usual
value of 190 for the transition matrix element costant. The
dashed hystogram gives the collective inelastic scattering
contribution, while the full line one gives the contribution
to neutron emission from n=3 exciton configurations, accor-
ding to Nix-Moller basis. A&s one can see the 5~MeV gap of
fig. 3 implies a deep in the neutron emission cross section
wich correspond exactly to the separation between direct
inelastic and preequilibrium contributions. This deep is
pretty close to the trend of the experimental data. Fig.3 and
fig.4 well explain the failure of the previous calculations
already shown in fig.l in term of Williams' formula and the
necessity of encreasing the transition matrix element costant
in order to reproduce better the measurements. In fig.4 it
also appear that the preequilibrium contribution is
practically negligible at backward angles. For completeness
in fig.5 we give the pure compound nucleus calculation
(dotted hystogram) and the total cross section (dashed
hystogram) as a sum of the 3 different reaction mechanisms
assumed, the full line hystogram including the contributions
of all other neutron emissions from multiple particles emis-
sion processes. Fig.5 indicates that, as expected compound
nucleus contributions dominate at backward angles, while they
are completely negligible at all angles above 10 MeV emit-—
ted neutron energy. Similar conclusions can be drawn from
figs.6 and 7 where angle integrated energy spectra are shown.
In fig.8 the full and the dashed line respectively give the
n=3 exciton preequilibrium contribution according to Seeger-
Howard and Nix-Moller basis respectively. The dotted line

includes the n=5 exciton contribution. according to Nix=~
Moller. the latter contribution being not very important,
also becouse it has a threshold of 10 Mev,.

Calculation of total gamma-ray emission according to
the same model parameterization and with inclusion of both
equilibrium and preequilibrium contributions are given In
contribution /11/, presented at this meeting.

Conclusions

From the above considerations we feel we can conclude
that use of Williams' formula should be made with more cau-
tion becouse cases exist where this formula really does not
hold at all. Using the latter formula in some cases would
imply forcing the model parametization so that conclusions
of more general validity would be prevented.
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OPTICAL-STATISTICAL CALCULATIONS OF THE CHROMIUM NEUTRON
CROSS-SECT IONS

Konshin V.A., Korennoj V.P., Ulanovsky A.V., Fokov Yu.G.,
Khatkevich 0,V.
The Institute of Nuclear Power Engincering, Minsk, USSR.

Abgtract

The guality of O, and Op, neutron cross-section descrip=-
tion of > Cr in the E < 5 MeV region has been analyzed. The im~
pact of uncertainties in the calculated transmission coefficients
at low energies on nearthreshold cross~sections of compound-pro-
cesses accompanied by a neutron emission bas been discussed. It
has been shown that the introduced energy dependence of a poten=
tial diffusivity makes it possible to describe a sgpecific mini-
mum in the chromium total cross-gection at B ~ 0.8 MeV and to
improve the description of CSnH .

At neutron energies of several MeV, it becomes necessary to
calculate trahsmisgion coefficients of emitted charged particles.
To perform such calculations, the procedure is proposed to elimi-
nate.the uncertainty in the choice of optical potential parameter
geta.. It has been shown that the depth of a real part of the op-
tical potential can be approximated by the linear function of a
reduced particle=-nucleus mass,

The neutron transmission coefficients,calculated using an
optical model (OM), are the input data for calculation of com~
pound cross-sections and uncertainties in T,( € ) can consider-
ably complicate the parametrization of statistical models. Por
statically nondeformed nuclei of & medium mass, a spherical OM
is a sufficiently reliable method for obtaining T} + Near the
threshold, the calculations of neutron~emission reaction cross~—
sections should consider the transmission coefficients at the
exit channel at low energies, i.e., in the region where the OM
calculation meets considerable difficulties.

Pig.1 presents the calculations of the total chromium cross-
section with the sets of optical potential parameters suggested
in Ref. [1-4). It is seen that the potentials [2,4] fitted at

E >2 MeV fail to describe the (3 minimum in the 0.6-0.8 MeV re-
gion, At the same time, the Kawai potential [4] which decreases
the crossg-section in this region, underestimates S, at higher
energies. It results from underestimation of kthe absorption crogs~
section, which is seen in Fig.2, where the curves obtained by use
of the given potential parameters are compared with the elastic
scattering cross~-gsection data.

Apart from experimental data on the total and elastic scat-
tering cross-sections of {2,5,6] , Fig.1 and 2 give the CJD-2
evaluation [7] averaged over the 200 keV intervals.

An increase of the chromium total cross-section at energies
exceeding 0.8 MeV geems to be explained by appearence of the in-
elastic scattering channels in this energy region. To take into
congideration this process in OM, an attempt can be made to intro-
duce a strong energy dependence of the depth of an imaginary po~
tential of a gtep-like or more complicated form.

dlternatively, strong nuclear vibrationhl excitations can
cause the washing-out of a nucleus surface which can be modeled
by a change in the potential diffuseness.

To investigate the possibility of describing the neutron
gcattering by chromium nuclei in the B < 5 MeV region, the Pro-
njaev potential [ 8], suggested for iron, was taken as the starte
ing set of optical potential parameters:

Vg = 52.16=0,36EMeV

WD = 5,0 + 0,16EMeV

Voo = 642 MeV (10
Ip = Pge = Tp = 1.24 fm )
ag = Qgq = G.D = 0,48 fm

Ag directly applied to the chromium, it £its the total cross-
section at low energiss and considerably underestimates it at
E >2 MoV,

Some versions of the energy dependence of potential parame=
ters were verified, It was found that the introduction of the
E-dependence for a diffuseness of the potential within the energy
range up to 3.5 MeV seems to be optimal. In so doing, the diffuse~
ness increases by the law: Q=Q,+Q,E , where Q,= O.42 fm,

Q; = 0,067 fm/Me¥. At the energy of 3.5 MeV, diffuseness becomes
equal to 0.62 and further remains constant.
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The total and elastic scattering cross-sections calculated

.using the above mentioned potential parameters are presented by a

80lid line in Fig. 1 and 2. It is seen that the shape of curves ag-
rees with an averaged evaluation of CJD-2 and experimental data
over the whole energy region considered.

All the calculations are performed by the "ABAREX" code,where
the spherical optical model and the Hauser~Feshbach-Moldauver sta-
tistical model are realized [1?7). The inelastic scattering cross-
section for the 22Cr 2* (1.434 MeV) level is calculated for the
potential parameters mentioned (Fig.3). The contribution of & di-
rect excitation was calculated by the "ECIS=79"-code using the
couple-channel method realized by Raynal [18] | and potential pa=-
rameters of Ref, [19) with allowance for a 6=~level coupling, It is
to be noted that, according to the calculationg, an account of two
levels leads to the overestimation of 6 2 dit (by about 50-70 %

nn!
at E = 3.0 MeV).

Potential parameters with the energy dependence of diffuse-
ness provide a better description both in the &,y maximum re-
gion and in the excitation function fall-off at B >3 MeV. However,
as seen from the figure, we failed to describe the EKaratzas et al,
threshold experimental data [15] using different potential parame=~
ters both in an absolute value and form. In this case, we seem to
meet the principal limitations of the OM analysis of neutron scat-
tering processes;

For gtructural materials beginning with the energy of some
MeV, the (n,p), (n, ), ( n,d) reactions become energetically
feagible., Therefore, transmission coefficients of emitted charged
particles should be calculated. However, the choice of suitable
potential parameters faces some difficulties due to scarcity of
experimental data, as well as to uncertainties of the V, R* type
attributed to the OM formalism. A4S an example, we can take two
sets of optical potential parameters for A -scattering by medium-
mass nuclei, that are widely used for calculations: VR = 50 MeV,
1g=1.? fm, Qp = 0,567 fm recommended by Igo [9] , and V=185 MeV,
rg= 1.4 fm, @ p=0.52 fm by McFadden [10] . At small differences
in real part geometric parameters, the potential depths differ

almost fourfold, which indicates the principal contradiction bet~
ween them and the fact that additional information has to be in-
volved to remove it,.

Such additional information might be the evidence about the
interaction nature in the nucleus-particle system and, in particu=
lar, about the behaviour of a wave scattering function in thes re~
gion of small Y , This problem is sufficiently well studied for
the processes of mutual scattering of light nuclei on the bagis of
a resonating-group method [11]. As shown in Ref.[11), the existence
of states forbidden by the Pauli principle is explained by a nod-
character of the wave function with the nods position stable in a
rather wide range of energies. This conclusion served as a basis
for broad calculations and investigations of optical potentials
for & - “He, d -'5He, a -ZD, T- 3He, n - “He-syetems [12-14],
that obtained thereby a microscopic substantiation. 4 principally
new proof in such an approach was the statement that to describe
successfully the scattering process,it is necessary that the in=-
teraction potential would give & correct structure of bound states
of the system being not only permitted but also forbidden by the
Pauli principle. The potential parameters for the given scattering
systems are presented in Table 1 and for the first sight, they do
not show certain regularities. However, if a plot of the potential
real depth versus a reduced particle-target mass is drawn (see
Fig.#), it turns out that this dependence can be approximated lie-
nearlys

m, M,

YR— (a.e.m.) (2)

\/° = (67 Ju_13) MeV, where Ju =

For the scattering of nucleons by medium-mass nuclei, this
formula giveas the value of the potential depth of the order of
50 MeV., It agrees well with ‘the calculations of the asingle-par=-
ticle level structure using the Woods—Saxon potential and with the
reagult of the empiric fitting for the neutron scattering descrip-
tion.

The potential real depth values calculated from formula {(2)
can serve as the starting data for precise determinition of the
potehtial parameters when the total set of experimental data is
described. Besides, such a calculation can serve as an additional



criterium for selecting the one of numerous sets of parameters of
potential having the radial Woods-Saxon dependence.

As seen, the formula leads to the potential of a substantial
depth, So, its extrapolation into the region of A -particle
gscattering by medium~-mass nuclei ( jx = 3-4) gives Vpr*188-255 MeV,
This value contradicts to the data by Igo [ 9] and serves as a ba-
sis for selecting the McFadden potential parameters {10] to cal-
culate transmission coefficients for & =particle emission at the
fast neutron interaction with chromium isotopes.

The authors are indebted by V.G.Pronjaev for stimulating dis-
cugssions,
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Table 1. Opticel model potential parametrs obtained for
description of the light mass systems scattering.

System
Parame- 4 - D n - He A- *He | &=~ 2He T-3He
ters '
VR , MeV 75.5 43.5 125.0 98.0 83.5
Tp s fm 1.85 1.70 1.78 1.80 1.85
o, fn 0.71 0.65 0.66  0.70 0471
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Pig.1. The total nato; cross-section and calculational results
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——[3], present work.
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Fig.2.

The total elastic scattering cross-section for natCr

and calculational results obtained with different sets
of the optical potential parameters: notation the same
as in Fig.1.

Experiment: 8w = [2], a=[5], 4 -{6]), ¢ - averaged
evaluation of CJD-2 [7] .



165

1.0

09L

08t

7L

T L

*Cr
Eq" 1,434 MeV

Fis.}.

£

The inelastic scattering cross=-gection for the first 2t
5201 (B=1.434 ¥aV). The calculations used trang=
migsion coefficlents obtained with different sets of the
optical potentirl parameterst

the notation same as in Fig.1.

Experiment: e -[{5], w - [6] , a-[18], o - [2]

Vst

{40 + d
10 L Prd
100 | wHie,
80 | d\*ZD - 4
/,4
60 = / s

40 L

0.5 1.0 _ 15 2,0 “MMzgem
m:’mz

Fig.ls Depth of an optical potentials real part for describing
the light system scattering procegs [12-14] as a func-
tion of the reduced mass system.



5Z900-88



