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Foreword

This report contains the text of invited papers delivered during the
second Research Co-ordination Meeting on "Methods for the Calculations of Fast
Neutron Nuclear Data for Structural Materials of Fast and Fusion Reactors".
The meeting was held in Vienna during 15-17 February 1988.

Since the meeting there have been many requests from participants of the
International Workshop on Applied Nuclear Physics and Nuclear Model
Calculations to make available the texts of papers done under the IAEA CRP on
"Methods for Neutron Nuclear Data Evaluation" in printed form as INDC(NDS)
report. The texts are reproduced directly from the author's manuscripts
without any editing.





Contents

Some Fundamental Aspects of the Optical
Potential for the Interaction of Fast
Neutrons with Cobalt
By A.B. Smith, R. D. Lawson 7

Optical Model Calculations for Experimental
Interpretation and Evaluation: Practical
Considerations and Fundamental Implications
By A.B. Smith, P.T. Guenter, R.D. Lawson 25

The Neutron Optical Model Potential
By P. E. Hodgson 49

Consistent Systematics of Nuclear Level
Densities for Mean and Heavy Nuclei
By O.T. Grudzevich, A.V. Ignatjuk, V.I. Plyaskin 69

Effect of Realistic Partial State Densities on
Pre-equilibrium Decay
By M. Blann, G. Reffo 75

The MSC Calculations with use of EMPIRE
By A. Marcinkowski 79

On The Two Gas Approach for Exciton Model
Master Equation
By G. Reffo, M. Herman, C. Costa 91

Analysis of Particles Emitted in them on
Iron-Group Nuclei
By V.M. Bychkov, O.T. Grudzevich, A.V. Zelenetsky,
A.B. Pashchenko, V.J. Plyaskin 99

Investigation of the Angular Distribution of
Secondary Energy Dependant Inelastic Neutron
Cross Sections in Structural Materials Using
Blann's Geometry Dependant Hybrid Model
By E. Bahm, H. Jahn Ill





SOME FUNDAMENTAL ASPECTS OF THE OPTICAL POTENTIAL

FOR THE INTERACTION OF FAST NEUTRONS WITH COBALT**'

A. B. Smith and R. D. Lawson
Argonne National Laboratory

Argonne, Illinois, USA

ABSTRACT

Differential elastic- and inelastic-scattering cross sections, measured from
« 1,5 to 10.0 MeV, are interpreted in terms of spherical-optical-statistical
(OM) and coupled-channels models. A successful description of the
differential elastic scattering below 10 MeV and the total cross section to
20.0 MeV is achieved using the spherical OM with energy-dependent strengths
and geometries. These energy dependencies are large below a 7.0 MeV, but
become smaller and similar to those reported for "global" potentials at higher
energies. This change in the energy dependence of the parameters probably
marks the onset of the Fermi surface anomaly a 19 MeV above the Fermi energy.
Inelastic scattering to the levels below 1.8 MeV displays a forward peaked
behavior. This non-statistical component is interpreted using the weak

coupling model in which the f7/? proton hole is coupled to the 2 state in

Ni. This model provides an explanation of the unusual energy dependence and
relatively small radius found for the imaginary 0M potential. The coupling
also contributes to the large value of this potential. The real spherical 0M
potential derived from the neutron-scattering results is extrapolated to bound
energies using the dispersion relationship and the method of moments. The
resulting real-potential strength and radius peak at a -10.0 MeV, whereas the
real diffuseness is at a minimum at this energy. The extrapolated potential
is a 8% larger than that implied by reported particle-state energies, and
a 13% smaller than indicated by hole-state energies.

I. INTRODUCTION

For many years the interaction of few-MeV neutrons with nuclei of mass
A = 50 to 60 has been somewhat of an enigma. Spherical-optical (0M) and/or
coupled-channels models, deduced from higher-energy neutron and
charged-part'icle observations, often do not reasonably extrapolate to lower
energies (2,3). Moreover, reasonable descriptions of the neutron total and
scattering cross sections over the first few MeV frequently imply sharp energy
dependencies of the potential that are inconsistent with those based upon
higher-energy observations (4,5). OM potentials based upon low-energy neutron
phenomena tend to be characterized by a small real-potential depth and large
real radius, relative to those appropriate for higher-energy, and often the
real radius exceeds that of the imaginary interaction by significant amounts
(6,7).

Some of the above shortcomings have been attributed to fluctuations. In
the few-MeV region compound-elastic scattering is generally large (8) and its
reliable calculation requires knowledge of excited states; discrete states at

a. This work supported by the U. S. Department of Energy, Basic
Energy Science, under Contract W-31-109-Eng-38.

b. A detailed description of this work is given in ref. 1.



low energies and then statistical level properties at higher energies. The
discrete-level properties are not always well known. The statistical
properties are particularly uncertain at low energies, and they may fluctuate
about the average by considerable amounts. Fluctuations no less trouble
experimental observations. Measured energy-averaged low-energy neutron total
cross sections are often distorted toward too low values due to self-shielding
effects (9). Fluctuations are also an obstacle in the measurement of neutron
energy-averaged partial cross sections. The latter must be made in energy
detail and then averaged over energy intervals large compared to those of the
fluctuations. The energy interval required to obtain a reasonable average
very often includes the opening of several prominent exit channels that
qualitatively change the character of the interpretation within the averaging
interval.

Nuclei in the A = 50 to 60 region display some collective properties.
The energies, spins and parities of the first few levels are often
characteristic of those predicted for vibrational nuclei, though the
yuadrupole moments are not zero and there are, in some cases, additional
levels that are not consistent with such a concept. Failure to properly
consider collective effects may be the source of some of the discrepancies
between observation and calculation, noted above. It is known from low-energy
neutron scattering studies that the imaginary-potential strength is mass
dependent (.10), and low-energy (p,n) studies suggest that the imaginary
strengths are particularly large in the A « 60 region (11).

In recent publications, Mahaux and Sartor (12,13,14) have used the
dispersion relationship (15), relating the real and imaginary 0M potentials,
together with the moments of these interactions, to predict the energy
dependence of the real potential in the bound-state regime. Applied to the
A « 89 and 208 regions, these concepts indicate a maximum of the
real-potential strength at bound energies and also a strong energy dependence
of the geometric parameters at low-positive and bound energies. In the
neighborhood of the Fermi energy the resulting potential is considerably
different from that obtained by extrapolating conventional "global" potentials
(16), or from the general energy dependence resulting from a Hartree-Fock
calculation. This behavior is known as the Fermi Surface Anomaly (17). This
is consistent with the dichotomy between the energy dependencies of potentials
based upon low- and high-energy neutron data (3,4,18,19). In addition, the
energy dependence of the potential brings about qualitative agreement with the
potential strengths implied by the observed energies of particle- and
hole-states.

The present study was undertaken to cast light on the above Issues.
Cobalt is an odd-A nucleus with a reasonably-high level density at low
energies, thus mitigating some of the problems due to fluctuations. The
properties of some of the low-lying levels are well known making possible
quantitative compound-nucleus calculations. There is experimental information
dealing with bound particle- and hole-states allowing a test of the
extrapolation of the real 0M potential to negative energies. The magnitude of
the Fermi energy is large (E « -12.3 MeV), therefore providing a quite

different situation from that encountered in the previous studies of potential
anomalies in the A « 208 region (Ef « -6 MeV). The region of most interest in

the context of the above issues is below 10.0 MeV, and uniquely accessible to
the neutron probe. This study makes extensive use of comprehensive new
experimental results reported elsewhere (1).
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II. MODEL DERIVATION

The interpretation was primarily based on the conventional spherical OM
(20), explicitly fitting the model parameters to the differential
elastic-scattering cross sections. It was assumed that the OM potential
consisted of a real Woods-Saxon form, a Woods-Saxon-derivative imaginary part,
and a real Thomas spin-orbit term. A possible contribution due to volume
absorption was investigated at the higher energies of the present study with
no identifiable contribution. All of the spherical calculations were carried
out with the most recent formulation of the computer code ABAREX (21).

2
The OM fitting employed \ minimization procedures, minimizing the

quantity,

2 1 V I" °exp<V - °cal ( V f
K

where a (fi.) is the measured value at angle 6., 6a (6.) its uncertainty,
GXp X 1 GXp 1

a ,(e.) the corresponding calculated value, and N is the number of data
cai I

points contained in a given distribution. Up to an energy of « 8.0 MeV
compound-nucleus processes make a significant contribution to the elastic
scattering. They were calculated using the Hauser-Feshbach formula (22), with
the fluctuation and correlation corrections prescribed by Moldauer (23). The
compound-nucleus calculations included discrete levels up to an excitation
energy of 2.6 MeV, using the energies, spins, and parities cited in ref. 24.
A statistical-level formulation given by

p(E.J) = ( 2 J t 1] exp((E - E )/T) exp(-(J + l/2)2/2o2). (2)
2a T

where J is the angular momentum of the continuum target level and E , T and o

are parameters, was used to describe higher-energy excitations. Initially the
parameters E , T, and a were taken from the work of Gilbert and Cameron (25).

However, with their values the inelastic cross sections corresponding to
excitations of < 1.8 MeV, shown in fig. 1, were underestimated by ss 15% in the
3.0 to 4.0 MeV incident-energy range, and concurrently the minima of the
differential elastic-scattering distributions were systematically smaller than
observed. A better agreement between observation and calculation was obtained
by increasing T by 40 keV, resulting in the statistical parameters for the
subsequent calculations of E = -0.4 MeV, T = 1.10 MeV, and a = 3.0. Above

» 8.4 MeV there was no evidence for a compound-nucleus contribution, so the
calculations considered only shape-elastic scattering. Fluctuations are
evident in the neutron total and differential-elastic-scattering cross
sections to more than 4.0 MeV (1), even with the relatively broad
incident-energy averages. Therefore, primary emphasis was given to the energy
range 4.5 to 10.0 MeV. The lower-energy data were concurrently fitted in
three energy intervals having widths of « 1.0 MeV. Even so, the parameters
resulting from the lower-energy fitting fluctuated by considerable amounts and
thus were not used in determining the general behavior of the parameters.
Near zero energy the t = 0 strength function is known from resonance
measurements (26). This value provides a low-energy reference point in the
fitting. The energy-averaged neutron total cross section is reasonably known
to at least 20.0 MeV (1,27). Considerations of the total cross section
further guided the fitting beyond the primary 4.5 to 10.0 MeV range.
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Fig. 1. Angle-integrated cross sections for the excitation of levels in the
range E = 1.0 to 1.8 MeV. Symbols denote experimental results as defined in

ref. 1. Results of statistical-model calculations are indicated by the light
curve and those including the vibrational contribution, by the heavy curve.

The present elastic-scattering data were most sensitive to the spin-orbit
potential at the higher energies. Therefore, the 9.0 to 10.0 MeV data were
used to determine the spin-orbit potential. The resulting spin-orbit
parameters, determined as described in ref. 1, were;

SO
(strength) =5.5 MeV,

These values werer (radius) = 1.005 fm, and a, (diffuseness) = 0.65 fm.
so so
not used to calculate polarization data since no suitable experimental
information was found (28). However, the parameters of eq. (4) are reasonably
consistent with those cited in global OM's (16,29).

With the above spin-orbit potential, the fitting started by varying the
six parameters, real and imaginary strengths, radii and diffusenesses. The
results indicated a relatively constant real diffuseness, a , and it was fixed

to the average value. The fitting procedure was then repeated varying the
remaining five parameters. Of these, the imaginary diffuseness, a , was the

w
most stable and was fixed for the subsequent four parameter fitting. It was
evident that a was energy dependent, increasing from rather small values atw
low energies to « 7.0 MeV, and then remaining approximately constant at higher
energies. The four-parameter fits resulted in reasonable definition of the
real radius, r . As for a , there appeared to be a change in the energy

V W

dependence at « 7.0 MeV, with a large negative slope below that energy and a
small slope at higher energies. The three remaining parameters were then
fitted with results indicating that the imaginary radius, r , was « 0.96 r .
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The resulting geometric parameters are summarized by,

r = 1.39 - 0.0168 E (E < 7.5 MeV) fm

= 1.288 - 0.0032 E (E > 7.5 MeV) fm,
a = 0.6355 fm, (3)

r = 0.96 r fm,
w v

a = 0.19 + 0.0386 E (E < 7.5 MeV) fm

= 0.480 (E > 7.5 MeV) fm,
where E is the energy in MeV.

With the above potential geometry, two parameter fits were made, varying
real, V , and imaginary, W , well

volume-integrals-per-nucleon given by

the real, V , and imaginary, W , well depths. The results were expressed as

OS

Jv = Hi J v(r) r dro
and (4)

CO

J w = l ] W(r) r dr«

2
They are shown, together with the associated \ /point resulting from the
individual fits, in fig. 2. Both J and J are nonlinear functions of energy,

v w
showing different slopes below and above « 7.0 MeV. Combining these results
with the requirement that the s-wave strength function, S , be well
represented and the neutron total cross section be predicted to at least 20.0
MeV, one concludes that J and J can be reasonably described by two linear

v w " *
segments given by

J = 550.0 - 12.5 E MeV-fm3 (E < 7.5)
v

= 474.0 - 2.4 E MeV-fm3 (E > 7.5)
and (5)

J = 135.0 - 6.4 E MeV-fm3 (E < 7.5)
w

= 104.0 - 2.3 E MeV-fm3 (E > 7.5).

The higher-energy behavior is similar to that frequently reported in "global"
analyses (16). The uncertainty estimates of fig. 2 are reasonably born out by
the reproducibility of results obtained at different times.

-4
Eqs. (3), (4), and (5) result in S = 3.97 x 10 compared to the vaJLue

-4
(3.9 ± 0.5) x 10 deduced from resonance data (26). The same equations give
a good description of the neutron total cross sections from several-hundred
keV to 20 MeV, as illustrated in fig. 3, where energy averages of the entire
experimental data base (28) are compared with the calculated results. In
particular, the calculations reasonably represent the observed
total-cross-section minimum in the 1.0 to 3.0 MeV region, a result which is
not obtained when the conventional "global" models primarily based upon
high-energy observations are used (3). This is a reflection of the energy

11
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Fig. 2. Sections (A) and (B) show, respectively, the real and imaginary
3

potential strengths, J and J , in MeV fm , as a function of energy, E^ in

MeV. Symbols indicated the results of fitting the experimental data and
2

curves eq. (5) of the text. Section (C) gives K /point as defined by eq. (1).
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Fig. 3. Comparison of calculated (heavy curve) total cross sections and broad
energy-averages of available experimental data (symbols).
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0.36
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Fig. 4. Differential elastic-scattering cross sections of Cobalt. "o"
indicate the experimental results of ref.l, curves the results of the OM
calculations described in the text.

dependence of the potential used in the present calculations. A very good
description of the observed neutron differential elastic-scattering cross
sections was obtained from less than 1.0 to 10 MeV, as illustrated in fig. 4.

Using eqs. (3), (4) and (5), the Hauser-Feshbach-Moldauer model (22,23)
leads to the calculated inelastic excitation functions indicated by the curves
of fig. 5. Up to « 4.0 MeV the calculations are in reasonable agreement with
the measured values. However, there is a systematic tendency for the cross
sections to the levels below « 1.8 MeV to be under predicted, and increasingly
so with energy.

As the energy increases it becomes clear that the simple compound-nucleus
concept is deficient. In particular, neutrons resulting from the complex of
levels below 1.8 MeV are no longer emitted symmetrically about 90 (see
fig. 6), but rather the distributions are strongly peaked toward forward
angles. The statistical calculations predict very small cross sections for
the excitation of this complex of levels above « 5.0 MeV incident energy, and
the calculated results are an order of magnitude smaller than the observations
at 8.0 to 10.0 MeV, (see fig,. .1)... This behavior suggests a significant

13
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Fig. 5. Angle-integrated inelastic neutron-excitation cross sections of
Cobalt, Experimental results are indicated by data symbols as defined in ref.
1. Curves indicate the results of statistical-model calculations as described
in the text. Excitation energies are given in keV (24) in each section of the
figure.

direct-reaction contribution, which can be estimated as follows: Below 2.0
59 2

MeV Co has seven negative parity states, with spins 1/2, (3/2) , 5/2, 7/2,
9/2 and 11/2. The weak-coupling model, in which an f7/J> proton hole is

coupled to the first excited 2 state in Ni, accounts for five of these
levels. The remaining two are attributed to the excitation of an f?,2 proton

to either the p . or p , single-particle state (24). Since the yrast 2

state in
60Ni is collective, one would expect the majority of the

59,
direct-reaction strength in the low-lying " Co levels to come from the
excitation of this state. To estimate this cross section it was assumed that
fifl

Ni is a vibrational nucleus, and a coupled-channels calculation (30) was

carried out in which the one-phonon state (2 , 1.333 MeV) and the two-phonon
states (2 , 0 and 4 ) were considered (31). Except for the radius of the
imaginary interaction, which was assumed to be 6% larger than given in eq.
(3), the strength and geometry of the deformed potentials were taken to be
those of eqs. (3) and (5). The reason for the change in r will be discussed

w
later. The spin-orbit interaction was taken to be spherical, whereas the
quadrupole deformation of both the real and imaginary interactions was assumed
to be described by fi = 0.25. The direct-reaction cross section to the 1.333

MeV state, which would be divided among the weak-coupling 3/2 , 5/2 , 7/2 ,
— — 59

9/2 and 11/2 levels of Co, was calculated on the basis of this model.

14
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Fig. 6. Differential cross sections for the excitation of the composite of
levels in the range E = 1.0 to 1.8 MeV. "o" indicate experimental values

from ref. 1, and curves the results of calculations as described in the text.

This was then added to the statistical contribution, derived assuming that
59

Co is a spherical nucleus, to obtain an estimate of the total
inelastic-scattering cross section. The predicted angular distributions of
scattered neutrons due to the excitation of the complex of levels below 1.8
MeV, derived in the above manner, agreed fairly well with the experimental
values, as illustrated in fig. 6. Furthermore, the predicted total
inelastic-scattering cross section for the same complex of levels agrees well
with measured values, as shown in fig. 1.

III. DISCUSSION

The model geometries, eq. (3), resulting from the foregoing
interpretation are not conventional. The real radius decreases sharply with
increasing energy in the low-MeV region. Its magnitude at these energies is
relatively large, similar to that often associated with potentials based upon
low-energy phenomena such as the strength function (6). At higher energies
the real radius approaches that commonly encountered in "global" models (16),
and the E-dependence becomes small. The transition between a large and small
energy dependence occurs at « 7.0 MeV. The real-potential diffuseness is
constant with energy and has a value similar to that reported in "global"
models. In this mass region it is frequently found that the imaginary radius
is smaller than the real radius (2,32). Below 10.0 MeV the present analysis

15



2000

Fig. 7. Moments of the imaginary OM potential, <r(E)q> (eq. (10) of the
w

text), for q = 0.8, 2 and 4. For E < 10.0 MeV "o" indicate values deduced
from experiments of ref. 1. In the range 15.0 < E < 37.5 MeV the "o" values
were deduced from the potential of ref. 29. For q = 2, J and the uncertainty

w
estimates for E < 10.0 MeV were taken from the experiments illustrated in fig.
2. Solid curves are "best fit" parameterizations of the moments obtained
using eq. (14).

is consistent with this observation as r is «
w

smaller than r over the

entire energy range of the present scattering measurements. At very low
energies, the absorptive potential approaches the C-function form. a rises

w
rapidly with increasing energy, and at « 7.0 MeV reaches a value similar to
that reported from "global" analyses. Above « 7.0 MeV, a can be taken

w
independent of energy. Generally, it was found that the 0M potential
geometries for cobalt are only weakly dependent on energy above « 7.0 MeV
(i.e., « 19.0 MeV above Ef, the Fermi energy), while for lower energies the
energy variation of r , r and a is quite rapid. A similar result was found

V W W

in bismuth (19), where the transition between rapid and weak energy variation
occurred in the 8.0 - 10.0 MeV region (i.e., « 16.0 MeV above E_).

89, 209,
For the closed-neutron-shell nuclei ""Y and "v"Bi, the

volume-integral-per-nucleon of the imaginary potential has the value 66.47 and

33.87 MeV-fm , respectively, at E = 0 (18,19). This is to be contrasted with

16
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Fig. 8. Solid curves show a , r , and J , as a function of energy, deduced
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from the Woods-Saxon potential when eq. (15) is used to determine the moments
of the real potential. The dashed lines correspond to the experimentally
derived values of a and r for E > 0. The J values at positive energies

correspond to those of fig. 2. For E < 0 the data symbols indicate the J

values implied by the binding energies of paticle- and hole-states when r and

a have the values predicted by eq. (15) at the respective energies.

the large value given in eq. (5). Thus, as has been noted before (33), the
value of J increases markedly as one moves away from closed shells. An

59
additional factor contributing to the large J value for Co is probably due

w
to collective effects, as discussed below. The energy dependence of J , given

w
in eq. (5), is surprising. As the incident-neutron bombarding energy
increases, more channels open up and one would expect J to increase with

w
increasing E at relatively low energies (34,35). Just the opposite energy
trend results from the present interpretation, and has been reported elsewhere
for this mass region; for example, by Wilmore and Hodgson (36). This energy
dependence of J may be attributed to the possible vibrational character of
nuclei in this mass region as follows.
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It is well known that the nickel isotopes can be described by the
spherical shell model (37), provided one introduces a rather large effective
neutron charge to explain the observed B(E2) values. Alternatively, one can
interpret the spectra of these nuclei using the anharmonic vibrational model
(38). Consequently, the properties of the spherical OM were examined to
assess the effects of its use in describing neutron scattering front a
vibrational nucleus. For this purpose, pseudo data for neutron shape-elastic

fiO +
scattering were generated for Ni using a vibrational model in which the 0

ground state, the 2 one-phonon level at 1.333 MeV, and the two-phonon triplet
(31), were coupled. A potential consisting of Woods-Saxon real, derivative
Woods-Saxon imaginary and Thomas spin-orbit was assumed. Pseudo data were
then generated using the coupled-channels computer code ANLECIS (30), with the
potential parameters

V (real) = (47.0 - 0.3 E) MeV

r =1.28 fm
v
a =0.64 fm
v

W (imaginary) = (9.7 + 0.2 E) MeV

r =1.25 fm (6)

a =0.40 fm
w

V (spin-orbit) =6.0 MeV
so

r =1.28 fm
so

a =0.64 fm,
so

and >3O = 0.25. These elastic-scattering pseudo data were calculated at twelve

incident energies between 4.5 and 10.0 MeV. The resulting cross sections were
truncated to the experimentally accessible angular range. A constant error
was assigned to these pseudo data, and the calculated total cross sections
added, with a weight of six differential cross-section values, to form a
pseudo-experimental data base for fitting with the spherical OM code (21) in a
manner anologous to that employed in the above experimental interpretation.
The following results were obtained (39): Although the diffusenesses had a
slight energy dependence, their values were quite similar to those of eq. (6).
Furthermore, the resulting real-potential radius was only 1.25% smaller than
that originally assumed, and the real potential strength was only 3.7% smaller
at 4.5 MeV and 4.6% smaller at 10.0 MeV. On the other hand, the
imaginary-potential radius resulting from the fitting was significantly
smaller, by 6.3%, than the original value of eq. (6). Moreover, the character
of the imaginary strength changed completely. From eq. (6) it follows that
the strength increases with increasing energy as

J = (79.94 + 1.65 E) MeV-fm3, (7-a)
w

whereas a best fit to the pseudo data gives a J that decreases with energy as

J = (121.08 - 1.41 E) MeV-fm3. (7-b)
w

Moreover, the zero-energy magnitude of J , obtained from the fit, is « 50%
w

larger than the original value. Somewhat similar results have been reported

18



by Perey in his studies of charged-particle scattering (40). Thus, when a
spherical model is used, in this mass region, to interpret pseudo data from a
vibrational nucleus there are major changes in the imaginary potential. In
particular: the imaginary radius is significantly smaller, and the imaginary
strength at E = 0 obtained from fitting the pseudo data is « 50% stronger.
Furthermore, the strength decreases with increasing energy.

Using only the 4.5 to 10.0 MeV data, a satisfactory fit to the values
needed to describe the experiment is given by

J = (505.93 - 5.98 E) MeV-fm3. (8)

When eq. (8) for J is used, in conjunction with the geometric parameters of

eq. (3), the predicted neutron total cross section in the 1.0 to 2.0 MeV
region and S are not in very good agreement with those derived from

experiments. Moreover, the rapid decrease in J with energy leads to

unsatisfactory values of the predicted total cross section at energies
> a 12.0 MeV. In order to remedy both of these deficiencies, the
parametrization of J given by eq. (5) was chosen. Thus, when data outside

the 4.5 to 10.0 MeV range are included in the considerations, one is led to
the conclusion that J exhibits a rapid decrease with increasing energy below

a 7.0 MeV. Above that energy the slope is smaller and is quite close to

"global" values of J /dE = -2.712 fm3 (16) and dJ /dE = -2.776 fm3 (29). A

similar result— a large negative slope at low energies changing to a smaller
value at a 10.0 MeV-- has recently been found in an analysis of neutron

209
scattering from Bi (19).

In a series of recent papers, Hahaux and Sartor (12-14) have outlined a
procedure for extrapolating the 0M potential to the bound-state regime. There
is a well known dispersion relationship linking the real and imaginary
potentials (15)

•fOO

V(r.E) = Vhf(r,E) + £ J
 V£'_E'E} dE' , (9-a)
—00

where P is the principal-value integral and V. f (r,E) is the Hartree-Fock

component of the potential. This same dispersion relationship holds for the

radial moments of the potential, that is

+~ <r(E')q>
<r(E)Sv = <r(E)Shf + f J g ...

 W dE- , (9-b)
—00

where, for example,

00

<r(E)q>w = £. $ W(r,E) rq dr. (10)
o

Mahaux and Sartor argue that the energy dependence of the radial moments of

<r(E) > can be parametrized by the form
w
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C (E - E ) 2

<r(E)S = — 3 _ ! _ , (ii)
(E - E f )

2
 + D

2

where C and D are constants to be fitted to the various moments of the
q q

imaginary potential. In addition, one expects V,.(r,E) to be a smooth

function of energy. Hence it is reasonable to approximate its moments with

<r(E)Q>hf = Aq + B q E. (12)

When eqs. (11) and (12) are used, an analytic expression can be obtained for
the various moments of the total real potential,

C D (E - E )
<r(E)Q> = A + B E + — S — ^ ^ V-. (13)

V q q (E - E f )
2
 + D

2

For a given nucleus, values of <r(E) > can be deduced from a knowledge
w

of the shape and strength of the imaginary potential. The values of C and

D , eq. (11), are then adjusted so as to reproduce these results. Finally, A
and B of eq. (13) are determined from a best fit to <r(E)q> for E > 0. Eq.

(13) is assumed to hold true for all values of E including E < 0. If one
takes V(r,E) to be a Woods-Saxon potential with a strength V , radius r and

diffuseness a , eq. (13) with q = 0.8, 2 and 4 can be used to determine these

three parameters for E < 0. In this way Mahaux and Sartor found values of V ,

89
r and a which satisfactorily reproduce the bound-state data for Y and

208
Pb. Moreover, in the energy domain E f < E S 0, r decreased with

increasing binding energy.

The same analysis, outlined above, was used to determine the bound-state

Co potential using the values of <r(E) > and <r(E) > found in the

preceding section. Since for incident neutron energies between 0 and 10.0
MeV, J , given by eq. (5), decreases in value, the simple expression, eq.

w
(11), cannot be used to parametrize the moments of the imaginary potential.
We have therefore replaced eq. (11) with

q 2 "V E" Ef ) Cq (E~Ef)

<r(E)q> = a (E-E r e Q * + — 3 _ i _ _ , (14)
W Q t (E-Ef)

2
 + D

2

where a and /J are adjustable parameters and the expression is symmetric

about the Fermi energy, E~ = -12.25 MeV. For q = 2, <r(E)q> = J , and the
X W W

parameters of eq. (14) for q = 2 were adjusted to give a best fit to the
sixteen values determined in the experiments of ref. 1, and the E = 0 value of
eq. (5), plus the values of J determined from the Walter and Guss potential

(29) evaluated at energies ranging from E = 15.0 to 37.5 MeV. For q * 2 the
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imaginary-potential geometry given by eq. (3), together with the
experimentally derived strengths, W , were used to evaluate the moments for

E < 10.0 MeV. These moments were combined with those evaluated from the
Walter-Guss potential, again calculated from E = 15.0 to 37.5 MeV. The
parameters of eq. (14) were then adjusted to give a best fit when q = 0.8 and
4. Curves resulting from this fit are shown in fig. 7, where they are

compared with the experimentally-derived values of <r(E)q> .

When eq. (14) is used to parametrize the moments of the imaginary
potential, the moments of the real potential are given by

C D (E-Ef)
<r(E)q> = A +B E + q q

 o — L - + F (a ,/3 ,(E-E.)), (15)
v q q ( E _ E f ) 2 + D2 ^ Q "q f"

where F (a ,p , (E-Ef)) comes from the principal-value contribution of the

exponential term of eq. (14). The parameters A and B of eq. (15) were then

adjusted to give the best fit to the sixteen values, for each q, of <r(E) >
2

determined from the experimental results of ref. 1. For q = 2, <r(E) > = J ,

and the fifteen values shown in fig. 1, together with E = 0 value given by eq.

(5), were used. For q = 0.8 and 4 the values of <r(E) > to be fitted were

calculated using the real-potential geometry of eq. (3).

Eq. (15) was assumed to hold for E < 0, and the form of the bound-state
Woods-Saxon potential was determined from a knowledge of its q = 0.8, 2 and 4
moments. In fig. 8 the behavior of a , r and J is shown over the energy

range -16.0 < E < 10.0 MeV. For E > 0, a and r reproduce quite well the

values to which they were fitted. For E < 0, r increases with binding

energy, reaching a maximum in the energy range under consideration, at
approximately -10.0 MeV. This behavior is to be contrasted with that found

208
for the doubly-closed-shell nucleus Pb, and the closed neutron-shell

89
nuclide Y, where r decreases with increasing binding energy in the range

E < E < 0 MeV (12,13,14). Of the three moments of the imaginary potential,
4

<r(E) > is the least well described by eq. (14), exhibiting an rms deviation
w

which is 5.6% of its asymptotic value (in contrast to 3.9% and 4.7% for
q = 0.8 and q = 2, respectively). As was done by Mahaux and Sartor (14) in

89
their study of Y, the values of V and r obtained from a fit to only the

q = 0.8 and q = 2 moments with a held fixed at 0.6355 fm were examined.

Again r increases with increasing binding energy, reaching a maximum of 1.584

fin at -10.0 MeV, which is to be compared with the value 1.648 fm at -10.0 MeV
shown in fig. 8. This increase in r with increasing binding energy almost

59
certainly arises because J for Co, at low energies, has an entirely

80 208
different behavior than that obtained for either Y or Pb.

Also shown in fig. 8 is the curve representing J . This has the same

89 208
general form as found by Mahaux and Sartor for Y and Pb. In addition to
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the experimental values of .7 at positive energies, the values needed to

reproduce the observed particle- and hole-state binding energies are shown in
this figure. These experimental binding energies were determined from the

57
mass tables (41) and the nuclear data sheets (42) for Ni, and have
incorporated into them the appropriate (N - Z)/A correction, and the change in

57 59
A in going from Ni to Co. In deducing these J 's, r and a were held

fixed at the values predicted by eq. (15), for the observed binding energy,
and V was adjusted until agreement with the observed energy was obtained.

The f-/g h°le state requires a value of J approximately 13.5% greater than

given by eq. (15), whereas, on the average, the particle states need a J

value that is about 8.IS. smaller. These discrepancies are probably due to the
59

fact that Co is a vibrational nucleus which has been treated in the above
using a spherical OM.

IV SUMMARY

59
Differential elastic- and inelastic-scattering cross sections of Co

(1), together with the t = 0 strength function reported from resonance
measurements (26) and the total cross sections given in ref. 27, provided the
data base for spherical OM interpretations. The resulting OM potential and
accompanying statistical-model calculations, provided a good description of:
the t = 0 strength function, the neutron total cross section to 20 MeV,
differential elastic-scattering cross sections to 10.0 MeV, and the
inelastic-scattering cross sections to a few MeV. For incident-neutron
energies above 3.0 MeV, both the magnitude and angular distribution of the
observed inelastic scattering to the states between a 1.0 and 1.8 MeV
excitation suggest a substantive direct-reaction component, and for
E > 5.0 MeV this is the dominant excitation mechanism for these states. A
quantitative description of this direct-reaction process is provided by the

59
weak-coupling model in which the f . proton hole in Co is coupled to the

fin fin
yrast 2 state in Ni. Assuming that Ni is a vibrational nucleus with fi =

+• +

0.25, calculations coupling the 0 (ground state), the 2 (one-phonon), and
the 2 +', 0+, 4^ (two-phonon) states resulted in direct-excitation cross
sections and angular ditributions that, when combined with the statistical
contribution, describe quite well the observed excitation of levels with
E < 1.8 MeV.
x

The spherical 0M parameters obtained in the present interpretation are
strongly energy dependent in both strength and geometry. In particular: (i)
the real radius is large at low energies and rapidly decreases with increasing
energy to a; 7.0 MeV and then decreases much more slowly with energy in a
manner consistent with "global" models (16), (ii) the real diffuseness is
energy independent, (iii) the energy dependence of the imaginary radius
follows that of the real radius but the magnitude is « 4% smaller throughout,
(iv) the imaginary diffuseness approaches the 6-function value, at zero
energy, rapidly increasing with energy to « 7.0 MeV, and then becomes
approximately constant, (v) the real potential strength decreases rapidly with
increasing energy to « 7.0 MeV, and then more slowly at higher energies in the
manner reported for "global" models(16), and (vi) the imaginary strength is
large and decreases with increasing energy.
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Characteristics (i), (ii), (iv) and (v) are qualitatively similar to

those recently reported in 209Bi (19). The break in the energy dependence of

the present Co potential occurs approximately 19.0 MeV above the Fermi
209

energy, whereas the similar break in the Bi potential is approximately 16.0
MeV above the Fermi energy. The energy difference between the two break
points may not be significant since the transition is relatively slow and thus
the break point not well defined. This energy dependence of both geometry and
strength of the 0M makes possible a good description of the observables over a
wide energy range, including agreement with the data at lower energies. It is
tempting to associate this change in energy dependence with the onset of the
Fermi surface anomaly (17). Property (vi) may be in part due to the use of
the spherical 0M to interpret neutron scattering from a vibrational nucleus.

The OM derived from the neutron-scattering results was extrapolated to
the bound-state regime using the dispersion relation (15) and the method of
moments recently outlined by Mahaux and Sartor (12,13,14). The
imaginary-potential moments, defined by eq. (10), were parameterized by an
expression symmetrical about the Fermi energy, eq. (14), with parameters
derived by fitting the results of the present interpretation of neutron

59
scattering from Co, extended to approximately 40.0 MeV using the potential
of ref. 29. The additional constants, A and B of eq. (15), needed to

parameterize the real moments were determined by fitting to the values found
59

in the present analysis of the 0 to 10.0 MeV v "" Co data. Extrapolated to bound
energies, this parameterization indicates a minimum in the real diffuseness
and a maximum in the real radius at approximately -10.0 MeV. The behavior of

r , which increases with increasing binding energy, is the opposite of that

go 208
found in Y and Pb where r becomes smaller as one approaches the Fermi

v
energy (12,13,14). This difference reflects the energy dependence of the
imaginary potential at low energies which is quite different from that.

oq 208
reported for Y and Pb. On the other hand, J peaks at « -10.0 MeV, in

the same general manner as found by Mahaux and Sartor for Y and Pb
59

(12,13,14). The average J implied by the Co bound particle states is
approximately 8% smaller than that obtained from the moments analysis, and
that for the hole state is approximately 13% larger. For both particle- and
hole-states the required strengths are much larger than would be given by
linear extrapolation of the J values implied by the higher-energy (i.e.,

> 7.5 MeV) Cobalt neutron-scattering data, or by global models(16,29).

REFERENCES

1 A. B. Smith, P. T. Guenther, J. F. Whalen and R. D. Lawson, Argonne
National Laboratory report, ANL/NDM-101 (1987)

2 B. Holmqvist and T. Wiedling, Aktiebolaget Atomenergi report, AE-430 (1971)
3 D. Wilmore and P. E. Hodgson, J. Phys. (HI (1985) 1007
4 P. Guenther, A. Smith and J. Whalen, Nucl. Sci. and Eng. &2 (1982) 408
5 A. Smith, P. Guenther, D. Smith and J. Whalen, Nucl Sci. and Eng. 7£,

(1979) 293
6 P. A. Moldauer, Nucl. Phys. .47 (1963) 65
7 A. Smith and P. Guenther, Proc. Conf. on Nucl. Structure Study with

Neutrons, page 508, Antwerp, North-Holland Pub. Co., Amsterdam (1965)

23



8 P. A. Moldauer, Nucl. Phys. A344 (1980) 185
9 W. P. Poenitz, A. B. Smith and J. F. Whalen, Nucl. Sci. and Eng. 7JB (1981)

333
10 A. B. Smith, P. T. Guenther and J. F. Whalen. Nucl. Phys. A415 (1984) 1
11 See e.g., C. Johnson, A. Galonsky and R. Kernel 1, Phys. Rev. C20 (1979)

2052
12 C. Mahaux and R. Sartor, Phys. Rev. Lett. 57 (1986) 3015
13 C. Mahaux and R. Sartor, Nucl. Phys. A468 (1987) 193
14 C. Mahaux and R. Sartor, Phys. Rev. C36 fl987) 1777
15 See e.g., G. R. Satchler, Direct nuclear reactions (Clarendon, Oxford,

1983)
3 6 J. Rapaport, Phys. Reports SS7 (1982) 25

17 C. Mahaux and H. Ngo, Nucl. Phys. A378 (1982) 205; Phys. Lett. 100B (1981)
285

18 R. D. Lawson, P. T. Guenther and A. B. Smith, Phys. Rev. C34 (1986) 1599
19 A. B. Smith, P. T. Guenther and R. D. Lawson, Argonne National

Laboratory report, ANL/NDM-100 (1987); Phys. Rev. jC36 (1987) 1298
20 See e.g., P. E. Hodgson, Nuclear reactions and nuclear structure

(Clarendon, Oxford, 1971)
2J ABAREX, A spherical optical-model code, P. A. Moldauer, private

communication (1983), and as revised by R. D. Lawson (1986)
22 W. Hauser and H. Feshbach, Phys. Rev. 8jT (1952) 366
23 P. A. Moldauer, Nucl. Phys. A344 (1980) 185
24 P. Anderson, L. Ekstrom and J. Lyttkens, NucJ. Data Sheets J39

(1983) 641
25 A. Gilbert and A. Cameron, Can. Phys. 43 (1965) 1446
26 S. F. Mughabghab, M. Divadeenam and N. E. Holden, Neutron cross sections,

vol. 1, pt A (Academic, NY, 1981)
27 M. Sugimoto and A. B. Smith, to be published
28 National Nuclear Data Center, Brookhaven National Laboratory
29 R. L. Walter and P. P. Guss, Proc. Conf. on Nucl. Data for Basic and

Applied Science, vol 2, p. 1079 (Gordon and Breach, NY 1986)
30 P. A. Moldauer, ANLECIS computer code, private communication (1983)
31 P. Andersson, L. P. Ekstrom and J. Lyttkens, Nucl. Data Sheets 48, (1986)

251
32 P. T. Guenther, D. L. Smith, A. B. Smith and J. F. Whalen, Ann. Nucl.

Energy 13 (1986) 601
33 A. M. Lane, J. Lynn, E. Melkonian and E. Rae, Phys. Rev. Lett. 2 (1959)

424; W. Vonach, A. B. Smith and P. A. Moldauer, Phys. Lett. JU (1964)
331; A. B. Smith, P. T. Guenther and J. F. Whalen, Nucl. Phys. A415
(1984) 1

34 R. W. Hasse and P. Schuck, Nucl. Phys. A438 (1985) 157
35 J. R. Rook, private communication (1986)
36 D. Wilmore and P. E. Hodgson, Nucl. Phys. 55 (1964) 673
37 S. Cohen, R. D. Lawson, M. H. Macfarlane, S. P. Pandya and M. Soga, Phys.

Rev. 160 (1967) 903
38 A. K. Kerman and C M . Shakin, Phys. Lett. 1 (1962) 151
39 R. D. Lawson, A. B. Smith and M. Sugimoto, Bull. Am. Phys. Soc. 512 (1987)

32
40 F. G. Perey, Phys. Rev. 13_1, (1963) 745
41 A. H. Wapstra and K. Bos, At Nucl. Data Tables H) (1977) 177
42 T. W. Burrows and M. R. Bhat, Nucl. Data Sheets 47 (1986) 1

24



OPTICAL-MODEL CALCULATIONS FOR EXPERIMENTAL

INTERPRETATION AND EVALUATION:

PRACTICAL CONSIDERATIONS AND FUNDAMENTAL

IMPLICATIONS*

Alan B. Smith, Peter T. Guenther and
Robert D. Lawson

Argonne National Laboratory
Argonne, Illinois, USA

NATURE OF THE ENDEAVOR

• Coordinated Measurement, Calculation

and Evaluation

- Netr Physical Observables

- Enhanced Fundamental Understanding
- Practical Application to Applied
Evaluation Problems

- Interactive Program Elements

- Timely Responsiveness

SCOPE

• Structural Kateri&ls

- A * 50-60. 90-100 and 204-209

- Structural Components and Associated
Multipliers

- For Fusion- and Fission-Energy
Development

• Neutron-Induced Reactions Important to
Neutronic Design

10~5 eV to 20.0 MeV

• Final Products

- Enhanced Fundamental Understanding

- Applicable to Extrapolation
and Interpolation of Experimental
Data Base.

- Comprehensive Neutronic Evaluations

• Applied Physics Remains an Observational Science

* This work supported by the United States
Department of Energy under contract with
the University of Chicago
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ISSUES

• Persistent Enigmas

- Particularly in A x 50-60 Region

• Higher-Energy Optical And Coupled-Channels

Models

- Don't Seasonably Extrapolate to Low Energies

- Discontinuities at a Few MeV
- Qualitatively Different Strengths and

Geometries

- Particularly the Imaginary Potential

- Failure to Extrapolate to Bound Energies

- Fluctuations are a Concern

- S-Uave Strength Function can be Large

- Large Corrections to Compound-Nucleus
X-sec.

- Uncertain Excited States

- Discrete Levels

- Statistical Continuum

- Detrimental Impact on Compound-Nucleus
Estimates

- Fluctuations Distort Observables

- Total and Partial Cross Sections

- Broad Averages for Optical-Model
Interpretation

- Dichotomy Between Channel Competition
and Averaging Increment

- Collective Properties

- Generally Vibrational. but Not Pure

• Fundamental Concepts and Calculational
Methods

- Dispersion Relation

- Links Real and Imaginary Potentials

- Implies Energy-Dependent Geometries and
Strengths

- Method oi Moments (Mahaux and Sartor)

- Evaluate Potential Over Wide Energies

- Extrapolate to Bound Regime

- Displays Fermi-Surface-Anomaly

26



• Illustrate Problems and Calculational
Solutions With

- A Heavy Structural Multiplier— Bismuth

- Structural Component Materials—
Vanadium and Cobalt

- Comprehensive Draft Evaluations of Each

PROJECT STATUS

• Mass 50 - 60 Region

- Cobalt

Measurements and Calculations—
Done

Evaluation— Near Completion

Preliminary Results at last Meeting

- Vanadium

Measurements— Done

Calculations— In Progress

Evaluation— Wear Completion

- Nickel-58

Heasurements and Calculations—
Well Along

Evaluation— Started

- Iron and Chromium

Heasurements and Calculations—
In Progress

• Mass K 90 - 100 Region

- Niobium and Yttrium— Completed

Reported at Last Meeting

Evaluated Files Submitted

- Zirconium

Measurements— Well Along

Calculations— Slotr, Difficulties
with Handling Isotopes

Evaluation— Starting

- Strontium-- *ork Started

27



• Mass 206 Region, Structural Blankets and
Multipliers

- Bismuth

Measurements and Calculations—
Complete

Evaluation— Nearing Completion
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MASS 209- BISMUTH

• Massive Structural Component and Multiplier

- Fusion-Energy Systems, particularly
ceramic

- Very Large (n,2n) Cross Sections

# Rigorous Experimental Interpretation

2
- x Fitting of Extensive Elastic-
Scattering Data

- 1.5 to 10.0 KeV

- Also Consideration of:-

I = 0 Strength Function

ct to 20.0 MeV

• Spherical Optical Model

- "Conventional"

- Surface-Peaked Real Potential

Inplied by Dispersion Relation

V fr E W ^ I ^ gYhf(r.E) + - j ^ ^E-E' }

- Energy-Dependent Geometries

Defined by Observables

• "Conventional" Model Parameters

- Spin-Orbit

V =5.22 MeVso
r = 1.0 fmso
a = 0.65 fmso

- Real/Imaginary Geometries

ry = (1.36 - 0.0175 X E). fm

rw = 1.3102, fm

ay = (0.54 + 0.02 X E). fm

a = (0.05 + 0.055 X E), fm

- Note the Strong Energy Dependences

- Real/Iaaginary Strengths
(in volune-integral-per-nucleon. J)

Jy =459.8 - 9.6 X E. MeV-fm
3

J = 3 3 . 9 + 1.05 X E. MeV-fm3
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- "Conventional" Energy Dependences

- Some Decrease in Jy at Low Energies

Fluctuations?

Wo Appreciable Effect

• Surface-Peaked Real Potential; i.e. Dispersion

Relation

- Iterative Interpretation

- Again, Energy-Dependent Geometries

ry = 1.28 - 0.007 X E, fm

a y = 0.68. fm

r w = 1.3022, fm

a w = 0.119 + 0.043 X E, fm

Note Effect of Surface Component

- Real/Imaginary Strengths

r3

3

J » 422.4 - 4.83 X E. MeV-fmv

W 6

J = 31.0 + 1.41 X E. HeV-fmv

- Consideration of Inelastic Scattering

Supports Continuum-Inelastic
Representation

- Calculated and Observed Polarizations
Consistent

-1=0 Strength Function Sensitive to a

• Bound-Energy Potential

- Implied by Energies of Particle- and
Hole-States

- Extrapolation is Qualitatively Consistent
with Observation

Sensitive to Energy Dependence of J
H S

at Bound Energies

Qualitatively Superior to Linear
Extrapolation from Positive Energies

• Higher Energies {Above a 10.0 MeV)

20ft
- Potential Meets High-Energy Pb

Potential (Mahaux et al.)

- Match Point * 10.0 JieV

- i.e., « 16 MeV Above Fermi Energy

- Manifestation of Onset of Fermi-
Surface-Anomaly
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• Character of Composite Model Essential to

Account for

- Observables, Positive and Negative Energy

- The Fermi-Surface-Anomaly

• Combined Potential Gives Excellent Hesult

For Evaluation

- Total Cross Sections

- Partial Cross Sections
- Basis for Statistical Reaction

Calculations

- Utilized in Associated Evaluation

2 4 6

En(MeV)
10
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MASS 50-60-COBALT

• Structural Material

- Fusion- and Fission-Energy Systems

• Rigorous Experimental Interpretation

- K Fitting of Extensive Elastic-Scattering
Data

« 1.5 - 11.0 MeV

- Consideration of.-

ot to 20.0 MeV

I = 0 Strength Function

Inelastic-Scattering Processes

• Spherical-Optical and Coupled-Channels Models

- Energy-Dependent Geometries and Strengths

- Weak-Coupling Model

- Method of Moments (Mahaux and Sartor)

- Dispersion Relation

V(r.E) =Vhf(r.E) + 1 j ^ E J j ^ j S -

• Model Parameters

- Adjusted Gilbert and Cameron Level
Formulation

Governed by Experimental Comparisons,
(Elastic and Inelastic Scattering)

- Spin-Orbit

V =5.5, MeV
so

rso = 1 0 " f m

a =0.65, fm

5 O

Based Upon 9-11 MeV Data

- Real Potential

rv = 1.39 - 0.0168 X E (E < 7.5 MeV). fm
« 1.288 - 0.0032 X E (E > 7.5 MeV). fm

a «= 0.6355. fm

Jy = 550.0 - 12.5 X E (E < 7.5 MeV). MeV-fm3

« 474.0 - 2.4 X E {E > 7.5 MeV). Mev-fm3
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- Imaginary Potential

r = 0.96 X r , fm

a^ = 0.19 + 0.0386 X E (E < 7.5 MeV). fm

Jw = 135.0 - 6.4 X E (E < 7.5), MeV-fm3

= 104.0 - 2.3 X E (E > 7.5), MeV-fm3

Strengths Given in Volume-
Integral/Nucleon

t note

- Energy Dependences

Changes at « 7.5 MeV

« 19 MeV Above Fermi Energy

- Small E = 0 Value of a

- Large Value of J

- Anomalous Energy Dependence of J

- Above a 7.5 MeV Similar to "Global" Models

• Excellent Description of:-

- Elastic Scattering to 11 MeV

- ox to 20* MeV

Even Below R 3 MeV, Not Achieved vith
"Global" Models

-1=0 Strength Function

• Inelastic Scattering

- Good Description at Low Energies

Statistical Processes

- Clearly Direct Processes at Higher Energies

For First Seven Levels

o Grossly Exceeds Statistical
Calculation

Distributions Highly Anisotropic

• Assume Weak-Coupling Model

- f7/2 P r o t O T l Hole Coupled to First 2 + Level

. 60.,.in Ni

- One- and Two-Phonon Vibrational Coupling.
/?2=0.25
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- Calculated Result Consistent with Observed
Excitations of the First Seven Levels.

- Spherical Kodel of Deformed Target Implies:

- Negative dj /dE, as observed
w

- Large Values of J

Also Other Factors:- e.g.,
Shell Closure

Extrapolation to Bound Energies

- Method of Moments (Mahaux and Sartor)

- Parameterize

for q = 0.8, 2 and 4

- Adjust to Fit 4 - 1 1 MeV Data

Dispersion Relation Relates Moments of
Real and Imaginary Potentials

- Moments are Strongly Energy Dependent

- Imply Bound-Energy Potential Consistent
with Particle- and Hole-State Energies

Energy Dependence is Strong

a Goes through a Minimum

r a Maximum {influenced by negative

dj /dE at Positive Energies)

J a Maximum all at a - 7 MeV

• Application to Evaluation

- Total Cross Section

- Elastic Scattering Cross Section

- Inelastic-Scattering Cross Section

- Basis for Statistical-Model Calculations
of Other Reaction Cross Sections
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MASS 50-60. VANADIUM
(A Status Comment)

• Fusion Structural Material

- High Temperature and Tritium
Containment

• Experimental Measurements Completed

• Initial "Conventional" Optical-Model
Interpretation

2
- x Fitting of Elastic Scattering

- Consideration of t - 0 Strength
Function

• Fluctuations a Major Concern

• Energy Dependent Strengths and Geometries

Jv a 503 - 8 . 3 X E { E < 6 . 1 MeV), MeV-fm3

a 470 - 2 . 9 X E { E > 6 . 1 MeV), MeV-fm3

r v a 1 . 3 4 - 0 . 0 0 9 X E (E < 10 MeV) , fin

a 1 . 2 5 (E > 1 0 . 0 MeV), fm
a v a 0 . 5 7 4 . fm

Jw a 53 + 3.1 X E. MeV-fm
3

r a 1.025 X r . fm
W v

a^ a 0.1 + 0.08 X E (E < 6.1 MeV), fm
« 0.92 - 0.052 X E (6.1 < E < 10.0 MeV), fm
* 0.4 (E > 10.0 MeY), fm

- There are Uncertainties due to
Fluctuations

• However, General Trends are:-

- Break in the Potential at « 6 MeV: i.e.,
a 16 MeV Above the Fermi Energy

The Fermi Surface Anomaly

dj , ./dE = -f+1 in "Conventional" Manner
v(w) v '

Vanadium not deformed

- Magnitude of J Relatively Small

No Deformation, Closed Neutron Shell

r > r

a -* 6-function as E -t 0
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• Reasonably Descriptive of :-

- Elastic Scattering to 11 MeV.

- Inelastic Scattering

ot to 20 MeV

Particularly the Minimum at «1 MeV

• Dispersion Relation and Method of Moments—
In Progress

- Smooth Trends in Place of Linear
Segments

- Reasonably Description of Scittering

- Consistent -with Bound Particle- and
Hole-States

• Applied to Evaluation

10.0

11.1

0.001 0.47
0 180

9(deg)
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GENERALITY

• Conventional "Global" Models are only Very
Quali tative

• Strengths and Geometries are Energy Dependent

- The Behavior is complex

- Necessary for Reliable Predictions

At Positive and Negative Energies

- Apparent Onset of the Fermi-Surface-
Anonaly

15-18 HeV above the Fermi Energy

• Differences are only Partly Attributable to

- Collective Effects

- Shell Closures

• Structure is Reflected in the Imaginary
Potential

- The Strength is Strongly Mass Dependent

• Uncertain Level Densities at Loir Excitations

- A Major Concern in Important Regions

• Unexplained Observables Persist to a
Remarkable Degree

• With the Present Situation

THERE IS NO SUBSTITUTE FOR EXPERIMENTAL
OBSF.RVABLKS

O
O
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6(deg)
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THE NEUTRON OPTICAL MODEL POTENTIAL

P.E. Hodgson
Nuclear Physics Laboratory

Oxford, United Kingdom

Abstract:

The present status of optical model calculations of neutron scattering and inter-
actions is reviewed, with special emphasis on more recent developments and the more
promising lines of research. The use of dispersion relations to provide an extra con-
straint on the potential is discussed, together with their application to studies of the
Fermi surface anomaly. The application of potential inversion techniques to determine
the form of the potential is also considered.

1. Introduction

The neutron optical potential remains an essential tool for analyses of neutron
scattering and reaction data, and continuing efforts are devoted to determining it with
higher precision over a wide range of energies and nuclei. Many precise optical model
analyses have been made with potentials adjusted to optimse the fits either to individual
nuclei or to ranges of nuclei across the periodic table. The parameters of these potentials
have been tabulated (Perey and Perey, 1974, 1976) and the results of many analyses
discussed in review articles (Hodgson, 1971, 1984ab).

This work will certainly continue, and enough new analyses have been made since
the last review to provide material for a new review. However it is more interesting to
concentrate on work that embodies new ideas, and to try to assess their usefulness for
the practical problems of understanding and describing neutron interactions.

In recent years neutron analyses have greatly increased in accuracy, and it has
become clear that a simple optical model parametrisation is no longer able to give
acceptable fits to the experimental data. In particular, the depth of the real potential
shows a non-linear behaviour around the Fermi surface; this is often referred to as the
Fermi surface anomaly. Precision analyses have also shown that it is no longer adequate
to assume that the radius of the real potential is independent of neutron energy.

It is of course possible to accommodate these and other departures from the simple
optical model by more complicated parametrisations, but in the absence of theoretical
guidance concerning the form of the parametrisation these are inevitably arbitrary and
are unlikely to be applicable outside the domain where they are fitted to experimental
data. What is required is a theoretical understanding of these anomalies that gives the
most appropriate form of the potential, so that when it is fitted to a restricted range of
data it can be extrapolated over a wider energy range with some confidence because it
has a sound physical basis.

This theoretical understanding is provided by the dispersion relations that connect
the real and imaginary parts of the optical potential. These have indeed been known for
some time, but it is only in recent years that the neutron data has achieved the precision
that enables them to be fully exploited. Several detailed analyses have now shown that
they are able to account in some detail for the apparently anomalous behaviour of some
optical model parameters, and thus make possible a consistent and accurate analysis of
neutron data that has a sound physical basis.
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In this review we are concerned with energies up to about 50 MeV. At the higher
energies in this range the analysis is straightforward since only shape elastic processes
contribute. At lower energies the analysis is complicated by the presence of compound
elastic processes: the cross-sections fluctuate with energy and the energy average can
be calculated from statistical theory. Inevitably this reduces the accuracy attainable.
At low energies rather few partial waves contribute to the scattering, and this raises the
question of the adequacy of the optical model description.

A broader view of the problem of determining the low-energy neutron optical
potential may be obtained by setting it within the context of the concept of the nuclear
mean field that extends from negative to positive energies. This potential behaves in
a continuous way. over the whole energy region: the overall nearly-linear variation of
the real part of the potential is the Hartree-Fock field, and its energy dependence is
attributable to the use of local instead of a non-local form for the potential. At negative
oiKMgics tlio potential is defined by the bound single-particle states. The imaginary part
of the potential also varies continuously, and at negative energies is defined in terms of
the energy spread of the fragmentation of the single-particle states due to the residual
interactions.

The energy variation of the imaginary part of the potential is centred on the Fermi
energy, and close examination of the real part shows that it departs from linearity around
the Fermi energy. This is the so-called Fermi surface anomaly, which perhaps should be
called the Fermi surface effect, since it is now well understood. This effect significantly
alters the optical potential in the energy region about 20 MeV either side of the Fermi
surface, and so is important in the energy region covered by this review.

From this broader point of view of the optical potential we can use a much wider
range of data to determine the low energy neutron optical potential: not only the elastic
scattering and total cross-section data in this energy region but also the data on bound
single-particle states. Furthermore, the real and imaginary parts of the potential are
connected by the dispersion relations, and this not only explains the Fermi surface effect
but also determines the parameters of the potential with higher precision.

In Section 2 the nuclear mean field is discussed in more detail, and in the following
section its detailed parametrisation is given, with particular attention to the aspects that
are inconsistent with the standard parametrisation. In Section 4 the dispersion relations
are described and expressed in a form suitable for the analysis of experimental data.
Some results obtained by applying the dispersion relations are summarised in Section
5, and conclusions drawn concerning the form of the optical potential. In Section 6 we
return to the problem of the 'fine structure' of the optical potential, and summarise
the present situation. Finally in Section 7 some results obtained by applying potential
inversion techniques to determine the radial form of the potential are described.

2. The Nuclear Mean Field

The one-body potential between a nucleon and a nucleus is a concept that has
been extensively used to unify a wide range of phenomena in nuclear structure and
nuclear reaction physics. At negative energies, the eigenvalues of the potential may be
identified with the centroid energies of the bound single-particle states and at positive
energies the potential gives the differential cross-sections and polarisations of nucleons
scattered by nuclei.

Many studies of both bound and scattering states have enabled the parameters
of the potential for a wide range of nuclei to be established with some precision. The
centroid energies of the bound single-particle states can be obtained from distorted wave
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analyses of the cross-sections of nucleon transfer reactions, together with the widths of
the fragment distributions. These energies and widths can be described quite accurately
for a range of nuclei by a real potential with parameters that depend only on the mass
number and the nuclear asymmetry parameter (Millener and Hodgson, 1973; Malaguti
and Hodgson, 1973). Furthermore, this potential can be used, in conjunction with single-
particle occupation numbers also derived from analyses of nucleon transfer reactions,
to calculate nuclear charge and matter distributions that are in good accord with the
experimental data (Malaguti et al, 1978, 1979ab, 1982, Brown et al 1979, 1984; Ray
and Hodgson, 1979.

This potential varies with energy in a continuous way from the negative energies
appropriate to the bound states to the positive energies of the scattering states. This
energy variation has been described for the real central term by Bauer et al (1982), and
for the spin-orbit term by Cooper and Hodgson (1980). The imaginary term is included
in the optical potential for scattering states in order to account for the flux removed
from the elastic channel by non-elastic processes. It can also be defined for negative
energies by relating it to the width of the single-particle fragment distribution.

In all these analyses the real and imaginary parts of the optical potential are
adjusted independently to fit the experimental data. There is however an important
connection between them provided by the dispersion relations (Hodgson, 1984; Mahaux
et al 1985), and these give an additional constraint that can be used to define the
potential more precisely. It is the principal aim of this paper to describe how this can
be done, and to evaluate the advantages of this method of analysis.

3. Phenomenological Characteristics of the Nucleon Optical Potential

We begin this section by summarising the overall characteristics of the nucleon
optical potential, as determined by phenomenological analyses of elastic scattering and
polarisations. For convenience of calculation the optical potential is written in the form

where Vc(r) is the electrostatic potential of the nucleus (included only in the proton
optical potential), U, W and Us are the real, imaginary and spin-orbit potential depths
and the form factors fi(r) = [1 -f exp{(r — Ri)/ai}]~1, g(r) = /w(r) (Saxon-Woods
or volume form) or ga(r) = — 4awdfw(r)/dr (derivative Saxon-Woods or surface form).

100

-GO - 4 0 -20 20 40
f(MtV)

3.1 Depth of real central optical potential for protons as a function of proton energy,
corrected for the isospin and Coulomb terms. The curves refer to the quadratic
fit (full curve) and to the calculations of Brown et al (1979) (dotted curve) and
of Mahaux and Ngo (1981) (dashed curve) (Bauer et al, 1982).
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These form factors are no more than approximate representations of the radial variations
of the potentials, and it will be shown below that there are important differences between
them and the more precise forms revealed by the dispersion relations and by the potential
inversion techniques.

Many analyses of experimental data have shown that the real potential depth U
decreases almost linearly with nucleon energy, and in addition shows some non-linear
behaviour in the region of the Fermi energy, as shown in Fig.3.1. The overall dependence
can be expressed as a function of energy (Bauer et al 1982)

U = 52.4 - (0.37 ± 0.02)E+ (0.0007± 0.0001)£2 + 2 4 ^ ~ Z + 0 . 4 - ^ . (3.2)

This smoothly-varying part of the potential is identified as the Hartree-Fock field,
and its energy dependence is attributed to the non-locality of the potential. The anoma-
lous behaviour in the vicinity of the Fermi surface, called the Fermi Surface Anomaly,
is attributed to the effect of coupling to non-elastic channels.

The spin-orbit potential has a small energy dependence that can be represented
for the whole energy range from negative to positive energies by (Cooper and Hodgson,
1980)

U, = 6.5 - 0.023.E (3.3)

The energy variations of the real potential shown in Fig.3.1 can be conveniently
described by an efFectivo mass m* defined by (Hodgson, 1983)

Since the overall energy variation (3.2) and the Fermi surface anomaly have dis-
tinct physical origins it is useful to describe them by separate effective masses m and
m defined respectively by

dV\~l , m
) d

The overall energy variation then gives

— = 0.73 + 0.0007£ (3.6)
m

The Fermi surface anomaly is described by an effective mass that peaks at the
Fermi energy and Brown, Dehesa and Speth (1979) have proposed for the total effective
mass the expression

l " ) (3-7)
where hwo = 41i41'3. The energy variation corresponding to this expression is included
in Fig.3.1.

The energy dependence of the imaginary potential is more difficult to determine
because the form factor lias predominantly the surface form at low energies, changing
continuously to the volume form at higher energies. Furthermore, the experimental
data do not fix the strength of the imaginary potential as accurately as that of the real
part. At low energies the energy variation of the imaginary potential determined from
analyses assuming only a volume form is approximately (see Fig.5.2)

W = W0(E - EF)2 (3.8)
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More precise optical model analyses have provided evidence that the parametri-
sation (3.1) is inadequate. In particular, there is evidence that the radial dependence is
not adequately represented by the Saxon-Woods form (Hodgson 1984) and that if nev-
ertheless it is constrained to have the Saxon-Woods form then the radius and diiTuseness
parameters vary with energy.

As an example of such work, analyses of experimental data on the elastic scattering
of 30, 40 and 61.4 MeV protons by 208Pb and several other nuclei by Sinha and Edwards
(1970, 1971) showed that an improved fit to the differential cross-section is obtained
by adding a surface-peaked potential of the Saxon-Woods derivative form to the usual
Saxon-Woods potential. Initially they interpreted this additional potential as an isospin
term, hut this possibility was later excluded when it was found that the improvement
persists in nuclei like 40Ca, for which the isospin term must be zero.

Another example is provided by the work of Finlay et al (1985) on the scattering
of 7 and 22 MeV neutrons by 208Pb. Optical model analyses of the differential cross-
sections gave significantly different values of the geometrical parameters at the two
energies: rI{ = 1.254, rj = 1.31 fm at 7 MeV and rn = 1.18, r, = 1.26 fm at 22 MeV. It ;
was found possible to fit these and other data from 0 to 24 MeV with potentials having
energy-dependent geometrical parameters rn ~ 1.302- 0.0055£, rj = 1.363- 0.0042£,
ai = 0.7 and a« = 0.162 -f 0.019 fm. If the data are analysed with energy-independent
form factor parameters the overall fits are significantly poorer, and the optimum real
potential depth departs from the linear dependence at low energies. The volume integral
of the real potential shows an anomalous departure from linearity with energy in the
region of the Fermi Surface.

Subsequently, detailed optical model analyses of the elastic scattering of neutrons
by yttrium and bismuth have also provided evidence for energy-dependent form factor
parameters (Lawson, Guenther and Smith 1986,1987).

4. The Dispersion Relations

Theoretical studies of the optical potential show that it is complex and also non-
local both in space and in time. The spatial non-locality is equivalent to a momentum
dependence and the temporal non-locality to an energy dependence-and so we write it
as V(h, E). It is an analytic function of the energy and therefore satisfies the dispersion
relation

"<*•*>• I S / T ^ T ? ' * • (4J)

Since the potential is complex it may be separated into real and imaginary parts

V(k,E) = V(kiE) + iW{k,E) (4.2)

Substituting into (Jf.l) and separating into real and imaginary parts gives

(4.3)

(4.4)f
-oo

These dispersion relations connect the real and imaginary parts of the optical
potential, and thus impose additional constraints on the phenomenological analyses.
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To apply them to the analysis of experimental data, we separate the real potential
into tlic Hartree-Fock field Vnf-(k) that depends only on the momentum and an energy-
dependent part V(E), giving

1 f°° W(E')
V(*, E) = VHF(k) + - / i±-f,dff (4.5)

This provides the required connection between the real and imaginary parts of
the phenomcnological potential, and also enables us to understand the empirical energy
dependence shown in Fig.3.1. The overall linear energy dependence is attributed to
the Hartree-Fock field, and the 'anomalous' behaviour centred on the Fermi energy is
attributed to the effect of the imaginary potential.

The practical application of the dispersion-relation (4.5) encounters the difficulty
that the integral of the imaginary part of the potential extends over an infinite energy
range. This may be overcome in two ways, firstly by separating the imaginary potential
into two parts and secondly by using subtracted dispersion relations. These will now
be discussed.

The first method depends on a separation of the imaginary potential into surface-
peaked and volume components

W(r) = W3(r) + Wv(r) (4.6)

Phcnoinenological optical model analyses with both suiface-peaked and volume
imaginary potentials show that the former dominates at low energies while the latter
becomes important only for energies of some tens of MeV. Each gives a contribution
to the real potential of its own radial form. Since the major part of the real optical
potential V//r( r) has the volume form IVv(r) has the effect of altering its depth by a
rather small amount at energies far from the Fermi energy and thus has the effect of
altering the curvature of V / / F ( £ ) .

The surface-peaked potential Ws(r) however gives a small surface-peaked addition
to the real potential centred at the Fermi energy, and this has the effect of increasing
its radius. Since most of the phenomenological analyses are made with fixed radius R
this implies a phenomenological potential of increased depth.

The second method uses subtracted dispersion relations. From (4.5) we obtain

This integral converges sufficiently rapidly for it to be evaluated unambiguously.
It is therefore possible to use phenomenological values of W(E) obtained from analyses
with the volume form only. Mahaux and Ngo have divided this integral into two parts
corresponding to the polarisation contributions from energies above the Fermi surface
and correlation contributions from energies below the Fermi surface.

All the potentials in these dispersion relations are r-dependent, with the parametri-
sation described in Section 3. The phenomenological analyses however determine certain
moments of the potential with greater accuracy than the individual parameters of the
potential. It is thus often useful to work with dispersion relations integrated over the
radial variable. Particularly useful is the volume integral per nucleon defined by

Jv=^- /°V(r)r8dr (4.8)
A Jo

54



The corresponding dispersion relation is

ME) = J?"(k) + ± /_~ J~§^dE> (4.9)

In general one can define the qth moment of the potential

j[»> = ^ f°° V(r)r"dr (4.10)

which satisfies the dispersion relation

Subtracted dispersion relations for the integrated potentials can be defined as
before.

The physical reason for the Fermi potential anomaly is the coupling between the
elastic and inelastic channels, which is greatest when the incident energy is comparable
with the energies of the excited states. The effect of the inelastic scattering given either
by the complete set of coupled equations connecting the wavefunctions in all open
channels or by the imaginary potential in the simple phenomenological optical model.
It is thus possible to calculate the effect on the real potential in the simple optical
model of the coupling to inelastic channels by using the coupled-channels formalism to
generate a differential cross-section and then fitting it with an optical potential. Several
analyses made in this way have confirmed that the coupling to inelastic channels does
produce changes in the real potential similar to the observed Fermi potential anomaly
(Gyarmati et a/, 1981).

5. Applications of the Dispersion Relations

In this section we describe several applications of dispersion relations to elastic
scattering data that account for the Fermi surface anomaly and also show how the
optical potentials can be extrapolated from positive to negative energies.

Alunad and Haider (1976) used the dispersion relation (4.5) to calculate the
surface-peaked component of the real potential from the surface-peaked component
of the imaginary potential. For this analysis, they used the potentials found by Van
Oers (1971) for 10-60 MeV protons elastically scattered by 40Ca. The depths of the
surface-peaked potentials, together with the resulting surface-peaked real potential, is
shown in Fig.5.1.

This calculation was possible because the surface-peaked imaginary potential falls
to zero around 60 MeV, so that the dispersion integral converges. The analysis is
however subject to the difficulty that it is not possible to separate the volume and
suifaco-peaked components very accurately by a purely phenomenological analysis. If
the imaginary potential is taken to have only the volume form, the depth may be deter-
mined more accurately, and convergence can still be obtained by using the subtracted
dispersion relation (4.7). This was done by Mahaux and Ngo (1979), using the energy
variation of the imaginary potential shown in Fig.5.2. The values of the strength of the
imaginary potential were obtained from single-particle spreading widths for negative
energies, from neutron strength functions at small positive energies and from elastic
scattering data at higher energies. These data show some scatter, but at small values
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20 40 60
E(MeV)

BO 100

5.1 The real surface-peaked component V5 of the optical potential as a function of
energy for aw = 0.549 (full curve) and aw = 0.732 (dashed curve). The inset
shows the imaginary surface-peaked potential as a function of energy obtained by
Van Oors (197 i) from an optical model analysis of the elastic scattering of protons
by 40Ca (Ahmad and Haider, 1976).

— 100 - 5 0 0 50
f-FF(MtV)

5.2 Energy dependence of the imaginary part of the optical potential for medium-light
nuclei (Mahaux and Ngo, 1979).
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5.3 The sum of the polarisation and correlation contributions to the real part of the
optical potential, together with the total real potential as a function of energy
(Mahaux and Ngo, 1979).
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of (E - Ep) they are consistent with the quadratic form

W<x(E-EF)2 (5.1)

At energies more than 40 MeV above or below the Fermi surface the value of
the imaginary potential is very uncertain, but use of the subtracted dispersion relation
ensures that this has little effect on the calculation of the real part of the potential.

The results of this calculation are shown in Fig.5.3. In the analysis, they split the
dispersion integral into two parts corresponding to the polarisation contributions from
energies above the Fermi surface and the correlation contributions from energies below
the Fermi surface. When these are added together it is found that the result is quite
similar for energies less than 40 MeV to that obtained by Ahmad and Haider (noting the
difference in sign between the definitions of the real potential). The energy variation
of the effective mass corresponding to the polarisation and correlation contributions
were obtained using (4.7) arid are shown in Fig.5.4. Combining this with the value
of m obtained from the overall energy variation gives the results for m* also included
in this figure. Similar results for tho energy variation of the effective mass have also been
obtained from nuclear structure calculations (Dortignon et al, 1982).

This peaking of the effective mass in the region of the Fermi surface describes the
Fermi surface anomaly and enables the energy variation of the real part of the potential
to be calculated. The results are shown in Figs.3.1 and 5.3.

The dispersion relations can also be used to extrapolate the optical potential from
positive to negative energies. Smith, Guenther and Lawson (1985) has done this for the
potential describing the elastic scattering of neutrons by 93Nb using the dispersion
relation (4.9) for the volume integrals of the potential. Phenomenological optical model
analyses of the differential cross-sections for the elastic-scattering of 2-14 MeV neutrons
by 93Nb gave potentials with volume integrals with the energy variations

j{,E) = 4 4 5 - 2V
(i
w

= 52
iAB)o<E<U

Oils I
MeV (5.2)

5.4 The energy variation of the effective masses fh/m utd m'/n. around the Fermi
energy obtained using the dispersion relation (3.7) from the energy-dependent
imaginary potential shown in Fig.5.2 (full curve). The dashed curve corresponds
to the parametrisation (2.8) (Mahaux and Ngo, 1979).-
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To apply the dispersion relation the energy variation of Jw outside this range was
described by the expressions

and

J{w]= 102- 0.6E for E > 14 MeV
]= 0.52(£ + 10)2 for - 20 < E < 0 MeV

(5.3)

This enabled the energy variation of Jv(E) to be calculated for negative energies,
and the result is shown in Fig.5.5. At negative energies it can be compared with the
integrals of the potentials corresponding to discrete bound states. Subsequently similar

500 r

4 0 0

Nb

-15 -10 -5 0 6 10

5.5 Volume integral per nucleon of the real neutron potential for93Nb for bound and
unbound energies. The points at positive energies are obtained from optical model
analyses of elastic scattering data and those at negative energies from the bind-
ing energies of particle and hole state. The curves show: A, a linear fit to the
scattering data; B, the enemy variation calculated from the expression of Brown
et al and C, calculated from a dispersion relation formula (Smith, Guenther and
Lawson 1985).

4 SO

430

410

i
5

370

350
•15 .10

En(MeV)
10

5.6 Volume integral per nucleon of the real neutron potential for J09Bi for bound
and unbound energies. The points at positive energies are obtained from optical
model analyses of elastic scattering data and those at negative energies from the
binding energies of particle and hole states. The curves show: a, a linear fit to
the scattering data from 4.5 to 10 MeV; b, a linear fit to all scattering data;
c, calculated from a dispersion relation formula (Lawson, Guenther and Smith,
1987).
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analyses have been made for the potential describing the scattering of neutrons by
yttrium and bismuth (Lawson et al 1986, 1087).

The results for bismuth are of particular interest because of the relatively large
number of single-particle states that can be used to determine the potential at negative
energies. As shown in Fig.5.G, the curve obtained using the dispersion relations fits the
overall trend of this data quite well.

The dispersion relations (4.11) for the moments of the potential have been used
by Maliaux and Sartor to extrapolate to negative energies the potential for neutrons
scattered by 208Pb. They calculated the moments corresponding to q = 0.8, 2 and 4
and noted that these moments suffice to define the three parameters U, R and a of the
real part of the optical potential. To apply the dispersion relations, they represent the
energy variation of the moments of the imaginary potential by the expression due to
Brown and Rho (1981)

= -Wq
(E -

(5.4)

This is compared with the experimental data for q — 2 in Fig.5.7. They also
assumed that the moments of the Hartree-Fock field have a linear energy dependence
given by

J$F(9)(E) = Bq + CqE (5.5)

These two expressions were then inserted in the dispersion relation (4.11) and
the parameters Bq and Cq adjusted to optimise the fit to the data, with the result for
q = 2 shown in Fig.5.7b. This clearly shows the anomaly in the region of the Fermi
surface. The extrapolation to negative energies can be compared with the potentials

1
I

20 40

5.7 The energy dependence of the volume integrals of (a) the imaginary and (b) and
(c) the real parts of the optical potential for neutrons on 208Pb. The crosses
are empirical values from phenomenological optical potentials. The curve in (a)
is a least squares fit using the parametrisation (5.4). The curves in (b) are the
calculated values of J^'HF = 2?2 + C^E (dashed line) and of Jy' (solid curve)
obtained by determining Bi and Ci by a least squares fit to the scattering data
(crosses). The open squares show the experimental values of Jv'{Ej) for the
bound single-particle states obtained by adjusting the Saxon-Woods potential
depths Uv(Ej) using the shape parameters Rv(Ej) and av(Ej) obtained from
the extrapolated values of Jy(Ej) for q = 0.8, 2 and 4. The curves in (c) are
similar except that the open squares are included in the data set used to determine
Bq and Cq. The full dot gives the result for the /in/2 state (Mahaux and Sartor,
1986).
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5.8 The energy dependence of the parameters of the real part of the Saxon-Woods
optical potential. The dashed curves were obtained from the moments Jj]F {E)
of the Hartree-Fock field for q — 0.8, 2 and 4. The solid curves were obtained
from the moments Jy (E) of the real part of the complete potential (Mahaux and
Sartor, 1986).

corresponding to the neutron bound states, and shows qualitative agreement. The fit
to these states was improved by adding a spin-orbit term to the potential to allow the
energies of these bound states to be calculated and then repeating the fitting procedure
including both the scattering and the bound state data. This gives the result shown
in Fig.5-7c, which is in excellent agreement with the data. The curve was further
extrapolated to the deeply bound lhn/2 state at -15.9 MeV and good agreement found.

The resulting energy variations of the three moments of the potential enable the
parameters of the potential to be determined as a function of energy, and these are
shown in Fig.5.8. The dashed lines correspond to the Hartree-Fock potential alone and
the full lines show the effect of adding the dispersive correction. This figure shows the
limitations of the Saxon-Woods parametrisation of the optical potential.

A particularly detailed analysis of the interaction of neutrons with 208Pb from —20
to +165 MeV has been carried out by Johnson, Horen and Mahaux (1987) making full
use of the dispersion relations to constrain the values of the parameters of the potential.
The Hartree-Fock field was described by a Saxon-Woods potential with parameters
Vfi = 46.4 MeV, To = 1.24 fin and a — 0.68 fm at the Fermi energy (—6 MeV) with an
energy dependence exp( — aE), where a = (m/2/i2)/?2 and /3 = 0.74 fm; this gives

Vn{E) = 46.4 - 0.31 (E - EF) (5-6)

in the vicinity of the Fermi surface.
The imaginary part of the optical potential was assumed to be symmetric about

the Fermi energy and to consist of surface-peaked and volume components with depths
represented by the linear segments shown in Fig.5.9. The parameters defining these seg-
ments and the associated energy-independent radius and diffuseness parameters were
determined by analysis of the experimental data. The dispersive corrections to the real
part of the potential obtained by inserting these surface-peaked and volume imaginary
potentials in the dispersion relation (4.3) are also shown in Fig.5.9. The optimum
values of the real and imaginary potential depths obtained from this parametrisation
are compared with the best fit values at each energy in Figs.5.10 and 5.11. Throughout
this analysis the spin-orbit potential was fixed to the values Ua = 5.75 MeV, r, = 1.105
fm, aa = 0.50 fm.
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5.9 The energy dependence of the depths of the volume and surface peaked compo-
nents of the imaginary optical potential (full lines) together with the correspond-
ing corrections to the real optical potential obtained using the dispersion relations
(dashed curves) (Johnson ct al 1987).
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5.10 (a) The depth of the volume imaginary potential (full line) compared with optical
model analyses, together with the corresponding correction to the real potential
obtained from the dispersion relatipn (dashed curve)
(b) The depth of the Hartree-Fock potential (dashed curve) and the total depth
obtained by adding the dispersion correction (full curve) (Johnson et al, 1987).

This potential gives an excellent fit to the differential and total cross-sections
and analysing powers for neutron scattering by 208Pb, and also to the eigenvalues of
tin; hound si ngli;-particle Ktsilos and the values of the single-particle wavefunctions at
large distances as determined from sub-Coulomb pick-up experiments. Furthermore, it
automatically explains the special features of the potential that were found in previous
optical model analyses, in particular the near-independence of the real potential depth
on energy from 4 to about 20 MeV and the decrease with energy of the radius of the
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5.11 (a) The depth of the surface imaginary potential (full line) compared with the

results of optical model analyses.
(1>) The depth of the dispersive correction to the real potential compared with
the results of optical model analyses (solid points) and values obtained by the
energies of bound single-particle states (crosses) (Johnson et al, 1987).

potential in the same energy region. Additional calculations showed that the fit to
the data may be still further improved by allowing the potentials to depend on orbital
angular momentum.

Another indication of the usefulness of the dispersion relations is provided by
the analysis of the inelastic scattering of 5-11 MeV neutrons with excitation of the 3~
state in 208Pb recently made by Cheema and Finlay (1987). Previous analyses gave a
sharp increase of the deformation length for energies less than 11 MeV. Cheema and
Finlay repeated the analysis using potentials and form factors that include the dispersion
correction and found that the deformation lengths at low energies were reduced to values
consistent with those obtained from data at higher energies.

Further support for the usefulness of the dispersion relations is provided by the
analysis of the analysing power for the elastic scattering of 9.9 to 16.9 MeV neutrons
by 40Ca recently carried out by Delaroche and Tornow (1987). Previous analyses of the
differential cross-sections and analysing powers required a small imaginary spin-orbit
potential and even then the fits to the analysing powers were not satisfactory (Honore
et a/, 1986). However when the analysis was repeated using potentials satisfying the
dispersion relations a much improved fit to the analysing powers was obtained without
an imaginary spin-orbit term, as shown in Fig.5.12.

6. The Fine Structure of the Optical Potential

Accurate optical model analyses of the differential cross-sections for the elastic
scattering of protons by a series of medium weight nuclei have shown that the potential
depth depends not only on the nuclear asymmetry parameter a = (N — Z)/A but also
on the isospin Tz = \(N - Z) (Perey and Perey, 1968; Novo et al, 1981).

The available neutron data are not yet sufficiently accurate to show this effect but
as it is very likely to be present it is appropriate to consider it here.
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5.12 Analysing powers for the elastic scattering of 9.9 to 16.9 MeV neutrons by <l6Ca
compared with optical model calculations with an imaginary spin-orbit term
(dashed curves) and without an imaginary spin-orbit term but using dispersion-
relation potentials (full curves) (Delaroche and Tornow 1987).
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The fine structure in proton optical potentials shown by the 11 MeV data of Perey
and Pery can be fitted by a variety of phenomenological expressions (Hodgson, 1970,
1985) of the form

Vp = Vo - iE + pA« + cVj + 7FC (6.1)

where t = (N ~ Z)/A is the nuclear asymmetry parameter, V\ is the isovector potential
and 7 ^ the Coulomb correction term. Equally good fits to the data can be obtained
with the exponent a = — | , * or 1, with corresponding optimised values of (3. The
dependence of the potential on the mass number is indeed suggested by the folding
model.

A more fundamental explanation of the fine structure was provided by Yang and
Rapaport (1986), who showed that it essentially disppears if the energy is measured
from the Fermi surface. This gives

Vp = Vo - i(E - EF) + eVi + yVc (6.2)

It is notable that in their analysis they used values of 7 = 0.78 at 11 MeV and
7 = 0.60 at 14 MeV obtained from the analysis of Perey (1963). These are much higher
than the value 7 = 0.3 corresponding to the Hartree-Fock field and are a consequence
of the additional term introduced by the coupling to higher states and given by the
dispersion relation.

More recently, a very extensive global optical model analysis of proton and neutron
elastic scattering data has been made by Varner et al (1987). They used a potential
with a radius parameter

R = r00 + r0A
1/3 (6.3)

instead of the usual R = roA1/3. Their global potential fits the data very well, and
thus accounts for the fine structure. The reason for this is probably that the more
flexible parametrisation (6.3) of the radius parameter is essentially equivalent to the
addition of the A-dependent term in (6.1), through the well-known VR2 ambiguity. It
may however be suggested that an equally good, and perhaps even better fit to the
data would be obtained by measuring the energies from the Fermi surface and using the
simpler parametrisation of the radius.

At higher energies, the 65 MeV data of Noro et al has been fitted by Haider et
al (1984) using potentials obtained from Brueckner theory nuclear matter calculations.
It remains to be 6hown that it can also be understood using the model of Yang and
Rapaport, using the lower value of 7 appropriate to the Hartree-Fock field.

7. Potential Inversion

The application of the dispersion relations as described in the previous sections
shows how the Fermi potential anomaly can be understood as the addition of a surface-
peaked imaginary term to the underlying volume term in the real part of the potential.
All this work 16 carried out in the framework of the Saxon-Woods and derivative Saxon-
Woods parametrisation of the real and imaginary parts of the potential. Since we are
now looking at relatively fine details of the potential it may be asked whether this
parametrisation is sufficiently accurate for the purposes. This question is given added
weight by the analysies at higher energies that certainly show that the Saxon-Woods
parametrisation of the real potential is inadequate.

It thus becomes important to see whether the Saxon-Woods potential is really
satisfactory at low energies, and if not whether it can be improved. This can be done
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if the potential could be determined from the experimental data, without the use of
standard analytical form factors. This is the classical potential inversion problem, to
which much attention has been devoted over the years.

Potential inversion proceeds through the intermediate stage of the phase shifts
or their equivalent scattering matrix elements 5/,. The differential scattering cross-
sections and polarisations can be expressed by simple analytical formulae in terms of
the scattering matrix elements. It is thus relatively easy to obtain the matrix elements
corresponding to a particular 6ct of experimental data, providing it is sufficiently accu-
rate. If it is not sufficiently accurate, there may be distinct sets of matrix elements that
give equally good fits to the same set of data. The meaning of 'sufficiently accurate'
can only be found in each case by detailed numerical analysis. Iterative methods have
been devised to obtain the matrix elements from the data, using as starting values those
obtained from a phenomenological optical model analysis.

The problem is then to determine the potential from the scattering matrix ele-
ments. There are very general theorems that enable the potential to be reconstructed
from a knowledge of the matrix elements at all energies. What is needed, however, is a
practical method of obtaining the potential from data at a limited set of energies, sub-
ject to some restrictions concerning the form of the potential. In general, the potential
is highly non-local and dependent on the orbital angular momentum, and a set of data
restricted to one or a few energies is certainly insufficient t6 determine all these fea-
tures. It is thus necessary to restrict the potential to a form that is sufficiently flexible
to explore the inadequacies of the Saxon-Woods parametrisation and yet not so general
that it cannot be determined with sufficient accuracy. This may be achieved by allowing
a genral radial dependence, but no non-locality, and in some cases by also allowing a
parametrised angular momentum dependence.

A practical technique for potential inversion has been developed in recent years
by Mackintosh and colleagues (Mackintosh 1979; Mackintosh and Kobos 1976, 1979;
Ioannides and Mackintosh 1985, 1986, Mackintosh and Ioannides 1985). Their iterative
perturbative procedure is based on the observation that" the response of the scattering
matrix elements SL to perturbations in the optical potential are generally quite linear.
The method begins with a reference potential Vo(r) that can be the best phenomenolog-
ical potential that determines a set of S^ that are good approximations to the known
accurate SL obtained from the data. Next one selects a set of linearly independent po-
tential perturbations Ui{r) that enable the potential to be adjusted in a systematic and
comprehensive way. For each of these the response AS™ of the SL. can be determined

4 4 5 (7.1)
Then we require that

5L = 5? )
 + ^« 1 A5f )

 (7.2)

Solution of this set of equations for the a.{ gives the required potential

,(r)

Since the relation (7.2) is only approximately linear, the calculation must be iterated
to convergence.

The practical details of this calculation, in particular the choice of basis functions,
can only be studied numerically, and this gives information on the speed of convergence
and the reliability of the potential obtained. Many such calculations have now been
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made by Mackintosh and colleagues, and as a result the iterative-perturbative procedure
has been developed so that it can give reliable information on the potential for a variety
of interactions.

In the present context we are primarily interested in whether the potential in-
version method has produced any results relevant to the dispersion relations analysis
of elastic scattering. In a recent survey Mackintosh and Ioannides (1985) remark that
one limitation of their method is that it is unreliable at low energies, that is about
25 MeV for protons. Essentially this is because the small number of partial waves at
these energies implies that the system is not sufficiently determined. The choice of basis
functions is then critical and makes it difficult to establish a unique potential. This is
a severe limitation in the present context, as we are mainly interested in lower energies.
Nevertheless, there may still be relevant results that have been obtained by the potential
inversion method.

When applied to accurate nucleon elastic scattering data, phenomenological anal-
yses give very good overall fits but there remain significant deviations that correspond
to quite high values of x2. These deviations certainly indicate inadequacies in the form
of the potential used. Studies using the potential inversion method have now shown
that precise fits to the data can be obtained by using either a //-dependent potential
or one that oscillates radially (Kobos and Mackintosh, 1979). This has been done by
inverting the Si, obtained from i-dependent potentials. Inversion" of the SL obtained
from a L-dependent potential of the Majorana form V(r)(l + C(—)L) gave potentials
with the same volume integral as V(r). Thus knowledge of the volume integral gives no
information about possible £-dependence of the potential.

More relevant to the dispersion relations are the results of applying potential in-
version to elastic and inelastic scattering simultaneously. As has been remarked already
the physical origin of the Fermi surface anomaly is the coupling to inelastic channels;
this coupling increases the imaginary part of the potential and thus affects the real part
in a way that can be calculated using the dispersion relations. The coupled-channels
formalism enables this to be studied explicitly. These coupled equations contain the
so-called 'bare' potential and the equations themselves contain the coupling terms. If
this is replaced by the single equation for the elastic channel alone, the optical poten-
tial now has to include implicitly the effects of the coupling. The relation between the
'bare1 and 'dressed' potentials can be studied by finding the potentials in the two cases
that give the same scattering matrix elements, and this can be done by the potential
inversion method.

These calculations have been done both for inelastic scattering and for transfer
reaction channels. As an example, Ioannides and Mackintosh have analysed the elastic
and inelastic scattering of 104 MeV alpha-particles by 20Ne, taking into account the
coupling to the 2+ and 4+ excited states. They found that the volume integral of the
real potential is JR - 367.5 MeV fm3 for the bare potential and 346.2 MeV fm3 when
the coupling to the excited states is included. This is just the enhancement of the
potential that lias been found phcnomcnologically and accounted for by the dispersion
relation analysis. Subsequent calculations showed similar effects on proton potentials
due to the coupling to pickup channels.
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CONSISTENT SYSTEMATICS OF NUCLEAR LEVEL DENSITIES

FOR MEAN AND HEAVY NUCLEI

O.T. Grudzevich, A.V. Ignatyuk, V.I. Plyaskin
Institute of Physics and Power Engineering, Obninsk, USSR

Abstract: The systematics of the experimental data on "the

density, of neutron resonances and low-lying levels -is consi-

dered taking into account of the vibrational increase of the

level density together with the shell and superconductive

effects.

The density of excited level is the most important characte-

ristic of the statistical description of different processes re -

lated to decay of a compound nucleus. The widely used Fermi

gas model /1,2/ does not allow to describe consistently the

existed experimental data on the statistical properties of nuclei
"tint . v

because its relations do not take into account sUntUca^T shell

inhomogeneities in the spectrum of single-particle levels, the cor-

relation effects of the superconducting type and the coherat ef-

fects of a collective nature. The rigorous microscopic methods of

analysis ot these effects prove to be very time consuming and

that strongly restricts their practical application/3,Vl't is the-

refore important to look for a description of the level density

which will take into account to the necessary extent the main ide-

as of the theory about the structure of highly excited nuclei,

while remaining sufficently simple and convenient for practical

usage. For heavy nuclei with A^150 ' * wheve the rotational e f -

fects play essential role^ the consistent phenomenological des-

cription of the nuclear level densities was considered in Ref./5/.

In present work we want *c expand this approach on more light nuclei

in which the collective increase of level density is associated

with the vibrational excitations.

Let us discus shortly the main components of the consis -

tent description of the nuclear level density . The influence of

the pairing effects of the superconducting type on the nuclear

properties can be characterised by the correlation function A©

which directly defines the even-odd difference of nuclear mas-

ses arid the gap 2 &_ in the spectrum of quasi-particle excitati-

on pf evenreyen nuclei. ". "The correlation function . LS

connected the critical temperature t^ = 0,567 A _ of. the phase

transition from the superconducting state to the normal state and
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the critical excitation energy

ucr - o,472 a c rA
 2
o-n& o, (D

where n = 0,1 and 2 for even-even, odd and odd-odd nuclei. Abo-

ve U the level density and other statistical characteristics

of a nucleus can be described by the relations of the Fermi-gas

model ^$1 the effective excitation energy

u* = U - 0,152 a c r ^ o + n & o . (2)
Below the phase transition point the relations for the thermody-

namical functions are more complicated, but the simple parametri-

sation of these functions suitable for the practical calculations

is given in Ref. /5»6/ . In these works there are also the descus-

sions of the differences of the level densities in superfluid

nuclear model and t;;e Fermi -gas model.

The shell inhomogeneities in the single-particle spectrum

lead to a certain dependence of the level density parameter e(U )

on the excitation energy. However the shell effects become weaker

with the increase of the excitation energy and at high energies

the level density parameter will be defined by the asymptotic va-

lue ^ 9/5

a = oL A + p> A (3)
For phenomenological description of the energy dependence of this

parameter we can use the relation

( 4 )

where S£ o is the shell correction in the nuclear binding energies

J11 and f(U) = 1 - exp(- % \J ) is a "universal" function defi-

ning the energy behaviour of the shell effects. V/e used the same

values of parameters as in Ref. / 5 / (in units of MeV ): ot = .0730,

.1147 and y = ,40 /A1/3.

When the collective effects are taken into account the level
density of quase-particle excitations mdist be multiplied K the
coefficient of the vibrational increase of the level density

V<vi&v r evp (SS-SU/O , (5)
where ?>S and SU are changes of th-e entropy and the excita-

tion energy arising as the result of addition of tiie col-

lective modes in the heated nucleus with the temperature t.

These functions are defined by the relations:

where GO . are energitj of -the vibrational excitations,

X • are degrees of degeneracy of them and 5^ are mea

occupation numbers. If vre use the relations of an ideal Bose-
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gas for occupation numbers then Exp. ( 5)hav CK meaning of

the adiabatic addition of the vibrational excitations to all

posible quasi-particle excitations of the nucleus / 9/.

For HCttideal Bose-exitations ttoe occupation numbers can be

where £ * is energy shift and y i is damping width of

the vibrational excitations. These values depend both^the energy

oo i and the integrate variable oO , so for the definition of them

it is necessary to solve correct^ the complicated many body task

of interacting Bose and Fermi-excitations. We did not analyse

such task but only tooW the simplest approximation for the occu

pation numbers ,. .

*-.= e-<t/r*M:(e'Oi/*-'O . (8)
This appoximation gives the relations of an ideal Bose-gas for

^ i -=> 0 and provides yiecesSftŷ  decrease of the coefficient K .̂

for increasing ^ i.

We can expect that the damping of the vibrational excitations

in nuclei is similar to the damping of the zero-sound in -the

Fermi-liquid theory which is described by the relation

-fl. - c (w + 4:*r2-t) . (9)
From the observed spreading widths of the giant isoscalar quadru-

pol resonance it is posible to obtain rough estimation of the

constant C = 005 k MeV . The temperature dependgnce both oi-

the occupation numbers and the coefficients which obtainrffrom the

considered relations (5-8) are shown on the Fig.1. The behaviour

of the same functions in the adiabatic limit is shown also.

In . calculations of the level densities we used the expe-

rimental values of the energies CO 2 +
 o:f ^e first 2 + - levels

of even-even nuclei /11/ and the simple interpolations of these

energies for nearest odd and odd-odd nuclei. For the octupol ex-

citations, which are influenced on the level densities essentiaffM

weaker than the quadrupols, we used the averaged description of

the observed energies CO y = 50 A ' * MeV. The experimental va-

lues of the shell corrections S£ o were taken from Ref. Ill and

the correlation functions were accepted as ^ = 12 A ' MeV.

From optimal description of -the experimental data on the neu-

tron resonance densities /12/ the value of coefficient C= 0075

A / 3 MeV" was obtain* which characterized phenomenologicatty the

effective decrease Jihe vibrational enhancement of the level den-

sity at highly excited nuclei.

71



Fig. 1. The temperature dependence of the occupation numbers and the

coefficients of vibrational increase of the level density of the nucleus
52
Cv under adiabatical approximation (desh-dot curves) and taking into

account the damping of vibrational excitations (solid curves).

The optimal parameters do notguarantee of course <xn exact
6

nucleus. Howeveragreement with the experimental data for ^

such coincidence is needed often for the calculations of *he neu-

tron spectra and the excitation functions of different nuclear

reactions. In the framework of described approach we determined

also the set of individual parameters a and & e f f which pro-

vides the description of the neutron resonance density / 12/ and.

the number of low-lying levels /11/ for each nucleus. These para- •

meters are shown on Fig.2. The individual parameters display the

fluctuations vrhich are correlated with the shell structure of

nuclei. These fluctuations reflect first and foremost the simp-

lifications connected with the replacement of the realistic cor-

relation functions for protons and neutrons by the averaged value

^ . For *he magic numbers of protons or neutrons -the values of

the correlation functions must be essentially smaller then for the

nonmagic numbers and just this effect is displayed in the fluctua-

tions of individual parameters on Fig.2.

At first glance it might seem that the considered systema -

tics of the. level density parameters (d% not''distinguished eitron

from the systematics based on the relations of the back-shift

Fermi gas model / 2/ . But it is not correct conclusion. She Fer-
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o

mi gas model parameters can be considerably distorted by the

shell, superconductive" and collective effects. In our approach

the obtained parameters have the strict physical meaning and they

are in good agreement with the results of pure theoretical calcu-

lations of the statistical characteristics of excited nuclei /4/.

The necessity of using more rigorous, but inescapably more

complicated than th« Fermi-gas, models for analysis and descrip-

tion Q£- the nuclear level densities seems almost obvious today. The
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complications of the analysis are justified "by the consistency

of resuling parameters characteizing the diverse experimental

information on the statistical properties of nuclei. We hope that

the above suggested approach can be fruitful for th« practical

calculations of the level densities in a wide range of excitation

energies and mass numbers.
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EFFECTS OF REALISTIC PARTIAL STATE

DENSITIES ON PREEQUILIBRIUM DECAY

M. Blann

E-Division, Physics Department

Lawrence Livermore National Laboratory

Livermore, California 94550

S. Reffo
ENEA

Bologna, Italy

1. INTRODUCTION

We reported earlier on the inclusion in code ALICE of a subroutine
which calculates partial state densities for preequilibrium decay using

realistic single particle levels. In this work, we present results using
2 3

single particle levels due to Seegar-Howard and Seegar-Perisho. Since

the earlier work, we have modified the intranuclear transition rates for

nucleon scattering based on the final density of three exciton states

available. We summarize the changes made in the hybrid subroutine of ALICE

in Section 2, and present our results in Section 3.

2. METHOD OF CALCULATION

The partial state densities for proton particles (p ), proton holes
(p~ ), neutron particles (n ) and neutron holes (n~ ) are calculated
as described, using the method of Williams et al. We refer to earlier
references for details. We use realistic partial state densities only for
the first term in the series (three exciton) and use Ericson densities for
higher order terms.

In this work, we will consider proton induced reactions, (p,n)
90 91 92 94reactions on ' * ' Zr. In the entrance channel, the incident proton

may populate pnn and ppp configurations. Only the pnn may decay
by neutron emission, leaving a final state pn . Since the pn free
scattering cross section is ~3X the pp cross section, we assume that 0.75
of the three exciton state is pnn . We therefore calculate the number of
neutron excitons emitted leaving a pn~ final state at excitation U (from

This work was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory under contract number
W-7405-ENG-48.
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a composite excitation E) as:

(U)

N(c.U) - 2.* 0.75 ( ^ - ( T

pnn

The factor 2 in Eq. 1 comes from a factor of (n-1) missing from the

expression we use for the three quasiparticie density. The factor R(c)

correct the nucleon-nucleon scattering rate calculated for a Fermi gas

according to the ratio of three quasiparticie states available following N-N

scattering using realistic single particle levels to those calculated for a

Fermi gas.

p

c ) "

(c)
-1 + p -l

P 3 ( « )

(c) (c)

_ 2x4(pnnn-1 + pnpp-1)

n3 2

For the proton emission channel.

N(c,U) - 2.* (°-75 Pnn
 + «^_JBE

ppnn-1

Xc(c) + R(e) • X+(c)

where

)

o 1 ( C ) o 1 ( C )

2x4x(pppp + ppnn )

22 '*̂

3. RESULTS AND DISCUSSION

In Fig. 1, we present results of the experimental and calculated
qn QI Qp QA

neutron spectra from the ' * ' Zr(p.n) reaction for 25 HeV incident

protons. Calculated results are shown using the geometry dependent hybrid

model (GDH), and using the hybrid model with realistic two and three

quasiparticie densities, as described in the preceding subsection. For the

latter, we use the single particle sets of Seegar-Howard (S-H) and of

Seegar-Perisho (S-P). The deformation parameter 4 was taken to be -0.05

for all results shown.
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Figure 1 Calculated and experimental neutron spectra for the (p,n) reaction
90 91 92 94on * Zr. Experimental results of Ref. 5 are given by

the dots connected by a thin line. The thin smooth solid line is

the result of the GDH model. The heavy lines with structure are

the results of the hybrid model using realistic single particle

levels, as described in this report.

These results give some encouragement in the use of realistic single

particle levels for PE calculations. They also leave much to be desired.

Some improvement may result from adding the capability of doing a geometry

dependent calculation. More important will be a search for a better set of

single particle levels. This remains to be done in the future.
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THE MSC CALCULATIONS WITH USE OF EMPIRE

A. Marcinkowski
Institute for Nuclear Studies

Warsaw, Poland

The theory of Feshbach, Kerman and Koonin ) has been

applied for calculation of thst component of the prequilibrium

emission, which demonstrates itself in symmetric angular dis-

tributions, namely the multi-step compound emission. The the-

ory considers for this type of reaction the flow of the flux:-,

through a series of doorway states of increasing complexity,

each of them containing only bound nucleon orbitals. The works

at relatively low incident energies about 14 MeV have shown

that MSC is able to reproduce data by itself. Indeed, empiri-

cal evaluation of direct or multi-step direct MSD components

at these energies by 'extraction of the anisotropic part of the

angular distributions leads to the conclusion that such compo-

nent is of the order of 1075 of the total cross section ) . This

assumption may appear to be not generally valid as follows

from the present discussion but it formed a convenient start-

ing point for the implementation of the quantum-mechanical

formalism in practical calculations beeause it avoids the ne-

cessity of combining the two completely different types of

reaction codes, namely the Hauser-Feshbach statistical theory

codes and the DV/BA ones. All the MSC calculations have been

programmed into the EMPIRE code, which routinely used to eva-

luate the nreequilibrium cross sections according to an angu-

lar momentum and geometry dependent version of the HYBRID

model ). The formulation of the FKK theory has been based on

the analytical expression for the bound particle-hole state

densities derived by Stankiewicz et al. ) and has been exten-

ded to include the full angular momentum coupling scheme for

one-half spin particles ' ) . The details of the theoretical

formulation will be described in the tv/o following chapters.

Next the reader will find the description of changes "in input

data for the MSC option of EMPIRE code and the comparison of

calculations with experiment will be discussed at the end.
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1. The Densities of States Accessible in MSC Transition

Modes.

The MSC interaction chain involves doorway-states contain

ing merely bound particle orbitals. Early calculations made

use of the well knov;n Erison formula, which accounts also for

the unbound configurations. Such approximation breaks however

at energies exceeding the nucleon binding energy. The bound-

particle-hole state densities reported in ref. ) have been

used to derive the densities of states accessible in the pos-

sible transition modes contributing to the preequilibrium

emission. The theory assumes three types of transitions,

which create, conserve or annihilate a particle-hole pair,

respective-ly. The corresponding densities of accessible sta-

tes the so called Y-functions Y £ + 1 , Y£~ 1, Y£ are following:

(u)J

with Od= 1 for E < 2B + U, (^=1 for E > 2B and both equal

to 0 elsewhere. In these formulas uo are the state densities

characterized by the number of excited particles p and holes

h (with p + h = 2n-+ i), g is the equidistant Fermi gas level

density, B is the nucleon binding energy, E the total energy

of the system, U the excitation energy after particle emission.

Subsequently the state density accessible for a damping tran-

sition is

with £>C equal 1 for E > B and 0 for E < B.
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In the above derivations the Pauli principle has been

ignored as well as the effect of the finite potential well

on the scattering of holes.

2. Angular Momentum Structure of the Transition Widths.

Follov.-ing the original paper of Peshbach, Kerman and

Koonin early calculations v.-ere restricted to spinless parti-

cles only. This simplification has been removed by generaliz-

ing the matrix element of the two-body <5~- interaction for

one-half spins. This angular momentum structure embodied in

the O force and the assumed spin distributions of the single-

particle levels allow a subsequent derivation of the angular

momentum dependence of the transition a'nd damping widths in

form of the so called X - functions1*5' ) .

The matrix element for a two-particle residual interaction

of the form ^C-^jrrJjSZr^^ ̂ \ reads

Q even and 0 otherwise. Herefor

l-l , jplp* ^313» Ji1 a n d "^e sPilie an(3 orbital angular momentum

of the four single-particle orbitals involved in the two-body

interaction, j,l being an orbital in the continum and j* is

the spin of the noninteracting core nucleons, j stands for

^2j + 1)^and I is the overlap radial-integral of wave functi-

ons U for the orbitals in question.

Cirri-') JUti ̂  Ut3

The remaining symbols in C5} denote angular momenta composed

of the ones described.

Assuming the BetheJs spin distribution R^ of nuclear sta-

tes, with a spin cut-off factor depending on the number of

excitons IT = Cp + h} one obtains, follov.-ing the prescription

of FKK, the X̂ "*"1, XJJ and x£~1 functions for the possible tran-

sition modes leading to particle emission as well as X n + \

for the damping transition denoting no emission into the con-

tinum:
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where stands for the distribution of the angular momentum

0 of nair states

ff
the factor A^lsJ) is equal 1 if | l-sj< J •$ 1+s and 0 other
wise .

The radial integrals I including the continuum orbital

$jl and I-g containing only bound state v/ave functions are

calculated according to the prescription of PKK,

4 V r
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These integrals provide the absolute scaling for all transi-

tion widths <JJU)^{U))-= Vrpyy a n d t h u s f o r t h e calculated

cross sections. The formulae applied in EMPIRE code for cal-

culating the cross sections are equations from 0s) to O ) of

ref.7).

The numerical calculations of the angular momentum
coupling coefficients entering formulae (1~) to 03) are time
consuming. A separate subroutine XSLJ has been programmed to
conduct the calculation of the X functions. It provides the
Xn + 1' Zn' Xn~1 a n d X n + 1 ^ factors in tabular form for the

first three stages of .the reaction n = 1 to 3, corresponding

to the 2p-1h, 3p-2h and 4p-3h exciton configurations, as fun-

ctions of angular momentum. These three configurations account

for more than 95^ of the MSC emission. The output of the XSLJ

is stored in a disk-file in form ready for use by the EMPIRE

code.

3. Modifications of the input and output data files for

the MSC preequilibrium option.'

The reader will find the full description of the card-

image input for EMPIRE code in ref. ). In the following the

changes required to run an MSC preequilibrium option are

listed:

Card No 1. E^Z. AP, ZP, SC, TL, FLUC

TL - number of partial waves accounted for in calculation

must be 13.0 for MSC

Card Wo 2. HYBR, SGRO, GC. TORY, C. GAV, tGDO. AV

HYBR -. equals ^1.0 the number of stages n accounted for in

MSC 3.0 recommended value

TORY - equals > 1.0 ratio Ca> J&„ ^ Cfor more details see
f * ^~ P n—u • .

ee.£2) of ref. j)-, C4.0 recommended value!/

C - equals the part of reaction cross section contributing

to MSC, o<C<1.0 ^default C = 1.0)

GAV - equal 1.0 denotes Y-functions based on Ericson state

density, *B in the original paper of FKKt and the over-

lap integrals according to formulae C15) and Cl4)

- equal 2.0 denotes Y-functions based on Ericson state

density and the overlap integrals *read in from tape

file in tabular form
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- equal 3«0 denotes Y-functions according to eqs. ("1") to

£4) and overlap integrals from formulae £15) and O O
- equal 4.0 denotes Y-functions according to egs. 1

to 4 and tabulated numerical values of overlap inte-

grals read in from tape file

if GAV = 3.0 or 4.0 then GDO 0. equal to the binding

energy of proton or neutron in the composite nucleus

Card No 3. DE, WGL, GST, XIJ, AM. XNI, OUT

XNI - equal to the number of excitons in the initial confi-

guration 3.0 for MSC recommended

Card No 5. AM, UX, DEL. EO. T

- blank card required for MSC £even when GST = 1.Y it

means AM = A/8 but can contain the level density para-

meter different from that value in case AM ^ 0.

The subroutine XSLJ reouires only a single input card in

a format F1O.3.4HO

Card No 1. MCOM. SPIN, INEX, PIN. DEFIN

MCCK - equal to the nnss number of the composite nucleus

SPIN - equal 0 for integral spins of the composite nucleus

1 for half-integral spins

INEX - initial exciton number no

FIN - number of excitons for the final configuration

(jl recommended!

DSFIN- equal 2 step in exciton numbers of subsequent confi-

gurations

The output of XSLJ consists of matrixes of Xn, X*J+1.and
"• * X i I l
p

~̂ followed by the X I

, XJ
X i . I l

ĵ  followed by. the XR I vector correspondingly for 3,5 and

7 excitons, as a function of s, 1 and J.

Examples of output from the EMPIRE code are attached in

ref. ) . The changes in the MSC output version are following:

- distinction is made between ?-•_„__ and
# comp

- a printout of the damping ^ v and total widths /Ĵ

is added as- function of parity (j\ denotes positive parity

and 2 denotes negative parity ) and spin of the composite'
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nucleus (̂ comT5 +
 1) written in four columns,

comT5

for twice £two parities]) 13 values of
- a title: 1 STEP OF MULTISTEP EMISSION opens a table of
9 x 5 cross section values corresponding to MSC neutron

emission from the first doorv/ay state into 45 outgoing
energy bins of 1 MeV width. This is followed by the same
for protons and all is repeated for the next stages of the
MSC process but the cross section tables contain each time
the contribution of the preceding stages ^summed effect
after each stage).

4. Calculations and Discussion

The calculations v/ere concentrated on the disability
of the model to describe properly the isotopic differences
in the neutron cross sections for molybdenum isotopes.

92 100Calculations conducted for Mo and Mo shor that the

model describes fairly well the fn.2n) reaction on Mo
92but fails for Mo. The latter isotope is a magic neutron

number nucleus and therefore one expects a rather low
/n.2n/ cross section in this case. This expectation is
confirmed by experiment but surprisingly the theory overe-
stimates the closed shell effect providing much to low
cross section as indicates the dotted curve in fig:* 1.
In fact the MSC calculations feel the closed shell only
via the binding energies because the particle-hole state
densities do not account for shell energy shifts. The
compound nucleus emission feels the shell effects via the

D

level densities of Cameron and Gilbert \ . The problem
demonstrates itself in the shape of the emitted neutron
spectrum provided by the MSC model. This spectrum is too
bumpy at intermediate emission energies form 4 to 10 MeV, as
shown in fig. 2, by the dotted line, and too poor at low
energies, which contribute to the ("n.2n) reaction cross sec-
tion. The hybrid model of Blann ") combined with the compound
nucleus decay gives a much better1overall agreement with ex-
periment (see the solid lines in figs. 1, 2 and A). It worth-
while to emphasize that the spectral shape of the emitted
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92,Pig. 1. The excitation curveB for the n,2n reaction on Mo

and 1 0 0Mo. The dashed lines denote the MSC calcula-

tions normalised according to formula £16). The expe-

rimental data are from refs. ) and }.

neutrons, as calculated from the MSC model is not satisfactory

even for the case of Mo -'here the £nt2n) reaction cross

sections fit the experimental data very well Ccompare the dot-

ted lines in figs. 2 and 4).

There have been suggestions of a different absolute norma-

lisation of the PKK cross sections ) resulting in.a formula

for the radial overlap integral

which decreases the MSC component by an order of magnitude

approximately and in this way influences the shape of the
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92,
The spectrum of neutrons emitted from the Mo + n

interaction -at 14.5 MeV. Experimental points are from

Takahashi et si. ^ ) . Theoretical calculations do not

include the n,pn contribution.

emission spectra. In this case one could argue that there is

a need to call for the multi-step direct MSD contribution, in

order to add the lacking cross section at the high energy end

of the spectrum. Such an approach is not improving the situ-

ation however because the drastic reduction of the MSC contri-

bution leaves too much place for evaporation, which provides

now well enough yield for the ( n,2n) process on Mo but much

too much for Mo, as can be seen from the dashed lines in

fig. 1. Also the relations between the different channels are

getting disturbed. This can be seen from fig. 2, where the

dashed line again overestimates the spectrum of protons emit-

ted in the Mofn.xp) reaction.

By introducing the KSD component one could expect a proper

reduction of the enhanced evaporational component, but rough

estimates indicate that this would Eimply mean that at 14-5

MeV incoming neutron energy the MSD emission should overwhelm
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the MSC process, v/hich is in contradiction with the conclu-

sions of earlier studies on the application of the FKK theory

conducted by Bonetti and hie co^orkers ) . Another way of

removing the difficulties is to find how to harden the MSC

emission spectra dotted lines in order to get their shape

closer to that predicted by the hybrid model £solid lines).
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ON THE TWO GAS APPROACH FOR EXCITOK MODEL

MASTER EQUATION

G. Reffo, M. Herman^, C.
ENEA, CRE Clementel, Bologna, Italy

Abstract.

A new version of the two component exciton model with intro-
duction of, shell model quasi-particle state densities is presen-
ted.

A transformation of the master equation is proposed to
facilitate the calculations. On this basis, flux flow between
different substages of the composite nucleus is analysed and
large discrepancies are found in the strength of various transi-
tions.

Introduction.

The problem of neutron-proton distinction in the equilibra-
tion of the composite nucleus was addressed already in the early
stage of preequilibrium development /i/,/2/, receiving however
little attention, mainly becouse two component calculations are
much more involved and the results /3/,/4/ did not show convin-
cing improvements.

Recently Gupta /5/ provided with a justification of one
component model, by showing that the inclusion of transitions
inconsistent with the assumption of the two body nature of the
intranuclear interaction (as it is implicitly done in usually
adopted one component models> can be compensated by changing the
averaged matrix element. This holds, however, only if the state
density for equivalent proton and neutron configurations are the
same.

Our recent shell model calculations /6/, HI, on the contra-
ry, show large discrepancies both in the thresholds for the
excitation of certain configuration and in the energy distri-
bution of the states, as can be seen in fig. 1, where a compari-
son of neutron and proton state densities for the two- and four-
exciton configurations in 90Zr is presented.

Accounting for these differences is only possible if an
explicit two component formulation of the .exciton model is used.

ENEA contract n. 6886
ENEA contract n. 25888
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Fig. 2. Schematic diagram of the equilibration of the composite
nucleus formed in the neutron induced reaction. Different
substages are denoted with pyJ hv, p n, and hff. Arrows are
label Led with the type of interacting nucleons.
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'The model.

Following the approach of Dobea and Betak HI, the model we
report herein is based on the fundamental assumption of the one-
component exciton model. The equilibration of the system is
described in terms of transitions between subsequent stages,
classified acccording to the reaction stage number N and to the
proton hole number h .

The two body residual interaction implies that the coupling
is possible only between closest stages.

The equilibration process can be illustrated on a two dimen-
sional plot, as shown in fig. 2 in the case of a neutron projec-
tile.

The master equation for the two component system reads:

dP(N.hrt)

dt

( l) )P(N-1.hrt> (1)

^ ,hx) ) P(N+1 ,hrt)

+ X^(E.N+1.h^+1)) PfN+i.h^U)

) P(N.hK-1.t)

E.N.hjj) + W(E,N,h;t)) P(N.hrt)

Here P<N,hfflt) is the population of (N,hff) substages at time
t and W(E,N,h,j> is the emission rate, written in analogy to the
one component exciton model, where state densitieswere replaced
by the two gas expression. The internal transition rates are
denoted by A, the superscripts indicate the change in N and hff ,
while the subscripts stand for the type of interacting nucleons.

The following selection rules hold:

A N = - 1 5 A hff = - L , 0

A N = 0 ; A h^ = 1 , -1 (2)

A N = 1 ; 4 h T = 0 , 1

w i t h b o u n d a r y c o n d i t i o n s N>0,
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The two dimensional population matrix can be transformed
into a vector, noting chat the substages can be labelled by a
running index j starting from the top of fig. 2 and enumerating
along subsequent rows from the left to the right.

The new index j i3 related to N and h,, by:

j = N (N - l)/2 + h^ + 1 (3)

and for each j we can obtain N and h „ through the expressions:

N = Int (0.5 + 2j - 1.75); h* = j - N (N-U/2, (4)

where Int denotes the Entier function.
Equation 1 is transformed, this way, into a set of linear

differential equations. The selection rules (2) in j-
representacion are obtained noting chat a given substage j is
coupled to the following i substages:

i=j-N+l and i=j-N through AN=-1 transitions with boundary
conditions (N-2HN-l>/2 < i •< tKN-1 )/2

i=j+l and i=j-i through AN-G transitions with boundary
conditions N<N-i >/2 < i v< N<N+l)/2

i=j+N ar.d i=j+n+i through the AN=1 transitions with no
boundary conditions.

The two component master equation indexed with j nicely
links to the one component version, as it is illustrated in fig.
J, where the thick horizontal and vortical lines are drawn to
separate the reaction stages.

In fig. - we show diagrams illustrating the 13 different
processes that contribute to internal transitions.

Transition rates are obtained from Fermi'3 Golden Rule as
the product of the average squared matrix element and the density
of final accessible states. The latter can be calculated by
distinguishing the excitons taking part in the interaction, from
the passive pare that behaves like a spectator. The probability
P('cpy,hv,p1T,h1T > of finding the interacting part with energy c ,
in the system at energy E, is given by the ratio of the state
density of the passive part with energy E-c, to the density of
states for the whole system.

The total number of interacting configurations is given by
the product of the above probability and the density of initial
states for the interacting part <j^n (e).

The density of accesssible statesu acc(E ) is then obtained
by multiplying the total number of interacting configurations
times the density of the final states for the interacting part
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Fig. 3. Schematic representation of the j-indexed master
equation. Thick lines separate different stages of the
equilibration process. Off-diagonal elements represent the gain
of the flux from other subsrages, while diagonal elements L are
responsible for the loss of the flux due to the coupling to other
3ubstages and to the open channels.

ui * n (e) fand integrat ing over from 0 to E.
E

int i n t
oo ( E ) = / P ( c . P y . h y . P T , , ^ ) o j ( e ) M f ( e ) d e
ace i 1

o

(5)

For each of the 18 processes i l lustrated in fig. 4 the
densiry 3f accessiblss states is calculated according to formula
(5); the transition rates are then obtained by applying the
Golden Rule and summing the contributions from the appropriate
processes..

To account for the most important effects of the shell
structure, the expression of Williams /8/ far the two component
s ta te density can be modified as i t follows:

n-1

p ! h ! p ! h
Q ( E . T )

(6)

where che H-r3vij:de fur.cricn©< E-T • er-cciudes sr^tes below the
threshold T for a given exciton configuration; single particle
state densities for particle g and for holes g are distinguished
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Fig. *. Diagrams illustrating intranuclear transitions in the
two component exciton model. Interacting particles < holes ) are
represented by upward ( downward ) arrows, and their nucleon type
is indicated. Vertical lines stand for the passive excitons. The
diagrams are enumerated to facilitate reference.

and S represents an energy shift accounting for Pauii principle

correction.
A closed form can be obtained for eq. 5 adopting

expression 6.

Results.

Qualitative analysis of flux flow through different
substages of the composite system can be performed on the basis
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f

0 10 20
E(MeV)

30

Fig. 5. Access3ible state densities for the decay of (2100) and
(1011) substage3 in 90Zr as a function of excitation energy.
Curve are denoted by numbers, which relate them to the
appropriate diagram of fig. 4.

of the transition rates and, in particular, in terms of the
accessible stace densities, assuming ail equal matrix elements.

We have obtained the accessible state densities performing a
numerical integration of eq. 5 in which state densities cal-
culated according to refs. 5 and 6 have been used.

We have choosen, as an example, 90Zr which is a aagic
nucleus with respect to neutrons.

We discuss the '2100) ar.d <lQli- configurations, correspon-
ding to the first stages of a neutron induced reaction.

In fig. 5 we present a number cf accessible state densities
for the decay of both configurations as a function of excitacion
energy; the number denoting the curves are related to the proces-
ses illustrated in fig. ^.

Strongest shell structure effect is observed at low excita-
tion energy. Accessible scate density ar& carachterized by
thresholds scattered over a wide energy range. At low energies
one may thus expect strongly nonuniform flux through different
substages. In general, due to Pauli's principle, accessible state
density for the unlike transitions are higher than those for the
I ike one3.
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In the decay of (2100) configuration, creation of the proton
par t ic le -hole pair by a neutron par t ic le ( diagram 3 in f ig. 4 )
is the leading process. Creation of the neutron par t ic le-hole
pair ( diagram 5 ) becomes important only above 20 MeV excitat ion
energy and is about a factor two less probable. Analogous t r a n s i -
t ions caused by the neutron-hole ( diagram 6) is an order of
magnitude weaker.

The < 10i1) configuration below 12 MeV decays almost exclus i -
vely via the proton pair creation induced by the neutron p a r t i c -
l e .

Therefore the main part of the flux in the equi l ibra t ion
process will pass through substages laying in the middle of the
graph shown in fig. 2.

In the decay of th i s early stage configurations the leading
process is the creation of an exciton pair . Intersubstage t r a n s i -
t ions (diagram, 9) and backward t rans i t ion ( diagram 11 > are
found :o be respectively one and cwo order of magnitude lower.

Conelusions.

We have shown that use of a two component exciton model
becomes necessary when shell model densi t ies of quasi-parr ic ie
s t a t e s are adopted.

We have presented a transformation of the two component
master equation into a form that can be easily solved by standard
numerical methods.

From the study of the accessible s ta te densi t ies , the lea-
ding decay mode of che composite nucleus has been found to be the
creat ion of a par t i c le -ho le pair by a par t ic le of the opposite
nucle:r. type.

Due to the shell s t ruc tu re , a non-uniform flow of the flux
through different 3ubsrages i3 expected.
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ANALYSIS OF THRESHOLD REACTION CROSS-SECTIONS AND
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1. Introduction.

The present work deals -with the analysis of excitation func-

tions and particle emission spectra in neutron reactions with an

energy up to 20 MeV with nuclei in the mass range 50<A< 70

within the framework of theoretical models of nuclear reactions.

The "basic prominence has been given to consideration of the prob-

lem on the possible difference of the cross-section of particle

absorption by nucleus in the ground and excited state, being un-

der discussion in the literature for a long time [i,2J.

In Refs. [3] on the basis of excitation functions analysis of

(n,p), (n, cOt (n,2n) reactions according to the statistical

theory it was concluded, that for experimental data description

the selection of varying level density parameters in neutron and

proton channels was required. A probable difference of inverse re-

action cross-section from absorption cross-section calculated by

an optical models was specified as one of feasible reasons of

this mismatch.

In Ref. £4] on the basic of ^-particle emission spectra

analysis in the (n,o^ ) reaction a conclusion was made on the es-•

sential difference of absorption cross-sections for excited and

cold nuclei.

The present work applies the results of recent investigati-

ons obtained in nuclear level density description [7,8] to look

into this problem in more detail.

2. Models used in the experimental data analysis .

The approach for particle emission spectra and cross-secti-

ons analysis is based on the reaction mechanism being divided

into three components: direct, preequilibrium and equilibrium

ones. The ( ̂ /0, \/1) reaction cross-section where the outgoing

particle V1 energy is in the range E+ ± E/2 and the residual

nucleus is in the state with a spin I- and parity 5T- is writ-
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ten as follows:

where

Here (2, -is the particle "̂  absorption cross-section in the
entrance channel; the letters: eq, pre, dir - stand for the cont-
ributions of the equilibrium,preequ&librium and direct components,
respectively, to the reaction cross-section. To compare this ex-
pression with the experimental data on energy spectra it should
be summed over the spin and parity of the residual nucleus.

(2)

The reaction .equilibrium component is calculated within
Hauser-Peshbah formalism:

£* «T 'Vc " V ce<J/ (3)

wv>. - - ^

f'

It is implied, that the indices V define the particle type
as well as all quantum numbers in the corresponding channel.

K - is the particle V wave number in the entrance chan-
nel;

T - is the compound nucleus spin, Q - the statistical fac-
tor; _^

T.j - is the transmission coefficient of nucleus for the
particle V ;

The indices *c5T mean the condition of spin and parity con-
servation with the formation and decay of the given compound-nuc-
leus state.
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O - is the residual nucleus level density in the chan-

nel V .

The preequilibrium component is calculated within the exci-

ton model [5] .

(4)
dEi

where Pn is a relative probability of V -type particle occur-

rence in the n - quasi-particle state;

\ (n,E) - is the probability of V - particle emission,with

an energy E from the n - quasi-particle state;

A+ (n,E ) - is the rate of transition from the n - excitonc
state with the energy E * EJ + Bo , where By is the y -par-
ticle binding energy.

The preequilibrium emission exciton model version employed
here is based on fairly simple representations and does not claim
the detailed description of spectra taking into account the states
specific by spin and parity, nevertheless it adequately predicts
energy-averaged contribution to the hard part of the emission
spectrum.

The component &*J(E*»^» ̂"I ) i s calculated for direct
transitions to discrete levels of the residual nucleus with the
known quantummechanical characteristics vdthin trameworks of the
couple channel method or the distorted waves method.

The particle v^ emission spectrum in the second cascade of
the reaction is defined via the spectrum of single-emission cas-
cade (1), as:

fJ

^ - 7 , ^

£' U

Contributions of the above-mentioned mechanisms vary depen-
ding on individual properties of nuclei, interaction energy and
reaction type. Por the reaction (n,p) and (n,o6) on the nuclei
considered in this work and in the energy range up to 20 MeV the
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main contribution to the total reaction cross-section is made by

the equilibrium component,whereas the contributions of the pree-

quilibrium and direct mechanisms are insignificant. The contri-

bution of the preequilibrium and direct componnents for the (n,n*)

reaction on the same nuclei at the energy E n ̂  10 MeV is alrea-

dy essential and it should be taken into account not only for the

adequate description of cross-sections and spectra in a neutron

channel, but also for the proper normalization (factor q in

formula (1)) of cross-sections and spectra in other reaction chan-

nels.

The main factors affecting the absolute value and the partic-

le emission spectrum shape in different reaction channel are re-

sidual nuclei levels density and transmission coefficients of

particles in exit channels.

3. Nuclear level density.

The relations of Fermi-gas model [i] are most frequently

used in the calculations of level density, where the energy de-

pendence of level density is determined by the parameter"a and

the correction for even-odd differences o . Wide-spread occur-

rence was obtained for the systematics of Dilg et al. level den-

sity [6] , where the parameters' a" and o were selected under the

conditions of level density energy dependence description by two

experimental points: a low-lying levels of the excited nucleus

and neutron resonance density at neutron binding energy. In this

systematics the parameters a for odd-odd nuclei have negative

values,that is the reason of this approach acquiring the name of

the "Back-shift" Fermi-gas model.

In contrast to other systematics,employing the Fermi-gas

model,it yields the level densities more close to the observed

values depending on the excitation energy. Extended systematics

of this model parameters on the basis of current experimental da

ta was performed in Ref. [7] .

The Fermi-gas model, however, ignores a number of essential

properties in nuclear excited state spectra such as shell struc-

ture of a single-particle spectrum, correlation effects of super

fluid nature and coherent collective effects. These effects can

be taken into account most consistently in the microscopic appro

ach within the generalized superfluid model (GSH) of nucleus £1

Ref. \,&] put forward a phenomenol ogi cal version of GSK ta-

king into account collective, superfluid and shell effects in
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level density and quotes the systematics of GS2T parameters for

nuclei in the mass range 40<"A^ 150 obtained from the analysis of

experimental data on neutronresonance density and on low-lying

nuclear levels.

The calculations of level density on the basis of suggested

approach agree with the results of the microscopic level density

calculations. The analysis of (p,n) reaction particle emission

spectra indicates the requirement of employing only the generali-

zed superfluid model for the consistent description of level den-

sity in a wide energy range.

4. Particle absorption cross-sections in optical model of

nuclear reactions.

The relations of both statistical and preequilibrium models

incorporate inverse reaction cross-sections or cross-sections of

particle absorption by residual nuclei built-up in exit channels

of reactions. A significant factor is the need to know the

cross-sections of particle absorption by excited nuclei. The op-

tical model calculation results for a nucleus-target in the gro-

und state are adopted as such data,the dependence of absorption

cross-section on nuclear excitation energy commonly being un-

known. The "dlobal" parameters of optical potential determined

from the condition of the description of experimental data on

elastic and inelastic scattering of nucleons and compound

particles in a wide energy range and for a great number of nuclei

were adopted in practical calculations, or the "individual" para-

meters obtained at potential parameters adjustment by the experi-

mental data for specific nuclei were adopted.

A brief qualification of the most common "global" potential

for neutrons, protons and alphaparticles is given below.

1. The potentials by Wilmore-Hodgson £93 * Becchetti-Greenleess

\_10] , Rapaport ^11^ assigned to nuclear masses A^-40 and neut-

ron energies from 10 to 40 UeV are frequently used for neutrons.

These potentials provide not quite satisfactory description of

the data at low neutron energies (0<E -^ 7 IfieV), that is why

the potential [i2j ^ B been employed,which was determined by way

of individual adjustment of the data for nuclei of Cr-Pe-Ni group

in the neutron energy range 1-15 MeV.

2. The use of Perey's potential \i33jrecommended for the. nuclear

range 30<A<100 and proton energies E < 20 MeV> is common for

iprotons, and Becchetti-Greenleess potential ^10j - for proton

energies from 10 to 50 MeV and nuclear masses A>40.
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EP,M»B

Fig.1. Comparison
of experimental and
calculated data on
the cross-section
of proton absorpti-
on by Hi nucleus:

potential [1^;
potential [12]

with enhancement Gt^
-._._ Perey's poten-
tial t!3]»

Becchetti-Gre-
enleess potential

poll
Experimental data
from compilation [lOJ.

Fig.1 represents the comparison of experimental data on a
proton absorption cross-section for Ui nucleus with the calcula-
tion results "by the optical model with varying potentials.

The comparison illustrates that somewhat better descripti-
on of data within the low proton energy range provides potential
[12] obtained for Cr-Fe-Hi nuclei through individual adjustment
of neutron data. This potential was adopted in inverse reaction
cross-section calculations in the present work.
3. The potentials by Mc.Fadden and Satchler [14] * Trombik [15]
and Huizenga and Igo [16] are known for alpha-particles. These
potentials where obtained from the experimental data analysis in
the energy range of alpha-perticles ~ 20 - 30 MeV.

Fig.2 shows the comparison of calculation results for these

three potentials with the available experimental data on the al-
59pha-particle absorption cross-section by CO*^ nucleus.

Pig.2. Comparison of experimental
and calculated data on the cross-
sections of ̂ -particle abBOrpti-
on by Co-^ nucleus:
— — Mc.Fadden-Satchler'8 poten-

tial [14 J;
potential [14-J with enhance-
ment Q,E;
Trombik<s potential ["15J;

_«_»_ Huizenga-IgCs potential [16J
Experimental data from Eef. [18] .

Ufa*
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As one can see in the fig. 2 Mc.Fadden's potential, selec -

ted for the work, prowides somewhat "better description of the

experimental results.

5. Calculation results.

Figs. 3-5 show the calculation results of proton and ai-par-

ticle emission spectra at neutron interaction with the energy abo-

ut 15 MeY with nuclei Cr , Fe-5 and Hi • The solid curves cor-

respond to the calculations with the parameters of optical poten-i

tials selected in the previous section and with the density of

residual nuclear levels calculated within frameworks of GSM.

Pig.3- ^2Cr proton and oi-particle emission spectra. Solid cur-

ves - calculation with initial transmission coefficients.

Dashed curves - calculation with modified ones.

For alpha-particle emission spectra a systematical effect is ob-

serves: a displacement of the theoretical curve to the right abo-

ut the experiment in the low alpha-particle energy range. This

displacement can be eliminated with none of reasonable variati-

ons of level density parameters either in GSM or in the "Back-

shift" Fermi-gas model.

Therefore, this effect can be rationalized as a need for

modification of transmission coefficients in the alpha-channel,

the modification involving an effective reduction of Coulomb

barrier for alpha-particles.
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60Pig.5. AB in f ig .3, but for MDU nucleus.

This correction for alpha-particle transmission coefficients
was performed by way of increasing the real potential diffuseness
parameter & p by 20-25%. A dashed line in fig. 2 shows a cross-

CO

section of alpha-particles absorption by J Co nucleus obtained
in this way. The calculations of alpha-particle emission spectra
corresponding to these modified transmission colfficients are
shown in fig 3-5 by dashed lines. The experimental data descrip-
tion in this case essentially improves. This very effect is de-
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monstrated by the calculation of (n,©£) excitation function on

^ Pe nucleus taken as an example (Pig.6).

As one can see in fig.2 the absorption cross-section modified

is displaced by energy to the left about the experimental data.

Apparently it point to an essential difference in the absorption

cross-section for cold and excited nuclei. This effect can be fol-

lowed well on the alpha-particle emission spectra (fig.3-5), due

to the (n,no£) reaction contribution, which take effect in the

soft part of oC-particle spectra, being negligible with the neut-

ron energy under consideration. In the case of proton emission

spectra the (n,np) reaction contribution is already significant,

15O-

ao

54, 51Pig.6. Fe (n,oO Cr reaction excitation function.

that is why the analysis of a soft part of proton spectrum from
the reaction (n,p) is more intricate. However, in fig.3-5 the
effect of transmission coefficient differences for the excited
and cold nuclei is also .noticeable. The dashed line shows the
calculations with the transmission coefficients obtained with the
real potential <XR diffuseness increase by 20 - 25 %,

It is noteworthy, that from the condition of spectrum shape
description it follows, that the similar variation of transmissi-
on coefficients is required only at the proton and oC-particle
energies below the corresponding Coulomb barrier. The technique
of the corresponding modification of transmission coefficients
involves a smooth agreement of the increased and initial diffu -
seness of the real potential in the region of Coulomb barrier.
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Pig.7. uKi (n,p) Co reaction excitation function.

Pig.7 demonstrates the effect of these variations of optical

transmission coefficients for protons with the calculation of

Hi (np) reaction cross-sections taken as an example.

Hence, the question about a difference of charged particle

absorption cross-sections for the excited and qround states of

the atomic nucleus may well be posed with fair validity. This

statement is useful for the solution of an old problem of nucle-

ar level density analysis in various reactions. Thus, the level

density parameters displaced about the values known from the neu-

tron data can be obtained at the analysis of charged particles

emission spectra. This problem is removed with transmission coef-

ficient modification performed in this work.

The similar conclusion on the difference of the cross-sec-

tion of cC-particle and proton absorption by a nucleus in the

ground and excited states was made in the work by Mc.Mahan and

Alexander [18j at the analysis of these particle emission spec-

tra in the reaction 1 2C + 1 2 2W.

An indirect evidence for the validity of the suggested

explanation of the observed differences in the calculated

spectra of charged particles emission from the experimental

data may be the Rumanian group's results £l9^ on the des-

cription of (n,p) reaction eycitation functions on titanium

isotopes. In Eef. £i9j it was actually shown, that for the

description of 45Sc (p,n) 45Ti and 46Ti (n,p) 46Sc reac -

tion cross-sections the different parameters of optical potenti-

al are required, an imiginary part of the potential for the se-

cond case needing significant increase (i.e. proton absortion

increase).
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There seems to be sufficient data in favour of such an as-

sertion. However, it should "be noted, that the proton absorption

cross-sections and particularly those for alpha-particles were

poorly investigated experimentally. The optical model parameters

for the particles with energies below the Coulomb barrier are

also investigated poorly. That is vrhy it seems to be premature

to make conclusions about the absolute value of the effect and

its theoretical interpretation. To solve this problem it is essen-

tial to analyze a wide range of nuclei and excitation energies

and probably a wider class of reactions.
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INVESTIGATION OF THE ANGULAR DISTRIBUTION OF SECONDARY

ENERGY DEPENDENT INELASTIC NEUTRON CROSS SECTIONS IN

STRUCTURAL MATERIALS USING BLANN'S GEOMETRY DEPENDENT

HYBRID MODEL

E. Bahm and H. Jahn
Kernforschungszentrum Karlsruhe

Institut fur Neutronenphysik und Reaktortechnik
Karlsruhe, Federal Republic of Germany

Abstract

The measured results for the 14,6 MeV inelastic neutron

cross-sections show considerable experimental errors in

particular in forward direction. Also remarkable discrepancies

between these measured results of the different experimental

groups are to be observed. Consequently it is not possible to

draw definitive conclusions concerning the validity of the

various concepts of nueclear reaction mechanisms- from these

inaccurate measured results. In this paper we show that the

situation is considerably improved if we add information from

the results of measurements of the inelastic proton scattering

cross-section*. With this additional information we obtain a

sufficient starting point to calculate rather accurate and

unique results for the double differential cross-sections of

inelastic neutron scattering at the high energy tail of the

secondary energy. This is demonstrated by a few examples of

5^Fe. Moreover by applying certain averages to the angle

integrated inelastic cross-sections the results of the geometry

dependent hybrid model are obtained. Consequently this might

be a hint to a more rigorous derivation of this model.

Discrepancies and errors of the measured fast (n,n')-cross sections

The investigations of this paper start from the fact that the

measured results of the different experimental groups for the

14.6 MEV neutron cross sections show not only considerable

experimental errors in particular in forward direction but

also remarkable discrepancies between them must be noted. This

is demonstrated rather clearly by figures 1a and b showing
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9. ••

Fig. 1a:

Angular distribution of inelastically

scattered neutrons for 56pe#

0. 80. uo. 160.
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Intcrcomparison bv E. BaJun and H. Jahn.

ixo. ISO. 180.

Fig. 1b: Angular distribution of inelastically scatterd

neutrons for

Fig. 1a and Fig. 1b give a demonstration of con-

sistency of different concepts of angular distri-

butions of inelastically scattered 14,6 MeV neutrons

with the respective measured cross section results

because of their genuine inaccuracy.
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Points with error bars: Average of the measured results

from the Dresden /7/and Osaka /8/ groups. ...

Straight line: SECDIST results (KfK), /5/t /6/.

Dotted line: PRANG results (ECN) at 8 MeV secondary

energy /1/.

Dashed.line: GNASH results (LAS) at 8 MeV secondary

energy /9/.

INELASTIC SCATTERING OF 17.5 MEV PROTONS

60Q

tS 0.,

«-•»

. J •_ . . .. it \

tl.Uk

2S0 7S0 OCO
Chonntl Number

Fig. 1c: A representative measured spectrum of the protons
scattered inelastically from a 5fcFe target at a
scattering angle of 65 Deg. taKen from the work
of Peterson /10/.

10s

10*

I -
10"

E l * I • I » I • I • J • I » I ' E

i I
10 12 14 16
IH£V)

IRON - 65 DEG -
Fig. Id: A representative measured spectrum of the 14,6 MeV

neutrons scattered inelastically from a 56Fe target
at a scattering angle of 65 Deg. taken from the
thesis of Kammerdiener /11/.

(cont. page 114)
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In Fig. 1c and Fig. Id an intercomparison is given between
the measured highly ernergy resolved 17,5 MeV proton cross
sections and the measured 14,6 MeV neutron cross sections with
its genuine low energy resolution for inelastic scattering
from a 56Fe target at a scattering angle of 6 5 Deg.

measured and calculated angular distributions of 14.6 MEV (n,n')-
9 3 56

cross sections of Nb and Fe where the dotted, dashed and

straight lines in Figures 1a and b represent different concepts

for the models of the related nuclear reaction mechanism.

Decision between the different reaction models not possible

on the basis of these inaccurate measured fast (n,n')-cross

sections.

In the Figures 1a and b the dotted lines result from the approach

of Costa, Gruppelaar and Akkermans /I/ which is constructed by

using the model of Mantzouranis, Weidenmuller und Agassi / 2 / , the

dashed line is obtained from the GNASH code of Young and Arthur

/3/ based on the so called Kalbach-Mann systematics /4/ and the

straight lines represent the results from a combination

of Blann's geometry-dependent hybrid model with a simplified

description of the direct reaction mechanism /5/, /6/. It now

can be seen very clearly from the Figures 1a and b that the

measured results are not accurate enough to enable a decision

concerning the validity of the different concepts. Such a

decision never can be met on the basis of theses measured fast

neutron cross-sections because at the energies of the considered

order of magnitude the energy resolution of the neutron energy

measurements cannot be much less than ca. 1 MeV.

Resort to charged particle results

One way out of this situation can be to resort to the results

of measured fast charged particle cross-sections as for instance

the cross-section of inelastic scattering of fast protons. Fig. 1c

shows the very high resolution obtainable in the proton-channel
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O.2O

125 ITS
CHANNEL NUMBER

225 275

A typical time spectrum from the spark chamber for levels to 4.7 MeV excitation. The
solid line is the fit to the spectra using the NSPEC programme.

es 135 18S
CHANNEL NUMBER

235 285

. A typical time spectrum from the spark chamber for levels from 4.5 MeV to 8.0 MeV.
The solid line is the fit to the spectra using the NSPEC programme.

Fig. 2: Measured spectrum of inelastically scattered
49,35 MeV protons at a scattering angle of 25 Deg.
taken from the work of Mani /12/.

presented by the measured results of the inelastic 17,5 MeV

proton-cross-section at a scattering angle of 65° from the work

of Peterson /10/. This might be compared to the much lower energy

resolution of the measured results of the inelastic 14,6 MeV

neutron-cross-section at a scattering angle of 65° taken from
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56Fe STATES

TABLE 1

Energy levels (MeV) and spin values obtained in Ref. /12/and Ref./107

Peak no
V

1
2
3

4

5
6

7
7a
8

9

10
11
11a
11b
12

13
14
15
16

17
18
19
20
21

22
23
24
25
26
27
28

0.849
2.118
2.695
2.968
2.968

3.159
3.411
3.411

3.635

3.850

4.124

4.512
4.660

4.860

5.106
5.195
5.266
5.535

5.763
5.880
6.067
6.273
6.410

6.635
6.870
6.966
7.080
7.189
7.312
7.475

Ref.

Pv

0.2

0.06

0.02

0.087
0.06

0.05

0.03

0.045

0.154
0.071

0.039

0.041
0.046
0.050
0.050

0.03
0.039
0.037
0.053

0.084

0.05
0.046
0.046
0.038
0.051

nil

P2v

0.040

0.036

0.0004

0.0077
0.0036

0.0025

0.0009

0.0020

0.0237
0.0050

0.0015

0.0017
0.0022
0.0025
0.0025

0.0009
0.0015
0.0014
0.0028

0.0071

0.0025
0.0021
0.0021
0.0014
0.0026

tv

2 '
(4*)
2*

(0*)
(2^)

4 "
2^

(6*)

2 +

2*

4 *

3-
4 +

4 +

5-
(4-)
4 +

2 +

(5 + )
4*
4 *
4 +

(3,4)

(3,4)

3
(3,4)
(3,4)
(3,4)
(3-)

0.85
2.08
2.65
2.94
2.96

3.12
3.37
3.39

3.60
3.75
3.83
4.04
4.10
4.40
4.46

4.51
4.61
4.69
4.73
4.88

5.15
5.20
5.26
5.51
5.58
5.69
5.73
5.90
6.00
6.30

6.48

Ref.

Pv

0.29

0.107

0.044

0.124
0.043
0.03

0.053
0.082
0.069

0.095
0.053
0.074

0.198
0.055
0.064
0.050
0.100

0.097
0.078

no/

P2v

0.0841

0.0115

0.0019

0.0154
0.0011
0.0009

0.0028
0.0067
0.0048

0.0090
0.0028
0.0055

0.0392
0.0030
0.0041
0.0025
0.0100

O.OQSH-
0.0061

Iv

2*

2*

2*

4 +

2*
6*

2 '
2*
2*

4 *
(4*)
4*

3-
4 *
4 +

2 +

4 +

(4 + )
(3-)

2( + )
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the thesis of Kaminerdiener /11/ and shown in Fig. 1d on which

the ENDF/BIV data are based. Fig. 2 shows the very high energy

resolution of the 49,35 MeV (P/P1)-cross-section for a scattering

angle of 25°. The peaks correspond to the energy levels of the

26 lowest excited states of Fe. As results of a DWBA-analysis

of Mani /12/ the excitation energies and spins of these states

are listed in Tab. 1 and in addition in Tab. 1 for the same

quantities the results of the DWBA-analysis of Peterson /10/

of 17,5 MeV (p ,p')-cross-sections are shown. Fig. 3 shows examples

of Peterson DWBA_angular distributions belonging to' the excitations

of the 4 lowest 2+-states of 56Fe.

The straight lines through the experimental points in Fig. 3 are

obtained from the DWBA-calculation according to the formulae

m

with
k* r,2

v v i 2TI71 - ~ V

(x)

V V

and

(1b) Ro • roA
1y/3; rQ = 1.25 10""l3fm; U/^' = optical potential

e B scattering angle

jj = space angle of scattering

$ « projectile coordinate angle

k ,kf
v = initial and final projectile wave vectors belonging

to the incident and final energies c and e with
the target excitation energy e v

+ (x)
X—v ' = optical model scattering states of projectile (x)

indicating proton (p) or neutron (n)

y. ($) - spherical harmonics
v

m = nucleon mass

1 = transferred angular momentum belonging to. level v
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predictions.

Fig. 3: Selected angular distributed differential inelas-
tically 17,5 MeV proton cross-section of Peterson
/10/ corresponding to the spectrum of Fig. 1c.

(1)-(1b) represent the DWBA-formulae based on the collective

vibrational model. But beyond of this (1)-(1b) have been used by

Peterson /10/, Mani /12/ and Ignatyuk /13/ also for the phenomenc-

logical analysis of any excitation by direct inelastic proton

scattering. Then 6V is a parameter to be chosen to fit the experi-

mental angular distribution. As above the index (x) denotes the

type of nucleon (eg. proton or neutron). No index (x) is attached

to 6V because the dependence of 8V on the type of nucleon can be

neglected. But Bv depends on the target nucleus. Thus 6V can be

obtained by fitting the experimental data for one type of nucleon

and can then be used to calculate the angular distribution for the

other type of nucleon, for the same target nucleus. For instance

in the proton-channel experimental data also could be obtained for

the small angle region from 52° down to less than 20° (see Peterson

/10/, Mani /12/ where no sufficiently accurate experimental data

are available for the neutron channel, for which the influence of

the incident beam can neither be suppressed nor estimated sufficient-

ly accurate (see experimental points of Fig. 1a/b and Fig.3). Thus

once we have obtained 6V experimentally from the proton-channel we

are able to calculate the scattering for the neutron-channel, in

particular for small angles.
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This is important since the neutron channel is much less qualified

for the determination of the 3V than the proton channel because of

the much lower energy resolution of the fast-neutron cross section

measurements as compared to the proton cross section measurements

in the same energy region. This is demonstrated by the comparison

presented in Fig. 1c/d.

3. Neutron Cross Section Calculations

To obtain the appropriate angular distributions of the inelastic

neutron cross sections we insert the Bv~values from the proton chan-

nel analysis of Peterson /10/ and Mani /12/ shown in Tab. 1 into the

expressions of the equations (1).-(1b) together with the scattering

states X- , calculated from the optical model of the neutron chan-

nel instead of the scattering states X-*5' from the optical model of

the proton channel analysis of Peterson and Mani /10/, /12/. Calcu-

lations of this type for the neutron channel have been carried out

by Kinney and Perey /IA/, by Penny and Kinney /15/ and by Fu /16/.

Scattering angle dependent neutron cross sections corresponding to

the proton cross sections of Fig. 3 have been obtained by these

authors and can be found on the ENDFB/IV files of the US neutron

cross section library.

The angle-dependent inelastic neutron cross sections thus obtained

belong to the discrete excited states with the sharp energies E V

listed in Tab. 1. To obtain measurable angle- and energy-dependent

inelastic neutron cross sections the finite widths of the measured

energy distributions in the neutron channel have to be considered.

These widths are much wider than those in the proton channel shown

in the Figures 1c and 2 as mentioned above. Fig. 1c and Fig. 2 show

that in the proton channel the level widths are small enough compared

to the distances of the neighbouring levels for about the first

20 levels to enable the investigations for the single levels leading

to the results of Tab. 1. In contrast to this behaviour in the proton

channel it is shown by Fig. 1d, that the widths of the measured

secondary energy distribution of the inelastic fast-neutron cross

sections are comparable or even wider than the distances of the

neighbouring energy levels. Consequently, the measured secondary

energy- and angular distributions of the fast-neutron inelastic

scattering cross sections are- much influenced by the short-comings

of the experimental set up for that neutron cross section

measurements in particular at the high-energy tail. Therfore it is

interesting to look wether certain averages of the secondary
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energy-dependent inelastic fast-neutron scattering cross sections can

be found which have a direct physical meaning in particular at the

high-energy tail and which can directly be obtained by measurement.

4. Comparison of DWBA- and GDH Average Cross Section Results

As a first step to answer this question Fig. 4 may be considered.

Fig. 4 shows experimental and theoretical results for the angle-

integrated 14,6 MeV inelastic neutron cross section. The step curve

of Fig. 4 with 1 MeV interval of the steps is obtained by Hansen et

al. /17/ from measurements of the neutron leakage spectrum from an

assembly of iron. This experimental step curve is in particular at

the high-energy tail quite well reproduced by the smooth straight

line which is obtained from calculated results /6/ of Blann's

geometry-dependent hybrid model with optical model option. This

approach has no fit-parameters other than those of the usual optical

model. This is a remarkable improvement compared to the exciton

master equation approach where the internal.transition rate between

the excitation steps has to be adjusted as an extra fit parameter

if the high-energy tail of the secondary energy-dependent inelastic

nucleon cross section should be taken into account /6/.

On the other hand it can be shown that the experimental step

curve of Fig. 4 can quite well be reproduced by average results
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of the neutron-channel-DWBA-calculations outlined above with B

taken from the proton-channel as shown in Tab.1. inserted into

the equations (1) - (1b) used to calculate the inelastic-neutron

cross section. By angle-integrating the results obtained from the

eouations (1) - (1b) by these equations according to

(2)

- . < ; > ( . , . . ,

dfi, /DWBA V v v / D W B A

v

we obtain on the right hand side of equation (2) cross section

results for the single levels which are shown in Fig. 4. by the

discrete endpoints of the vertical lines for the first 13 levels.

We now turn to reproduce the experimental step curve of Fig. 4. by

averaging the measurable angle-integrated secondary energy-dependent

inelastic neutron cross section over intervals I being equal .to the

widths of the steps. Then we obtain

(n)(e., e) _ 1
' /"I

/

where the pv(e',ef ) are the normalized energy distributions around

the excitation energies of the single levels and where the single

terms in the sum at the most right hand side of eq.(3) and in the

integrand of the expression before it are given by the right hand

side of eq. (2). Equation (3) expresses that the average angle-

integrated inelastic fast-neutron cross section is at the high-

energy, tail of the secondary energy equal to the sum of the

discrete cross section values of Fig. 4 within each averaging

interval I.

The results of this summing up for the two intervals 10-11 MeV

and 11-12 MeV are represented in Fig. 4 as horizontal dotted lines

which are seen to coincide quite well with the experimental step

curve as well as with the n =3 contribution of the geometry

dependent hybrid model. Since the latter is the only calculated

contribution of this model to the angle integrated secondary energy

dependent neutron cross section at this high energy tail of secondary
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energy it can be presumed that the n =3 component of the geometry

dependent hybrid model represents a certain average over the direct

component of the inelastic nucleon cross section. With the definitions

and the results of equations (2) and (3) we therefore conclude

The averaging intervals I in equations (3) and (4) do not include

very many levels. For instance the interval 10-11 MeV includes 6

levels and the interval 11-12 MeV includes 5 levels according to Tab.1

Such a small number of levels is obviously already enough to obtain

for the inelastic nucleon cross section at the high-energy tail of

the secondary energy an average with a physical meaning in the sense

that it can be calculated by a physical model like in this case by

Blann's geometry dependent hybrid model. Because of the small number

of included levels we conclude that it may not be a statistical

average we have to do with in this case. Instead we may have to do

here with a summing up in the sense of the well known sum rules of

Satchler /15/ and Lane /20/ (see also Lewis /21/).

If we consider the derivation from equations (1) to (4) then we arrive

at the conclusion that it' should make sense to introduce the

averaged measured angle-dependent differential inelastic fast-

neutron cross section at the high-secondary energy tail according

to

Corresponding to equation (3) we then obtain

ip (e\c
V

P- e,-I/2
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If now the validity of equation (4) with eg. (2) is taken into account

then it can be concluded that at the high secondary energy tail the

following relation holds

(7)

'dir

By equation (7) it is expressed that the result of angle integration

of the averaged measured angle-dependent differential inelastic fast-

neutron cross section at the high secondary energy tail comes out as

the corresponding average over the n=no=3- component of the GDH

contribution.

By a look at Tab. 1 it is suggested that there may be intervals

including enough successive levels with the same 1 to fulfill

equations (4) or (7) for this respective 1. In particular it is

shown by Tab. 1 that at the low end of the target spectrum most

levels have 1 = 2 .

From Fig. 3 it can be seen that any level shows a DWBA angular

distribution of the inelastically scattered protons in the considered

region of secondary energy. According to the explanations given above

the same should be true for the inelastically scattered neutrons with

equation (7) being valid for the neutrons as well as for the protons.

Thus if we use as a first approach the approximate DWBA of McCarthy

and Pursey /21/ according to (8) then (8) has to

(W q 2
(8) I 1 =F(c.(Ej)]Jx jJ(QR)

\ de.dn. /dir x

Q= IP,- Pi+ ij ( r 1 ~ s 1 )|; R « 1,07fin A1/3 + ztk faJ Fi Fj (Radius-law of GDE)

fulfill (7) and the at first unknown factor F(E.,E!) in (8) can be

determined this way. Fig. 5 shows angular distributions of inelastically

scattered neutrons calculated this way from equation (8) for the

intervals 10,6-11,1 MeV and 11,6-13,6 MeV of the secondary energy

of inelastically scattered 14,6 MeV neutrons. In the interval

10,6-11,1 MeV only 1 = 2 levels are contained according to Tab. 1 while

in the interval 11,6-13,6 MeV the levels with 1 = 2 are predominant.

We therefore took the choice 1 = 2 for the calculations according

equation (8) with 7 = 1 , 1 leading to the results of Fig. 5 which

agree quite well with the averaged measured points of the Dresden
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group. The value y = 1,1 i s a l so in reasonable agreement with the

value which can be derived from the approach of McCarthy and Pursey / 2 1 /

for the usual op t i ca l model. But t h i s approach i s l e ss r e l i a b l e for

the small angle region. Work i s going on to improve i t in t h i s r e spec t .
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