

INDC(NDS)-222 Distr. G+P

INTERNATIONAL NUCLEAR DATA COMMITTEE

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about

activities and requirements

in the field of measurements and compilations/evaluations

of fission product nuclear data (FPND)

collected

by

M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

> No. 13 1990

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

INDC(NDS)-222 Distr. G+P

PROGRESS

IN

FISSION PRODUCT NUCLEAR DATA

Information about

activities and requirements

in the field of measurements and compilations/evaluations

of fission product nuclear data (FPND)

collected

by

M. Lammer

Nuclear Data Section International Atomic Energy Agency Vienna, Austria

> No. 13 1990

NOT FOR PUBLICATION

Information from this document should not be quoted except with permission of the authors.

Reproduced by the IAEA in Austria November 1990

90-05668

FOREWORD

This is the 13th issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed.

The types of activities included in this report are measurements, compilations and evaluations of:

Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and Lumped fission product data (decay heat, absorption etc.).

The first part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. Contributions containing information on the data types given above are accepted. Contributions on experimental work can usually be included repeatedly until the final publication is presented. Contributions on evaluations continue to be included as long as the data or files are not superseded.

The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. However, completeness of literature citations in this part is not attempted.

NOTE:

Part 3 contains requirements for further FPND measurements (see also "note to measurers" on page ix), which were recommended by specialists' meetings or Coordinated Research Programmes on FPND.

The 12th issue of this series has been published in January 1988 as as INDC(NDS)-191. The present issue includes contributions which were received by NDS between 1 January 1988 and 1 March 1990.

The next issue of this report series is envisaged to be published in spring 1992.

TABLE OF CONTENTS

Page numbers in brackets refer to collaborations, which are not listed under "Laboratory and Address".

Foreword	•••		iii
Table of Contents	з.		v
Note to measurers	5.		iX
Submitting contri	but	ions	Xi
Subject Index .			xv
Part l: Original	Cor	tributions	1
1.1 Measurements	• •		1
Algeria	:	CSTN Alger	(14) (15)
Belgium	:	CEN Mol	3,4 2,3
EEC Belgium	:	CBNM Geel	4
Brazil	:	Inst. Eng. Nucl., Rio de Janeiro .	5
Bulgaria	:	Inst. Plant Protection, Kostinbrod Univ. of Sofia	(5) 5
Canada	:	Chalk River Nucl. Labs	6,7
China	:	Inst. Atomic Energy, Beijing Inst. Modern Phys., A.S., Lanzhou Jilin Univ., Changchun Sichuan Univ., Chengdu	7,8,9 9 10 10,11
C.S.S.R.	:	ElectPhys.Res.Centre, Bratislava	11
Egypt	:	Tanta Univ	12
Finland	:	Univ. of Jyvaeskylae	13
France	:	CEN Grenoble	14 3,14,15,(23), (24),(25) 15 (15)
German D.R.	:	ZfK Rossendorf, Dresden	16
Germany, F.R.	:	Kernforschungsanlage Juelich KFK, Karlsruhe	17,18,(44) 19,20

		PTB Braunschweig	21,22 22 23 (23) 17,18,23,24,25
Hungary	:	Kossuth Univ., Debrecen	25 2
India	:	Andhra Univ	26 27,28,29,30,31 32,33
Israel	:	Negev Nucl. Res. Centre, Beersheba	(44)
Japan	:	JAERI	34 35 36
Korea	:	Mokwon Univ	(36) 36
Norway	:	Univ. of Oslo	(37),(38),(39), (40)
Sweden	:	Chalmers U. of Technol.,Goeteborg U.Uppsala,Studsvik Neutron Res.Lab.	(37),(38),(39), (40) 37,38,39,40
Taiwan	:	Inst.Phys., A.S., Nankang, Taipeh Nat'l Tsing Hua Univ., Hsinchu	41 42
United Kingdom	:	Imp. College Reactor Centre, Ascot Univ. of Birmingham	42 43,44
U.S.A.	:	Ames Lab., Iowa State Univ ANL, Argonne	44 45 (44),46 (44) (44) 46,47 (44) 47,48 (46) 49 (44)
U.S.S.R.	:	FEI, Obninsk	49,50,51 52 53 53 50
Yugoslavia	:	Univ. of Zagreb	18

1.2 Compilations	and	Evaluations	55
Belgium	:	Univ. Gent	56
China	:	Inst. Atomic Energy, Beijing	56
Egypt	:	Tanta Univ	57
France	:	CEN Grenoble	58 58
India	:	Panjab Univ., Chandigarh	59
Japan	:	JAERI	(66) 60,61 62
Sweden	:	U.Uppsala,Studsvik Neutron Res.Lab.	62
Taiwan	:	Nat'l Tsing Hua Univ., Hsinchu	63
United Kingdom	:	AEA Technol.(=AEEW), Winfrith BNFL, Sallafield Imp. College Reactor Centre, Ascot National Power, Berkeley Nucl.Labs Univ. of Birmingham	63,(64),(65) (64) (64) 64 (63),(64),65
U.S.A.	•	BNL, Brookhaven	(66) (66) 66,(66) 66 (66),68
U.S.S.R.	:	FEI, Obninsk	69
Part 2: Recent P	ubl:	ications Related to FPND	71
2.1 Publications	no	t Covered by Contributions	71
2.2 Meetings	•		79
Specialists' M	eet:	ing on Delayed Neutron Properties	79
Specialists' M Predictions .	eet: •	ing on Data for Decay Heat	80
IAEA Specialis Evaluation (19	ts' 87)	Meeting on Fission Yield	81
Int. Conf. Nuc	lea	r Data for Science and Technology	81
Int. Conf. Fif	ty	Years Research in Nuclear Fission	84
50 Years with	Nuc	lear Fission	85
IAEA Consultan Evaluation of	ts' Fis	Meeting on the Compilation and sion Yield Nuclear Data (1989)	87

Part 3: FPND Requirements	•	•	•	•	89
3.1 Fission Yields	•	•	•	•	89
3.1.1 Chain yield measurements required	•	•	•	•	89
3.1.2 Inedependent yield measurements required		•		•	96

NOTE TO MEASURERS

The Consultants' Meeting on the "Compilation and Evaluation of Fission Yield Nuclear Data", Vienna, Austria, 27 - 29 September 1989, (see meeting summary on page 87) issued several recommendations and requests of relevance to measurers, which are summarized below:

- EXFOR (EXchange FORmat) will be commonly used as the format and data base for the compilation and exchange of experimental fission yield data. It provides for the inclusion of detailed information on the experimental conditions and data analysis. Authors of papers which are compiled into EXFOR receive copies of the entries for proof-reading, which makes an EXFOR entry a publication which can be cited. Therefore it is essential that measurers respond to author proofs and exprimental details requested by the compiler.
- 2) Independent yield measurements are important for the improvement of semiempirical models and the prediction of decay heat via summation calculations. Special care should be taken by measurers to take into account isomeric yields and branching fractions for decay and delayed neutron emission, and the numerical values used should be given. It should be clearly stated whether the data are before or after delayed neutron emission. Measurers are urgently requested to publish sufficient details on the method used, and how these data were used in the analysis.
- 3) Publication of uncertainties and experimental details: Measurers should publish all contributions to the overall uncertainty in detail, i.e.: statistical error, systematic error contributions (determined or estimated), correlations and covariances (or at least estimates of correlation coefficients). Furthermore, sufficient details on the experiments, results, data and error analyses should be given which are pertinent for the data evaluation. If journal editors do not accept such lengthy descriptions of the experiments, the relevant details can be either - published in a laboratory report, or - communicated directly to evaluators. In any case should they be - provided to the EXFOR compiler for inclusion in the entry. This should also be done if errors in the data are detected or data are withdrawn by measurers.
- 4) Further measurements of fission yields are still needed. They are listed in detail in Part 3 of this issue. In summary, the following types of data are requested:
 - independent yields (isobaric, isotopic),
 - isomeric yields and yield ratios,
 - direct measurements of pairing effects,
 - measurements over fragment ionic charge states and kinetic energy,
 - all types of yields in the symmetric region,
 - ternary fission yields, also as a function of neutron energy,
 - chain yields, for which no measurement, only one measurement, or discrepant measurements exist.

Regarding the last point, measurers are asked to look at the tables of discrepancies at the end of this issue, look at their own measurements and analyse the data.

SUBMITTING CONTRIBUTIONS

The next issue is expected to be publised in July 1989. All scientists who are presently working - or have recently completed work - in the field of FPND and who want to contribute to the next issue of this series are kindly asked to send contributions to me between now and 1 October 1991, so that they reach NDS before 15 October 1991.

Those scientists or groups who have already contributed to the present issue and who want to leave their contribution(s) unchanged or who wish to suggest only slight changes, should inform me accordingly before the above deadline.

FORMAT:

The size of one contribution should preferably not exceed one page. Of course, the number of contributions per working group or laboratory is not restricted. Similar experiments (calculations, compilations, evaluations) performed by one person or group should preferably be combined into one contribution, if this is possible without loss of clarity.

The headings suggested for the 3 types of contributions are shown on the following page. For the sake of consistency it is requested that the suggested headings be used as far as appropriate.

COMPILATIONS and EVALUATIONS: If applicable, the availability of numerical data from computer files could be indicated either under the heading "Computer files ..." or under a separate heading "Availability".

CONTACT: If desired, the name of the person to be contacted for further information or numerical data, or customer services in the case of data files, can be given.

EDITING: Since contributions received are generally used directly for publication, it is important that typed ORIGINALS are sent and not just carbon- or photocopies. It would be a great help for producing an edited report if a margin of 2 cm (or 1 inch for North American paper format) is left on each side of the text, and a 5 cm space is left at the top of each page (or 3 cm if the name of the country is included).

COMMENTS or SUGGESTIONS concerning the format, contents and layout of this report series are most welcome and should be directed to me in time before the next issue.

I would like to thank the contributors for their cooperation.

Meinhart Lammer

Suggested headings for:

Measurements:	Compilations:	Evaluations:
Laboratory and address:	Laboratory and address:	Laboratory and address:
Names:	Names:	Names:
Facilities:		
EXPERIMENT:	COMPILATION:	EVALUATION:
Method:		Method:
Completion date:	Major sources of information:	Major sources of information:
Discrepances to other reported data:	Deadline of literature coverage:	Deadline of literature coverage:
Publications:	Cooperation:	Status:
	Other relevant details:	Cooperation:
	Computer file:	Other relevant details:
	Availability:	Computer file of
	Completion date:	Computer file of
	Publications:	evaluated data:
	Contact:	Availability:
		Discrepancies encountered:
		Completion date:
		Publications:
		Contact:
	Ē	t

SUBJECT INDEX

With respect to the earlier issues, underlined page numbers refer to new work, page numbers in brackets refer to unchanged contributions, and others refer to revised contributions.

1. MEASUREMENTS

1.1. Fission yields

nuclide	neutron energy	further specifications	page
Th-229	thermal	light charged particles,absol. yields	<u>3</u>
	thermal	element and mass yields	14
	thermal	independent yields, I isotopes	(28)
Th-230	photofission	light charged particle emission	2
	fast	relative yields, 13 products	48
	up to 3 MeV	fragment mass-TKE distribution	<u>49</u>
Th-232	photofission photofission photofission pile pile pile fast up to 3 MeV 14 MeV	light charged particle emission mass + kinetic energy distribution 13 cumulative, 10 chain yields, absol. Kr and Xe isotopes: fract. cumul. yields fract. indep. yields of some halogenes I-134,136 isomer ratios independent yields, I isotopes relative yields, 13 products fragment mass-TKE distribution mass and charge distribution	2 2 23 23 (28) 48 <u>49</u> 9
Pa-231	fast	relative yields, 13 products	48
U -232	thermal	element and mass yields	14
	thermal	cumulative yields	<u>42</u>
U - 233	photofission	light charged particle emission	2
	thermal	light charged particles,absol. yields	(3)
	thermal	yields+isomer ratios(frag-E),12 masses	(24)
	thermal	cumul. yields of short-lived Ru isotopes	27
	fast	relative yields, 13 products	48
	up to 3 MeV	fragment mass-TKE distribution	<u>49</u>
Ŭ −234	photofission	light charged particle emission	2
	fast	relative yields, 13 products	48
	up to 3 MeV	fragment mass-TKE distribution	<u>49</u>
V -235	photofission	light charged particle emission	2
	thermal	light charged particles,absol. yields	(3)
	thermal	yields+isomer ratios of In 123-129	(25)
	thermal	Y 96-98 yields+isomer ratios(fragment-E)	(25)
	thermal	cumul. yields of short-lived Ru isotopes	27
	thermal	independent isomeric yield ratios	<u>29</u>
	thermal	cumulat.+independ. yields, A=75-158	38
	thermal	fragment mass distribution	<u>51</u>

l.l. Fission yields (cont'd)

_

nuclide neutron energy further specifications

page

	res region	fragment kinetic en. and mass distrib.	4
	res. neutrons	independent yields	11
	fast	relative yields, 13 products	48
	fission spec.	mass distribution, γ -spectroscopy	<u>8</u>
	MeV range	fragment mass distribution	51
	14 Mev	fragment angular distribution	25
V - 235	fast	relative yields, 13 products	48
	up to 3 MeV	fragment mass-TKE distribution	<u>49</u>
U -238	photofission photofission pile fast fission spec. 2.3 MeV 1.7-6 MeV 2-4.5 MeV up to 3 MeV 14 Mev	light charged particle emission mass + kinetic energy distribution independent yields, I isotopes relative yields, 13 products mass distribution, γ -spectroscopy 44 cumulat. yields from 24 mass chains cumulative yields, direct γ -counting triton yields, Δ E-E telescope fragment mass-TKE distribution fragment angular distribution	2 (28) 48 (38) 43 43 <u>49</u> <u>25</u>
Np-237	photofission	light charged particle emission	2
	thermal	light charged particles,absol. yields	(3)
	pile	fractional cumulative yields	(28)
	fast	relative yields, 13 products	<u>48</u>
	14 MeV	mass and charge distribution	<u>9</u>
	14 Mev	fragment angular distribution	<u>25</u>
Np-238	thermal	24 cumulative yields, heavy mass peak	53
Pu-236	spontaneous	fragment kinetic en. and mass distrib.	4
Pu-238	spontaneous	fragment kinetic en. and mass distrib.	4
	thermal	element and mass yields	<u>14</u>
	fast	relative yields, 13 products	48
Pu-239	thermal thermal thermal thermal thermal res. neutrons fast up to 3 MeV up to 3 MeV	light charged particles,absol. yields fragment kinetic en. and mass distrib. LCP mass and charge yields vs E-kin Y-97,I-134 isomer ratios(fragment-E) cumul. yields of short-lived Ru isotopes independent isomeric yield ratios independent yields relative yields, 13 products fragment mass-TKE distribution fragment mass-TKE distribution	(3) 4 (24) 27 <u>29</u> <u>11</u> 48 <u>49</u> <u>49</u>
Pu-240	spontaneous	fragment kinetic en. and mass distrib.	4
	fast	relative yields, 13 products	48
Pu-241	spontaneous thermal thermal thermal thermal thermal	fragment kinetic en. and mass distrib. light charged particles,absol. yields independent isomeric yield ratios cumul. yields of short-lived Ru isotopes fractional cumulative yields independent yields, I isotopes	<u>4</u> (3) 27 (28) (28)

1.1. Fission yields (cont'd)

nuclide neutron energy further specifications

	thermal	independent isomeric yield ratios	29
	fast	relative yields, 13 products	48
Pu-242	photofission	light charged particle emission	2
	pile	independent isomeric yield ratios	27
	fast	relative yields, 13 products	<u>48</u>
Pu-244	spontaneous	fragment kinetic en. and mass distrib.	4
	fast	relative yields, 13 products	48
Am-241	thermal	light charged particles,absol. yields	(3)
	thermal	(2n,f), yields of LCP, symmetric yields	24
	thermal	independent yields, I isotopes	(28)
	fast	relative yields, 13 products	48
Am-242m	thermal	fragment mass-energy spectra	<u>50</u>
Am-243	thermal	light charged particles, absol. vields	
	fast	relative yields, 13 products	48
Cm-243	fast	relative vields, 13 products	48
			_
Cm-244	fast	relative yields, 13 products	48
Cm-245	thermal	independent yields, I isotopes	(28)
	thermal	independent isomeric yield ratios	<u>29</u>
Cm-246	fast	relative yields, 13 products	48
Cm-248	fast	relative yields, 13 products	48
Cm-249	thermal	charge distribution of fragments	14
Cf-252	spontaneous	35 chain yields, radiochem. + β , γ -count.	8
	spontaneous	independent isomeric yield ratios	27
	spontaneous	independent yields, I isotopes	(28)
	spontaneous	fract.cumul.yields: Xe, Ba, Ce isotopes	<u>29</u>
	spontaneous	independent isomeric yield ratios	29
	spontaneous	fragment element yields	<u>30</u>
	spontaneous	fragment element yields	<u>30</u>
	spontaneous	Mo-99, I-132 absolute yields	<u>31</u>
	spontaneous	a +t yields + spectra, Δ E-E telescope	<u>44</u>
	spontaneous	binary fragments+LCP vs n-multiplicity	<u>53</u>
	res region	fragment TKE, mass and angular distrib.	<u>4</u>
Many	unspecified	yield determinations	(5)

1.2. Neutron reaction cross sections

nuclide	neutron energy	reaction	 page
As- 75	up to 700 keV	(n,γ)	47
Br- 79	up to 700 keV	(n,γ)	47

page

XVII

1.2. Neutron reaction cross sections (cont'd)

nuclide	neutron energy	reaction	page
Br- 81	up to 700 keV	(n,γ)	47
Rb- 85	monoenergetic	(n, y)	47
Rb- 87	monoenergetic	(n, y)	47
Sr- 86	2.6-90 keV	resonance parameters	<u>47</u>
Sr- 87	unspecified up to 700 keV	capture γ s, Sr-88 spectroscopy (n, γ); resonance parameters: 2.6-90 keV	<u>23</u> 47
Sr- 88	thermal fast 2.6-385 keV 25 keV	capture γ s, Sr-89 level structure capture γ s, Sr-89 level structure resonance parameters (n, γ) Maxwellian average	23 <u>23</u> <u>47</u> <u>19</u>
Y - 88	25 keV	(n, γ) Maxwellian average	<u>19</u>
Zr- 94	25 keV	(n, γ) Maxwellian average	<u>19</u>
Zr- 96	25 keV	(n, γ) Maxwellian average	<u>19</u>
ND- 93	pile 0.7-1.4 MeV	flux-weighted effective absorption capture	16 <u>11</u>
Nb- 95	3-200 keV	(n,γ)	<u>20</u>
Mo	pile 0.7-1.4 MeV	flux-weighted effective absorption capture	16 <u>11</u>
Mo- 95	pile	flux-weighted effective absorption	16
Mo- 97	pile	flux-weighted effective absorption	16
Mo- 98	pile	flux-weighted effective absorption	16
Mo-100	pile	flux-weighted effective absorption	16
Tc-100	thermal	capture γ -ray spectroscopy	<u>42</u>
Rh-103	thermal pile 3-200 keV	capture γ -ray spectroscopy flux-weighted effective absorption (n, γ)	42 16 20
Pd	6-8 MeV	differential elastic+inelastic	<u>45</u>
Pd-105	pile	flux-weighted effective absorption	16
Ag	0.4-1.6 MeV	capture	10
Ag-109	thermal	capture γ -ray spectroscopy	42
	pile	flux-weighted effective absorption	16
Cđ	pile	flux-weighted effective absorption	16
Sn-116	3-200 keV	(n,γ)	<u>20</u>

1.2. Neutron reaction cross sections (cont'd)

nuClide	neutron energy	reaction	page
Sn-122	1.5-30 keV	(n,γ) + resonance parameters	<u>34</u>
Te-122	unspecified	(n, _γ)	<u>47</u>
Te-123	unspecified	(n,γ)	<u>47</u>
Te-124	unspecified	(n,γ)	<u>47</u>
Te-125	unspecified	(n,γ)	<u>47</u>
Te- 126	unspecified	(n,γ)	<u>47</u>
I -129	unspecified	capture γ s, I-130 levels	<u>23</u>
Xe-136	unspecified	resonance capture	<u>47</u>
Cs-133	unspecified pile	capture γ s, Cs-134 level scheme flux-weighted effective absorption	<u>23</u> 16
Ba-135	below 300 keV	(n, γ) + resonance parameters	34
Ba-137	below 300 keV	(n, γ) + resonance parameters	34
Ba-138	below 300 keV	(n, γ) + resonance parameters	34
Na	0.4-1.6 MeV	capture	10
Nd-143	pile	flux-weighted effective absorption	16
Nd-145	pile	flux-weighted effective absorption	16
Sm	0.4-1.6 MeV	capture	10
Sm-147	up to 700 keV	(n,γ)	47
Sm-148	up to 700 keV	(n,γ) ; resonance parameters: 0.2-5 keV	47
Sm-149	pile up to 700 keV	flux-weighted effective absorption (n,γ)	16 47
Sm-150	up to 700 keV	(n,γ) ; resonance parameters: 0.2-5 keV	47
Sm-152	14 MeV	(n,p)	5
Eu	0.4-1.6 MeV	capture	10
Eu-153	pile	flux-weighted effective absorption	16
Gđ	0.4-1.6 MeV	capture	10
Gd-152	3-500 keV	(n,γ) , excitation function	47
Gd-154	3-500 keV	(n,γ) , excitation function	47
Gđ-155	1.1-235 keV 3-500 keV	average (n,γ) , SO, SI, γ -width (n,γ) , excitation function	<u>34</u> 47

nuclide neutron energy reaction

1.1-235 keV 1.1-235 keV 3-500 keV	average (n,γ) , S0, S1, γ -width average (n,γ) , S0, S1, γ -width (n,γ) , excitation function	<u>34</u> <u>34</u> 47
14 MeV	(n,a), (n,γ)	<u>5</u>
0.4-1.6 MeV	capture	10
unspecified	capture γ s, Dy-163 level structure	<u>23</u>
unspecified	inelastic γ s, Dy-163 level structure	<u>23</u>
thermal thermal epicadmium	(n,γ) : σ_0 and resonance integrals (n,a), (n,p) systematic study system. study of varying Cd-thickness	2 3 <u>12</u>
	1.1-235 keV 1.1-235 keV 3-500 keV 14 MeV 0.4-1.6 MeV unspecified unspecified thermal thermal epicadmium	1.1-235 keVaverage (n,γ) , S0, S1, γ -width1.1-235 keVaverage (n,γ) , S0, S1, γ -width3-500 keV (n,γ) , excitation function14 MeV (n,a) , (n,γ) 0.4-1.6 MeVcaptureunspecifiedcapture γ s, Dy-163 level structureunspecifiedinelastic γ s, Dy-163 level structurethermal (n,γ) : σ_0 and resonance integralsthermal (n,a) , (n,p) systematic studyepicadmiumsystem. study of varying Cd-thickness

page

FProd= gross FP-mixtures

Many= several nuclides not specified in detail

1.3. Decay data

nuclide	data type	page	nuclide	data type	page
Ni- 70	identification,T1/2	15	Br- 91	E\$,Q\$	22
Ni- 71	identification,T1/2	15	Kr- 91	Е\$, Q\$	22
Ni- 72	identification,T1/2	15	Kr- 92	E\$,Q\$	22
Ni- 73	identification,T1/2	15	Br- 92	E β , Qβ	22
Ni- 74	identification,T1/2	15	Kr- 85	T1/2	(21)
Cu- 74	identification,T1/2 β-γ spectroscopy	15 44	Kr- 93	level studies	<u>18</u>
Cu- 75	identification,T1/2	15	Kr- 94	level studies	<u>18</u>
Cu- 76	identification,T1/2	15	Rb- 88	T1/2	15
	$\beta - \gamma$ spectroscopy	44	Rb- 97	shape coexistence	17
Cu- 77	identification,T1/2	15	Rb- 98	$\beta - \gamma$ spectroscopy	44
Zn- 8 0	$\beta - \gamma$ spectroscopy	44	Rb- 99	$\beta - \gamma$ spectroscopy	44
Ga- 72	T1/2	<u>15</u>	Sr- 89	γ -emission probability	21
Ge- 83	$\beta - \gamma$ spectroscopy	44	sr- 90	T1/2 T1/2	6 (21)
As- 76	T1/2	<u>15</u>	Sr- 99	$\beta - \gamma$ spectroscopy	44
Se- 79m	Tl/2 β-branching, log ft	15 19	Sr- 100	$\beta - \gamma$ spectroscopy	44
Se- 81m	T1/2	15	Sr-1 01	$\beta - \gamma$ spectroscopy	44
Br- 82	Tl/2 β-decay study	15 <u>41</u>	Y - 90m Y - 96	conversion coefficient	<u>26</u>
Br- 90	Q\$ value	22	1 - 96	level lifetimes	18

1.3. Decay data (cont'd)

nuclide	data type	page	nuclide	data type	page
Y - 98	β-γ spectroscopy	44	Rh-110	T1/2, β - γ -ray spectroscopy	13
Y -100	$\beta - \gamma$ spectroscopy	44	Rh-112	T1/2,β-γ-ray spectroscopy	13
Y -101	β - γ spectroscopy	44	Rh-113	$T1/2, \beta-\gamma$ -ray spectroscopy	13
Y -102	β - γ spectroscopy	44	Rh-114	T1/2, β - γ -ray spectroscopy	13
Zr-101	Qβ value β-γ spectroscopy	22 44	Rh-115	$T1/2, \beta - \gamma - ray$ spectroscopy	13
Zr-102	Q β Value	22	Rh-116	$T1/2, \beta - \gamma - ray$ spectroscopy	<u>13</u>
Zr-103	Q β value	22	Pd-113	γ branching nucl.spectroscopy	39 39
ND-101	Qβ value β-γ spectroscopy	22 <u>44</u>	Pd-114	γ branching nucl.spectroscopy	39 39
ND-102	Qβ value	22	Pd-115	γ branching	39
ND-103	Q\$ value	22		nucl.spectroscopy	39
ND-104	Q\$ value	22	Pd-116	γ branching nucl.spectroscopy	39 39
Nb-105	Q\$ value	22	Pd-118	T1/2, β - γ -ray spectroscopy	13
No- 99	T1/2	(21)	Pd-119	T1/2, β - γ -ray spectroscopy	13
Mo-103	Q\$ value	22	Ag-113m	nucl.spectroscopy	39
Mo-104	Q\$ Value	22	Ag-115m	nucl.spectroscopy	39
Mo-105	Q\$ value	22	Ag-116	$\beta - \gamma$ spectroscopy	44
Mo-106	Qβ value	22	Ag-118	$\beta - \gamma$ spectroscopy	44
Mo-107	Εβ, Qβ	22	Ag-120	$\beta - \gamma$ spectroscopy	44
Tc- 99m	T1/2	(21)	Cd-119	γ branching	39
Tc-104	Qβ value	22	Cd-120	γ branching	39
Tc-105	Qβ value	22	Cd-121	γ branching	39
Tc-106	Qβ value	22	Cd-122	γ branching	39
Tc-107	Εβ, <u>Q</u>β	22	Cd-123	γ branching	39
Tc-108	Εβ, Qβ	22	Cd-124	γ branching	39
Tc-109	Εβ, Οβ	22	Cd-125	γ branching	39
Tc-111	T1/2, β - γ -ray spectroscopy	<u>13</u>	Cd-126	γ branching	39
Ru-103	X-, γ -ray intensities	33	Cd-127	γ branching	39
Ru-107	Εβ, Qβ	22	Cd-128	γ branching	39
Ru-108	Εβ, Qβ	22	Cd-130	γ branching	39
Ru-109	E\$,Q\$	22	Cd-131	γ branching	39
Ru-112	$T1/2, \beta-\gamma$ -ray spectroscopy	13	Cd-132	γ branching	39
Ru-113	T1/2, β - γ -ray spectroscopy	13	In-116m	T1/2	15
Ru-114	T1/2, β - γ -ray spectroscopy	13	In-119	γ branching	39
Rh-104m	T1/2	15	In-120	γ branching	39
Rh-108	Εβ, <u>Q</u>β	22			

1.3. Decay data (cont'd)

nuclide	data type	page	nuclide	data type	page
In-121	γ branching	39	I -131	T1/2	(21)
In-122	γ branching	39	¥- 122	x-, y-lay incensicies	11
In-123	γ branching	39	xe~133	·····	(21)
In-124	γ branching	39	Cs-134	abs. I- γ , lab. intercompar. X-, γ -ray intensities γ -ray spectroscopy	9 33 36
In-125	γ branching	39		γ energies+intensities	46
In-126	γ branching	39	Cs-134m	conversion coefficient	<u>26</u>
In-127	γ branching	39	Cs-137	T1/2 abs. I-7, lab intercompar	7
In-128	γ branching	39		X-, γ -ray intensities	32
In-129	γ branching	39	Cs-142	Ba-142 levels: g-factors	44
In-130	Ωβ γ branching	<u>37</u> 39	Cs-144	Ba-144 levels: g-factors	44
In-131	Qß	37	03 140	Ba-146 levels: g-factors	22 44
	γ branching	39	Ba-139	T1/2	15
In-132	Qβ γ branching	<u>37</u> 39	Ba-140	T1/2	(21)
Sn-129	Qβ	37	Ba-146	Εβ, Οβ	22
Sn-130	Qβ	37	Ba-147	Εβ, Qβ	22
Sn-131	Qβ	<u>37</u>	La-140	T1/2	15
Sn-132	Qβ	37		γ -ray measurements	(21) <u>10</u>
Sn-133	Qß	37	La-146	E $β, Qβ$ $β-\gamma$ spectroscopy	22 44
Sn-134	Qβ nucl.spectroscopy	<u>37</u> 39	La-147	Εβ, Qβ	22
SD-124	γ-ray spectroscopy	41	Ce-141	X-, γ -ray intensities	32
Sb-125	T1/2	(21)	Ce-143	T1/2	<u>15</u>
	rel. γ -ray intensities	2	Ce-144	T1/2	(21)
SD-130	Qβ	37	Ce-147	Εβ, Qβ	22
SD-131	Qβ	37	Ce-150	β - γ spectroscopy	44
SD-132	Qß	37	Pr-142	T1/2	15
SD-133	Qβ	37	Pr-150	$\beta - \gamma$ spectroscopy	44
SD-134	Ωβ	37	Pr-151	decay properties	46
SD-135	Qβ nucl.sp e ctroscop y	<u>37</u> 39	Pr-152	decay properties	<u>46</u>
Te-124	γ -ray measurements	10	Pr-153	decay properties	<u>46</u>
Te-133	Qβ	<u>37</u>	Pr-154	T1/2, X-, γ-rays	35
Te-134	QB	37	Na-147	γ -ray measurements	10
Te-135	Qβ	<u>37</u>	Nd-149	T1/2	<u>15</u>
I -128	T1/2	15	Nd-152	γ -intens., level scheme	36
I -129	γ - γ coinc., standardiz.	22	Nd-153	decay properties	46
			Nd-154	decay properties	46

1.3. Decay data (cont'd)

nuclide	data type	page	nuclide	data type	page
Nd-155	decay properties	46	Eu-152m	conversion electrons	52
Nd-156	decay properties	46	Eu-152	conversion electrons	52
	T1/2, X-, γ-rays	<u>35</u>	-	-1 (2	1
Pm-147	γ -emission probability	21	EU-154	TI/2 β-decay study rel. γ-ray intensities	(21) $\frac{41}{9}$
Pm-152	decay properties	46			2
Pm-153	decay properties	46	Eu-155	T1/2	(21)
			Eu-156	γ -ray measurements	<u>10</u>
Pm-154	decay properties	46			
D 166	•	4.5	Eu-161	decay properties	46
FW-122	decay properties	46	Fu-162	decay properties	46
Pm~156	decay properties	46	Eu-102	decay properties	40
	$T1/2$, X-, γ -rays	35	Gd-159	T1/2	15
	nucl.spectroscopy	39			
			Gd-164	decay properties	46
₽m-157	decay properties	46	-		
0-150	decay properties	46	TD-160	γ -ray measurements	<u>10</u>
5W-128	decay properties	40	TD-161	m) />	15
Sm-153	דו /2	15	10 101	11/2	15
	γ -ray measurements	10	Dy-165	T1/2	15
Sm-157	decay properties	46	Ho-166	T 1/2	<u>15</u>
Sm~158	decay properties	46	Many	decay scheme studies	(5)
Sm-160	docau properties	46		A=100-120: isomerism study	11
211-123	necal higherizes			average 8-decay energies	40
Sm-160	decay properties	46			22
			A= s	everal nuclides within the mass of	chain giver
Eu~152	T1/2	(6)			
	T1/2	(21)	Many= s	everal nuclides not specified in	detail

1.4. Delayed neutron (=dn) data

nuclide	data type	page	nuclide	data type	page
Br- 87	E-spectrum	47	Rb- 97	E-spectrum	47
Br- 88	E-spectrum	<u>47</u>	I -137	E-spectrum	<u>47</u>
Br- 89	E-spectrum	<u>47</u>	I -138	E-spectrum	<u>47</u>
Br- 90	E-spectrum	<u>47</u>	I -139	E-spectrum	<u>47</u>
Br- 91	E-spectrum	<u>47</u>	I -140	E-spectrum	<u>47</u>
Br- 92	E-spectrum	<u>47</u>	I -141	E-spectrum	<u>47</u>
Rb- 93	E-spectrum	47	Cs-143	E-spectrum	47
Rb- 94	E-spectrum	47	Cs-144	E-spectrum	47
Rb- 95	E-spectrum	47	Cs-145	E-spectrum	47
Rb- 96	E-spectrum	47	Many	Pn	37

1.4. Delayed neutron (=dn) data (cont'd)

nuclide	neutron energy	data type	page
U	fast	total and group yield	<u>43</u>
V -235	thermal thermal fast 0.5-2 MeV	delayed neutron fraction energy spec.(time) energy spec.(time) energy spectra	<u>34</u> 49 49 43
บ -238	fast	energy spec.(time)	49
Pu-239	thermal thermal fast	energy spec.(time) groups+precursors: time+e energy spectra	49 <u>51</u> <u>43</u>

2. COMPILATIONS AND EVALUATIONS

data category	further specifications	page
·		
fission yields	compil.+eval.,10 fission systems complet	56
	charge distr.,U-236,Cf-252 spont. fissio	59
	compilation (JNDC) for decay heat calc.	61
	fitted mass yields, 20 fissioning system	<u>62</u>
	evaluation:indep. yields, Pu-235 thermal	<u>63</u>
	complete eval., indep.+ cumul. yields	63
	eval. file (ENDF/B-VI), 50 yield sets	66
	indep. yields, charge distribution	68
	fragment mass distribution, Ac to Fm	<u>69</u>
cross sections	eval.: (n,γ) : σ_0 , I_0 , γ -intensities	<u>57</u>
	eval.: nuclear data for k. factors	<u>57</u>
	evaluation: 172 FP (Z=33-65) for JENDL-3	60
	integral test of JENDL FP libraries	60
	compilation,few group + multigroup data	66
decay data	Nuclear Data Sheets,6 A-Chains:A=102-112	56
	compil.+eval., all data, French file	58
	T1/2, radiation data, decay scheme data	58
	compil.+eval. (JNDC) for decay heat calc	61
	half lives of Sr-90 and Cs-137	64
	complete file UKFPDD2 (UK working group)	64
	all data, compilation for ENDF/B-VI	66
	eval. file in ENDF/B-VI format,755 nucl.	66
delayed neutrons	compilation (JNDC) for decay heat calc.	61
	Pn-values for 86 precursors	62
	eval.,equilibrium spectra	(65)
	energy spectra for individual precursors	66
	eval.: Pn, precursor+aggregate spectra	66
decay heat	summation calculation, JNDC working group	61
-	data base for decay heat code FISP6	64
	total decay power based on ENDF/B-V data	(66)

PART 1: ORIGINAL CONTRIBUTIONS

1.1 MEASUREMENTS

BELGIUM

BELGIUM

Laboratory	and address :	Nuclear Physics Laboratory Proeftuinstraat 86	Laboratory and address	:	Institute for Nuclear Sciences, Proef- tuinstraat 86, B-9000 Gent, Belgium * Central Research Institute for Physics, H-1525 Budapest 114, P.O.Box 49, Hungary
		B-9000 Gent, Belgium	Names Facilities	:	F.De Corte, A.Simonits * Reactors THETIS(Gent Belgium) and WWR-M
Names : E.	Jacobs, D.De Fr	renne, A.De Ciercq, S.Pommé, K.Persijn		•	(Budapest, Hungary)[+ occasionally DR-3
Facilities :	Linear Electron	Accelerator	Experiment	:	(Risø, Denmark)] Determination of 2200 ms-1 cross-sections
Experiment	ts: Emission of ²³⁷ Np and ²	f light charged particles in the photofission of ^{230,232} Th, ^{233,234,235,238} U, ²⁴² Pu.			section ratios (I_0/σ_0) and resonance integrals (I_0) for (n,γ) reactions of
	Mass, kineti Fragment a	ic energy and charge distributions for the photofission of ²³² Th and ²³⁸ U ngular distributions for electrofission of ²³² Th			interest in reactor neutron activation analysis [many of the radionuclides considered are fission products].
Method : I	Measured : light 233,234,235,238 _{U,} :	charged particles (³ H, ⁴ He, ⁶ He) emitted in the photofission of ^{230,232} Th, ²³⁷ Np and ²⁴² Pu, using Δ E-E detectortelescope particle identification sys-	Method	:	Cooperative but independent experimental work in Gent and Budapest: activation method, with gamma spectrometry on a Ge- detector, for g_0 -determination [with careful
1	tem; deduced : I	B/ ⁴ He, ³ H/ ⁴ He, $\langle E_{4_{He}} \rangle$, $\langle E_{3_{H}} \rangle$ and FWHM of the kinetic energy distribu-			selection of literature data for the input
1 1 1	tions. Measured : cato and ²³⁸ U photof tions, post- and photofission pro	cherfoil γ -ray spectra and kinetic energies of the two fragments for ²³² Th ission with 6.4-14 MeV bremsstrahlung; deduced : kinetic energy distribu- pre-neutron mass distributions, neutron emission curves, range of ²³² Th ducts in Th.	Accuracy	:	parameters (absolute gamma-litensity, isotopic abundance, half-life)]; cadmium- ratio method for I_0/σ_0 -determination [with correction for a non-1/E epithermal neutron flux distribution]. σ_0 : total uncertainties are obtained by quadratic combination of random (experimen- tal) ones - not exceeding 2% - with
1	Measureo : angi Iolis	ular distributions of fragments for 2201 (e,f), 4.5 MeV < 20 < /MeV, mixa-			uncertainties originating from the input data ;
• Publication	ns: - M.Piesser Proceedir 1989, Am	ns, E.Jacobs, D.De Frenne, S.Pommé and A.De Clercq ngs of the Conf. "50 Years with Nuclear Fission", Galtherburg, Maryland .Nucl.Soc., Lagrange Park, Ill., p.673	Completion date	:	l_0/σ_0 : of the order of 3%, on the average. Work is in progress [Status 1989: σ_0 for 83 (n, γ) reactions (+ 18 tentative values); l_0/σ_0 for 53 (n, γ) reactions (+ 53 tentative values)].
	- J.D.T.Arn. Proceedir	uda-Neto, E.Jacobs, D.De Frenne and S.Pommé ngs of the Internat. Nucl. Phys. Conf., Sao Paulo, Brasil 1989, p.33.	Discrepancies to other data	:	A critical comparison is made with previous- ly measured and evaluated data (included in Publications 1., 2. and 4. below).
			Publications	:	 F.De Corte, A.Simonits, Nuclear Data for Science and Technology (May 30-June 3, 1988, Mito, Japan; S.Igarasi, Editor; Saikon Publ.Co.) (1988) 583 F.De Corte, A.Simonits, A.De Wispelaere, J.Radioanal.Nucl.Chem., <u>133</u>(1) (1989) 131 F.De Corte, A.Simonits, A.De Wispelaere, A.Elek, J.Radioanal.Nucl.Chem., <u>133</u>(1) (1989) 3 F.De Corte, A.Simonits, J.Radioanal.Nucl. Chem., <u>133</u>(1) (1989) 43

BELGIUM

BELGIUM

Laboratory and eddress	: Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 Gent, Belgium SCK/CEN, B-2400 Mol, Belgium	Laboratory and address	: Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 Gent, Belgium SCK/CEN, B-2400 Mol, Belgium
	Institut Laue-Langevin, B.P. N°156 X, 38042 Grenoble, France		Institut Laue-Langevin, B.P. N°156 X, 38042 Grenoble, France
Names	: C. Wagemans, P. Schillebeeckx, J.P. Bocquet	Name s	: C. Wagemans, P. Schillebeeckx, J.P. Bocquet
Facilities	: High Flux Reactor, Institut Laue-Langevin, Grenoble	Facilities	: High Flux Reactor, Institut Laue-Langevin, Grenoble
Experiments	: Thermal neutron induced (n, *) and (n,p) reac- tions on fission products.	Experiments	: Absolute yields and energy distributions of the charged light particles emitted during the thermal neutron induced fission of ²²⁹ Th,
Method	: Charged particle detection with surface barrier detectors.		233 _U , 235 _U , 237 _{Np} , 241 _{Pu} , 239 _{Pu} , 241 _{Am and} 243 _{Am}
Completion date	: Systematic study in progress.	Method	: The charged particles are identified with surface barrier (AE-E) telescope detectors.
Publications	: 1) C. Wagemans, Proc. 4th Int. Conf. on Neutron Induced Reactions, Smolenice (Czechoslovakia) 1985, p. 344.	Completion date	: 2350 completed; other isotopes in progress.
	2) C. Wagemans, Proc. IAEA-INDC Conf. on Heavy Ion Targets and Related Phenomena, Darmstadt (FRG) 1988, in print	Publications	 1) C. Wagemans et al., Phys. Rev. <u>C33</u> (1986) 943 2) C. Wagemans, "Light particle accompanied fission" in Particle emission from nuclei, Vol. III, Chapter 3, p. 63-97, CRC Press (USA), D. Poenaru and M. Ivascu (editors), 1988.

BELGIUM

E.E.C. BELGIUM	
----------------	--

Laboratory and addresses	: CEC-JRC, Central Bureau for Nuclear Measurements, B-2440 Geel, Belgium SCK/CEN, B-2400 Mol, Belgium		Laboratory and address	:	CEC-JRC, Central Bureau for Nuclear Measurements, B-2440 Geel, Belgium.
		1)	Names	:	FJ. Hambsch, HH. Knitter, C. Budtz-Jørgensen.
Names	: C. Wagemans, P. Schillebeeckx, A.J. Deruytter		Facilities	:	Neutron time-of-flight spectrometer GELINA, 7 MV and 3.7 MV Van de Graaff.
Facilities	: Neutron time-of-flight spectrometer at the 150 MeV Linac. Thermal neutron beam at the		<u>Experiment</u>	:	Fission fragment total kinetic energy and mass distribution for 235 U (n, f) in the resonance region.
	Reactor BR1.		Method	:	Twin Frisch gridded ionization chamber for coincident fission fragment detection.
Experiments	: Fission fragment kinetic energy and mass distribution for 236pu (s.f.), 238pu (s.f.),		Accuracy	:	Fragment mass resolution about 2 u. Fragment energy resolution about 2 MeV, 107 coincident events recorded.
	²³⁹ Pu (n, f), ²⁴⁰ Pu(s.f.), ²⁴¹ Pu(s.f.) and		Completion date	:	1987.
Method	²⁴⁹ Pu(s.f.) : Coincident fission fragments detected with surface barrier detectors. Deduced fragment mass and energy distributions.		Publications	:	 FJ. Hambsch, PhD Thesis June 1987; HH. Knitter et al., Proc. of Int. Conf. on Neutron Physics, Kiev, SU, 1987, p. 22; FJ. Hambsch et al., Nucl. Data for Science and Technology, Mito, Japan, 1988, p. 407;
Publications	: 1) C. Wagemans et al., Proc. Int. Conf. Fifty Years Research in Nuclear Fission, Berlin (FRG) 1989.				 F.J. Hambsch et al., IAEA Consultants Meeting on physics of neutron emission in fission, Mito, Japan, 1988, INDC(NDS)-220 p. 129 F.J. Hambsch et al., Nucl. Phys. A 491 (1989) 56.
		2)	Names	:	FJ. Hambsch, HH. Knitter, C. Budtz-Jørgensen.
			Facilities	:	Neutron time-of-flight spectrometer GELINA, 7 MV and 3.7 MV Van de Graaff.
			Experiment	:	Fission fragment total kinetic energy, mass and angular distributions of ²⁵² Cf(sf) in correlation with prompt neutron emission.
			Method	:	Twin Frisch gridded ionization chamber for coincident fission fragment detection. Neutron time of flight detection with NE213 scintillator.
			Accuracy	:	Fragment mass resolution better than 1 u. Fragment energy resolution about 0.5 MeV, 4.107 fission events without and 3.106 fission events with neutron coincidence recorded.
			Completion date	:	Data evaluation as well as data acquisition still ongoing.
			Publications	:	 C. Budtz-Jørgensen et al., NIM A 258 (1987) 209; C. Budtz-Jørgensen et al., Nucl. Phys. A 490 (1988) 307.

BRAZIL

BULGARIA

Laboratory and	Instituto de Engenharia Nuclear	Laboratory and	University of Sofia, Faculty of Physics ,
address:	Comissão Nacional de Energia Nuclear	address:	Department of Atomic Physics, 1126 Sofia,
	Caixa Postal 2186		•
	20001 - Rio de Janeiro - RJ - BRASIL	Names :	N.Nenoff
			Hr.Venkov (Institute of plant protection,
Names:	A.V. Bellido, S.C. Cabral		Kostinbrod)
		Franciscot .	Determination of 14 MeV neutron reaction cross
Facilities:	CV-28 Variable Energy Cyclotron	myber Imente .	
	Helium Jet Transport System.		section for :
Russuinset	Pinning viald dependence and dear action investi		$152_{Sm(n,p)}$ $152m, g_{Pm}; 160_{Gd}$ $(n, 1); (n, 2)$
Experiment.	rission yield determinations and decay scheme investi-		V
	finitions on short-lived rission products from actinides		
	issioned by charged particles.		
		Method :	Activation technique
Method:	Quick transport by a helium jet of the recoiling		
	fission products from the irradiation chamber to the	Completion date:	มีบไซ 1989
	collection chamber (at 15 m distance) and then to the	comprovion accor	
	counting station situated just in front of a high		
	resolution Ge(Li) detector. Identification and		
	measurement of the fission products by gamma-ray		
	spectrometry.	Publications	: Determination of the effective cross-section
			of (n,p) -reactions with 14-15 MeV neutrons
Accuracy:	Better than 10 %.		N.Nenoff,D.Kolev, R. Korea, St.Gabrakov,
			Hr.Gountchev, I.Penev
Completion date:	October 1990		Annu. Univ. Sofia , <u>v. 78</u> , (1984) 35

<u>CANADA</u>

CANADA

Laboratory and Address:	Atomic Energy of Canada Limited Research Company, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada KOJ 1JO	Laboratory and Address:	Atomic Energy of Canada Limited Research Company, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada KOJ 1JO
Names:	J.G.V. Taylor and R.H. Martin	Names:	J.G.V. Taylor and R.H. Martin
Facilities: 1) 4% ionization chamber 2) 4% gas flow proportional counter 3) 4%f-r coincidence system 4) scintillation spectrometer 5) Ge detector 6) Radioisotope standardization laboratory		Facilities:	 4ψτ ionization chamber 4πβ gas flow proportional counter 4πβ-τ coincidence system 4scintilation spectrometer 5) Ge detector 6) Radioisotope standardization laboratory
Experiment:	Half~lives of ^{Lo¶} Cd, ^{L33} Ba and ^{L82} Eu	Experiment:	The half-life of \mathbf{P}^{o} Sr was determined at 20.92 years.
Method:	4mm ionization chamber.	Nethod:	4πβ gas flow proportional counter
Accuracy:	<0.1%	Accuracy:	± 0.03 years (0.1%).
Completion Date:	Continuing and undetermined at present.	Completion Date:	Completed. A full report is to be published in the near future.
Discrepancies to other data:	None at present.	Discrepancies to	The range of eight selected published values for this
Publication:	None at present.	data:	half-life is 27.7 to 29.7 years. The weighted mean of these determinations is 20.07 ± 0.17 (external error) years with a reduced chi-squared of 3.2. Within the combined uncertainties so calculated, the present result agrees with the average of previous measurements.
		Publication:	Martin R.H. and Taylor J.G.V. (1985) The half-life of ^{*°} Sr. In progress report, Physics Division, 1985 July 01 - December 31, PR-P-142, Atomic Energy of Canada Limited, report AECL-9103.

CANADA

CHINA

Laboratory and	Atomic Energy of Canada Limited Research	Laboratory	Laboratory of Neutron Physics
Address:	Company, Chalk River Nuclear Laboratories,	And Address:	Institute of Atomic Energy
	Chalk River, Ontario, Canada KOJ 1J0		P. A. Roy 275-46 Religing 102413 China
Names:	J.G.V. Taylor and R.H. Martin		
Facilities.	1) Arr innization chamber	Names:	Jing Kexing, Li Ze, Liu Conggui, Liu Yonghui,
· ucriticities.	2) 4% cas flow proportional counter		Su Shuxin and Huang Shengnian
	3) 4mß-r coincidence system		
	4) scintillation spectrometer		
	5) Ge detector	Facilities:	The swimming pool reactor, 130 c.c. Ge(Li) detector
	6) Radioisotope standardization laboratory		coupled with 4K analyzer
Experiment:	The half-life of ¹³⁷ Cs has been found to be 10967.B		
	days. A purified source of ¹³⁷ Cs was measured in an	Experiment:	13 cummulative yields and 10 mass chain yields from
	ionization chamber for eight years relative to three		Kr-87 to Ce-143 were determined absolutely for the
	""Ra reference sources. Allowance was made in the		finnion of Th-222 induced by 7 64 Mall monochrometic
	least squares fitting procedure for a small		TISSION OF THE 2.52 HOUCED by 7.04 MeV WONDCHTOMACTC
	210pi proving towards anuilibring in the reference		gamma rays. The gamma photons were abtained from the
	sources.		thermal neutron capture gamma sourse installed at the
	566, 6621		swimming pool reactor of IAE, by using Fe radiator.
Method:	4wr ionization chamber.		The complex used were Th motel dicks which were
			the samples used were in metal disks which were
Accuracy:	± 4.5 days (0.04%). This uncertainty combines Type A		sandwiched between two thin Th foils during
	and Type B components equivalent to one standard		irradiation. The fission events of the thin foils were
	deviation.		detected by solid state nuclear track detectors. In
Constation Batur			this you the figure note you determined sheelytaly
completion vate:	Lompieted.		this way the fission rate was determined absolutely.
"Discrepancies to	More than 20 measurements of the ¹³⁷ Cs half-life have		The fission product activities of irradiated samples
other data:	heen reported since its discovery. Twenty-one values		were measured by Ge(Li) gamma ray spectrometry.
	rance from 9715 to 12053 days. The weighted mean of		
	these 21 values is 10988 ± 22 (external error) days	M (1 1)	
	with a reduced chi-squared of 13. Within the	Method:	Direct ue(L1) gamma ray spectroscopy
	uncertainties so calculated, this new result agrees		
	with the average of previously reported values.	Accuracy:	4.210.1%
Publication:	Accepted for publication in a future issue of Nuclear		
	Instruments & Methods as part of the proceedings of	Completion Date:	June 1985
	the 1989 ICRM International Symposium on Nuclear Decay		
	Vale.	Descrepancies to	other
		reported data:	No other data has been reported.
		Publication	Chinese I of Nuclear Physics, Vol 10, No 3 (1088) JAA
		cubi icación.	Note DA & Colores and Table Laws (1000 Mitter) 484
			Nuclear Data for Science and Technology (1988 MITU)(1991

CHINA

CHINA

.

Laboratory And Address:	Laboratory of Nuclear Chemistry Institute of Atomic Energy P.O. Box 275, Beijing 102413, China	Laboratory And Address:	Laboratory of Nuclear Chemistry Institute of Atomic Energy P.O. Box 275–85, Beijing 102413, China
Names:	Qi Linkun, Liu Conggui, Su Shuxin, Liu Yonghui, Li Ze, Cui Anzhi, Guo Jingru.	Names :	Chen Qingjiang, Su Shuxin, Yang Jingxia, Chen Yundong, Li Xueliang, Zhang Hongdi, Lin Fa, Guo Jingru
Facilities:	Heavy Water Research Reactor, High resolution Ge(Li) gamma-ray Spectrometric System, Low background Measurement system.	Facilities:	Cf-252 source, low background 2 pi gas-flow proportional counter, plastic scintillation counter, and well type Na(Tl) detecter.
Experiment:	The mass distribution of fission of U-235 and U-238 induced by the fision spectrum neutrons.	Experiment:	Absolute yields of fission products representing 35 mass chains from Cf-252 spontaneous fission have been determined. The mass distribution curve has been abtained.
Methods:	Radiochemical method and Ge(Li) gamma ray spectroscopy	Wethod:	Radiochemical seperation and beta or gamma counting.
Accuracy:	350% for U-235		
	330% for U-238	Accuracy:	35% for Nuclides on the peaks of mass distribution curve and 1017% for the valley and the vings of the
Completion Date:	July 1986 (U-235)		distribution.
	July 1988 (U-238)		
N 1 1 1 1 1 1		Completion Date	: December 1985
Publications:	1. Qi Linkun, Liu Conggui, Li Ze, Wang Xiuzhi,	N 1 1 • • • •	Hall I a la du atra Cala successo finita dalda
	Zhang Sujing, Liu Yonghui, Liu Daming, Ju Changxin,	Publications:	"Absolute determination of the spontaneous fission yields
	Lu Huljun, Zhu Jlaxian, Guo Jingru, The Mass		of LI-252 by radiochemical method , Atomic Energy Science
	Distribution in Fission Spectrum Neutron Induced		I Pedicanal Nucl Chem Articles Vol 111 63(1987)
	Conference "Nuclear Date for Science and Tochnology"		
	Way 30June 3, 1988. Wito Japan P.967		
	2. Su Shuxin, Liu Yonghui, Zhang Sujing, Liu Conggui,		
	Vang Xiuzhi, Qi Dahai, Tang Peijia, Cui Anzhi.		
	Liu Daming, Zhu Jiaxuan, Qi Linkun, Li Daming,		
	Zhang Chunhua, Jing Kexing, Ju Changxin, Li Ze.		
	Guo Jingru, The Mass Distribution in Fission Spetrum		
	Neutron Induced Fission of U-238, Chin. J. of		
	Nuclear and Radiochemistry, to be published.		

CHINA

CHINA

Labo	oratori	Institute of Atomic Energy	Laboratory	Institute of Modern Physics
and	Address:	P.O.Box 275 (20) Beijing,	and address:	Academia Sinica
		D.D. of Liting		P.O.Box 31
		P.R.01 Onina		Lanzhou, China
(1) Name	9:	Wang Xin Lin, Li Xiaodi, Du Hongshan	Names:	Li Wenxin, Sun Tongyu, Sun Xiangfu
<i>⊾</i> xpe	eriment:	Determination of relative intensities of gamma-rays		Zhao Zhizheng and Guo Yingxiang
		from the decay of 125 Sb, 154 Eu and 182 Ta.	Facilities:	Cockcroft-Walton accelerator
Meth	nod:	Measurements were perfomed with calibrated Ge(Li)		HPGe detectors
		and coaxial Ge detector.		<pre>t-t coincidence system</pre>
Accu	15964.	1 02 0%		Radiochemical laboratory
ACCO	nacy.		Experiment:	Mass and charge distributions for the fission
Comp	pletion Dates:	June 1985.		of 232Th and 237Np with 14MeV neutrons.
Publ	lication:	Chinese Journal of Nuclear Physics 8 (1986) 371		Measurement of decay properties for fission products is planned.
(2) Name	•:	Wang Xin Lin, Li Xiaodi, Lu Xiang	Method:	γ -spectrometry and chemical separation followed by τ -spectrometry
Expe	eriment:	Intercomparison measurements of emission rate	Accuracy:	∽5-15% for CFY
		of gamma-rays.	Completion date:	Feb. 1989
Meth	nod:	A home intercomparison measurements of emission	Discrepancies to	In the fission of 232 Th 6 IFY in the symmetric region and 12 of measured 57 CFY were deter-
		rate of gamma-rays were performed by means of	data:	mined for the first time.
		Ge(L1) detector and 152 Eu source.*)	Publications:	l) Li Wenxin et al., "Charge Distribution in
Accu	iracy:	2.0%		the 14.7 MeV-Neutron-Induced Fission of 232Th. Independent Vields of Isotopes of
Publ	lication:	Atomic Energy Science and Technology 20 (1986) 222		Rh,Ag,In and Sb", High Energy Physics and Nuclear Physics 11(1987) 376(in Chinese).
		*) including: Cs-134, Cs-137		 2) Sun Tongyu et al., "Mass Distribution in the 14.7 MeV Neutron-Induced Fission of ²³²Th", High Energy Physics & Nuclear Physics, <u>12</u>(1988) 221.

CHINA

Laboratory and address:	Nuclear Physics Laboratory, Physics Department, Jilin University,Changchun 130023, P.R of China		
Names ;	Liu Yunzuo, Hu Dailing, Sun Huibin, Huo Junde, Zhou Jiewen, Ding Zhaozhong, Hu Baohua, Ma Chunhui, Wu Yuedong, Liu Yabo, You Jianming, Jin Changwen, and Li Yuan		
Facilities:	Coaxial Ge(Li) detectors of 105 cm ³ and 110 cm ³ , coaxial HpGe detector of 114 cm ³ , planar HpGe detector of 1 cm ² X1 cm and 10 cm ² X 1.5 cm, Si(Li) detector of 1 cm ² X1 cm. 4k and 8k multichannel analyzers, multiparameter system, angular correlation set-up, fast-slow coincidence system, PDP11/23 and PDP11/44 computer systems.		
Experiment:	Studies on levels populated in beta-decay of various nuclides at higher resolution and improved counting statistics; Measurements of energies and intensities of gamma rays emitted by nuclides related to nuclear energy utilization.		
Method:	Gamma singles and gamma-gamma coincidence measurements.		
Completion date:	Published: decays of ¹⁴⁷ Nd, ¹⁴⁰ La, ¹²⁴ Te and ¹⁹² Ir. Published in short notes without detailed data: decays of ¹⁹² Ta, ¹⁹³ Sm and ¹³¹ Ba. Analysis in progress: ¹⁹⁶ Eu, ¹⁸⁸ Re, ¹⁶⁰ Tb and ¹⁶⁹ Yb.		

- Z. Phys. A Atomic Nuclei, 329, 307-317(1988)7. Levels in ¹²⁴Te Populated in the Decay of ¹²⁴Sb
- Z. Phys. A Atomic Nuclei, 331, 391-400(1988)

Laboratory and address: Institute of Nuclear Science and Technology of Sichuan Univ. P.O.Box 390-1 Chengdu , P.R. of China Name: Xu Haishan Xiang Zhengvu Mu Yunshan Li Yexiang Wang Shiming Chen Yaoshun Liu Jinrong Facilities: Pulsed 2.5 MeV Van de Graaff, Large-Liquid-scintillator tank.

Research:

We have measured the fast neutron capture cross sections, using a promot detection technique, for fission products Aq, Nd, Sm, Eu, Gd, Tb, Dv, and Er in the 0.4-1.6 Mev neutron energy range. Relative cross sections have been determined by Au-197 as a standard sample.

Accuracy: 10-12%

```
Completion date:
1984-1986
```

Published:

Chinese	journal	αf	Nuclear	Techniques, 9, 9 (1986)
Chinese	Journai	αŕ	Nuclear	Physics, 9, 2, 39 (1987)
Chinese	Journai	۵f	Nuclear	Physics, 10, 3, 233 (1988)
Chinese	Journal	αf	Nuclear	Techniques, 12, 4,237(1989)

China
CZECHOSLOVAKIA

Chine

Laboratory and address: Institute of Nuclear Science and Technology of Slebuan Holu	Laboratory and addres:	Institute of Physics of the Electro-Physi- cal Research Centre, Slovak Academy of
P.O.Box 390-1 Chenedu , P.R. of China		Sciences
Name:		Dubravska cesta
Mu Yunshan Xu Haishan Xiang Zhenevu Li Yexiang		84226 Orntislava, Czochoslovakia
Wana Shimina	Naken t	J. Krištiak, J. Kliman, M. Polhorsky
	Fooilities:	DINR Dubna (USDR); JBR-30 reactor, flight-
Facilities:		-path, fission chambers, Ga(Li) detectors,
Pulsed 2.5 MeV Van de Graaff;		BGO detectors, neutron detectors.
Large-Houid-scint lator tank.	Experiment:	The measurement of prompt gamma-rays from
Research		primary fission fragments.
We have measured the fast neutron capture cross sections of fission products Nb and Mojusing the		Determination of independent yields
technique of detection of promot gamma rays in the 0.7-1.4 MeV neutron energy range.Relative cross sections have been determined by Au-197 as a standard		from rosonance neutron induced fiscion of ²³⁵ U and ²³⁹ Pu.
samole.		Determination of the total gamma-ray
Accuracy		spectra of fission products from the reso-
11-12%		nance neutron fission of ²³⁵ U.
Completion date:	Method:	in-beam gamma-ray spectroscopy.
1989	Accuracy:	statistical errors greater as 4%.
Published: In plan	Completion date:	the end of 1989 for 235 U fission and the end of 1990 for 239 Pu.
	Discrepancies to other	reported data:
		There are no principal discrepancies with
		the data compiled by Rider and Neek for
		thermal neutrons. Up to now there are no
		data for resonance neutrons.
	Publications:	 N.A. Gundorin, A. Duka-Zolyomi, J.Kliman, J. Krištiak, Atomnaja energia 66(1989) 394
		 A.A. Bogdzel, N.A. Gundorin, A. Duka- -Zolyomi, J. Kliman, J. Krištiek, Comm. JINR, P15-88-385
		3) N.A. Gundorin, A. Duka-Zolyomi, J. Kliman

J. Krištiak, Comm. JINR P15-88-386

- 4) A.A. Bogdzel, N.A. Gundorin, A. Duka--Zolyomi, J. Kliman, J. Krištiak, Fifty years with nuclear fission, International Conference, April 26-28, 1989, Gaithersburg
- 5) J. Kliman, A.A. Bogdzel, N.A. Gundorin, A. Duka-Zolyomi, J. Krištiak, Investigation of the prompt gamma-rays from the neutron fission of ²³⁵U and the independent yields of primary fission fragments (to be published)

Laboratory and address: Physics Department Faculty of Science Tanta University Tanta ,Egypt

Names : T.Elnimr ,F.M.Ela-assaly

Facilities :ET -RR -1 Reactor

- Experiment : Determination of the attenuation of epicadmium neutrons using the method of varying Cdthickness
- Method : Activation technique
- Accuracy : better than 2 %

Completion dates : Systematic study in progress

Publications : T.Elnimr et al J.Radioanal.Nucl.Chem. 109 No.1 (1987)3 T.Elnimr et al Proc. Math. Phys. Soc.Egypt 58 (July, 1984) 93

FINLAND

FINLAND (cont'd)

Laboratory and Address:	Department of Physics University of Jyväskylä (JYFL) Seminaarinkatu 15, SF-40100 Jyväskylä	2. Experiment:	Isomerism in neutron rich nuclei in mass area Æ = 100 ~ 120.
Hames:	J.H. Äystö, P. Jauho, A. Jokinen, J.M. Parmonen and H. Penttilä, University of Jyväskylä; K. Eskola and M.E. Leino, University of Helsinki	Nethod:	Recently built electron lens allows high accuracy conversion electron measurements at energy range from 30 keV to 1 MeV. Coincidence measurements with γ and X-rays and β -electrons are possible. First measurements have been performed in November 1989. Preliminary results have been reached with γ -ray experiments.
Fac1111165:	55 degree scandinavian type magnet and ion guide, connected on-line with the mc-20 cyclotron of JYFL.	Publications:	H. Penttilä et al., New neutron-rich nuclei and isomers produced in symmetric fission, to be published in Physica Scripta.
<u>l. Experiment</u> :	β-decay half-lives, β-decay energies and β strength distribution of neutron rich nuclei produced in 20 MeV proton induced symmetric fission of ²³⁸ U. Observed new isotopes ¹¹¹ Tc, ¹¹² Ru, ¹¹³ Ru, ¹¹³ Rh, ¹¹⁴ Ru, ¹¹⁵ Rh, ¹¹⁶ Rh, ¹¹⁸ Pd, ¹¹⁹ Pd.	<u>3. Experiment</u> :	Charge dispersion of proton induced symmetric fission of ²³⁸ U.
Method:	$\gamma-X$, $\gamma-\gamma$ and $\gamma-\beta$ coincidence measurements of mass separated fission products. Hultiscaling method for the half-life measurements.	Nethod:	The efficiency of the ion source of the IGISOL- facility is independent of the element of the radioactive nucleus. The independent yield can be deduced from measured γ spectra and deduced level schemes.
Completion date:	The project is expected to continue at least to 1991.	Publications:	M.B. Leino et al., Charge dispersion in symmetric fission induced by 20 MeV protons on ²³⁸ U. To be published.
Publications:	J.H. Äystö et al., Levels in 110,112,114,116pd from the β decay of the on-line mass separated Rh isotopes, Nucl. Phys. A480 (1988) 104-124;		
	J.H. Äystő et al., Identification and decay of new neutron-rich isotopes 115Rh and 116Rh, Phys. Lett. B201 (1988) 211-214;		
	H. Penttilä et al., Half-life measurements for neutron rich Tc, Ru, Rh and Pd isotopes, Phys. Rev. C38 (1988) 931-934;		
	V. Koponen et al., Gamow-Teller decay of ¹¹⁸ Pd and neighbouring even isotopes of palladium, Z. Phys. A333 (1989) 339-348.		

FRANCE

FRANCE

Laboratory and address :	CENTRE D'ETUDES NUCLEAIRES DE GRENOBLE DRF/SERVICE DE PHYSIQUE	Laboratory and address:	Institut Laue-Langevin 156% F-38042 Grenoble
	85X - F 38041 Grenoble Cedex	Names:	M.Asghar, J.P.Bocquet, R.Brissot, J.Crancon, M.Djebarra, D.Engelhart, Ch.Ristori, B.Wilkins.
Names :	J. BLACHOT, J.CRANCON, Ch. HAMELIN, G. LHOSPICE		
Facilities :	Melusine reactor (thermal neutron and caramel system for fast neutrons) 3 Mev neutrons gene- rators and high flux reactor of I.L.L.	Facilities:	Mass spectrometer LOHENGRIN on an internal beam of the reactor1 Neutron flux: 5.10 ⁻⁴ n.cm ⁻² .s ⁻¹ . Fission fragments analyzed by their mass, ionic charge and energy
Cooperation :	C.S.T.N. Alger M. HADDAD, M. ASGHAR	Experiment:	Nuclear charge distribution of fission fragments from ²⁴⁹ Cf(n,f).
Experiment :	The mass yields have been measured for :	Method:	Lohengrin and large ionization chamber for nuclear charge identification.
	232U(Nth,F) 238PU(Nth,F) 229Th(Nth,F)	Accuracy:	3 to 10%.
Method :	Direct growth and decay activities are measured with a Ge/Li detector and record in a multi- spectrum mode by a 4k multichannel analyser.	Completion date:	1987
Accuracy :	The average relative uncertainty of our measu- rements is between 5 and 10%.	Discrepancies to other reported data:	No other data available for nuclear charge distribution.
Completion Date :	The measurements are completed.	Publications:	Nucl. Phys. A496 (1989) 346 Proc. Conf. Nuclear Data for Science and Technology, Mito, Japan (1988), p. 963.
Publications :	See previous reports No 12.		
	Radiochimica 42, 165 (1987) " 46, 23 -24 (1989) Nucl. Data Sc. & Tech. MITO p 979 (1988)		

Nucl. Phys. A481, 333 (1988) Nucl. Data Sc. & Tech. MITO p 943 (1988)

14

FRANCE

FRANCE

Laboratory and address:	Institut Laue-Langevin 156x F-38042 Grenoble	Laboratory and Address:	Centre de Recherches Nucléalres IN ₂ P ₃ - CNRS Université Louis Pasteur - BP20 Cro F-67037 Strasbourg Gedex, France
Names:	P.Armbruster, M.Bernas, J.P.Bocquet, R.Brissot, H.Faust, P.Roussel.	Names:	A. Abzouzi (Institut de Physique, Université Houari Boumedienne, Alger, Algeria) M.S. Antony, J.B. Bueb (Centre de Recherches Nucléaires, Strasbourg) and V.B. Ndocko-Ndongué (I.U.T., Université de Haute Alsace, 68093
Facilities:	Mass spectrometer LOHENGRIN on an internal beam of the reactor. Neutron flux: 5.10 ¹⁴ n.cm ⁻² .s ⁻¹ . Fission fragments analyzed by their mass, ionic charge and energy	Facilities:	Mulhouse Cedex) On-campus University Research Reactor. Fast transfer system Neutron flux of 1.1 x
Experiment:	Identification of new isotopes of Ni and Cu.		10 ¹² n/cm ² /s 120 cc Ge(Li) and 10 cm diameter Na(T1) detectors coupled with 4K multichannel analyser.
Method:	Ionization chamber of improved performance (for contaminants	<u>Experiment</u> :	Precise measurement of half-lives of 39 nuclides including sevoral fission products listed below.
	rejection) and Lohengrin. Several new ₇₀ isotopes have been identified : ⁷⁴⁻⁷⁷ Cu.	Method:	Counting of the most intense γ -rays following the β^- of the β^+ decay of the nuclides produced by thermal neutron absorption of target nuclei
Accuracy:		Results:	Refer to Table I
•		Accuracy:	Quoted in parenthesis
Completion date:	Work will go on with half-life measurement.	Publications:	 "Precision Measurement of the Half-life of ³⁸C1", M.S. Antony, J.B. Bueb, W. Harrmann and V.B. Ndocko Ndongué, J. Radioanal. and Nucl. Chem. Letters 126 (1988), 295-300.
other reported data:			 "Precision Measurement of the Half-lives of Nuclides", A. Abzouzi, M.S. Antony and V.B. Ndocko Ndongué, J. Radioanal. and Nucl. Chem. Lottore 135 (1989)
Publications:	Europhysics Letters 4 (1987) 793.		 Reevaluation of the Half-lives of Several Nuclides", A. Abzouzi, M.S. Antony and V.B. Ndocko Ndongué, J. Radioanal. and Nucl. Chem. Letters 135 (1989) 455-460.
			 "Nuclear Spectroscopy at the Stransbourg Research Reactor", A. Abzouzi, M.S. Antony and V.B. Ndocko Ndongué, Internal Report CRN-PN 18/88, Centre de Rocherches Nucléaires, Strasbourg.

FRANCE

(cont'd)

 "Improved Values of Half-lives of Several Buclides", A. Abzouzi, M.S. Antony and V.B. Ndocko Ndongué, J. Radioanal. and Mucl. Chem. Letters 137 (1989) 381.

Table I. Results of half-lives of nuclides investigated in this work

Nuclide	E _y analysed (keV)	Half-lives døduced
72Ga	834.1	14.095 (3)h
76 AS	559.1	26.321 (1)h
79mse	95.7	3.92 (1)m
81mSe	103.0	57.28 (2)m
82 _{Br}	554.4	35.281 (6)h
88 _{Rb}	898.1	17.773(11)m
104m _{Rh}	51.4	4.37 (1)m
116m _{In}	1293.6	54.11 (3)m
128 ₁	442.9 + 526.6	24.991 (8)m
139 _{Ba}	165.9	84.547(15)m
140 _{La}	1596.5	1,6785(2)d
142 _{Pr}	1575.5	19.140 (2)h
143 _{Ce}	293.3	33.039 (6)h
149 _{Nd}	211.3	1.728 (1)h
153 _{Sm}	103.2	46.70 (5)h
159 _{Gd}	363.5	18.479 (4)h
161 T b	25.7	6.8985(5)d
	48.9	
_	74.6	
165 _{Dy}	94.7	2.334 (1)h
166 _{Ho}	80.6	26.827 (5)h

GERMAN DEMOCRATIC REPUBLIC

Laboratory and adress:	Zentralinstitut für Kernforschung Rossendorf DDR – 8051 Dresden, Postfach 19	
Names:	K. Dietze, H. Kumpf, B. 8öhmer	
Facilities:	Fast-thermal coupled systems RRR/SEG-IV, -V and -VII characterized by an energy-independent adjoint flux	
Experiment:	Integral test of FPND by C/E-ratios	
Method:	Measurements of central reactivity worths of isolated and mixed fission products by means of pile-oscillator technique Measurements of mass dependence and extrapolation to infinitely small mass values Determination of flux-weighted effective absorption cross sections relative to 108 Generation of ABBN-group data Integral test of the absorption data by C/E-ratios, especially of resonance self-shielding factors, Comparison of different FPND	
Samples:	Natural mixtures of Mo, Cd Isolated isotopes 93 _{Nb} , 95, 97, 98, 100 _{Mo,} 103 _{Rh,} 105 _{Pd,} 109 _{Ag,} 133 _{Cs,} 143, 145 _{Nd,} 149 _{Sm,} 153 _{Eu}	
Accuracy:	∆ k/kø10 ⁻⁸ , ± 8 - 15% in C/E-ratios	
Completion:	RRR/SEG-IV and -V: completed Further, improved investigations are planned 1990/91 the facility RRR/SEG-VII characterized by an extremly soft spectrum, an energy-independent adjoint flux and Kenear 1	
Discrepancies to ot	her reported data: Discrepancies have been stated for different materials and data sets	
Publications:	 K. Dietze et al., Kernenergie 28 (1985) p. 75 K. Dietze et al., Kernenergie 29 (1986) p. 401 V. I. Golubev et al., Yadernye Konstanty 1 (1986) 68 B. Böhmer et al., Int. Conf. on Neutron Physics, Kiev, Sept. 1987, Proc. (1988) Vol. I, p. 342 E. Lehmann et al., Kernenergie 29 (1986) p. 30 E. Lehmann et al., ZfK-656, 1988 K. Dietze et al., Kerntechnik 53/2 (1988) p. 143 S. M. Bednjakov et al., Atomnaya Energiya (in press) K. Dietze, H. Kumpf, Kernenergie (in press) 	

Germany, Fed. Rep.

Germany, Fed. Rep.

Laboratory:	Kernforschungsanlage Jülich, Institut für	Laboratory:	Universität Mainz, Institut für Kernchemie,
	Kernphysik, Postfach 1913, D-5170 Jülich		Postfach 3980, D-6500 Mainz
			Kernforschungsanlage Jülich, Institut für
Names:	M.L. Stolzenwald, G. Lhersonneau, S. Brant, G.		Kernphysik, Postfach 1913, D-5170 Jülich
	Menzen, K. Sistemich		
		Names:	G. Lhersonneau, B. Pfeiffer, KL. Kratz,
Facilities:	Fission product separator JOSEF (Reactor		H. Ohm, K. Sistemich
	DIDO, Jülich)		
		Facilities:	Fission product separator OSTIS (High Flux
Experiment:	Identification of an 8 ⁺ state in ⁹⁸ Zr with the		Reactor, Grenoble)
	probable configuration $\pi g_{3/2}$ and assignment of		
	spin and parity 8 ⁺ to the B decaying isomer in	Experiment:	Discovery of shape coexistence in ⁹⁷ Sr through
	96Y.		the identification of a rotational band built on an
			excited state at 585 keV.
Method:	Separation of the fission products according to		
	their masses and nuclear charges. Measurements	Method:	Separation of fission products according to their
	of $\gamma - \gamma$ coincidences and angular correlations.		mass. Measurement of $\gamma - \gamma$ -time coincidences
Accuracy:		Accuracy:	
Completion:	completed	Completion:	completed
Publication.	7 Physic A Atomic Nuclei 227 (1087) 250	Publication	7. Physik A_Atomic Nuclei 330 (1088) 247
I UDICATION.	2. F HYBIE A-AWINIC HUGGEI 527 (1987) 559		2. I LYSIK A-ACOMIC IVICIEI 550 (1900) 541

Germany, Fed. Rep.

Germany, Fed. Rep.

Laboratory:	Kernforschungsanlage Jülich, Institut für	Laboratory:	Universitāt Mainz, Institut für Kernchemie,
	Kernphysik, Postfach 1913, D-5170 Jülich		Postfach 3980, D-6500 Mainz
			University of Zagreb, Prirodoslovno-
Names:	G. Molnár (on leave of absence from the		matematicki facultet, Marulicev trg. 19,
	Institute of Isotopes, Budapest/Hungary), H.		YU-41000 Zagreb/Yugoslavia
	Ohm, G. Lhersonneau, K. Sistemich		Kernforschungsanlage Jülich, Institut für
			Kernphysik, Postfach 1913, D-5170 Jülich
Facilities:	Fission product separator JOSEF (Reactor		
	DIDO, Jülich)	Names:	G. Lhersonneau, S. Brant, H. Ohm, V. Paar,
			K. Sistemich, D. Weiler
Experiment:	Determination of the lifetimes of the $3_{\overline{1}}$ state at		
	1897 keV in ⁹⁸ Zr. Evidence for unusual	Facilities:	Fission product separator JOSEF (Reactor
	collectivity of the $3_1 \rightarrow 0_1^*$ transition and for		DIDO, Jülich)
	doubly magic character of this nucleus.		
		Experiment:	Study of the level structure of 93/94Rb through
Method:	Separation of the fission products according to		$\gamma - \gamma$ coincidences and IBFM/IBFFM
	their masses and nuclear charges. Measurements		calculations.
	of delayed $\gamma - \gamma$ coincidences with Ge-detectors.		
		Method:	Separation of the fission products according to
Accuracy:	50 %		their masses and nuclear charges. Calculations
4			using ⁹⁴ Sr as IBM core and parameters
Completion:	completed		developed through extensive study of the A~100
			region.
Publication:	Z. Physik A-Atomic Nuclei 331 (1988) 97		
		Accuracy:	
		Completion:	completed
		Publication:	Z. Physik A-Atomic Nuclei 333 (1989) 1
			2. Physik A-Atomic Muclei 334 (1989) 259

GERMANY, FED. REP.

(cont'd)

LABORATORY:	Kernforschungszentrum Karlsruhe GmbH	2. NAMES:	F. Käppeler, W.R. Zhao, H. Beer, U. Ratzel
	Institut für Kernphysik Postfach 3640	FACILITIES:	3.75 MV van de Graaff
	D-7500 Karlsruhe	EXPERIMENT:	Measurement of the Maxwellian Average
	Federal Republic of Germany		Neutron Capture Cross Sections of 88Sr and 89Y at kT = 25 keV.
1. NAMES:	N . Klay, F. Käppeler		And starting of this complete in a set way to fille
FACILITIES:	High Flux Reactor, ILL, Grenoble	Method:	Activation of thin samples in quasi Maxwellian neutron spectrum of $kT = 25$ keV; counting of
EXPERIMENT:	Measurement of beta branch in the decay of the isomer ^{79m} Se.		induced activities via electrons from beta decay in a 4π Si(Li) spectrometer; neutron flux determined by simultaneous activation of ¹⁹⁷ Au samples.
Method:	Production of ^{79m} Se by irradiation of ultraclean ⁷⁸ Se sample in high flux reactor; detection of electrons from beta decay via mini-orange spectrometer; deduced log ft for beta decay of ^{79m} Se.	ACCURACY:	3.0 and 3.2% for the cross section of ⁸⁸ Sr and ⁸⁹ Y, respectively.
ACCURACY:	± 2% for log ft value	COMPLETION DATE:	May 1989
COMPLETION DATE:	December 1987	DISCREPANCIES TO OTHER REPORTED DATA:	No serious discrepancies to existing data, but uncertainties reduced by factors of ~ 3 to 5.
DISCREPANCIES TO OTHER REPORTED DATA:	No other data available.	PUBLICATIONS:	Submitted to the Astrophysical Journal

PUBLICATIONS: N. Klay, F. Käppeler, Phys. Rev. C38 (1988) 295

.

	GERMANY, FED. REP.		GERMANY, FED. REP.
	(cont'd)		(cont'd)
3. NAMES:	K.A. Toukan, F. Käppeler	4. NAMES:	K. Wisshak, F. Voß, F. Käppeler, G. Reffo
FACILITIES:	3.75 MV Van de Graaff	FACILITIES:	Pulsed 3.75 MV Van de Graaff
EXPERIMENT:	Measurement of the Maxwellian Average Neutron Capture Cross Sections of 94 Zr and 96 Zr at kT = 25 keV.	EXPERIMENT:	Neutron Capture Cross Section Measurements of ⁹³ Nb and ¹⁰³ Rh in the Energy Range from 3 to 200 keV.
Method:	Activation of metal foils in quasi Maxwellian Neutron Spectrum of $kT = 25$ keV; counting of induced activities via characteristic gamma-rays; neutron flux determined by simultaneous activation of ¹⁹⁷ Au foils.	Method:	Continuous neutron spectrum produced via ⁷ Li(p,n) reaction. Time of flight determination of neutron energy (flight path 77 cm). Capture events are detected by a $4n$ BaF ₂ detector with ~ 100% efficiency for gamma-rays up to 10 MeV, 7% energy resolution
ACCURACY:	3.8 and 4.7% for 94Zr and 96Zr, respectively.		at 2.5 MeV, and 500 ps time resolution. Measure- ments are performed relative to a gold standard.
COMPLETION DATE:	March 1989	ACCURACY:	Statistical accuracy \sim 1% for 20 keV wide energy bins, systematic uncertainty \sim 0.8% for the cross section ratio.
DISCREPANCIES TO OTHER REPORTED DATA:	No serious discrepancies for ⁹⁴ Zr but up to a factor of 4 in case of ⁹⁶ Zr; uncertainties reduced by factors 2 to 5.	COMPLETION DATE:	Data evaluation completed
PUBLICATIONS:	K.A. Toukan, F. Käppeler The Astrophysical Journal (in press)	DISCREPANCIES TO OTHER REPORTED DATA:	15 and 25% difference to the ⁹³ Nb and ¹⁰³ Rh cross section reported by Macklin (Nucl. Sci. Eng. 59 (1976) 12), and Macklin and Halperin (Nucl. Sci. Eng. 73 (1980) 174), respectively.
		PUBLICATIONS:	in preparation

(cont'd)

5. NAMES: FACILITIES:	H. Beer, G. Walter, F. Käppeler 3.75 MV Van de Graaff	Laboratory and address:	Physikalisch-Technische Bundesanstalt Bundesallee 100, D-3300 Braunschweig
EXPERIMENT:	Measurement of the ¹¹⁶ Sn capture cross section between 3 and 200 keV.	Names:	K. Debertin, H. Schrader, K. F. Walz
		Facilities:	Ionization chamber; Ge(Li) spectrometer
Method:	Continuous neutron energy spectrum from the 7Li(p,n) reaction. Enriched 116Sn (98%) metal sample. Capture events detected by 2 C ₆ D ₆ detectors of 1 ℓ volume with pulse height weighting. Neutron energy determination by time-of-flight, 1.5 ns/m resolution;	Experiment:	Determination of half-lives of 85 Kr, 90 Sr, 99 Mo, 99 Tc ^m , 125 Sb, 131 I, 133 Xe, 140 _{Ba} , 140 _{La} , 144 _{Ce} , 152 _{Eu} , 154 _{Eu} , 155 _{Eu} .
	¹⁹⁷ Au sample used as standard.	Method:	The decay of the radioactive substance in a source is followed over a period of
ACCURACY:	5.4% for Maxwellian average at kT = 30 keV		several half-lives.
COMPLETION DATE:	1988	Accuracy:	0.1% to 0.01% (1 σ)
		Completion date:	partly completed,
DISCREPANCIES TO OTHER REPORTED	Good agreement with previous measurement by Macklin and Gibbons 1967, Phys. Rev. 159 , 1007,		bareri ovântvâ
DATA:	but uncertainty reduced by factor 4.	Publication:	K. F. Walz, K. Debertin and H. Schrader:
PUBLICATIONS:	Astron. & Astrophys. 211, 245 (1989)		Half-Life Measurements at the PTB. Intern. J. Appl. Rad. Isotopes 34 (1983) 1191 - 1199

GERMANY, FED. REP.

Laboratory	Physikalisch-Technische Bundesanstalt	Laboratory	Physikalisch-Technische Bundesanstalt
and address:	Bundesallee 100, D-3300 Braunschweig	and address:	Bundesallee 100, D-3300 Braunschweig
Names:	U. Schötzig	Names :	H. Schrader
Facilities:	Ge(Li), HPGe and Si(Li) detectors carefully efficiency-calibrated.	Facilities:	Two photon detectors with thin NaI(Tl) crystals connected to coincidence electronics
<u>Experiment:</u>	Determination of the photon-emission probabilities per decay of ⁸⁹ Sr and ¹⁴⁷ Pm (and of other non-fission product nuclides)	Experiment:	Standardization of ¹²⁹ I by a tracer method with poton-photon coincidences from the decay of ¹²⁵ I
Method:	Measurement of photon emission rates of sources, whose activities have been determined with absolute methods.	Method:	A tracer method for activity measurements has been elaborated using mixed samples of 129_{I} and 125_{I} , both radionuclides emitting photons with rather similar energies from
Accuracy:	1.4% to 7% (for very weak transitions)		about 27 to 40 keV.
Completion date:	Completed	Accuracy:	2 % (estimated relative standard deviation for the activity, mainly due to systematic
Publication:	U. Schötzig: Photon emission probabilities of 44_{Ti} , 65_{Zn} , 88_{Y} , 89_{Sr} , 147_{Pm} , 204_{Tl} and 210_{Pb} ;		uncertainties)
	Nucl. Instr. Meth. Phys. Res. A <u>286</u> (1990) 523	Completion date:	Method completed, several standardizations ongoing
		Publication:	H. Schrader: Standardization of ¹²⁹ I by a Tracer Method with Photon-Photon Coincidences from the Decay of ¹²⁵ I. To be published in Appl. Rad. Isot. (1989/90)

Laboratory and Address:	Institut für Metallphysik und Nukleare Festkörperphysik Technische Universität Braunschweig Mendelssohnstr. 3 D-3300 Braunschweig			
Names:	V. Keyser, F. Hünnich			
Facilities:	On-line wass separators LOHENGRIN and OSTIS, installed at the high-flux reactor of the TLL, Grenoble, France and CERN-1SOLDE II, Geneva, Switzerland			
Experiments:	 Determination of β-decay energies of very neutron rich isotopes available from fission and spallations of ²³⁵U and ²³⁹Pu 			
Method:	$\beta\gamma\text{-Coincidence measurements with a plastic-scintillator telescope.}$			
Accuracy:	ΔE between 50 keV and 150 keV, depending upon the complexity of the decay scheme.			
Completion date:	Systematic investigation			
Puhlications:	Experimental β-Decay Energies of Very Neutron-Rich Light Fission Products; Proc. Int. Conf. Nucl. Data Basic and Applied Science, Eds. P.G. Young et al., <u>Vol.1</u> , 713 (1985) +)			
	β-Decay Energies of Neutron-Rich Nuclei in the Mass Region 142≨A≨150; Z. Physik <u>A324</u> , 15 (1986) #)			
	Nuclear Structure Effects in the Mass Region Around A=100, Derived from Experimental Q_β -Values; Z. Physik <u>A327</u> , 383 (1987) +)			
	β -Decay Energies and Systematics of Nuclear Structure Effects; 5th Internat. Conf. on Nuclei Far from Stability; Eds. I.S. Tower, AIP Conf. Proceeding <u>164</u> , 30 (1988)			
	Experimental β-Decay Energies of ^{91,92} Br; Nucl. Phys. <u>A491</u> , 373 (1988) **)			
	Experimental β-Decay Energies of Very Neutron-Rich Fission Products with 107≼A≤109; Z. Physik <u>A334</u> , 239 (1989) ++)			
+) 90 _{Br,} 101-103	Zr, 101-105 _{Nb,} 103-106 _{Мо,} 104-106 _{Тс}			
#) 146 _{Cs,} 146,14	7 _{Ba,} 146,147 _{La,} 147 _{Ce}			
**) 91,92 _{Br,} 91,92 _{Kr}				
(++) 107 _{Mo.} 107-109 _{Tc.} 107-109 _{Ru.} 108 _{Rh}				

Laboratory and address: Physik-Department Technische Universität München D 8046 Garching Names: T. von Egidy, J. Klora, H. Lindner, U. Mayerhofer collaboration with ILL, Grenoble, University of Göttingen and others Facilities: Q3D spectrograph at the Munich Tandem Accelerator (n,γ) facilities at the ILL, Grenoble Experiments: (n,γ) , (d,p), (d,t)-Publications: 1) M. Bogdanovic, R. Brissot, G. Barreau, K. Schreckenbach, S. Kerr, H.G. Börner, I.A. Kondurov, Yu. E. Loginov, V.V. Martynov, P.A. Sushkov, T. von Egidy, P. Hungerford, H.H. Schmidt, H.J. Scheerer, A. Chalupka, W. Kane, G. Alaga Nucl. Phys. A470 (1987) 13 The level scheme of ¹³⁴Cs 2) Ch. Winter, B. Krusche, K.P. Lieb, T. Weber, G. Hlawatsch, T. von Egidy, F. Hoyler Nucl. Phys. A 473 (1987) 129 Spectroscopy of ⁸⁸Sr with the ⁸⁷Sr (n, γ) and ⁸⁷(d, p) reactions 3) Ch. Winter, B. Krusche, K.P. Lieb, S. Michaelsen, G. Hlawatsch, H. Lindner, T. von Egidy, F. Hoyler, R.F. Casen Nucl. Phys. A 491 (1989) 395 Level structure of ⁸⁹Sr investigated with thermal and fast neutron capture and the (d,p) reaction 4) S.L. Sakharov, I.A. Kondurov, Yu. E. Loginov, V.V. Martynov, A.A. Rodinov, P.A. Sushkov, Yu. L. Khazov, A.I. Egorov, V.K. Isupov, H.G. Börner, F. Hoyler, S.A. Kerr, K. Schreckenbach, G. Hlawatsch, T. von Egidy, H. Lindner Nucl. Phys. A 494 (1989) 36 Low-lying 130 I excited states from the (n, y) reactions 5) H.H. Schmidt, P. Hungerford, T. von Egidy, H.J. Scheerer, H.G. Börne S.A. Kerr, K. Schreckenbach, F. Hoyler, G.G. Colvin, A.M. Bruce, R.F. Casten, D.D. Warner, I.L. Kugava, V.A. Bondarenko, N.D. Kramer, P.T. Prokofjev, A. Chalupka Nucl. Phys. A, 504 (1989)1

GERMANY, FED. REP.

Nuclear Structure of 163 Dy studied with (n, γ), (n, n' γ), (d, p) and (d,t) reactions

23

Laboratory:	Institut für Kernchemie	
	Universitāt Mainz	
	Postfach 3980, D-6500 Mainz, Germany	
	Tel.: 06131-395879, Fax: 06131-395253	
	BARN: DENSCHLA at DMZNAT51	

1.

Names:	A. Srivastava, H. O. Denschlag		
Facilities:	TRIGA Reactor, this institute		
Experiment:	Nuclear charge distribution in the reactor induced		
	fission of *32 Th: Fractional cumulative yields of		
	the isotopes of krypton and xenon		
Method:	Emanation method of fission rare gases through a		
	layer of Mg-stearate into an evacuated volume		
	during reactor irradiation followed by		
	radiochemical isolation of the descendents.		
Accuracy:	5 %		
Completion:	Completed		
Publication:	Radiochimica Acta <u>46</u> , 17-21 (1989)		

2.

Names:	R. Hentzschel, H. O. Denschlag			
Facilities:	TRIGA Reactor, this institute			
Experiment:	: Isomeric yield ratios of 134I and 136I and			
	independent fractional yields of some halogen			
	isotopes in the fission of 232Th with reactor			
	neutrons			
Method:	Rapid chemical separation of the fission iodine and			
	- bromine from precursors and from other fission			
	products			
Accuracy:	5 %			
Completion:	Completed			
Publication:	R. Hentzschel, Diplomarbeit, Mainz (1989),			
	submitted to Radiochimica Acta			

GERMANY, FED. REP.

(continued)

3.	· ·
Names:	U. Güttler, P. Stumpf, H. O. Denschlag (Univ.
	Mainz), and H. Faust (ILL, Grenoble)
Facilities:	LOHENGRIN mass separator for unslowed fission
	products at the Institut Laue-Langevin, Grenoble
Experiment:	Determination of mass yields and charge distribu-
	tion of very light fission products in the reaction
	²⁴¹ Am(2n,f) and of mass yields in the symmetric
	region of this reaction at various kinetic energies
	of the fission fragments.
Method:	Mass separated fission products are stopped in a
	large ionization chamber that provides a signal of
	the total fragment energy and - in the case of Z
	identification - of the specific energy loss.
Accuracy:	A few percent
Completion:	Experimentally completed
Publication:	Two PhD-theses in preparation (U. Güttler and P.
	Stumpf), publication planned.

4.

Names:	W. Ditz, H. O. Denschlag (Univ. Mainz), and H.			
	Faust (ILL, Grenoble)			
Facilities:	LOHENGRIN mass separator for unslowed fission			
	products at the Institut Laue-Langevin, Grenoble			
Experiment:	Determination of mass yields and charge distribu-			
	tion of very light fission products in the reaction			
	²³⁹ Pu(n: , f) at various kinetic energies of the			
	fission fragments.			
Method:	See above (Experiment No. 3)			
Accuracy:	A few percent			
Completion:	To be experimentally completed in 1989			
Publication:	-			

- 5 Names: C. Lietz, H. O. Denschlag, W. Ditz, U. Güttler, B. Sohnius, P. Stumpf (Univ. Mainz) and H. Faust (ILL, Grenoble)
 - Facilities: LOHENGRIN Mass separator for unslowed fission products at Institut Laue - Langevin, Grenoble
 - Experiment: Fission yields and isomeric ratios in 12 mass chains of ²³³U(n_{th},f) have been measured at various well defined energies of the fission fragments
 - Method: Fission fragments separated according to mass (resolution $M/\Delta M = 400$) and kinetic energy (resolution 2 MeV) are intercepted on a moving transport tape, carried continuously or discontinuously in front of a Ge(Li) γ -ray detector, and counted via the γ -rays emitted in their β -decay.
 - Accuracy: 10 %
 - Completion: Experimentally completed
 - Publication: C. Lietz, Diplomarbeit, Mainz (1985); Preliminary results in "Jahresbericht 1985" this institute and Report NEANDC(E)-272 U Vol. V, p. 33 and 36 (1986); publication planned.

- Sames: A. Srivastava, H.O. Denschlag, W. Ditz, U. Güttler, P. Stumpf (Univ. Mainz) and H. Faust (ILL, Grenoble)
 Facilities: LOHENGRIN Mass separator for unslowed fission
 - products at Institut Laue Langevin, Grenoble
 - Experiment: The isomeric yield ratios of 97 Y and 134 I in the reaction 239 Pu(n_{th},f) at various kinetic energies of the fission fragments were determined
 - Method: Mass separation (see contribution No. 1, above) Accuracy: 10 %
- Completion: Experimentally completed
- Publication: Jahresbericht 1986, this institute

GERMANY, FEDERAL REPUBLIC (continued)

7.

Names;	St. Hörner, H.O. Denschlag, H. Gabelmann,			
	K.L. Kratz, B. Pfeiffer (Univ. Mainz), and			
	H. Stöhlker (ILL, Grenoble)			
Facilities:	OSTIS mass separator, ILL (Grenoble)			
Experiment:	The fission yields and isomeric formation ratios of			
	the Indium isotopes 123-129 from ²³⁵ U(n _{th} ,f) were			
	determined			
Method:	γ-ray spectrometry after mass separation			
Completion:	experimentally completed			
Publication:	St. Hörner, Diplomarbeit, Mainz (1985); Preliminary			
	results in "Jahresbericht 1984" this institute and			
	Report NEANDC(E)-262 U Vol. V, p. 43 (1985);			
	publication planned.			

8.

Names;	St. Hörner, H.O. Denschlag, W. Ditz, U. Güttler,
	B. Sohnius, P. Stumpf (Univ. Mainz), H. Faust (ILL,
	Grenoble)
Facilities:	LOHENGRIN Mass separator for unslowed fission
	products at Institut Laue - Langevin, Grenoble
Experiment:	Isomeric formation ratios of 96 Y, 97 Y, and 98 Y in
	²³⁵ U(n _{th} ,f) were determined at various kinetic
	energies of the fission fragments.
Method:	Mass separation (see contribution No. 1, above)
Accuracy:	10 %
Completion:	Experimentally completed
Publication:	St. Hörner, Diplomarbeit, Mainz (1985); Preliminary
	results in "Jahresbericht 1984" this institute and
	Report NEANDC(E)-262 U Vol. V, p. 41 (1985);
	publication planned.

25

HUNGARY

Laboratory and address:	Institute of Experimental Physics Kossuth University P.O. Box 105 4001. Debrecen	LABORATORY AND ADDRESS	: Swami Jnanananda Laboratories for Nuclear Research, Andhra University, VISAKHAPATNAM - 530 003, INDIA. : M.V.S. Chandrasekhar Rao, N. Ven kateswara	
	Hungary		Rao, S. Bhuloka Reddy, G. Satyanarayana, D.L. Sastry, M.R. Iver and S.G. Sabasrabudhe	
Names :	S, Quichaoui, S. Juhész, M, Vérnagy			
	and J. Ceikai	FACILITIES	: CIRUS reactor, Bhabha Atomic Research centre, Bombay and Hp6e detector with a 4K microprocessor based MCA	
Facilities:	Cockcroft-Walton generator			
Experiment :	Measurement of the angular distribu-			
	tion of fission fragments from the	EXPERIMENT	: Measurement of anomalous conversion of 127	
	fast neutron induced fiseion of		Kev ES transition in LS	
	threshold, The anisotropy parameters	METHOD	: ^{134m} Cs was produced via ¹³³ Cs (n,γ) ^{134m} Cs reaction. The α _ν and of the 127.49 keV	
	were determined around 14 MeV,		(8	
Method:	Polycarbonate nuclear track detector		determined using the K X- ray peak to gamma peak and Intensity Balance methods, respectively	
	and Jumping spark counter		respectively.	
Acourary:	Refer to the table	ACCURACY	: Refer to the Table	
States:	Completed			
Table:	Nuclide E(MeV) Experimental anisotropy	STATUS	: Completad	
	14 12*0 09 1 441*0 055	TABLE	: α _K (exp.) = 2.24 ± 0.04 α _T (exp.) = 5.84±0.47 Κ	
	²³⁵ U 14,80±0,17 1,333±0,021		$\alpha_{\rm K}({\rm Th}_{-}) = 1735$ $\alpha_{\rm T}({\rm Th}_{-}) = 6.96$	
	14,12 [±] 0,08 1,528 [±] 0,055 238 _U 14,45 [±] 0,12 1,499 [±] 0,040 14,80 [±] 0,17 1,421 [±] 0,037		Theory =(17.611.4)% Theory =(16.1±6.7)%	
	237 14,12±0.08 1.375±0.025 14,45±0.12 1.276±0.026 14,80±0.17 1.232±0.020	PUBLICATION	: Z. Phys. A330 (1988) 161	
Publications:	S. Quichaoui, S. Juhász, M. Várnagy			
	and J. Ceikai			
	INDC /NDS/-146, 249 /1983/			
	S, Quichaoui, S, Juhász, M, Vérnagy			
	and J. Caikai			
	Acta Physica Hungarica			
	<u>64, 209–218 /1988/.</u>			

LABORATORY AND ADDRESS	: Swami Jnanana Research, Andh VISAKHAPATNAH	nda Laboratories for Nuclear ra University, - 530 003, INDIA.	LABORATORY AND ADDRESS	Radiochemistry Division Bhabha Atomic Research Centre Trombay, BOMBAY-400085, INDIA
NAMES	: G. Sree Krishn Rao, N. Venkat G. Satyanaraya S.G. Sahasrabu	a Murty, M.V.S. Chandrasekhar eswara Rao, S. Bhuloka Reddy, na, D.L. Sastry, M.R. Iyer and dhe	N AME S	T. Datta, S.P. Dange, S.K. Das, H. Naik, A.V.R. Reddy, B.S. Tomar, A. Goswami, Satya Prakash and M.V. Ramaniah
FACILITIES	: CIRUS react centre, Bombay microprocessor	or, Bhabha Atomic Research and HpGe detector with a 4K based MCA	FACILITIES	1. Class A Laboratory 2. HPGs detector and Multichannel Analyser
EXPERIMENT	: Measurement of 90m _y : 90m _y was pro reaction. The of the 479.53	479.53 keV M4 transition in duced via 89 Y (n, γ) 90m Y total_conversion coefficient keV (7 3) M4 transition	EXPERIMENT	Investigation of the influence of fragment nuclear structure and deformed shell effect on the scission configuration using angular momenta of fission fragments
ACCURACY	in was determi method. : Refer to the T	ned using the Intensity Balance able	METHOD	Fragment angular momente have been deduced from radiochemically determined independent isomeric yield ratios of the fission
STATUS	: Completed			fission of actinides and in SF of ²⁵² Cf.
TABLE	: a_(exp.)	= 0.099 ± 0.0013		
	α_(Th.) Deviation	= 8.078	ACCURACY	<u>+</u> 10% on angular momenta
	from Theory	= (1.82 ± 1.32)%	STATUS	The work is completed.
	Hindrance	= 10.29	PUBLICATIONS	
PUBLICATION	¥ J. Physics G <u>15</u> (1989) 1769	 Dependence of the angular momente of fission fragments on their nuclear structure, Radiochimica Acta <u>39</u>, 127~130 (1986). 	 Effect of shall closure proximity on fragment angular momenta in ²⁴¹Pu(n_{th},f), J. Radioanal. Nuclear Chem.Letters 10B(1986) 269
			 Influence of fission fragment nuclear structure on sciseion configuration in ²⁵²Cf(SF), Z. Physik A. Atomic Nuclei <u>324</u>, 81-85 (1986). 	 Fragment angular momentum in low and medium energy fission of ²⁴²pu, Z. Physik A. 327 (1987) 225.

LABORATORY AND ADORESS	Radiochemistry Division Bhabha Atomic Research Centre Trombay, BOMBAY-400085, INDIA	LABORATORY AND ADORESS	Radiochemistry Division Bhabha Atomic Research Centre Trombay, BOMBAY-400 085, INDIA
NAMES	A.G.C. Nair, A. Srivastava, A. Goswami, 8.K. Srivastava, S.K. Daa, 8.S. Tomar and Satya Prakash	N AME S	A. Ramaswami, N. Chakravarty, S.S. Rattan, R.J. Singh, Satya Prakash and M.V. Ramaniah
FACILITIES	1. Class A Radiochamical Laboratory 2. HPGe detector and Multichannel Analyser	FACILITIES	 Class A Radiochemical Laboratory
EXPERIMENT	Cumulative yield determination of Ru isotopes in fission of actinides		2. HP Ge Detactor and Multichannel Analyser
METHOD	Cumulative vielde of short-lived	EXPERIMENT	Nuclear charge distribution
	Ruthenium is otopes in the thermal		studies, Fractional cumulative
	neutron induced fiseion of ²³³ U,		yields in reactor neutron induced
	235, 239 U, Pu and Pu hava been		fission of ²³⁷ Np and Thermal neutron
	determined using a fast radio- chemical separation technique.		induced fission of ²⁴¹ Pu.
ACCUR ACY	<u>+</u> 10% on the yields	METHOD	Fast radiochemical separation and gamma-ray spectrometry
STATUS	The work is completed.		
PUBLICATIONS	 Cumulative yields of short- lived Ruthenium is otopes in 	ACCURACY	10 - 12% on the yields.
	the thermal neutron induced fieeion of ²³³ U, ²³⁵ U and	STATUS	Work on charge distribution study of 237 _{Np completed and of 241} Pu is
	²³⁹ Pu,		likely to be completed by end of
	J. Radioan <i>a</i> l. Nucl. Chem. Articles <u>91/1</u> (1985) 73 - 79.		1987.
	2. Cumulative yields of short- lived Ruthenium isotopes in the thermal neutron induced	PUBLICATIONS	1. Charge distribution studies in the reactor neutron induced fission of 277
	Fission of ²⁴¹ Pu, Radiochimica Acta <u>42</u> , 7 (1988).		^{23°} Np, DAE Radiochemistry and Radiation Chemistry Symposium, IIT, Kanpur, India (1985).
			 Charge distribution studies in the neutron induced fission of ²³⁷Np; Fractional cumulative yields of ¹³⁴Te, ¹³⁵I and ¹³⁸Xe, Radiochimica Acta 41 (1987) 9.

LABORATORY AND ADDRESS	Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, BOMBAY-400085, INDIA	LABORATORY AND ADDRESS	Radiochemistry Division Bhabha Atomic Research Centre Trombay, BOMBAY-400085, INDIA
NAMES	A.V.R. Reddy, S.B. Manchar, S.M. Deshaukh, T. Datta, P.P. Burte, Satya Prekash and M.V. Ramaniah 1. Clasa A Radiochemical Laboratory	NAMES	S.B. Manohar, A. Ramaswami, B.K. Srivastava, A.V.R. Reddy, A.G.C. Nair, G.K. Gubbi, A. Srivastava, S.S. Ratten and Satva Prakash
	2. 8% HP-Ge Detector Multichannel analyser	FACILITIES	Class A Radiochemical Laboratory HPGe detector and Multichannel Analyzer Variable Energy Cyclotron
EXPERIMENT	<pre>Isotopic yield distribution in the low energy fission of 252Cf(SF), 241Pu(n_{th},f), 245Cm(n_{th},f), 241Am(n,f), 232Th(n,f), 238U(n,f), 229Th(n_{th},f)</pre>	EXPERIMENT	Charge distribution studies: Determination of fractional cumulative yields of xenon, barium and cerium isotopes in low and medium energy fission
	Independent yields of Iodine isotopes are determined Y -spectrometrically after performing radiochemical separa- tions.	METHOD	The fractional cumulative yields of $137,138,139_{Xe}$, $139,140,141,142_{Ba}$ and $146,147_{Ce}$ in spontaneous fission of 252 , 22 , 134 , 135
A CCU RA CY	10 - 12% on the yields The work in ²⁵² Cf(SF), ²⁴¹ Pu(n _{th} ,f),		²³² Cf and of ³² Sr, ¹³⁴ Te and ¹³³ I in $238_{U}(\prec, f)$ have been determined using radiochemical separation and gamma spectrometric techniques.
	$^{241}Am(n,f)$, $^{229}Th(n_{th},f)$ and $^{245}Cm(n_{th},f)$	ACCURACY	<u>+</u> 10% on yield values
	is completed. Work in ²³² Th and ²³⁸ U is in progress.	STATUS	Work is completed
 PUBLICATIONS Part of the work on iodine yields in 252 Cf(Sr) was presented in the Symp. "Nuclear and Radiochamistry", B.H.U., Banaras, Indie (1981). Isotopic yield distribution of iodine in thereal meutron induced fixeion of 241Pu, International Symposium on Artificial Radioectivity, University of Poone, Pune, India (Jan. 1985). 	 Isotopic yield distribution of indine in the reactor neutron induced fission of 241As, DAE Radiochemistry and Radistion Chemistry Symposium, IIT Kanpur (1985). Isotopic yield distribution of iodine in thermal neutron induced fission of 245Cs, DAE Symposium on Radiochemistry and Radistion Chemistry, Tirupati, Indis (1986). 	PUBLICATIONS	 Nuclear charge distribution in spontaneous fission of ²⁵²Cf, International Conferences Fifty years Research in Nuclear Fission, Berlin, Germany (1989). Charge distribution study in alpha induced fission of ²³⁸U, Radiochemistry end Radiation Chemietry Symposium, IGCAR, Kalpakkam (1989) Cumulative yields of ahort-lived isotopes of Barium in the spontaneous fission of ²⁵²Cf, J. Radioanal. & Nucl. Chem. Articles <u>125</u>, 85 (1988)

LABORATORY AND ADDRESS	Radiochemistry Division Bhabha Atomic Research Centre Trombay, BOMBAY-400085, INDIA	LABORATORY AND ADDRESS	Radiochemistry Division Bhabha Atomic Research Centre Trombay, BOMBAY 400085, INDIA
NAMES	T. Datta, S.P. Dange, H. Naik, P.K. Pujari, B.S. Tomac, A. Goswami, S.K. Das, B.K. Srivastava, R. Guin, S.M. Sahakundu and Satya Prakash	NAMES	T. Datta, P.K. Pujari, B.S. Tomar, S.K. Das, A. Goswani, S.8. Manohar, H. Naik and Satya Prakash
FACILITIES	Class A Laboratory HPGe detector, Multiperameter/ Multichannel Analyzer Venichla Farany, Systema	FACILITIES	Class A. Laboratory, Surface barrier detectors, Multichannel Analyzer
		EXPERIMENT	Elemental yields of the fragments
EXPERIMENT	Investigationa on the influence of fragment nuclear structure, deformed shell effect on ecission configura-		have been determined in ²⁵² Cf(SF)
	tion and the effect of excitation energy as well as the fissioning nucleus on fragment angular momentum were carried out.	ME TH OD	Coincidence kinetic energy measure- ments have been determined using a pair of surface barrier detectors coupled to a multiperameter system. A model independent mass charge
METH DD	Fragment angular momenta have been deducad from tha radiochemically determined independent isomer yield ratios of the fission products		correlation parameter was used to get the alemental yields of the fission fragments.
	in the thermal neutron induced fission of ²³⁵ U, ²³⁹ Pu, ²⁴⁵ Cm, SF of ²⁵² Cf end	ACCURACY	10–12% on yield values
	in the alpha induced fission of ²³⁸ U at various alpha energies.	STATUS	Work is completed.
ACCURACY	± 10% on angular momentum velues	PUBLICATION	A new approach to determine elementel yield, charge polariza-
STATUS	The work is completed.		fission, International Symposium on Nuclear
PUBLICATIONS	3. Influence of collective rotational		Physics, Physics and Chemietry of
1. Effect of shell closure proximi	ty degrees of freedom in medium energy		Fission, Gaussig, GDR (1988).
on fragment angular momente in ²⁴¹ Pu(n ₊₊ , f),	fission, Z. Phyaik A <u>330</u> , 103 (1988)		
J. Radipenal. Nucl. Chem. Lette 108, 269 (1987)	4. Fragment angular momenta in rs, alpha induced fission of ²³⁸ U,		
 Correlations of fission fragmen angular momentum with collectiv and intrinsic degrees of freedo Z. Physik A. <u>331</u>, 335 (1988) 	 Phys. Rev. C <u>38</u>, 1787 (1988). S. Effect of excitation energy on fission fragment angular momentum, Radiochemistry and Radiation Chemistry Symposium, IGCAR, Kalpakkam (1989) 		

Radiochemistry Division Bhabha Atomic Research Centre Trombay, BUMBAY-400085, INDIA	LABORATORY AND ADDRESS	Hadiochemistry Division Bhabha Atomic Research Centre Trombay, BOMBAY-400085, INDIA
Satya Prakash, S.B. Manohar, T. Datta, A. Goswami and S.P. Dange	NAMES	V.K. Bhargava, M.S. Oak, A. Ramaswami and Satye Prakash
Class A Laboratory HPGe Detector, Multichannel Analyzer, Variable Energy Cyclotron	FACILITIES	Class A Laboratory, HPGe Detector, Multichannel Analyzer
Angular distribution studies on the fission products have been carried out as a function of their masses in alpha induced fission of actinides.	EXPERIMENT	Absolute yield determination of ⁹⁹ Mo and ¹³² Te in spontaneous fission of ²⁵² Cf
Angular distribution of fission fragments has been measured in varying energy alpha induced fission of ²³² Th, ²³⁸ U and ²³³ U using recoil catcher and gamme spectrometric technique	ME THOO	Absolute yielde of ⁹⁹ Mo and ¹³² Te have been determined in the spontaneous fiseion of ²⁵² Cf using solid state track detector cum gamma spectrometric technique
	ACCURACY	🛨 10% on yield
<u>+</u> 10% on anisotropy values	STATUS	Work completed
The work is in progress.		1. Absolute vields of fission
 Radiochamical investigation on mass resolved angular distribu- tion of fragments in medium energy fission, International Symposium on Nuclear Physics; Physics and Chemistry of Fission, Gaussig, GDR, 1988. Mass resolved fragment angular distribution in alpha induced fission of ²³⁸U, Radiochemistry and Radiation Chemistry Symposium, IGCAR, Kalpakkam, 1989. 		products ⁹⁹ Mo and ¹³² Te in SF of ²⁵² Cf, Radiochemistry and Radiation Chemistry Symposium, Bombay (1988) 2. Absolute yields of ⁹⁹ Mo and ¹³² Te in spontaneous fission of ²⁵² Cf, Radiochimica Acta <u>46</u> , 177 (1989)
	 Radiochemistry Division Bhabha Atomic Research Centre Trombay, 80M8AY-400085, INOIA Satya Prakash, S.B. Manohar, T. Datta, A. Goswami and S.P. Dange Class A Laboratory HPGe Detector, Multichannel Analyzer, Variable Energy Cyclotron Angular distribution studies on the fission products have been carried out as a function of their masses in alpha induced fission of actinides. Angular distribution of fission fragments has been measured in varying energy alpha induced fission of 232Th, 238U and 233U using recoll catcher and gamme spectrometric technique ± 10% on anisotropy values The work is in progress. 1. Radiochemical investigation on mass resolved angular distribu- tion of fragments in medium energy fission, International Symposium on Nuclear Physics; Physics and Chemistry of Fission, Gaussig, GDR, 1988. 2. Mass resolved fragment angular di stribution in alpha induced fission of ²³⁸U, Radiochemistry and Radiation Chemistry Symposium, IGCAR, Kalpakkam, 1989. 	Hadiochemistry Division LABORATORY AND ADDRESS Bhabha Atomic Research Centre Trombay, 8008AY-400005, INDIA Setya Prakash, S.B. Manohar, NAMES T. Datta, A. Goswami and S.P. Dange FACILITIES Class A Laboratory FACILITIES HPCe Detector, Multichannel Analyzer, Variable Energy Cyclotron Angular distribution studies on the EXPERIMENT fission products have been carried Dut as a function of their masses in alpha induced fission of actinides. METHOD Angular distribution of fission METHOD fragmente has been measured in Varying energy alpha induced varying energy alpha induced ACCURACY ± 10% on anisotropy values STATUS The work is in progress. PUBLICATIONS 1. Radiochemical investigation on mass resolved angular distributition of fission, International Symposium on Nuclear PUBLICATIONS 1. Radiochemical Symposium on Nuclear Physics; Physics and Chemistry of fission, Gaussig, GDR, 1988. PUBLICATIONS 2. Mass resolved fragment angular distribution in alphe induced fission of ²³⁰ , Ratiochemistry and Radiation Chemistry Symposium, 16CRA, Kalpakkam, 1989. PUBLICAR

Laboratory and Address:	Department of Physics, Panjab University, Chandigarh-160014, INDIA.
Names:	Devinder Mehta, Surinder Singh, Harpal Kaur, Bakhshish Chand, M.L.Garg, H.R.Verma, Nirmal Singh, T.S.Cheema and P.N.Trehan.
Facilities:	A 28.27 mm ² x 5.0 mm planar HFGe detector and a 28.27 mm ² x 5.5 mm planar Si(Li) detector.
Experiment 1:	Precision measurements of X-ray and Gamma ray
	intensities in the decay of 137 Cs, 141 Ce, 170 Tm, 203 Hg.
Method:	K and L X-rays and gamma rays were measured using a coaxial HFGe detector (FWHM = 1.8 keV at 1332 keV used in energy ragion 80-1400 keV) a planar HFGe detector (FWHM 459 eV at 122 keV, used in energy region 20-400 keV) and a Si(Li) detector (FWHM 170 eV at 5.9 keV, used in energy region 4-90 keV). Efficiency calibration of these detectors was done using radioactive standard sources. Below 15 keV, efficiency of Si(Li) detector in a special annular source geometry was also deter- mined by measuring the K X-ray fluorescence yield from thin metallic foils of Ti, Cu, Se, Ge and Y excited by 22.6 keV photons and from the knowledge of K X-ray fluorescence cross-sections. Gamma ray inten- sities were corrected for summing.
Accuracy:	Errors are quoted in parantheses. (Table 1)
Completion date:	November 1986.
Discrepancies:	Different components of K and L X-rays in 141 Ce, 170Tm decays and only L X-rays in 137 Cs, 203 Hg decays have been measured for the first time. The X-ray and gamma ray intensities have been measured with much

Publications: 1. Devinder Mehta, Harpal Kaur, M.L.Garg, H.R.Verma, Nirmal Singh, T.S.Cheema and P.N.Trehan, Nucl. Instr. and Meth.A242 (1985) 149.

ones.

 Devinder Mehta, Surinder Singh, H.R.Verma, Nirmal Singh and P.N.Trehan, Nucl. Instr. and Meth. A254 (1987) 573.

better precision as compared to the earlier measured

3. Devinder MEHTA. Bakhshish CHAND, Surinder SINGH, M.L. GARG.

Nirmal SINGH, T.S. CHEEMA and P.N. TREHAN

Nuclear Instruments and Methods in Physics Research A260 (1987) 157-159

Table 1:	Relative	intensities	of X-rays	and gamma	ray :	in the
	decay of	137 _{Cs} , 170 _{Tr}	a, ¹⁴¹ Ce [°] a	and 203Hg.		

Ene (k	rgy eV)	Radiation	Relative intensity (%)		Energy (keV)	Rediction	Relative intensity (%)
137 Cs 3. 4. 4. 5. 32 36 37 66 170 m 6. 7. 8. 9. 48 55 57 51 52 59 60 78	956 466 829 531 .006 .343 .255 1.7 49 35 44 73 .83 .60 .20 .35 .39 .39 .39 .59	L ₁ L ₄ , η L ₄ L ₇ K ₄ , 2 K ₅ , 2 Y L ₁ L ₇ Er-K ₄ , 2 L ₇ Er-K ₄ , 2 Er-K ₄ , 2 L ₇ Er-K ₄ , 2 Er-K ₄ , 2 Er-Y	0.0160(14) 0.558(22) 0.449(18) 0.055(3) 6.85(11) 1.31(2) 0.321(7) 100.0(10) 2.38(7)* 57.3(17)* 60.3(18)* 9.74(31)* 2.84(6) 0.63(2) 0.145(6) 37.7(9) 68.0(17) 21.45(32) 5.33(9) D.150(20)	¹⁴¹ Ce 203 _{Hg}	5.03 5.52 5.85 6.33 35.55 36.03 40.70 41.80 145.5 8.952 10.257 10.993 12.212 14.290 70.833 72.874 82.344 84.865 279.2	Lα,η Lβ ₁ , 3, 4 Lβ ₂ Lγ Kα ₂ Kα ₁ Kβ ² γ Lη Lβ Lγ Kα ₂ Kα ₁ Lβ Lγ Kα ₂ γ	1.54(5) 1.17(4) 0.21(1) 0.24(1) 25.4(4) 4.87(9) 1.19(2) 100.0(10) 0.162(8) 3.31(13) 0.0519(24) 3.45(13) 0.685(27) 4.69(7) 7.92(12) 2.71(6) 0.776(16) 100.0(12)

* These results also include L X-ray of Er whose contribution is expected to be less than 1%.

(cont'd)

Names:	Bakhshish Chand,Jatinder Goswamy,Devinder Mehta,Surinder Singh,M.L.Garg,Nirmal Singh and		
	P.N.Trehan.		
Facilities:	A 96.0cc coaxial HPGe .a 28.27mm x 5.0mm		
	vertical planar HPGe and a 28.27mm x 5.5mm Si(Li) detectors.		
Experiment 2:	Precision measurements of K X-rays and Gamma ray intensities in Ru-103,Ba-131,Cs-134and Ho- 166m decays.		
Method:	Same as described in experiment 1.		
Accuracy:	Errors as quoted in parantheses (Table 2)		
Completion date:	December 1987.		
Descrepancies;	The intensities of different components of K X- rays in Ru-103, Ba-131, Cs-134 and Ho-166m decays have been measure for the first time. The gamma ray intensities have been measured with much better precision as compared to the earlier measured values.		
Publication:	Bakhshish Chand, Jatinder GOswamy, Devinder Mehta, Surinder Singh, M. L. Garg, Nirmal singh and P. N. Trehan.		
	Nucl. Instr. and Meths. A273 (1988) 310.		

Table 2: Relative intensities of K X- and gamma rays of Ru-103 and Cs-134

Ru-103 Cs-134 Energy [keV] Relative intensities Energy Relative intensities [keV] Experimental Experimental (present) (present) 20.17 (K_a) 22.78 (K_p) 39.73 42.6 53.29 113.25 114.97 241.9 292.7 794 48 9.35(20) 1.92(4) 0.096(9) 0.0057(6) 0.487(11) 0.0039(8) 32.06 (K_e) 36.38 (K_p) 37.25 (K_p) 242.9 0.740(15) 0.142(4) 0.032(4) 0.0294(20) 326.4 0.0170(17) 0.01/0(1 1.52(2) 8.54(7) 15.75(3) 100.0(7) 475,4 563,3 569,3 604,7 0.0081(5) 0.0081(5) 0.0198(14) 0.0063(19) 0.333(5) 0.021(10) 0.0103(6) 0.379(4) 100.0(11) 0.0125(16) 294.98 317.8 357.4 443.8 497.1 514.6 557.1 567.9 610.3 0.954(11) 0.0031(1) 6.J3(5) 612.02 0.118(3) 0.0076(25) 651.7

INDIA

(cont'd)

Names:	Bakhshish Chand.Jatinder Goswamy,Devinder Mehta Nirmal Singh and P.N.Trehan.
Facilities:	Two 96.0cc and 57.0cc coaxial HPGE detectors, a 28.27mm x5.0mm vertical planar detector and two 28.27mm x5.5mm planar S1(Li) detectors.
Experiment 3 :	X-ray and gamma ray intensity measurements in I-131,Ho-166, Au-198 and Au-199 decays.
Method:	Same as described in experiment 1.
Accuracy:	Errors as guoted in parantheses (Table)
Completion date:	January, 1989.
Discrepancies:	The intensities of K and L X-rays in I-131 Ho- 166,Au-198,and Au-199 decays have been measured for the first time. The Gamma ray intensities have been determined with much better precision than the earlier measured values.
Publication:	Bakhshish CHAND, Jatinder GOSWAMY, Devinder MEHTA, Nirmal SINGH and P.N. TREHAN

Nuclear Instruments and Methods in Physics Research A284 (1989) 393-398

Energy	Radiation	Relative intensition		
[keV]		Present		
3.639	L	0.014 (2)		
4.109	L.	0.362 (22)		
4.416	Le	0.287 (18)		
5.039	L,	0.036 (3)		
29.667	κ.	5.15 (15)		
33.625	K _{βt}	0.913 (30)		
34.41	K'a.	0.210 (6)		
80.2	γ	3.26 (7)		
177.2	Ŷ	0.334 (6)		
232.2	Y	0.0039 (5)		
272.5	Y	0.0735 (18)		
284.3	۲	7.56 (8)		
295.8	Υ.	0.0022 (10)		
302.4	Y	0.0057 (8)		
318.1	Y	0.096 (2)		
324.8	۲	0.025 (3)		
325.4	۲	0.361 (5)		
358.4	Y	0.0304 (11)		
364.5	۲	100.0 (7)		
404.8	Y	0.066(2)		
502.9	Y	0.438 (5)		
636.9	Y	8.75 (9)		
542.7	۲	0.269 (5)		
722.9	Y	2.19 (2)		

JAPAN

JAPAN

Laboratory and	Linac Laboratory Tanan Atomic Energy Research Institute	Laboratory and address:
RUUL 635.	Tokai-mura, Naka gun, Ibaraki-ken, Japan	Japan Atomic Energy Research Institute
Names:	H. Mizumoto, M. Ohkubo, Y. Nakajima	Tokai-mura, Naka-gun, Ibaraki-ken 319~11, Japan
	M. Sugimoto, Y. Kawarasaki (JAERI)	Names: Yoshihiko Kaneko,Fujiyoshi Akino and Tsuyoshi Yamane
Facilitles:	Neutron time-of-flight spectrometer at the 120 MeV electron linear accelerator	Facility:
Experiment:	Average neutron capture cross section	Semi-Homogeneous Experiment Critical Assembly(SHE).
	measurements in keV region and resonance parameter measurements.	Experiment:
Detectors:	500 1 liquid scintillator tank and Moxon-Rae	Method: The delayed neutron data for thermal fission of ²³⁵ U was eval-
	neutron flux and transmission measurements.	uated through an indirect method based on the comparison
Flight paths:	47 m and 52 m for capture measurements	between measured and calculated values on the following three
	47 m, 56 m, 100 m and 190 m for flux and transmission measurements.	integral quantities for the SHE.
Resonance analys	tis: The Atta-Harvey area analysis code and the	Data 1: Inverse kinetic parameter, Λ/β_{eff} .
RESUMANCE GROAP	multi-level Breit-Wigner code SIDB Monte Carlo code CAFIT, TACASI and FANAC	Data 2:Central reactivity worths of Thorium, Natural uranium, and SHE fuel rods, ρ/β_{eff} .
(1) Samples:	Ba-135, Ba-137 and Ba-138 (nitrate and carbonate powder enriched to 79.04, 81.90 and	Data 3:Central reactivity worths of burnable poison rods,
	99.67%, respectively)	ρ/β _{eff} . The most muchable values for both of the offerting delegad
Energy regi	on: less than 300 keV dete: Maggurements are completed	ne most probable values for boin of the effective delayed
Publication	us: M. Mizumoto et al., Int. Conf. Nuclear Data	neutron precursors were determined from the condition that
	for Basic and Applied Science, Santa Fé, New Mexico, New 1985	the sum of the squared deviations of the ratios of calculated
n H	M. Mizumoto et al., J. Mucl. Sci. Technol. 25	to measured values from unity was minimized for the integral
(2) Sample:	s_{n-122} (Oxide powder enriched to 92.20%)	quantities.
(2) 5000255	Resonance parameters, DO, SO and R'	Accuracy:Delayed neutron fraction,
Energy Regi	on: from 1.5 up to 30 keV	β=0.00677±0.00008
Completion Publication	date: Completed hs: Y. Nakajima et al., Int. Conf. Nuclear Data	Under the assumption that the Keepin's energy spectra had not
	for Basic and Applied Science, Santa Fé, New	so large uncertainties that the resulting errors in $\boldsymbol{\beta}_{eff}$ were
	Hexico, Hay, 1965; Y. Nakajima et al., Annals of Nuclear Energy	negligibly small.
	17(1990)95	Completion date: February, 1988
<pre>(3) Sample:</pre>	Gd-155 and Gd-157 (Oxide powder enriched to	Descrepancies to other reported data:The evaluated value of $m{\beta}$ should be
1) Average	Senture eress sections : SO S1 and Fy	4.2% higher than value of Keepin's delayed neutron data. The
Energy	region: 1.1 to 235 keV	most probable λ values were not away from those for thermal
Accuracy	r: 6 to 9%	fission filed in the Keepin's delayed neutron data set.
2) Publicat	tion Y. Nakajima et al., Annals of Nuclear Energy 16(1989)589	Publication:
(A) Analyzis:	10(1)0))10)	"Evaluation of Delayed Neutron Data for Thermal Fission of
Publication	n: M. Mizumoto and M. Sugimoto	U-235 based on Integral Experiments at Semi-Homogeneous
	The influence of water absorption in samples for neutron capture cross section measurements, Nucl. Instrum. Methods. A282 (1989) 324	Experiment", J.Nucl.Sci.Technol., Vol. 25, No.9, p673(1988)

JAPAN

JAPAN

Laboratory	Research Reactor Institute, Kyoto University	Laboratory	Research Reactor Institute, Kyoto University
and address:	Kumatori-cho, Sennan-gun, Osaka, Japan	and address:	Kumatori-cho, Sennan-gun, Osaka, Japan
Names:	K. Okano and Y. Kawase	Names:	Y. Kawase and K. Okano
Facilities:	On-line mass separator(KUR-ISOL) installed	Facilities:	On-line isotope separator(KUR-ISOL) installed
	at 5 MW Kyoto University Reactor.		at 5 MW Kyoto University Reactor.
Experiment:	Gamma-rays and half-lives of 156 Pm and 156 Nd	Experiment:	Identification of a new isotope ¹⁵⁴ Pr
Method:	Gamma~rays and X-rays from mass separated	Method:	Gamma-rays and X-rays from mass separated
	isotopes were measured with a Ge(Li) and		isotopes were measured with a Ge(Li) and
	LEPS spectrometer.		LEPS spectrometers. A new isotope ¹⁵⁴ Pr
			has been identified by the mass number and
Accuracy:	Estimated errors of γ -ray energies are 0.1-		γ -ray and X-ray energies of the relevant
	0.3 keV. Errors of half-lives are 1-2%.		activity.
Completion date:	Measurements of singles spectra are completed.	Accuracy:	Estimated errors are about 5 %.
Publications:	Annu. Rep. Res. Reactor Inst., Kyoto Univ.,	Completion date:	The measurements of singles spectra are
	<u>22</u> (1989) 92	-	completed. Decay scheme studies are planned.
		Publications:	Z. Phys. A-Atomic Nuclei, 330(1988)231

<u>JAPAN</u>

KOREA

Laboratory	Department of Nuclear Engineering	Laboratory and	University of Yonsei Department of Physics 134 Shinohon-dong, Sudaemoon-gu	
and address:	Nagoya University,	Address:		
	Furo-cho, Chikusa-ku, Nagoya, 464-01 JAPAN		Seoul 120, Korea	
Names:	M. Shibata, H. Yamamoto, M. Miyachi, K.	Names:	W.M. Chung, J.K. Hwang, H.Y. Hwang +)	
	Kawade, T. Katoh, T. Tamai, S. Nishikawa,		+) Mokwon University	
	J. Ruan	Facilities:	Two HPGe detectors connected with the 2k M.C.A.	
Facility:	A 5 MW Kyoto University Reactor		and Cyber computer	
Experiments:	Decay of Nd-152	Experiment:	Determination of the multipole mixing ratios in	
Method:	The decay of 11.6 min Nd~152 to levels of	-	the 192 _{0s} , 192 _{pt} and 134 _{Ba} by $\gamma - \gamma$ angular correlation system	
	odd-odd Pm-152 has been studied with HpGe,			
	Ge(Li), LEPS and plastic scintillation	Method:	The γ -rays of 192 _{OS} , 192 _{Pt and 134_{Ba} following the 8-dense of 192_{Th} and 134_{Ca}}	
	detectors. Sources were prepared by the		were precisely measured by two HPGe detectors.	
	rapid chemical separation, called a radio		method the many multipole mixing ratios - and P(2) unique of these base such as a set of the set o	
	ion chromatography from the fission		determined.	
	products of U-235. Intensities of	Come Lablan Ashar		
	gamma-rays and half-lives of excite levels	completion date:	1987	
	were determined. A new decay scheme is	Publications:	1) W.H. Chung and H.Y. Hwang, J. Korean Phys.	
	proposed.		Soc. 22, 294 (1989)	
Accuracy:	Errors are less than 15 % for strong		 W.M. Chung, H.Y. Hwang, J.K. Hwang, K.K. Kw and K.S. Joo, J. Korean Phys. Soc. 20, 166 	
	gamma-ray intensities and 30 % for weak		(1987)	
	ones. Errors of half-life is about 1 ns.		 W.M. Chung, H.Y. Hwang, J.K. Hwang and G.H. Lee, J. Korean Phys. Soc. 20, 260 (1987) 	
Completion date:	April 1989			
Publication:	to be published in J. Phys. Soc. Japan			

SWEDEN

SWEDEN

(cont'd)

Laboratory and address:	University of Uppsala The Studsvik Neutron Research Laboratory, S-61182 NYKÖPING, Sweden	2. Experiment:	Total beta decay energies and atomic masses.
Names:	K Aleklett, B Ekström, B Fogelberg, L Jacobsson, P-I Johansson, E Lund, G Rud- stam, L Sihver, and L Spanier (University of Uppsala)	Method:	Beta particles are recorded in coincidence with gamma rays depopulating known levels in the daughter nucleus. The end-point energies of the beta spectra are determi- ned, and by adding the level energy the
	P Hoff and J Omtvedt (University of Oslo)		total beta-decay energies are obtained. The beta-particles are recorded in a planar
	G Skarnemark and O Tengblad (Chalmers University of Technology, Göteborg)		HPGe detector and the gamma rays in a standard coaxial HPGe detector. Recent results include data on ¹³⁰⁻¹³³ In, ¹³⁰⁻¹³⁴ Sn, ¹³⁰⁻
Facility:	The OSIRIS on line mass separator is used		¹³³ Sb and ¹¹³⁻¹¹⁵ Te.
	to extract selected nuclei from thermally fissioned "5U. A complete redesign of the	Completion date:	Indefinite for the experiment as such.
	ion source has been made in order to reach higher temperatures and thereby shorter delay times for the released fission	Publications:	B Fogelberg, Y Zongyuan, and L Spanier, Phys. Lett. <u>209B</u> (1988) 173.
	products. The new design has increased the production yields of many short-lived isotopes with factors of 10 ² -10 ³ .		L Spanier, K Aleklett, B Ekström, and B Fogelberg, Nucl. Phys. <u>A474</u> (1987) 359.
1. Experiment:	Characterization of and P, values for delayed neutron precursors.		
Method:	Simultaneous measurement of neutron and beta activities and a multiscaling mode.		
Completion date:	Indefinite for the P, studies as such.		

SWEDEN

(cont'd)

3. Experiment: Yields of products from thermal neutroninduced fission of ²¹⁵U.

> The activity of a fission product is determined by means of gamma spectroscopy and neutron counting of mass-separated samples. After correction for delay, counting efficiency, branching ratio and reactor power the result will be a product of the fission yield and the overall separation efficiency. The latter factor is nearly the same for all isotopes of a given element. Thus relative yields are directly obtainable and have to be normalized against the yield of one of the isotopes determined absolutely by any other technique. The new target and ion source system has had a considerable impact on the fission yield determinations and a rather comprehensive set of measurements has been made for the mass region A=75-158, providing improved data for a large number of short-lived fission products.

Completion date: The experiment is finished.

Publications: G Rudstam, B Ekström, and E Lund, "Independent Yield Pattern in Thermal Neutron-Induced Fission of ²³⁵U, Contribution to the conference "Fifty Years with Nuclear Fission", April 25-28, 1989, Gaithersburg.

> G Rudstam, P Aagaard, B Ekström, E Lund, H Göktürk, and H U Zwicky, "Yields of Products from Thermal Neutron-Induced Fission of ²³⁵U, Submitted to Radiochimica Acta.

SWEDEN

(cont'd)

4. Experiment Yields of fission products from fast fission of "U.

The Van de Graaff accelerator at Studsvik was used for the experiments which involve irradiation of ""U samples by fast neutrons and subsequent gamma-ray spectroscopy. Fast monoenergetic neutrons (2.3±0.1 MeV) were obtained by bombardment of a tritium target with protons.

Cumulative fission yields have so far been measured for 44 nuclides representing 24 mass chains in the mass regions 89-105 and 129-151. The next phase of the experiment will consist of the determination of independent yields using the OSIRIS isotope separator.

Completion date:

Method:

Indefinite for the experiment as such.

Method:

<u>SWEDEN</u>

(cont'd)

5. Experiment:	Gamma branching ratios for fission pro- ducts.	7. Experiment:	Study of the antineutrino energy spectrum in the vicinity of a nuclear reactor.
Method:	Gamma branching ratios for products induced in thermal-neutron fission of ²³⁵ U have been determined by simultaneous measurements of the beta and gamma activities. Measure- ments have been extended to include Pd isotopes with $A=113-116$, and Cd and In isotopes with $A=119-132$.	Method:	The aim of this investigation is to provide an experimental basis for the evaluation of the high-energy part of the antineutrino spectrum. The procedure is to choose those fission products which give the largest contributions to the antineutrino spectra in the range above 5 MeV for a measurement of the continuous beta spectrum from as low
Completion date:	Indefinite for the experiment as such.		energy as possible up to the end-point.
Publications:	B Fogelberg, Proceedings of the Inter- national conference on Nuclear Data for Science and Technology, Mito 1988 (ed. S Igarasi) p. 837.		antineutrino spectra. The technique is to measure an isotope separated sample with a telescope consis- ting of a thin plastic detector and a planar HPGe detector. The beta spectrum is
6. Experiment:	Nuclear spectroscopic studies of the decays of short lived fission products. Recent or current studies concern the decays of ¹¹³⁻ ¹¹⁶ Pd, ^{1138,1158} Ag, ¹³⁴ Sn, ¹³⁵ Sb, and ¹⁵⁶ Pm.		recorded when the telescope components are in coincidence mode and the gamma spectrum when they are in anticoincidence mode. Peaks in the gamma spectrum are used to evaluate the sample composition at any time
Publications:	B Fogelberg, E Lund, Y Zongyuan, and B Ekström, AIP Proceedings 164, ed. I S Towner (1988) p. 296.		The first experimental phase of this project has been carried out at the isoto- pe-separator-on-line facility ISOLDE at CERN. The second phase has been carried
	E Lund, B Ekström, B Fogelberg, and G Rudstam, ibid, p. 578.		out at OSIRIS using the conventional plasma ion-source and the third phase using the
	P Hoff, B Ekström, and B Fogelberg, Z Phys. <u>A332</u> (1989) 407.		As a byproduct of the antineutrino project the average beta energy is obtained for individual nuclides. These data are extremely important for evaluation of the

<u>SWEDEN</u>

(cont'd)

	SWEDEN (cont'd)		SWEDEN (cont'd)
	decay heat in nuclear fuel, and also useful for a systematic study of the behaviour of the beta strength function far away from	8. Experiment:	Determination of gamma spectra and average gamma energies for fission products.
	stability.	Method:	Gamma spectra have been measured for short- lived fission products using a large
Completion date:	1988.		NaI(Tl)-spectrometer. The samples were produced with the OSIRIS isotope separator.
Publications:	O Tengblad, K Aleklett, R von Dincklage, E Lund, G Nyman, and G Rudstam, "Integral $\overline{\nu}$ - Spectra Derived from Experimental β -Spectra of Individual Fission Products", Nucl. Phys. A 503 (1989) 136		The abundances of the various isobars in the sample were determined by means of gamma peaks recorded with a Ge(Li)-spec- trometer. Average gamma energies were deduced from the spectra.
		Completion date:	The experiment is finished (1989).
		Publications:	G Rudstam, K Aleklett, E Lund, O Tengblad, B Jonson, G Nyman, R von Dincklage, and P Hoff, "Average Beta Energies of Fission Products and their Use for Decay Heat Predictions", Contribution to the Specia- lists' Meeting on Data for Decay Heat Predictions, Studsvik, Sweden, 7th to 10th September, 1987 (1987).
			G Rudstam, P Aagaard, K Aleklett, O Teng- blad, B Jonson, G Nyman, R von Dincklage, and P Hoff, "Experimental Determinations of Average Beta and Gamma Energies and their Use for Decay Heat Predictions", Procee- dings of the International Conference on Nuclear Data for Science and Technology, May 30 - June 3, 1988, Mito, Japan (1988) p. 867.

0

SWEDEN

(cont'd)

G Rudstam, P-I Johansson, P Aagaard, and J Eriksen, "Average Gamma Energies Emitted per Decay of Individual Fission Products", The Studsvik Neutron Research Laboratory Report NFL-59 (1989).

G Rudstam, P-I Johansson, O Tengblad, P Aagaard, and J Eriksen, "Beta and Gamma Spectra of Short-Lived Fission Products", submitted to Atomic Data and Nuclear Data Tables (1989).

Laboratory and Address:	Institute of Physics Academia Sinica Nankang, Taipei 11529 Taiwan, R.O.C.
Names:	G.C. Kiang, L.L. Kiang (Nat'l. Tsing-Hua University), E.K. Lin, P.K. Teng, C.W. Wang.
Facilities:	3 MV NSC 9SDH-2 Pelletron, Anti-Compton γ-ray spectrometer, micro Vax II + CAMAC + Fast NIM data acquisition system, HpGe detectors, NaI(Tl) and Plastic crystals
Experiments:	In-beam Y-ray spectroscopy, Radioactivity
Methods:	The (p,γ) , $(d,p\gamma)$ and (n,γ) reactions are detected by HPGe, detector HPGe HPGe coincidence spectro- meter, and HPGe NaI(T1) anti-Compton spectrometer. Singles, coincidence spectra and directional correlation function are measure. The lifetime of excited states are measured by DSAM. To measure the γ -decay of the radioactive samples which are neutron-irradiated at Tsing-Hua University 1 MW Reactor.
Accuracy:	Typically, the total error is under 8%.
Publications:	1) G.C. Kiang, L.L. Kiang, P.K. Teng, G.C. Jon, T.H. Yuan and Y.M. Hsu, "The Structure of 15^4 Gd via the β -decay of 15^4 Eu Nucleus", Capture Gamma-ray Sepctroscopy 1987, p. 520, Proceedings of the Sixth Conference on Gamma- ray Spectroscopy held at Leuven, Belgium, from 31 August to 4 September 1987, Ed. by K. Abrahams and P. Van Assche.
	 L.L. Kiang, G.C. Kiang, P.K. Teng, G.C. Jon, T.H. Yuan and Y.M. Hsu, "Studies on the Level Structure of ¹⁵⁴Gd via the β-decay of ¹⁵⁴Eu Nucleus", Z. Phys. A-Atomic Nuclei 333, 19 (1989).
	3) L.L. Kiang, G.C. Kiang, P.K. Teng, E.K. Lin, T.H. Yuan, C.W. Wang, L.J. Lo and B. Chen, "Experimental Studies on the Excited States of ⁸² Kr Populated by the β-decay of 35h ⁸² Br", Nucl. Sci. J. 26 (1), 10 (1989).
	 D. Wang, K.K. Lin, G.C. Jon and C.W. Wang, "Gumma Transitions in ¹²⁴Te Following the β-decay of ¹²⁴Sb", Proc. Natl. Sci. Counc. ROC (A), Vol. 8, No. 4, 240 (1984).

TAIWAN

UNITED KINGDOM

ΤA	IW	AN
-		

Neasurements:		Laboratory:	IMPERIAL COLLEGE REACTOR CENTRE Silwood Park, Ascot, Berkshire
Laboratory and address:	Institute of Nuclear Science National Tsing Hua University Hsinchu 30043, TAIWAN R.O.C.		SL5 TE, England Telephone: 44-990-294290. Fax: 44-990-24931
Names:	Prof. Dr. Chien CHUNG	Names:	T.D. MAC MAHON, F. TAKRURI, M. HAMMED
Facilities:	1 MM Tsing Hua Open-pool Reactor	Experiment:	Neutron capture gamma ray spectroscopy of
EXPERIMENT:	CFY in 232 U(n _{th} ,f)		¹⁰⁰ Tc, ¹⁰⁴ Rh and ¹¹⁰ Ag
Method:	Direct, rapid multi-scaling gamma spectrometry	Method:	Capture gamma rays and conversion electrons emitted in the $99T_{C}(n x)100T_{C} = 103Rh(n x)104Rh$ and $109Ag(n x)110Ag$
Completion date:	1989.08.		reactions with thermal neutrons are studied using the BLL and
Discrepances to other reported data:	12 CFY measured the first time		Work carried out in collaboration with Leningrad Nuclear Physics Institute and KFA Julich.
Publications:	Radiochimica Acta 49 (1990) 113		Data from several experiments are combined to produce detailed
Contact:	Prof. Dr. Chien Chung	5 1 K	
	National Tsing Hua University Hsinchu 30043, TAIWAN R.O.C.	Publications;	1.A. Kondurov, Yu.E. Loginov, T.D. Mac Mahon, A. Osuma, P.A. Sushkov, "Internal electron conversion in the reaction ¹⁰³ Rh(n,γe)", Proc. XXXVIII Conf. on Nuclear Spectroscopy and Structure of Atomic Nuclei, Baku, U.S.S.R., April 1988.
			P.A. Sushkov, T.D. Mac Mahon, "Precise determination of the

P.A. Sushkov, T.D. Mac Mahon, "Precise determination of the energies and intensities of transitions from internal conversion electron data", Proc. Seminar on Questions of Precision in Nuclear Spectroscopy, Vilnius, U.S.S.R., May 1988.

UNITED KINGDOM

UNITED KINGDOM

Laboratory and Address:	Physics Department Radiation Center University of Birmingham P.O. Box 363 Birmingham B15 2TT	Laboratory and Address:	Physics Department Radiation Center University of Birmingham P.O. Box 363 Birmingham B15 2TT
Namos	D. P. Heaver, J. C. Over	Names:	H. Afarideh, K. Randle
dames.	D.R. WEAVEL, D.W. OWELL	Facilities:	3NV Dynamitron accelerator
Facilities:	3HV Dynamitron	<u>1. Experiment</u> :	Determination of fission yields following fast neutron fission in ²³⁸ U. Cumulative fission wields have been measured by direct samma-ray
Experiment:	Fast neutron induced delayed neutron yield and spectra measurements.		counting using a hyperpure Ge detector at neutron energies in the range 1.7 to 6 MeV. Neutron fluences were measured absolutely with a ²³⁸ U fission chamber of special design.
Method:	3-He spectrometers. Yield measurements use a precision long counter.	Completion Date:	Some work was completed in 1988. Further analysis of results in the 14MeV range is still in progress.
Accuracy:	A full covariance matrix is calculated.	Dub the shift so	Tab. Gast. on Nucleur Data for Balance and
Publication:	Proceedings of the Specialists' Meeting on Delayed Neutron Properties, Birmingham, September 1986, page 165 *)	Publication:	Int. Conf. on Nuclear Data for Science and Technology, Mito, Japan, 30 May-3 June 1988. Proceedings, page 987.
	International Conf. on Nuclear Data for Science and Technology, Mito, Japan, 30 May-3 June 1988. Proceedings, page 861. +)	<u>2. Experiment</u> :	Investigation of triton production in the ternary fission of 238 U using monoenergetic neutrons. Tritons (and alpha particles) are detected in a AE-E telescope arrangement and three-dimensional mass-energy spectra are produced via a Particle Identification Unit. Neutron energies in the range 2-4.5 MeV. Total fissions measured with a calibrated surface barrier detector. Applications for funding for a further phase are in hand.
*) U-235 (En = 0.5	- 2 MeV)	Accuracy:	Presently <u>+</u> 25%.
+) nat. U (dn total Pu-239 (energy s	l and group yield) spectrum)	Completion Date:	The work for the initial phase was completed in 1988.
		Publications:	Int. Conf. on Nuclear Data for Science and Technology, Mito, Japan, 30 May-3 June 1988. Proceedings, page 987.
			Ann. nucl. Energy <u>16</u> (1989) 313

UNITED KINGDOM

Laboratory and Address:	Physics Department Radiation Center University of Birmingham P.O. Box 363	Labroratory and address: Ames Laboratory-USDOE Iowa State University Ames, Iowa 50011		
	Birmingham B15 2TT	Names:	F.K. Wohn, John C. Hill, J.A. Winger and D.D. Schwellen- bach. (Contact person: Wohn)	
Names :	H. Afarideh, K. Randle, S.A. Durrani	Facilities:	mass separator TRISTAN on-line to High Flux Beam Reactor at Brookhaven National Laboratory (see also BNL contribution).	
<u>Experiment</u> :	Investigation of triton and α -particle production in the spontaneous fission of 252 Cf.	Experiments:	β and γ spectroscopy of decays of the fission products: 74,76 _{Cu} , 80 _{Zn} , 83 _{Ge} , 98,99 _{Rb} , 99-101 _{Sr} , 98,100-102 γ , 101Zr, 101 _{Nb} , 116,118,120 _{Ag} , 146 _{La} , 150 _{Ce} , 150 _{Pr} .	
Method:	The energy spectrum of α -particles in the ternary fission of 252 Cf has been determined by two independent methods and that of tritons by just one. In the first method, long range alpha (LRA) particles and tritons were identified by a AE-E telescope, which consisted of two surface barrier detectors mounted in front of a 252 Cf source. Here, the energy spectrum and the emission probability of both tritons and α -particles were determined. In the second, combinations of the cellulose nitrate plastic LR115 and various thicknesses of AI foil were used to measure the energy spectrum of LRA particles down to a 2 MeV cut-off.	<u>Methods</u> :	β , γ , and e ⁻ spectroscopy: β , γ and e ⁻ singles; γ and e ⁻ multiscaling; $\beta\gamma$ and $\gamma\gamma$ coincidences; $\gamma\gamma$ angular and per- turbed angular correlations; $\beta\gamma\gamma$ delayed coincidences. Detectors: BpGe, LEPS and Ge(Li) for γ ; HpGe and plastic for β ; Si(Li) for e ⁻ ; plastic, BaF ₂ and HpGe for $\beta\gamma\gamma$.	
		Accuracy:	γ and e ⁻ energies to 50-200 eV; γ intensities (relative or absolute) to 3-10%; β -decay lifetimes (by γ multiscaling) to 2-10%; level lifetimes (by delayed coin.) to <10 ps.	
		Completion date:	 published since Progress in Fission Product Nuclear Data No. 12: listed below. nearing completion: decays of ⁷⁶Cu, 101Zr, 102Y; level lifetimes in A≃100 nuclei. analysis in progress: decays of ⁹⁹Rb, 101Y, 101Nb. 	
Completion Date:	The work is completed.	Publications:*		
Publication:	Ann. Nucl. En. 15 (1988) 201	1. "Decay (Nucleos Piotrov	of ⁸⁰ Zn: Implications for Shell Structure and r-Process ynthesis," Winger, Hill, Wohn, Moreh, Gill, Casten, Warner ski and Mach, Phys. Rev. C <u>36</u> , 758 (1987).	
		 "Decay of ¹⁰⁰Sr and a 'Pairing-Free' K^π=1⁺ Rotational Band in Odd- Odd ¹⁰⁰Y," Wohn, Hill, Winger, Petry, Goulden, Gill, Piotrowski, and Mach, Phys. Rev. C <u>36</u>, 1118 (1987). 		
		 "Rotational Structure of Highly Deformed ⁹⁹Y: the 536-keV Band," Wohn, Phys. Rev. C <u>36</u>, 1204 (1987). 		
		 "Decay of ¹⁰¹Sr and the Rotational Structure of ¹⁰¹Y," Petry, Goul- den, Wohn, Hill, Gill and Piotrowski, Phys. Rev. C <u>37</u>, 2704 (1988). 		
		5. "Systema Wolf, G	atics of g Factors in Neutron-Rich 142,144,146 _{Ba} Isotopes," ill, Mach, Casten and Winger, Phys. Rev. C <u>37</u> , 1253 (1988).	

U.S.A.

(cont'd)

- "TRISTAN Research on Neutron-Rich Nuclei: Magnetic Moments and Nuclear Structure," Volf, Casten, Gill, Brenner, Mach, Hill, Vohn and Winger, in <u>Nuclei Far from Stability</u>, ed. I.S. Towner, AIP Conference Proceedings No. 164, p. 174 (1988).
- "Is the Region above ⁷⁸Ni Doubly Magic," Hill, Winger, Wohn, Gill, Piotrowski, Ji and Wildenthal, <u>ibid.</u>, p. 375.
- 8. "Test of the Singly Magic Character of the N=50 Isotone 83 As Populated in 83 Ge Decay," Winger Hill, Wohn, Gill, Ji and Wildenthal, Phys. Rev. C <u>38</u>, 285 (1988).
- 9. "Shape Coexistence and Mixing of Spherical and Deformed Shapes in the N=60 Isotones," Hill, Wohn, Petry, Gill, Mach and Moszynski, in <u>Nuclear Structure of the Zirconium Isotopes</u>, ed. by J. Eberth, R.A. Meyer and K. Sistemich, Springer-Verlag, p. 64 (1988).
- "Large Inertial Moments, Pairing Reduction and the Effects of Coriolis Mixing on Rotational Bands in Odd-Z Deformed A=100 Nuclei," Wohn, Hill, Petry and Gill, <u>ibid.</u>, p. 343.
- "Structure of Neutron-rich ⁷⁴Zn from ⁷⁴Cu Decay and Shell-Model Calculations for Even-A Nuclei," Winger, Hill, Wohn, Warburton, Gill, Piotrowski and Brenner, Phys. Rev. C <u>39</u>, 1976 (1989).
- "Picosecond Lifetime Measurements in ¹¹⁶,¹¹⁸,¹²⁰Cd and Structure of Normal and Intruder States," Mach, Moszynski, Casten, Gill, Brenner, Winger, Krips, Wesselborg, Buescher, Wohn, Aprahamian, Alburger, Gelberg and Piotrowski, Phys. Rev. Lett. <u>63</u>, 143 (1989).
- "Magnetic Moment of the 21⁺ State in ⁹⁸Sr," Wolf, Sistemich, Mach, Gill, Casten and Winger, Phys. Rev. C 40, 932 (1989).
- "Structure of Odd-Odd ⁷⁴Ga from the Decay of Neutron-Rich ⁷⁴2n," Winger, Hill, Wohn and Brenner, Phys. Rev. C 40, 1061 (1989).

*Colleagues involved with the Ames group in TRISTAN studies listed above, with their institutional affiliation at the time of these studies. Brookhaven National Laboratory, staff: D. Alburger, R.F. Casten, R.L. Gill, H. Mach, E.W. Warburton, C. Vesselborg Brookhaven National Laboratory, visitors: A. Gelberg, W. Krips, M. Moszynski, A. Piotrowski Clark University: D.S. Brenner, R. Schuhmann Drexel University: X. Ji, B.H. Wildenthal Kernforschungsanalge Jülich: M. Büscher, G. Molnar, K. Sistemich Lawrence Livermore National Laboratory: A. Aprahamian Negev Research Centre: Z. Berant, R. Moreh, A. Wolf University of Oklahoma: J.D. Goulden, R.F. Petry

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 U.S.A.

Authors: A. B. Smith, P. T. Guenther and S. Chiba*+

<u>Facilities:</u> Argonne National Laboratory 8 MeV tandem and associated time-of-flight facilities.

Experiment: Differential elastic— and inelastic—scattering cross sections of palladium were measured to incident neutron energies of 8 MeV. The results, with associated interpretations, indicate that the inelastic—scattering cross sections of the even—isotopes of palladium fission products, as given in prominent fission—product files, are too small by significant amounts. However, the inelastic scattering is predominantly due to statistical processes at energies of importance in fission—reactor applications.

<u>Publication:</u> A detailed description of the work is given in the report ANL/NDM-112, and a manuscript has been accepted for publication in Ann. Nucl. Energy.

*Permanent address: Japan Atomic Energy Research Institute, Tokai, Ibaraki, Japan. *This work supported by the U.S. Department of Energy under Contract No. W-31-109-Eng-38. U.S.A.

Laboratory and address:	Brookhaven National Laboratory Upton, New York 11973 U.S.A.	Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc. P. O. Box 1625 Idaho Falls, Idaho 83415 USA
Names:	G. Wang, D. E. Alburger, and E. K. Warburton	Names:	R. C. Greenwood, R. A. Anderl, R. G. Helmer, C. W. Reich, K. D. Watts, H. Willmes (U.Idaho)
Facilities: Experiment:	High-flux reactor Ge(Li) γ-ray spectrometer Measurement of precision energies and	Experiment:	Nuclear decay properties (T½, average β and γ decay energies, β -strength functions, β - branching, γ -branching) of short-lived fission products.
	relative intensity of γ rays in decay of ¹³⁴ Cs. Self-consistent decay scheme developed.	Facility:	Two $600-\mu g$ 252Cf spontaneous-fission sources coupled via He gas-jet transport to an on-line isotope separator.
Method:	¹³⁴ Cs γ rays compared with ¹⁹² Ir, ²²⁸ Th, ¹³⁷ Cs, ^{110 m} Ag, ⁶⁰ Co, and ²⁰⁷ Bi γ -ray standards.	Method:	On-line mass separations followed by $\gamma\text{-}$ and $\beta\text{-}ray$ measurements.
Accuracy:	γ energies 3-13 eV; relative γ intensities 0.7-8%.	Measurements Completed:	Gamma-ray spectral measurements and half-life determinations for 151-153pr, 153-156Nd, 152-158pm, 157-160 _{5m} , 161,162 _{Eu and} 164 _{6d} , <u>Gamma-gamma_ggingi</u> dence measurements for ¹⁵¹ pr,
Completion date:	Completed		152-157 _{Pm} , 157,158 _{Sm} .
Discrepencies to other reported data: Publications:	No major discrepencies G. Wang, D. E. Alburger, and E. K. Warburton,	Publications:	H. Willmes, R. A. Anderl, J. D. Cole, R. C. Greenwood and C. W. Reich, "Level Structure of 159 Eu from the β^- Decay of the Recently Discovered Isotope 159 Sm," Phys. Rev. C <u>36</u> , 1540 (1987).
	Mac1, Instr. and methods <u>A200</u> , 413 (1967).		R. C. Greenwood, M. A. Lee and R. A. Anderl, "Identification of a New Isotope, ¹⁶⁴ Gd," Radiochimica Acta <u>43</u> , 129 (1988).
			"Identification of New Neutron-Rich Rare-Earth Isotopes Produced in ²⁵² Cf Spontaneous Fission," R. C. Greenwood, R. A. Anderl, J. D. Cole, M. A. Lee and H. Willmes, in <u>Nuclei Far From Stability, 5th International Conference, Rosseau Lake, Ontario, Canada, 1987, AIP Conference Proceedings 164 (New York, 1988) p. 782.</u>
			"Nuclear Data Measurements of Neutron-Rich Nuclides Produced in Fission using On-Line Isotope Separation," R. C. Greenwood, A. J. Caffrey, J. D. Cole, M. S. Drigert, R. G. Helmer, M. A. Lee, C. W. Reich and D. A. Struttmann, in <u>Proceedings of the International Conference on Nuclear Data for Science and Technology, Mito. Japan, 1908</u> , edited by S. Igarasi (Saiken Publishing Co., 1988) p. 359.
<u>U.S.A.</u>

Laboratory and Address:	Idaho National Engineering Laboratory EG&G Idaho, Inc.	Laboratory:	Oak Ridge National Laboratory, P. O. Box 2008 Oak Ridge, Tennessee 37831-6354
	P. O. BOX 1625 Idaho Falls, ID 83415 USA	Name:	R. L. Macklin
Names:	R. C. Greenwood, A. J. Caffrey	Facility:	Oak Ridge Electron Linear Accelerator (ORELA)
Experiment:	Delayed-neutron energy spectral measurements of	Experiment:	Neutron Capture Cross Sections
Facility:	TRISTAN ISOL system at Brookhaven National	Method:	Neutron Time-of-Flight; prompt gamma cascade energy by liquid scintillator pulse height weighting
	Laboratory	Accuracy:	Estimated 5% or less
Method:	Isotope separation on line with gas-filled proton-recoil proportional counters and liquid	Completion Date:	As noted
	neutron spectra.	Publications:	R. L. Macklin, "Neutron Capture by ⁷⁹ Br, ⁸¹ Br, and ⁷⁵ As," Nucl. Sci. Eng. 99 , 133 (1988).
Publications:	 87-92Br and 137-141I approved by program committee. "Nuclear Data Measurements of Neutron-Rich Nuclides Produced in Fission using On-Line Isotope Separation," R. C. Greenwood, A. J. Caffrey, J. D. Cole, M. S. Drigert, R. G. Helmer, M. A. Lee, C. W. Reich and D. A. Struttmann, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Mito. Japan. 1988, edited by S. Igarasi (Saiken Publishing Co., 1988) p. 359. R. C. Greenwood and A. J. Caffrey, "Further Measurements of the Delayed Neutron Spectra of 93-97Rb and 143-145CS", Proceedings of the Specialists Meeting on Delayed Neutrons, University of Birmingham, England, September 1986, page 199. 		The excitation functions for the reactions 152,154,155,157 Gd (n, γ) have been measured over the neutron energy range of 3 keV to 500 keV and are reported in: H. Beer and R. L. Macklin, "The 151 Sm Branching, a Probe for the Irradiation Time Scale of the s-Process," The Astrophysical Journal 331, 1047 (1988). H. Beer and R. L. Macklin, "Measurement of the 85 Rb and 87 Rb Capture Cross Sections for s-Process Studies," The As- trophysical Journal 339, 962-977, (1989). R. L. Macklin, Search for 136 Xe Resonance Neutron Capture, Oak Ridge National Laboratory Report ORNL/TM-10766, (May 1988). R. L. Macklin and R. R. Winters, Neutron Capture of 122 Te, 123 Te, 124 Te, 125 Te, and 126 Te, Oak Ridge National Laboratory Report ORNL-6561 (July 1989). Neutron capture up to 700 keV was measured for 147,148,149,150 Sm. Resonance parameters were fitted for 148,150 Sm from 0.2-5 keV. Average capture cross sections at higher energies are being analyzed. 86 Sr (n, γ) resonances 2.6 to 50 keV, and average capture to 700 keV, and 88 Sr (n, γ) resonances 1.6 to 385 keV. A draft report is in preparation (1989) by R. L. Macklin and R.

<u>U.S.A.</u>

<u>U.S.A.</u>

<u>U.S.A.</u>

(cont'd)

Laboratory and Address: Names:	Oak Ridge National Laboratory P. O. Box 2008, MS6356 Oak Ridge, Tennessee 37831-6356, USA J. K. Dickens, S. Raman, and B. L. Broadhead	Discrepancies to Other Reported Data:	For FP-1 the relative yield data were compared y presently existing evaluated data. The compari- are generally favorable; however, discrepancies exist some of the ¹⁰³ Ru and ¹⁰⁶ Rh- ¹⁰⁶ Ru data which we not able to explain. For FP-2 the absolute ¹³⁷ Cs y compare reasonably well with calculated values; at l		
Facilities: Experiment:	 Dounreay Prototype Fast Reactor (PFR) Three specially prepared rods, each containing 24 actinide samples, each of ~1-mg mass, were irradiated at the Dounreay PFR. Two of the rods were irradiated over a 1-yr period, each for a total of fast-neutron fluence equivalent to ~63 full power days. The third rod was irradiated over a period of about 4 yrs for a total neutron fluence of ~400 full power days. Principal isotopes of these samples were ^{230,232}Th, ²³¹Pa, ^{233-236,238}U, ²³⁷Np, ^{238-242,244}Pu, ^{241,243}Am, ^{243,244,246,248}Cm. Nine months following the end of the irradiation of the first fuel pin (FP-1) portions of each sample were prepared for high-resolution gamma-ray assay, and measurements of gamma rays corresponding to decay of longer-lived fission products were carried out for a period of ~1 yr. Fission products identified were ⁹¹Y, ⁹⁵Zr, ⁹⁵Nb, ¹⁰³Ru, ¹⁰⁶Rh (following decay of ¹⁰⁶Ru), ^{110m}Ag, ¹²⁵Sb, ¹³⁴Cs, ¹³⁷Cs, ¹⁴¹Ce, ¹⁴⁴Ce, ¹⁴⁴Pr, and ¹⁵⁵Eu. Relative yields of these fission products were determined. Study of the samples for the fuel pin FP-2 was initiated in 1988. FP-2 was irradiated concurrently with FP-1, and so had cooled ~5 years. This experiment concentrated on determinations of absolute yields of ¹³⁷Cs. Data from cobalt-copper dosimeters in FP-2 were also analyzed. Calculations using ORIGEN for comparisons with results from both FP-1 and FP-2 have been completed and a report is in preparation. 	Publication:	 as well as the measured dosimeter yields agree with calculated yields. FP-1 Data: J. K. Dickens and S. Raman, "Fission-Product Yield Data from the US/UK Joint Experiment in the Dounreay Prototype Fast Reactor," ORNL-6266 (1986). J. K. Dickens, "Fission-Product Yields for Fast Neutron Fission of ^{243,244,246,246}Cm," Nuclear Science and Engineering 96, 8 (1987). FP-2 Data: In preparation. 		
Accuracy:	For FP-1: between 4% and 60% (1σ) , the larger values due to uncertainties in peak extractions. For FP-2: Between 3% and 15% (1σ) .				
Completion Date:	March 1986 for FP-1; January 1989 for FP-2.				

<u>U.S.A.</u>

ប	S	S	R	

Laboratory and Address:	University of Lowell Lowell, Mass. 01854	Laboratory and adress	Institute of Physics and Power Engineering Obninsk, Kaluga Region, 249 020
Names: Facilities:	G. Couchell, W. Schier 5.5-MV Van de Graaff, 1-MW swimming pool reactor, helium jet, tape transport system, beta-neutron time-of-flight spectrometer.	Names :	A.A.Goverdovsky, B.D.Kuz'minov, V.F. Mitrofanov, A.I.Sergachev
Experiment:	Delayed-neutron energy spectra as a func- tion of time following fission of U235, Pu239 and U238.	Facility : Experiment :	3-MeV VG-accelerator IPPE, Obninsk Peculiarities of the energy balance of the nuclear fission are observed and discussed.
Method:	Beta-neutron time-of-flight method using helium jet and tape transport system together with Pilot U plastic, BC501 (PSD liquid) and Li6-glass scintillators. Reactor or accelerator neutrons are used for thermal and fast fission.		The most remarkable effect is a systematic decrease of mean total kinetic energy TKE of fragments in fission through vibrational resonances. The most important properties
Status:	Composite spectra spanning an energy range, 0.01 to 2.00 MeV, have been measured for eight delay-time intervals ranging from 0.17 to 85.5 s following both thermal and fast fission of U235. Energy spectra from 0.01 to 4.00 MeV have been measured at seven delay-time intervals ranging from 0.17 to 29.0 s following thermal neutron fission of Pu239. Fast fission studies of U238 are now in progress.		of the phenomenon are investigated for fis- sioning systems : Th-231,233 , U-234,235, 237,239 , Pu-240. To evaluate the true va- lue of TKE-decrease, a contribution of non- resonance nature sub-barrier fission should be taken into account as well as an effect of experimental energy resolution of bom - barding neutrons. In that case TKE-variati-
Publication:	 R.S. Tanczyn et al., Composite Delay Neutron Energy Spectra for Thermal Fission of U235, Nucl. Sci. Eng. <u>94</u> (1986) 353. Q. Sharfuddin et al., Search for an Energy Dependence in U235 Delayed Neutron Spectra, Nucl. Sci. Eng. <u>98</u> (1988) 341. G.P. Couchell et al., Measurements of Delayed Neutron Energy Spectra for U235, U238 and Pu239, Proc. 1988 International Reactor Conf., Jackson Hole, Wyoming (1988) vol. III, 243. 	Method :	ons (δ TKE) are 2 - 3 MeV for all resonan - ces investigated. It was shown, that the δ TKE-value is in good agreement correlation with the δE_{vibr} - level of the correspon- ding vibrational resonances relative to bot- tom of the intermediate well of fission barrier. 2-E method, semiconductor detectors ; U-235thermal - calibration.
	(See also int. Conf. Nuclear Data for Science and Technology, Mito, Japan, 1988, pp. 853, 905; at the end of this report).	Accuracy :	TKE = $50 - 200 \text{ keV}$; M = $3 - 4 \text{ a.m.u.}$

	USSR		USSR
	(cont'd)		
Completion date:	First series of measurements are finished.	Laboratory and adress :	Institute of Physics and Power Engineering
-			Ploshad Bondarenko - 1
Publications :	1. Goverdovsky A.A. et.al Proc. Int.		Obninsk
	Conf. "FIFTIETH ANNIVERSARY OF NUCLEAR		Kaluga Region , 249 020
	FISSION", Leningrad, Oct. 16-20, 1989.		
			Moscow Physical Engineering Institute
	2. Goverdovsky A.A. et.al Nucl.Phys.		Moscow 115409
	(SOV). 1986. V.44(1). P.287; 1987.V.46	Nomog	A Alexandres A A Coverderder N N Deri
	(3). P.706. 1988. V.48. P.1251.	Names :	debieb Vy & Kenchyk S I Situikey & I
			Gobich, Iu.A.Korznuk, S.I.Sithikov, A.I.
	3. Goverdovsky A.A. et.al J. Atomic En.		Sijugarenko, iu.F.Pevcnev, S.L.Podshibjakin,
	(SOV). 1988. V.64(6). P.425.		IL.V.PJETKOV, S.L.Sharov, A.N.Shemetov,
	A Coverdenciar A A - Maggia 1988 TOPP		R.A.Shenmametlev, 1.A.Shijapina.
	4. GOVERGOVSKY A.K INSEE. 1900. IFF.	Facility :	Moscow Engineering Physical Institute
	Oburnsk. Door.		reactor : 4×10^{10} n/cm ² s thermal neutrons.
		Experiment :	The measurements of mass-energy spectrum
			of thermal neutron-induced ^{242m} Am fission
			fragments have been made.
		Mehtod :	Time-of-flight spectrometer. The velocity
			and energy of fission fragments were measu -
			red by means of two channel-plate detectors
			(overall resolution 120 ps) and surface-bar-
			rier detectors, respectively, About 3.4*10 ⁶
			events were recorded. The calibration pro -
			cedure for detectors was performed on 235U
			fission fragments measurements.
		Publication :	A.A.Alexandrov et.al. "Mass-energy spectrum
			of thermal neutron-induced 242m Am fission
			fragments" - Proc. Int. Symp. Nucl. Fiasion,
			Gaussig, GDR, 1988.

Laboratory and adress	Institute of Physics and Power Engineering Ploshad Bondarenko - 1 Obninsk Kaluga Region	Laboratory and adress	Institute of Physics and Power Engineering Ploshad Bondarenko - 1 Obninsk Kaluga Region
Nemes :	S.V.Ignatjev, B.P.Maksjutenko, Yu.F. Balakshev, N.N.Gonin	Names :	Khrjachkov V.A., Kuz'minov B.D., Sergachev A.I., Sljusarenko A.I.
Facility :	3-MeV VG-accelerator IPPE, Obninsk	Facility :	3-MeV VG-accelerator IPPE, Obninsk
Experiment :	From experimental data the different kinds of delayed neutrons spectra were reconstructed : quasi-equilibrium	Experiment :	Fission fragments mass distributions for U-235 cold fragmentation by thermal and fast neutrons.
	spectra, spectra of the groups and pre- cursors of delayed neutrons, integral spectra for different time after swi -	Mehtod :	Twin gridded ionization fission chamber; thin active layer (50Al-40 ²³⁵ U-30Au) _M G/cm ² .
	tching of the source the neutrons in- ducing the fission.	Accuracy:	FWHM(E _k) = 2,0 MeV, FWHM(M _{cold}) = 2 a.m.u. Total stat. = 3°10 ⁶ events (total spect.)
Method :	Experimental data were obtained by means of twodimensional method with the help of ³ He-spectrometer on-line with the computer.	Publication :	(Names) - Proc. Int. Symp. "Nuclear Fission- 50", Leningrad, USSR, 1989.
Publication :	S.V.Ignatjev et.al. "Time and energy partitions of delayed neutrons in ther- mal neutron fission of plutonium-239"- Proc. Int. Symp. "FIFTIES ANNIVERSARY OF NUCLEAR FISSION", Leningrad, USSR, Oct. 1989.		

USSR

U.S.S.R.

Laboratory	Institute for Nuclear Physics, Kaz. SSR	Publications:	I. V.K.Kartashov, A.G.Troitskaya
and adress:	Academy of Sciences, Alma-Ata 82, 480082,		"Characteristics of 192 Eu- and 102 Ta-
	USSR.		decay transitions", in Proceeding
Names:	V.M.Kartashov, A.I.Oborovskiy, A.G.Troitskaya		of XXXV Conf. on Nuclear Spectroscopy
Facilities:	Nuclear Reactor WWR-K, Alma-Ata, 50 cm iron		and Nuclear Structure, April 1985,
	double focusing β -spectrometer.		Leningrad, USSR, p. 100.
Experiment:	Study of decays of ^{152}Eu ($T_{T/2} \approx 13$ y) and		2. V.M.Kartashov, A.I.Oborovskiy,
-	$152m_{\rm Eu} (T_{\rm T/o} = 9.3 {\rm h}).$		A.G.Troitskaya "Electric monopole 152 152
	The experimental ratios of conversion line		transitions in the nuclei ""Sm, ""Gd
	intensities in the energy region from 70 keV		and 102W", Izv. Acad. Nauk Kaz. SSR,
	to I500 keV, the experimental intrinsic		Ser. FizMat., N. 4, 1986, p. 43-48.
	conversion coefficients for twenty three		3. V.M.Kartashov, A.I.Oborovskiy,
	transitions in ¹⁵² Sm and eleven transitions		A.G.Troitskaya "Date about multipolarity TO6 T52
	in ¹⁵² Gd have been obtained. Multipolarities,		of nuclear transitions in 100 Pd, 192 Sm
	EO-transition parameter values, penetration		and ""Gd, obtained by different methods",
	parameter values have been estimated		in "Voprocy tochnosty v yadernoy spectro-
	for these nuclei.		scopiy". Part I. Institute of Physics
Method:	$^{/3}$ -spectrometric measurements of conversion		Lit. SSR, Vilnus, USSR, 1986, p. 128-135.
	electrons with a set resolution 0,02+0,03%.		4. V.M.Kartashov, A.I. Uborovskiy,
	The sources have been produced by scattering		A.G. Troitskaya Multipole compound
	of Eu ₂ 03, enriched to about 98% in ^{I51} Eu,		decays" in Transitions in The and Ta
	onto Al-foil backing in vacuum after irradi-		In Proceeding of XXXVII Cont.
	ation of this oride in the reactor.		on Muchear Spectroscopy and Muchear
Accuracy:	Between I% and 30% for conversion line		Structure, April 1907, furmain, USSR,
	intensities over the range of relative		p. 112. E. M. M. Montacher A. T. Ohenevertin
	intensities I+10 ⁻² . The conversion coeffici-		A C Troitskove "Interbond transitions
	ents of the most intense lines have been		A.G. Troitskaya "Interband transitions"
	determined with the uncertainties I,5+2,0%.		In the hugier ru, Sm, Gu, W,
Complection Date:	Work has been completed.		120. Acad. Natur 355R, Ser. F12., 22 ; 2462 (1989).
. Discripancies to			
Other Report Date:	Comparisons of experimental conversion		
	coefficients, multipolarities, penetration		
	parameters and EO-transition parameters		
	with computed ones and the same, obtained from the priar measurements of other authors, are given in Ref.s 3+5.		

<u>U.S.S.R.</u> (con'd)

-

<u>USSR</u>

Laboratory and Address:	V.G.Khlopin Radium Institute, Roentgena str. 1, 197022, Leningrad, USSR.	Laboratory and address:	Lensovet Institut of Technology, Leningrad, 198013, USSR
Names:	I.D. Alkhazov, A.V. Kuznetsov, V.I.Shpakov	1.Names:	V.F.Teplykh, E.V.Platygina, K.A.Petrzhak, A.A.Jolonkin, A.W.Mossesov
Facilities:	Twin gadolinium loaded large liquid scintillator counter Twin parallel plate ionization chamber with detectors for long range particles.	Facilities:	Reseach reactor WWR-M, mass-spectrometr MI-1201, Ge(Li) Y-spectrometr
<u>Experiment:</u>	Two dimensional neutron multiplicity distributions as a function of fragment mass and kinetic energy	Experiment;	Measurement of heavy product yields for the fission of ²³⁸ Np by thermal neutrons
	and iong range particle energies in dinary and ternary fission of 252Cf. Fragment mass distribu- tions for fixed combinations of numbers of neut- rons emitted by the complementary fragments.	Method:	After irradiation of $^{237}NpO_2$ in Be-reflector channal of WWR with cadmium ratio ~30 at neutron flux ~10 ¹⁴ sm ⁻² s ⁻¹ for 5 - 18 days
Method:	Simultaneous measurements of five parameters for each fission events. Reconstruction of the initial two-dimensional neutron multiplicity distributions		in targets were produced mainly the products of reaction $^{238}Np(n_{th}, f)$.
Accuracy:	5% to 80% depending on the yield level.		Relative cumulative yields of stable and long-
Completion Date:	Partialy completed. The work will go on.		were determined using mass-spectrum analyses
Publications:	I.D. Alkhazov et al. Phys. of Neutr. Emission in Fission. Proc. of a Cons. Meeting, Mito, Japan, 1988, INDC (NDS)-220, p. 139 I.D. Alkhazov et al. Proc. of Internat. Conference Fifteth Anivers. of Nuclear Fission, Leningrad, USSR, Oct. 1989.		data for samples which were obtained after com- plete or partial radiochemical separation of fission products. The neutron capture proces- ses, pile-up and decay during irradiation and cooling time were accounted for.
Descrepancies to other reported data:	No such data available.		Absolut yields are based on the normalization to 100 % of heavy product relative yield sum.
		Results:	The values of 24 ²³⁸ Np fission relativ and absolute yields are obtained.
		Accuracy:	Relative yields were determined with the
			relative accuracy better that 1 % except for 135_{Xe} , 137_{Cs} , 151_{Sm} , 152_{Sm} , 154_{Sm} , 153_{Bu} and 135_{Cs}
			the accurasy being 3%, 3.7%, 3.2%, 5.2%, 1.4%, 13% and 40% respectively.

USSR

USSR (cont'd)

Discrepancies to other reported	Measured yields values for xenon isotopes agree within the error range with the earlier
data:	reported data.
Completion date:	Apr. 1986
Publications:	Part of resultes were published in Proceeding of Conf. on Neutron Physics, Okt., 1983, Kiev, USSR. V.F.Teplykh, et al., "Measurement of ¹³⁵ Xe yields for fission of isotops uranium, ²³⁸ Np and ²³⁹ Pu", 1984, <u>2</u> , p.251-253. A.A. Solonkin et.al., Atomn. Energ. <u>64</u> (1988) 435 (English: Soviet At. En. <u>64</u> (1988) 497

54 54 1.2 COMPILATIONS AND EVALUATIONS

BELGIUM

<u>CHINA</u>

Laboratory and address :	Nuclear Physics Laboratory Proeftuinstraat 86 B-9000 Gent, Belgium	<u>Laboratory and</u> <u>Address</u> :	Chinese Nuclear Data Centre Institute of Atomic Energy P. O. Box 275(41) Beijing 102413, China	
Evaluation - Nuclear Data S	courses for $A = 102, 103, 105, 106, 110, and 112$	<u>Cooperation</u> :	Chinese Nuclear Data Coordination Network, and the other contributors in the world.	
Purpose : to give a critical and 112 nuclei, ties	survey of all available information concerning $A = 102, 103, 105, 106, 110$ and derivation of consistent best or preferred values with their uncertain-	<u>Names</u> : <u>Purpose</u> :	Wang Dao, Zhou Delin, Cai Dunjiu To provide fission yield data for decay heat predictions	
Method : Cfr. Nuclear Data Major sources of informat	Project	Evaluation:	Preliminary evaluations for 10 yield sets have been made. An effort to update the old evaluations is carrying out. Covariance technique is to be introduced into the	
Deadline of literature cove	rage: 102 : probably beginning 1990 103 : June 1984	Commitanti en l	evaluation for production of evaluated experimental data.	
	105 : February 1985 106 : January 1987 110 : October 1982 112 : June 1988	<u>compifation</u> :	yield base which is being completed and checked up, compile experimental data files according to 3 different types of measurements, namely, absolute, relative, and R-value measurements.	
Computer file of available Completion date : 102 : p 103 : S	data : ENSDF robably beginning 1990 leptember 1984	<u>Calculation</u> :	Decay heat of fission products for testing the recommended values of fission yields thru comparing calculated decay heat data with measured ones.	
105:N 106:F 110:C 112:J	larch 1985 ebruary 1987 Pecember 1982 uly 1988	<u>Status</u> : <u>Computer file of</u> <u>evaluated data</u> :	Under work The evaluated 10 yield sets in ENDF/B-V format are available from the IAEA Nuclear Data Section.	
Publications: - P.De Gek - P.De Gek - D.De Frei - D.De Frei (1986)	der, D.De Frenne, E.Jacobs, Nucl.Data Sheets <u>35</u> , 443 (1982) der, E.Jacobs, D.De Frenne, Nucl.Data Sheets <u>38</u> , 545 (1983) nne, E.Jacobs, M.Verboven, Nucl.Data Sheets <u>45</u> , 363 (1985) nne, E.Jacobs, M.Verboven and P.De Gelder, Nuclear Data Sheets <u>47</u> , 261	<u>Contact</u> :	Any comments are invited. To: Wang Dao	

- D.De Frenne, E.Jacobs, M.Verboven and G.De Smet, Nuclear Data Sheets 53, 73 (1988)

- D.De Frenne, E.Jacobs, and M.Verboven, Nuclear Data Sheets 57, 443 (1989)

56

EGYPT

Laboratory	and	address:	Physics Department
			Faculty of Science
			Tanta University
			Tanta ,Egypt

Names : T.Elnimr et al

- Evaluation : Reactor thermal and epithermal (n, ") cross sections and absolute gamma intensities
- Purpose : Preparation of a document providing recommended values of the (n, p) activation cross section and for absolut gamma intensities
- Method : K_{e,}-factors (activation techniques)
- Major sources: Recent References of information
- Status : Completed, for thrity eight isotopes
- Contact : Comments, suggestions and corrections to the data are invited To : Tarek Elnimr
- Publication: T.Elnimr and F.A.El- Hussiny J.Phys.D:Appl.Phys 18 (1985)1967 T.Elnimr and I.I.Bondouk J.Phys.D:Appl.Phys 16 (1983) 1407

Laboratory and address: Physics Department Faculty of Science Tanta University Tanta ,Egypt

Names : T.Elnimr

Evaluation : Nuclear Data

- Purpose : Preparation of a document providing recommended values of the (n, yr) activation cross section and for absolut gamma intensities
- Method : K_g-factors (activation techniques) determined by the cadmium subtraction method

Major sources: Recent References of information

- Status : Completed, for thrity six isotopes
- Contact : Comments , suggestions and corrections to the data are invited To : Tarek Elnimr
- Publication: T.Elnimr, The Arabian Journal for Science and Engineering 14 No. 1(1989) 141 T.Elnimr , The Arabian Journal for Science and Engineering 10 No.2 (1985) 139

EGYPT

FRANCE

FRANCE

Laboratory and addr	ess : CENTRE D'ETUDES NUCLEAIRES DE GRENOBLE DRF/SERVICE DE PHYSIQUE M.D.I.H. 85X - F 38041 Grenoble Cedex	Laboratory and adreess	Laboratoire de Métrologie des Rayonnements Ionisants C.E.N. Saclay B.P. 6, F91192 Gif sur Yvette Cedex
No		Names:	N. Coursol, B. Duchemin, J. Legrand, F. Lagoutine*
Name :	J. BLACHOT	Evaluation:	Radionuclide decay data
Cooperation :	DEMT/SERMA/LEPP Saclay J.C NIMAL, B.NIMAL, C.DIOP	Purpose;	Preparation of a document providing recommended value of the principal decay scheme parameters: half-life, energies and intensities of various nuclear and atomic radiations emitted (e.g. Beta, Gamma, Conversion-Electrons, X-rays)
Compilation and Evaluation :	Radionuclide decay data : - to provide a comprehensive data bank of radioactive decay with : half lives, Q-values,	Method:	- critical analysis of published results
	branching ratios, nuclear and spectra alpha, beta, gamma, energies and intensities with		 determination of mean values and associated uncertainties
	associated uncertainties.	Source of information:	Nuclear Data Sheet, INIS-Atomindex other recent publications
Purpose :	 Decay data file for summation calculation of decay heat (Pepin code). Data bank for all people using decay data parameters. 	Publications:	Table des radionucléides, édition CEA-LMRI, containing among other radionuclides, the following fission and reactor products
Sources :	ENSDF file mostly and new recent works on short lived F.P. not yet evaluated in ENSDF.		-Vol. 1: Kr-85, Mo-99, Tc-99, Ru-103 + Rh-103m, 8b-125 + Te-125m, Xe-133, Xe-133m, Ce-144 + Pr-144 (updated publication available)
Computer file and programs :	 Preparation of JEF2. Magnetic tape available on line for those using the French CISI Network. Off line from the NEA Data bank (Saclay); 		-Vol. 2: Rb-86, Rb-88, Sr-89, Sr-90 + Y-90, Y-91, Ru-106 + Rh-106, Te-127m + Te-127, I-129, Te-131m + Te-131, Xe-131m, Ba-140 + La-140, Pr-143, Zr-95 + Nb-95, Nb-95m, I-131, Cs-137 + Ba-137m, Ce-141 (updated publication available)
Publication :	- MITO (1988) p 901 - Data for Decay heat predictions - STUDSVIK (1987) - NEACRP-302 'L' - NEANDC-245 'V'		-Vol. 3: Y-88, Sr-92, Y-92, Sb-122, Sb-124, Xe-127, Nd-147, Pm-147, Sm-151, Ho-166m, Ra-226 + decay-chain, Pu-238, Pu-239, Pu-240, Pu241, U-237, Cm-244 (publication available)
			-Vol. 4: Nb-93m, Te-133, Te-133m, Te-134, Eu-152, Th-228 + decay-chain, U-236, Np-237, Cm-242, Pu-242, Cm-246 (publication available)
		*(retired)	-Vol. 5: In-114, In-114m, Gd-153, Np-239, U-238 + decay-chain,Th-232 + decay-chain (in preparation)

58

- Laboratory and Department of Physics, Panjab University, address: Chandigarh-160014 (India).
- Names: S. S. Malik, S. Kumar, R. K. Puri, S. Singh, and R. K. Gupta.
- Evalution: (i) Charge distribution yields in spontaneous fission of U-236 and Cf-252 nuclei. (ii) Correlation of charge and mass distributions in the spontaneous fission of U-236. (iii) New cluster radioactivity as a cluster emission vs. fission process.
- Purpose: To predict and study the fine structure of the charge distribution yields, correlation of charge and mass distributions in the fission process and the exotic cluster emission as a cluster decay process or the fission process.
- Method: i) Charge distribution yields are obtained by solving a stationary Schrodinger equation numerically as well as analytically. The width of distribution, the most probable charge and the odd-even proton effects are also calculated.
 - 11) Time dependent Schrodinger equation in charge as well as in coupled charge and mass asymmetry and relative separation coordinates are solved analytically to obtain, respectively, the charge distribution yield and to study the time evolution of mean values (centroids), variances (widths) and their correlation coefficient in the spontaneous fission of U-236.
 - iii) A dynamical model of new cluster radioactivity is proposed, where the cluster formation probability is calculated as the quantum mechanical formation probability of clusters inside the nucleus.

Major sources

of information: Journals and reports at national/international conferences.

Deadline of liter-

ature coverage: October 1989.

- Status: (i) Fine structure effects in charge distribution yields of light mass products(A=97-104) of U-236 are observed to give rise strong proton odd-even effects, which are shown to be due to the shell effects in both potential and masses.
 - (ii) Additional proton odd-even effect due to coupling of charge asymmetry coordinate to the relative

INDIA

(cont'd)

separation coordinate is observed in the charge distribution yields of U-236.

- (iii)The degree of neutron-proton correlation in the spontaneous fission of U-236 is found to be dependent strongly on time. At very small times the neutron-proton motion is found uncorrelated, which become correlated at larger times.
- (iv) Cluster formation in radioactive nuclei is a quantum mechanical fragmentation process, like the normal fission.
- (v) The heavier clusters, like Ca-48 observed in decay of Cf-252, follows the super-asymmetric fission process better rather than the cluster emission process.
- Publications: 1. D. R. Saroha, R. Aroumougame and R. K. Gupta, Phys. Rev. <u>C27</u> (1983) 2720.
 - 2. D. R. Saroha and R. K. Gupta, Phys. Rev. <u>C29</u> (1984)1101.
 - 3. R. K. Gupta and D. R. Saroha, Phys, Rev. <u>C30</u> (1984)395.
 - 4. R. K. Gupta, D. R. Saroha and N. Malhotra, J.de Physique colloque <u>45</u> (1984)C6-477.
 - D. R. Sarcha and R. K. Gupta, J. Phys. G: Nucl. Phys. <u>12</u> (1986)1265.
 - R. K. Gupta, S. Gulati, S. S. Malik and R. Sultana, J. Phys. G: Nucl. Phys. <u>13</u> (1987)L27.
 - 7. R. K. Gupta, S. S. Malik and R. Sultana, Fizika <u>19</u> (1987)23 (Supplement 1)
 - S. S. Malik, S. Singh, R. K. Puri, S. Kumar and R. K. Gupta, Pramana J. Phys. <u>32</u> (1989) 419.
 - 9. S. S. Malik and R. K. Gupta, Phys. Rev. <u>C39</u> (1989)1992.
 - R. K. Puri, S. S. Malik and R. K. Gupta, Europhys. Lett. <u>9</u> (1989)767.
 - R. K. Gupta , S. Kumar ,S. S. Malik, R. K. Puri and S. Singh, Proc. 50 years with Nucl. Fission, Gaithersburg, Maryland, U.S.A. April 25-28 (1989).
 - S. Kumar and R. K. Gupta, Contr. Int. Nucl. Phys. Conf. Sao Paulo, Brasil, August 20-26(1989).

Laboratory and addres	Japanese Nuclear Data Committee/FPHD S.W.G., : Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki 319-11, Japan
Kame :	S. Iijima, H. Kawai (group leader) (i)

- ame : S. Iijima, H. Kawai (group leader) (i) T. Hakagawa, Y. Nakajima, T. Sugi (ii) H. Matsunobu (iii), A. Zukeran (iv), T. Watanabe (v) and M. Sasaki (vi)
- <u>Evaluation</u> : (1) JENDL-3 FP Library containing neutron cross sections for the following 172 FP nuclides. :

As 75. Sec 74. Sec 74. 79. 81. Kr = 78. 80. Rr = 79. 81. Kr = 78. 80. Rr = 86. 87. 81. 88. 82. 83. 84. 85. 85. 86. 87. 88. 89. 90. Y = 89. 91. 2r = 90. 91. 2r = 90. 91. 92. 93. 94. 95. 96. Mb = 93. 94. 95. 96. 97. 98. 99. 100. 102. 103. 104. 106. Rh = 103. 105. 104. 105. 106. 107. 108. 110. Ag = 105. 109. 110. 111. 112. 113. 114. 116. In = 113. 115. Sn = 112. 114. 115. 116. 117. 118. 119. 120. 122. Sn = 123. 124. 125. 126. 127m. 128. Te = 129. 132. 124. 125. 124. 125. 126. 127m. 128. Te = 123. 134. 135. 136. 137. 132. 134. 135. 136. 137. 138. 140. 1a = 138. 139. Ce = 140. 141. 142. 144. Pr = 141. 143. 144. 145. 146. 147. 148. 150. Pm = 142. 143. 144. 145. 146. 147. 148. 150. Pm = 142. 143. 144. 145. 146. 147. 148. 150. Pm = 142. 143. 144. 145. 146. 147. 148. 150. Pm = 144. 143. 144. 145. 150. 151. 152. 153. 154. Eu = 151. 155. 156. 157. 158. 160. Tb = 153.

N.B. 1) The underlin denotes a nuclides newly added to JENDL-2 as a JENDL-3 FP nuclide.
2) An asterisc indicates the nuclide contained in the general purpose file of JENDL-3.

(2) Integral test of JENDL FP Libraries.

Purpose : Reactor burnup calculation, dosimetry, activation, radiation damage, nuclide transmutation and detonation.

Nethod : (1) Calculation of capture, elastic and inelasic scattering and total cross sections with spherical optical model and statistical theory. Multi-level BW formula in thermal and resonance regions. Negative resonances were introduced to reproduce the thermal cross sections. Unassigned neutron angular momentum and spin state were determined with Bayesian theorem according to resonance level statistics. Strengh function model was employed in unresolved resonance region up to 100 keV. Optical model parameters were determined. Level density parameters were reevaluated, deriving systematics of parameters. Gamma-ray strength function were studied in detail.

(2) For higher neutron energies, (n,2n), (n,p), (n,a), (n,np) and (n,na) cross sections evaluated by using the simple evaporation and preequilibrium model calculation code PEGASUS. Direct inelastic scattering cross section calculated by DWBA theory, for weak absorbing nuclei. Semidirect and direct capture contribution was added. Evaluation based on the experimental data for capture and threshold reaction cross sections up to 1988. The results of integral tests on JENDL-2 FP data are taken into account in the evaluation.

(3) Integral test using JAERI-FAST type 70-group cross sections with resonance self-shielding factors, and the neutron spectrum data for STEK, CFRMF and EBR-II. Covariances of flux and cross sections are considered.

Major sources EXFOR Library, CINDA, 8NL-325 and recent literature. of information : Integral data from STEK, CFRMF and EBR-II.

Status : (1) JENDL-2 FP Library has been released to the MEA Data Bank in December 1985.

> (2) Data evaluation for JENDL-3 FP Library has been completed and their complation is on final stage. The evaluated results are being compared with JENDL-2 and the experimental data.

(3) Code system for integral test, containing calculation of covarince matrices and cross-sectionadjustment based on integral data, was developed. The applicability of cross section adjustment to data evaluation was investigated, by considering flux depression effects for strongly absorbing FP nuclides and mehod uncertainties.

Computer file JENDL-3 (ENDF/B-V Format). of evaluated data :

Expected completion date : File completion March of 1990, Integral test will follow.

- Publications: (1) N. Kawai and FPND Sub-working Group, "Evaluation of FP Cross Sections for JENDL-3", JAERI-M 88-065, p. 57 (1988).
 - (2) T. Watanabe, et al., "Fission-Product Cross Section Integral Tests and Adjustment Based on Integral Data", ibid. p.148 (1988).
 - (3) H. Kawai, et al., "Evaluation and Integral Tests of FP Nuclear Data for JENDL-3", Proc. Int. Conf. on Nuclear Data for Science and Technology, Nay 1988, Nito, p. 569, (1988).

(i) Toshiba Corporaton. (ii) JAERI. (iii) Sumitomo Atomic Energy Industries, Ltd. (iv) Hitachi Ltd. (v) Kawasaki Heavy Industries (vii) Mitsubishi Atomic Power Industries, Inc. JAPAN

Laboratory and address:

Japanese Nuclear Data Committee Decay Heat Evaluation Working Group c/o Nuclear Data Center Japan Atomic Energy Research Laboratory Tokai-mura, Naka-gun, Ibaraki-ken 319-11 Japan

Members:

R.Nakasima (Hosei University), T.Tachibana, M.Yamada (Waseda University) T.Yoshida, S.Iijima, T.Murata (Toshiba), I.Otake (Data Eng. Inc.) A.Zukeran (Hitachi), T.Hojuyama (MAPI), T.Tamai (Kyoto University) H.Ihara, J.Katakura, K.Tasaka, K.Umezawa (JAERI)

Compilation:

Decay data, delayed neutron data and fission yields

Purpose:

To construct a user-oriented FP decay data library mainly aiming at decay heat calculations and to establish recommended decay heat curves. (For the latter purpose cooperation is being done with the Decay Heat Standard Research Committee of the Atomic Energy Society of Japan.)

Major Source of Information:

Journals, Nuclear Data Sheets, ENSDF and theoretical calculations

Status of the Data Evaluation:

JNDC FP Decay Data Library Version 2 was completed in 1989. Summary reports are now being prepared for publication. The library contains decay and yield data for 1200 fission product nuclides relevant to summation calculations of reactor decay heat. The second version has capability of delayed-gamma energy spectrum calculations. The calculated decay heat based on this version is easily reproduced with the aid of 32-term fitting formula.

Availability of the Data:

Contact Dr. Y.Kikuchi Nuclear Data Center Japan Atomic Energy Research Institute Tokai-mura, Ibaraki-ken 319-11, Japan

Publications:

- 1. K.Tasaka and S.Iijima, J. Nucl. Sci. Technol., 23, 914 (1986)
- J.Katakura and T.Yoshida, "Gamma-Ray Spectrum Data Library of Fission Product Nuclides and Its Assessment," JAERI 1311 (1988)
- K.Tasaka, J.Katakura and T.Yoshida, "Reviw of Decay Heat Calculations," Proc. Int. Conf. on Nucl. Data for Sci. and Technol., (Mito, 1988) p.819
- M.Yamada, "Recent Progress in the Gross Theory of Beta Decay," ibid., p.841

JAPAN

(cont'd)

- J.Katakura, "Calculation of Gamma-Ray Spectrum of Aggregate Fission Product Nuclides and Fitting of the Gamma-ray Spectrum," ibid. p.881
- T.Tachibana, "Estimation of Delayed Neutron Emission Probability and Delayed Neutron Yield," ibid. p.885
- 7. T.Yoshida et al., "The Overview of the JNDC FP Decay Data Library Version 2," ibid. p.889
- T.Yoshida, J.Katakura and H.Ihara, "Calculation of the Delayed Fission Gamma-Ray Spectra from U-235, -238, Pu-239, -240 and Pu-241; Tabular Data," JAERI-M 89-037
- 9. H.Ihara, editor, "Tables and Figures from JNDC Nuclear Data Library of Fission Products, Version 2," JEARI-M report, to be published
- K.Tasaka, "JNDC FP Nuclear Data Library Version 2," preparing for publication as a JAERI report.

JAPAN

SWEDEN

Laboratory and Address:	Tokyo Metropolitan University Setagaya ku, Tokyo 158	Laboratory and address:	University of Uppsala, The Studsvik Neutron Research Laboratory, S-61182 NYKÖPING, Sunder
Nanies :	H. Nakahara, T. Ohtsuki, Y. Hamajima, and K. Sueki		2Medell
Evaluation:		Names:	E Lund and G Rudstam.
Purpose:	Systematic Study of Mass Division Mechanism in	Evaluation:	Delayed Neutron Branching Ratios.
	rom- guergy whilear blaston	Laboratory and address: Nesearch Laboratory, S-61182 NYKÖPING, Sweden Names: E Lund and G Rudstam. Evaluation: Purpose: To provide evaluated P,-values for the JEF- II file. Method and source of information: Data on delayed neutron branching ratios published or given as private communicatio before the end of 1987 are included. Discrepancies: Among the 86 delayed neutron precursors included in the evaluation there are many cases with only one experimental result available or for which the reported data are inconsistent. Therefore, measurements are recommended for 39 precursors. Publication: E Lund and G Rudstam, "Delayed-Neutron Branching Ratios of Fission Products", The Studsvik Neutron Research Laboratory Repor NFL-60 (1989).	
Method:	Asymmetric mass yield curves reported in literature have been fitted by two Gaussians for 13 thermal-neutron induced fission reactions (²²⁷ Th through ²⁵⁴ Fm) and for 7 spontaneously fissioning nuclei (²⁴² Cm through ²⁵⁶ Fm). Variation of Gaussian parameters, peak position, width and peak height, are discussed as a function of the fissioning mass.	Method and source of information:	Data on delayed neutron branching ratios published or given as private communication before the end of 1987 are included.
Major source of information:	E.A.C. Crouch, Mucl. Data Tables 19, 343 (1977).	Discrepancies:	Among the 86 delayed neutron precursors included in the evaluation there are many cases with only one experimental result
Publication:	Radiochimica Acta 43, /7-81 (1988)		available of for which the reported data are inconsistent. Therefore, measurements are recommended for 39 precursors.
		Publication:	E Lund and G Rudstam, "Delayed-Neutron Branching Ratios of Fission Products", The Studsvik Neutron Research Laboratory Report NFL-60 (1989).

TAIWAN

UNITED KINGDOM

Laboratory and address:	Institute of Nuclear Science National Tsing Hua University Hsinchu 30043, TAIWAN R.O.C.	Laboratory and address:	Atomic Energy Establishment Winfrith, Dorchester, Dorset DT2 8HD,
Names:	Prof. Dr. Chien CHUNG		United Kingdom, Europe.
		Names:	M.F. James, R.W.Mills and D.R.Weaver (Birmingham University).
EVALUATION:	IFY in ²³⁹ Pu(n _{th} ,f)	Compilation	Fission Product Yields for spontaneous and
Method:	Least-square fit of Gaussian distribution of all data	Evaluation:	Hederon Indiced Fission for owriz evaluation.
Major sources of information:	published data available from literatures	Purpose:	To compile experimental Fission Product Yield data, and evaluate this data to produce a set of libraries, currently in ENDF/B-VI format.
Deadline of literature coverage:	1988.01		
Status:	Completed	Metnod:	weighted averaging of experimental data, fitting data to various models for chain and fractional independent yields, adjustment for physical constraints, isomeric splitting from experimental
Cooperation:	None		data or Madland and England model and production of ENDF/B-VI formatted libraries.
Other relevant details:	None	Fissile materi als	Database contains spontaneous(S) and neutron induced fission vield data for all fissile materials in compilation. Neutron
Computer file of compiled data:	IBM PC disk	considered:	energies; thermal(T), fast(F), High(H) and monoenergetic. Libraries contain complete yield sets for Th232FH.
Computer file of evaluated data:	IBM PC disk		U233TFH, U234F, U235FTH, U236F, U238FH, Np237TF, Np238TF, D232TFF, D238TF,
Availability:	on request		PU2351F, PU239TF, PU240F, PU241TF, PU242F, Am241TF, Am242mTF, Am243TF,
Discrepancies encountered:	large for IFY far from stability line		Cm242S, Cm243TF, Cm244TFS Cm245TF, and Cf252S.
Completion date:	1989.08	Major sources of dat a:	Compilations from Crouch(1), data within EXFOR and searches of the open literature. Complete upto mid-1989.
Publications:	submitted for review in the Journal of Radioanalytical and Nuclear Chemistry, Articles	Status:	Adjusted Independent libraries completion due December 1989, cumulative libraries to follow early 1990.
Contact:	Prof. Dr. Chien Chung Institute of Nuclear Science	Compilation:	Tables of data and discrepancies will be published for chain and fractional independent yields.
	Hsinchu 30043, TAIWAN R.O.C.	Evaluated files:	UKFY2 available from authors early 1990.
		References:	l. E.A.Crouch, " Fission-Product Yields from neutron-induced fission." Atomic and Nuclear Data sheets Vol 19, No.5, May 1977.
		Contacts:	M.F.James, office 211/B21 or R.Mills office 204A/B20 at AEE Winfrith. Telephone England (0305)251888 Ext 2939 or 2503.

UNITED KINGDOM

UNITED KINGDOM

Laboratory:	IMPERIAL COLLEGE REACTOR CENTRE Silwood Park, Ascot, Berkshire SL5 TE, England Telephone: 44-990-294290. Fax: 44-990-24931	Laboratory and Address:	National Power Berkeley Nuclean Berkeley Gloucestershire United Kingdom	r Laboratories GL13 9PB
Names:	M.U. RAJPUT, T.D. MAC MAHON	Working Group:	A. Tobias	National Power, BNL
Evaluation:	Half-lives of ⁹⁰ Sr and ¹³⁷ Cs		P. KODD M.F. James A.J. Fulse	AEA Technology, Winfrith AEA Technology, Winfrith AEA Technology, Winfrith
Purpose:	To provide recommended values for the half-lives (and associated uncertainties) for 90 Sr and 137 Cs from the inconsistent sets of experimental values reported in the literature.		A. Whittaker D.R. Weaver R.W. Mills T.D. MacMahon	BNFL Sellarfield University of Birmingham University of Birmingham Imperial College Reactor Centre
Method:	9 experimental values of the ⁹⁰ Sr half-life reported in the literature between 1955 and 1987, and 18 values of the ¹³⁷ Cs	Evaluation:	Radionuclide Dec	cay Data
	half-life reported between 1955 and 1989, have been considered. Each set of data exhibits large inconsistencies.	Purpose:	To provide a con radioactive dec:	Exprehensive, up-to-date library of ay data including half-lives, bing fractions, sinks, beta and
	The inconsistencies have been treated by firstly increasing very small quoted uncertainties to a minimum of 0.2 years in the case of $905x$ and 0.1 were in the case of $1370x$ and a constitution		gamma energies a corresponding un	and emission probabilities and ncertainties.
	subsequent inflation of all uncertainties to make the value of chi- squared per degree of freedom equal to unity.	Status:	1. The current library is U 1980/81. It	UK Fission product decay data KFFDD-2 which was released in contains data for 855 nuclides of
	Recommended values are:-		which 736 ar spectral dat also availab	e radioactive and 390 have a. The JEFI decay data file is le for use in the U.K.
	$^{137}Cs: 30.11 \pm 0.08y (10996 \pm 30d)$		2. The spectral an additiona	data of UKFPDD-2 are available as 1 data base for the
References:	M.U. Rajput, T.D. Mac Mahon "Discrepancies in the half-lives of ⁹⁰ Sr, ¹³⁷ Cs and ²⁵² Cf" Imperial College Reactor Centre		the calculat from irradia	ted fuel.
	Research Report ICRC/88/1, June 1988.		3. A spectral d for use with	ata retrieval system is available ENDF/B format decay data files.
	P.W. Gray, T.D. Mac Mahon, M.U. Rajput, "Objective data evaluation procedures", Nucl. Instr. & Meths. (to be published).		Catalogues o functions of a variety of	f spectral data are available as nuclide or radiation energy with editing options.
		Progress:	Efforts are aim and testing. T yield data libr calculations an predictions fro values. Compar a least squares used in an atte available decay improvements an JEF2 have been	ed largely towards JEF construction he JEF1 decay data and fission aries have been used in decay heat d the results compared with m UK data files and measured isons between JEF1 predictions and fit to measured data have been mpt to identify nuclides for which data may be erroreous. Proposed d extensions in decay data for formulated.

UNITED KINGDOM

UNITED KINGDOM (cont'd)

Publications:

- "UKFPDD-2: A Revised Fission Product Decay Data File in ENDF/B-IV Format" by A. Tobias and B.S.J. Davies, 1980, CEGB Report RD/B/N4942.
- "FISP6 An Enhanced Code for the Evaluation of Fission Product Inventories and Decay Heat" by A. Tobias, 1982, CEGB Report TPRD/B/0097/N82.
- 3. "A Retrieval System for Spectral Data from ENDF/B Format Decay Data Files" by A. Tobias 1981, CEGB Report RD/B/5170N81.
- "The UKCNDC Radioactive Decay Data Libraries" by A. Tobias, B.S.J. Davies, A.L. Nichols and M.F. James, 1983, Nuc. Energy, Vol. 22 No. 6, pp 445-552.
- "Evaluated Decay Data for Reactor Applications: The UKCNDC Data Libraries" by A.L. Nichols and A. Tobias, 1984, Nuc. Inst. Methods, Vol. 223, pp 487-491.
- "Decay Heat Predictions Using JEF1" by
 A. Tobias, 1986, CEGB Report TPRD/B/0863/R86.
- "Uncertainties in JEF1 Integral Decay Heat Predictions Estimated from Comparisons with a Least Squares Fit to Heasured Data", A. Tobias, 1987, presented at Specialists' Meeting on Data for Decay Heat Predictions, Studsvik, Sweden, Sept. 1987.

Laboratory and Address:	Physics Department Radiation Center University of Birmingham P.O. Box 363 Birmingham B15 2TT		
Names:	D.R. Weaver, M.F. James (UKARA Winfrith, Dorset)		
Evaluation:	Delayed neutron properties		
Purpose:	For reactor physics calculations		
Major Sources of information:	 Scientific journals; Laboratory reports containing accounts of completed work which are unlikely to be published in the open literature. 		
Deadline of literature coverage:	Continuous		
Status:	In progress		

U.S.A.

Laboratory and address:	Idaho National Engineering Laboratory EG&G Idaho, Inc.	Laboratory and Address:	Los Alamos Nationa Los Alamos, New Ma	al Laboratory, P.O. Box 1663 exico 87545 U.S.A.
Names :	P. O. Box 1625 Idaho Falls, ID 83415 USA C. W. Reich, M. H. Putnam	Names:	T.R. England R.J. LaBauve W.B. Wilson	C.W. Reich (INEL) R.E. Schenter (HEDL) F.M. Mann (HEDL)
<u>Compilation</u> :	Decay data for fission products. Quantities treated include: T_{3} ; QB; branching fractions for		D.C. George B.F. Rider	JI. Katakura (JAERI) A.C. Wahl (Washington Univ.)
	the various decay modes; energies and intensities of all emitted radiations (e.g., β , γ , c.e., x-ray); K-, L- and total ICC; delayed-neutron	Cooperation:	HEDL, INEL, BNL, a other worldwide co	and ENDF/B sub-committees, plus ontributors.
	energy spectra for individual precursors; uncertainties in all measured values.	Purpose:	To provide evaluat and processed lib	tions and compilations for ENDF/B raries based on ENDF/B files.
Purpose:	Decay data file for ENDF/B.	Evaluations:	A. Decay Data	
Major source of Information:	Nuclear Data Sheets, Table of Radioactive Isotopes, recently published papers, preprints of recent work.		Preliminary file nuclides was comp 1989. Of the 755 essentially comple	in an ENDF/B-VI format for 891 leted for testing in November, unstable nuclides, we have ete spectra for beta, gamma, x-ray,
Deadline of literature Coverage:	Ongoing. Evaluation of decay data for inclusion in Version VI of ENDF/B is nearing completion.		discrete electron measured spectra these are supplem	s, etc. for 736 nuclides. 510 have or total decay energies; 115 of ented with model calcula- tions,
Computer File:	Decay data will be included in ENDF/B Fission Product File. Tapes available through normal ENDF/B procedures. Evaluated decay data sets for 510 fission-product nuclides (and isomeric states) have been prepared for inclusion in the ENDF/B-VI Fission-Product File.		and nuclear models remaining unstable the delayed neutro are now being tess for proper ENDF/B available for dis	s are used for most of the e nuclides. The decay data include on emission spectra. These data ted using integral experiments and -VI format rules. Data should be tribution in early 1990.
Publications:	C. W. Reich, "Review of Nuclear Data of Relevance for the Decay Heat Problem," in <u>Proceedings of a</u> <u>Specialists' Meeting on Data for Decay Heat</u> <u>Predictions</u> , Studsvik, Sweden, 7-10 September 1987, (Nuclear Engergy Agency, Paris, 1987), p. 107.		B. <u>Yield Data</u> A preliminary eva fission yields fo more neutron ener. This contains dir emission and cumu emission.	luation for neutron or spontaneous r 36 fissioning systems at one or gies (60 yield sets) is complete. ect yields before delayed neutron lative yields after delayed neutron
			The entire evalua distribution para	tion will be redone using improved meters discussed at the Sept. 1989

U.S.A.

IAEA CRP meeting. C. Delayed Neutrons

The evaluation for 271 delayed emission spectra, supplemented with models, and precursor emission probabilities is complete. These data will be incorporated in the decay files for ENDF/B-VI.

Using a preliminary set of fission product yields evaluated for EMDF/B-VI, we have calculated the aggregate spectra from fission pulses for 43 fissioning systems. These have been approximated using the usual six time-groups, including corresponding spectra in 10 keV energy bins per group to 3 MeV. Twenty-eight sets of such data are being incorporated into ENDF/B-VI (ENDF/B-V contains data for only six fissioning nuclides and spectra in only 28 groups to 1.2 MeV).

Compilations/ Libraries:

- A. A summary report containing all ENDF/B-V total decay parameters, halflives, few-group processed cross sections, mass chain yields, schematics of coupled nuclides, supplementary data, and a listing of questionable data has been completed. This report will serve as a reference document for ENDF/B-V data (Ref. 2).
- B. Processed multigroup cross sections (154 groups) for all ENDF/B-V fission products and actinide cross sections are available along with a collapsing code in Ref. 3.
- C. Multigroup decay spectra (158 groups) for β^{\pm} , γ , α , discrete electrons and neutrinos based on ENDF/B-V decay data have been generated using the SPEC5 Code (Ref. 4). These are available, but not published.
- D. Few-group β and γ spectra, curies, and total decay power analytical fits based on ENDF/B-V data (and modified by experiments in which such integral data were available) are included in the library for the DKPOWR Code (Ref. 5).

All processed libraries based on a released version or modifications of ENDF/B are available. Several libraries for codes such as the various versions of CINDER are also available. Current references are based on ENDF/B-V or subsequent work.

References: 1. General Electric (Vallecitos Nuclear Center) report series, "Compilation of Fission Product Yields:" M.E. Heek and B.F. Rider, NEDOR-2154 (1972): B.F. Rider and M.E. Meek, NEDO 2154-1 (1978): B.F. Rider, NEDO-2154-3(B), [ENDF-292] (1980); and B.F. Rider, NEDO-2154-3(C) [ENDF-322] (1981). U.S.A. (cont'd)

- T.R. England, W.B. Wilson, R.E. Schenter, and F.M. Mann, "ENDF/B-V Summary Data for Fission Products and Actinides," Los Alamos informal document LA-UR-83-1285 (May 1984) (ENDF 322). Electric Power Research Inst. report NP-3787, December 1984.
- 3. W.B. Wilson, T.R. England, R.J. LaBauve, and R.M. Boicourt, "The TOAFEW-V Multigroup Cross-Section Collapsing Code and Library of 154-Group Processed ENDF/B-V Fission-Product and Actinide Cross Sections," Electric Power Research Inst. report EPRI NP-2345. [Los Alamos Nat. Lab. informal document LA-UR-81-1762 Rev (April 1982).]
- 4. T.R. England, R.J. LaBauve, W.B. Wilson, and N.L. Whittemore, "SPEC5: Code to Produce Multigroup Spectra," in Applied Muclear Data Research and Development Quarterly Progress Report, Jan. 1 - March 31, 1981," C. Baxman and P. Young, Comps., Los Alamos Scientific Laboratory report LA-8874-PR (July 1981), p. 50.
- 5. W.B. Wilson, T.R. England, R.J. LaBauve, and D.C. George, "DKPOWR: A Code for Calculating Decay Power, Energy, Activity, and $\beta + \gamma$ Spectra in LWR Fuel Using Fission Pulse Functions," prepared for publication by the Electric Power Research Institute, May 1984. [Los Alamos informal document LA-UR-85-157 (January 1985.)]
- T.R. England, E.D. Arthur, M.C. Brady, and R.J. LaBauve, "Background Radiation from Fission Pulses," Los Alamos National Laboratory report, LA-11151-MS, (Sept. 1987)
- W.B. Wilson, T.R. England, R.J. LaBauve and J.A. Mitchell, "Calculated Radionuclide Inventories of High-Exposure Fuels". Nuclear Safety, Vol. 29, No. 2, April-June, 1988
- T.R. England and J. Blachot, "Status of Fission Yield Data," invited paper for the International Conference on Nuclear Data for Science and Technology, May 30 - June 3, 1988, in Mito, Japan. Ed. S. Igarasi, JAERI, [LA-UR-88-1696]

- 9. T.R. England and M.C. Brady, "Delayed Neutron Spectra by Decay Group for Fissioning Systems from Th-227 through FM-255," invited paper for the 1988 International Reactor Physics Conference in Jackson Hole, Wyoming, Sept. 18-21, 1988 [Summary LA-UR-88-626, Feb. 1988, Final Paper, LA-UR-88-2140, June 1988]
- 10. M.C. Brady and T.R. England, "Delayed Neutron Data and Group Parameters for 43 Fissioning Systems," Nucl. Sci. and Eng., 103, pp. 129-149, (October, 1989) [LA-UR-88-4118]
- 11. T.R. England and B.F. Rider, "Evaluation and compilation of Fission Product Yields, 1989," ENDF-349 (Draft to be published as a laboratory report - this will be the primary documentation for ENDF/B-VI)
- 12. T.R. England, F.M. Mann, C.W. Reich, and R.E. Schenter, "ENDF/B-VI Radioactive Decay and Yield Libraries," invited paper for the ANS Meeting, Nov. 26-30, 1989 [LA-UR-89-2174]
- 13. T.R. England and M.C. Brady, "ENDF/B-VI Six-Group Delayed Neutron Data," invited paper for the ANS Meeting, Nov. 26-30, 1989, LA-UR-89-2207

Laboratory and address	Washington University, Department of Chemistry, St. Louis, MO 63130, U.S.A.
Name	A. C. Wahl
Compilation and evaluation	Independent yields and other data related to nuclear-charge dis- tribution in fission are compiled and evaluated for low-energy fission reactions (excitation energies up to ~ 20 MeV). The current compilation includes data for thermal-neutron-induced fission of 233 U, 235 U, 239 Pu, and 241 Pu, for spontaneous fission of 252 Cf, for fission-spectrum-induced fission of 238 U and 232 Th, and for 14-MeV-neutron-induced fission of 238 U. Data for other fission reactions will be added.
Purpose	Systematic trends in independent yields (IN) are derived from the data by use of empirical models, which allow estimates to be made of independent yields for all fission products and con- tribute to the understanding of fission-reaction mechanisms.
Sources of information	Journals, reports, preprints, other compilations, and personal communcations.
Method	Original values of experimental data and uncertainties are main- tained in a file, and average values are calculated and normal- ized for each A, when sufficient data exist, so that the sum of fractional independent yields (FI) is unity. The set of FI val- ues for each fission reaction, or IN values derived from them, are treated by the method of least squares to derive system- atic trends in the yields described by the Z_P and A'_P empirical models.
Cooperation	We are prepared to exchange files with other groups.
Computer files	Information is held in computer files.
Completions	Compilation is continuous; evaluations and redetermination of parameters for models occurs periodically. Recent reports of

are given in references 1 and 2.

data, evaluations, and model-estimated yields and uncertainties

U.S.A.

- **Publications**
- A.C. Wahl, "Nuclear-Charge Distribution and Delayedneutron Yields for Thermal-neutron-induced Fission of ²³⁵U, ²³³U, and ²³⁹Pu and for Spontaneous Fission of ²⁵²Cf", Atomic Data and Nuclear Data Tables 39, 1-156 (1988).
 - A.C. Wahl, "Nuclear-Charge and Mass Distribution from Fission", presented at the Conference on 50 Years with Nuclear Fission, Washington, D.C., April 28, 1989; to be published in the Conference Proceedings.
 - A.C. Wahl, "Nuclear-Charge Distribution and Delayedneutron Yields for Thermal-neutron-induced Fission of ²³⁵U, ²³³U, ²³⁹Pu and ²⁴¹Pu and for Fast-neutron-induced Fission of ²³⁸U", Proceedings of a Specialists' Meeting on Data for Decay Heat Predictions, held in Studsvik, Sweden, Sept., 1987. Reports NEACRP-302 'L', NEANOC-245 'U' (1987).
 - A.C. Wahl, "Nuclear-Charge Distribution Near Symmetry for Thermal-Neutron-Induced Fission of ²³⁵U", Phys. Rev. C 32, 184 (1985).
 - A.C. Wahl, "Nuclear Charge Distribution in Fission", in New Directions in Physics, The Los Alamos 40th Anniversary Volume, edited by N. Metropolis and G.-C. Rota, Academic Press, N.Y., 1987, pp. 163-189.
 - A.C. Wahl, "Systematics of Nuclear Charge Distribution in Fission. The Z_P Model", J. Radioanal. Chem. 55, 111 (1980).

Laboratory and adress	Institute of Physics and Power Engineering Ploshad Bondarenko - 1 Obninsk Kaluga Region
Names :	Goverdovsky A.A., Ignatjuk A.V.
Evaluation :	Fission fragment mass distribution dispersi- ons as a function of Z^2/A - parameter.
Results :	Fissioning systems from Ac to Fm ; dissipa- tion energy evaluation for different defor - mations between the saddle point and scis - sion one.
Publication :	A.A.Goverdovsky, A.V.Ignatjuk. "Statistical and dynamical aspects for nuclear fission"- Proc. Int. Symp. Nucl. Fission, Gaussig,GDR, 1988.

USSR

PART 2: RECENT PUBLICATIONS RELATED TO FPND

(Completeness of this section has not been attempted)

2.1. Publications not covered by contributions

The publications listed below refer to activities related to FPND which are not covered by the contributions contained in this issue. They are sorted according to:

- 2.1.1 Fission yields and charge distribution
- 2.1.2 Neutron reaction cross sections
- 2.1.3 Decay data
- 2.1.4 Delayed neutron data
- 2.1.5 FP decay heat
- 2.1.6 Reviews and summaries

For papers presented at meetings see section 2.2.

2.1.1 Fission yields and charge distribution

Characteristics of mass and nuclear charge distributions of ²²⁹Th(n_{th},f). Implications for fission dynamics J.P. Bocquet, R. Brissot, H.R. Faust, M. Fowler, J. Wilhelmy, M. Asghar, M. Djebara Z. Phys. A <u>335</u>(1990)41 Differences between angular distributions of fission fragments of unequal mass B.M. Gokhberg, L.D. Kozlov, S.K. Lisin, L.N. Morozov, V.A. Pchelin, L.V. Chistyakov, V.A. Shigin, V.M. Shubko, Yu.A. Yashin Yad. Fiz. 47(1988)320 (English: Sov. J. Nucl. Phys. 47(1988)201) (including: Th-232, U-236,238) Application de la technique d'activation a l'étude des distributions en masse et en charge nucléaire de 238U(n,f) et 232Th(n,f) induites par les neutrons de 3 MeV et 14 MeV K. Embarch Thesis: Unviersité Mohammed V, Rabat, Morocco Nuclide yields of light fission products from thermal-neutron induced fission of ²³³U at different kinetic energies U. Quade, K. Rudolph, S. Skorka, P. Armbruster, H.-G. Clerc, W. Lang, M. Mutterer, C. Schmitt, J.P. Theobald, F. Gönnenwein, J. Pannicke, H. Schrader, G. Siegert, D. Engelhardt Nucl. Phys. A 487(1988)1 Isomeric yield ratio of ¹⁴⁶La and ⁸⁴Br in the thermal neutron induced fission of ^{235}U C.H. Lee, L.T. Hwang, Y.S. Lin, Y.W. Yu J. Radioanal. Nucl. Chem., Letters <u>119</u>(1987)101

Measurement of the yield of fission products of ²³⁵U and ²³⁹Pu by the method of semiconductor gamma spectrometry A.M. Gudkov, V.M. Zhivun, A.B. Koldobskii, S.V. Krivasheev, V.G. Nesterov, N.S. Piven, E.V. Semenova, G.N. Smirenkin At. En. 65(1988)208 (English: Soviet At. En. 65(1989)765) The double-torus ionization chamber DIOGENES for the investigation of charged particle associated nuclear fission P. Heeg, J. Pannicke, M. Mutterer, P. Schall, J.P. Theobald, K. Weingärtner, K.F. Hoffmann, K. Scheele, P. Zöller, G. Barreau, B. Leroux, F. Gönnenwein Nucl. Instr. Meth. Phys. Res. A <u>278</u>(1989)452 (including: $^{235}U(n_{th},f)$, $^{239}Pu(n_{th},f)$ and $^{252}Cf(sf)$) Mass distributions in different fissioning nuclei A. Osman, M. Zaky, S.A. Saleh Nuovo Cimento A 102(1989)1223 (calculation for: U-236,238) Isobaric and isotopic distributions of heavy fission products from the $^{238}U(n_{f},f)$ and $^{232}Th(\alpha,f)$ reactions E. Dobreva, N. Nenoff Bulg. J. Phys. <u>1</u>5(1988)211 Ternary fission of the spontaneously fissioning isomer ²³⁸U V.E. Makarenko, Yu.D. Molchanov, G.A. Otroshchenko, G.B. Yan'kov Pis'ma Zh. Eksp. Teor, Fiz. 47(1988)489 (English: JETP Letters 47(1988)573) Angular distribution of fragments from the fission of ²³⁸U induced by neutrons in the energy range 1-18 MeV H. Afarideh, S.A. Durrani, K. Randle Ann. Nucl. Energy <u>17</u>(1990)143 (see also contribution on page 43) Mass and energy characteristics of products of thermal-neutron fission of 239,241_{Pu} A.D. Belyaev, Z.S. Bikbova, V.L. Gaishan, T.L. Gurvich, V.I. Kogan, V.P. Pikul, A.M. Usmandiyarov, P.K. Khabibullaev Yad. Fiz. 48(1988)324 (English: Sov. J. Nucl. Phys. 48(1988)204) P-odd asymmetry in emission of fragments from ternary fission of ²³⁹Pu by polarized thermal neutrons A.V. Belozerov, B.D. Vodennikov, G.V. Danilyan, E.I. Korobkina, V.S. Pavlov, Yu.F. Pevchev, A.G. Sadchikov, S.M. Solov'ev, A.K. Churakov Yad. Fiz. 49(1989)326 (English: Sov. J. Nucl. Phys. 49(1989)201 Some peculiarities in ionic charge distributions of 241 Pu(n+h,f) fission products A.D. Belyaev, Z.S. Bikbova, V.L. Gaishan, T.L. Gurvich, V.I. Kogan, V.P. Pikul, A.M. Usmandiyarov Nucl. Inst. Meth. Phys. Res. B 43(1989)5 Angular anisotropy of fragments from fission of ²⁴²Pu and ²³³U by neutrons with energy 3.80-6.30 MeV D.L. Shpak, G.G. Korolev, Kh.D. Androsenko Yad. Fiz. 49(1989)928 (English: Sov. J. Nucl. Phys. 49(1989)577)

Cold compact and cold deformed spontaneous fission of ²⁵²Cf I.D. Alkhazov, A.V. Kuznetsov, S.S. Kovalenko, B.F. Petrov, V.I. Shpakov Yad. Fiz. <u>48</u>(1988)655 (English: Sov. J. Nucl. Phys. <u>48</u>(1988)420)
Spontaneous fission properties of ²⁵⁸Fm, ²⁵⁹Md, ²⁶⁰Md, ²⁵⁸No, and ²⁶⁰[104]: biomodal fission E.K. Hulet, J.F. Wild, R.J. Dougan, R.W. Lougheed, J.H. Landrum, A.D. Dougan, P.A. Baisden, C.M. Henderson, R.J. Dupzyk, R.L. Hahn, M. Schädel, K. Sümmerer, G.R. Bethune Phys. Rev. C <u>40</u>(1989)770

Spontaneous emission of light fragments (decay/fission)

- Heavy-fragment radioactivity of ²³⁴U K.J. Moody, E.K. Hulet, Shicheng Wang, P.B. Price Phys. Rev. C <u>39</u>(1989)2445
- Observation of nucleon clusters in the spontaneous decay of ²³⁴U S.P. Tretyakova, Yu.S. Zamyatnin, V.N. Kovantsev, Yu.S. Korotkin, V.L. Mikheev, G.A. Timofeev Z. Phys. A <u>333</u>(1989)349
- Detection of radioactive ²³⁶Pu decay with emission of ²⁸Mg nuclei A.A. Ogloblin, N.I. Venikov, S.K. Lisin, S.V. Pirozhkov, V.A. Pchelin, Yu.F. Rodionov, V.M. Semochkin, V.A. Shabrov, I.K. Shvetsov, V.M. Shubko, S.P. Tretyakova, V.L. Mikheev Phys. Lett. B <u>235</u>(1990)35
- Heavy-fragment radioactivity of ²³⁸Pu: Si and Mg emission Shicheng Wang, D. Snowden-Ifft, P.B. Price, K.J. Moody, E.K. Hulet Phys. Rev. C 39(1989)1647

2.1.2 Neutron reaction cross sections

Total cross section and resonance spectroscopy for n+⁸⁶Kr R.F. Carlton, R.R. Winters, C.H. Johnson, N.W. Hill, J.A. Harvey Phys. Rev. C <u>38</u>(1988)1605
Measurement of the cross sections for the reactions ⁵²Cr(n,2n)⁵¹Cr, ⁶⁶Zn(n,2n)⁶⁵Zn, ⁸⁹Y(n,2n)⁸⁸Y and ⁹⁶Zr(n,2n)⁹⁵Zr from 13.5 to 14.8 MeV M. Wagner, G. Winkler, H. Vonach, Cs.M. Buczko, J. Csikai Ann. Nucl. En. <u>16</u>(1989)623
⁸⁹Y+n resonances for E = 10-740 keV and intermediate structure H.M. Agrawal, J.B. Garg, J.A. Harvey Nucl. Phys. A <u>501</u>(1989)18
Measurement of the cross section for the reaction ⁹³Nb(n,n⁺)^{93m}Nb at 2.8 MeV M. Wagner, G. Winkler, H. Vonach, G. Petö Ann. Nucl. En. <u>15</u>(1988)363

Excitation functions of 93Nb(n,2n)92mNb, $93Nb(n,\alpha)90m,8Y$, 139 La(n, α)¹³⁶Cs and 181 Ta(n,p)¹⁸¹Hf reactions in the energy range of 12.5-19.6 MeV R. Wolfle, A. Mannan, S.M. Qaim, H. Liskien, R. Widera Appl. Radiat. Isot. 39(1988)407 Activation cross section and isomeric cross-section ratio for the 93Nb(n,a)90Ym,g process A. Mannan, S.M. Qaim Phys. Rev. C 38(1988)630 A study of the level and decay scheme of 97Mo via the (n.n'y) reaction F. Demanins, U. Abbondanno, F. Raicich Nuovo Cimento A 98(1987)133 A study of the $97Mo(n,n'\gamma)^{97}Mo$ reaction U. Abbondanno, F. Demanins, F. Raicich Nuovo Cimento A 102(1989)1533 100Ru studied by thermal neutron capture G.G. Colvin, S.J. Robinson, F. Hovler J. Phys. G 14(1988)1411 Measurement of the resonance integral and evaluation of the absorption cross section for thermal neutrons for radioactive ¹⁰⁹Cd M.P. Anikina, A.G. Beda, A.V. Davydov, M.M. Korotkov, G.M. Kukavadze, L.Ya. Memelova At. En. 62(1987)415 (English: Sov. At. En. 62(1987)483) Refining the capture cross sections of 103_{Rh} , 105_{Pd} , 109_{Ag} , and 153_{Eu} S.M. Bednyakov, M.V. Bokhovko, G.N. Manturov, K. Dietze At. En. 67(1989)199 (English: Sov. At. En. 67(1990)675) A study of the $127_{I}(n,\gamma)^{128}_{I}$ reaction M.A. Islam, T.J. Kennett, W.V. Prestwich Z. Phys. A 335(1990)173 Low-lying ¹³⁰I excited states from the (n, γ) reaction S.L. Sakharov, I.A. Kondurov, Yu.E. Loginov, V.V. Martynov, A.A. Rodionov, P.A. Sushkov, Yu.L. Khazov, A.I. Egorov, V.K. Isupov, H.G. Börner, F. Hoyler, S. Kerr, K. Schreckenbach, G. Hlawatsch, T. von Egidy, H. Lindner Nucl. Phys. A 494(1989)36 A study of the $^{139}La(n,n'\gamma)^{139}La$ reaction U. Abbondanno, A. Boiti, F. Demanins Nuovo Cimento A 97(1987)647 Fast neutron capture cross sections of Europium Xiang Zhengyu, Xu Haishan, Li Yexiang, Mu Yunshan, Wang Shiming, Liu Jianfeng Nucl. Sci. Eng. 104(1990)277 (see contribution on page 10)

Energy of the 32 keV transition of ⁸³Kr^m and the atomic mass difference between ³H and ³He S.T. Staggs, R.G.H. Robertson, D.L. Wark, P.P. Nguyen, J.F. Wilkerson, T.J. Bowles Phys. Rev. C 39(1989)1503 Absolute gamma intensities in the A=98 transitional nuclei and shape coexistence in ⁹⁸Y H. Mach, R.L. Gill Phys. Rev. C 36(1987)2721 (see also contribution on page 44) Intruder state collectivity at a double subshell closure from the beta decay of 0^{-96} yg to the levels of 96 Zr H. Mach, G. Molnár, S.W. Yates, R.L. Gill, A. Aprahamian, R.A. Meyer Phys. Rev. C 37(1988)254 (cf. contribution on page 44) Double gamma decay in ⁹⁰Zr E.R. Mucciolo, O. Helene Phys. Rev. C 40(1989)2403 Intensity and angular correlation measurements of $103_{\rm Ru}$ S.M. Darwish, S. Abdel-Malak, M.A. Abou-Leila, N. Walley-Eldin, A.M. Hassan Hadronic J. <u>10</u>(1987)1 ¹⁰⁹Pd and ¹⁰⁹Cd activity standardization and decay data C. Ballaux, B.M. Coursey, D.D. Hoppes Appl. Radiat. Isot. 39(1988)1131 Gamma-ray angular correlations in the decays of ¹⁰⁹Pd and ¹¹¹Pd D.E. Brown, K.S. Krane Nucl. Phys. A 489(1988)100 Precision measurement of the total ICC for M4 transitions in 117In. ¹¹⁷Sn, ¹⁹⁷Pt, and ¹⁹⁷Hg I.N. Vishnevskii, V.A. Zheltonozhskii, M.A. Ukhin Izv. Akad. Nauk CCCP, Ser. Fiz. 51(1987)863 (English: Bull. Acad. Sci. USSR, Phys. Ser., 51(1987) no.5, page 23) Decays of ¹¹⁸In, ¹²⁰In, and ¹²²In isomers to levels in ¹¹⁸Sn, 120_{Sn}, and 122_{Sn} S. Raman, T.A. Walkiewicz, L.G. Multhauf, K.G. Tirsell, G. Bonsignori, K. Allaart Phys. Rev. C 37(1988)1203 Selected gamma-ray energies and emission probabilities for the decay of 125_{Sb} and 154_{Eu} R.G. Helmer Appl. Radiat. Isot. 41(1990)75 Measurement of nuclear-physical characteristics of radionuclides A.M. Geidel'man, Yu.S. Egorov, V.G. Nedovesov, G.E. Shchukin Izmer Tekh. 30, no.3(1987)49 (English: Meas. Tech. 30 (1987)289) (including: Sn-119m, Te-125m)

 $\gamma-\gamma$ angular correlations in ¹³¹Xe Seung Ai Shin, Ho Sik Kang New Phys. (South Korea), 28(1988)678 (in Korean) Decay of a new 16.7 min isomer of 131Sb A. Goswami, S.K. Das, B.S. Tomar, A.G.C. Nair, R. Guin, S.B. Manohar, S.M. Sahakundu, Satya Prakash Phys. Rev. C 38(1988)1513 Structure of odd-odd ¹³²Sb C.A. Stone, S.H. Feller, W.B. Walters Phys. Rev. C 39(1989)1963 Decay of 139,141,143 Xe to levels of 139,141,143 Cs S.H. Faller, P.F. Mantica, Jr., E.M. Baum, Chien Chung, J.D. Robertson, C.A. Stone, W.B. Walters Phys. Rev. C 38(1988)905 Directional correlations of γ transitions in ¹⁴²Ce A.L. Lapolli, C.B. Zamboni, R.N. Saxena Phys. Rev. C 41(1990)2312 Search for reflection asymmetric structures in the A=145 mass region: decays of 1.8-s ¹⁴³Cs to levels of ¹⁴³Ba and 4.1-s ¹⁴⁷La to levels of ¹⁴⁷Ce J.D. Robertson, P.F. Mantica, Jr., S.H. Faller, C.A. Stone, E.M. Baum, W.B. Walters Phys. Rev. C 40(1989)2804 Decay of 143Ba to levels of the odd-proton N=86 nuclide 143La S.H. Faller, J.D. Robertson, E.M. Baum, Chien Chung, C.A. Stone, W.B. Walters Phys. Rev. C 38(1988)307 Level structure of the odd mass Pr isotopes: levels of ^{143}Pr populated in the beta decay of ¹⁴³Ce D.F. Kusnezov, D.R. Nethaway, R.A. Meyer Phys. Rev. C 40(1989)924 Level structure of odd-mass Pr isotopes: decay of 3.0-min ¹⁴⁵Ce to levels of ¹⁴⁵Pr E.M. Baum, J.D. Robertson, P.F. Mantica, Jr., S.H. Faller, C.A. Stone, W.B. Walters, R.A. Meyer, D.F. Kusnezov Phys. Rev. C 39(1989)1514 Beta-decay of 148,150,152pr into levels of 148,150,152Nd T. Karlewski, N. Hildebrand, M. Brügger, N. Kaffrell, N. Trautmann, G. Herrmann Z. Phys. A 330(1988)55 K-capture probabilities and some B(E2) ratios in the decay of 152EuS.S. Ghumman, H.S. Binarh, H.S. Sahota, T. Iwashita J. Phys. Soc. Japan <u>58</u>(1989)3921 Levels in 152Gd and 152Sm populated by the decay of 152Eu N.M. Stewart, E. Eid, M.S.S. El-Daghmah, J.K. Jabber Z. Phys. A 335(1990)13

The analysis of delayed neutron energy spectra recorded with ³He ionization chambers H. Ohm, K.-L. Kratz, S.G. Prussin Nucl. Instr. Meth. Phys. Res. A 256(1987)76 Yields of delayed-neutron groups in thermal-neutron fission of ²²⁹Th A.N. Gudkov, A.B. Koldobskii, S.V. Krivasheev, N.A. Lebedev, V.A. Pchelin Yad. Fiz. 49(1989)1551 (English: Sov. J. Nucl. Phys. 49(1989)960) Measurement of the delayed-neutron yields in the fission of 233 U, $236_{\rm U}$, $237_{\rm Np}$, $240_{\rm Pu}$, and $241_{\rm Pu}$ by neutrons from the spectrum of a fast reactor A.N. Gudkov, V.M. Zhivun, A.V. Zvonarev, V.V. Kovalenko, A.B. Koldobskii, Yu.F. Koleganov, S.V. Krivasheev, V.B. Pavlovich, N.S. Piven, E.V. Semenova At. En. 66(1989)100 (English: Sov. At. En. 66(1989)115) Determining delayed-neutron group yields for fast neutron 235U and 241Am fission A.N. Gudkov, S.V. Krivasheev, A.B. Koldobskii, E.Yu. Bobkov, Yu.F. Koleganov, A.V. Zvonarev, V.B. Pavlovich At. En. 67(1989)218 (English: Sov. At. En. 67(1990)702) Prediction of the delayed neutron yields for actinide nuclides Y. Ronen Ann. Nucl. Energy 16(1989)647

2.1.5 FP decay heat

Measured data of delayed gamma-ray spectra from fissions of ²³²Th, ²³³U, ²³⁵U, ²³⁸U and ²³⁹Pu by fast neutrons; tabular data M. Akiyama, J. Katakura JAERI-M-88-252(1988)

2.1.6 Reviews and summaries

Progress on the nuclear charge distribution in fission in the last decade Li Xueliang J. Nucl. Radiochemistry <u>11</u>(1989)194 (in Chinese) Even-odd effects in the charge distributions of the products of cold

fragmentation of actinide nuclei A.B. Koldobskii, V.K. Sirotkin Yad. Fiz. <u>47</u>(1988)1577 (English: Sov. J. Nucl. Phys. <u>47</u>(1988)999)

Comparison of different methods for the determination of fission fragment velocity, mass, and energy distributions for ²³²Th(n,f) K.-Th. Brinkmann, J, Kiesewetter, F.M. Baumann, H. Freiesleben, H.J. Lütke-Stetzkamp, H.J. Paul, H.G. Schwanke, H. Sohlbach Nucl. Instr. Meth. Phys. Res. A <u>276</u>(1989)557 Radioactivities by light fragment (C, Ne, Mg) emission
E. Hourani, M. Hussonnois, D.N. Poenaru
Ann. Phys. Fr. <u>14</u>(1989)311
Fundamental and applied researches on the VVR-SM reactor at the Nuclear Physics Institute, Uzbek Academy of Sciences
P.K. Khabibullaev
At. En. <u>64</u>(1988)338 (English: Sov. At. En. <u>64</u>(1988)390)

(including: review of fission yield measurements)

Special theme issue on nuclear fission:

Pramana Vol. 33, No. 1, July 1989	page
Discovery of nuclear fission in Berlin 1938 D. Hilscher	1
Nuclear fission phenomenon - at a glance	13
Shell structure in deformed nuclei and nuclear fission V.M. Strutinsky	21
The topography of the nuclear fission barrier J.E. Lynn	33
Light-charged particle emission in fission	85
Recent radiochemical studies of the fission process Satya Prakash	109
Nucleon exchange mechanism of mass asymmetry relaxation in in fission and other binary nuclear reactions V.S. Ramamurthy, R. Ramanna	133
Saddle-point shapes and fission barriers of rotating nuclei F. Plasil	145
Fragment angular distributions in fission and fission-like reactions	161
Pre-scission particle and gamma-ray emission in heavy-ion induced fission	175
The categorical space of fission	209

2.2. Meetings

Specialists' Meeting on Delayed Neutron Properties

Birmingham, England, 15-19 September, 1986

Page: Selected Papers:

- 21 1986 Evaluation of delayed-neutron emission probabilities F.M. Mann
- 37 P_n measurements at TRISTAN by a β-n coincidence technique P.L. Reeder, R.A. Warner, R.L. Gill, A. Piotrowski
- 59 A status report on delayed neutron branching ratios of fission products and the delayed neutron programme at OSIRIS using the new ion-source ANUBIS
 - E. Lund, G. Rudstam, K. Aleklett, B. Ekstrom, B. Fogelberg, L. Jacobsson
 - (see also contribution on page 37)
- Beta-delayed neutron emission from heavy Br to Y precursors: information on nuclear structure by investigation of gross betadecay properties
 B. Pfeiffer, K-L. Kratz, H. Gabelmann, W. Ziegert,

- 95 Evaluated yields of delayed neutrons from fission R.J. Tuttle
- 107 The absolute yield of delayed neutrons from fast fission in natural uranium S.A. Benayad, S.J. Chilton, J. Walker, J.G. Owen, M.B. Whitworth, D.R. Weaver
- 117 Status of evaluated precursor and aggregate spectra T.R. England, M.C. Brady, E.D. Arthur, R.J. LaBauve (see also contribution on page 66)
- 165 The variation of delayed-neutron spectra from ²³⁵U with primary neutron energy 0.5 to 2 MeV D.R. Weaver, S.J. Chilton, J.G. Owen, J. Walker
- 199 Further measurements of the delayed neutron spectra of ⁹³⁻⁹⁷Rb and ¹⁴³⁻¹⁴⁵Cs R.C. Greenwood, A.J. Caffrey (see also contribution on page 47)
- 215 Composite delayed neutron spectra for fast reactor physics G.P. Couchell, W.A. Schier, D.J. Pullen, L. Fisteag, M.H. Haghighi, Q. Sharfuddin, R.S. Tanczyn (see also contribution on page 49)
- 243 A group analysis of the delayed-neutron spectrum from unseparated precursors arising from the fission of ²³⁵U by energetic neutrons S.J. Chilton, D.R. Weaver, J. Walker, J.G. Owen

V. Harms, B. Leist

- Delayed neutron spectra from short pulse fission of ²³⁵U
 H.F. Atwater, C.A. Goulding, C.E. Moss, R.A. Pederson,
 A.A. Robba, T.F. Wimett, P.L. Reeder, R.A. Warner
- 299 Delayed neutron spectra for ^{93,94,95}Rb by time-of-flight G.I. Crawford, J.D. Kellie

Specialists' Meeting on Data for Decay Heat Predictions

Studsvik, Sweden, 7-10 September, 1987

- Page: Papers:
 - 9 Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of U-235, U-233, Pu-239 and Pu-241 and for fast-neutron induced fission of U-238 A.C. Wahl (see also contribution on page 68)
 - 21 Evaluation of fission product yields for the USA National Nuclear Data Files B.F. Rider, T.R. England
 - 37 Evaluation of fission product yields Wang Dao, Zhang Dongming
 - 69 A review of libraries of fission product yields M.F. James
 - 107 Review of nuclear data of relevance for the decay heat problem C.W. Reich
- 119 Decay data for decay heat predictions J. Blachot, et al.
- 141 Average decay energies in JNDC file version 2J. Katakura, R. Nakasima
- Average beta energies of fission products and their use for decay heat predictions
 G. Rudstam, et al.
- 187 Delayed-neutrons: a summary of the Birmingham meeting and new developments D.R. Weaver
- 199 Review of new integral determinations of decay heat J.K. Dickens
- 211 Integral determinaton of the beta and gamma heat in thermal-neutron-induced fission of U-235 and Pu-239, and of the gamma heat in fast fission of U-238 P.I. Johansson
- 225 Uncertainties in JEF1 integral decay heat predictions estimated from comparisons with a least squares fit to measured data A. Tobias

- 267 French studies for improvement of the decay heat due to fission products
 - B. Duchemin, et al.
- 277 JNDC FP nuclear data file version 2 and its assessment K. Tasaka, et al.
- 289 The calculation of sensitivities of nuclide inventories and decay power M.F. James
- 303 Evaluation of the neutron absorption correction G(t) of the ANSI/ANS-5.1 decay power standard (viewgraphs only) T.R. England, et al.

Specialists' Meeting on fission yield evaluation

Studsvik, Sweden, 11, 14 and 15 September 1987

The meeting <u>discussed</u> international cooperation, future development of fission yield evaluation, communication with measurers, common formats for data exchange, and fission yield measurements still required. No papers were presented.

The <u>minutes of the meeting</u> were published as INDC(NDS)-208 with the same distribution as this report series.

Intern. Conf. on Nuclear Data for Science and Technology

Mito, Japan, May 30 - June 3, 1988

Page: Selected Papers:

- Review of the nuclear data status and requirement for fission reactors

 Y. Ishiguro, A. Zukeran
 (including: cross sections for some fission products)

 A demand for consistency of nuclear data related to reactor
- neutron activation analysis F. De Corte, A. Simonits (including: (n,γ) for Sn-124, Ba-138, Eu-153)
- 337 Experimental techniques for fission data measurements
 H.-H.J. Knitter, C. Budtz-Jörgensen
- 359 Nuclear data measurements of neutron-rich nuclides produced in fission using on-line isotope separations R.C. Greenwood, R.A. Anderl, A.J. Caffrey, J.D. Cole, M.W. Drigert, R.G. Helmer, M.A. Lee, C.W. Reich, D.A. Struttmann (see also contribution on page 46)

- 407 Fission fragment distributions in resolved resonances of 235U(n,f)
 F.-J. Hambsch, H.-H.J. Knitter, C. Budtz-Jörgensen,
 - J.P. Theobald (see cpntribution on page 4)
- 415 Fission fragment transfer efficiency for helium jet system G.P. Couchell, D.J. Pullen, W.A. Schier, P.R. Bennett, M.H. Haghighi, E.S. Jacobs, M.F. Villani (see also contribution on page 49)
- 583 A compilation of accurately measured 2200ms⁻¹ cross-sections for 101 (n,γ) reactions of interest in activation analysis; a critical comparison with literature
 F. De Corte, A. Simonits

 (including several fission products)
- 623 Average resonance parameters for Nb-93 and natural tungsten P. Vertes, Y.V. Grigoryev
- 695 Kinetic energies of fragments in neutron-induced nuclear fission A.A. Goverdovsky, B.D. Kuzminov, V.F. Mitrofanov, A.I. Sergachev (see also contribution on page 49)
- 791 Saddle and scission states expected from fine structure of nuclear charge distribution based on semi-empirical theory A. Zukeran, T. Nakagawa
- 807 Development of neutron data evaluation methods and creating complete files of zirconium isotopes
 V. Bychkova, O. Grudzevich, A. Zelenetski, V. Plyaskin
- 819 Review of decay heat calculations
 K. Tasaka, J. Katakura, T. Yoshida
 (see also contribution on page 61)
- 827 Predictions of the decay heat of nuclear reactors by microscopic beta decay calculations H.V. Klapdor, J. Metzinger
- 837 Systematic trends in the level structure of neutron rich nuclei B. Fogelberg (see contribution on page 39)
- Recent progress in the gross theory of β-decay
 M. Yamada

 (see also contribution on page 61)
- 849 Comparison of experimental and theoretical internal conversion coefficients of octupol transitions (including several fission products)
- Measured composite delayed neutron spectra from fission of U-235, U-238 and Pu-239 and derived six-group spectra W.A. Schier, D.J. Pullen, G.P. Couchell, M.H. Haghighi, E.S. Jacobs, M.F. Villani, P.R. Bennett (see contribution on page 49)
- 857 Integral determination of the beta and gamma heat in thermal-neutron-induced fission of ²³⁵U and ²³⁹Pu, and of the gamma heat in fast fission of ²³⁸U P.I. Johansson
- 861 Yields and energies of delayed neutrons from fast fission in uranium and plutonium J. Walker, D.R. Weaver, S.A. Benayad, S.J. Chilton, J.G. Owen, M.J. Cogbill (see contribution on page 43)
- 867 Experimental determinations of average beta and gamma energies and their use for decay heat predictions G. Rudstam, P. Aagaard, K. Aleklett, P.I. Johansson, E. Lund, O. Tengblad, B. Jonson, G. Nyman, R. Von Dincklage, P. Hoff (see contribution on page 40)
- 881 Calculation of gamma-ray spectrum of aggregate fission product nuclides and fitting of the gamma-ray spectrum J. Katakura (see also contribution on page 61)
- 885 Estimation of delayed neutron emission probability and delayed neutron yield T. Tachibana, M. Yamada, K. Nakata, S. Matsuda, R. Nakasima
- 889 The overview of the JNDC FP decay data library version 2
 T. Yoshida, H. Ihara, J. Katakura, K. Tasaka, R. Nakasima (see also contribution on page 61)
- 893 Precise measurement of beta-ray maximum energy by HPGe
 H. Ukon, M. Miyachi, T. Ishii, H. Yamamoto, K. Kawade,
 T. Katoh, Y. Kawase, K. Okano, J. Ruan
- 901 CEA fission product radioactivity data file and its assessment J. Blachot, B. Duchemin, B. Nimal, J.C. Nimal (see also contribution on page 58)
- 905 Delayed neutron equilibrium spectra for U-235, U-238 and Pu-239 D.J. Pullen, W.A. Schier, G.P. Couchell, E.S. Jacobs, M.F. Villani, M.H. Haghighi, P.R. Bennett (see contribution on page 49)
- 909 Measurements and evaluation of nuclear and atomic data of the applied radionuclides A.M. Geidelman, Yu. S. Egorov, N.K. Kuzmenko, V.G. Nedovesov, V.P. Chechev, G.E. Shyukin (including: decay data for Sn-119m, Te-125m)
- 915 Possibilities of the twodimensional method for delayed neutron spectra measurements
 B.P. Maksyutenko, Yu. F. Balakshev and S.V. Ignatjev
- 943 Status of fission yield data J. Blachot, T.R. England (see contribution on page 66)

- Study of ²⁴⁹Cf(n_{th},f) with Lohengrin Mass Separator 963 M. Djebara, M. Asghar, J.P. Bocquet, R. Brissot, J. Crançon, Ch. Ristori, E. Aker, D. Engelhardt, B.D. Wilkins, U. Quade (see also contribution on page 14) 967 Mass distribution in fission spectrum neutron induced fission of U-235 Qi Linkun, Liu Conggui, Tang Peijia, Li Ze, Wang Xiuzhi, Zhang Sujing, Liu Yonghui, Jiu Daming, Ju Changxin, Lu Huijun, Zhu Jiaxuan, Guo Jingru (see also contribution on page 8) 971 The ASIND-MEPhI fission product yield data-base A.D. Efimenko, A.F. Grashin, E.A. Kudryavtseva Study of post-neutron mass and charge yields for $232U(n_{th}, f)$ 979 and 238Pu(nth,f) M. Haddad, M. Asghar, J. Crançon, G. Lhospice (see contribution on page 14) Investigation of binary and ternary fission in ²³⁸U induced by 987 monoenergetic neutrons H. Afarideh, K. Randle (see contribution on page 43) 991 Mass distribution structures as a function of excitation energy of the ²⁵²Cf spontaneous fission fragments I.D. Alkhazov, A.V. Kuznetsov, S.S. Kovalenko, B.F. Petrov, V.I. Shpakov (see also contribution on page 53) Measurement of the $93Nb(n,n')^{93m}Nb$ cross section at 7.9 MeV 1049 M. Wagner, G. Winkler, H. Vonach, H. Liskien A measurement of ⁹³Nb(n,n')^{93m}Nb cross-section in the energy 1057 range 1 to 6 MeV D.B. Gayther, C.A. Uttley, M.F. Murphy, W.H. Taylor, K. Randle Intern. Conf. on Fifty Years Research in Nuclear Fission Berlin, F.R.G., 3-7 April, 1989 Proceedings published in Nucl. Phys. A 502 (1989) Page: Selected Papers: 1c Nuclear fission: What have we learned in 50 years? R. Vandenbosch 21c Spontaneous fission properties and lifetime systematics
- 159c Recent developments of experimental techniques G. Gönnenwein

D.C. Hoffman

213c Mass, energy and nuclear charge distribution of fission fragments J.P. Bocquet, R. Brissot

- 233c Mass, charge, and energy distributions in very asymmetric thermal fission of ²³⁵U J.L. Sida, P. Armbruster, M. Bernas, J.P.Bocquet, R. Brissot, H.R. Faust
- 243c Symmetric and asymmetric fission of nuclei lighter than radiumM.G. Itkis, V.N. Okolovich, G.N. Smirenkin
- High resolution measurements of mass, energy and nuclear charge correlations for ²³⁹Th(n_{th},f) with the Cosi Fan Tutte spectrometer
 N. Boucheneb, P. Geltenbort, M. Asghar, G. Barreau, T.P. Doan, F. Gönnenwein, B. Leroux, A. Oed, A. Sicre
- 271c Angular distributions of ²³⁰,²³²Th(n,f) and the third-minium hypothesis F.-M. Baumann, K.Th. Brinkmann, H. Freiesleben, J. Kiesewetter, H. Sohlbach
- 287c Investigation of neutron shell effects and fission channels in the spontaneous fission of the Pu-isotopes C. Wagemans, P. Schillebeeckx, A. Deruytter (see contribution on page 4)
- 307c Nuclear charge distribution in the spontaneous fission of ²⁵²Cf S.B. Manohar, A. Ramaswami, B.K. Srivastava, A.V.R. Reddy, A.G.C. Nair, G.K. Gubbi, A. Srivastava, S. Prakash (see contribution on page 29)
- 315c ²⁵²Cf fission revisisted new insights into the fission process P. Glässel, R. Schmid-Fabian, D. Schwalm, D. Habs, H.U. v.Helmolt
- 343c Low-energy ternary fission J.P. Theobald, P. Heeg, M. Mutterer
- 363c Ternary fission of neutron induced uranium fissioning isomers V.E. Makarenko, Yu.D. Molchanov, G.A. Otroshenko, G.B. Yankov
- 609c Summary: Our 50-year odyssey with fission J.R. Nix

50 Years With Nuclear Fission

Gaithersburg, Maryland, USA, 25-28 April 1989

- Page: Selected Papers:
- 299 Low-energy ternary fission P. Heeg, M. Mutterer, J. Pannicke, P. Schall, J.P. Theobald, K. Weingärtner
- 306 Nuclear shapes from spectroscopic studies of fission fragments I. Ahmad, H. Emling, R. Holzmann, R.V.F. Janssens, T.L. Khoo, W.R. Phillips, M.W. Drigert

- 313 Cold fragmentation properties: A crucial test for the fission dynamics
 J. Trochon, G. Simon, C. Signarbieux
 449 Composite delayed neutron energy spectra of fissionable isotopes
- G. Couchell, P. Bennett, E. Jacobs, D. Pullen, W. Schier,
 M. Villani, R. Tanczyn, M. Haghighi, Q. Sharfuddin
 (see also contribution on page 49)
- 457 Independent yield pattern in thermal neutron-induced fission of 235y
 G. Rudstam, B. Ekström, E. Lund
 (see contribution on page 38)
- 471 The production of a new evaluation of fission products R.W. Mills, M.F. James, D.R. Weaver (see contribution on page 63)
- 515 Cold fission as a probe for compact scission configurations F. Gönnenwein, B. Börsig
- 525 Nuclear-charge and mass distributions from fission A.C. Wahl (see also contribution on page 68)
- 533 Bimodal fission E.K. Hulet
- 684 Correlation characteristics of triton and long range alpha particle accompanied fission of ²⁵²Cf
 Han Hongyin, Huang Shengnian, Meng Jiangchen, Bao Zongyu, Ye Zongyuan
- 705 A study of monoenergetic, fast neutron-induced ternary fission in ²³⁸U K. Randle, H. Afarideh (see contribution on page 43)
- 727 The relation between the prompt gamma-ray yields from fission fragments and the charge and mass distribution in 235U (n_{res},f) reaction A.A. Bogdzel, N.A. Gundorin, A. Duka-Zolyomi, J. Kliman, J. Kristiak
- 833 ESOL facility for the generation and radiochemical separation of short half-life fission products
 R.J. Gehrke, D.H. Meikrantz, J.D. Baker, R.A. Anderl,
 V.J. Novick, R.C. Greenwood
- 849 Fifty years of fast chemistry: Study of short-lived fission products Krishnaswamy Rengan
- 855 The Cornell University cold neutron beam facility D.D. Clark, T. Emoto, C.G. Ouellet, E. Pekrul, J.S. Berg
- 881 Studies of fragment charge and energy correlations in spontaneous fission of ²⁵²Cf
 M.N. Rao, D.C. Biswas, T.K. Choudhury

<u>JAEA Consultants' Meeting on the Compilation and Evaluation</u> of Fission Yield Nuclear Data

Vienna, Austria, 27-29 September 1989

This meeting was a continuation of the 1987 Studsvik meeting on fission yield evaluation. The purpose of this meeting was to further discuss problems in fission yield measurements, evaluation and semiempirical models, and to work out the details for the planned IAEA Coordinated Research Programme (CRP). In addition, a number of recommendations were issued, including several from the Studsvik meeting which are still valid.

An extended list of fission yield data that need further measurements can be found in <u>Part 3</u> of this issue.

A summary report of the meeting will again be published as INDC(NDS)-report with the same distribution as this report series.

PART 3: FPND REQUIREMENTS

3.1 Fission Yields

The requirements for fission yield measurements given below were identified at the "Consultants' Meeting on the Compilation and Evaluation of Fission Yield Nuclear Data", Vienna, Austria, 27-29 September 1989.

The following yield data should be measured primarily for U235 thermal fission and thereafter be extended to other fissioning systems:

- independent yields (e.g.: only 1/5th has been measured for U235 thermal fission), especially in the region of symmetric fission (for further development of systematics and model parameters);
- isomeric yields and/or yield ratios;
- isotopic and/or isobaric yields for studying the odd-even effect;
- ternary fission yields, also as a function of incident neutron energy or as a function of binary fragment mass;
- some monoenergetic measurements for chain, independent, isomeric and ternary fission yields;
- more measurements over ionic charge states and kinetic energy to allow summing over these parameters by evaluators;
- (re)measurements of chain yields as given in the following section.

3.1.1 Chain yield measurements required

(Re)measurements of chain yields are required as given in the tables below. The abbreviations used in the tables have the following meaning:

A = mass number

no = number of measurements (blank or 0 = zero)
reason = reason for request (except if no = 0, blank or 1)

D = disrepant data with large χ^2 ; the number in brackets gives the probability (in %) for the occurrence of the maximum contribution (from the most discrepant measurement) to the calculated χ^2 .

U233	thermal	fission
------	---------	---------

A	no	reason	A	no	reason	A	no	reason		no	reason
2	1	·····	76		· · · · · · · · · · · · · · · · · · ·	116			130		
3	3	D(0.64)	77	1		117	1		151	3	D(6.1)
4	7	D(2.8)	78	1		118	1		153	1	
6			79	1		119	1		155		
7	1		80	1		120	1		156	1	
8	1		82	1		122	1.		157	1	
9	1		99	7	D(9.0)	123			158		
10	1		103	7	D(2.4)	124	1		159	1	
71			109	1		125	l		160		
72			110	1		126			161	1	
73			111	3	D(5.9)	127	2	D(3.4)	162		
74			113			128			· .		
75			114			129					

U235 thermal fission

А	no	reason	A	no	reason	A	no	reason	A	no	reason
3			66			116	1		165		
4	13	D(0.0)	67	1		117	3	D(5.3)	166		
6	5	D(0.15)	71			123	6	D(0.17)	167		
7	l		72			125	5	D(7.8)	168		
10	5	D(9.9)	73	1		128	8	D(6.7)	169		
11	1		74	1		130	1		170		
12	4	D(0.20)	83	12	D(8.4)	149	13	D(2.4)	171		
13	1		85	19	D(2.1)	151	10	D(8.6)	172	1	
14	1		106	10	D(1.0)	153	10	D(2.4)	173		
16	1		109	5	D(5.3)	154	7	D(7.0)	174	1	
18	2	D(0.00)	110	3	D(5.0)	161	1		175		
20	1		111	l		162	1		176		
21	1		112	1		163	1		177	1	
32			113	l		164	1				

Pu239 thermal fission

A	no	reason	A	no	reason	A	no	reason	A	no	reason
						112	4		128		
2	2	D(6.0)	72	ı		113	7	D(4.0)	130	-	
3	-	2(010)	73	-		114	1	2(110)	133	16	D(0.92)
4			74			115	8	D(0.0)	151	-0	D(8.4)
7	l		75			116	1	-(,	153	-	-(,
8	1		76			117	1		155	1	
9	1		77	1		118	l		156	6	D(3.1)
10	1		78			119	l		157	1	. ,
11	1		79			120	1.		158		
12	1		80			121			160		
13	1		82			122	1		162		
14	1		90	7	D(6.6)	123			163		
15	l		102	1		124	1		164		
16	1		109	4	D(9.0)	125			165		
20	1		110	1		126	1		166	1	

Pu241 thermal fission

A no reason	A no reason	A no reason	A no reason
3 1	96 1	111	126
4 2 D(1.5)	98	112 3 D(4.6)	to 1
71	99 6 D(5.6)	113	130
to	100	to	132 10 D(1.0)
82	101 1	0	133 8 D(6.3)
83 1	102 1	120	134 4 D(8.7)
84 1	104	121	139 1
86 1	to	to	155
91 5 D(1.0)	109	124	to 1
94 1	110	125 2 D(0.0)	162

Cm243 thermal fission

A no reason	А по	reason	A	no	reason	A	no	reason
3 4 71 0 91 0 92 1 93 1 94 1 95 1	A no 100 101 1 103 1 104 1 106 108 1 109 1 109 1 110 111 111		115 116 to 126 127 129 133 134 136	1 0 1 1 1		142 143 to 147 148 149 150 151 152	1.	
96 98 99 1	112 1 113 114	i	137 138 141	1		to) 162	0	

Cm245 thermal fission

A no	reason	А	no	reason	A	no	reason	A	no	reason
3		93	3	D(3.8)	114	1		141	3	D(8.5)
4		94			116			142	2	D(1.6)
71)		96			to	0		143	3	D(4.6)
to 0		98			120)			144	2	D(3.2)
76 J		99	3	D(5.0)	121	1		145	1	
77 1		100			122			148		
781		101	1		123			150		
to} 0		102	1		124			152	1	
82)		103	4	D(8.9)	126			153	1	
83 1		104	1		128	3	D(0.06)	154		
84 1		105	5	D(7.5)	132	2	D(0.01)	155		
85		107	1		133	1		156	2	D(0.8)
86		108	1		135	3	D(0.0)	157		
87 1		109			136			to	0	
88 2	D(3.6)	110			137	3	D(6.0)	162		
91 4	D(1.9)	112	1		138	2	D(0.0)			
92 2	D(9.1)	113	1		140	3	D(3.2)			

Th232	fast	fission	

Α	no	reason	A	no	reason	A	no	reason	A	no	reason
3			96		······	113			139	4	D(8.6)
4			98			114			145	1	
71			100			116)			146	3	D(2.7)
73	1		101			to	0		150	1	
74			102			126			152		
75			103	5	D(8.1)	127	1		153	1	
76			104			1.28			154		
78 ' 1			105	2	D(0.00)	129	1		155		
to	0		107			130			156	1.	
₈₂ 1			108			131	12	D(0.63)	157		
85			109	1		132	11	D(5.2)	to	0	
86	1		110			133	3	D(9.5)	162		
91	4	D(0.04)	111	4	D(6.0)	138	1				
			1								

U233 fast fission

	А	no	reason	A	no	reason	A	no	reason	A	no	reason
-	3	1	<u></u>	94	1		116		<u> </u>	131	6	D(0.62)
	4	1		96	1		117	1		134	3	D(6.8)
	71)			98	1		118	1		154		
	to	0		100	1		119	1		155		
	₈₂)			101			120	1		156	1	
	83	1		102			121			157	1	
	84	1		103	3	D(3.5)	122	1		158		
	85	3	D(9.2)	104			123			159	1	
	86	1		105			124	1		160		
	88	1		106	2	D(0.01)	126	1		161	1	
	90	1		107			127	2	D(0.16)	162		
	93	1		to }	0		128	1				
				114.			130	1		1		
-											<u>_</u>	

U235 fast fission

	A	no	reason	A	no	reason	A	no	reason	A	no	reason
-	1	1		107			119			153	8	D(0.05)
	3	1		to}	0		to to	0		154	2	D(0.00)
	4	1.		110			124			155		
	71)			111	24	D(0.00)	126	1		156	19	D(0.00)
	to }	0		112	6	D(0.17)	127	5	D(0.13)	157		
	82 J			113	1		128	1		158		
	87	9	D(1.0)	114			129	1		159	1.	
	89	21	D(2.1)	115	6	D(0.00)	130	l		160		
	96	1		116	1		140	39	D(2.6)	161	8	D(0.64)
	99	14	D(0.13)	117			1.43	25	D(0.28)	162		
	106	6	D(1.3)	118			144	28	D(0.48)			
-												

A	no	reason	A	no	reason	A	no	reason	A	no	reason
3			86	1		110		·	130	1	
4	1		87	4	D(2.9)	111	24	D(0.00)	131	16	D(0.13)
66	1		88	6	D(0.92)	112	5	D(9.9)	135	14	D(0.63)
67	2	D(4.4)	89	21	D(0.00)	113	1		143	21	D(0.19)
71			91	8	D(1.8)	114			148	5	D(7.2)
72	1		92	6	D(2.2)	115	12	D(1.3)	153	12	D(0.00)
73 ا			96	1		116			154	1	
to	0		98	1		to	0		155		
76 J			100	1		120			157		
77	3	D(7.2)	101	1		122			158		
78)			102			123			160		
to	0		104			124			161	7	D(6.5)
82J			105	8	D(3.6)	125	3	D(5.0)	162		
83	1		107	1		126	1		to	0	
84			108			127	9	D(2.1)	177)		
85	2	D(0.01)	109	4	D(6.1)	128	1				

U238 fast fission

Np237 fast fission

A	no	reason	A	no	reason	A	no	reason	A	no	reason
3			107			123			134	5	D(6.2)
4			108			124			140	10	D(3.5)
71			109	1		125	5	D(8.8)	153		
to	0		110			126	1		155		
82J			113	1		127	3	D(4.1)	156	1	
85	3	D(3.6)	114			128	1		157)		
87	2	D(6.1)	116)			129	2	D(2.9)	to	0	
95	5	D(0.36)	t to	• 0		120	1		162		
99	1		120			131	6	D(0.93)			
106	4	D(6.4)	122			132	8	D(1.2)			
		<u></u>				.				<u>.</u>	

Pu239 fast fission

A	no	reason	A	no	reason	A	no	reason	A	no	reason
3	1		97	19	D(0.95)	114	1		141	8	D(6.1)
4			101	1		115	10	D(0.02)	144	17	D(8.9)
71)			102	1		116	1		153	1	
to	0		104	1		ן 117			154	2	D(0.41)
76			107			to	0		155		
77	2	D(0.00)	108			124			156	6	D(1.8)
78)			109	4	D(2.9)	125	3	D(1.4)	158		
to	0		110			126	1		159		
ر 82			111	11	D(0.26)	127	1		160		
88	4	D(7.5)	112	4	D(3.3)	128	1		162		
95	18	D(1.3)	113	1		130	1				

Pu240 fast fission

A no	reason 1	a no	reason	A	no	reason	A	no	reason
3 4 1		94 1 96 1		113 114	1		153 to	1	
72 1 73		0 1 1		to 124	0		157 158 159	l	
to} 0 82)7)8		126 128	1 1		160 161	1	
to 1 89		.0 .1 1		129	1		162 to 168	0	
92 1	11	.2 1					169	1	

Pu241 fast fission

A no reason	A no reason	A no reason	A no reason
3 4 71 to 82 0 83 to 83 to 88 1 89	90 to 98 99 100 1 101 1 102 1 103 104 1	105 106 1 107 to 124 125 to 130 141 1	153 154 1 155 to 0 162

U233 14 MeV fission

А	по	reason	A	no	reason	A	no	reason	A	no	reason
3			96		· · · · · · · · · · · · · · · · · · ·	125	1		156	1	
4			98			126			157		
66	1		100			128			158		
67	1		101			129			159	1	
71			102			130			160		
72	1		104			131	2	D(0.08)	161	1	
73')			106	1		134	1		162		
to }	0		107			135	1		to	0	
82)			108			136			165 ⁾		
83	1		110			138			166	1	
84			113	3	D(1.3)	139	1		167		
85	1		114			142			168		
86			115	5	D(7.1)	144)			169	l	
87	1		116			to}	0		170		
88	1		t to	0		150			171		
89	1		120			151	1		172	1	
90			121	2	D(3.2)	152			173		
91	3	D(8.3)	122			153	1		174		
92	2	D(2.5)	123			154			175	l	
94			124			155					
				·							

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	no	reason	A	no	reason	A	no	reason	A	no	reason
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4 66 67 71 72 73 74 75 76 77 78 to 82 83 84 85 86 87 88 89 92 93	1 2 1 2 1 1 1 1 1 1 7 7	D(1.4) D(7.5) D(8.2)	94 95 96 97 98 100 101 102 103 104 105 106 107 108 109 110 112 113 114 116 to 120 122	3 1 3 2 1 2 1 0	D(8.7) D(5.8) D(3.3) D(1.6) D(0.00)	$\begin{array}{c} 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 145\\ 146\end{array}$	1 1 1 5 7 1 1 2 1 9 2 1	D(2.1) D(0.63) D(5.0) D(2.3) D(9.6)	148 to 152 153 154 155 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	0 1 1 3 1 1 1	D(5.5)

U235 14 MeV fission

U238 14 MeV fission

A	no	reason	A	no	reason	A	no	reason	A	no	reason
3			94	1		120			155		
4			95	14	D(9.1)	122			156	6	D(6.7)
66	1		96			123	1		157		
67	1		98			124			158		
71			100			125	8	D(1.5)	159	1	
72	1		103	13	D(2.2)	126			160		
73	1		105	21	D(7.5)	128	1		162		
74			107	1		129	9	D(0.00)	163		
75			108	1		130			164		
76			109	4	D(4.1)	131	16	D(0.32)	165		
79			110			134	10	D(3.4)	166	1	
80			111	12	D(0.71)	143	19	D(2.6)	167		
81	1		112	13	D(5.0)	146			168		
82			114			148			169	1	
86			116			150			170		
88	4	D(6.6)	117	3	D(0.00)	151	4	D(3.1)	171		
89	13	D(5.0)	118	1		152			172	1	
91	22	D(0.13)	119			154					
·											

A	no	reason	A	no	reason	A	no	reason	A	no	reason
3	5	D(3.9)	96			117	3	D(9.5)	145	1	
4			97	8	D(3.7)	118			148		
8	1		98			119			150		
71-	1		99	8	D(6.0)	120			151	7	D(2.3)
to			100			121	1		152		. ,
82.	3		102			122			154		
83	1		105	9	D(0.18)	123			156	6	D(1.7)
84	l		106	3	D(4.9)	124			158		
86	1		108			125	1		1591		
87			110			126			160		
90			112	3	D(6.9)	130			162)		
91	6	D(5.2)	114			132	11	D(0.56)	to	0	
92	4	D(7.0)	115	8	D(4.7)	136			165		
93	4	D(4.4)	116			137	6	D(7.5)	166	1	
			1								

CF252 spontaneous fission

3.1.2 Independent yield measurements required

Remeasurements of discrepant independent yields are required as given in the tables below. The abbreviations used in the tables are the same as those used in 3.1.1:

U233 thermal fission

Α	elem.	no	discrep	A	elem.	no	discrep	A	elem.	no	discrep
82	Br-g	2	D(0.00)	128	I	2	D(0.00)	135	Xe-m	3	D(0.00)
87	Br	3	D(0.01)	131	Te-m	2	D(0.00)	135	Xe-t	2	D(0.01)
89	Br	4	D(0.01)	131	I	2	D(0.00)	137	I	2	D(0.00)
90	Br	2	D(0.00)	132	Sn	2	D(0.00)	137	Xe	2	D(0.01)
95	Zr	2	D(0.00)	132	Sb-g	3	D(0.00)	138	Cs-m	2	D(0.01)
96	ND	3	D(0.00)	132	Те	2	D(0.01)	139	I	2	D(0.01)
97	Nb	2	D(0.00)	133	Te-m	2	D(0.00)	148	Pm-g	3	D(0.00)
98	Nb	2	D(0.00)	133	I-g	4	D(0.01)	148	Pm-m	3	D(0.01)
99	Y	2	D(0.01)	134	I -t	2	D(0.00)				
9 9	ND	2	D(0.01)	135	Xe-g	4	D(0.01)				

U235 thermal fission

A	elem.	no	discrep	A	elem.	no	discrep	A	elem.	no	discrep
72	As	2	D(0.00)	95	Rb	7	D(0.01)	106	TC	2	D(0.01)
81	As	2	D(0.00)	95	Sr	4	D(0.01)	112	Ag-g	2	D(0.00)
82	Ga	3	D(0.00)	95	Y	5	D(0.01)	128	Sb-g	3	D(0.01)
83	Se	3	D(0.00)	95	Zr	4	D(0.00)	128	Sb-m	3	D(0.01)
84	Ge	3	D(0.00)	96	Rb	6	D(0.00)	128	I	2	D(0.01)
85	As	3	D(0.00)	96	Zr	3	D(0.01)	130	In-m	2	D(0.00)
85	Se	4	D(0.01)	96	Nb	7	D(0.00)	130	Sb∼g	4	D(0.00)
85	Br	4	D(0.00)	97	RB	5	D(0.00)	130	Sb-m	3	D(0.00)
86	As	3	D(0.00)	97	Zr	3	D(0.01)	130	I	2	D(0.00)
86	Se	4	D(0.01)	97	Np-d	2	D(0.01)	131	Te-g	5	D(0.01)
86	Br	5	D(0.00)	98	Y	3	D(0.01)	131	Te-m	4	D(0.00)
86	Rb-g	3	D(0.00)	98	ZR	3	D(0.00)	131	Ι	3	D(0.00)
87	Se	4	D(0.01)	98	Nb-t	5	D(0.00)	132	Sb-m	2	D(0.01)
87	Kr	5	D(0.00)	99	Sr	3	D(0.00)	132	Те	5	D(0.01)
88	Se	5	D(0.00)	99	Y	3	D(0.00)	132	I-g	3	D(0.01)
88	Br	7	D(0.00)	99	Zr	4	D(0.00)	132	I —m	2	D(0.00)
88	Kr	6	D(0.00)	99	Nb-m	3	D(0.01)	133	Te-g	4	D(0.01)
88	Rb	6	D(0.00)	99	Nb-t	4	D(0.00)	133	Te-m	3	D(0.01)
89	Br	9	D(0.00)	100	Y	3	D(0.00)	133	I-g	7	D(0.00)
89	Rb	7	D(0.01)	100	Zr	3	D(0.01)	133	Xe-g	2	D(0.01)
90	Br	7	D(0.01)	100	Nb-t	3	D(0.00)	133	Xe-m	2	D(0.00)
90	Kr	6	D(0.00)	101	Y	2	D(0.01)	134	I —m	3	D(0.01)
90	Rb	7	D(0.01)	101	Zr	2	D(0.00)	134	I -t	4	D(0.00)
91	Br	7	D(0.01)	101	NÞ	3	D(0.01)	135	Xe-m	3	D(0.00)
91	Sr	5	D(0.00)	102	Nb-t	2	D(0.00)	135	Xe-t	5	D(0.00)
92	Kr	6	D(0.00)	103	Zr	2	D(0.00)	136	Cs	7	D(0.01)
92	Rb	7	D(0.01)	103	Mo	2	D(0.00)	137	I	4	D(0.00)
92	Sr	4	D(0.00)	104	Zr	2	D(0.01)	137	Xe	5	D(0.00)
92	Y	3	D(0.01)	104	Mo	2	D(0.01)	139	I	5	D(0.01)
93	Kr	7	D(0.01)	104	TC	3	D(0.00)	139	Xe	4	D(0.01)
94	Kr	5	D(0.01)	106	ND	2	D(0.00)	139	Cs	6	D(0.00)
94	Rb	7	D(0.00)	106	Mo	2	D(0.01)				

Pu239 thermal fission

A	elem.	no	discrep	A	elem.	no	discrep	A	elem.	no	discrep
82	Br-g	2	D(0.01)	103	TC	2	D(0.01)	135	Xe-t	4	D(0.00)
93	Kr	2	D(0.00)	104	TC	4	D(0.00)	136	Cs	5	D(0.01)
93	Rb	2	D(0.01)	105	TC	4	D(0.01)	138	Cs-m	2	D(0.00)
95	Rb	2	D(0.01)	128	I	2	D(0.01)	150	Рm	2	D(0.01)

Cm245 thermal fission

A	elem.	no	discrep
136	Cs	2	D(0.00)

U235 fast fission

A	elem.	no	discrep	A	elem.	no	discrep
135	Xe-t	2	D(0.01)	136	Cs	3	D(0.01)

U238 fast fission

A	elem.	no	discrep
136	Cs	2	D(0.00)

Pu239 fast fission

A	elem.	no	discrep
136	Cs	7	D(0.01)

Pu240 fast fission

A	elem.	no	discrep
136	Cs	2	D(0.00)

Th232 14 MeV fission

	A	elem.	no	discrep	A	elem.	no	discrep	A	elem.	no	discrep
-	96 112	ND Ag	2 2	D(0.01) D(0.00)	130	I -g	2	D(0.00)	136	Cs	2.	D(0.01)
-		<u></u>]					·····		<u> </u>

U233 14 MeV fission

А	elem.	no	discrep
136	Cs	2	D(0.00)

U235 14 MeV fission

A	elem.	no	discrep	A	elem.	no	discrep	A	elem.	no	discrep
82 96	Br Nb	2 2	D(0.00) D(0.00)	135	Xe-m	2	D(0.00)	136	Cs	3	D(0.00)
]			

U238 14 MeV fission

A	elem.	no	discrep
133	Xe	2	D(0.01)

Pu239 14 MeV fission

А	elem.	no	discrep	Α	elem.	no	discrep
133	Xe-m	2	D(0.01)	135	Xe-m	2	D(0.00)

Cf252 spontaneous fission

A	elem.	no	discrep
136	Cs	3	D(0.00)