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Foreword

This report contains the texts of the invited presentations de]ivered at

the third Research Co-ordination Meeting of the Co-ordinated Research

Programme on Methods for the Calculation of Neutron Nuclear Data for

Structural Materials of Fast and Fusion Reactors. The meeting was held at the

IAEA Headquarters, Vienna, Austria, from 20 to 22 June 1990. Since the

meeting there have been many requests to make the texts of the presentations

available in printed form. The texts are reproduced here, directly from the

Authors' manuscripts with little or no editing, in the order in which the

presentations were made at the meeting.
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for Structural Materials of Fast and Fusion Reactors"
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A B S T R A C T

The calculation of neutron inelastic-scattering cross sections of

vibrational nuclei is discussed, and it is shown that they are large for

the yrast levels for A =: 110. It is shown that, in addition to common

size and isospin effects, shell and collective effects are requisite to

explanations of neutron elastic-scatering ratios. Explicit optical
58

potentials are presented for the interaction of neutrons with Ni

(spherical and vibrational models), and with zirconium (spherical). It

is shown that these potentials provide excellent descriptions of the

results of recent comprehensive experimental results.

I. PREFACE

This Project has generally addressed generic issues, frequently at higher energies
well above those of primary applied interest. As the Project draws to a close, it is proper
to give focus to specific concepts suitable for the explicit calculation of structural—material
nuclear data for applied purposes. This contribution is directed toward that end. Section
II of this report briefly addresses two issues that arose at the prior meeting. New
measurements and their interpretations have substantively contributed to resolving these
issues. Section III presents two potentials explicitly suitable for use in the structural-

CO

material regions. The first is for Ni, and is formulated in the context of both the
spherical optical model (SOM), and the coupled—channels model (CCM). The second
potential is for elemental zirconium and its isotopes, formulated in the context of the SOM.
These potentials are suitable for quantitative applied calculations and demonstrate certain
physical properties generic to the respective mass regions. Some suggestions for future
studies are given.

H. ISSUES FROM PRIOR MEETING

A. Inelastic Excitation of Vibrational Levels in the
A = 100-110 Region

At the previous meeting it was suggested that the inelastic neutron scattering cross
sections of the first few vibrational levels of even isotopes in this mass region might be
large (e.g., « 1.5 b) at relatively low incident—neutron energies (e.g., at s 1 MeVj. Of
particular applied interest are the even isotopes of palladium and ruthenium. This issue
was examined using high—resolution experimental measurements and complementary CCM
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interpretations. The results of the work are extensively described in the Laboratory report,
ANL/NDM-112, and outlined in a journal paper (Ann. Nucl. Energy 16 637 (1989)). The
abstract of the Laboratory report follows:

ABSTRACT: The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV
neutrons from elemental palladium were measured at forty scattering angles distributed
between » 15° and 160°. The inelastic-scattering cross sections for the excitation of
palladium levels at energies of 260 keV to 560 keV Were measured with high resolution at
the same energies, and at a scattering angle of 80°. The experimental results were
combined with lower-energy values previously obtained by this group to provide a
comprehensive database extending from near the inelastic-scattering threshold to 8 MeV.
That database was interpreted in terms of a coupled-channels model, including the
inelastic excitation of one— and two—phonon vibrational levels of the even isotopes of
palladium. It was concluded that the palladium inelastic-scattering cross sections, at the
low energies of interest in assessment of fast—fission—reactor performance, are large (s 50%
greater than given in widely used evaluated fission—product data files). They primarily
involve compound-nucleus processes, with only a small direct—reaction component
attributable to the excitation of the one—phonon, 2+, vibrational levels of the even isotopes
of palladium.

B. Ambiguities in Elastic—Scattering Ratios

At the past meeting it was shown that observed ratios of the differential elastic-
scattering of 8 MeV neutrons from Co and Ni were not consistent with the predictions
of either a "global" or "regional" SOM. This type of ratio ambiguity has been extensively
investigated over the mass range A a 51 -• 209, and a number of possible physical
contributions to the phenomena have been examined. This work is described in the
Laboratory report, ANL/NDM—114, and a shorter version has been submitted to Nucl.
Phys. The abstract of the Laboratory report is as follows:

ABSTRACT: Ratios of the cross sections for the elastic scattering of 8 MeV neutrons from
adjacent nuclei are measured over the angular range « 20°—160° for the target pairs 5lV/Cr,
59Co/58Ni, Cu/Zn, 89Y/93Nb, 89Y/Zr, 93Nb/Zr, In/Cd and 209Bi/Pb. The observed ratios
vary from unity by as much as a factor of « 2 at some angles for the lighter target pairs.
Approximately half the measured ratios (Cu/Zn, In/Cd and 209Bi/Pb) are reasonably
explained by a simple spherical optical model, including size and isospin contributions. In
all cases (with the possible exception of the 51V—Cr pair), the geometry of the real
optical—model potential is essentially the same for neighboring nuclei, and the
real—potential strengths are consistent with the Lane Model. In contrast, it is found that
the imaginary potential may be quite different for adjacent nuclei, and the nature of this
difference is examined. It is shown that the spin—spin interaction has a negligible effect on
the calculation of the elastic—scattering ratios, but that channel coupling, leading to a large
reorientation of the target ground state, can be a consideration, particularly in the
59Co/S8Ni case. In the A K 50—60 region the calculated ratios are sensitive to spin—orbit
effects, but the exact nature of this interaction must await more definitive polarization
measurements. The measured and calculated results suggest that the concept of a
conventional "global", or even "regional", optical potential provides no more than a
qualitative representation of the physical reality for a number of cases.

III. EXPLICIT POTENTIALS FOR STRUCTURAL MATERIALS

A. Potential for s*Ni

A—1. Introductory Comments

Nickel is a prominent component of radiation—resistant ferrous alloys.
Sixty-eight percent' of the element consists of Ni, and the remainder is largely the
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similar isotope Ni.. Ni is a relatively simple nucleus consisting of closed neutron and
proton shells (N = Z = 28), plus two lPo/o neutrons. The fast—neutron interaction with
58Ni shows characteristics of a direct process, but the details are not clear as the nucleus is
neither a simple vibrator or rotator. It has recently been shown that SOMs in the

9
A = 50-60 region are very specific to the particular target. "Global", or even "regional",
models fail to describe the interaction with a particular nucleus in quantitative detail. A

58comprehensive study of the fast—neutron interaction with Ni, including measurements
and calculations, has been undertaken and is now nearing completion. The following
remarks summarize the status of this work, particularly defining detailed SOM and CCM
interpretations suitable for quantitative structural-material calculations.

A - 2 . The Database

A—2—a. Total Cross Sections

Broad—resolution neutron total cross sections were measured
from 1 -»10 MeV, with attention to self—shielding effects. These results are consistent with

Fig. 1. Neutron total cross sections of -^Ni. ^ g present
broad-resolution results are indicated by "0" symbols, and the high-resolution
results of Ref. 3 by the curve.

energy averages of high—resolution measurements , as illustrated in Fig. 1, and provide a
database consistent with the concept of an energy—averaged model.

A—2—b. Elastic—Scattering Cross Sections

Differential elastic—scattering cross sections were measured
from 1.5 -• 10 MeV with sufficient energy—angle detail to define the energy—averaged
behavior, with the results shown in Fig. 2. The results are in qualitative agreefhent with
the few comparable distributions found in the literature.

A—2-c. Inelastic—Scattering Cross Sections

Cross sections for the inelastic excitation of the first 2* (1.454
MeV) level were measured concurrently with the above elastic scattering, with the results
shown in Fig. 3. At lower energies the compound—nucleus process appears to dominate,
while the direct reaction predominates at higher energies. High resolution measurements,
illustrated in Fig. 4, gave additional information, particularly for the higher—lying levels.

A—2—d. Strength Functions

S— and p—wave strength functions were taken from the
compilation of Ref. 4.
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Fig. 2. Measured differential elastic-scattering cross sections.
Symbols indicate the measured values, and the curves the results of
Legendre-polynomial fits to the data. Data are in the laboratory coordinate
system.
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Fig. 3. Measured cross sections (symbols) for the excitation of the
1.454 MeV level of 58Ni. Curves indicate the results of Legendre-polynomial
fits. Data are given in the laboratory system.
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Fig. 4. Time-of-flight spectrum obtained by scattering 8 MeV neutrons
from 58fli over a flight path of 14.65 m. Observed excitation energies are
numerically given.

A-3. 58Ni Model Derivation

A—3—a. Phenomenological Spherical Optical Model fSOM)

The objectives of the SOM interpretation were: (i) to provide
a basis for the subsequent CCM interpretation, (iij to gain some physical understanding of
the interaction, and (iii) to obtain a simple SOM for applied use. The SOM interpretation
was based upon explicit chi-square fitting of the elastic-scattering data, with supporting
consideration of total cross sections and strength functions. The elastic-scattering
database was taken from the present work to 10 MeV, with five additional distributions
extending to 24 MeV taken from the literature.

The interpretation assumed a

imaginary, and a real Thomas spin—orbit potential.

Saxon—Woods
Q

real, a Saxon—Woods—derivative

Compound—nucleus processes were
explicitly considered to 8 MeV using the Hauser—Feshbach formula , as extended by

11 12
Moldauer. Discrete level excitations were considered to 3.5 MeV , and higher—lying

13levels were represented using the statistical formalism of Gilbert and Cameron. Above 8
MeV, it was assumed that the elastic scattering was entirely a "shape" process. The fitting
is sensitive to the experimental error specification, and that is reasonably known only for
the present measurements. For the higher—energy distributions, the uncertainties given in
the literature were accepted, though they probably represent only statistical error.

The spin—orbit potential parameters were assumed to be

so
rso

so

= 5.5 MeV

= 1.0 fm

= 0.65 fm.

These values are similar to those reported from polarization studies in this mass region.

(1)

14

With the fixed spin—orbit potential, the elastic—scattering was fitted, starting with
six parameters and working progressively to two parameters, constraining first the
geometries of the real potential and then those of the imaginary potential. The resulting
geometric parameters were

11



w

= (1.305- 0.0064 -E) fm

= 0.6461 fm

= (1.16 + 0.0023-E) fm (E > 5 MeV)
= (1.50 - 0.066 • E) fm (E < 5 MeV)

(2)

w
= (0.26 + 0.0205-E) fm,

where E is neutron energy in MeV and the subscripts V and W refer to real and imaginary
potentials, respectively. Using these geometries, two parameter fits gave the potential
strengths, in volume integral per nucleon, shown in Fig. 5.

5 50 r

300
150

J w

5 0

512-6.03E

1.33-3.9 E
S Q_

9 4

10 15 2 0 2 5

En(MeV)
Fig. 5. Real (Jv) and imaginary (Jw) potential strengths for the

SOM, as expressed in volume integrals per nucleon. The dimensionality is
MeV-fm3.

The above SOM provides a good description of the observed elastic scattering to
more than 20 MeV, as illustrated in Fig. 6. Measured neutron total cross sections are also
reasonably represented, as shown in Fig. 7. The calculated strength functions (in units of
10""4) are S = 2.34 and S* = 0.79, compared to the experimentally deduced values of (2.8

± 0.6) and (0.5 ± 0.1), respectively. The SOM also qualitatively represents the compound-
nucleus contribution to the inelastic scattering but, of course, cannot represent the direct-
reaction contribution evident in Fig. 3. The real-Jpotential geometry is common in this
mass region, with the small energy dependence of ry. J y generally falls with energy in the

familiar manner predicted by Hartree-Fock calculations, but the magnitude is large, and
there is a pronounced "dip" in the few-MeV region. This dip is not associated with
inappropriate treatment of compound-nucleus effects but, rather, may be a manifestation of
collective structures. Above » 6 MeV, the imaginary potential radius is significantly
smaller than that of the real potential. This is characteristic of SOM interpretations of

vibrational nuclei.15 Below « 6 MeV, the imaginary potential radius sharply increases and
the diffuseness decreases as E -»0, and both become similar to values found for potentials

largely based upon strength functions. The SOM does not contain a volume absorption
term, as it could not be supported by the data.

12
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Fig. 6. Differential elastic-scattering cross sections of
Symbols indicate measured values and curves the results of SOM calculations.
Data are in the laboratory system.
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En(MeV)

10.0 20.0

Fig. 7. Comparison of energy-averaged measured (symbols) and SOM
(curve) total cross sections of 58Ni.

A-3-b. Vibrational Coupled Channel Model fCCM)
en

It was assumed that Ni is a simple vibrator, with
one-phonon (2 + , 1.454 MeV) and two-phonon (4+ , 2.459 MeV, 2 + , 2.776 MeV, and 0+ ,
2.942 MeV) excited states. /?„ was taken to be 0.25. With these assumptions, the fitting of

the elastic-scattering data was repeated using the coupled-channels formalism, coupling
the ground and four excited states. The spin—orbit potential was fixed to

V
so

so
aso

= (6.5 - 0.035-E) MeV
= 1.017 fm
= 0.60 fm.

(3)

This is the spin—orbit potential of Ref. 14 and similar to that given in Eq. 1. In addition,
the real—potential radius was fixed to that of the SOM (see Eq. 2). With these constraints,

13



a

w

w

(4)

the fitting procedure was identical to that of the SOM derivation outlined above. The
resulting potential geometries were

ry =(1.305-0.0064-E)fm
= 0.6531 fm
= (1.17 + 0.0033-E) fm (E > 5.6 MeV)

= (1.50 - 0.055 • E) fm (E < 5.6 MeV)
= (0.29 + 0.018-E) fm (E > 6 MeV)

= (0.10 + 0.050-E) fm (E < 6 MeV),

with the volume integrals per nucleon given in Fig. 8.

550 r

508-5.75E

300' L

150

5 0

69 + 0.67E

10 15 20 25

En(MeV)
Fig. 8. Real (Jv) and imaginary (Jw) volume integrals per nucleon

obtained using the CCM. The dimensionality i s MeV-fm .̂

The above CCM gave at least as good a description of the elastic—scattering as the
above SOM representation, as illustrated in Fig. 9. The total cross section calculated with
the CCM was essentially identical to the SOM result shown in Fig. 7, and the calculated
s—wave strength function was 2.49 x 10 as compared to (2.8 ± 0.6) x 10 deduced from
resonance measurements. The calculated cross sections for the excitation of the 1.454

MeV (2 ) state are reasonably representative of the experimental results, as shown in Fig.
10. The prediction of the direct inelastic scattering from this level at higher energies is
good, as shown in Fig. 11 where the angle—integrated cross section is significant to well
above 20 MeV. The calculated angle-integrated cross sections in the « 3.5—5.5 MeV region
are sensitive to the temperature used in the calculation of the compound—nucleus
competition. In order to obtain the results shown in Figs. 10 and 11, the temperature had
to be raised by « 150 keV from the value given in Ref. 13. The cross sections calculated for
the excitation of the higher—lying levels was reasonably consistent with the observed
values, as discussed in Ref. 17.

The above SOM provides a simple calculational vehicle for many applications. Its
inherent shortcoming is the lack of a direct reaction, and this is reflected in both unusual
energy dependencies of some of the potential parameters and in the inability to describe
inelastic processes of significant size. The CCM vibrational model alleviates some of these

14



58Ni

Fig. 9. Comparison of measured (symbols) and calculated (curves) CCM
elastic-scattering cross sections. Data are in the laboratory system.

5 8 Ni 10.0

0 180

e(deg)

Fig. 10. Comparison of measured (symbols) and calculated (curves) CCM
cross sections for the excitation of the 1.454 MeV level in 58JJJ_ Data are
in the laboratory system.

shortcomings, particularly those associated with the inelastic scattering. However, Ni is
neither a simple vibrator nor a rotator, and more complex coupling schemes than used
above must be present. They are probably the source of the unusual parameter energy
dependencies in the above vibrational model. They are most evident in the context of the
imaginary potential, and will take a different character when a rotational—coupling scheme
is assumed, as discussed in Ref. 15. If the fundamental character of the interaction could
be reasonably represented using matrix elements derived, for example, from the shell
model, it is hoped that a more general representation could be achieved, perhaps even on a
regional or global basis. Such an effort is now being attempted.

15
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Fig. 11. Angle-integrated cross sections for the excitation of the
1.454 MeV level. Measured values are indicated by symbols and the results of
CCM calculations (including compound-nucleus contributions) by the curve.

Zr

6(deg)

Fig. 12. Elastic scattering cross sections of zirconium. The measured
values are indicated by symbols and the results of Legendre-polynomial fits to
the data by curves. The data are in the laboratory system.

B. Potential for Elemental Zirconium

B—1. Introductory Comments

Zirconium has been a primary structural component of nuclear-energy
systems for more than four decades. Elemental zirconium consists of five isotopes ( Zr

(51.45%), 91Zr (11.27%), 92Zr (17.17%), 94Zr (17.33%), and 96Zr (2.78%)). There is some
information on the various isotopic reactions, but remarkably little directly relevant to the
element that is used in the applications. The model development is complicated by the

16



multMsotopic nature of the element and the variation of the potential parameters as the
18

isotopes move away from the closed N = 50 neutron shell.

B - 2 . The Database

B—2—a. Total Cross Sections

The experimental values were assembled from the literature,
19and combined with results obtained at this laboratory , to provide a database extending

to more than 20 MeV. This experimental database was evaluated using rigorous statistical
20methods.

B—2—b. Elastic—Scattering Cross Sections

The elemental elastic—scattering cross sections were measured
from a 1.5 -• 10 MeV, with the results shown in Fig. 12. There is remarkably little
zirconium elastic-scattering da ta in the literature. 'However, a 24 MeV distribution was

21
available and was . added to the present results to form the database for the
interpretation.

B—2-c. Inelastic—Scattering Cross Sections

Due to the complex isotopic nature of the element,
measurements of elemental inelastic—scattering cross sections do not provide unambiguous
results. The literature does contain a few isotopic inelastic—scattering results that can be

22 23used to verify the calculational predictions. ' The primary obstacle to more definitive

experimental definition is measurement—sample availability.

B—3. Zirconium Potential Derivation
The zirconium isotopes are near the closed neutron shell and, thus, the SOM

should be appropriate. The major problem in the interpretation is the disparate structure
of the five isotopes. The present model derivation was based upon the chi—square fitting of
the elemental zirconium elastic-scattering data, concurrently explicitly treating the

compound—nucleus processes in each isotope. i r values for the discrete levels were taken

from the Nuclear Data Sheets , and the Gilbert and Cameron statistical formalism was
13used to represent higher-energy excitations. The requisite calculational code was

developed for this elemental fitting.

The interpretation was based upon the Saxon—Woods real, Saxon—Woods-derivative

imaginary, and Thomas spin—orbit potentials. The fitting procedure was essentially the

same as tha t outlined above for the Ni SOM, progressively determining the real potential
geometries, the imaginary potential geometries and then the potential strengths. The
spin-orbit potential was fixed to

V s Q = 5.5 MeV

r s Q = 1.0 fm (5)

a g 0 = 0.65 fm,

which is similar to that of global models giving emphasis to polarization phenomena.
The geometries resulting from the fitting were

17



ry = (1.310 -0.0064-E) fm
av = 0.667 fm

= (1.390- 0.0064- E)fm
a =(0.310 + 0.0182 -Ejfm,

(6)

w

w

where the slight energy dependence of ry was assumed to be suitable for rw also. The
potential strengths following from the fitting (in volume integral per nucleon) were

J =474.64-5.3485-E MeV-fm
(7)

w
= 62.493 +0.4811-E MeV-fmJ

90,where these numerical values are for Zr. They will be slightly different for the other

isotopes due to the simple A ' size effect.

180

G(deg)

Fig. 13. Comparison of measured (symbols) and calculated (curves)
elastic-scattering cross sections of elemental zirconium. The data are in the
laboratory system.

The above potential provides a very good description of the elastic scattering, as
illustrated in Fig. 13, and the total cross section, as shown in Fig. 14. The model
reproduces the general trends of s— and p-wave strength functions , though it cannot
reproduce the rather large fluctuations from isotope to isotope evident in the

experimentally deduced values. Calculations give a reasonable description of the available
inelastic-scattering data, but the latter are not particularly detailed and, thus, do not
provide a stringent test of the model.

Some isotopic zirconium elastic—scattering data are available in the

literature21 '22 '26 '27 , particularly for 90Zr and Zr. The above model very nicely
describes these isotopic elastic-scattering results, as illustrated in Fig. 15. The present
model does not explicitly deal with symmetry effects (i.e., the effect of the isovector

18



Fig. 14. Comparison of measured (symbols) and calculated (curve) total
cross sections of zirconium.

0 9O 180 0 90 180

6(deg)

Fig. 15. Comparisons of measured (symbols) and calculated (curves)
elastic-scattering cross sections of 90Zr and 92Zr. The data are in the
laboratory system.

portion of the potential). The mass range of the zirconium isotopes of significant
abundance is relatively small (A = 90 -» 94); therefore, there is not a strong isovector effect.
This is illustrated in Fig. 16 where 10 MeV elastic scattering is calculated without (curves
"A") and with (curves "B") the isovector potentials of Ref. 14. The curves are -referenced
to the mean elemental mass. The effect of the isovector potential is negligible except for

94the Zr case, and even there the differences between curves A and B are less than the
respective experimental uncertainties; furthermore, the isotope is only 17.33% abundant.
The differences in the calculated results are most sensitive to the imaginary portion of the
isovector strength.

The above potential is suitable for zirconium model calculations to well above 20
MeV. It is a relatively simple SOM formulation, strongly supported by experimental
observation. The real potential geometry is conventional, with a reasonable energy
dependence of J . The imaginary potential radius is somewhat larger than that of the real

19
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Fig. 16. Illustration of sensitivity to the isovector potential.
Curves "A" were obtained with no isovector potential, and curves "B" with that
of Ref. 14. Data are in the laboratory coordinate system.

potential, as is generally found for spherical nuclei at lower energies and as indicated by
strength functions. The imaginary diffuseness increases quite sharply with energy, and
there is a conventional increase of J . Clearly, the linear energy trends are approximations
of a more complex behavior, applicable to the « 0 -* 25 MeV range, and they cannot extend
well into the bound region or to very high energies. Below « 25 MeV there is no
experimental support for a volume absorption term.

IV. SUMMARY REMARK

This Report resolves some outstanding issues from the prior meeting. It also
presents two explicit potentials that are very suitable for the calculation of quantitative

CO

nuclear data for Ni and elemental zirconium, respectively. These potentials are the
result of a comprehensive measurement and analysis program. The Ni potential
illustrates the difficulties in handling complex coupling schemes of collective vibrational
and/or rotational nuclei. The conventional SOM is only an approximation in this case, and
more complex physical concepts are probably required for detailed understanding. These
are now being explored. In contrast, the elemental zirconium potential is illustrative of
the success of the simple SOM in a region near shell closures. The potential presented is
well—founded on experimental evidence and provides a basis for very quantitative
calculations.
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Neutron Emission Cross Sections on Nb

at 20 MeV Incident Energy

A. Marcinkowski and D. Kielan
Soltan Institue for Nuclear Studies

PL-00-681 Warsaw, Poland

A B S T R A C T

Over the last years fully quantum-mechanical theories of nuclear

reactions have been developed that provide, at least in principle,

parameter-free methods of calculating double-differential continuum cross

sections. The DWBA-based theory of direct processes to the continuum was

derived by Tamura et al. The statistical theory of Feshbach, Kerman and

Koonin (FKK) introduced two reaction types in parallel as complementary

mechanisms contributing to the preequilibrium decay. The multistep

compound mechanism (MSC) results in symmetric angular distributions of

the emitted particles, whereas the multistep direct mechanism (MSD) gives

rise to the forward-peaked angular distributions. The theories of the

MSC reactions differ in that the FKK theory incorporates the "never come

back" hypothesis, which allowed the formulation of an applicable model

that was successfully used in practical calculations. On the other hand

the FKK theory of the MSD reactions differs conceptually from the theory

of Tamura et al. and from the more general theory developed most recently

by Nishioka et al. The latter theories were shown to be founded upon a

postulated chaos located in the residual nucleus. In contrast, the

theory of FKK assumes a chaotic interaction of the continuum particle to

be emitted with the residual nucleus. The continuum or leading-particle

statistics of the FKK theory results in the simple, convolution like, MSD

cross section formula, which facilitates numerical calculations.

Nevertheless two-step statistical DWBA calculations have been also

performed. This paper entends the application of the FKK theory to the
93

Nb(n,xn) reaction at 20 MeV incident energy.

1. Introduction

Over the last years fully quantum-mechanical theories of

nuclear reactions have been developed, that provide, at least in

principle, parameter-free methods of calculating the required

double-differential continuum cross sections. The DWBA based

theory of direct processes into the continuum was derived by
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1
Tamura et al. 3 CTUL^. The statistical theory of Feshbach, Kerman

2
and Koonin Z> CFKK} introduced two reaction types in parallel as

complementary mechanisms contributing to the pre-equilibrium

decay. The one, refered to as the multistep compound mechanism

CMSO results in symmetric angular distributions of the emitted

particles, whereas the multistep direct mechanism CMSDD gives rise

to the forward-peaked angular distributions.

The theories of the MSC reactions differ in that the FKK

theory incorporates the never come back hypothesis, which allowed

to formulate an applicable model } successfuly used in practical

calculations ' D. On the other hand the FKK theory of the MSD

reactions differs conceptually from the theory of Tamura et al. 2>

and from the more general theory developed most recently by

Nishioka et al. D. The latter theories were shown to be founded

upon a postulated chaos located in the residual nucleus, in

contrast the theory of FKK assumes a chaotic interaction of the

continuum particle to be emitted with the residual nucleus 5. The

continuum or leading particle statistics of the FKK theory results

in the simple, convolution like, MSD cross section formula, which
7 8facilitates the numerical calculations ' 3. Nevertheless the

twostep statistical DWBA calculations have been also performed D.

This paper extends the application of the FKK theory to the
93

NbCn.xnD reaction at £0 MeV incident energy.

2.1 The multi step compound reactions

For the stat ist ical multistep compound emission, due to the

decay from a chain of quasi-bound states of the composite system
t

this theory predicts a double-differential MSC cross section

expressed via three multiplicative terms: the entrance channel

strength function, the depletion term, describing that part of the

absorbed projectile flux, which survived emission prior to

reaching the N-th stage of the reaction and the probability of

emission from the N-th stage states, which occurs only via the

continuum states, accessible in the exit transitions v=N±l,N. The

latter two terms are expressed by the emission width,

<T*/T
S>l>CLDpBCU,I*D>, and the damping width, <T MT>. The density of

NJ \) xn
the bound-particle-hole states is p . By assuming a 6-type

residual interaction all the widths factorize,

<r NjS'VCLDp^CU,IfD> = 2nl2x£y£, C1D
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with I being the overlap integral of the radial wavefunctions for

the two ac t ive bound-particles/holes and the two final

par t ic les /holes .X the angular momentum coupling function and Y the

density of leve ls accessible in the t r ans i t ion . The MSC formulae

describe the for neutron and proton channels only.

In the exciton representat ion p+h=n= 2N+1, and the three

possible ex i t t r ans i t ions denote a particle—hole creat ion,

annihi la t ion and exciton sca t te r ing , respect ively. The X— and
4 9

Y-functions were calculated according t o re fs . * D with
10correct ions of ref. Z> , e.g. for the exi t t r a n s i t i o n annihi la t ing

a pa r t i c l e -ho le pai r , t>=n-2, one obtains:

^ ^ . h l
Y n = r-z: '

Rn—

nJ
«J3

f l J f Q f
I ; ; o J

where E and U are the excitation energies of the composite system

and the residual nucleus, and J.J,. , j ? , j ^ and Q are the total

angular momenta of: the ejectile, the exciton initiating the

transition, the particle and the hole annihilated, and the total

angular momentum-of the pair of interacting particles Cinitiating

particle and the particle of the annihilated pair}, respectively.

The spin distribution of the single particle states g=A/13 is

R CjD. The r .h.s. of eq. C3D holds for j-I'<_ J <J+I* and equals 0

otherwise.

2. 2 The multistep direct reactions

In order t o descr ibe the forward peaked angular d i s t r i b u t i o n s

observed in experiment i t i s assumed tha t t he inc iden t continuum

p a r t i c l e looses stepwise i t s energy and d i r ec t i on in a sequence of

c o l l i s i o n s , each c rea t ing a new p a r t i c l e - h o l e pa i r . At each s t ep

emission may take place and the MSD cross sec t ion i s considered as

a sum of emissions in a l l the reac t ion s tages N. By introducing

the p robab i l i t y W for t r a n s i t i o n from the CN-lDth t o the Nth

stage the mul t i s t ep cross sec t ion becomes

.2 N+l - - .2
a a dk. dkv. d a

dudii , . , C2fTJ C2JTJ dUdfi .
m u l t i s t e p N y=N-l onestep
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The integrations in eq. C8!> are over all angles and momenta k., of

the particle in the contonuum, which makes the transition from

stage N. The FKK theory provides the basis for expressing the

transition probability

, , r d c O . . .. , D nDW

— 5 f MU1 ]- 1

and the one-step cross section.

A.i [
do<© D ,DW

dO. J ld dO,
1 lonestep

in terms of incoherent contributions of the DWBA
o

angle-differential cross sections for spinless particles D.The

summation in formulae C£D and C1OD is over the transferred
orbital angular momenta 1, mvt_̂  ^ s the reduced mass of the

continuum particle and €>^ i s the angle between k., . . . and k̂ ,.

Tne angular brackets denote averaging of the elementary angular

distributions, computed with microscopic two-particle form factor,

over many final 1 pih configurations, e.g. of the shell model.

An adequate description of experimental neutron scattering

data requires inclusion of the collective, low energy, surface

vibrations of quadrupole and octupole mul t i polarity into
11consideration. This can be done by the method of Kalka et al. D,

who have derived the cross sections for the one- and two-phonon

transitions from Green's function and random matrix formalism. The

one-phonon cross section i s

= ^ J ^ V j 6CU-0 5 rf- P Ce DP C£ D. CUD
l arrh2 J Ck.R5 2 l f l f K R X k t 1 1 i i1 piion

where V =~n1R3, R =r A1'*, ft. t4nC2\+l> ] 1 / ^ 2 = ft. „ and X, w% and ft.
3 O A. A. A A

are the collective mode multipolarity, energy and deformation

parameter, respectively. The penetrability factor P.Ctf.D is equal

unity for neutrons. The angular distributions of the collective,

continuum cross sections have not been derived in ref. D, but

they can be calculated with use of the collective form factors in

the frame of the DWBA.
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5. Calculations and comparison with experiment

In calculating of the particle-hole form factors, which enter

the MSD cross sections we assumed spinless particles and a

zero-spin target, so that the only contribution to the spins of

the final states comes from the transferred orbital angular

momentum 1. For each value of 1 the final lplh configurations have
IS

been choosen according to the shell model of Seeger D. For these

configurations the angular distributions of emitted neutrons have

been calculated microscopically by using the DWUCK-4 code. The

Yukawa residual interaction of 1.0 fm range and with strength V =

25 MeV, was acting on the bound state wavefunctions generated in a

real Saxon-Woods potential. The distorted waves were calculated
13using the global optical model of Wilmore and Hodgson D.

In order to obtain smooth neutron spectra the calculated

cross sections were averaged over the final shell model

par t ide-hole states contained in overlaping energy intervals of

5. O MeV width and centered on the experimental energy bins. The

densities of the final states, were evaluated with global

parameter a = A/8 and the spin cut-off fixed at a value a =2.6 for
93

Nb. The calculated MSD cross sections are shown in fig. 1 as the

dott-dashed ConestepD and two—dott—dashed CtwostepD line. At the

high energy end of the emission spectrum these MSD cross sections

need to be completed by adding the contribution due to collective

enhancement. The one-phonon quadrupole and octupole excitations

contribute according to eq. CUD, with following energies and

deformation parameters of the low lying collective states: to =O. 93
Q3

MeV, ft =0.13, oo =2. 3O MeV, /?=O.18 in Nb. The de l ta function in
CUD was replaced by a Lorentzian of a c o l l e c t i v e width 0.7 MeV
11

D broadened in accord with the experimental energy resolution.

For the odd-mass nucleus the weak coupling model was adopted. The

summed collective, one-phonon cross sections are shown by the

dashed line labelled 1VIB.

The USC calculations were split into the three steps and an

r-th stage, i.e. the r-th stage emission contained all emissions

from stages after the third, including the compond nucleus

contribution. Tne entrance channel strength function was

calculated from the optical model transmission coefficients

&d in order to account for the loss of the absorbed flux due4.
to the MSD emission D. The reduction was evaluated from
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experimental angular distributions, by assuming that, their forward

pea iced portions are due to MSD processes, or by calculating

directly the MSD cross sections. Both ways provided consistent
&3reduction factor R=0. 8 for Nb.

Tne harmonic-oscillator wavefunctions for the bound nucleons

and the optical model scattering wavefunctions for the continuum

particle were used for calculating the overlap integral I, which

provides the absolute normalization in eq. C2D. The particle-hole

state densities, e.g. those entering eq. C43, were calculated with

restriction to bound particle orbital only by the numerical
14cut-off technique developed by Bonetti et al. I) with parameters

like in the MSD calculations.
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The r e su l t s of the MSC calculations are a lso shown in f ig. 1

as the dashed l i ne labelled CN, for a l l emissions after the th i rd

step Ccompound nucleus cross sections!) , and the dashed l ine

labelled MSOCN for a l l emissions Cincludung the three MSC

stages!). One can see that the l a t t e r cross sect ions dominate the

low energy par t of the neutron emission spectra, up t o about 9 MeV

of the outgoing' neutron energy. The mul t ipar t ic le emission MCN

contributes s t ronly in to the lowest outgoing energy bins. In sp i t e

of i t seems to be underestimated by the theory. The overall

description of the recent Ohio experiment i s good, t h i s holds for

the angular d i s t r ibu t ions as well.
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Calculation of Cross Sections of the (n,p) Reaction on

Zirconium Isotopes
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A B S T R A C T

In our earlier analyses of the (n,p) reaction cross sections on several

isotopic chains in the medium-mass domain, we used the geometry-dependent

hybrid model for calculating the preequilibrium emission cross sections.

This model accounts for the enhanced emission from the nuclear surface by

assuming that the reaction proceeds in spherical shell-shaped regions of

a radius determined by the projectile impact parameter. These analyses

indicate that good overall agreement between theory and experiment may be

obtained at the expense of some parameter adjustment. In the present

paper, a more rigourous treatment of preequilibrium emission, such as the

statistical multistep compound and the multistep direct processes, in the

framework of the theories developed by Feshbach et al. (FKK) and Tamura

et al. (TUL), was applied in the calculations. The results of

calculations are compared with the cross sections of the
90,91,92,94,

Zr(n,p) reactions measured within a research programme
coordinated by the International Atomic Energy Agency.

1. Introduction

In our earlier analyses of the Cn.pD reaction cross sections,

on several isotopic chains in -the medium-mass domain * }, we used

the geometry-dependent hybrid model D for calculating the

preequilibrium emission cross sections. This model accounts for

the enhanced emission from the nuclear surface by assuming that

the reaction proceeds in spherical shell-shaped regions of a

radius determined by the projectile impact parameter. These

analyses indicate that good overall agreement between theory and

experiment may be obtained at the expense of some parameter

adjustment. Here the more rigorous treatment of preequilibrium

emission, such as the statistical multistep compound and the

multistep direct processes. in the framework of the theories

developed by Feshbach et al. "S CFKKD and Tamura et al. 5 } CTULD,

was applied in the calculations. The results of calculations are
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QO 91 92 94
compared with the cross sect ions of the * ' ' ZrCn.pD

reactions measured within the research project coordinated by the

IAEA-NDS.

2. Theoretical formalism

The measured cross sect ions were analysed in terms of the

decay of the compound nucleus preceded by the preequilibrium

emission. For t h i s purpose the extended version of the computer

code EMPIRE } was used. As described ea r l i e r the standard

Hauser-Feshbach theory was applied for calculat ion of the

evaporation spectra and the multistep compound theory of FKK was

multistep direct emission, which i s characterized by forward

peaked angular d i s t r ibu t ions , can be calculated ei ther by using

the FKIK, or the TUL theory. Both theories of the multistep d i rec t

react ions derive the one-step cross section in the same way. The

calculat ional procedures are different however. In the FKK theory

the microscopic DWBA cross sect ions are averaged over many final

lp lh s t a t e s . On the other hand TUL average the microscopic form

factors to get the macroscopic form factor , which subsequiently was

used in calculat ing the continuum cross sect ions. The l a t t e r

approach reduces the number of the DWBA calculat ions to a few

only, and i s therefore more pract ical for comparison with the

angle— and energy-integrated act ivat ion data. We used the TUL

formalism in the present analysis .

2.1 Multistep compound emission

For the s t a t i s t i c a l multistep compound emission the FKK

theory predicts the Hauser—Feshbach-like cross section consist ing

of three mul t ip l ica t ive terms: the entrance channel s trength

function, the factor describing the depletion of flux due to

emission on preceding reaction stages and the emission

probabi l i ty . The entrance channel s trength function has been

re la ted , for the purpose of the present calculat ion to the opt ical

model absorption cross section via a reduction factor R=O. 86,

which accounts for the loss of flux due to multistep d i rec t

processes and which was evaluated from experimental angular

d i s t r ibu t ions J. The depletion factor and the emission

probabi l i ty are expressed by the emission and the spreading

widths, which for t r ans i t i on matrix elements of a <5-type factor ize
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Here j , S, and J are the spins of the ejectile, the residual

nucleus and composite nucleus, respectively. The emission from

stage M of the reaction, which involves states with n=2N+l

excitons, occurs via three exit modes i->=n-2,n, corresponding to

particle-hole creation, annihilation and exciton scattering,

respecti vei y. The radial overlap integral I is over the two initial

interacting excitons and the two final ones. The functions Y are

the densities of levels accessible in the transition and X are the

angular momentum coupling functions. The particle-hole level
B "7" 6

density p involves only bound-particle orbitals

From refs. * 3

creating a Iplh pair v=

From refs. * 3 one finds, that e g. for a transition

pB

PI
p,h

X n J
n ,-. • •

Q J 3 J 4

C3D

were j t Jss»j_>j^ and Q are the total angular momenta of the

particle and the hole in the newly created pair, the total angular

momentum of the pair, that of the noninteracting core and of the

exciton initiating the transition, respectively. The

si i-.gl e—par 11 ci e state density is g =A/13 and its spin distribution

i s ¥c . The function describing the angular momentum decomposition

ox the created pair is

m e overlap integral I has been approximated by assuming,

that the radial wavefunctions for the active excitons Q,j,j and

j_ are constant inside the nucleus. These assumption results in an

analytical formula for I 5.
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In the present calcula t ion three stages were found to

contr ibute s ign i f ican t ly . The Hauser-Feshbach theory was used to

calcula te the compound nucleus cross sect ion due to the remaining

stages.

o. £. One-step Direct emission

For the one-step direct t r ans i t ion with a zero spin transfer

and for even t a r g e t s 7UL derived a cross section of the form,

dCo< ED do-. C E. , 6 0

'— = I *CE3 *
d Ebd°b

where the spectroscopic density takes the form,

M

The function C is the probability per unit energy that there

is a model state M at an excitation energy E . In practical

calculations one takes, e.g. a lorentzian form

C..CE J = Cr/J75CCE ~E v p 2 + r 2 ] 1 , C7D
M x x M

with F being the spreading width of the model state.The model

states were assumed to be the particle-hole states of the sherical

shell model and the spectroscopic amplitude d. , which is a purely

geometric factor was assumed to be unity. The ft. 's are the

transferred orbital angular momentum 1-dependent parameters, which

siiaj e the averaae form factor.

3. Calculations and Comparison with Experiment

The cross sections, which are compared with experiment, are

calculated as an incoherent sum of the contributions from the

decay of the compound nucleus, from the multistep compound

emission and of the one-step direct emission. The latter

contributes, in the studied cases, at most 3% of the total proton

emission yield

Global optical potentials were used in the calculations. For
g

neutrons the potential of Moldauer D and of Bjorklund and
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h !> were used. The potential of ref. was also used for

protons and the emission of alphas was described with use of the
11pr.T j^niirti oi* McFadden and Satchler }.

Tne four parameter formulae, derived by Cameron and Gilbert
c j , were used for calculating the compound nucleus level

densi t ies .

The one-step direct cross sections were calculated with the

neutron-particle proton-hole states of the spherical Nilsson model

and the spreading width V = 4MeV, was taken from Traxler et
1 ^ ial. "y. The elementary DWBA angular distributions were calculated
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with the code DWyCK-4, using a macrbscbpic form factor option with

the deformation parameters ft. = 0.02, for 1 = 0r9, adjusted to f i t

the measured angular " distributions of protons 3. The comparison

of the calculations with the measured excitation^ curves for the

' ' * ZrCn,p3 reactions is 'shown in fig. I. The compound
lt'\.< , » V .

nucleus dominates at low iricitient -energies 'and Sop. the lightest

target. With increasing neutron x number in the target the

evaporation of protons decreases, falling below 1OJ* of the total
; ,r . 94_ ' f-

Cn,p3 reaction yield" for 4r. The multistep compound emission
t •*

r i ses s teeply with bombarding 4 energy and dominates a t about 18

MeV. The one-step di rec t cross section does not exceed- 15% of the

Cn.p3 reaction .cross section. The applied formalism; describes

successfully also the proton emission -spectrum measured a t 14.8
14- -

MeV 5. For further de ta i l s concerning both the .calculations and
15

the experimantal; data the reader i s refered to ref. D..
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Effect of Different Level Density Prescriptions on the

Calculated Neutron Nuclear Reaction Cross Sections
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A B S T R A C T

A detailed investigation is carried out to determine the effect of

different level density prescriptions on the computed neutron nuclear

data of Ni-58 in the energy range 5-25 MeV. Calculations are performed

in the framework of the multistep Hauser-Feshbach statistical theory

including the Kalbach exciton model and Brink-Axel giant dipole resonance

model for radiative capture. Level density prescriptions considered in

this investigation are based on the original Gilbert-Cameron, improved

Gilbert-Cameron, backshifted Fermi-gas and the Ignatyuk, et al.

approaches. The effect of these prescriptions is discussed, with special

reference to (n,p), (n,2n), (n, alpha) and total particle-production

cross sections.

1. INTRODUCTION

I t i s well known t h a t level dens i ty parameter plays a
pivota l ro l e in the determination of various nuclear react ion
cross-sections. In this paper a detailed investigation of the
four different level density prescriptions has been carried out
for Ni-58 with special reference to <n,p), (n,o^ ), (n,2n) and
total production cross-sections for neutron, proton, alpha-
particle and gamma-rays in the neutron energy range 5-25 MeV.
The study has been performed in the framework of the multistep
Hauser-Feshbach stat ist ical model scheme / I / which includes
Kalbach exciton model /2 / and the Brink-Axel giant dipole
radiation model / 3 / . The following four level density recipes
have been examined in this investigations :

(i) Original Gilbert-Cameron Prescription /4/ (OGCP)

(ii) Improved Gilbert-Cameron Prescription / 5 / (IGCP)

(iii)Back-Shifted Fermi-Gas Prescription /6/ (BSFGP) and

(iv) Prescription to include the effect of shell closures
developed by Ignatyuk et al /7 / called the Ignatyuk
Prescription (IP) in this write up.
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2. LEVEL DENSITY FORMULATIONS

(i) Original Gilbert-Cameron Prescription

It is a two energy region representation of level densities.
In the higher excitation energy region a Fermi gas level density
form of the following type is used : ^.^ /. IA.

PCS') ^

This formula is valid for all energies greater than E defined by

U = 2.5 + 150/A

E = U + P(Z) + P(N)

Below this energy the following constant temperature formula is
used :

where '

a = level density parameter

(7" = Spin cut-off factor

= 0.0888 */aU * A2/3

a/A = 0.00917 * [S(Z> + S(N)] + C

C = 0.142 for spherical nuclides

= 0.120 for deformed nuclides
P(Z) and P(N) are the pairing energy corrections for protons

and neutrons respectively. S(Z) and S(N) are the corresponding
shell energy corrections. These parameters are taken from Cook
et al /8/.

The parameters T and E are determined by fitting Pg an(* Pi
and their derivatives at the matching energy E as given below :

EQ = E X - T log CT

(ii) Improved Gilbert-Cameron Prescription

This is essentially the same as given above except that the
spin cut-off factor in this formulation is given by

<T = 0. 146 * Jaio" * A 2 / 3 .
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(iii)Back-Shifted Fermi-Gas Prescription

Here only a single form of the level density describes the
entire excitation energy region. The formula used is

where

U = E - A = a t2 - t

CT = 0.015 * t * A5/3

Here t is the nuclear temperature and A is the energy shift,
a's and A 's are taken from Ivascu et al /9/ for this analysis.

(iv) Ignatyuk Prescription

The formulation accounts for the energy dependence of the
'a' parameter which is brought about by the effect of shell
closures. In this prescription

a (U) = 'a [1 + f(U). W/U 3

where a is the asymptotic value of the Fermi gas parameter
occurring at high energies and is given by

ay A - o> \375- &< 3f>* to * A

The shell effects are included in the term o W given by

W = M e x p (Z,A) - Mld (Z,A,oC)

where

M = experimental mass of the nuclide

M,, = liquid drop model based mass of the nuclide
with deformation

f (U) gives the energy dependence expressed as

f(U) = 1 - exp [- 0.05 U]

This model allows the shell effects to be included at low
excitation energies while at higher energies such effects
disappear.

The pairing energy corrections are again taken from Cook et
al.

The level densities calculated with these four prescriptions
are given in Fig.1. It may be noted that the level densities
given by OGCP, IGP and IP are converging at about 5 MeV and then
they start diverging with the increase in the excitation energy.
Around 25 MeV IGCP and IP give level densities by factors of 2
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and 6 respectively compared to that calculated with OGCP. BSFGP
yields higher level density in the entire energy region by a
factor of 10 compared to that given by OGCP.

3. CALCULATIONS PROCEDURE AND DATA INPUT DETAILS

As already stated, the computations are carried out in the
framework of the multistep Hauser-Feshbach data evaluation
scheme. The reaction decay chain depicting the various
participating nuclides considered in this investigation is shown
in Fig. 2. Emissions of neutron, proton, alpha-particle and
gamrna-rays are included at every stage of the reaction in the
equilibrium process while the emission of gamma-rays is excluded
in the pre-equilibrium process.

Discrete energy levels, their spins, parities and gamma-ray
branching ratios for all the nuclides depicted in Fig.2 are taken
from the literature.

Transmission coefficients for neutron, proton and alpha-
particles are calculated with good optical model potential
parameters. For neutrons; optical model potential is that of
Prince /10/, for protons; the potential is due to Mani /ll/, and
for alpha-particles; the potential is given by Strohmaier et al
/12/. These potential parameters are listed below :

(i) Optical Model Potential Parameters For Neutrons

V (MeV) = 49.33 - 0.48 E + 0.0024 E 2

W (MeV) =0.0

W,, (MeV) = 12.0 + 3.358 E - 0.007 E 2 ; E < 25 MeV

= 0.445 + 0.908 E - 0.011 E2 ; 25 4 E 4 45 MeV

U (MeV) = 6.75

r (fm) = 1.2583 + 0.00258 E ; E < 12 MeV

r (fm) = 1.4645 - 0.0146 E ; E < 12 MeV
w

r = r = 1.3128 - 0.00196 E ; 12 ,< E < 100 MeVv w ^

r = r , a = a =0.7813 fmu v u v

a = 0. 63 fm.w

(ii) Optical Model Potential Paramters For Protons

V (MeV) =41.3 ; W (MeV) =0.9

U (MeV) =7.5

rw (fm) = 1.25

y rc (fm) = 1.25

ay (fm) = 0.64; aw (fm) = 0.56
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(iii)Optical Model Potential Parameters For Alpha-Particles

V (MeV) = 173.0 - 0.30 E

W (MeV) = 20.5 + 0. 1 E

ry (fm) = rw (fm) = 1.445

ay (fm) = aw (fm) = 0.51

rc (fm) = 1.3

The various symbols are defined below :

E = incident energy (MeV)

V = real well depth (Woods-Saxon)

W = imaginary well depth (Woods-Saxon)

WQ = imaginary well depth (Gaussian)

W~ = imaginary well depth (Derivative Woods-Saxon)

U = Spin-orbit well depth (Thomas)

r V r w rU ~ rac*i* ^ o r various potentials

rc = radius for the Coulomb potential

a y aw' an = diffuseness for various potentials.

(iv) Parameters for Gamma-Rays

The Brink-Axel model of giant dipole radiation has been
employed to calculate the transmission coefficients for gamma-
rays. For El radiation, the following resonance parameters due
to Reffo /13/ have been used :

El = 16.0 MeV; H. = 3.70 MeV

E2 = 18.6 MeV; H? =5.10 MeV

< Q > = 2200 raeV; <D> = 14 keV

For Ml radiation default values of E = 8 MeV and P= 5 MeV
are assumed.

In the pre-equilibrium description of the reaction, internal
transition rates to the various exciton states are determined in
terms of the average two body interaction matrix element as
defined by Kalbach /14/. The exciton-state densities are
calculated according to the Williams relation /15/. The K-
parameter of the average reaction matrix element has been
extracted as 135 MeV in this analysis by matching the calculated
and measured total neutron emission spectrum at 14.1 MeV as
described in ref. /16/.

The computations have been performed with GNASH Code /17/.
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4. CALCULATED CROSS-SECTIONS

The various computed cross-sections with the above described
four level density recipes are intercompared in Figs. 3 to 8 with
the OGCP case taken as the base case. A discussion of the
suitability of data generated follows :

<i) (n,p) Cross-sections

The calculated (n,p) cross-sections are given in Fig.3 along
with the measured data. It is noted that in the energy range
extending upto 12 MeV the OGCP and IGCP yield similar results
with deviations of 3% or less. The IP predictions are lower,
variations being 15% or less. The data generated with BSFGP show
variations "20% or less when compared with the OGCP results.

In the energy range above 12 MeV all the four predictions
fall within 15% of one-another or less. At several energy points
close agreement is, however, noted between the different data
sets.

The IGCP and OGCP predictions are close to the experimental
values. However, in the energy range above 15 MeV all the four
recipes reproduce the measured data reasonably well.

(ii) (n,o( ) Cross-sections

(n,o£ ) cross-sections obtained with the four level density
recipes are shown in Fig.4 together with the measured data. It
is noted that in the energy range extending up to 12 MeV the data
generated with BSFGP are quite low, by factors of 2 or more, when
compared with the data obtained with the other three recipes
which show close agreement at several energy points.

In the energy range above 12 MeV the various prescriptions
yield similar cross-sections at several energy points although
the maximum deviation is also seen around 30% among the different
sets of data at some energy points.

The IGCP, OGCP and IP predictions are noted to be within the
experimental error limits.

(iii)(n,2n) Cross-sections

The (n,2n) cross-sections are depicted in Fig.5 together
with the measured data. It is noted that the IP predictions are
higher throughout the entire energy range. The maximum deviation
seen amongst the various sets of data is about 20% although close
agreements are also noted at some energy points.

The more recent measured data of Hudson et al are
represented well both in the IGCP and OGCP cases.

(iv) Total Neutron Production Cross-sections

Fig. 6 intercompares total neutron production cross-sections
in the four cases. It is seen that the BSFGP case shows
enhancement by 1-4% upto neutron energies of 15 MeV and above
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this energy it shows depletions by about 5% compared to the OGCP
case. The data is depleted by about 4% in the IGCP case whereas
in the IP case it is enhanced by 1-10%.

(v) Total Hydrogen Production Cross-sections

The total hydrogen production cross-sections in the IGCP
case are reduced over a wide energy range by 5-15% as shown in
Fig.7. The IGCP and IP cases show marginal depletions amongst
them but these two cases produce almost identical results above
12 MeV.

(vi) Total Helium Production Cross-sections

As shown in Fig.8 the total helium production cross-sections
are most affected in the BSFGP case, the reduction being 40% or
more. The IGCP case shows enhancement while the IP case is
identical to the base OGCP case above 12 MeV.

(vii)Total Gamma-Ray Production Cross-sections

The gamma-ray production cross-section are somewhat enhanced
in all cases as depicted in Fig.8 compared to the OGCP case. The
IGCP and IP cases produce almost identical results.

5. CONCLUSIONS

The following conclusions are drawn from the analysis
carried out in this paper :

(i) Total neutron production cross-sections in all the four
level density recipes are close to one another at several
energy points although a maximum deviation of about 10% is
noted at some of the energy points. The (n,2n) cross-
sections also exhibit a similar variation.

(ii) The <n,p) and total hydrogen production cross-sections show
a maximum deviation of 20%.

(iii)The (n, o( ) and total helium production cross-sections are
adversely affected in the BSFGP case.

(iv) The gamma-ray production cross-sections are enhanced in the
BSFGP case by about 20% whereas they are comparable in other
cases.

(v) The IGCP and IP cases yield almost identical results for
many of the reactions investigated in this study. Since the
IP case accounts for the energy dependence of the *a'
parameter, it may be adopted in the binary, tertiary and
total particle production cross-sections required in reactor
technology.
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A B S T R A C T

Three different nuclear data evaluation approaches, namely, the Multistep

Hauser-Feshbach scheme (MSHF), the Geommetry Dependent Hybrid Model

(GDHM) and the Unified Exciton Model (UEM) are utilized to compute

neutron nuclear cross-section data of Ni-58 and Ni-60 in the energy range

1-26 MeV. Multiparticle reaction cross sections, total particle and

gamma-ray production cross sections, energy spectra of the emitted

particles and gamma-rays and the angle-energy correlated double

differential cross sections for the emitted neutrons are specially

investigated. Appropriate optical model potential parameters are

selected to include the competition of neutron, proton and

alpha-particles in the reaction decay. The Brink-Axel approach is

adopted to account for gamma-ray emission. Direct inelastic cross

sections to the discrete states are determined using the DWBA technique.

A detailed intercomparison of the above stated three evaluation schemes

is presented.

1. INTRODUCTION

Various nuclear r eac t ion model schemes are c u r r e n t l y being
applied in order t o eva lua te and genera te neutron induced binary,
tertiary and multiparticle reaction cross-sections for the
structural and other reactor elements for applications in fission
and fusion based nuclear technology. In this paper we have
investigated the three data evaluation schemes, namely, multistep
Hauser-Feshbach scheme (MSHF), geometry dependent hybrid model
scheme (GMHM) and the unified exciton model scheme (UEM) with
special reference to the neutron nuclear data of Ni-58 and Ni-60.
In particular, we have evaluated the following types of neutron
cross-section data in the energy range 1-26 MeV :

i) (n,p), (n, U ), (n, if ), (n,2n), (n,np), (n,pn), (n,no(),
(n,o«i n) and (n, 2p) cross-sections.

ii) Energy spectra of the emitted neutron, proton, alpha-
particle and gamma-rays.

i i i ) Discrete energy level excitation and total inelastic
scattering cross-sections.
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iv) Angle-energy correlated double differential cross-sections
for the secondary emitted neutrons.

v) Total production cross-sections for neutron, hydrogen,
helium and gamma-rays.

Measured cross-section data for several reactions listed
above do not exist for Ni-58 and Ni-60 in the entire energy range
considered in this paper and thus this study serves to
extrapolate or generate such data for these reactions. In this
regard, the above mentioned MSHF, GDHM and UEM schemes have been
intercompared and appropriate conclusions are drawn.

2. OPTICAL MODEL POTENTIAL PARAMETERS

Appropriate optical model potential parameters are needed
for neutron, proton and alpha-particles in-order to compute their
transmission coefficients and inverse reaction cross-sections to
account for their competition in the reaction decay mechanism.
We have selected these parameters from the literature i.e. for
neutrons ; potential used j.s that of Prince /I/, for protons ;
potential is due to Mani /2/, and for alpha-particles ; potential
selected is that of Strohmaier et al /3/. These parameters are
listed below :

(i) Neutrons

(a) Ni-58

V (MeV) = 49.33 - 0.48 E + 0.0024 E 2

W (MeV) = 0.0

W«(MeV) =12.0 + 0.358E - 0.007 E 2 ; E < 25 MeV

= 0.445 + 0.908E - 0.011 E2 ; 25 <S E ̂  45 MeV

U (MeV) = 6.75

r (fm) = 1.2583 + 0.00258 E ; E < 12 MeV

r (fm) = 1.4645 - 0.0146 E ; E < 12 MeV
w
ru = rv = 1.3128 - 0.00196 E ; 12 « E 4 100 MeV

ru = rv ; au = av = °'7813 f m

a =0.63 fmw

(b) Ni-60

V (MeV) = 48.5514 - 0.474 E + 0.0022 E 2

W^(MeV) = 12.0 + 0.358 E - 0.007 E 2 ; E < 25 MeV

= 0.2875 + 0.914 E - 0.0105 E 2 ; 25 ̂  E ^ 45 MeV
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U (MeV) =6.55

rv(fm) = 1.2574 + 0.00255 E ; E < 12 MeV

r (fm) = 1.46 - 0.0146 E ; E < 12 MeV
Vr

r = r = 1.3113 - 0.00194 E ; 12 <£ E « 100 MeV
V W

ru = rv ; av = au = 0.7851 fm

aw = 0.6331 fm

where

E = incident energy (MeV)

V = real well depth (Woods-Saxon)

W = imaginary well depth (Woods-Saxon)

WQ= imaginary well depth (Gaussian)

U = spin-orbit potential depth (Thomas)

r , r , r = radii for various potentials
V Vr %Jt

a , a , a = diffuseness for various potentials,
v Vf u

(ii) Protons

V (MeV) =41.3 ; W (MeV) =0.9

WD(MeV) = 8.2 ; U (MeV) =7.5

r (fm) = 1.2 ; r (fm) = 1.25
V Vr

r(fm) = 1.16 ; r (fm) = 1.25
XX C

a (fm) = 0.64 ; a (fm) = 0.56

where

WD = imaginary well-depth (Derivative Woods-Saxon)

rc = coulomb radius

Optical model potential parameters due to Perey /4/ and
Becchetti - Greenlees /5/ have also been applied in the analysis.

(iii) Alpha - Particles

V (MeV) = 173.0 - 0.30 E

W (MeV) = 20.5+0.1 E
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rv (fm)

av (fm)

r_ (fm)

" rw

= 1.

(fm)

(fm)

3

= 1.

= 0.

445

51

(iv) Gamma-rays

Transmission coefficients for gamma-rays have been
calculated according to the Brink-Axel giant dipole resonance
model /&/. The following resonance parameters for El radiation
due to Reffo /7/ have been used in the computations :

(a) Ni-58

El = 16.0 MeV ;
E2 = 18.6 MeV ;

= 2200 meV

1 = 3.70 MeV
f2 = 5. 10 MeV
<D> = 14 keV

(b) Ni-60

•l = 3.7 MeV
I? = 5. 1 MeV
<D> = 14 keV

For Ml radiation default values of E = 8 MeV and f~? = 5
are assumed.

El = 16.0 MeV ;
E2 = 18.4 MeV ;

- 1300 meV

3. DWBA PARAMETERS

Direct level excitation cross-sections for several discrete
energy levels of Ni-58 and Ni-60 have been obtained using the
distorted wave Born approximation (DWBA) /8/ of the direct
reaction theory. The deformation parmeters for the following
energy levels are taken from Hetrick et al /9/ :

E(MeV)

Ni-58

jif"
Ni-60

E(MeV) Jlf

1.454
2.459
2.776
3.038
3.265
4.470

2 +
4+
2+
2+
2+
3-

0. 1871
0.0774
0.0066
0.0538
0.0632
0. 140

1.333
2.159
2.506
3.120
3.045

2+
2+
4+
4+
3-

0.2345
0.0224
0.0837
0.0566
0.1612

4. NUCLEAR REACTION MODELS AND CODES

As described earlier the following three
schemes are investigated in this analysis :

data evaluation

(i) Multistep Hauser-Feshbach scheme (MSHF) /10/ comprizing
optical model, Kalbach exciton model, Brink-Axel giant dipole

52



radiation model and the DWBA model. Computer codes SCAT2 /ll/,
DWUCK4 /12/ and GNASH /13/ are used.

(ii) Geometry dependent hybrid model scheme (GDHM) /I4/ which
includes optical model and Weisskopf-Ewing evaporation model.
ALICE-87 code /15/ which accounts for the equilibrium and pre-
equilibrium emission of gamma-rays in an approximate manner is
employed in the computations.

(iii) Unified exciton model scheme (UEM) /16/ involving the
Brink-Axel model and optical model. Calculations are carried out
with GRAPE code package /17/.

All these schemes give consistent descriptions of all the
energetically allowed reactions. Emission of neutrons, protons,
alpha-particles and gamma-rays are included at each stage of the
reaction. In the MSHF scheme gamma-decay competition is not
included in the pre-equilibrium stage. The reaction decay chains
selected in the MSHF scheme for Ni-58 and Ni-60 are shown in
Figs.1 and 2 respectively. Discrete energy levels, their spins,
parities and gamma-ray branching ratios for all the nuclides
included in these figures are taken from the literature. In the
GDHM and UEM schemes discrete level data are not used. This may
affect the threshold reactions in these two schemes.

5. LEVEL DENSITY INFORMATION

The continuum energy region in the MSHF scheme is
represented by the level density formulae of Gilbert and Cameron
/18/ with the pairing energy corrections of Cook et al /19/. In
the UEM scheme back-shifted Fermi-gas model is used with the
parameters of Dilg et al /20/. In the GDHM scheme the level
density parameter 'a' is taken as A/9, A being the mass no. of
the composite nucleus and the pairing energy corrections are
taken as zero for even-even nuclides, - £ for odd-even and - 2 S
for odd-odd nuclides, $ being equal to 11/ i AT Thus, the three
evaluation schemes make use of different level density
formulations.

In the pre-equilibrium decay considerations the exeiton-
state densities are calculated according to the Williams formula
/21/. In the UEM scheme it is renormalized to coincide with the
back-shifted Fermi gas formula.

6. INTERNAL TRANSITION RATES

The GDHM and UEM schemes make use of the nucleon-nucleon
interaction cross-sections to calculate the internal transition
rates. In the MSHF scheme these are defined in terms of the
average matrix element for two body interaction which is
parmeterized by Kalbach /21/ as a function of energy involving a
constant parameter EC. K is determined by matching the calculated
and measured particle emission cross-sections and their energy
spectra.
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7. CALCULATED CROSS-SECTIONS

The cross-sections calculated with the MSHF scheme are
compared in the following with the available measured data. An
intercomparison of the MSHF, GDHM and UEM schemes is also brought
out in a separate section.

(i) Neutron Emission Energy Spectrum

Total neutron emission energy spectrum for Ni-58 at neutron
incident energy of 14.1 MeV is shown in Fig.3 with the K-
parameter of the average reaction matrix constant taken as 135
MeV . The maximum deviation between the calculated and measured
spectra in the applicability range of the model is about 25%,
although there is a close agreement at several emission energies.

(ii) (n,c< ) Cross-sect ions

(n, o< > reaction in structural materials is of importance
since it leads to the production of helium gas which is
considered to be responsible for swelling in these materials,
(n,o( ) cross-sections for Ni-58 are shown in Fig.4 visa-vis the
measured data. It is noted that the calculated cross-sections
are within the experimental errors.

(iii) Inelastic-Scattering Cross-sections

Direct inelastic scattering cross-sections to the various
levels of Ni-58 and Ni-60 computed with the DWBA technique are
depicted in Figs. 5 and 6 respectively. Utilizing these direct
contributions, total inelastic cross-section is estimated as a
function of neutron incident energy. Figs. 7 and 8 represent
this cross-section for Ni-58 and Ni-60 with the direct component
included (curve 1) and without the direct component i.e. only
compound statistical (curve 2). It is noted that curve 1 with
the direct component included describes the measured data rather
well.

It is also noted that the direct inelastic component becomes
almost constant in the energy range 10 to 20 MeV. In the case of
Ni-58 it is 85 mb and in Ni-60 it is about 130 mb.

(iv) (n,p) Cross-sections

The calculated and measured (n,p) cross-sections for Ni-58
and Ni-60 are shown in Figs. 9 and 10 respectively. In the case
of Ni-58, it has been seen that the measured data given by the
different authors are discrepant amongst themselves by a factor
of 2 or more. The calculated solid curve in Fig.9, however,
shows good agreement with the more recent data of Hudson et al.
In the case of Ni-60, the calculated cross-sections (Fig. 10) are
within the experimental errors over a wide range of energy.
However, above 16 MeV the measured data are higher by about 50%.

In order to investigate the effect of proton optical model
potentials on (n,p) cross-section data, we have carried out a
comparative study using three sets of potentials given by Mani,
Perey and Becchetti-Greenlees for Ni-58. Fig.11 represents the
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results. It is noted that the calculated cross-section data with
these potentials are almost similar in the energy range above 14
MeV. Below this energy, deviations ~10% are, however, seen among
the various predictions. In short, it may be stated that the
different sets of potentials do not produce any significant
change in <n,p) cross-section data.

(v) (n,2n) Cross-sections

<n,2n) cross-sections for Ni-58 are given in Fig.12.
Measured cross-section data for this reaction are rather sparse
for Ni-60 and therefore are not shown separately. It is seen
from the figure that there is a close agreement between
calculated and measured data.

(vi) Tertiary Reactions

(n,pn), (n,np), (n,noC), (n,^ n) and (n,2p) reaction cross-
sections for Ni-58 and Ni-60 are shown in Figs. 13 and 14
respectively along with (n,p), {n,o£ ) and <n,2n) cross-sections
for the sake of comparison. The measured tertiary cross-section
data, being rare, are not shown. All the cross-sections depicted
in these figures are consistently evaluated in the MSHF scheme.

(vii) Total Production Cross-sections

Total production cross-sections for neutron, hydrogen,
helium and gamma-rays are given in Figs. 15 and 16 for Ni-58 and
Ni-60 respectively. No comparison with the measured data is
brought out for lack of such data. It is noted that helium
production cross-section is the lowest ~ 100 mb and gamma-ray
production cross-section is the highest ~ 1000 mb or more.

Proton production cross-sections calculated with the Mani,
Perey and Becchetti-Greenlees potentials are shown in Fig.17. It
is noted that the cross-sections are within 1% of one-another and
show similar energy dependence.

(viii) Angle-Energy Correlated Double Differential Cross-
Sections

Angle-energy correlated double differential cross-sections
calculated in the framework of the GDHM scheme are depicted in
Figs. 18 to 23 for Ni-58 at neutron incident energies of 14.1 MeV
and 18 MeV and at emission angles of 45°, 60°and 120°. It is
noted from these figures that the calculated data are within the
experimental errors over the neutron emission energy range of 2
to 10 MeV. Above this energy, large deviations are, however,
noted in some cases. This aspect may not be of much consequence
in fusion or fission applications since the absolute magnitudes
involved are insignificantly small.

The corresponding calculated double differential cross-
sections for Ni-60 are given in Figs. 24 and 25. In this case no
comparison is made with the measurements because of lack of data.
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(ix) Gamma-Emission Energy Spectrum

The calculated gamma-emission energy spectra for Ni-58 and
Ni-60 at 14.1 MeV are shown in Figs. 26 and 27 respectively. A
resonant behaviour is noted in the emission energy region
extending upto 5 MeV due to the presence of discrete energy
levels.

8. INTER-COMPARISON OF MSHF, GDHM AND UEM SCHEMES

(n,2n), (n,p), (n, oC ), n > p and cross-sect ions
calculated with the MSHF, GDHM ana UEM schemes are intercompared
in Figs. 28 to 35. The GDHM scheme predicts the highest (n,2n)
cross-sections for Ni-58 as noted from Fig.28. It is followed by
the UEM scheme, the difference between them being about 25%. The
MSHF scheme represents well the measured (n,2n) cross-section
data but there exist factors of 3 or more between the MSHF and
GDHM predictions. The (n,2n) cross-sections for Ni-60 shown in
Fig. 29 do not show as violent a variation. In this case GDHM
and UEM schemes yield comparable results while the MSHF
predictions are low by about 20%.

The <n,p) cross-sections for Ni-58 given in Fig.30 are
within 20% of one-another in the three schemes while those for
Ni-60 depicted in Fig.31 show a variation of 30% or less.

The GDHM results for (n, oC ) cross-sections for Ni-58 and
Ni-60 shown in Figs. 32 and 33 are lower than those for the MSHF
scheme, the deviation being 20% to 70%. The UEM results for this
reaction are the highest and differ from others by several
factors. It has been already brought out in the text that the
MSHF results closely reproduce the measured data. This analysis
indicates that the mechanism of oC-emission in the UEM scheme
needs re-examination and improvements.

Total neutron emission cross-sections for NI-58 represented
in Fig.34 reveal that the UEM results are higher than the MSHF
predictions by 1.5% to 15%. They are lower than the GDHM results
by 5% to 15%. Similar trends are noted for Ni-60 in Fig.35, the
UEM data being higher than the MSHF data by 10% or less and lower
than the GDHM data by 6% or less.

Total proton emission cross-sections for Ni-58 in the MSHF
scheme are higher than those in the UEM scheme by about 30% while
these are higher by 5% to 20% compared to those in the GDHM
scheme. In the case of Ni-60 also similar trends are seen with
deviations being somewhat higher.

Total alpha-emission cross-sections for Ni-58 show agreement
within 5% over most of the energy range in the MSHF and GDHM
schemes. The UEM scheme gives higher results by 25% to 50%. In
the case of Ni-60 variations ranging upto 70% are noted among the
various schemes.
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9. CONCLUSIONS

The following conclusions are drawn based on the
investigations carried out in this study :

(i) The multistep Hauser-Feshbach scheme with pre-equilibrium
corrections reproduces the measured cross-section data
rather well and may be adopted to extrapolate the data to
those energy regions where the measurements are lacking.

(ii) The neutron and proton emission cross-sections predicted by
the three schemes are-within 15% to 30% of one another.
The GDHM scheme being the simplest of the three schemes
from computational considerations may provide quick
estimates for these reactions and thus may be useful in the
planning and design of suitable experiments to measure
them.

(iii) Alpha-emission cross-sections calculated with the three
schemes show wide deviations. The MSHF data, however,
represent the measured data quite well. This study points
out that there is a scope to reexamine and improve the
mechanism of alpha-emission in the GDHM and DEM schemes.

(iv) The proton potentials currently being employed in the
proton emission reactions lead to similar results. Perhaps
a new look is desired for the proton potentials in the mass
region 50-60 based on recent proton induced measurements.

(v) The GDHM scheme gives a good representation of the angle-
energy correlated double differential cross-sections. For
reactor oriented applications this scheme may be employed
to generate such data.

(vi) The direct discrete inelastic contributions should be
estimated and utilized to obtain the total inelastic cross-
section.
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The Use of Dispersion Relations to Construct Unified

Nucleon Optical Potentials

1\E. HorigHon

Nuclear Physics Laboratory, Oxford, U.K.

Abstract: The dispersion relations provide a simple and accurate way of para-

metrising the optical potential for a particular nucleus over a range of energies. A

method is proposed for obtaining a global nucleon optical potential incorporating

the dispersion relations.

1. Introduction
The optical model is now established as a convenient and accurate way of para-

metrising a wide range of nucleon scattering of data. Global potentials have been

obtained that give good fits to differential elastic scattering cross sections and polari-

sations for all but the Lightest nuclei over a range of energies and these potentials have

parameters that are almost the same for all nuclei and have a known energy dependence.

The quality of fit obtained with such global potentials does however vary through

the periodic table, due to the effects of nuclear structure. For optimum fits to the data

these effects are rather small for the real part of the potential but may be appreciable

for the imaginary part of the potential. In particular, if the scattering nucleus has

a strongly collective character the coupling between the elastic and inelastic channels

affects the elastic scattering and renders inadequate the predictions of a global potential.

There are several ways of tackling this difficulty. One is to use the coupled chan-

nels formalism for such nuclei and thus include explicitly the effects of the coupling to

inelastic channels. This restores the global quality of the fits but requires a knowledge

of the coupling parameters. A further disadvantage is that coupled calculations are

lengthy and so most of the simplicity of the model is lost.

Another response is to develop a new global potential valid for nuclei of similar

structures, as has been done for the actinide nuclei by Madland and Young (1978).

This retains the computational simplicity of the optical model but is useful only for a

particular set of nuclei. It is thus necessary to develop a new parametrisation for each

set of nuclei with different level structures. For lighter nuclei it may even be necessary

to have a different set of parameters for each to achieve sufficient accuracy.

This paper emphasises the usefulness of a third method that makes use of the

dispersion relations that connect the real and imaginary parts of the optical potential.

As described in recent reviews (Hodgson, 1988, 1989) these dispersion relations auto-

matically take into account the coupling between the elastic and inelastic channels. If

we know the imaginary potential then the dispersion relations enable the correction to

the real part due to the coupling to be evaluated. It is still necessary, of course, to insert
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into the calculation some information concerning the structure of the target nucleus,
but hopefully this can be done by a single normalising constant instead of by the many
numbers necessary to specify the collectivity in coupled-channels calculations.

It is usual in precise parametrisations of the optical potential to fix the form factor
parameters and to allow the real and imaginary potential depths to vary in a way that
optimises the Jit to the data. However recent work has shown (Finlay et al, 1985, Su
Zong Di and Hodgson, 1988) that the radius parameter must also be allowed to vary
with energy if an optimum fit is to be obtained. This could of course be included in
the parametrisation at the cost of more adjustable parameters. The advantage of the
dispersion relation method is that the energy variation of the radius of the potential
is included automatically, without additional parameters. Since it is physically based,
the dispersion potentials are likely to retain their validity when the accuracy of the
data increases, whereas this is not necessarily the case for an ad hoc parametrisation,
however elaborate. Furthermore, it seems possible that the interaction can be described
by a global potential, valid for many nuclei, in which the structure of each individual
nucleus is represented by just one adjustable parameter.

If these assumptions are correct, then it should be possible to define a global

optical potential that when inserted into an optical model code modified to include the

dispersion correction gives the elastic scattering cross-section at all energies for all nuclei.

All the parameters of this potential are fixed and known, except a single parameter that

normalises the imaginary potential and thus takes account of the nuclear structure

effects. This parameter has to be determined for each nucleus by an optical model

analysis at any one energy; once found the values of this parameter can be tabulated for

future use. It is to be expected that the values will be the same for nuclei with similar

collective structure like the actinides, and it may prove possible to develop simple rules

connecting this parameter with say the deformation parameter for the lowest collective

state. Such rules would make possible the prediction of cross-sections for nuclei for

which no scattering measurements are available, provided something is known of their

low-lying band structures.

An advantage of the dispersion relation analysis is that it unifies the data over a

range of energies so that once the parameters are determined it is possible to calculate

cross-sections at any required energy.

In this paper, the dispersion relations are described in Section 2, together with

the results of some recent analyses. In Section 3 a global method of analysing nucieon

data is proposed, and some conclusions are presented in Section 4.
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2. Dispersion Relations Analysis

The essential idea is to use the dispersion relations to connect the real and imagi-

nary parts of the potential, instead of treating them as independent of«ach other. The

most useful form is

WW'" (2.1)

where VHF(E) is the Hartree-Fock potential that varies linearly with energy and can

be represented by a Saxon-Woods radial form

VUF(r) =
VHF (2.2)

The imaginary potential W(E) has volume and surface-peaked components. The vol-
ume component gives a volume contribution and so may be absorbed in the Hartree-
Fock field, while the surface-peaked component gives a surface-peaked addition to the
Hartree-Fock field, thus automatically giving the required energy-dependent radius.

Many analyses of experimental data have now been made using the dispersion
relations, and here we present a selection of recent results.

One of the advantages of dispersion relations analyses is that they unify the optical
potential over the whole range of energies. This is shown for 20013i in Figure 1, which

4S0

4 3 0

390

370

350 L_
-15 -10 10

En(MeV)

Fig.l Volume integral per nucleon of the real neutron potential for 209Bi for bound

and unbound energies. The points at positive energies are obtained from optical

model analyses of elastic scattering data and those at negative energies from the

binding energies of particle and hole states. The curves show: a, a linear fit to

the scattering data from 4.5 to 10 MeV; b, a linear fit to all scattering data; c,

calculated from the dispersion relation (Lawson, Guenther and Smith, 1987).
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compares the data for bound and scattering states with the extrapolation made using the

dispersion relations. The potentials giving the bound states at their measured energies

are given much more accurately than by a simple linear extrapolation of potentials

obtained from analyses of scattering data. This is also shown by the energy spectra

in Figure 2, where the experimental energies are in much better agreement with those

found from a potential with the dispersion correction.
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Ld "40
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id
''2
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Fig.2 Proton single-particle energies Enij in 40Ca. The column labelled EXP represents

the experimental values. The columns labelled UHF and I/HF+AV give the energies

obtained from the Hartree-Fock potential and from the real part of the full mean

field, respectively (Tornow, Chen and Delaroche, 1989).

At positive energies, the dispersion relations have now been used to obtain the

analysing powers as well as the differential cross-sections, and a recent example is shown

in Figure 3. A very precise analysis of differential cross-sections for the elastic scattering

of 4 to 10 MeV neutrons by 208Pb has shown that the differences between the data and

the dispersion analyses found by Johnson et al (1987) may be attributed to overlapping

resonances in that energy range. This shows a limitation on the accuracy of dispersion

analyses.
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Fig.3 Differential cross-sections and analysing powers for the elastic scattering of 8 MeV

neutrons by 208Pb compared with dispersion relation calculations (Roberts et alt

1989).

In the case of analyses of neutron data, a particular feature is that the dispersion

relations give automatically the increase in radius of the potential at low energies, which

produces notable effects on the differential cross-sections (Finlay et al, 1985) and on the

total cross-sections (Zong Di and Hodgson, 1988). In the past the effects of the increase

in radius has been parametrised by using different potentials in different energy regions.

The dispersion relations enable the saine potential to be used over the whole energy

range.

3. Determination of Global Optical Potentials
The success of the dispersion relations analyses of neutron and proton data sug-

gests that it would be useful to use them to obtain global potentials that represent the
data to good accuracy over a wide range of nuclei and energies. A method of doing this
is described in this section.
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The optical model analysis of a set of data for the interaction of nucleons with

nuclei over a substantial range of energies can be carried out by a global fitting proce-

dure that differs in several important respects from a standard optical model analysis.

The form factor parameters may be fixed to standard average values, and VJJF allowed

to vary linearly with energy. The main difficulty is that the dispersion relation (2.1)

requires the imaginary potential over the whole energy range. The optimum form is

suggested by those successfully used in some recent detailed analyses of neutron scat-

tering (Johnson et al, 1987; Hicks and McEllistrem, 1988) and specified below. These

give simple parametrised expressions for the energy variation of both the real and the

imaginary parts of the potential. The same energy variations can be used for other

nuclei, with a normalising factor applied to the imaginary part to take account of the

structures of the different nuclei. This does however assume that Ilia relative contribu-

tions of the volume and surface absorption are the same for all nuclei. The particular

feature of these potentials is that the surface imaginary potential falls to zero above a

certain energy so that the integral in (2.1) converges.

The two parametrised forms of the imaginary potential already mentioned are:

1. The straight line segment potentials of Johnson et al (1987) for 3 0 8Pb

= 0 for E < 10 MeV

WV(E) =0 .17(£-10) for 10 < E < 50 MeV (3.1)

= 6.8 for E > 50 MeV

= QA{E -EF) for - 6 < E < 10 MeV

and W,{E) = -0.103(£ - 72) for 10 < E < 72 MeV (3.2)

= 0 for E > 72 MeV

(and symmetric expressions for E < Ef).

2. The potentials used by Hicks and McEllistrem (1988) for osmium

and platinum

= 0 for E < 8 MeV

WV(E) =2.33(£* - 8 * ) 8 < £ < 4 0 M e V (3.3)

= 2.33(40* - 8*) = « 8.1 MeV for E > 40 MeV

and W.{E) =

(and symmetric expressions for E < Ep)
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The peak strengths of these potentials are:

Pb

Os — Pt

Surface
6.4

9.2

Volume
6.8

8.1

It is encouraging that these potentials are very similar in overall shape and abso-

lute and relative magnitudes, with the OsPt potential slightly stronger, as it should be.

The difference is quite small, encouraging the hope that all nuclei can be fitted with

multiplying factors for W in quite a narrow range. To verify this, it is necessary to fit

a wide range of data to i'md the optimum values of these factors for many nuclei.

4. Conclusions
The dispersion relations potential has several clear advantages over the standard

parametrisation. It includes the physically-necessary connection between the real and
imaginary parts of the potential and thus automatically includes without additional
parameters the energy dependence of the radius that is required by precision analyses.
Furthermore, it holds out the hope that it will prove possible to represent the effects of
nuclear structure by a single parameter that has a characteristic value for each nucleus.

The extent to which these hopes can be realised can only be evaluated by a series
of careful analyses of extensive data sets for several nuclei. The work that has already
been done is sufficiently encouraging to suggest that precision optical model analyses
should in future be made with the dispersion relations potential.
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Abstract

The Weisskopf-Ewing and exciton model theories are combined to give a
simple and fast method of calculating the total cross-sections of (n,p) and (n, a)
reactions for many nuclei from 10 to 20 MeV.

1. Introduction

It has long been known that the total (n,p) and (n,a) cross-sections at
14 MeV for many nuclei vary rather smoothly with N and Z, and several sim-
ple empirical formulae have been proposed to parameterise them. These have
recently been compared with an extensive set of experimental data by Forrest
(1986).

These formulae are useful for estimating rapidly the cross-sections of many
reactions required in the design of fusion reactors, so it is worthwhile considering
how they may be improved. Furthermore the latest designs of these reactors
also require the cross-sections for a range of lower energies, and these cannot be
obtained from the empirical formulae. This energy variation can be obtained
from reaction theories, and modern computers enable rapid calculations to be
made.

The aim of this work is to develop and test a simple physically-based
method of calculating total (n^p) and (n,a) cross-sections. This is done by
combining the Weisskopf-Ewing and exciton model theories. The method is
described in §2, and compared with the experimental data for (n,p) reactions
in §3 and for (n, a) reactions in §4. Some conclusions are given in §5.

2. Method of Calculation

At 14.5 MeV, both compound nucleus and direct reactions contribute to
the cross-sections, so theories are required for both these processes. The require-
ment of simplicity and computational convenience rules out the Hauser-Feshbach
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theory (1952), which requires listing the energies and quantum numbers of many
states of each nucleus, and also the distorted wave theories that require the cal-
culation of wavefunctions and matrix elements.

For the compound nucleus cross-sections we therefore use the Weisskopf-
Ewing theory (1940) which requires only level density parameters, which are
extensively tabulated, and transmission coefficients, which can be easily calcu-
lated using global optical model parameters. Also required are the Q-values for
the reactions, which can be obtained from a table of nuclear masses; it is not suf-
ficiently accurate to use the semi-empirical mass formula. All these parameters
for all nuclei are stored in the computer.

For the direct reactions, which are increasingly important for the reactions
on heavy nuclei, we investigate the usefulness of (a) a simple empirical formula
and (b) the exciton model. We test the results of our calculations by compar-
ing the fit to the data with that obtained by Forrest. Here we encounter a
difficulty due to the uncertainties in the measured cross-sections. It is already
clear from Forrest's work that many if not most of the discrepancies between
his calculations and the experimental data are due to errors in the data. This
sets a limit to the sharpness of the test of any proposed method of calculating
the cross-sections. Indeed it seems likely that a method which gave perfectly
accurate cross-sections would, when compared with the presently available data,
give results not much better than the Forrest formulae.

This makes it difficult to develop a method which is clearly better than
that of Forrest. However we consider that the attempt is worthwhile for several
reasons:

(a) as the experimental data improves, the advantages of a physically based
method of calculation should become increasingly apparent,

(b) the new method will make it easy to calculate cross-sections over a range
of energies if required, whereas the formulae of Forrest refer only to 14.5
MeV,

(c) the availability of the cross sections as a function of energy makes it possible
to identify those cross-sections that are varying rapidly with energy and
so are not fitted simply because, for example, they have been measured at
14 MeV, whereas the formulae are fitted to data around 14.5 MeV.

3. The (n,p) Reaction.

Calculations were made for the (n,p) reaction for those nuclei for which
experimental data are available, using the Weisskopf-Ewing theory. The absorp-
tion cross-sections were obtained by using the optical model with the equivalent
non-local potential of Wilmore and Hodgson (1964) for the neutrons and the
Perey potential (1963) for the protons. It was found that the results for the
heavier nuclei were too low by orders of magnitude, but for light nuclei they
were of the right order of magnitude. This is due to the neglect of direct reac-
tions, and since it might be expected that the direct reaction cross-section will
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be a smooth function of mass, an attempt was made to fit the experimental
cross-sections by adding an estimate of the direct contribution obtained from
a simple formula to the compound nucleus results from the Weisskopf-Ewing
calculations. It was found by using a least squares fit procedure that a formula
of the form

(-46.80 + 0.9492,4 + 0.00178A2) exp(2.143S - 116.4952) (3.1)

where A is the mass number and S = (N — Z)/A, gives a fit to the data. For
light nuclei the predictions of the Weisskopf-Ewing theory are large enough to
explain the data without the addition of a direct component. If these nuclei
are neglected, the results of the above procedure, give fits to the data which is
about as good as the Forrest formulae.

A simple physically-based model for the direct reactions is the exciton
model, and this has been used by Braga-Marcazzan et al (1972) to calculate
the (n,p) cross-sections for medium and heavy nuclei. They did not include
compound nucleus effects and their results are therefore not applicable to light
nuclei. We made calculations using the standard value for the single particle
energy spacing g — ,4/13, but subsequent work showed that variations in this
parameter did not offer much improvement. The exciton formalism described
by Jahn (1984) was used with a value of K = 700 MeV3, and the exciton master
equations were solved numerically until equilibrium was reached. The calcu-
lation was then terminated assuming that any further particle emission could
be explained by the compound nucleus process. The results of the Weisskopf-
Ewing theory were reduced by renormalisation to take account of the loss of flux
in the pre-equilibrium process. The results obtained by this procedure are of
the correct order of magnitude throughout the periodic table.

To obtain a numerical measure of the overall goodness-of-fit, the value of
T/Ey where T is the theoretical result and E is the experimental datum, was
calculated for each experimental point, and the results are presented in Figures
1-3 for the Forrest formula, the Weisskopf-Ewing theory plus the simple formula,
and the Weisskopf-Ewing theory plus the exciton model, respectively. It can be
seen that the Forrest formula and the Weisskopf-Ewing theory plus the simple
formula, show the best fit to the data, with the Weisskopf-Ewing theory plus the
exciton model being somewhat worse. However the fit given by the Weisskopf-
Ewing theory plus the exciton model is not too bad when the errors in the data
are considered. Both the other two formulae are fitted to the actual data which
are presently available, and as better data become available they will have to be
altered to maintain the fit. The exciton model is physically based and can be
expected to be useful with new data as well as having the advantage that it can
be used to extrapolate to other energies where no data are available.
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Figure 1. Distribution of T/E for (n,p) reactions at 14.5 MeV for the Forrest
formula.
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Figure 2. Distribution of T/E for (n,p) reactions at 14.5 MeV for the
Weisskopf-Ewing -f empirical formula.
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Figure 3. Distribution of T/J5 for (n,p) reactions at 14.5 MeV for the
Weisskopf-Ewing + exciton model.
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To see how well this model fits the energy variation of the cross-section,
calculations were made for the (n, p) reaction on isotopes of selenium and molyb-
denum, and the results are shown in Figures 4 and 5. It is apparent that in each
case the energy variation is well reproduced by the theory, although as already
noted the absolute value may be jncorrect by up to a factor of two.

This work shows that it is practicable to make rapid calculations of (n,p)
cross-sections using the Weisskopf-Ewing and exciton theories, and that the
results are in good overall agreement with the experimental cross-sections and
their energy variation.

4. The (n,a) Reaction.

The calculations for the (n, a) reaction were made in a similar way to those
for the (n,p) reaction, but encounter two additional difficulties. Firstly there
is no reliable global optical potential for alpha-particles, and such a potential
would be less accurate than those for nucleons because of the sensitivity of the
alpha scattering to the nuclear surface. We adopted the alpha potential with
U = 173.3, ru = 1.49, au = 0.6, Wv = 13.8, rw = 1.49, aw = 0.4 (Saxon-Woods
forms).

The second difficulty is that the exciton model calculations for alpha-
particles require the alpha-particles preformation factor. This is not well-known,
although several estimates indicate values around 0.1 to 0.2. There is some ev-
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Figure 6. Distribution oiT/E for (n, a) reactions at 14.5 MeV using Weisskopf-
Ewing + exciton model.

idence for a shell effect in the alpha preformation factors, which is another
complication. However since Forrest obtained a good overall fit to (n,a) cross-
sections without explicit inclusion of shell effects it seems likely that they are
not important.

The exciton model calculations require the alpha particle level density,
and this was obtained using the formula of Williams (1971). This gives the level
density for n excitons (p particles and n holes) in terms of the single nucleon
level density g and energy U:

gnU n - 1

p\h\(n-1)1
(4.1)

This formula does not distinguish between the different types of particles
involved, whether they are neutrons, protons or alpha-particles. We assume
that the single particle level density for a neutron or proton is given by g/2 and
for an alpha-particle by g/A. Since neutrons and protons are distinguishable
the p\ in the above formula is replaced by pn\pp\pa\ where pn, pp and pa are
the numbers of neutrons, protons and alpha-particles. The factor h\ similarly
becomes /in!/tp!/ia! Thus for example the expression for one neutron and one
alpha-particle with an alp ha-particle hole becomes

9 U2

(4.2)

83



This is usually written in terms of Williams' formula by the expression

U) - (4.3)

Tables of the kph are listed by Gadioli et al (1977).
Several calculations of (n,a) cross-sections at 14.5 MeV were made using

(1) the level density of Gilbert and Cameron and g = A/IS, (2) the same with
the Gilbert and Cameron values pf g, and (3) the level densities and g of Holmes
ct al (197(i). The results arc rather similar, and one of them is shown in Figure
6. The spread is appreciably greater than that given by the empirical formula
of Forrest. There is some evidence of systematic behaviour but for the reasons
already mentioned this is unlikely to be a real effect. In all the calculations
the alpha-particle pre-formation factor was fixed at 0.19 (Ferrero et a/, 1979),
independent of A. Three calculations were made of the energy variation of the
(n,a) cross-section, and the results are compared with the experimental data in
Figures 7-9.

4 5 -

4 0 -

3 5 -

3 0 -
2)
1 2 5 -
to

2 0 -

1 5 -

1 0 -

5 -

0 -

>

«
O
o

a
•

T

•4

A
V

#
•
•

I

•RAMLITT (1883)

LU (19701

LU (1871)

OAIM 118711

OAIM (1974)

FUJINO (1877)

8RINIVASA 11979)

CARUSKA 118801

ARTEMIEV (18811

AMEMIYA I1BB2)

BAHAL (1980)

RAHMAN (1985)
RAHMAN (1886)

1

i i i

*

A

•

GARLEA 119881

MARCINKOWSKI (1988)

WCEDA (18881

THIS WORK T T T

1 1 1

I I ' i )

T

1

''1

f

I 11 T I

I

r \

10 11 12 13 14
En IMeV)

15 16 17 18 19 20

Figure 7. Experimental cross-sections for the 92Mo(n, a)89Zr reaction (Liskien
et al 1990) compared with an eye-guide (full curve), the Weisskopf-Ewing + Ex-
citon Model calculations (dotted curve) and the same normalised to the formula
of Forrest at 14.5 MeV (dashed curve).

84



Es

e
o
a
A
•
V

•

•
•

LU (1870)

QAIM (1871)

OAIM 11874)

ARTEMIEV 11881)

FUKUDA (18821

AMEMIYA (18821

RAHMAN (18851

GREENWOOD 11887)

IKEDA (1888)

CUL (19881

THI8 WORK

10 11 12 13 14
En IMeV]

15 16 17 18 19 20

Figure 8. Experimental cross-sections for the 98Mo(n,a)95Zr reaction (Liskien
et al 1990) compared with an eye-guide (full curve), the Weisskopf-Ewing + Ex-
citon Model calculations (dotted curve) and the same normalised to the formula
of Forrest at 14.5 MeV (dashed curve).

9 -

8 -

7-

6 -

4 -

3-

2-

1 -

0 -

o
A
A

•
•

OAIM (18711

ARTEMIEV 118811

UARCINK0W8KI (10(0)

IKEDA (18881

THI8 WORK

i i i

i—t Cri • • • %5^

i

r IT I T TT -r

«<^ * . i . J I Is"
1

1 ' ' t

I J

——
1 t J 1

10 11 12 13 14 15 18
En (MeVI

17 18 19 20

Figure 9. Experimental cross-sections for the 1 0 0Mo(n,a)mZr reaction
(Liskien et al 1990) compared with an eye-guide (full curve), the Weisskopf-
Ewing + Exciton Model calculations (dotted curve) and the same normalised to
the formula of Forrest at 14.5 MeV (dashed curve).

85



5. Conclusions

The calculations described in the previous sections shown that it is not yet
possible to obtain better cross-sections from the physically-based theories than
from the Forrest empirical formulae. They do however give the energy variations
of the cross-sections, which is not given by Forrest. For practical purposes at
present it would seem that the best estimates can be obtained by using the
method described here to calculate the energy variation if the cross-sections,
and to normalise them to the Forrest values at 14.5 MeV. The results of such
calculations are also included in the Figures.

References

Braga-Marcazzan G M, Gadioli-Erba E, Milazzo-ColH L and Sona P G, 1972
Phys. Rev. C6 1398

Ferrero A, Gadioli E, Gadioli-Erba E, Iori I, Molho N and Zetta L, 1979 Z. Phys.
A293 123

Forrest R A, 1986 AERE R 12419

Gadioli E, Gadioli Erba E and Hogan J J, 1977 Phys. Rev. C16 1404

Gilbert A and Cameron A G W, 1965 Can. J. Phys. 43 1446

Hauser W and Feshbach H, 1952 Phys. Rev. 87 366

Hoang H M, Garnska U, Marcinkowski A and Zwiegliriski B, 1989 Z. Phys.
A334 285

Holmes J A, Woosley S E, Fowler W A and Zimmerman B A, 1976 Atomic Data
and Nuclear Data Tables 18 306

Jahn H, 1984 IAEA-SMR-9S 39

Liskien H, Wolfle R, Widera R and Qaim S M, 1990 Appl. Radiat. hot 41 83

Marcinkowski A, 1989 IAEA-SMR-28J 23 (See also Hoang et a/, 1989)

Perey F G, 1963 Phys. Rev. 131 745

Weisskopf V F and Ewing D H, 1940 Phys. Rev. 57 472 and 935

Williams F, 1971 Nucl. Phys. A116 231

Wilmore D and Hodgson P E, 1964 Nucl. Phys. 55 673

86



Analyses of Multistep Reaction Cross-Sections

with the Feshbach-Kerman-Koonin Theory

P.E. Hodgson

Nuclear Physics Laboratory, Oxford, UK

Abstract: Recent calculations of the cross-sections of multistep compound and
multistep direct cross-sections using the Feshbach-Kerman-Koonin theory are
reviewed, and their usefulness assessed.

1. Introduction

The Feshbach-Kerman-Koonin (FKK) theory of multistep reactions is now
established as a generally useful method of calculating cross-sections for nucleons
from 10 to about 100 MeV. More analyses have been made at low energies,
especially around 14 MeV, where multistep compound reactions dominate, than
at higher energies where the multistep direct reactions account for most of the
cross-section.

To evaluate the usefulness of the FKK theory it is necessary to apply it to
analyse the cross-sections of many reactions on different nuclei over a range of
energies. Many such analyses have been completed recently, and the results are
reviewed here.

Analyses at lower energies using the multistep compound theory are dis-
cussed in Section 2 and those at higher energies using the multistep direct theory
in Section 3. Some conclusions are given in Section 4.

This review is restricted to papers published in 1989 and after.

2. Multistep C o m p o u n d Reactions

The number of analyses using the multistep compound theory is now suffi-
cient to establish the validity of the theory, and so recent work has concentrated
on investigating the importance of possible refinements, extending the analy-
sis over a wider range of reactions, energies and nuclei, and determining the
interaction strength to higher accuracy.

In the first of these categories, Chadwick et al (1988) showed that taking
explicit account of the nucleon spin does not significantly affect the results.
It is therefore sufficiently accurate to ignore the nucleon spin. The effect of
distinguishing neutrons and protons in the intra-nucleus cascade was studied
by Chadwick et al (1989) who found that it increases the (n,n') cross-section
and decreases the (n,p) cross-section. While the absolute cross-section can be
adjusted by an overall normalisation, the ratio of these two cross-sections cannot,
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and so this refinement should be included in analyses that include both (n,n')
and (n,p) data.

Several (n^n'), (n,p) and (p,n) reactions for a range of nuclei at inci-
dent energies from 9 to 18 MeV have been studied by Chadwick et al (1989),
The (n,p) and (p,n) reactions provide better tests of the theory because there
is no contribution from the scattering with excitation of collective states that
complicates the analysis of (n,n') reactions. As shown in Figure 1 the (p,n)
cross-sections are very well given by the theory. It would be useful to select
one of these reactions and study it over a range of energies to find the energy
variation of the strength Vo of the effective interaction potential.

A stringent test of the theory is obtained by analysing at the same time
the cross-sections in all the open channels in a consistent way. Many of the pa-
rameters used, such as the optical potentials, are applicable to several channels,
and the requirements of a consistent overall analysis sets closer limits on other
parameters such as the strength of the effective interaction. For similar reasons
it is advantageous to analyse neutron and proton data together.

This method of analysis has been applied to the interactions of 14 MeV
neutrons with 59Co and 93Nb by Koumdjieva and Hodgson (1989), and the
results of their FKK calculations agree well with the experimental data as shown
in Tables 1 and 2. In these calculations the Williams formula for the exciton
level density was restricted to bound states, so that the particles above the Fermi
energy must have energies less than their binding energy in the nucleus and the
holes must have energies greater than the depth of the potential. The effective
interaction strength VQ was adjusted to fit the (n,nx) and (n,px) reactions, and
also the (p, nx) reaction on both nuclei and the values obtained were closely
consistent, ranging from 7.0 to 8.8 MeV. This shows that the FKK theory is
able to give a fully consistent account of the more important reaction channels
in the interaction of 14 MeV neutrons with 59Co and 93Nb. This supports the
conclusions of several previous papers (Field et a/, 1986; Chadwick et al, 1988,
1989) that the FKK theory is able to give reliable (n,nx) and (n,px) cross-
sections for neutrons for around 14 MeV on medium weight nuclei. Further
work is necessary on the (n, a) reactions, which probably take place mainly by
a direct process.

The FKK theory has recently been extended to gamma emission by Oblozin-
sky and Chadwick (1990). They calculated the multistep compound gamma
emission cross-sections for 59Co, 93Nb and 181Ta using detailed balance and ex-
isting parametrisations of photoabsorption cross-sections (Dietrich and Berman
1988). The gamma ray escape widths are shown in Figure 2 as functions of
gamma ray energy, together with the r-stage widths calculated assuming that
all stages with N > 4 contribute only to the r-stage. The Figure clearly shows
that gamma rays from the early reaction stages are harder than those from
the fully equilibrated compound nucleus, so that including multistep compound
emission enhances the high energy region of the gamma ray spectrum.
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Table 1. Total cross sections of 14MeV neutron reactions on Co.59,

Reaction

(n, nx)
(n, px)
(n, n')
(n, 2n)
(n, pn)
(n, np)
(n, p)
(n, a)
neutron emission
proton emission
alpha emission
total reaction

Thee

1253
82

469
687
30
97
52

—
1971

179
—
1368

Theory (mb) Experiment (mb)

402±140 b

695 ± 23k

«=(ll-60)c

54 ± 5k

33 ± lk

1840 ± 128a; 2069 ± 69b; 2300 ± 184'
1()8±22C; 97 ± 101'
40 ±3'; 33 ± 2 8

1370 ±3()h; 1430 ±110'

aHcrmsdorf et al (1974). bGrabmayr (1978). c Alvar (1972). dColli et al (1961).
cGucnther et al (1988). f Kneff (1986). 8 Fischer et al (1985). h MacGregor et al
(1957). 'St Pierre et al (1959). J Degtyarev et al (1981). k Average from McLane et
al (1988).

Table 2. Total cross sections of 14 MeV neutron reactions on wNb.

Reaction

(n, nx)
(n, px)
(n, n')
(n, 2n)
(n, pn)
(n, np)
(n, p)
(n, a)
(n, no-)
neutron emission
proton emission
alpha emission
total reaction

Theory (mb)

1692
37

401
1285

16
3

21
—

3
2993

40
—
1738

Experiment (mb)

—
—
—
1350 ±33 g

—
—
—
9.4e

—

3155±220a

39 t 2";42.4±2c;42.3±4 l1

14 dL 3°; 14f

—

"Degtyarev et al (1981). h T r a x l e r et al (1985). "Fischer et al (1988).
' 'Koor i ct al (l l)84). * Knelf (IWf)) * Chimes ct al (1978). K Average fiom
McLane <?/«/( 1988).

(Koumdj ieva and Hodgson , 1989).
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Figure 2. Gamma ray escape widths for the compound nucleus 94Nb at 21.1
MeV with initial spin J = 4 as a function of gamma ray energy forstages N = 1,
2 and 3 and the r-stage. The full curves are for the calculation with full angular
momentum coupling and the dash-dot curves to those that neglect this coupling
by assuming constant a-functions (Oblozinsky and Chadwick).



To calculate the gamma emission cross-sections, Oblozinsky and Chad wick
used the multistep compound formalism as described by Chadwick et al (1989)
and by Koumdjieva and Hodgson (1989). The effective interaction strength Vo

was determined by equating the r-stage emission widths with those calculated
from the equilibrium statistical model; this effectively normalises the multistep
compound calculations to the well understood equilibrium spectra at lower emis-
sion energies in the equilibrium limit. The results for the (n,7) cross-sections
on 93Nb and 181Ta are compared with the experimental data in Figures 3 and A.
The values of Vo were 7.9 and 5.3 respectively. The cross-sections for emission
from the fully equilibrated compound nucleus are also shown, and these clearly
fail to account for the emission at the higher energies. The multistep compound
calculations show enhanced emission at the higher energies but still fall short
of the experimental data because the cross-sections for multistep direct gamma
ray emission have not yet been evaluated.

3. Multistep Direct Reactions

A detailed analysis of the (p,nx) reactions at 26.7 MeV by Holler et al
(1985) showed that at this energy the reaction for higher emission energies takes
place mainly by the multistep direct process. The double-differential cross-
sections were very well fitted by FKK multistep direct calculations supplemented
by small contributions from the multistep compound process.

Subsequently, multistep direct calculations have been made for (p, n) reac-
tions at energies from 25 to 160 MeV by Mordhorst et al (1986), Trabant et al
(1988, 1989) and Scobel et al (1990).

Trabant et al analysed the (p, n) reaction on 90Zr and 208Pb at 80 MeV with
a Yukawa interaction of range 1 fm and strength VQ — 20 MeV. They obtained
good agreement with the angular distributions of the emitted neutrons at various
outgoing energies, as shown in Figure 5. Calculations based on the hybrid
model of Blann et al (1984) were able to fit the angle-integrated neutron spectra
to within a factor of two overall, but not the angular distributions at various
outgoing energies, particularly in the backward direction. The value of the
effective interaction strength at this energy is less than the value Vo = 27 MeV
found by Holler et al at 26.7 MeV, indicating that it decreases with increasing
incident energy.

Subsequently this analysis was extended to (p,n) reactions at 120 and
160 MeV, and the effective interaction strength was again found to decrease
with increasing energy (Scobel et al 1990). It is notable that for the lower
emission energies the reaction is not dominated by the first step, even at the
forward angles. This is essential in order to fit the experimental data: the semi-
classical pre-compound models overestimate the first step cross-section and so
give angular distributions that are too strongly peaked in the forward direction.

Analyses of inelastic scattering have been made by Marcinkowski et al
(1989) for neutrons and by Cowley et al (1991) for protons.
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Figure 4. Calculated primary gamma ray emission spectra for 14 MeV neutrons
on 18lTa. The full curve shows the multistep compound spectrum and the
dotted lines the contributions from the stages with N = 1, 2 and 3, and from
the r-stage. The dash-dotted curve shows the spectrum calculated from the
equilibrium statistical model (Oblozinsky and Chadwick 1990).



103

10*

10

VI

1 1
of

to
"O

,-210

1Cf3

Eps80.5MeV
SMDE.%«20M«V \

SMOE. V.. 25 M»V

so eo 00

Lob ongle (deg)
ISO XSO so eo 00 iso iso

Lob ongle (deg)

Figure 5. Double differential cross-section for the (p,xn) reaction at 80.5 MeV
on *°Zr and 208Pb compared with multistep direct reaction calculations with
interaction strengths V = 20 and 25 Mev (Trabant et al, 1989).

Marcinkowski et al (1989) studied the inelastic scattering of 11.5 and 2C
MeV neutrons by 184W and found that both the multistep compound and the
multistep direct processes contribute substantially to the cross-sections. In the
multistep direct calculations, the individual angular distributions for the exci-
tation of sets of particle-hole pairs did not show the striking similarity apparent
some earlier work. The average distorted wave differential cross-section thus
depends rather strongly on the outgoing neutron energy and also quite signifi-
cantly on the number of contributing particle-hole pairs. To average out these
fluctuations it was found necessary to include up to twelve particle-hole states
for each L-value. This implies averaging the calculated cross-sections for the
individual particle-hole states over a series of overlapping energy intervals with
widths up to 9 MeV. This averaging interval is comparable with the widths of
single-particle states measured by (p, 2p) reactions (Jacob and Maris, 1973). The
value of the effective interaction strength used in these calculations was Vo = 25
MeV.

The results of these calculations are compared with the experimental data
in Figure 6 for several outgoing neutron energies. The angular distributions of
the neutrons with lower outgoing energies are well reproduced by the sum of
the one-step and two-step multistep direct and the multistep compound calcu-
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(dashed curve) plus multistep compound (solid curves) (Marcinkowski et al,
1989).

lations. At the highest outgoing energies the experimental cross-sections are
greater than the calculated ones, and this is attributable to direct processes, in
particular to the excitation of low-lying quadrupole and octupole surface vibra-
tions (Marcinkowski et al, 1983; Kalka et al, 1988). The contribution of such
processes was estimated using the energy-weighted sum rule for isoscalar electric
transitions, and is also shown in the Figure. Comparison with the experimental
data shows that there is still some cross-section unaccounted for at these higher
outgoing energies.

Extensive analyses of the (p,p') cross-section have been made by Cowley
et al (1991) and some of their results are compared with FKK calculations in
Figures 7 and 8.
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In all these analyses of multistep direct and multistep compound reactions
it is usual to treat the effective interaction strength VQ as an adjustable param-
eter and to fix it by fitting the absolute value of the differential cross-section. It
is then important to examine the values obtained and see whether they behave
in a systematic way that can be connected with other types of analysis. This
comparison is however complicated by the progressive improvement in the for-
mulation of the theory, since each improvement affects the value of Vo obtained.
Three main types of analysis have been used, namely (i) using constant wave-
functions inside the nucleus. Such analyses give values of Vo around 1-2 MeV.
Subsequent analyses used the more realistic harmonic oscillator wave functions
for the bound nucleons and optical model wavefunctions of the emitted nucleons,
with (ii) a delta function two-body interaction, which gives Vo around 5-10 MeV,
and (iii) a Yukawa two-body interaction which gives VQ around 20-30 MeV. Here
we consider only the calculations of type (iii) with realistic wavefunctions.

The results of several analyses are shown in Table 3 and Figure 9. The
spread of values of Vo is due partly to other differences in the analyses and also
to the energy dependence of the effective interaction. Thus the multistep direct
analysis of Bonetti et al (1981) was made using V = 25 MeV for the first step
and V = 15 MeV for subsequent steps, so these values are not included in the
Table. Some analyses were made distinguishing between neutrons and protons
in the intra-nuclear cascade; this had rather little effect (less than 10%) on the
shape of the cross-section but requires an increased Vo in the case of the more
recent analyses of (p,n) reactions.

Table 3. Values of the Effective Strength Vo of the
Yukawa Potent ia l of Range 1 fm for Nucleon In terac t ions .

Reference Reaction Vo (MeV)

Austin, 1980 {N,N') discrete states 27.9
Holler et al, 1985 (p,n) 26.7 MeV MSC+MSD 27
Mordhorst et al, 1986 (p,n) 25.6 MeV MSC+MSD 25
Marcinkowski et al, 1989 {n,n') 11.25 MeV MSC+MSD 25
Trabant et al, 1988, 1989 (p,n) 80 MeV MSD 20 ± 1
c u i 4 i loon i x /120MeVMSD 16 ± 1
Scobel et al, 1990 (p,n) {
n \ 4 i lOQi / \ /80 MSD 23
Cowley et al, 1991 (P,p) [

The values of Vo are found to decrease with increasing incident energy and
this is indeed what would be expected from the similar decrease of the real optical
potential, which also depends on the strength of the two-body interaction. We
can thus estimate the energy variation of Vo by taking the value Vo = 27.9 ± 3.5
MeV obtained by Austin (1980) from a survey of the analyses of inelastic proton
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direct analyses of reactions to which both processes contribute substantially
(Mordhorst et al, 1986). The line Vo = 30.8exp(-0.16E/30.8) is obtained from
the energy dependence of the optical model potential. The references for the
data points are given in Table 3.

200

scattering at around 20 to 50 MeV to discrete final states, and then assume that
it has the same energy variation as the real optical potential.

Since the incident particle loses energy as it passes from stage to stage in
the multistep process it would be more exact to allow the effective interaction
to increase down the chain. It is however simpler to use an averaged value, but
this effect should be taken into account when comparing the energy dependence
of Vo with that of the optical potential.

An estimate of the magnitude of the effect can be made by assuming that
the incident particle loses about half its energy in the first interaction, and
emission from the first and second stages are equally likely (Scobel et al 1990).
This would reduce the energy-dependent term by about a factor of 3/4. The
real optical potential, normalised to the Austin value of Vo at 20 MeV is

V w 34 - 0.2E

97



oo

VMeVsr/
10 _

IO- 'L

10 2 L

-3
10 _

t i l l

to

\ \
\ -
\
\ \
\ \
\ \
\
\
\

-

_

—

-

i i i i

80Zr

E a '
U

\\
» \\ «\\ \\ \\ \

\ \
\\\\\

i i

( a

.140

. 10

v\\\\• \\ \\ \\ >\\\\

i

a' )

MeV

MeV

-

—

—

-

—

•
\
\\

I I I I

0 6

0.4

0 2

20 50 80

- 0 2

-0.4

- 0 6

0.4

0.2

110 (tieg)

-0.2

-0.4

-O.6I 1

PU

"Ni (p,a)55Co
Ep-72 MeV
Ea«65MeV

. - (1)

'~,~~ (1+2)

Ea-60MeV
- PU

I i 1 i I i I , I
10 30 50 70 90 110 1?c m (deg)

Figure 10. Double differential cross-section for the inelastic scattering of 140
MeV alpha-particles from 90Zr with a final excitation energy of 10 Mev. The
dashed curve shows the calculated cross-section obtained with the multistep
direct theory assuming interactions with alpha-particles on the nuclear surface
and the full curve is obtained by adding the contribution due to interactions
with nucleons (Bonetti et al, 1984).

Figure 11. The analysing power of the 58Ni(p,a)5SCo reaction at 72 MeV
to the continuum at an excitation energy of 65 Mev compared with multistep
direct calculations with the triton pickup (full line) and alpha-particle knockout
(dashed line) models. The knockout calculations were made with one step only
(1) and with two steps (1 -I- 2) (Bonetti et al, 1989).



Allowing for the increase of Vb down the chain thus gives

F « 3 1 -0.15E

This is plotted in Fig.9 and has an energy dependence similar to the em-
pirical values.

A rather better fit to the overall energy dependence can be obtained using
the expression found by Johnson et al (1987) for neutrons on lead

V = 46.4exp(-0.31(£ - EF)/46A)

Taking Ep = —6 MeV, normalising and introducing the factor 3/4 as
before gives

V « 30.8exp(-0.162E/30.8)

which is also compared with the empirical values in Fig.9.
More direct evidence of the energy dependence of the effective interaction

is provided by the analysis of the Zr(p, d)Zr reaction at energies from 20 to
120 MeV by Kosugi and Kosugi (1983). In order to obtain energy-independent
spectroscopic factors they found it necessary to allow the effective interaction
to vary with energy. Normalising their result to that of Austin gives

which is very similar to that found above.
The Feshbach-Kerman-Koonin multistep direct theory has also been used

to calculate (a,a ' ) and (p, a) cross-sections to continuum states. Bonetti et
al (1984) analysed the 90Zr(a,a') reaction at 140 MeV to the continuum and
found that good fits can be obtained to the angular distributions for residual
nucleus excitation energies from 10 to 60 MeV by taking account only of the
interaction between the incoming alpha-particles and preformed alpha-particles
on the surface of the target nucleus. The normalisation of the calculations to
the data gave values of the alpha clustering probability around 0.1, in accord
with the results of other analyses in that mass region, it was not possible to fit
the data with a standard distorted wave Born approximation calculation taking
into account only the interaction with the target nucleons. The contributions of
these two processes to the angular distribution corresponding to an excitation
energy of 10 MeV are shown in Figure 10.

The (p, a) reaction can take place either by the triton pickup or by the
alpha knockout processes, and it is difficult to distinguish between them because
they often give the same angular distribution. The analysing power sometimes
provides more discrimination, and calculations by Bonetti et al (1989) using
the multistep direct theory showed that at high energies the reaction to the
continuum proceeds primarily by the knockout mechanism, as shown in Figure
11.
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4. Conclusions

Extensive calculations of (p,n), (n,p), (n,n') and (p, p') reactions have now
been made at lower energies with the FKK multistep compound theory and at
high energies with the multistep direct theory. Satisfactory agreement with the
experimental data is found in all cases with consistent values of the effective
interaction strength Vo.

Further work is desirable to extend these analyses over a wider range of
nuclei, and to determine the parameters more precisely. It is also important to
study in more detail the emission of alpha and other composite particles, and
also multiparticle emission at the higher energies.
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Abstract

The neutron cross sections of Ni- and Mo-isotopes have

been evaluated with the system SINCROS-II. The results are

compared with experimental data and JENDL-3.

I. Introduction

Evaluation of activation cross sections for the

JENDL-activation file started three years ago^ ' and more

than 1,000 reaction cross sections have been evaluated. The

code system SINCROS-II(Nuclear Cross Section Calculation

System with Simplified Input-Format, Version II)v ' has been

developed and used for the evaluation of more than half of

them. In this evaluation the unified evaluation method has

been employed using the global optical model parameters and

the systematical values of level density parameters.

Calculated cross sections have never been changed by the

normalization. When the calculated cross sections differ

significantly from experimental values, the input parameters

have been changed. Since we are aiming at accurate

evaluation of important reaction cross sections for

applications to fission and fusion reactor technologies, the

number of the reactions has been reduced. Still many

reaction cross sections should be evaluated for the

activation file. Review of the evaluated data is being made
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by comparing the evaluated data with measured values and

with other evaluation. In this paper evaluation procedure

of the activation cross sections and the results for Ni- and

Mo-isotopes are shown.

II. Evaluation Method

The main part of SINCROS-II consists of the

ELIESE^-GNASH^4) joint program and the simplified-input

version of DWUCK^5\

The system is very convenient for the evaluation of a

number of reactions, because the input data have been

simplified. The input data consist of discrete level

data(level energy, spin, parity and branching ratio of decay

channels) which were taken from ENSDF^1 ', direct inelastic

scattering cross sections calculated with DWUCK and the data

designating reaction channels.

The global optical model potentials have been used.

For neutrons a modified Walter-Guss potential^ ' was used.

The Walter-Guss potential was derived for A>53 and 10<En<80

MeV. To apply the potential even below 10 MeV neutron

energy, the surface absorption part W~ (in MeV) between 0

and 20 MeV has been changed from

W D = 10.85 - 0.157E - 14.94(N-Z)/A (Walter - Guss)

to
WD = 7.71 - 14.94(N-Z)/A MeV. (1)

63 120sections of Cu, Sn and Pb agree with the experimental

This was determined so that the calculated nonelastic cross
63 120

sections of Cu, Sn

data within about 10 %.

For protons, the Perey potentialv ' was used below 10

MeV proton energy and the Walter-Guss potential was used

between 10 and 20 MeV proton energy.
(q\

The Lemos set modified by Arthur and Youngv ' was used
for a-particles and deutrons. The Becchetti-Greenlees

potential^ 'was used for tritons and He-particles.

The single particle level density constant g is related

to the level density parameter a by the formula

g = (6/ir2)a. (2)
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In addition to the normalization factor F2 which is equal to

the Kalbach constant divided by 100, adjusting factors F3

and F4 were introduced for pick-up and knock-out processes,

respectively. The factor F2 and the contribution of the

direct inelastic scattering to cross sections were

determined so that the calculated neutron emission spectra

were in agreement with the high energy part of measured

neutron spectra. The values of F2 sometimes were adjusted

by using proton emission spectra.

The pick-up factor F3 was determined from a-particle

emission spectra. Since the measured a-particle emission

spectra could be reproduced with F3 = 0.5 for almost all

medium-weight nuclei, F3 was assumed to be 0.5. The factor

F4 for the knock-out process was assumed to be 1.0 for the

calculation of the cross sections of the Ni- and

Mo-isotopes.

The level densities were determined uniquely by the

level density parameter a not only in the Fermi gas model

but also in the constant temperature model, because the

nuclear temperatures were determined automatically from >the

level density parameter a in the code or by the equation

T = 7.50 a"0'84. (3)

The level density parameter a is plotted against the mass

number in Fig. 1 for the nuclei of Ni- and Mo-regions.

Resonance parameters for neutron capture cross sections

were taken from the JENDL-3 general purpose file^ '. The

normalization factors were chosen for the evaluated capture

cross sections to fit those calculated with the resonance

parameters at 100 keV.

III. Results and Discussion

1. Ni-isotopes

(1) 58Ni(n,2n)57Ni

The present evaluation deviates a little from measured

data below 15 MeV, while JENDL-3 is very close to them,

Above 15 MeV there are two kinds of experimental data. The

present evaluation is close to the lower data, while JENDL-3
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Fig. 1. Level density parameter "a" as a function of mass

number for nuclei related to the calculation of the

reactions of Ni- and Mo-isotopes.

follows the higher data. Recent measurements support the

higher data. JENDL-3 has been evaluated based on

experimental data.

(2) 58Ni(n,p)58Co

JENDL-3 has been evaluated based on experimental data

and follows them very well. The present evaluation is in

agreement with experimental data only near the threshold and

15 MeV neutron energy, but it reproduces the energy
(12)

dependence of the Ohio University data(Graham et al.v ).

As the Ohio University data are proton emission cross

sections, the agreement can be improved when the present

evaluation including (n,np) reaction is compared with them.

(3) 58Ni(n,np)57Co

The present evaluation is higher than experimental

data, while JENDL-3 is lower than those. JENDL-3 is closer

to them than the present evaluation. JENDL-3 has been

evaluated based on experimental values.
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Fig. 2. 58Ni(n,a)55Fe.

(4) 58Ni(n,a)55Fe

The comparison is shown in Fig.2. The present

evaluation has quite a different energy dependence from

those of JENDL-3 and ENDF/B-VI. The energy dependence of

JENDL-3 is in good agreement with that of ENDF/B-VI, while

the normalization is a little different. The average values

of JENDL-3 and ENDF/B-VI seem to be in good agreement with

experimental data. The present evaluation is in good
(12)agreement with the Ohio University data(Graham et al.v ' ) .

(13}JENDL-3 has been evaluated using PEGASUS codev ' and

normalized to experimental data. There are some evaluations

which have the same shape as the present evaluation.

(5) 60Ni(n,P)
60Co

JENDL-3 has been evaluated based on experimental data.

The energy dependence of the present evaluation is quite

different from that of JENDL-3. It is impossible to judge

which evaluation agrees with measured data. There are some
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evaluations which have the same shape as the present

evaluation.

(6) 60..., X57-
v ' Ni(n,o) Fe

For a emission cross section the present evaluation is

in better agreement with the Ohio University data(Grimes et

al.^ 1^; Graham et al/ 1 2^) than JENDL-3. The difference

among them is not so large. JENDL-3 has been evaluated

using PEGASUS code^ ' and normalized to experimental data.

2. Mo-isotopes

Since the comparison of the present evaluation with

experimental data is described in detail elsewhere^ , only

brief explanation is given here.

(1) 92Mo(n,2n)91Mo

As is shown in Fig. 3, the present evaluation for the

ground state, isomeric state and total cross sections is in

good agreement with experimental data except a few data.

(2) 92Mo(n,np+d)91Mo

The present evaluation for the isomeric state cross

section reproduces the energy dependence of experimental

data and is in general agreement with them.

(3) 92Mo(n,o)89Zr

Experimental data for the total (n,a) cross section do

not show any definite energy dependence. The present

evaluation fairly agrees with Ikeda et al.'s isomeric state

and total cross sections^ .

(4) 94Mo(n,2n)93Mo

The evaluated values are higher than all experimental

values for ground and isomeric state cross sections. The

effective threshold energy is different between the present

evaluation and the experimental data for the isomeric state

cross section.

(5) 94Mo(n,p)94Nb

The present evaluation is in agreement with

experimental data for the total cross section but shows a

little different excitation function in comparison of that

of measured data.
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denote the ground state production cross sections.

Symbols enclosed with a square represent the isomeric

state production cross sections. Other symbols show

the total (n,p) cross sections.
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(6)

The present evaluation is in good agreement with the

data measured by Greenwood and Bowers^ .

(7) 95Mo(n,p)95Nb, 96Mo(n,p)96Nb and 97Mo(n,p)97Nb

As is shown in Fig. 4, the general agreement between

the present evaluation and experimental data is obtained for

the ground and isomeric state cross sections except for the
/ -I O "\

data above 16 MeV of Liskien et a l / , which are higher
than the present evaluation. This is due to the

96 98
contamination of the Mo(n,np+d) and Mo(n,np+d)reactions

9 *i 96
into the Mo(n,p) and Mo(n,p) reactions, respectively.

Q ̂  QZt Qfi QS

(8) yDMo(n,np+d)yHNb, ™Mo(n,np + d)y:JNb and
97Mo(n,np+d)96Nb

The present evaluation is in good agreement with the

data measured by Greenwood et al. ' Ikeda et al / '

(9) 98Mo(n,p)98Nb

The present evaluation is in good agreement with

:eda <
.(21)

data measured by Ikeda et a l / , Marcinkovski et a l / '

and Rhaman and Qaim

(10) 98Mo(n,n,np+d)97Nb

The present evaluation is in good agreement with the

data measured by Ikeda et al.^16^ and Katoh et al.^ 2 2).

(11) 98Mo(n,a)95Zr

Including the excitation function the general agreement

between the present evaluation and measured data was

obtained.

(12) 100Mo(n52n)
99Mo

The present evaluation is in good agreement with
(21}measured data of Rhaman and Qaimr ' and Marcinkovski et

al/ 2 0) and especially well with Ikeda et a l / 1 6 ^

(13) 100Mo(n,cc)97Zr
The general agreement between the present evaluation

and measured data was obtained for this reaction.
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Fig. 5. Helium production cross sections (n,xa)
for natural Ni, Fe and Cr.

IV. Conclusion

From the comparison with experimental data the present

evaluation of the Mo-isotopes is found to reproduce the

experimental data better than JENDL-3, while for the

Ni-isotopes JENDL-3 follows better the experimental data

than the present evaluation. Moreover a production cross

sections of natural Ni can be reproduced by JENDL-3 very

well as shown in Fig. 5 (Fig. 5 is reproduced from Fig. 2

in Ref.23). The present evaluation on the Mo-isotopes and

the evaluation of the Ni-isotopes in JENDL-3 will be adopted

for the JENDL activation cross section file.

Acknowledgment s

The authors are grateful to Mr. T. Nakagawa and Mr. T.

Narita for help of handling of the evaluated data with

computers. They are much indebted to the members of the

working group on activation cross section data of JNDC.

111



References

(1) Y.Nakajima et al., Proc. Specialists' Meeting on Neutron

Activation Cross Sections for Fission and Fusion Energy-

Applications, Sep. 1989, Argonne National Laboratory,

NEANDC-259"U", p. 285(1990).

(2) N.Yamamuro, JAERI-M 90-006(1990).

(3) S.Igarasi, JAERI 1224(1972).

(4) P.G.Young and E.G.Arthur, LA-6947(1977).

(5) P.D.Kunz, "Distorted Wave Code DWUCK4", University

Corolado(1974).

(6) BNL, Evaluated Nuclear Structure Data File.

(7) R.L.Walter and P.P.Guss, Proc. Int. Conf. Nuclear Data

for Basic and Applied Science, Vol. 2, p. 1079, Gordon

and Breach(1986).

(8) F.G.Perey Phys. Rev. 131, 745(1963).

(9) E.D.Arthur and P.G.Young, LA-8626-MS(1980).

(lO)F.D.Becchetti,Jr. and G.W.Greenlees, "Polarization

Phenomena in Nuclear Reactions", the University of

Wisconsin Press, p.682(1971).

(ll)K.Shibata et al., JAERI 1319(1990).

(12)S.L.Graham et al., Nucl. Sci. Eng. 95, 60(1987).

(13)S.Iijima et al., JAERI-M 97-025, p. 337(1987).

(14)S.M.Grimes et al., Phys. Rev. C19, 2127(1979).

(15)N.Yamamuro, "Calculation of Activation Cross Sections

for Molybdenum Isotopes", preprint(1990).

(16)Y.Ikeda et al., JAERI 1312(1988).

(17)L.R.Greenwood and D.L.Bowers, J. Nucl. Materials

155-157, 585(1988).

(18)H.Liskien et al., Appl. Radiat. Isot. 41, 83(1990).
(19)L.R.Greenwood et al., Phys. Rev. C35, 76(1987).

(20)A.Marcinkovski et al., Z. Phys. A323, 91(1986).

(21)M.M.Rahman and S.M.Qaim, Nucl. Phys. A435, 43(1985).

(22)T.Katoh et al., JAERI-M 89-083(1989). In Japanese.

(23)S.Iijima et al., Proc. Int. Conf. Nuclear Data for Basic

and Applied Science, p, 627, Saikon Publishing

Co.(1988).

112



Consequences from Testing Measured and Calculated 14.6 MeV Neutron
Inelastic Scattering Cross Sections by Means of Comparison with Results of

Fast Proton Inelastic Scattering Using DWBA and GDH*) Approaches

S. Ercakir and H. Jahn**)

Faculty of Physics, University of Karlsruhe

ABSTRACT

In this paper we show that the possibility of calculating
double differential inelastic neutron cross sections is consid-
erably improved if we add information from the results of
measurements of the inelastic proton scattering cross-sec-
tions. With this additional information we obtain a suffi-
cient starting point to calculate rather accurate and unique
results for the double differential cross-sections of inelastic
neutron scattering at the high energy tail of the seondary
energy. This is demonstrated by a few examples of 56Fe.
Moreover by applying certain averages to the angle inte-
grated inelastic cross-sections the results of Blanns geome-
try dependent hybrid model*) are obtained. Consequently
this might be a hint to a more rigorous derivation of this
model.

1. DISCREPANCIES AND ERRORS OF THE MEASURED FAST (n, n')-
CROSS SECTIONS

The investigations of this paper start from the fact that the measured results
of the different experimental groups for the 14.6 MeV inelastic neutron cross
sections show not only considerable experimental erros in particular in for-
ward direction but also remarkable discrepancies between them must be
noted. This is demonstrated in a previous investigation31) showing measured
and calculated angular distributions of 14.6 MeV (n, n')-cross sections of 93Nb
and 56Fe. It can be seen very clearly from the Figures la and b of31) that the
measured results are not accurate enough to enable a decision concerning the
validity of the different concepts. The error bar situation in forward direction
survives also with the improved measured results of32).

GDH **) Retired from the Institute of Neutron Physics and Reactor
Technic, Kernforschungszentrum Karlsruhe
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2. RESORT TO CHARGED PARTICLE RESULTS

One way out of this situation can be to resort to the results of measured cross-
sections of inelastic scattering of fast protons. The very high resolution ob-
tainable in the proton-channel is presented by the measured results of the in-
elastic 17,5 MeV proton-cross-section in the work of PetersonlO).Similar re-
sults but for inelastically scattered protons with an incident energy of 49,35
MeV also with very high energy resolution of the cross section energy distri-
butions have been considered by Mani12). In both cases, for 49,35 MeV inci-
dent protons as well as for 17,5 MeV incident protons, the 26 lowest excited
states of 56Fe are exhibited as the peaks of the very high energy resolved
proton-cross section energy distributions. As results of DWBA-analyses of Pe-
tersonlO) and Manil2) the energies and spins of these states are listed in Tab.
1. These results are obtained from DWBA-calculations according to the for-
mulae

do{.f(t. ,ef ,9)

with

and

1
m

v

,1)

Ro = rQA1/3; r o = 1.25 10"13fm; u[*[ = optical potential ( lb)

0 = scattering angle

Q = space angle of scattering

0 = projectile coordinate angle

ki, kf = initial and final projectile wave vectors belonging to the inci-
dent and final energies e and ev with the target excitation ener-
gy Cv

X±(x) = optical model scattering states of projectile (x) indicating pro-
ton (p) or neutron (n) i
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Yiv(0) = spherical harmonics

m = nucleon mass

lv = transferred angular momentum belonging to level v

mv = component of the angular momentum belonging to level v

(1) - (lb) represent the DWBA-formulae based on the collective vibrational
model. But beyond of this (1) - (lb) have been used by PetersonlO), Manil2)
and Ignatyukl3) also for the phenomenological analysis of any excitation by
direct inelastic proton scattering. Then p\, is a parameter to be chosen to fit
the experimental angular distribution. As above the index (x) denotes the
type of nucleon (eg. proton or neutron). No index (x) is attached to Jpv because
the dependence of p\, ° n the type of nucleon can be neglected. But {5V depends
on the target nucleus. Thus J3V can be obtained by fitting the experimental
data for one type of nucleon and can then be used to calculated the angular
distribution for the other type of nucleon, for the same target nucleus. Conse-
quently once we have obtained J3V experimentally from the proton-channel we
are able to calculate the scattering for the neutron-channel, in particular for
small angles.

3. COMPARISON OF DWBA- AND GDH AVERAGE CROSS SECTION
RESULTS

To obtain the appropriate angular distributions of the inelastic neutron
cross sections we insert the {5V -values from the proton channel analysis of
PetersonlO) and Mani*2) shown in Tab. 1 into the expressions of the equations
(1) - (lb) together with the scattering states x±(n), calculated from the optical
model of the neutron channel instead of the scattering states x±(p) from the
optical model of the proton channel analysis of Peterson and Mani^O.12).
Calculations of this type for the neutron channel have been carried out by
Kinney and Pereyl4), by Penny and Kinney!5) and by Ful6), Scattering angle
dependent neutron cross sections obtained by these authors and can be found
on the ENDFB/IV files of the US neutron cross section library.

To proceed with developing our methodFig. 1 may be considred. Fig. 1 shows
experimental and theoretical results for the angle-integrated 14,6 MeV in-
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Fig. 1 Neutron emission cross-section of 56Fe; Ein = 14.6 MeV

elastic neutron cross section. The step curve of Fig. 1 with 1 MeV interval of
the steps is obtained by Hansen et al.l?) from measurements of the neutron
leakage spectrum from an assembly of iron. This experimental step curve is
in particular at the high-energy tail quite well reproduced by the smooth
straight line which is obtained from calculated results6) of Blann's geometry-
dependent hybrid model (GDH) with optical model option. This approach has
no fit-parameters other than those of the usual optical model. This is a re-
markable improvement compared to the excitation master equation approach
where the internal transition rate between the excitation steps has to be ad-
justed as an extra fit parameter if the high-energy tail of the secondary ener-
gy-dependent inelastic nucleon cross section should be taken into account6).
On the other hand it can be shown that the experimental step curve of Fig. 1
can quite well be reproduced by average results of the neutron-channel-
DWBA-calculations outlined above with pv taken from the proton-channel as
shown in Tab. 1 inserted into the equations (1) - (lb) used to calculate the in-
elastic neutron cross section. By angle-integrating the results obtained from
the equations (1) - (lb) by these equations according to

(2)
DWBA
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we obtain on the right hand side of equation (2) cross section results for the
single levels which are shown in Fig. 1 by the discrete endpoints of the verti-
cal lines for the first 13 levels obtained by1416),
We now turn to reproduce the experimental step curve of Fig. 1 by averaging
the measurable angle-integrated secondary energy-dependent inelastic neu-
tron cross section over intervals I being equal to the widths of the steps. Then
we obtain

do!"V ,

DWBA
1 fE+I/2

1 Jc-I/2 y v v

1

Ia I , r ! ? . DWBAde' = T I (°i f" '<V'r»)
c-I/2 y v v UWDft * vCI V v v/DWBA

where the pv (e\ cfv) are the normalized energy distributions around the exci-
tation energies of the single levels and where the single terms in the sum at
the most right hand side of eq. (3) and in the integrand of the expression be-
fore it are given by the right hand side of eq. (2). Equation (3) expresses that
the average angle-integrated inelastic fast-neutron cross section is at the
high-energy tail of the secondary energy equal to the sum of the discrete cross
section values of Fig. 1 within each averaging interval I.
The results of this summing up for the two intervals 10-11 MeV and 11-12
MeV are represented in Fig. 1 as horizontal dotted lines which are seen to co-
incide quite well with the experimental step curve as well as with the n0 = 3
contribution of the geomety dependent hybrid model. Since the latter is the
only calculated contribution of this model to the angle integrated secondary
energy dependent neutron cross section at this high energy tail of secondary
energy it can be presumed that the n0 = 3 component of the geometry depen-
dent hybrid model represents a certain average over the direct component of
the inelastic nucleon cross section. With the definitions and the results of
equations (2) and (3)we therefore conclude

The averaging intervals I in equations (3) and (4) do not include very many
levels. For instance the interval 10-11 MeV includes 6 levels and the inter-

118



val 11 -12 MeV includes 5 levels according to Tab. 1. Such a small number of
levels is obviously already enough to obtain for the inelastic nucleon cross
section at the high-energy tail of the secondary energy an average with a
physical meaning in the sense that it can be calculated by a physical model
like in this case by Blann's geometry dependent hybrid model. Because of the
small number of included levels we conclude that it may not be a statistical
average we have to do with in this case. Instead we may have to do here with
a summing up in the sense of the well-known sum rules of Satchlerl5) and
Lane20) (see also Lewis21)).

If we consider the derivation from equations (1) to (4) then we arrive at the
conclusion that it should make sense to introduce the averaged measured
angle-dependent differential inelastic fast-neutron cross section at the high-
secondary energy tail according to

dt'dQ.
J

Corresponding to equation (3) we then obtain

cf =c -1 /2 \ fy /DWBA
v

Moreover corresponding to the far right of (6) it follows from (3):
l n 2 €(n)i »= Q o . . (e. , e r ) CJSrv if i I V. • I

DWBA v v

which corresponds to the structure of (1) - (lb) with the definition

S(.f
n)(e.,ef) = f dflo^Cc,,^ ,0) (8)

V V ' V

The integrand on the right of (8) is given by (la).

Equation (7) inserted into (4) yields:
VGDH

lim

tv J J °
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We now take into consideration that the cross section fluctuations with the
secondary energy of the inelastic scattering cross sections are predominatly
given by JP2

V. Then the slowly varying function (8) can be considered constant
within the intervals I and I in (9) according to

By inserting (10) into (9) we then obtain
\GDH
\

and (11) inserting into the far right of (6) yields:

D W B A

GDH

vcl

If in the intervals I and I only one angular momentum lv = 1 is contained then
(12) reduces to:

GDH

d C j d l l /DWBA

Equation (12) and Equation (13) both fulfill the following relation:

dV;"(Vc.,o.)\ AC'vi'
'DWBA

This conclusion is obtained if attention is paid to the definition of equation
(8).

5. SIMPLIFIED DWBA-APPROACH ACCORDING TO KROMINGA AND

MCCARTHY

On the right hand sides of the expressions (12) and (13) only the first factor
depends of the scattering angle. Any DWBA-approach based on the DWBA-
expressions (1) - (lb) may be inserted into this factor. For the sake of simplic-
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ity and transparency we introduce here the simplified DWBA-approach of
Kromminga and McCarthy22) which is obtained by introducing into (1) - (lb)
as an approximation of the optical model wave function the following 2-pa-
rameter Ansatz:

X (n )±(k,r) = e - ' -

+ -^-(k,r) / k

e k r + a 8 ± rrR - r
V k ° ~

with

k =
\/2mc'

(15)

(16)

In (15) the first term in the bracket is caused by the imaginary part of the
optical model according to

2m
Y = R

W

o 2 V e. - V•
(17)

where (16) is approximated by the assumption of a square well potential
U(n) = V + iW whilst by the second term in the bracket of (15) the focus effect
is taken into account. By inserting (15) into the DWBA-equations (1) - (lb) we
obtain with the trapecoid potential as the most simple choice for U(°) (r)
according to:

dr

0 fur 0 < r < R - -0 2

U(n)

o t
— fiirR - -
t ° 2

0 fur R + - < r0 2

t
-
2

Bereich I

Bereich II

Bereich III

(18)

with the finite surface thickness t and the potential depth Uo, where (18) has
the consequence that only the surface region of the nucleus of thickness t con-
tributes to the integration in the expression (la) with the substitutions (15) -
(18). Thus (15)-(18) inserted into (1) - (lb) yields for our simplified DWBA -
approach the result:
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1 ^ "

21 +
v m

u
' ) + f 2 f 3

+ 2 Re
V V

(19)

+ f f • P (-cosO)
v

In (19) the fi, f2, and f3 are functions which are given by the following expres-
sions:

R + -0 2

f 1 = 4 . i ( i ) 1 " f j 1
J v

t
p

o 2

1 i
4n(i) v - {{ R

3 \ o 2 - R - - H i (20)

i(k. - k- cos 6) R +vcos9
„ l f o

f =aR2e
£• o

i ( k . - k. cosO) R + Y<--»S 0

f3=aR2e v

6 0

In order to be able to calculate fi we introduced into the integrand of (20) the
value of the Besselfunction j l v ( ) at r = Ro as a constant value. We then ob-
tained the expressions after the last sign of equality of (20) as an approximate
result for fi. The Piv ( ) in (19) are the Legendre-Polynomials. Finally we
have in (19) the komplex vector

K
f

f R V k . k,.
o i l

~f
v R Vk. k,.v i l

(21)

with the komplex length

c2 + k2 - 2k (k f . cosO - 2 — (1 - cosO) + 2 i — ( k. + k.f ) (1 - cosO)
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6. RESULTS AND COMPARISONS

Now theGDH yields for the present only angle integrated cross sections as
shown in Fig. 1. Therefore first attempts already have been made to attach an
angular distribution to the GDH (See5,6,23,24) and31)). Now the concept of
these attempts can be extended by means of the above developed method. In
order to proceed this way we make use of the GDH-results of Fig. 1 where the
contributions of the excitation steps with n > 3 are shown separated. This re-
presentation has been presented by Bahm24>3l). Almost only the n0 = 3-
component shows the geometry dependent behaviour. Therefore according to
Blann4) the no = 3-component should in the main represent the direct pro-
cesses. Consequently the angular distribution derived above should be nor-
malized with the no = 3-component of the GDH (see Fig. 1), according to (12)
and (13). On the right hand sides of (12) and (13) the numerator is given by
(la) with (19), (20) and (21) and the denominator by (8) also with (la) and
with (19), (20) and (21). CJ is the value of the secondary energy being located in
the middle of the respective interval like those intervals shown in Fig. 1 and
Fig. 2 being attached through the GDH-curve of Fig. 1 and Fig. 2. If an inter-
val of this kind is large enough such that the equation (4)* and with it also
equation (14) and the already mentioned equations (12) or (13) respectively
with (la) and with (19), (20) and (21) are valid, then for such an averaging in-
terval of the secondary energy of the inelastically scattered neutrons the an-
gular distribution of the inelastic-neutron-scattering cross section averaged
over this interval can be calculated by use of the mentioned equations, but
that firstly only as far as the direct component is concerned which according
to Fig. 1 is almost the only contribution to the total cross section until down to
a secondary energy of roughly 9 MeV. The Figs. 3 and 4 show the results of
this kind of calculations for intervals in which according to Tab. 1 2+-levels
either exclusively or predominantly are represented. Consequently to obtain
the calculated results of the Figs. 3 and 4 we inserted lv = 2 into the preced-
ingly mentioned equations.

Into those equations different values for the parameters a and y are intro-
duced. Thus to obtain Fig. 4 a = 0 and y = 0,9 and to obtain Fig. 3 a = 1,5 fm

see also Avrigeanu et al.29) and Jahn30).
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and y = 0,7 had to be inserted into equations (19), (20) and (21). This last
mentioned y-value of y = 0,7 fits best the formula of Gl. (17) with the values
of V and W for the usual optical model of roughly V = 50 MeV and W = 80
MeV inserted into Gl. (17). Additionally to the curves, calculated as explained
in the preceding lines, points are drawn in the Figs. 3 to 5, which are calculat-
ed by Bahm24) by averaging the measured results of the respective experi-
mental group over the respective interval of the secondary energy of the in-
elastically scattered neutrons for the measured scattering angles shown in
the Figures. The points shown in the Figures 3 to 5 are obtained from the
measured results of the Dresden group?). They are quite well compatible with
the measured results of PetersoniO) and Manii2) for the proton-channels cor-
responding to Tab. 1. Fig. 4 shows also points which are obtained from the
measured results of different groups. It can be seen that those points of Fig. 4
which are obtained from the measured results of the Dresden group7) are in
much better agreement with the curve calculated using the equations (19),
(20) and (21) with the measured results for the proton-channel of PetersoniO)
and Manil2) as shown in Tab. 1 than the points which are obtained from the
other experimental groups.

In order to obtain additional results for the inelastic-scattering cross section
of the 14,6 MeV neutrons we consider a region of secondary neutron energies
which consist of quite lower secondary neutron energy values than those of
Figs. 3 -4 . We select as such a region of lower secondary neutron energies the
interval of 6 - 7 MeV which joins the upper limit of the excitation energies of
the target nucleus of Tab. 1. Since in this region in the main lv = 4-levels are
to be found we insert lv = 4 into the expressions (19), (20), (21), (12) and (13)
for our angular dependent average cross-section calculations. Moreover we
neglect the n>3 precompound components since they yield a contribution of
not more than 10 % within the considered interval of secondary neutron ener-
gy of 6 - 7 MeV. Finally we add as the compound component the evaporation
component shown in Fig. 1 averaged over this interval, whereas the contribu-
tion of its angular distribution is assumed to be isotropic. The result as pre-
sented in Fig. 5 shows an agreement with the points obtained from the mea-
sured results of the Dresden group which is quite satisfactory*. This is also in

The small angle region still has to be improved.
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agreement with the results of an Obninsk group26) which show that the sec-
ondary energy dependent angle integrated cross-section for inelastic scatter-
ing of 14,6 MeV neutrons on 52Cr can quite well be reproduced by only an ad-
dition of the compound plus the direct component without taking into account
a precompound contribution. Obviously this neglecting of any precompound
component for the sake of reproducing the measured inelastic scattering
cross-sections of 14,6 MeV neutrons by theoretical calculations including only
the direct plus compound contributions should be valid for a whole group of
neighbouring nuclei of structural materials as for instance for 51V till 65Qu
provided the direct component is properly averaged.

7. SUMMARY

In this paper a method is described to reduce the uncertainties and unaccura-
cies of the measured results of the inelastic-scattering cross sections of 14,6
MeV neutrons. This method consists of taking into account informations from
the inelastic scattering of fast protons. Measurements of inelastic-fast-pro-
ton-scattering cross sections which are appropriate to this purpose are carried
through up to now only for 56 F e qnd for neighbouring nuclei as 51V, 52(>,
and 55Mn. These are investigations by Peterson 10) and ManU2) of which the
results for 56Fe are discussed and used in the present paper to supplement the
partially very unaccurate and discrepant results of the inelastic-scattering
cross section measurements for 14,6 MeV neutrons of the various experimen-
tal groups. The method carried through in this way in the present paper for
56Fe leads to a preference of the measured results of the Dresden group?).
Consequently this preference should also be recommended with regard to the
measured inelastic-scattering cross section results of 14,6 MeV neutrons on
the other nuclei which are mentioned above as 5IV, 52Qr and 55Mn as well as

on nuclei which are not mentioned above as for instance Co, Ni, Cu, Nb and
Pb. These findings are also supported by the measured and calculated ,-32)

**v,^cSiiits oi rci •

In contrast to the method of the present paper the procedure of Pavlik and
Vonach27) should be mentioned who propose a certain averaging over the
measured results of the various experimental groups, while the principle of
our method of the present paper is a selection with respect to the relationship
between the cross section results of the inelastic neutron and proton scatter-
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ing, where data of much higher quality can be obtained for the fast proton

case than for the fast neutron case as pointed out in3O.

It could be indicated in the present papers as well as by the results of the Ob-

ninsk group26) that for structural materials as for instance at least for 51V to

65Cu a precompound contribution can be neglected for 14,6 MeV inelastic

neutron cross sections, and only direct plus compound contributions have to

be taken into account. This yields angular distributions which could be quite

different from those of the systematics of Kalbach and Mann4) or of the

PRANG- or PREANG-codesl.28). The latter are derived from some precom-

pound formalisms of which the solutions are assumed to cover the whole cross

section2). This is in contrast to our just mentioned finding that at least for 51V

to 65Cu precompound contributions should be neglected for 14,6 MeV inelas-

tic neutron cross sections and only direct plus compound contributions must

be taken into account for those cases. On the other hand the systematics of

Kalbach and Mann is obtained from a kind of fitting of inelastic neutron cross

sections between 25 MeV and 14,6 MeV4). However estimations of inter-

nuclear transition rates by Gadioli et al. (see Trieste Cours Contribution of28)

and Fig. A6 in6)) show that there could occur a drastic change in the cross sec-

tion behaviour at around 14,6 MeV. Thus we should obtain problems by con-

cluding from the cross section behaviour above 14,6 MeV to that one below
32)14,6 MeV. The measured and calculated results of ref. also contradict

„. „ . . . . . . , , , , . , """Vto the,Kalbach-Mann-systematics.
rinally it should be stressed that at the high-energy tail oTtne secondary en-
ergy dependent inelastic-14,6 MeV neutron cross section the angular-distri-
bution as for instance presented in this paper (see Fig. 3) and in 32) can show a
predominance of the Legendre-polynomials of higher order as for instance 10
if analyzed accordingly. In contrast to that Legendre-polynomials up to order
only 3 are taken into account by the users of the PREANG- or PRANG-codes
or 4 of the systematics of Kalbach and Mann respectively28). This kind of as-
sumption of taking into account only low order Legendre-polynomials has
also been applied by Pavlik and Vonach27) in order to obtain their compila-
tion. This also contradicts to the measured and calculated results of ref.
for inelastic neutron and proton scattering cross sections.
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RECENT DEVELOPMENTS IN THE THEORY OF NUCLEAR
LEVEL DENSITIES

A.M. Anzaldo Meneses
Institut fur Theoretische Physik

Universitat Karlsruhe. D-7500 Karlsruhe
Federal Republic of Germany.

Abstract:

We present here an alternative approach to obtain a better description of nuclear level
density, its shell effects and their energy dependency. Our method is statistical, is based on
analytical number theory, and considers a system of neutrons and protons in a given single
particle spectrum as usual.

1. Introduction.

This work was motivated by the original work of H.A.Bethe (1936/37),
N.Bohr (1936), C.Van Lier and G.E.Uhlenbeck (1937), S.Goudsmit (1937) and
others over 50 years ago. These authors obtained a formula which showed with
very simple analytical relations the most important behaviour of the level
density, parametrized by means of quantities with a clear physical meaning. No
parameter was introduced in an ad-hoc way to reproduce experimental results.
The connection to number theoretical problems was also known. Nevertheless,
their results are only a crude approximation which needs to be implemented.

By introducing the shell structure into the single particle spectra, we
obtain here new results expressed with simple formulas using as guide
calculations from modern analytic number theory (see for example
G.E.Andrews, "The Theory of Partitions", Addison-Wesley Publishing Company,
London, 1976). In this way it becomes easy to recognize the relevant
mathematical quantities which must be related to the physical parameters.

We succeed here to obtain an analytical description throughout, such that
only a minimum of numerical computer calculations is needed to carry out the
comparison with the experimental results. During the last 30 years, there have
been many extensive numerical works under the title "microscopic calculations".
But of course they are done without the existence of a consistent fundamental
("microscopic") nuclear theory. It is well known since many years that different
spectra lead to the same average results for the level density, there is no
unique way to fix the "correct" nuclear Hamiltonian from these considerations.
Here we adopt a different point of view. We consider classes of single particle
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spectra with common analytic properties. We stress the importancy to recognize
the most relevant parameters, which must be common to all single particle
spectra, whenever they are to reproduce the experimental data. In this way we
do not need to limit ourselves to a certain special kind of Hamiltonian and it
is also not necessary to diagonalize it. We attempt rather to introduce nuclear
structure properties in the form of well founded mathematical quantities. This
approach should conduce to the study of invariants associated to heavy nuclei.

2. Starting Equations.

We sketch the method for one kind of nucleons only, the extension to any
other number of distinguishable kinds is immediate. The density of excited
states of a system of N particles with total energy E is given by p(N,E) in the
expression:

Z(a,0) = IT (1 + exp(a-0£y) ) = ]T xN yE p(N,E), oc, 0 e C (1)
V N,E

with x = e a , y=e~0 and the single particle spectrum {ev}. Thus, the objective is
to obtain a simple expression for p(N,E) valid for all energies E in a certain
interval. We assume that the excitation energy U= E-Eo , where E o is the
ground state energy, is not large enough to excite the lowest nucleons in the
spectrum. This means that we study only "degenerated systems".

The Darwin-Fouler method consists in the evaluation of the contour integral:

ioo ioo

p(N,E) = —^-2 jda Jd0 exp( lnZ(a,(3) + 0E - aN ) , (2)
-1OO "-JOO

The power series in eq.(l) is of course only formal, because it is strongly
divergent in general, but we can deform the integration path to evaluate the
integrals in eq.(2) by the saddle point method. The well known result is:

p(N,E) = e xP;L , (3)
2n V

where S is the "entropy" of the system:

S (<x,p) = In Z(a,0) + /3E - ocN = 2Ka(U-6) , (4)

a is the so called "a-parameter", 5 an energy shift and

3/3/3 l n z 9<x0 l n Z

D = det
ln Z 3 a a ln Z
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The saddle point is obtained solving the equations:

da S(ct,0) = 0 , 30 S(a,0) = 0 , (6)

and we must evaluate In Z(a,0) at the saddle point. The a-parameter, the
energy shift 6 and the determinant D are all energy dependent in general.
From this point on our calculation departs from the usual one. Normally, see
for example T.Ericson (1958), the partition function is expressed as an integral
over a smooth single particle level density. Different simple Ansatze for such
function lead to the well known results (see for example the review by
V.S.Ramamurthy (1989)).

3. Formalism of Modern Analytic Number Theory.

We prefer to continue the use of analytic number theoretical functions.
The formal series and products as those of equation (1) have a precise analytic
meaning restricting the complex variables to a particular region of the complex
plane.

We write:
C+ioo

In Z(a,0)= 2 (-Dk+1 T eka Z ^ ) = ~Wi fdz Czf
k>0 Jc-ioc

where we defined the function:

Z(x) = 2 exP( "xen) = T r e " x H > £n > 0 > (8)

The last integral on the far right hand side of eq.(7) can be shown to be
equivalent to the infinite series of that equation using the Laurent series for
l/sin(nz) and evaluating the residues at z=l,2,... .

3a. Introduction of Dirichlet Series.

In general, series of the form

a(n)e"sX(n) , s G <C , X(n) > 0 , a(n) > 0 ,

are called general Dirichlet series if \X (n)} is a strictly increasing sequence of
real numbers such that X(n)-»oo as n-»oo. Hence for Z(x) the a(n) give the
degeneracy of the corresponding eu .

The series is called ordinary Dirichlet series if X(n) = ln(n). We shall assume
that all Dirichlet series we consider are absolutely convergent for the half-
plane s > 6 >0. Further we asume that they possess an analytic continuation
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in the region s> -c , 0< c <1, and that in such a region they are analytic
except for a finite number of real simple poles.

The contour in eq.(7) is selected in such a way to allow the interchange
of the integration and the summation. We are thus naturally lead to study the
function Z(x) in the complex plane. Further, if we express the other factors in
the integral in a Laurent series, we recognize that the ordinary Dirichlet
series:

oo

= T ® J dx x*-l Z(x) , £m*0, z*0 , (9)

will play a central role. We have assumed that the em are integer numbers,
this can be done by taking a sufficiently small energy unit The function D(z)
will contain all the relevant information of this problem. The most famous and
simple case results from ev E Z+ leading to the Riemann C-function. The
integral in eq.(9) is called the Mellin transform of Z(x) (see I.N.Sneddon,"The
Use of Integral Transforms",McGraw-Hill Book Company,New York, 1972).

3b. Poles and Residues of the Dirichlet Series.

The function Z(x) can be obtained, once we know D(x) using the integral:

CT+ioo

Z(x) = ^ - f dz x"z T(z) D(z) , x £ F c C, cr>0, (10)
CT-ioo

where we assumed that D(z) has only poles, localized to the left of the contour.
For simplicity, we will further assume that these poles are simple and are
localized at the points do>d1>...>dM>0, dk integer, with residues AO, Al etc.,
(higher order poles can be easily included). We find:

M oo

Z(x) = 2 Am r(dm) x"dm + 2 ("^k xk D("k) /k ! » xGF c &> (H)
o o

This expression can be interpreted as an asymptotic series for Z(x) as x-» +0.

From relation (11) we see that the quantities to which we have to give a
physical interpretation are the residues, the position of the poles and the
values at zero, and negative integers of D(x) which determine the analytic
structure of the infinite sum. This can be easily seen. By partial summation we
notice that if :

M

Ln « ] T A m u o
m + D (o) , (12)

J ™" X nfi
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then, we can approximate D(s) as follows:

j C(s - di + l )=2Ai2(2n) s - d i sinO^s-di+^^IXdi-sX^-s), (13)

and this means that D(s) has simple poles at s =dj with residues Aj . The
assumption given by eq.(12) can be interpreted on the other hand as a
description of the increase of the single particle level density and expresses the
total number of particles up to level iio. Equation (13) gives us the analytic
continuation of D(s) to the left of the suceesive poles. Additionally, we can use
eq.(13) to obtain D(-k) entirely in terms of the set {d^Aj}. We need only to
remember the values: £(0) = -1/2, £(-2m) = 0 and C(l-2m) = - Bm/2m for
m=l,2,... . Note also that if we naively write z=-l in eq.(9) we obtain an
infinite number, the analytic continuation eq.(13) gives the correct answer.
This last observation leads to the C-function regularization in quantum gravity
(see for example S.W.Hawking (1977)).

Conversely, by a formula due to Perron (c.f. T.M.Apostol, "Introdto Analytic
Number Theory", Springer Verlag, N.Y.,1976), we know that:

C+ioo
an =*-* -fTs" - ~ | d z D(z + S) & , c>0, M O >0, Re s > a. - c ,

^° c-ioo

where the last term in the sum must be multiplied by 1/2 if 11 is an integer.
From this formula for s=0 and if D(z) has only simple poles at d» with
residues Aj, we return to eq.(12).

3c. Expression of the Partition Function by the Poles and Residues.

We need now to solve the saddle point equations whose solution will be then
parametrized by the set of constants {dj, Aj). But first we need to insert
expression (11) for Z(x) into Z(oc,#) in eq.(7).

With eq.(ll) we have, for a restricted kind of spectrum, a Laurent series for
Z(x) which allows a very simple integration of eq.(7), under the condition that
the sums are well defined, at least asymptotically.

The integration in eq.(7) has now three different contributions:

a) The pole at z=0 with terms of different multiplicities, resulting from the
poles of D(x). ,

b) The simple poles of 1/sin (nz) for z<0 integer.

c) The singularities from the function given by the infinite series in eq.(ll)
with coefficients D(-k).
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Let us write these contributions separately as:

In Z(cc,0) = Ia + Ib + Ic , (14)

We evaluate them now further. First we have from eqs.(7) and (11), expanding
1/sin x in a Laurent series:

n oo

Ia = f fdz e«

Z2 6 360
nz)2 2(22J -2 -

f4. . . . 1 , (15)J - J J

where Co is a small contour enclosing the origin and we have expressed the
regular part of the cosecant by a power series. The Bj are the Bernoulli
numbers. We find after integration:

l a=
(dm-l)!6

+ • • • J + a D(0) - 3 D(-l) , (16)

The sum in the bracket is finite and its last term is of order zero in oc if dm

is odd and is of order one in oc if dm is even.

For the second integral around the negative integers we obtain from
eq.(7), shifting the contour to the left:

Ib = In Z(-ot, -0) , (17)

We shall disregard this term since we consider systems for which oc is large.
Nevertheless, let us mention that this term is very important for a another
reason. It reflects important properties associated with modular forms (see for
example H.Rademacher, "Topics in Analytic Number Theory", Springer-Verlag,
N.Y., 1973).

Finally, for the last integral we need a similar estimation as for the first
case. Since we evaluate the integral in eq.(7) over the imaginary axis (without
the origin), we need to know the behaviour of Z(s + it) for s-» + 0 and fixed
|t |>0. Again, using partial summation and the assumption given by eq.(12) we
find:

OO
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we see clearly that this function will have for |Im x|>0 poles of order dk at
x=±2imi, n*0 . We obtain from eqs.(7) and (18):

z sin(nz)] z=2nin/0

where (dk-l) denotes the (dk-l)-th derivative and is to be evaluated at 2mn/0.

From eq.(19) we recognize an oscillatory behaviour as function of the
"chemical potential" /i = oc/0 and the "temperature" 1/0. This contribution leads
to the energy dependent shell effects which will allow a better description as
that given in the current formulae for nuclear level densities.

The saddle point equations can now be readily written using the two
contributions for In Z(a,0) given by equations (16) and (19). The parameter
set {dj,Ak> could be selected for protons in a different way as for neutrons.

3d. Explicit Expressions for the Most Relevant Sums.

The partial derivation with respect to 0 of eq.(16) leads to an "asymptotic"
series in positive powers of the chemical potential /x = a/0 and the temperature
1/0 plus a constant term :

^ r d m + 1 i dm"1 d m n 2 i

' ' " • • • ^ l " C ^ ) + " I ? " * - " - l - ^ ' (20)

the last term is of order -(dm+l) in 0. This contribution constitutes what
is usually called the "smooth part" of the excitation energy. The constant term
is a shift of the ground state energy. This is the proper origin of what leads to
the so called "back-shifted" formulas of the literature of nuclear level densities.
On the other hand, this constant is intimately related to the "dimensions" of
the modular forms mentioned after eq.(17).

To interpret the coefficients appearing in eq.(20) we extend the expression
(12) somewhat using the formula of Perron and write:

4 ,

Y a ^ a , , ~ y rr——s ** >m+C + D M> c positive integer, (21)
^-— " ' (dm "̂  KJ

For c = l we recognize the first order term of eq.(20). Physically, this is an
estimation of the ground state energy for \i equal to the Fermi level, denoted
by /io, since an is the degeneracy of the level n and we add the corresponding
energies up to level \LO. For e = 0 we obtain the number of particles N, as
explained before, if f*=iio. Therfore it is natural to define the partial
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derivative of N with respect to uo as the "smooth" (or asymptotic) single
particle level density:

Am n + Z.D(-JC) 6w(*z)/k! , (22)

expressed only in terms of the residues and the poles of the Dirichlet series
associated with the spectrum. The second sum is added to obtain formally, after
integration, eq.(21).

Now we can express all the coefficients of powers of 1/0 by g(a/|3) and its
derivatives, for example:

= goo + gf00/x ,

is the coefficient of l/(S2 in eq.(20).

The partial derivation of Ia with respect to a is:

] + D(0) , (23)f
where again we can express all coefficients in terms of g(oc/0) and its
derivatives.

If we consider only the contributions given by eqs.(20) and (21) to the
saddle point eqs.(6) we obtain a result valid for large excitation energies but
without energy dependent shell corrections. Nevertheless, also in such a
situation we have a good explanation for the constant shiftings in the
excitation energy dependency. We find easily:

U + ( E o E o ) ^

where U is the excitation energy , Eo is the ground state energy and Eo is its
estimation given by eq.(21) for c = l . In this crude approximation we have
disregarded all irregularities of the spectra. Thus, for example the chemical
potential i± was approximated by the Fermi level uo. The following calculations
will remove these restrictions.

To write down the contributions which lead to the shell effects we
introduce the following sums to simplify the notation:

EoO,t) = J sin(2nn*x) , t=l/0, (24)
-oo 2nn2 sinh(2n2nt)

and its derivatives:
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I Eo = -2n2E4 , > (25)

These sums are directly related with the Jacobi 8-functions (see for example E.
Whittaker and G.Watson, 1927: Modern Analysis, Cambridge University Press).
Thus we find from eq.(19) for Ic :

and after derivation we find:

and:

6 a Ic = X ^ - /xdk-2 f-2^E3 - (l-dkPil + O(^dk"3), (28)
pak i J

With these relations we can compute the energy dependent shell corrections to
the energy and the entropy for "large" temperature. Unfortunately the series
are not always well defined. They have discontinuities and if 1//J is not large
enough they converge only slowly.
To be able to compute the needed sums also for the cases where the
temperature is not large enough or near a discontinuity we need to transform
the sums in terms of 1//3 into sums in terms of 0. This is here possible
because of the connections with the 8-function. We obtain:

= V-y(y2-f)
CO

where we introduced y= /x - [/x], e.g. the chemical potential minus its integral
part. For all other sums similar relations follow after derivation.

The calculations sketched above are all what we need to compute the
entropy at the saddle point as expressed by equations (4) and (6). We can
calculate with the given relations explicitely, in the saddle point approximation,
the nuclear level density once we know the analytic properties of a given class
of single particle spectra. These properties can be obtained easily using
relation (12).

4. Calculations for the Single Particle Spectrum of Kahn and Rosenzweig.

To test the applicability of our results we computed the a-parameter
defined in eq.(4) using a periodic spectrum first studied by P.Kahn and
N.Rosenzweig (1969) and given by:
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ek = (k + m(j) ) ]fo> , k integer, j = l , ... ,e ; 2 . m(j) = 0. (30)

where the numbers m(j) give the position of level j in each shell and e is the
degeneracy of the shell. The shell width is simply the difference between the
largest and the smallest m(j)» W=(m(e) - m(l)) Jlw and we assume W<Jic«), e. g.
non-overlapping shells.

Since the constants m(j) do not depend on k we write:

oo e

_ v v ^ exp(-xn) 2_ exp(-xm(j)), (31)
n=l j=l

The Dirichlet series corresponding to eq.(31) is expressed easily using the
generalized Riemann C-function £(s,m)=£(n+m)-s which has only one simple
pole at s= l with residue one. Thus, here D(s)= ££(s,m(j)), A=e, d= l ,
D(0) = e/2, D(-l) = -e/12 - 1/2 £ mQ)2 .

The saddle-point equations lead to:

U ~ «Je + Eshell(T) - Eshell(0) , (32)

where T=2n2/jfo/3 an<* t n e temperature dependent energy shell correction is:

6 OO

k 2 2
(33)

V.TT* cinn'iirTt
j = l k=l

where y - \L - \.\i\ -1/2 . For T = 0 we find the well known result of Kahn and
Rosenzweig, obtained using the Euler summation formula:

xe e

The temperature dependent y is now:

e oo
(-DK

en

e oo .
Y Y (-DkT sin(2nk(y-m(j)))
Z^ Z- en sinhfkT)
j = l k= l

For the entropy we find:

e oo
c ~ eT ^ V Y (-l)kcos(2nk(,y-m(p)){kT coth(kT) - 1}

^ t k sinh(kT)
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Kahn and Rosenzweig did not consider the energy dependency of the shell
effects given by eq.(33). The temperature dependency of the chemical potential
described by eq.(34) was also neglected by them.

It is usually argued that, for relatively large excitation energies, the Fermi
level ep at zero temperature and the chemical potential 11 are practically equal
and thus ii is substituted by £p in all formulae. This is correct only for terms
depending on powers of /z, but it is not necessarely correct for circular
functions of /i, since in such case the relevant quantity is the departure of /x-
[ji] from the average energy spacing between shells and not the absolute
value of n. In other words, it is not allways correct to substitute y by the shell
filling parameter x for relatively large excitation energies. Thus to complete
the set of equations that we need in our example, we need also an equation
to obtain a good estimation for y when the series in eq.(34) do not converges
sufficiently fast. This equation is:

oo

-
sinh(2n2k(y-m(f))/T)

4 - j ^ , en sinh(n2k/r)
1 , sinh(2n2kq-y+m(D)/T)

e sinh(n2k/T)

Here, the sum V runs over -1/2 < y-m(j) < 1/2 and the sum E* runs over 1/2
< y-mQ) < 3/2 .

In our calculation we computed the a-parameter for the nuclei reported by
T.von Egidy, H.Schmidt and A.Behkami (1988) at the corresponding neutron
binding energies. We used the definition contained in eq.(4) for the a-
parameter and of course, we considered two kinds of fermions. Thus, we added
in the given equations for the excitation energy, the chemical potential and the
entropy the corresponding terms for the other kind of nucleons present. The
shift 6 given in eq.(4) is know: 6 = Eshell(T)-Esheil(0), for large excitation
energies.

The adopted shell width was fixed for all nuclei belonging to the same
shell in a harmonic oscillator type potential. Besides the shell widths and the
average spacing between shells fixed by the shell model, we did not adjust any
other parameter. We used only the first terms of the corresponding infinite
series, depending on the convergency of the series. In figure 1, we show the
results of our calculation in comparison with the experimental results
compilated by v.Egidy et al. which include also former compilations of G.Rohr
et al. The agreement is encouraging. In a forthcoming publication we will
show more details of this calculation and the results for the nuclear level
density as well as additional developments of theoretical as well as practical
interest.
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5. Conclusions.

In conclusion we like to stress the following points:

1) We have shown a consistent method to study and include the most relevant
characteristics of the adopted single particle spectra. This includes the "smooth"
behaviour as well as the shell corrections and their excitation energy
dependency.

2) Only the consideration of an energy dependent chemical potential can lead
to a correct description of the shell effects in the nuclear level density. This
follows from the discontinuous character of the infinite sums as a whole.
Instead to take only few terms of a given series it is necessary to understand
its transformation properties.

3) All other analytic attempts in the current literature (to our best knowledge)
on nuclear level densities can be seen as particular cases of the presented
method. Also those which assume a smooth single particle level density given
by a power or a Fourier series.

4) The presented method is not only of academic interest but provides us a
tool for applications as our calculations showed. The consideration of more
"realistic" spectra e.g. of the Nilsson or Woods-Saxon types is also possible
without difficulty. In a work to be published we will show further results.
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ABSTRACT

We compare angular distributions calculated by folding nudeon-nucleon

scattering kernels, using the theory of Feshbach, Kerman and Koonin, and the

systematics of Kalbach, with a wide range of data. The data range from (n, xn) at 14

MeV inddent energy to (p, xn) at 160 MeV incident energy. The FKK theory works

well with one adjustable parameter, the depth of the nudeon-nucleon interaction

potential. The systematics work well when normalized to the hybrid model single

differential cross section prediction. The nucleon-nucleon scattering approach

seems inadequate.

*Work performed under the auspices of the U. S. Department of Energy by
the Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
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1. INTRODUCTION

The purpose of this brief report is to look somewhat critically at our ability to

predict precompound angular distributions. Much of the early work was focussed

on data from 14 MeV incident neutron energy; these data had large uncertainties

due to experimental difficulties, and were not well suited for testing our ability to

predict angular distributions. More recently data sets for (p,n) reactions, spanning a

very broad dynamic range of incident energies, have become available. Data on 90Zr

have been obtained at 25, 35,45, 80,120 and 160 MeV over an angular range of 0-

160".1-3 Measurements at higher energies are planned. We will use some of these

data to see how well different approaches to treating angular distributions work as

predictive tools. These will include formulas based on systematics,4 on folded

nucleon-nucleon scattering kernels,5 and on the quantal formulation of Feshbach,

Kerman and Koonin (FKK).6

2. COMPARISONS OF MEASURED AND CALCULATED ANGULAR

DISTRIBUTIONS

In Fig. 1 we show several data sets for the 93Nb(n,xn) angular distributions.5'7

These are compared with hybrid model angular distribution calculations involving

nucleon-nucleon scattering kernels. The agreement with data seems reasonable,

due in part to the large experimental uncertainties.

In Figs. 2-5 we show similar calculations versus data taken at incident proton

energies of 25, 45, 80 and 160 MeV. For the 25 MeV incident energy (Fig. 2) for the 9

MeV exit energy one can do a parameter manipulation - called 'refraction' in this

application - to force a reasonable back angle 'fit' with data. At the higher exit

energy of 14 MeV, not even this parameter game works. An arbitrary isotropic

(compound) component would again give the appearance of agreement over the

entire range of angles. This is apparently used in some approaches, but is not

consistent with statistical theory. As data from higher incident energies are

analyzed, the discrepancies between both forward and backward angles becomes
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Fig. 1 Experimental and calculated angular distributions for the 93Nb(n, xn)

reaction with 14.7 MeV incident neutrons. Results are shown for 4 and 9

MeV emitted neutrons. Data (circles, squares, and triangles) are from Ref. 7.

The dotted lines are the calculated equilibrium components which have

been added to the histogram results. The dotted-dashed histograms are the

results of the semiclassical calculation using the folded N-N scattering result

described in the text. The solid histograms are the results of the same

calculation but with an additional folding for "refraction" in the entrance

channel as described in the text.

more evident (Figs. 3-5). In Figs 4 and 5 no 'refraction' has been used in one

example using the nucleon-nucleon scattering calculation. Here the quasi-elastic

peak may be seen as the first collision contribution, and the higher order collision

contributions may be seen as the component with softer slope extending to higher

angles. The data do not show this dichotomy; quantal effects may be expected to

reduce it. Adding the 'refraction' folding to these calculated angular distributions
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Fig. 2 Results for the 90Zr(p, n) reaction at 25 MeV incident proton energy.

Experimental results are from Ref. 1 (horizontal bars) and from Ref. 8

(circles). The data of Ref. 1 are more reliable than those of Ref. 8 at angles

forward of 20*. The isotropic (dotted and dashed) components are the

calculated evaporation contributions which have been added to the Fig. 3 As in Fig. 2 for an incident proton energy of 45 MeV. Data (horizontal bars)

precompound results shown. are from Ref. 1.
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30 60 90 120 150
Lab angle (deg)

Fig. 4 Angular distributions for 90Zr(p, xn) for 80 MeV proton energy in

comparison with the normalized results of Ref. 4 (dot-dash line) and the

hybrid model (dashed-short line) using a nucleon-nucleon scattering kernel.

The heavy solid curve is the hybrid model with nucleon-nucleon scattering

and refraction in entrance and exit channels.

will help to reduce the change in slope noted at around 90° but does not change the

inability of the calculated result to fit the data, as may be seen in Figs. 4 and 5.

Kalbach4 has recently revised her formulation of angular distributions based

on systematics. Results of this formula, normalized to the single differential cross

sections predicted by the hybrid model, are shown in Figs. 4 and 5. The agreement is

quite good, and the computation exceedingly fast. While there is no gain in

knowledge of physics from using this approach, it is fast and it gives good results

over a wide range of targets and projectile/ejectile energies.

Finally we investigate the theory of FKK in reproducing angular

distributions. In Fig. 6 we show results for 65Cu(p,xn) due to Holler et al. for 26.7

MeV incident proton energy.8 In Fig. 7 we show comparisons for incident energies

of 120 and 160 MeV for 208Pb(p,n) reactions. In Figs. 8 and 9 we show similar
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Fig. 5 Experimental (solid points), hybrid model (dashed-dot) and systematics fit

(Ref. 4) for the 90Zr(p, n) reaction at 160 MeV incident energy. The exit

neutron energies from 40 to 140 MeV are indicated. The hybrid model N-N

scattering result is without refraction (dot-dashed line) and with entrance

and exit channel refraction. This figure is from Ref. 3.
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Fig. 6 Experimental and calculated angular distributions for the reaction 65Cu(p,

xn) at 26.7 MeV incident proton energy. This figure is from Ref. 8. Solid

points are experimental values for 15 and 20 MeV neutron emission

energies. The solid line is the result of the FKK theory summed over

several scattering terms. The dashed line is the first term only.
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o En=40 MeV
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Fig. 7 Experimental angular distributions of neutrons of several cm. energies for

the reactions p+208Pb in comparison to SMDE calculations with Vo = 16

MeV (for Ep = 120 MeV) and Vo = 12.5 MeV (for Ep = 160 MeV).

comparisons for 90Zr(p,xn) reactions at 120 and 80 MeV. The FKK theory does very

well across the entire range of energies - but there is an adjustable parameter. This is

the square of the nucleon-nucleon interaction potential depth, Vo2; it has thus far

been selected to force-fit the data. The values used for reactions on 90Zr are shown

in Fig. 10. These values seem to be independent of target mass, but strongly

dependent on incident energy. Thus far the theory has not been predictive; perhaps

Fig. 10 may be used to interpolate values necessary for Vo2, making this approach

predictive within the range of prior measurements.

4. CONCLUSIONS

Semiclassical/exciton approaches to angular distributions may not be

extrapolable with accuracy much beyond the regime of reactions of neutrons of up to

14 MeV. They probably lack an adequate treatment of the physics. The FKK theory
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offers hope of an approach containing the proper physics, but we must understand

the variation of Vo2 with incident energy. We may be able to interpolate this from

Fig. 10 for energies within the range where measurements have been made.

Because the exciton model weights higher order terms more heavily than the hybrid

model, a thorough investigation should be made of the N-N scattering approach

within this (exciton model) formulation.

The systematics of Kalbach provide a very satisfactory means of predicting the

shapes of the angular distributions. At present this may be the best approach for

applied nuclear data needs.
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A REAL PART OF NEUTRON OPTICAL POTENTIALS CONSTRAINED BY
RMFA CALCULATIONS

S. Gmuca
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Dubravska cesta 9, CS-842 28 Bratislava, Czechoslovakia

Abstract

We test an applicability of Dirac optical model for
neutron elastic scattering at low energies. Real parts of
scalar and vector potentials are constrained by a
relativistic mean field approach to nuclear structure. We
find that by this way we are able to produce a good
agreement with experimental data.

1. Introduction

In recent years there has been growing interest in using
relativistic approaches in nuclear structure calculations
and scattering of nucleons on nuclei. Relativistic quantum
field theoretical approaches have been reviewed recently by
Celenza and Shakin [13 and Serot and Walecka [23. The
success of the RIA at intermediate energy proton scattering
is now well documented [33. Nuclear optical model studies
using the Dirac equation containing large canceling Lorentz
scalar and Lorentz four-vector potentials have shown its
superiority to the standard Schrodinger equation based
phenomenology £4] at higher energies.

Contrary to these previous studies, in this work we
present the results of an analysis of neutron-nucleus
elastic scattering at low energies. The aim is to test some
aspects of relativistic approach at this energy region. In
particular, we constrain the real parts of the optical
potentials by relativistic mean field calculations. To be
consistent with conventional studies and to facilitate the
comparison with nonrelativistic analyses we transform the

Work performed under IAEA Research Contract No. 4325/RB
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Dirac equation to the Schro'dinger-like one with effective
central and spin-orbit potentials. The real parts of these
potentials are constructed using the aforementioned
relativistic fields. The imaginary part of the central
potential is then taken to be of conventional surface plus
volume terms. The imaginary spin-orbit potential is ignored.

The analysis presented here is made on some spin-zero
nuclei at energy region 8-40 MeV. We test the usefulness of
the Dirac approach and seek for a possible energy dependence
of the potential parameters.

In the next section we describe essentials of the
relativistic mean field approach to nuclear structure.
Section 3 is devoted to the Dirac optical model and its
transformation to the Schrodmger picture. In Sec. 4 we
present the results of our analysis and Section 5 gives
conclusions of this work.

2. Relativistic Mean Field Approach

We start with the Lagrangian density of the QHD-II
theory with scalar selfinteractions [2] which reads

LCy.ff,(o.

This includes the baryon field CyO, neutral scalar and
vector meson fields (a,w) and the charged isovector meson
field Cp) in a renormalizable field theory.

Exact solutions of the field equations given by the
Lagrangian density (1) are very complicated. Instead the
corresponding Euler-Lagrange equations are usually solved by
replacing the meson fields by their mean values Cthe so
called relativistic mean field approach - RMFA).

We restrict ourselves to the spin-zero closed shell
nuclei which possess the spherical symmetry. This symmetry
greatly simplifies calculations. As a result we obtain the
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coupled set of nonlinear differential equations which have
to be solved iteratively up to the selfconsistency is
reached. The details of this procedure may be found in ref.
[23. In particular, the baryon field y is given as a product
of single-particle spinors jf/a (a labels all relevant quantum
numbers) which obey the Dirac equations

f-i«V + pCM-SCr)) + VC r ) ] ^ = Ea\pa C2)

where the scalar potential is simply

C3)

while the vector potential has more complicated structure

VCr)=gC0uCr)+l/2.T3gppCr) C4)

The cr(r), coCr) and pCr) are the scalar cr-meson field, the
time-like component of the vector oo-meson field and the
time-like part of uncharged component of the
isovector-vector p-meson field, respectively. These fields
obey the second order radial Klein-Gordon equations with an
appropriate density as a source term.

At the end of the iterative selfconsistent procedure we
obtain:
- single-particle Dirac wave functions,
- single-particle spectra,
- proton and neutron baryon and scalar densities,
- mean meson fields, etc.

These quantities may be then used in other computations
which need nuclear structure information.

The Lagrangian C D has to be considered as an effective
Lagrangian and the meson masses and theirs couplings are to
be understood as effective parameters of the theory. Now
there are several parameter sets (see ref. [S3 for review
some of them) which are suitable for the RMFA calculations.
In the course of this work we use the RMFA parameters of
ref.163 which have been obtained by fitting the charge

POP
density distribution of LUOPb and have been approved also
for other closed-shell nuclei.
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3. Relativistic Optical Model

3.1 Dirac equation and its transformation

In most relativistic studies of nucleon scattering the
Dirac equation containing large Lorentz scalar,SCr), and
time-like component of Lorentz four-vector potential, VCr),
is used [73. These potentials are usually static, local and
spherically symmetric.

The Dirac equation for nucleon scattering may be written
as

f«.p + (3iH + SCr)] - [E - VCrDljy = 0 C5)

This remembers the eq. Ca) of RMFA. Now, however, the optical
potentials S and V are complex quantities.

Often it is customary to eliminate the small components
of the Dirac spinor in eq.(5). One then obtains, without
loss of physical insights, the Schrodinger equation with
central and spin-orbit potentials. This procedure gives [73

'ar(r2rzA(r3'ar(r "^]j (6)

and

where
ACr)= [M +SCr) + E - V(r)]/CE + M) C8)

As one can see the explicit nonlinearities and energy
dependencies of the Schrodinger optical potentials IL__ and
U s o do occur in this approach, even if the scalar and vector
Dirac potentials S and V are energy independent. In
addition, the spin-orbit potential of the conventional model
arises naturally from reduction of the Dirac equation to
2-component Schrodinger form.
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3.2 Construction of real parts of Dirac potentials by using
RKFA fields

To utilize the results of the Sec. 2 we assume that the
relativistic scalar and vector potentials are given by the
bound-state relativistic mean meson fields. However, since
the nucleon finite-size effects are neglected in the RKFA,
the potentials really entering into the Dirac equation are
determined by folding over a suitable single-nucleon form
factor F(r). One may write

SRCr)= Jdr'.g^iO.FCIr-r'P C9)

for the real part of scalar potential, and

VRCr)= Jdr' (gw«Cr) + l/2.T3gppCr)].FC |r-r' |) CIO)

for the real part of vector potential.
The discussion of possible forms of the nucleon form

factor F is beyond the scope of this work. The detailed form
of FCr) is, however, not very important, as long as the
nucleon rms radius is approximated. Now it is almost
commonly accepted that the nucleon rms radius Cprecisely,
the baryon rms radius of the nucleon) should be smaller than
the typical electromagnetic rms radius of the proton which
is 0.85 fm.

In this work we have used the nucleon form factor of a
Gaussian form

F(r) = -137273 e xP[~ r 2 / t 2] C11)

with a range t=0.56 fm. This corresponds to the nucleon rms
radius of 0.69 fm. This range parameter has been obtained by
fitting the neutron elastic scattering on the Ca nucleus
at 19 MeV and has been used also for other nuclei and
energies.
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4. Analysis of Experimental Data

The aim of this work is to test the Dirac approach to
the low-energy neutron-nucleus elastic scattering and the
usefulness of the RMFA constraints on the real parts of the
Dirac optical potentials.

To facilitate the comparison with previous
nonrelativistic studies we have transformed the Dirac
equation (5) to the Schrodinger form. The real central and
spin-orbit potentials have been obtained by eqs. (6) and (7)
using the folded RMFA scalar and vector potentials. These
were scaled by factors Xs and \y, respectively, to account
for a possible energy dependence.

The effective Schrodinger central imaginary potential
has been taken as a sum of conventional volume ancj surface
terms

UjCr) = (Wv - 4aIWD^j:].f(rI,aI) , C12)

where the symbols have their usual meaning. The form factor
f(r,a) is of the Woods-Saxon type.

The model thus contains a total of six free parameters
which were varied to obtain fits to experimental neutron
elastic scattering data for each energy and each target.

We considered 40Ca, 54Fe and 208Pb targets at energies
from 8 to 40 MeV.

The final values of parameters are listed in Tabs. 1-3.
In Figs. 1-3 we show some representative results of neutron
elastic scattering on the nuclei considered. As we see the
acceptable fits to the data for all nuclei have been found.
The quality of fits as measured by * /N is comparable with
results obtained by the conventional Schrodinger
phenomenology. This indicate that the procedure used for the
construction of the real parts of Dirac optical potentials
is reasonable.

Our primary concern in the present paper is the
behaviour of the scaling factors A.s and Xy. We left out,
therefore, the discussion of the imaginary optical potential
parameters. In Fig. 4 we show the unsealed real parts of
vector and scalar potentials for the Ca nucleus as
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TABLE 1: Optical model parameters for cuoPb + n

CMeV)

7.75
20.0
22.0
24.0
30.3

40.0

0.673

0.761

0.723

0.777

0.708

0.694

0.626

0.719
0.677

0.738

0.663

0.649

-wv
(MeV)

0.00

1.18
1.30

2.04

4.28

8.50

(MeV)

7.02

8.47
8.34

7.60

6.39

2.38

rI
Cfm)

1.249
1.185
1.246

1.243

1.227
1.274

aI
Cfm)

0.440
0.456
0.476

0.441

0.475

0.470

15.0
11.9
12.2

29.1

7.6

16.6

Exp. data
[Ref]

[9]
[ 10]
[10]
[103

[11]

[11]

TABLE 2: Optical model parameters for Ca + n

En
CMeV)

9.91
11.91
13.91
19.0
21.7
25.5
30.3

40.0

0.725

0.691

0.716
0.673

0.719
0.702
0.702

0.693

0.673

0.632

0.655

0.629

0.669
0.653
0.651

0.663

WV
CMeV)

0.00

0.00

0.00

0.00

0.00

0.52
0.35

2.76

CMeV)

10.51

5.88

9.56

10.30

8.47

9.61
8.29

4.71

rI
Cfm)

0.827
1.151
1.282
1.106
1.187

1.161
1.198
1.256

aI
Cfm)

0.449

0.560

0.408

0.488

0.566

0.526

0.552

0.543

*2/N

1.70
0.85
0.78
5.77
8.63

4.66
2.85
11.6

Exp. data
[Ref]

[12]

[12]

[12]

[13]

[13]

[13]

[14]

[14]

54,TABLE 3: Optical model parameters for Fe + n

En
CMeV)

W WV WD r I a I
CMeV) CMeV) Cfm) Cfm)

Exp. data

[Ref]

7.96 0.704 0.657 0.60 13.20 1.021

13.92 0.711 0.667 2.52 6.38 1.209

20.0 0.687 0.640 2.22 7.20 1.249

26.0 0.706 0.664 1.13 8.35 1.132

0.386 6.62 [15]

0.552 4.18 [15]

0.495 9.20 [16]

0.547 10.30 [16]
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obtained by folding the RMFA fields with the Gaussian form
factors. The results for other nuclei are similar. The
dependence of the scaling factors for the scalar and vector
potentials on energy are shown in Fig.5 and Fig. 6,
respectively. We see that these scaling factors show no
significant energy dependence. In addition, they seem to be
the same also for all three nuclei involved in our analysis.
These are very encouraging results. This is an indication
that one may construct by this way the reliable global
optical potential parameter set (at least for real
potentials). The procedure used also provides the link
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Fig. 7: The effective real central potential Csol id line)
compared to the phenomenological one (dashed line) for Ca.
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Fig. 8: As in Fig. 7 for the spin-orbit potential.

between the nuclear structure RMFA calculations and the
Dirac CSchrodinger) optical model phenomenology.

The average values of the scaling factors Xs and Xy are
0.709 and 0.663, respectively. Thus the strengths of the
real scalar and vector potentials to be used in the
relativistic scattering calculations are damped by about 30%
in comparison with the strengths used in the RMFA. These
findings agree well with the results of S. Hama et al.[83,
where a similar approach has been used to study the proton
elastic scattering at intermediate energies. This damping
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may be probably resolved by simultaneous fitting of both the
ground-state and scattering problems together.

At the end of this section we compare the effective real
central and spin-orbit potentials as obtained by the eqs. (6)
and (7) with the phenomenological terms obtained by the
conventional optical model analysis. This is done in Figs. 7
and 8 for the case of 40Ca at 19 MeV. We see that the
effective potentials correctly reproduce the
phenomenological terms both in character as well as in
absolute values.

5. Summary

We have shown that Dirac optical model potentials, real
parts of which are constrained by the relativistic mean
field calculations, may be used for reliable description of
neutron elastic scattering also at low energies. The model
has been tested on Ca, Fe and ^uoPb spin-zero nuclei.
The results indicate that scaling factors for real parts of
Dirac potentials are essentially energy independent. This
opens the possibility to construct a reliable global
parameterization of Dirac optical potentials.
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A B S T R A C T

The significance of uncertainties on the choice of neutron, proton and

alpha-particle transmission coefficients and level density models for the

calculation of threshold reaction cross-sections, particle emission spectra

and angular distributions is analysed with TNG and GNASH-codes taking

Fe and Nb as examples. Both the proton and alpha emission

spectra show some sensitivity to level density changes, but these and other

minor reaction channels can be rather sensitive to other effects. Optical

model parameters for a-particles seem to be not satisfactory and all the

relevant experimental information available should be analysed to obtain the

respective parameters.

Introduction

One of the tasks to be solved when organizing the International Training

Courses on Application of Nuclear Models for Calculation and Prediction of

Neutron Cross-Sections is which computer codes should be used for this

purpose. At least two criteria can be applied for choosing codes - the

reliability (or correctness of physical assumptions used) and general

availability of the code. Two codes have been chosen from this point-of-view

- GNASH and TNG. These codes were put into operation on PC - TNG in the

MS-DOS system and GNASH in OS/2.

The first experience in running these codes will be presented here, with

particular emphasis on impact of uncertainties in input parameters on

calculated neutron cross-sections, including the uncertainties in optical

potential parameters. The unusual energy dependence of neutron optical

potential parameters in the low energy region is possibly the most interesting

development of the optical model which has been established over the last few

decades.
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This paper takes the Fe and Nb-nuclei as an example to

investigate the significance of uncertainties in the choice of neutron

transmission coefficients for the calculation of threshold reaction

cross-sections, particle emission spectra and angular distributions in the

incident neutron energy range up to 35 MeV.

From the relatively large number of different exciton models that have

proved successful, we have selected Fu's formulation [1], which is attractive

because it attempts to give a unified description of the compound and

precompound stages of the reaction, with allowance for conservation of angular

momentum.

The simplest Fermi gas models [2-5] as well as more systematic

approaches [6, 7] were used to calculate the level density.

The Fu method [8, 9] was used to obtain a unified description of level

density for both the compound and precompound stages of the reaction.

Two free parameters, a and D, similar to the corresponding parameters in

the back-shift Fermi gas model, are used in the state density formula.

However, summation for all possible particle-hole states leads naturally to a

one-fermion level density formula, whereas the parameters a and D in the

systematics of Dilg [4], for example, were obtained from experimental data

analysis using a two-fermion level density formula. Traditional level density

systematics are therefore not accurate enough for calculation of the

parameters a and D.

We have taken the values of a and D from Ref. [10], obtained from

systematic analysis of experimental data according to the one-fermion model.

For example, we have a = 5,44, D = 1,22 for Fe, instead of the values from

Cook's systematics [3] of a = 5,936, D = 0,75, or from Dilg et al. [4]:

a = 5,998, D = 0,749.

The analysis includes the neutron optical potentials that are most

typical and most widely used in practical calculations, i.e. those of

Becchetti-Greenlees [11], Wilmore-Hodgson [12] and Rapaport et al. [13], which

should by definition be appropriate to describe a wide range of nuclei over a

broad energy range. We can compare the results of calculations using such

potentials with results obtained from the Arthur-Young potential [14],

optimized over a narrow range for the case of Fe, and a potential in which

the neutron optical potential geometry also takes account of the energy

dependence in order to give a consistent description of both weakly bound

single-particle states in the shell model, and scattering at low

energies [15]: rR = 1,315 - 0,0167 E, aR = 0,663 and all the other
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parameters are taken to be as in [13]. The potentials in Refs [11, 16] were

used for protons and in [17, 18] for alpha-particles.

If we confine ourselves to the total cross-section (a ) data, then

there is no need to include an energy dependence of the potential geometry

parameters which is unusual for traditional parameterizations - it is

sufficient for E < 5 MeV to increase the depth of the well by ~ 24% (for

example, in the case of Ni, to take V = 59,73 -0,76 E). However,

taking account of a wider range of data (differential elastic and inelastic

scattering cross-sections, level excitation functions) makes it necessary to

increase the potential well radius with a decrease in the energy of the

incident neutron. A modification of traditional parameterizations to take

this fact into account solves the problem of extrapolating the parameters of

the optical potential to the low energy range. It has been shown that, in the

case of the iron group of nuclei, "anomalous" potential geometry shows up in

the range E £, 5-7 MeV [15]. It would be logical to expect a similar

"anomaly" in the threshold reaction cross-section calculations for the (n,2n)

and (n,p) reactions and so on, which, as Young has shown [19], are sensitive

to the values of neutron transmission coefficients at low energies.

A preequilibrium, statistical nuclear-model code GNASH [29] was used for

calculation of reaction and level cross-sections and spectra of neutron,

gamma-ray and charge-particles. It became possible to put into operation

GNASH, originally developed on CDC 6600 and CRAY 1, on a personal computer

PS/2 using the OS/2 system.

Results and Discussion

Figure 1 compares various OP (optical potential) parameterizations for

calculations of a _ for Fe. As we can see, uncertainties in the
n2n

choice of the OP parameters may lead to an error of ~ 25% in the final value

of a for E 2 14 MeV. Moreover, the potentials that are most

reliable in the E > 14 MeV region, at going to lower energies give values

of a - that are too high. At the same time, potentials of the type in

Ref. [14], although producing the best results for calculations of a „
n2n

at E < 14 MeV, are scarcely suitable at higher energies. It should also

be remembered that they are optimized over too narrow a range, which means

that there are significant errors in the calculations even for near neighbour

nuclei. The situation here is quite similar to what we used to find in
calculating 0^1, n at [15], and so it would seem natural to

dQ

171



56Fe(n,2n)

0 6-

0 5-

0 iV-

0 3-

0 2-

0 1 -

3 Wtlmore,
Hodgson [16]

2 Rapaport- [17]
5 Becchetti,

Greenlees [15]
4 [18]
1 [19]

12 13 14

Fig. 1a
15 E.MeV

0.8-

0.7-

0.6-

0.5-

0 4-

0.3-

0 2 -

0.1-

5 Becchetti, Greenlees [15]
2 Rapaport- [17]
3 Wilmore, Hodgson [16]
* [18]
1 [19]

12 13 14 15 16 17

Fig. 1b
18 19 20 En,MeV
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5 -..- Becchetti-Greenlees [11], 4 ... Arthur-Young [14],
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adopt the same method for "correcting" the traditional global

parameterizations with a view to possible extrapolation to the low energy

region. The results look promising (solid curve in Figs. l(a), (b)).

In this connection it is imperative to recall that in calculating

threshold reaction cross-sections, a further problem arises - in addition to

the uncertainty in the neutron transmission coefficients - namely the choice

of level density parameters.

We can take the neutron optical potential in the form given in

Ref. [12] for example, and then see how various approaches to the selection of

level density parameters affect the calculation of a_ .

Figure 2 shows that the maximum differences do not exceed 10% and that

the errors are less than those resulting from an incorrectly chosen optical

potential. However, there remains the problem which set of parameters to use.
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Fig. 2.

12 13 14 15 16 17 18 19 20 En, MeV

A comparison of experimental and theoretical data for

a ( Fe). The level density parameters used:

5 ... Gilbert-Cameron [2], 3 Cook et al. [3],

4 Su et al. [5], 2 -.- Dilg et al. [4], 1 [7]

No firm conclusion can be drawn from a comparison of calculated and

experimental data for a 9 . The true answer is masked by the additional

uncertainty, in the optical potential: the fact is, we are dealing with the

combined contributions of two factors which are very difficult to separate.

We shall therefore assume that the traditional Fermi gas model is too

crude an approximation, and although in the case of Fe the discrepancies

between different level density models are small (solid curve in Fig. 2, is

obtained using the method by Ignatyuk et al. [6], intermediate value between

Cook et al. [3] and Dilg et al. [4]), we have used [6] as a basis for

furhter calculation (all calculations in our paper, including Fig. 1, allow

for the energy dependence a (U) ).

The sensitivity of the neutron emission spectrum (incident neutron

energy 14 MeV) to the selection of neutron optical potential parameters is

shown in Fig. 3.

In spite of the wide spread of experimental data for the soft

(equilibrium) part of the spectrum, one firm conclusion may be drawn: the

potentials which give excessively high values of a , and a „ have a

similar effect for the process we are now considering, which is of course

simply and easily explained. The situation is less clear for the rigid part

of the spectrum - the differences between parameterizations are weaker against

a background of broadly scattered experimental data.

In the low energy region we can opt for the potentials in

Refs. [14, 15]. The high energy part of the spectrum is determined by rapid
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da rob
dfi'MeV

10

F i g . 3 .

, MeV

Neutron emission spectrum for incident neutron energy
56E = 14 MeV forn
Fe. The potentials used: 1 [15],

2 [13], 3 [12], 4 [14]. Experimental data from the Vonach

compilation.

direct processes at discrete levels. Here we may note the 7-9 MeV range, in

particular, where - if we can go by the latest experimental data of

Takahashi - there may be a limitation on the validity of the exciton model:

here two-phonon excitations of many different multipolarities must be taken

into account. However, the exciton model has an arbitrary free parameter K
2

which defines the /M/ -square of the matrix element for intranuclear
3

transitions. All calculations in Fig. 3 were made with K - 400 MeV .

Figure 4 shows that the rigid part of the spectrum is very sensitive to
! • 3

the value of this parameter, and the choice of a value K = 200 MeV

facilitates agreement with the experimental data over the entire energy

interval.

The relationship between K and the approximations used for state

density in the exciton model must be considered. Accordingly, the value which

we obtained for K is correct only if Fu's method [8, 9] is used for the state
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Neutron emission spectrum for incident neutron energy
56Fe as a function of K = 200, 400,

tron optic

the form given in Ref. [12].

E = 14 MeV for

700 MeV . The neutron optical potential was selected in

density calculations to ensure proper consideration of nuclear

characteristics. Thus the question whether K = 200 MeV can be regarded as

a value with universal validity - i.e. applicable to a wide range of nuclei -

requires further investigation.

If we consider the substantial contribution of (n,np) and (n,pn)

reactions to the total proton yield and the increased sensitivity in the soft

part of the calculational spectrum to the choice of neutron optical potential,

we may expect the proton emission spectrum to provide much additional, useful

information.

Figure 5 shows a calculated proton emission spectrum for an incident

neutron energy of E = 1 4 MeV (the parameterization from Ref. [14] was used
n

for protons). As we can see, in the proton spectrum, the differences between

neutron OPs emerge even more clearly than in the neutron spectrum.

The experimental value for total proton production according to

S.M. Grimes et al. [21] is 190 ± 22 mb. The various neutron OP
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Fig. 5b
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Fig. 5a

(a) Proton emission spectrum for incident neutron energy

E = 14 MeV for 56Fe.
n

Neutron OP - 1 [15], 2 [13], 3 [12], 4 [14], 5 [11],

proton OP [11].

(b) 1 - neutron OP [12], proton [11], K = 400 MeV3

2 - neutron OP [12], proton [11], K = 200 MeV3

3 - neutron OP [12], proton [16], K = 400 MeV3
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parameterizations produce the following values: Wilmore-Hodgson [12]:

158,36; Becchetti-Greenlees [11]: 161,44; Arthur-Young [14]: 164,04;

Rapaport et al. [13]: 181,82; [15]: 198,46 mb, for K = 400 MeV3. For
3

K = 200 MeV all the figures shown above should be reduced by

approximately 10 mb.

If we compare the results given by the potentials in Refs [14, 15] (for

the neutron spectrum they were approximately equal), then those in Ref. [15]

are clearly preferable. Let us turn our attention to the main discrepancy in

the form of the proton spectrum. Although the potentials in Refs. [15] and

[13] differ only slightly from the point of view of the total proton

production given (the difference is more significant for the neutron

spectrum), the structure of their proton spectra is fundamentally different.

Potential parameters from reference [15] give only a small maximum around

E = 2 MeV and a main peak at E = 5 MeV, whereas from Ref. [13] the

picture is quite the opposite. S.M. Grimes et al. [21] carried out an

experiment with an energy resolution of 500 keV, but a further experiment is
i

needed to establish a physically substantiated energy dependence for the

neutron OP parameters. We may note that in the case of the proton spectrum

the uncertainty in the selection of the proton optical potential parameters

adds to the total error. For example, the use of the Wilmore-Hodgson [12]

neutron potential with the Perey-Perey [16] proton potential (instead of the

Becchetti-Greenlees proton potential [14]) gives a total proton production of

137.11 mb (see Fig. 5(b)), but even against this background we may conclude

that energy dependence of the geometry should be included in the neutron OP.

The calculation of double differential cross-sections

The method of calculating double differential cross-sections suggested

by Fu and Plyujko [22, 23] is based on an entirely valid observation: in at

least two limiting cases, definite conclusions can be drawn concerning the

phases. After a sufficiently large number of collisions within the system,

leading to the formation of "holes", a particle forgets its previous history

entirely and the random phase approximation becomes valid. In contrast, the

second limiting case, h = 0, corresponds to fully correlated phases. All

really occurring processes are located somewhere between these two limiting

cases, and they can be taken into account by introducing a random correlation

coefficient C which takes values of C = 0 for h = h and C = 1 for h = 0.

The main problem with the Fu model [24] is how to choose the

parameter C. We can take, for example, C = 0,5, as in Refs [23, 25]. As we
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Fig. 6. Angular distributions of neutrons emitted at E = 1, 3, 5,

6, 7 and 9 MeV for incident neutron energy E = 14 MeV for
5 6

Emission energy E = 1 MeV; 1 - Fu model, neutron OP [15],

solid curve C = 0.5, dotted curves C = 0, C = 1.0;

2 - neutron OP [11]; 3, 4, 5, 6 - calculation according to

the systematics of C. Kalbach [26], d°^- IE = 1 MeV,
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Fig. 6. calculated with neutron OP [15]; curves:' 3-fmsd = 1.0;

4-fmsd = 0.5; 5-fmsd = 0 and the separation energy of two

neutrons, S , is taken into account;

curve 6-fmsd = 0, the separation energy of only one neutron,

S , is taken into account. The neutron OP from Ref. [15]

is used in all calculations.

Neutron emission energy 7 MeV: the dotted line shows the

calculation according to Kalbach systematics [26];

fmsd = 0.5, S1 was used.

Neutron emission energy 9 MeV; 1 - Fu model, neutron OP

[15], C = 0.5, K = 400 MeV ; 2 - the same as 1, except

that K = 200 MeV3.

The experimental data in the figures are taken from Ref. [27]

The signs • and A mean, respectively, with and without

corrections for multiple scattering.

can see, in the emitted neutron energy interval ( 4 - 7 MeV) this "universal"

value of C gives good agreement with the experimental data. The calculation

results are scarcely affected by the various sets of neutron OP parameters.

The shape of the angular distribution in this case is midway between full

symmetry in relation to 90° (the case of the compound process C = 0) and a

pronounced peak further ahead (C = 1,0, direct process). At the transition to

higher energies it is naturally to be expected that the existing uncertainties

would be reflected in the rigid part of the neutron emission spectrum. At

9 MeV we see both forward and backward peaking, as before, in the angular

distributions, and the value C = 0.5 is therefore acceptable. The value

K = 200 MeV , which gives the best description of the rigid part of the
3

spectrum (instead of K = 400 MeV ), is also preferable for the description

of angular distributions.

The situation is more complicated for E < 4 MeV. Firstly, in this

case Takahashi's experimental data reveal an isotropic distribution in

relation to 90°; this corresponds to a purely compound process, and therefore

C should be taken as 0. At the same time the sensitivity of the final

calculation results to the specific value of C falls off sharply, as we can

see. Secondly, it is precisely at low energies that the emission of secondary

neutrons becomes significant, and this, by definition, is not considered in

Fu's formalism. No variation in the model's free parameters can compensate

for this defect. Thus Fu's method requires further development in two areas if
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it is to be applied to a wide energy range: the inclusion of secondary

neutron emission and parameterization of the constant C as a function of the

number of collisions in the system, which would give it a clear physical

meaning. Let us compare the results given by the rather complex Fu-Plyujko

theory with the predictions of the much simpler systematics of C. Kalbach

[26], according to which:

d2g - _1_ ( da ) a [Cos h (a Cos 0) + fmsd-Sin h a(Cos 9) ],

dedfl 4ir de Sin h(a)

where in our case a = 0,04 la + l,8»10~6(la)3 + 3,35»10~7<la)4, la = E + Sn,

E is the incident neutron energy, S is the neutron separation energy, fmsd

is the multistep direct (MSD) fraction in relation to the multistep

compound (MSC), i.e. the equivalent of the parameter C in the Fu model. In

the case where E = 1 MeV fmsd = 0 naturally gives the best agreement. The
n

separation energy of two neutrons, S =20,5 MeV, should be taken as Sn

instead of the separation energy of a single neutron, S = 11,2 MeV.

In the case of E ~ 7 MeV, excellent agreement is obtained with

f = 0,5, and the choice between S. and Sn is not as important as at low
* ' 2n in

energies; indeed, both lead to angular distributions within the limits of

experimental error.
When the Kalbach systematics are used, the uncertainty in the

calculation of ( ° ) acquires great importance: this uncertainty, as we
de n

have shown, is particularly large in the soft and rigid parts of the

spectrum, so that a correct choice of neutron OP parameters is clearly

important.

93
Nuclear model calculation of data for neutron-induced reactions on Nb in

the energy region up to 35 MeV
93Test calculations were carried out for Nb using the code GNASH.

Niobium was selected to make it possible to compare present calculations

with a recent revision of previous statistical model calculations made by

Strohmaier [28].

The calculations were made for neutron, proton, cc-particle and

y-channels. The level density models used were those of Ignatyuk [6] and

Gilbert and Cameron [2].
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Fig. 7.
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Comparison of neutron emission spectrum for incident neutron

energy E =14 .4 MeV for

STAPRE.

93Nb calculated using GNASH and

The neutron emission spectrum indicates no sensitivity to level density

changes (Fig. 7, 8). It is understandable as neutron emission channels

dominate the statistical model calculation of both partial and total widths

and thus high level density changes produce little impact on this ratio.

This was also observed by Arthur [29].

From Fig. 7-10 it can be seen that the neutron channel of the reactions

can be described quite well and there is very good agreement between

calculations made with STAPRE [28] and GNASH [20]. GNASH calculations

support the observation made in [28] that the (n,2n) cross-section data of

Frehaut [30] should on average be 8% higher. From Fig. 11 one can see that

the Hauser-Feshbach model with the pre-equilibrium correction, such as

GNASH, may give results which are very close to those obtained with more

unified models for neutron emission spectra [31].

The total gamma-ray emission spectrum can be reasonably reproduced by

calculations (Fig. 12) and a similar lack of sensitivity to the chosen level

density models up to 10 MeV is displayed in Fig. 13. The difference in

gamma-ray spectra in the energy region above 10 MeV is a factor of two in

the case where two level density models are used ([2] and [6]).
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Fig. 11.
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Outgoing neutron energy (MeV)

Comparison of neutron emission spectra for Nb calculated

by GNASH code with FKK calculations [31].

Results of calculations of proton emission spectra at 14 and 35 MeV

neutron incoming energies are shown in Fig. 14-16. A rather high

sensitivity of proton emission spectra, in particular in the energy region 4

to 9 MeV, to level density models can be seen. The difference in using

Gilbert-Cameron [2] and Ignatyuk [6] models is more than a factor of two.

Experimental information on proton emission spectra can be described using

the Ignatyuk level density model and proton 0M Perey [16]. Parameterization

of Becchetti and Greenlees [11] for the proton OM potential leads to a

slightly higher value (** 10%) than [16]. The same level of sensitivity to

the level density can be seen at 35 MeV neutron energy.

Figures 17-20 give the results of calculations of a-emission spectra

and (n,oc) cross-sections. It can be seen that both MacFadden et al. [17]

and Huizengo and Igo [18] optical potential parameters for a-particles

(curves 1 and 5 on Fig. 17) underestimate a-spectra and (n,<x) cross-

sections by a factor of two (using the Ignatyuk level density model).
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Application of the Gilbert-Cameron parameterization [2] may improve the

agreement but at 14 MeV only, as at 35 MeV there is practically no

sensitivity to level densities. The increase of the diffusibility values

(from aR = 0.52 fm to 0.70 fin) has allowed good agreement between the

calculated and experimental (n,a) cross-sections and a-emission

spectra. But still the problem remains concerning the description of

experimental data on the cc-particle reaction cross-sections as well as

(<x,n)-reaction cross-sections as they are greatly overestimated using the

diffusibility values adopted for the (n,a)-reaction [32]. The same

conclusion on the necessity to increase the diffusibility parameter was

reached in [32] (a^ = 0.64 fm for Fe) and [33] (a = 0.80 fm for Fe).

The optical model parameters for a-particles do not seem to be

satisfactory and all the relevant information available should be analysed

to extract the respective parameters.

Dependence of secondary neutrons, protons, alpha- and gamma-spectra on

incoming neutron energy is presented in Fig. 21-24. The most significant

contribution to the total gamma-spectrum at 14 MeV is due to (n,2ny),

(n,n'y) and (n,py)-reactions to the soft part of the gamma-spectrum and

the (n,y)-reaction to the rigid part.

Conclusions

1. Both the proton and alpha emission spectra show some sensitivity to

level density changes, but these and other minor reaction channels can

be rather sensitive to other effects resulting from optical model

transmission coefficients, pre-equilibrium and direct reaction models,

angular momentum transfer, etc.

2. To improve the confidence of cross-section calculations it is necessary

to have input from other areas such as higher energy neutron and proton

induced reactions.

3. Optical model parameters for a-particles do not seem to be

satisfactory and all the relevant experimental information available

should be analysed to extract the respective parameters.

4. A phenomenological level density model by Schmidt et al. [34] needs to

be included in applied calculations and its predictive power should be

tested.
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ISOTOPIC EFFECTS AND REACTION MECHANISMS INDUCED BY FAST NEUTRONS

IN THE MASS RANGE A = 50

M. Avrigeanu and V. Avrigeanu
Institute for Physics and Nuclear Engineering

P.O. Box M6-6, Bucharest, Romania

Abstract

A test of generalized 6DH pre-equilibrium emission model and
Hauser-Feshbach statistical model predictions across the valley of stability,
in the mass region A - 50, has been performed. Both the absolute cross
section values and the "steepness" of the isotope trend have been obtained in
good agreement with the experimental data. By using the calculated cross
sections, the fast neutron reaction isotope effect has been discussed. The
applicability of the generalized Qgg-systematics of deep inelastic
collisions between complex nuclei has been extended to fast neutron reactions.

1. Introduction

The significant improvements made in recent years in the prediction and
interpretation of non-compound contributions in fast neutron induced
reactions as well as the availability of many new experimental data have
led to the necessity to perform re-evaluations of fast neutron reaction
data for structural elements and isotopes (Fe, Cr, Ni and some others)
most important for fission and fusion reactors. The pre-equilibrium and
statistical emissions from the composite nuclei formed in these reactions
are rigourously described by the master-equation exciton model [1] or the
quantum-mechanical theory of Feshbach, et al. [2]. On the other hand,
semiclassical pre-equilibrium emission models coupled with the Hauser-
Feshbach statistical model have been proved valuable in the analyses of
large experimental data bases. The unitary account of a whole body of
related experimental data for isotope chains of neighbouring elements
(e.g., Cr, Fe and Ni [3]), over a large incident energy range, has
increased the predictive capability of these calculations.

Complementary analyses of cross section values at an incident energy of
14.7 MeV are able to provide both: (a) tests of model predictions across
the valley of stability [4], a large experimental data base existing at
this energy, and (b) unknown cross section prediction with higher
accuracies, relative to gross systematics of the isotope effect [5].
These are also goals of this work, following a previous analysis [3] of
consistent pre-equilibrium emission and statistical model calculations of
(n,p) (n,a), and (n,2n) reaction cross sections for 50,52,53cr>
54,56pe an<| 58,60fli isotopes, used to validate a realistic approach
for nuclear level densities at excitation energies up to 40 MeV. An
attempt for a better understanding of the importance of various reaction
mechanisms for these processes, as well as of their parameter systematics,
is also performed. Use of more general concepts of nuclear reactions,
like the Qgg-systematics of the deep inelastic collisions between
complex nuclei [6], has been made in this respect.

The nuclear models used in the reported calculations are briefly reviewed
in Sec. 2. A comparison between the calculated and experimental cross
sections at an incident energy of 14.7 MeV is given in Sec. 3. A
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discussion of the isotope effect for the (n,p), (n,a), (n,2n) and
(n.n'p) reactions is presented in Sec. 4, including the validation of the
generalized Qgg-systematics for the fast neutron induced reactions.
Conclusions are given in Sec. 5. Preliminary results were given elsewhere
[7], while the detailed analysis of the consistent parameter set can be
found in [3,8,9].

2. Nuclear Models and Parameters

The Distorted Wave Born Approximation (DWBA) method has been used to
describe the neutron direct inelastic scattering on discrete excited
nuclear states by means of the code DWUCK4 [10], while the phenomenological
pre-equilibrium emission Geometry-Dependent Hybrid (GDH) model [11,12]
(included in the computer code STAPRE-H [13], a local version of STAPRE
[14]) has been proved able to account for the same process in the
continuum [15]. The spherical optical model potential (OMP), used for the
calculation of the transmission coefficients within the pre-equilibrium
and statistical models, and a conventional collective form factor have
been involved. The deformation parameters have been derived from the
results of similar macroscopic DWBA analyses of <n,n') and (p,p') data, by
imposing the condition of equal deformation lengths. Typical excitation
functions of the neutron direct inelastic scattering on the discrete
levels for nuclei of interest are shown elsewhere [3], the uncertainties
due to uncertainty in the deformation parameter being around 15% [15].

Pre-equilibrium emission has been described by using a generalized version
of the GDH model [11,12]. The generalization concerns the inclusion of:
(a) angular momentum and parity conservation [8,17] and (b) alpha-particle
emission [3]. Moreover, the consistency of the exciton state density,
used within the GDH model, and the nuclear level densities involved in the
statistical model calculations has been obtained [18]. The pairing and
two-fermion system corrections to the exciton state density of Williams
[19] have been taken into account in this respect, by using a single set
of two-fermion level density parameters.

The multi-step Hauser-Feshbach-Moldauer model calculations were performed
by talcing into account the neutron, proton, alpha-particle and gamma-ray
competition. The input parameters other than the level density at higher
excitation energies have been determined by a consistent analysis of
various independent experimental data (s-wave neutron strength functions,
neutron total cross sections, (p,n) reaction cross sections in the
sub-Coulomb energy range and (n,p) reaction data in the first 2-3 MeV of
the excitation functions, low-lying discrete levels and s-wave neutron
resonance spacings). The particle transmission coefficients and the other
OM data were calculated by using the subroutine SCAT2 [20] (also included
in STAPRE-H). The same OMPs have been employed in the all three
reaction-mechanism models (DWBA, GDH and Hauser-Feshbach). The use of a
consistent set of input parameters within consistent pre-equilibrium
emission and statistical model calculations finally allowed the
establishing of a realistic nuclear level density approach. It was
obtained [16] by taking into account the semi-empirical Back-Shifted Fermi
Gas (BSFG) model for excitation energies lower than 12 MeV and the
realistic analytical formula of Schmidt et al. [21] for higher
excitations. The interpolation rule, suggested by microscopic level
density calculations, has been obtained through the comparison of the
calculated and experimental excitation functions of the (n,p) and (n,2n)
reactions on 50»52cr, 54»56Fe and 58»60Ni isotopes [3].
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100

50

10

(n,p) reactions at En=14.7MeV

0.02 0 06 014

(N-Z)/A
Fig. 1. Cnmparjson between the calculated (solid lines; and evperi-
mental cross sections fgiven in Tahiti I> for <n,pO reaction induced
by 14 7 MeV neutrons, versus the asymmetry parameter (N-Z)/A of the
target nucleus. The arrows ai the- bottom of the figure correspond
to the asymmetry values for the stable isotopes of Or, Fe and Ni in
eluded in the present anaJysis, those for which there are shown ex-
perimental da<ta being specified E:- per i mental data: *»C313 , o C243 , A
Lb3 , « r.30.1 , O C34"J , <7 C281, « C253 , G CH23 , • T271 , * [261, % [333 .

3. Reaction Cross Sections at 14.7 MeV

First, a good agreement between the calculated and experimental cross
sections has been obtained for all types of the available data. Thus,
cross sections for (n,p), (n,a), (n,2n) and [(n,n'p)+(n,pn)+(n,d)]
reactions measured by the activation technique (Figs. 1-4 and Tables I and
II), as well as charged particle emission data (Table I) have been taken
into account. It can be emphasized that both the present agreement and
the one obtained for the (n,p), (n,a), and (n,2n) excitation-function
data [3] have been found with no further change of the model parameters.
In conclusion, both the absolute cross section values and the "steepness"
of the isotope trend - a very sensitive test of the reaction mechanism
model [4,22] - have been given by the present calculation method with no
free pre-equilibrium emission parameters.

The second point concerns the accuracy of the predicted reaction cross
sections for cases in which experimentally data are missing. In the early
70*s Qaim and Molla [5] stated that small-mass-region studies for series
of isotopes are able to predict unknown cross sections more accurately
than gross isotope-effect systematics. Finally, the difference existing
between the present calculated and experimental cross sections, 3-10%,
could be claimed as the errors of the predicted values.

Under these circumstances the calculated cross sections, taken as an
evaluation, have been used to study the factors affecting the isotope
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Table I. Comparison of calculated and experimental3' cross sections for nuclear reactions induced
by 14.7 MeV neutrons.

Target
(rab> ff(n,xp) <rab> ff(n,oO < m b> ff<n.xe0 < m b>

' calc exp Re£ calc exp Re£ calc exp '
g .,

nuclide calc. exp. Ref. calc. exp. ' calc. exp. Re£. calc. exp. Re£. calc. exp. ' Kef.

SOCr 326.6 747.6 838(100) 69.3 70.3 121.0(85) 52 21.1 24 (5) 34
94 (15) 32 21.9 (5) 55
76.4(9) 53 20.4(11) 51

52Cr 95.4 94(10) 34 167.4 180(25) 39.6 39.8 40.2(36) 52 359 377(31) 56
80( 6) 22 36 (6) 32 361(22) 51
91( 3) 35
82( 8) 36

53Cr 48.5 48(7) 22 53.5 43.2 43.6 45.1(37) 52 877
50(4) 35
46(6) 36
47.2(17) 37

54Cr 20.8 15(4) 34 20.9 16.5 13.4(12) 48 18.0 37.2(30) 52 778
18(3) 22 15.0(16) 49
14(2) 36
16.4(5) 37

54Fe

56Fe

57Fe

58Fe

58Ni

60Ni

6IN1

62Ni

64Ni

306.7

189.3

51.2

26.1

294.4

138.5

89.1

39.2

12.1

308(11)
346(22) '
387( 9)

107.6(31)
110.9(14)
104 (6)

55.4(40)
89 (5)

13.6(7)

38
35
37

40
41
35

42
37

37

295 (23) 43
269 (10) 35
319.5(120)37
292.21 54)44

112(12)
134(11)
131( 4)

92( 7)
84(15)
84(4)

21.0(25)
39.4(15)

22
47
37

22
35
37

22
37

858.2 980(110)

172.4 190(22)

59.0

20.3

929 1008(128)

262.8 325(40)

121.8

42.0

12.1

78.4

43.3

41.7

18.9

111

60.5

64.1

22.4

5.11

84
88
88

21

.0(.75)
(18)
( 6)

.5(20)

125(15)

20
25

3.
4.

(3)
.8(33)

7(2)
26(16)

47
24
37

58

22

22
47

37
51

79

45

46

20

122

77.

77.

74.

5.

.4

.9

.2

.1

0

0

1

18

79(13)

41 (7)
44 (2)

106(17)

76 (12)
69.6(31)

32

32
54

32

32
54

13.3

488

1086

833

36.7

415

1013

769

963

11.9(3) 57
7.9(7) 37

519(41) 58
448(40) 22

35 (3) 22
37.7(28) 44
38.6(21) 59

aThe uncertainty given is in the laat significant figures.

bRef. 32

effects for these reactions, namely the strong dependence of the reaction
cross sections on the target asymmetry parameter (N - Z)/A.

4. Proton and a-particle Emission Isotope Effects

4.1. Generalized Q£^-Systematics

The isotope effect for the (n,p) reaction cross sections of 14 MeV
neutrons was pointed out by Gardner [51,52] as a Q-value effect. In
a systematic study of these data, for medium and heavy mass nuclei,
Holla and Qaim [37] interpreted the isotope effect in terms of the
proton binding energy, which varies as a function of the (N - Z)/A
parameter. On the other hand, Pai et al. [53] showed by means of
statistical model calculations that the large changes in the total
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Table I I . Comparison of calculated and experimental act ivat ion cross
sec t ions for (n ,d)+(n,n 'p)+(n,pn) react ions induced by

14.7 MeV neutrons.

c
Target
nucleus

50Cr

52Cr

53Cr

54Cr

54Fe

56Fe

57Fe

58Fe

58Ni

60Ni

61Ni

62Ni

64Ni

i I H t O. P J ̂  \ I3L M PXX J j

calculated

421.

72.0

5.04

0.107

452

63.1

7.78

0.192

635

124.3

32.7

2.79

0.010

' "to
exp.a *

12(4)

8(3)

10(4)

8(3)

14(6)

11(4)

Sum
(mb)

433

80.0

562.

71.1

649

135

•»..«•<•

syst.b)

175(85)

490(150)

200( 90)

225(110)

l(Sb?) + (n'
exp.

405(65)

12(3)

3.0(8)

11.0(24

619(49)
630(27)
520(50)
656(40)
649(34)

7.3(14

3.0( 4

pn)J

Ref

33

33

22

22

33

33

) 22

45
46
33
44
44

33

) 33

) 33

. 32

. 33

proton emission cross sections between neighbouring nuclei are
accounted for by an "effective" Q-value, given by

Q'np = Qnp + *n - *p

Where 5n and Sp are the depressions of the ground state
energies of the related nuclei produced by pairing and shell
correlations. Subsequently, Pai proved that this quantity is
responsible for the exponential decrease of the cross-section ratio

o r <*'np/<ynon 1551* where c'np is the<J'np/tftnn p p

first-proton cross section, that i s , <j'np = <*(n,py) + a(n,pn)
o(n,2p), <*'nn is the first-neutron cross section, and <xnon is the
non-elastic cross section.

201



100
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10
M ) reactions at En = 14.7 MeV

in 1,1 1,1 U l , ! i ,t
0 02 0.06

(N-Z)/A
0.10

Fig. 2. Same as Fig 1, for the Cn,oO reaction Experimental
0 [ -::93 , A C53 , « f373 , 0 [43] , 0 C343 , • [273 , ̂ [333 .

data:

From a more general point of view, the experimental data for
multinucleon transfer reactions in the interaction of heavy ions with
nuclei have made evident the role of Q-values even for a complex
process. The mechanism of the deep inelastic collisions between two
complex nuclei, considered as two-body processes, is associated with
the formation of a specific double nuclear system, combining the
features of both classical direct processes and compound nucleus
decay. An estimation of the production cross sections for individual
isotopes and, therefore, determination of the direction in which the
double nuclear system evolves, have been allowed by a generalized
Qgg-systematics (e.g., [6] and reference therein). This is
characterized by the logarithm of the cross sections for the
formation of isotopes of a given element lying on straight lines when
the abscissa corresponds to the quantity Qgg - S(n) - 6(p),
where Q g g is the Q-value of the transfer reaction proceeding as a
two-body process with final nuclei in the ground state, and 5(n)
and 6(p) are non-pairing corrections for the transferred nucleons.
Actually, this generalized Qgg-dependence takes into account all
the factors effecting the final excitation energy during nucleon
transfer. The straight lines corresponding to different final
light-product elements have similar slopes, related to a temperature
parameter characterizing the partial statistical equilibrium of the
double nuclear system.
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1 1 1 r

(n,2n) reactions at En = 14.7MeV

HI J L i.i t . w • u . i i
0,02 0 06

(N-Z)/A
0.10

Fig. 3. Same as Fig.l, for the <.n,2rO reactions. Experimental data."
A [433, V [463, ACS], 0 C453, ¥ [443, • C27D, 4 C473 , <> C33D, • C39D .

Following the above-mentioned systematics, it seems possible to
introduce also for fast neutron induced reactions an empirical
effective Q-value given by

(2)

where the A^ are the ground state backshift parameters of the
BSFG level density, corresponding to the nuclei reached through the
respective x-particle emission. Within the statistical theory
the total emission cross section <J'nx for a particle x from a
compound nucleus is

(3)

where rn, Fp and T a are the partial probabilities for neutron,
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101

10°

10-

10-2

10"

—i—i—l—I—I—i—r

- ^(n,n'p)+(n,pn)reactions at
En=14.7MeV

J L 1.1

I—3

<Tn,n'p

- (W

I ' ' J l_

0.02 0.06 0.10 0.02

(N-ZJ/A
0.06 0.10

Fig. 4(a). Same as Fig. 1, for Cn,n'p)+Cn,pn) reactions. The expe-
rimental data shown are got by subtracting experimental (n,d) reac-
tion cross sections from the total C<n,d)+tn,n'p)+(n,pn)3 reaction
cross sections obtained experimentally (full symbols; or based on
systernat ICS L 331 (open circles) There are also shown total activa-
tJon cross sections (open squares) when the corresponding experi-
mental (n,d) data are not l-nown The dashed curves are those esta-
blished by Qaim C333 as characteristically for the C <.n,d)+Cn, n'p) +
<'n,pn)] reaction cross sections of the target nuclei with Sn>Sp
(curve A) and, respectively, Sn<Sp (curve B). Experimental data :
• C48D, AC43D, • C3^1, • C50] Cb) Calculated cross sections of the
<n,n p) reactions (dashed lines) and (n,pn) reactions (dotted li-
nes) at 14.7MeV incident energy, for Cr, Fe, and Ni isotopes (+,x
and • symbols^ respectively) The arrows at the top of figure
indicate the (.N - Z)/A values at. which the (n,n'p) reaction cross
sections become smaller then the correspondent (n,pn) reaction
cross sections.
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proton, and a-particle emission, respectively; it results [54],
by using the constant temperature level density formula,

where Vx is an effective Coulomb barrier, and T is a nuclear
temperature related to the compound-nucleus evaporating system rather
than to a residual nucleus [54]. Thus, the difference Q'np - Qn,n*
of the empirical effective Q-values (2) replaces the former quantity
(1), because it represents, in fact, the difference between
excitation energy regions or, rather, equal nuclear level densities
in the neutron and particle x channels, respectively. The second
meaning seems more adequate. Both the reaction Q-values [56] and the
difference Qn x ~ Qn n' °^ the effective Q-values for the present
(n,p) and (n,a) reactions are shown in Fig. 5. The backshift
parameter values have been taken from the previous analysis [3].
There is evidence of correlation between the trends of the reaction
cross section logarithm and the effective Q-values difference
especially for the (n,p) reactions, with only one exception concerning
the neutron-poorest isotope of each element. In this case the (n,pn)
reaction cross section has higher values (see below), and thus
represents a significant contribution to <*'np.

By using the nuclear model calculation results for the neutron,
proton and a-particle total emission cross-sections, one obtains
the values of the ratio (4) for protons and a-particles shown in
Fig. 6. It could be said that the generalized Qgg-systematics is
valid also in the case of fast neutron induced reactions.
Unfortunately, even if the effective Q-values (2) can be defined for
multiple particle emission reactions, the change of the emitting
compound nucleus during the sequential particle emission seems to
prevent the extension of these systematics beyond the (n,p) and
(n,a) reactions (including most of the respective particle total
emission cross sections).

While the above discussion is devoted to the compound nucleus
contribution, a special attention has to be paid, in fast neutron
reactions, to pre-equilibrium emission. However, taking into account
the advanced pairing correction for the exciton-state density
calculation [58] within the pre-equilibrium emission model, a
significant reduction of this limit is apparent. This pairing
correction being exciton configuration dependent, its value Pn ,
corresponding to the no initial exciton number (configuration
giving the main contribution to the pre-equilibrium emission), is
chosen here to estimate the maximum energy Q - Pn (x) of the pre-
equilibrium emitted x particles. The distinct dependence of this
revised limit on (N - Z)/A, compared to that of the difference
Qn x ~ Q'n n* • *-s als° shown in Fig. 5. The relative
importance of the systematic variation of these two quantities could
be suggested by the presently calculated values of the ratio of the
pre-equilibrium to total emission cross sections, for particle x
(Fig. 7).

The account of the pre-equilibrium emission on the base of the
Q-values may be illustratively used to explain the following point.
There is a quite evident difference between the trends of the
ona (Fig. 2) and the (Qn,a - Qn.n

1)-values (Fig. 5b), respectively,
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Fig. 5. <a> The dependence on (N — Z)/A parameter of the (n,pi
reaction Q - values C56D, the difference Q^iP - Q ^ of the effective
Q values defined in text, and the maximum energy of the pre-
equilibr:urn emitted protons, for Cr, Fe, and Ni isotopes (4,* , • ),
Qop~PnJ[{i). ^b> Same as <!a>, for the Cn,oO reaction.
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tio-1

10-2

(ry*)

Cr isotopes

- - (n,ot)

: : Fe isotopes

. . OV>0

] Mk isotopes

-2 -2 - 4 - 2

Fig. 6. The dependence of the ratio CT^ /̂ H'IY > at 14.7 MeV incident.
energy , where x=nip, on the difference Q^v - Q«)P of the effective
Q - values defined in text, for Cr, Fe and Ni stable isotopes.
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Fig. 7. Ratios of the pre-equi 1 ibnum emission to the total "first"
particle emission cross sections, for protons and <*.-particles, in
in 14.7 MeV neutron induced reactions on the stable isotopes of Cr,
Fe and Ni, versus the asymmetry parameter of the target nuclei.

versus (N - Z)/A. The reaction cross sections show a local maximum
for the odd-A stable isotope of each element, while the Q*-value
differences are rather decreasing. However this behaviour could be
explained by the corresponding maxima shown by the (N - Z)/A
dependence of the pre-equilibrium emission energy limit Q n > a -
Pno<<*) (FiS- 5b).

4.2. The (n.n'p) + (n.pn) reactions

A further comment is required by the (n,nfp) reaction analysis.
Deuteron emission was not considered within the present pre-
equilibrium and statistical model calculations due to its direct main
component. The calculated (n.n'p) and (n,pn) reaction cross sections
are summed with the experimental (n,d) reaction cross sections [23]
and, finally, compared with the experimental or systematic [48]
activation cross sections for the [(n,d)+(n,n'p)-Kn,pn)] reaction
(Table II). Alternatively, to get a sight on the [(n,n'p)-Kn,pn)]
reaction isotope effect, experimental data are gained by subtracting
the (n,d) reaction experimental cross section from the experimental
or systematic cross sections of the [(n,d)+(n,n'p)-Kn,pn)] processes
(Fig. 4a). For some nuclei with higher asymmetry parameters
(53,54Cr> 57F6f 62,64Ni)t o n l y t h e total activation cross

sections are shown in Fig. 5; (n,d) reaction data are missing. The
following supplementary conclusions could be derived, in connection
with the exhaustive analysis of the gross trends in (n,p), (n,d) and
[(n,d)+(n,n'p)+(n,pn)] reaction cross sections made by Qaim [48]:

(a) Unknown cross sections can be predicted by model calculations
with accuracies higher than those from gross systematics.
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0 06 0 08 010
(N-ZJ/A

012

Fig. 8.(a) The Cn,2n) and Cn.n'p) reaction Q-values versus the asy-
rnmetry parameter (N-ZVft of the target nucleus, for the stable iso-
topes of Cr, Fe, and Ni; the same dependece for their difference
(b), as well as for the difference of the corresponding effective
Q-values (c>.

(b) The [(n,n'p)+(n,pn)J reaction cross sections display nearly the
same exponential decrease with the asymmetry increase as the
(n,p) reaction cross sections. Actually, this behaviour results
by summing the two channel contributions with similar trends.
Thus, the (n,pn) reaction channel follows the (n,p) reaction
channel, the sum of the corresponding cross sections accounting
for "first" proton emission which is exponentially decreasing as
discussed above. Moreover, the (n,pn) reaction cross section is
additionally reduced by the increase of proton binding energy
with asymmetry parameter increasing. On the other hand, the
(n,n*p) reaction plays a dominant role for the daughter nuclei
with S n > Sp [48]. The separate calculated cross sections of
the (n,n'p) and (n,pn) reactions are shown in Fig. 4b. Once the
Q-values difference Qn$n'p ~ Qn,2n becomes lower even than
the effective Coulomb barriers (Fig. 8b), the (n.n'p) reaction
cross sections are faster decreasing than those of the (n,pn)
reactions (Fig. 4b). Further considerations could make use of
the effective Q-value difference

(5)

characterizing the comparative population of the n'p and 2n
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reaction channels. Q-values in the right-hand term refer to the
target isotope with one less mass unit. The constant diminishing
of this term (Fig. 8c) is well correlated with that of the ratio

°n,n<p/crn,2n-

(c) In conclusion, the (n,d) reaction cross section - of the order of
10 mb along the valley of stability [23,48] - is not significant
for the lightest isotopes (daughter nuclei with Sn > Sp) but
the most important one for the neutron-rich isotopes
(Sn < Sp). Afterwards, it may be considered as mainly
responsible for the curve B (Fig. 4) characteristic of the
[(n,d)+(n,n'p)+(n,pn)] reaction cross sections for nuclei with
sn < Sp-

5. Conclusions

A test of generalized GDH pre-equilibrium emission model and
Hauser-Feshbach statistical model predictions across the valley of
stability, in the mass region A^50, has been performed. Both the
absolute cross section values and the "steepness" of the isotope trend
have been obtained in good agreement with the experimental data. A
distinctive aspect of these calculation methods, relative to other
semiclassical pre-equilibrium models, is that no free internal parameter
is used for pre-equilibrium emission.

The correlation of the isotope effects of the fast neutron reaction cross
sections with the trend of significative quantities for the statistical
and pre-equilibrium particle emission has been consequently analyzed, by
using calculated cross sections. These isotope effects were largely
studied both experimentally (e.g., [5,37,48]) and theoretically [51-55,
59,60]. A new relation is put into evidence in the present work,
extending the applicability of the generalized Qog-systematics [6] from
heavy ion induced reactions to fast neutron physics. The possibility to
use these systematics to increase the accuracy of the predicted cross
sections has to be confirmed by following analyses of an enlarged basis of
experimental data.

An analysis of the [(n,nfp)+(n,pn)+(n,d)] reaction cross section, also in
connection with the (n,2n) process, has confirmed by means of nuclear
model calculations the previously [48] emphasized importance of the
(n.n'p) reactions for neutron-poor nuclei. On the other hand, the (n,d)
reaction is proved to be mainly responsible for curve B of the Qaim's
systematics.
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A B S T R A C T

A new PC code PCROSS for neutron induced reaction calculations up to 25

MeV incident was developed, where the latest theoretical development in

the model was employed. A combination of exciton model and multistep

direct reaction model parametrization was used in order to describe the

high energy part of the spectra. In the PCROSS code several models for

level density calculations are available. The code includes a subroutine

to generate the input data. In the present paper some calculation

results for (n.n1) and (n,p) emission spectra in the range of 5 to 25 MeV

and for (n,p) and (n,2n) excitation functions up to 20 MeV are shown. A

good description of the experimental data was achieved.

INTRODUCTION

Meeting the nuc lea r da t a needs of the f i s s i o n and fusion t e c h n o l o -

g ies r e q u i r e s a wide use of t h e o r i e s and phenomenological models.

There a re now seve ra l w e l l - e s t a b l i s h e d codes for nuc lear da ta c a l -

culations for structural materials involving statistical and pre-

equi 1 ibrium models. Our aim was to develop a new PC—based user

friendly code for nucleon induced reaction calculations, where the

latest theoretical development in the preequi1ibrium field was

employed.

As is well known, for the proper description of the high energy

tail of the emission spectra the direct contribution should be

taken into account. The combination of the preequi1ibrium exciton

model and direct reaction parameterization should give satisfac-

tory results for the emission spectra and excitation function
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calculations. Therefore, we used the exciton model plus SMD para-

meterization for a theoretical description of the reaction process

In Section I of this paper, we will shortly review the employed

theoretical framework. In Section II some test calculations and

comparison with experimental data will be shown. Finally, we will

give some conclusions and comments about the future work.

I.The exciton model and SMD parameterization

In the PCROSS code a combination of the exciton model [1] and SMD

description of the direct interaction of the incident nucleon with

the low-lying collective states of the target nucleus was

employed. The exciton model used is based on the solution of the

master equation[2] in the form proposed by Cline[3) and

Ribansky[4]. To obtain the numerical solution of the system of the

algebraic equations for T(n), we use the algorithm proposed by

Akkermans, Gruppelaar and Reffo[5], which produces anexact result

for any initial condition of the problem. The preequi1ibrium and

equilibrium spectra can be calculated in the unified form as

follows:

f(Eb> - <SS"P(Elnc) Dab(E
lnc>

where the usual notation is used, and D , (E. ) is the depletion
ab inc

factor, which takes into account the flux loss as a result of the

direct reaction processes. Using the direct reaction cross section

we can calculate the depletion factor in the following way:

For the calculation of the direct reaction contribution to the
dir

inelastic emission spectra, and therefore, of the 0 , the parame-
ab

terization proposed by Kalka et al.[6] was used. According to

this, we can write the direct differential emission cross section

as

p?

214



where T=(4n/3)R3, R=rQA
1/3

Vr>=48 MeV is the potential depth

fik , 0)", are the deformation parameters and phonon energies

of multipolarity A,

) is the penetratio
t

for neutrons in the following way

P (£ ) is the penetration factor which can be calculated
3* ct

PJeJ=4k K /(k +K ) (4)
el a a a cl ct

The delta function in the r.h.s. of equation (3) is replaced by a

Gaussian with an averaging width according to the experimental

data resolution.

For the calculation of the emission rates W,(E,n,8, ) a state den-
D D

sity formula is needed. At present, the PCROSS code uses the

Williams formula[7] where the Pauli correction is calculated in

accordance with Kalbach's method[8]. In addition, one has the op-

tion of using the Fu[9] or Kalbach[10] pairing corrections. We

must ensure the consistency between equilibrium and preequi1ibrium

emission, as was suggested by Fu[9]. Therefore, the level density

parameters tabulated in [11] were employed for all the

calculations. The use of these parameters allows us to avoid re-

normalization of the particle-hole state densities, thus simpli-

fying the calculation algorithm. Perhaps the D parameter syste-

matics of Ref.[ll] doesn't work very well. We should change the D

parameter for some nuclei in order to achieve a good description

of the threshold excitation functions. Employing the adjusted

value of the D parameter from the excitation function an overall

good emission spectra description in the whole energy range was

achieved.

We want to remark that in the state density calculations we set

U(p,h,U) equal to zero when the excitation energy U is less than
2 2

the Pauli energy (P +h )/(2g) for a given configuration. Physi-

cally, this assumption is clear because you cannot have any confi-

guration with energy less than the Pauli energy by definition!

For the alpha and gamma emission rates the Iwamoto-Harada[12,13]

and Akkermans et al.[14,15] formulations were used, respectively.
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For the transition rate calculation we use the parameterization

proposed by Blann[16]. Using this parameterization Machner[17]

deduced the following expressions:

+(E,n)=-j^- fl.4xlO21 E 1—|T 6X1018 E'2]
Ktv1 n+1 J

(5)

(n-D(n-2)ph f lJT(E.n)-
mfp (9-E1)2

In the PCROSS code the additional 3/8 factor introduced by

Gupta[18] was taken into account in the r.h.s. of equations (5).

This factor results from the reduction of a two-component master

equation(i.e. with the neutron-proton distinction) to an effective

one-component equation[18]. Taking also into account the direct

reaction contribution, as has been mentioned above, we obtained an

overall value of 1.3 for the mean free path parameter k _ . The
mip

slight increase above unity is possible if we bear in mind that

effects such as parity and angular momentum conservation are not

considered in the Blann parameterization[14]. These effects taken

together would produce an increase of the nucleon mean free path

in the nuclear matter. The assumed value of 1.3 is in good agree-

ment with the one employed in the hybrid model calculations. We

believe that this is a direct result of the whole correct theore-

tical approach in the state density and transition rate fields,

and also of the account for the direct reaction contribution in

the inelastic emission spectra.

According to the research performed by Akkermans and Gruppe-

laar[19,20] , in the energy range up to 50 MeV the preequilibrium

emission subsequent to primary emission can be neglected. The

PCROSS code uses the Weisskopf-Ewing[21]evaporation model in all

cases to calculate the secondary emission.

II.Results

The calculations of threshold excitation functions (n,p) and

(n,2n) up to 20 MeV incident energy were performed for cobalt and

iron isotopes. For 0c°mp(E) the reaction cross section of the glo-
at)

bal optical potential(Wilmore-Hodgson for neutrons and Bechetti-

Greenless for protons) is used in the parameterized form of the

216



i i i i i l i i i i i I i r i i i

Fe54(n,2n)Fe53

12 1810
j L

18

1000

500 -

: Fe56(n,2n)Fe55
J 4 * 4

: X"T ~~
I /CP a

- / Q

- fi

•, y

: ' C'o5'9(h,2n)c656 ; :
Og / ^ ^ A & 4 AA "—

! / \
t

" * :

: / :

: / :

" A i i i t i i i i

0 14 18 10 14 18

100
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(n,p),(n,2n) excitation
functions for Pe and Co
isotopes.
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Chaterjee et al.[22]. Some adjustment of the D parameters was

needed for a correct description of the excitation function. The

calculated excitation functions are depicted in Fig.la-le. There

is a good agreement with experimental data. For the same isotopes

the calculated emission spectra in the energy range from 5 to 26

MeV are shown in Fig.2a-2f. In this calculation, the previously-

fixed values of the D parameter were employed. The obtained des-

cription of the experimental data in the neutron and proton chan-

nels is good.

Finally, we performed calculations of the emission spectra for

indium. The calculation results are shown in Fig.3a—3e. A good

agreement with the experimental data is obtained within the whole

energy range. In the 14 MeV inelastic emission spectra the SMD

contribution is shown. As can be seen direct contribution domina-

tes the high energy tail of the inelastic emission spectra.
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Conclusions

We have developed the PCROSS program which enables us to use the

exciton model+SMD parameterization to calculate the emission spec-

tra and excitation functions for the neutron induced reactions up

to 25 MeV incident energy. The program lays particular stress on

ensuring that equilibrium and preequi1ibrium emission are mutually

consistent, and on making data input as simple and interactive as

possible. The direct excitation of low-lying collective states is

taken into account by the simple parameterization of Kalka et

al.(6]. Blann's parameterization[16] was used to the calculation

of the internal transition rates. An overall good description was

obtained using the mean free path parameter equal to 1.3. Some

calculations have been performed for (n,n') and (n,p) emission

spectra for 5 up to 26 MeV incident energy and for (n,p) and

(n,2n) excitation function up to 20 MeV. A good description of the

experimental data was achieved. All calculations were carried out

at the PC-AT computer and took only few minutes of computer time.

Future development

Recently, an exact formulation of particle-hole state densities

taking into account the Pauli and pairing corrections[23] was ob-

tained in our group. The corresponding internal transition rates

for the exciton model were also derived[24]. We will try to make

some calculations using this new state density formulation to com-

pare with the currently used Williams formulation[7]. The impact

of the new state density formulation on the alpha emission will be

also studied with the systematic comparison with the new

(n,OC) , (Ot,n) experimental data[25].
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Efforts in Bologna on Quasi particle Level Density Systematics and on
Comparison and Development of Different Approaches to Preequilibrium

Reaction Mechanism

M. Herman, G. Reffo, H.A. Weidenmuller, H. Lenske,
H.H. Wolter, G. Giardina, A. Italiano and
M. Rosetti

A B S T R A C T

We present a summary of activities carried out at E.N.E.A. in Bologna on
the development of the preequilibrium. emission models. We start with the
first application of the Multistep Compound Model in the Heidelberg for-
mulation, which is followed by the Multistep Direct calculations. Next, the
comparison between the exciton and Multistep Compound model by
Feshbach, Kerman, and Koonin is presented. Finally we discuss energy and
isotop dependence of the average single particle level spacing.

1. Precompound reactions in terms of the Heidelberg Multistep-Compbund Theory

(M.Herman, G.Reffo, HA.Weidenmuller)

Modem statistical theories of nuclear reactions1"4* distinguish between the multistep-direct and the
multistep-compound (MSC) mechanisms, the latter describing the composite system on its way
toward formation of an equilibrated compound nucleus. By definition, the MSC mechanism in-
volves only bound configurations embedded in the continuum, yields angular distributions sym-
metric about 90° cm., and is expected to be relevant mostly at relatively low (10-20 MeV) incident
energies. On the contrary, multistep-direct mechanism treats the evolution of the open configura-
tions, yields forward peaked angular distributions, and is supposed to be dominant at higher inci-
dent energies. So far, all MSC calculations5"10' have used the theory of Feshbach, Kerman, and
Koonin1 (FKK). In this paper we present the first results obtained in the framework of an alter-
native approach to MSC processes formulated in Ref.3 to which we refer as NVWY. This theory
is based on a well-defined quantum-statistical input and yields precise definitions of emission and
internal transition widths.

The average cross section connecting channel a and b via the MSC mechanism has the form

mjn

(We have omitted kinematical and angular-momentum dependent factors.) The sums run over all
classes (m or n) of particle-hole excitations. T% is the transmission coefficient coupling channel a and
class m. It is important to realize that T" = YJ"S, is the usual transmission coefficient in channel a,
given by the unitarity deficit of the average'S' -matrix, and thus available from standard optical-
model calculations.

The probability transport matrix nmn is defined via its inverse,

I I ***** 1

^ l )mn = 6mn(2*PmWm + ^m ) ~ ( l ~ Smn)2*Pm Vmn 2*Pn • (3)

Here, V}^ is the mean squared matrix element coupling states in classes m and n, H, = YXp
is the average spreading width of states in class m, and FS" = (2npm)~lY. Ts, is the the averagfe decay
width in class m. "

To calculate PA,, we relate it to the imaginary part of the optical-model potential, parametrized in
Ref.ll as W{t) = ce2 with c — 0.003 MeV-1 , e being the excitation energy of the particle (hole)
above (below) the Fermi energy. In calculating Pi , we average W(z) over the exciton distribution.
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The calculations were performed by means of the statistical model code EMPIRE12' which was
appropriately modified to allow for the MSC mechanism. In summing Eq.l over final channels,
we took rigorously account9* of proper angular-momentum coupling. The calculations were done
for the reaction nNb(n, ri) at a neutron bombarding energy of 14.6 MeV. As input we used binding
energies, target spin and parity, global optical-model parameters13 , and a value g — A112 Mev for
the single-particle level density. Allowing for 12 classes, it was possible to calculate equilibrium
emission of the first neutron within MSC theory and use the Hauser-Feshbach approach only for
the secondary neutrons.

The results of the calculations show a good agreement with the experimental data up to about 8
MeV of the outgoing neutron energy. For higher energies the calculations fell well below the ex-
perimental results showing the importance of the multistep-direct processes. Simultaneously,
our calculations reproduce also proton spectrum emitted in the nNb(nj>) reaction.

We conclude that Heidelberg MSC theory allows for parameter free calculations of the nucleon
spectra, consistent with the experimental results.

1. H.Feshbach, A.Kerman and S.Koonin, Ann.of Phys. 125,429(1980).
2. T.Tamura, T.Udagawa, and H.Lenske, Phys. Rev. C26 379(1982).
3. H.Nishioka, JJ.M.Verbaarschot, and H.A.Weidenmuller, and S.Yoshida, Ann. Phys.
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2. Multistep-direct Contribution to the '3Nb(«X) Reaction

(M.Herman, G.Reffo, H.Lenske, H.H.Wolter)

The forward peaked angular distributions and failure of the multistep-compound model to describe
the high energy tail of the spectra, provide a clear evidence that more direct processes contribute
significantly to this energy region, even at such relatively low incident energies as 14 MeV. These
processes may be treated within so called 'multistep-direct' theories, which are an extension of the
DWBA method to the continuum transitions and account for multiple interaction of the projectile
with the target nucleus. In the present note we report on such calculations performed in terms of
the theory formulated by Tamura, Udagawa, and Lenske1).

We consider 93Nb(n,n') reaction at 14.6 MeV, for which also multistep-compound calculations have
been performed (see contribution to this meeting). We allow for 2 reaction steps each of which is
assumed to creat6 1-particle 1-hole configuration in the target nucleus. To calculate transition
densities we use single-particle wave functions calculated in Wood-Saxon potential and schematic
RPA approach. Strength parameters of the multipole field were chosen to reproduce experimental
energies of the first 0+, 2+, 3~, and 4+ states in MZn which was considered to play the role of a core.
For multipolarity X = 1 transitions the field strength was fitted to the GDR energy.

The results of the calculations describe very nicely high energy tail of the experimental spectra at
various angles. We note, that also the structure in the spectra is approximately reproduced. The
first step dominates at the very end of the spectrum, peaking at outgoing energy of about 12.5 MeV.
At energies below 10 MeV the second step becomes overwhelming. It should be stressed, that such

224



an agreement is only possible if collective effects are taken into account in the transition densities.
Neglecting collective correlations yields not only different energy structure of the spectra but results
in cross sections which are by an order of magnitude smaller.

We conclude that multistep-direct calculations combined incoherently with the multistep-
compound ones provide with a very good description of the neutron induced reactions at low in-
cident energies.

1. T.Tamura, T.Udagawa, and H.Lenske, Phys. Rev. C26 379(1982).

3. Comparison of exciton and multistep compound models

(M.Herman, G.Reffo)

During the last two decades, various preequilibrium models proved to describe processes, that lay
between fast direct reactions and slow compound nucleus decay. These essentially classical models,
considerably contributed to our understanding of the equilibration process, as well as of the reaction
mechanism itself. These models turn out to predict the high energy portion of nucleon spectra
surprisingly well, and became an indispensable tool for many basic studies and applications.

The explanation of the preequilibrium model success is, in our opinion, twofold. First of all, we
trace it to the fruitful idea describing equilibration of the composite nucleus. On the other hand,
experimental data, interpreted with preequilibrium models, do not offer enough information for
testing commonly used approaches unambiguously. In fact, all what is available, are parts of
spectra and inherent angular distributions, laying between two regions dominated by direct and
compound reactions respectively. Both these observables are rather of simple, structureless form,
which does not impose sufficient constraints on the theoretical models, used for their interpretation.
It seems, that most data may be equally well reproduced in terms of different models by 'allowed*
adjustment of parameters, that are always involved even in the so called "parameter free" models.

The most popular semiclassical models are the exciton model (EM) /I-10/ and the hybrid model
(HM) /11-14/. A detailed analysis of the different physical assumptions underlaying EM and HM
has been performed recently /15/ and will not be considered here.

To improve classical preequilibrium models better founded quantum mechanical approaches
/16-23/ have been introduced.

Here, we attempt to compare the widely used exciton model with the multistep compound (MSC)
/17/, the quantum mechanical formulation of preequilibrium decay that has been most frequently
applied 124-29j. We will concentrate on the physical ideas underlying both models, and discuss in
details the cross section expressions, paying not much attention to the obviously different derivation
of. both expressions. We shall try to relate the assumptions, that are physically equivalent but dif-
ferently formulated in the two models. We shall also point out similarities and/or differences in
practical calculations using both models.

The basic concept, common to EM and MSC, assumes that the composite nucleus is formed in a
relatively simple state and proceeds toward equilibrium through a chain of stages with increasing
complexity. Even though, complexity is not specified explicitly in the MSC, it is understood as
number of available degrees of freedom, and exciton number is adopted in practical calculations.
In both models transitions are mediated by the two-body interaction. This leads to the chaining
hypotheses in MSC, or equivalently to the condition regarding the change in exciton number AN2
in EM. There is, however, a well known difference between model space as used in EM and in
MSC. While EM makes no restriction regarding model space, the MSC involves only closed con-
figurations (i.e. those built up only with the nucleons placed in the bound shell-model orbitals).
This difference has an essential influence on the angular distributions. In the EM /8-10/ the linear
momentum in the incoming channel is gradually distributed among excitons, leading eventually to
the loss of the direction memory in the compound stage. In the initial stages, however, the projectile
direction is still favored, which results in the prediction of forward peaked angular distributions. In
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this respect, EM is a classical equivalent of the quantum mechanical models known as multistep
direct (MSD) /17.19-23/. .The important difference is that the latter consider only open.configura-
tions (i.e. those with at least one unbound particle), while EM treats close and open configura-
tions indifferently. As a consequence, one faces a conceptual difficulty in the EM. It is possible
to ascribe certain direction to the wave function in the open space. In this case, we deal with a
scattering-like wave function containing excited nucleus plus nucleon in the continuum. Such a
function extends outside the nucleus and may reveal asymmetry in the configuration space related
to the direction of the nucleon in the continuum. Using such a function in the MSD results in
asymmetric angular distribution. On the other hand, it is unclear how the same result may be ob-
tained in the case of closed configurations, in which all nucleons occupy bound orbitals, with the
wave function vanishing outside the nucleus. Accordingly, MSC process assumes complete loss
of the initial direction memory (except of the angular momentum conservation), that results in
angular distribution symmetric around 90°. On the contrary, the EM follows the MSD treatment
of the linear momentum in the entire model space, including the closed subspace. This should lead
to an underestimation of the backward part of the angular distribution, which is in fact usually
observed.

In the following discussion, we shall neglect angular distributions and splitting of the model space
in closed and open subspaces.

The second important assumption in the EM is the uniform population probability of all accessible
nuclear states in the equilibration process. This implies, that particular structure of the initial and
final states can be, on the average, neglected so that the decay is governed by the density of states.

A very similar assumption is also found in the MSC model. To assure equal population of the states
in the next reaction stage, the average spacings between states in a decaying stage is assumed to be
small compared to the width of the states in the next stage. This condition is referred to as "self
averaging*, and is given in terms of physical quantities, so that its validity may be tested. Alterna-
tively, one could say, that both models are working in a strong coupling limit, so that configurations
are expected to be well mixed (see ref. 15 in the case of EM).

In addition to the "self averaging*, MSC assumes also random distribution of the matrix element
phases, that implies vanishing of the interference terms. Such an assumption is not corisidered in
the frame of the EM, because no explicit averaging is performed. It does not mean, however, that
this assumption is not implicitly included in the EM.

Formal development of both models is obviously very different. The exciton model employs Pauli
master equation to describe the flux flow through different stages. The approach is semiclassical,
time dependent, and makes use of the detailed balance to estimate internal transition and escape
rates. Derivation of the MSC, instead, consists in the calculation of the averaged value of the
squared element of the fluctuating part of the transition matrix. The transition matrix is expressed
in terms of the nuclear Hamiltonian and optical model Hamiltonian, which formally account for
all the characteristics of the system. In the course of the derivation several averaging procedures
are involved. These have been subject to criticisms, as beeing performed not over matrix elements,
for which statistical distributions are well established. The way the averages are performed in MSC
is, however, intuitively convincing; at least to the same extent as EM derivation.

Conservation of the flux in MSC is not trivially fulfilled due to the coupling to the open subspace.
To ensure the flux conservation, one has to assume weak coupling between closed and open sub-
spaces. Naturally, this problem does not arise in the EM, since entire model space is considered.

Our final remark, concerning general formulation of the two models, regards the "never come back"
hypothesis. This assumption is not necessary (but optional) in the EM, because the master
equation takes all possible intranuclear transitions into account. Therefore, the EM provides us
with a unified model for the description of preequilibrium and equilibrium mechanisms. The
multistep compound model makes use of a time independent theory and the "never come back"
hypothesis is never invoked. In fact, transition matrix elements contain propagators, which describe
the transitions to the compound stage and backwards. However, the MSC cross section formula
reveals typical "never come back* structure, that prevents the unified description including equilib-
rium contribution. The latter is included in the MSC formalism somewhat artificially by setting to
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zero spreading width for a sufficiently complicated reaction stage. In order to keep both models
as close as possible, we will use the "never come back* version of the EM for our further discussion.

After this general discussion, let us consider the cross section expressions in both models. We take
the simplest version of EM neglecting angular distributions., In the case of the MSC we adopt
a simplified version, which makes use of the exciton concept to classify stage complexity. It is in
fact, the only version of the MSC, that has been applied in practical calculations. To keep our
discussion as simple as possible, we also assume that target, projectile, and ejectile have no spin.
Accordingly, cross section for the emission of the particle with angular momentum 1 from the n-th
stage of the composite nuqleus with spin J, leaving residual nucleus at excitation energy U and spin
s, is formally written in the same way in both models

H L
I I3 I I F

nJ Z i mJ

where, F&, FJLr, and F ^ are the averaged emission, spreading, and total widths respectively, and uu
stands for the formation cross section of a composite nucleus in the stage n = 1 with specified spin
J. Note, that the EM is usually formulated in terms of transition rates X, which are related to widths
by F = hX. In the Eq.l one may distinguish three factors, with transparent physical meaning. The
first one (from the right) is the, above mentioned, formation cross section. The second one is the
probability of finding the composite nucleus in the n-th stage, after having survived emissions from
the preceding stages (depletion factor). Finally, the third factor is an emission probability from the
n-th stage. Eq. I shows, that EM and MSC, in their versions discussed here, are equivalent to the
extent that widths and formation cross sections can be related to each other in both approaches.

Let us consider the formation cross section first. In EM the optical model reaction cross section
is usually taken. This can be corrected for the loss of flux due to the direct reactions, cither by in-
troducing a multiplicative factor or, more consistently, by using transmission coefficients calculated
in the DWBA or coupled channel approaches. In MSC the formation cross section is expressed
in terms of the strength function for the formation of the doorway states and is given by

<xu = nX(2J+l)2n-~-t (2)

where Ffr is the average entrance width for the configurations in the first stage, and Dy is the av-
erage spacing of such configurations having spin J. These quantities, essentially, may be calculated
directly from the known nuclear Hamiltonian, this being, however, very impractical. Alternatively,
the strength function may be obtained using a technique similar to the one employed for the de-
termination of the escape width (see the discussion below). The latter involves, however, lunknown
strength of the interaction (V,), and depends strongly on the spacing of the doorway states. It is
our feeling, that such a procedure does not meet accuracy required in applications. The third pos-
sibility is based on the observation that strength function under discussion is,approximately equal
to the suitably averaged strength function for the formation of the compound nucleus /30.31/.
Accordingly, predictions of the optical model may be used, and analogy with the EM is recovered.
The only difference is, that the reduction has to take into account also multistep direct processes,
in addition to the direct ones. Such an approach has been followed in Ref.28.

The remaining difference between EM and MSC may only be contained in the emission and
spreading widths, because depletion factor and total width are identically expressed in terms of F£,/
and F& in both models.

Assuming factorization of the spin dependence in the state densities, and using explicit form for the
matrix element of the delta-function interaction, the spreading width in the MSC model is written

mi
(3)

where Xju describes angular momentum coupling, and Yk carries all energy dependence. Note that,
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as compared to Ref.17, we have separated factor \M\2 from Xju. In the case of the ^-interaction,
M factor is proportional to the interaction strength Ve, and to the overlap integral of the radial parts
of the wave functions for the nucleons taking part in a transition. Clearly, this factor corresponds
to the averaged matrix element in the EM. In Ref.32 it was shown, using identity relation for the
Heaviside function, that the factor Yk corresponds exactly to the accessible density of final states,
as used in the EM. Therefore, both quantities are equal when the same state densities are used.
The energy dependent part of the spreading widths are, thus, completely equivalent, if the same
model space is considered in both cases. The difference is found in the angular momentum struc-
ture. The MSC performs the detailed spin coupling of all excitons followed by averaging over initial
configurations and by summation over final ones, that results in a complicated Xki factor. Most
of the EM formulations disregard angular momentum conservation at all. Only some of them
take it into account j'33/, but treat it in a much simpler way, including simply spin distributions in
the state densities. This may be considered the main difference between MSC and EM as Tar as the
spreading width is concerned. It should be mentioned, however, that the J dependence of the X
factor, as calculated in the frame of the MSC, is rather weak /28,34/, therefore is expected not to
affect nucleon spectra to a great deal.

An essential conceptual difference concerns treatment of the escape widths in both approaches. The
EM assumes that the emission from a given stage occurs with a certain rate, which is proportional
to the inverse reaction cross section and to the probability of having the particle with the appro-
priate channel energy. The latter probability is given as a ratio of the state densities. No intrinsic
interaction is involved in the emission process, that reminds similar treatment of the emission in the
compound nucleus theory. On the contrary, in the MSC the emission is always mediated by the
nucleon-nucleon scattering. This scattering may lead to particle-hole annihilation or creation or it
may leave the number of excitons unchanged, thus giving rise to the three so called "exit modes".
These resemble the three possible internal transitions in the EM without "never come back" as-
sumption. This way MSC accounts for the A n = + 1,0,-1 transitions in the emission. In the result
of scattering, one of the nucleons is lifted to the open subspace and is considered to escape the
composite nucleus. Due to the scattering, that precedes emission, whole process can be described
similarly to the damping transition (Eq.3), using explicit expression for the matrix element of the
<5-interaction and accessible state density. Calculating radial overlap integral, we have to keep in
mind, that one of the excitons in the final state is described by the wave function belonging to the
open subspace. This brings the transmission coefficient into the expression avoiding, however, the
danger of using the detailed balance principle. Accessible state densities are calculated in the same
way as for the corresponding intemal(!) transitions in the exciton model, but having one exciton less
in the final configuration. As far as angular momentum is concerned, the appropriate discussion
for the spreading width should be here repeated.

In the MSC the escape and spreading widths are both proportional to the interaction strength,
which cancels in the cross section expression (Eq.l). It follows, that the MSC can be made inde-
pendent of the unknown interaction strength, if the formation cross section oXj is calculated in the
frame of the optical model. This is due to the assumption, that nucleon-nucleon scattering is in-
volved in each emission. On the contrary, all classical preequilibrium models need some estimate
for the interaction strength to calculate the ratio between the escape and damping widths.

We have shown that, basic ideas, underlaying the EM and MSC, are very similar. Closest corre-
spondence is found between the never come back version of the EM and exciton formulation of the
MSC, when neglecting angular and linear momenta considerations. In this case, the main difference
concerns treatment of the emission process.

In addition, EM attempts to describe MSC and MSD processes simultaneously. In this respect, the
angular distributions, resulting from both models, are very different, since EM is closer to MSD in
the treatment of the linear momentum. Disagreement is also found in the way the angular mo-
mentum coupling is performed in both models. The approach applied in the MSC is more micro-
scopic, and much more involved.

In the present comparison, we have left apart the most recent approach to the preequilibrium
mechanism by the Heidelberg group /18.19/. We mention only, that the latter reveals that "effective
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state densities", are involved in place of the ones presently used. So far, the extent of their impact,
on the practical calculations, has not yet been clarified. The complete, systematic intercomparison,
including Heidelberg model, would be highly desired.
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4. Systematics in Exciton State Densities

(G.Giardina, M.Herman, A.Italiano, G.Reffo, and M.Rosetti)

In most applications the average spacing of the shell-model hatniltonian

eigenvalues is taken to be energy independent and its inverse (density of

eigenvalues or density of single particle levels), denoted by g, is taken

usually to be proportional to the nuclear mass number A:

g - "- with c *=» 13, but such an approach lacks any microscopic

foundation and may introduce large errors when used for the determination

of dynamical quantities. This has motivated the present investigation of

the average dependence of the unperturbed shell-model hamiltonian spacings

on the energy, the neutron and the proton numbers. We have analyzed the

extensive set of single particle levels, as determined by Nix and Moller.

This set contains results for more than 4000 isotopes in the mass range

from A=12 up to A~269 and also covers nuclei far from the stability line,

allowing for an investigation of the isotopic effects. We have analyzed a

cumulative number of eigenvalues (for particle and hole excitation) as a

function of energy above and below the Fermi level.

Observing Fig.l is evident that above the Fermi level the cumulative

number of eigenvalues increases faster than in the case of equidistant

distribution (linear energy dependence). A quadratic energy dependence

(1) X(E) « a E 2 + b E + c

gives a resonable description (see Fig. 1). In the case of the eigenvalues

lying below the Fermi level, the energy increase of the cumulative plot is

slower than the one for equidistant levels and may be approximated by

(2) E - a CN" - 2)2+ b CN* - 2)

(the constant 2 appears to ensure two possible hole states at zero energy).

The average density of eigenvalues which appears to be energy dependent:
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(3) g(E) - d 4 ? P - 2 a E + b (above the Fermi level)

(4) g(E) - ^£P - ( b2 + 4 a E )*l/- (below the Fermi level).

For each isotope, cumulative plots for neutrons and protons were

separately fitted with Eqs. 1 and 2 providing values for a, b, c, a and b

paremeters.

In Figs. 2 and 3, the parameters a and b are plotted versus the neutron or

the proton numbers. The a* and ax determine energy dependence of the

average spacing of neutron and proton single particle levels (s.p.L) above

the Fermi energy:

- a,, (Fig. 2) has a rather well determined dependence on the neutron

number N. Some spread of the points in Fig. 2 may be related to the

influence of the proton number Z. This effect is explained in Fig. 4.

- a* (Fig. 3) shows slightly different systematics. It increases linearly for

small Z, peaks at Z=55 and eventually decreeses. For Z>40 one observes a

pronounced isotopic effect, which is manifested by a large spread of the

points. This effect is pointed out in Fig. 5.

a* and a* do not show pronounced shell effects.

This is qualitatively understood, since these parameters account for the

decrease of spacings between high lying single particle levels, being

therefore rather insensitive to the region close to the Fermi level.

Now we consider the constant term in Eq. 4.

bj,(for neutrons) appears to be, on the average, an increasing function

of N (Fig. 2). Close to the Fermi level this parameter mainly determines

eigenvalue spacing. It is, therefore, expected that it should carry on the

effects of the shell closure (discontinuities at N-50, N-82 and at N-126

confirm that this is actually the case).

For light nuclei, usually far from the stability line, one occasionally finds

negative values of b» (see Fig. 2). In terms of Eq. 3 it means that g

acquires a physical (positive) value only above certain energies, at which

the energy dependent term becomes greater than hu . Such cases are related

to the large gap between the Fermi level and a first s.p.L above it. A very

wide spread of bv around the mean value (see Fig. 2) indicates a strong
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isotonic effect, that is pointed out in Fig. 4, where the \>u values are

plotted versus Z for several fixed values of N. Clearly b^ is a smooth and

strongly decreasing function of Z. If only stable, or nearly stable, nuclei

(heavy points in Fig. 2) are taken into account, the spread is considerably

reduced.

bT (for protons) is remarkably constant (usually negative) for Z-20-r-50

and increases linearly for higher Z. In this case, the shell closures

manifest themselves as discontinuities. Strong isotopic effects are only

observed for light nuclei, and are strongly suppressed for nuclei with

Z>40. Neutron number dependence of b* for several fixed Z is presented

in Fig. 5.

The treatment of the s.p.l. spacings below the Fermi level appears to be

difficult. Figs. 6 and 7 show that the a and b parameters of Eq. 4 for

neutrons (or protons) decrease rapidly with increasing N (or Z), varying by

two orders of magnitude between very light and heavy nuclei. One can

observe extremely strong shell effects, which show up not only at main

shell closures, but also when certain more pronounced sub-shells are filled.

Therefore, we can only predict the very general behaviour of the a and b

parameters.

In Fig. 8 densities of single particle levels for neutrons and protons are

shown as a function of energy above (or below) the Fermi level. These

densities were calculated from the values of a, b, a and b parameters for
138Au and 78Rb obtained in the fit. In the case of 198Au, the density for

holes appears, at very low energies, much higher than the density of states

available for particles. At higher excitation energies, however, the density

of particle states becomes much larger, thus particle contribution to p-h

state density is overwhelming. From Fig. 8 one may conclude that an

assumption of equal single particle state densities and holes is a crude

approximation at low excitation energies, and does not hold at all when

single particle levels far from the Fermi level are involved.

The g parameter plays an important role in the determination of the state

densities within the independent particle model. If the spectrum of s.p.l. is

assumed to be equidistant the expressions for partial (n-exciton in Ericson's

and Williams's formulae) and total (formula type Bethe) state densities are
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derived. Our previous analysis proves that this assumption does not hold.

Therefore we attempt to work out the method of calculating state density

when the equidistant restriction is relaxed. One of these methods consists

of the convolution of an n-1 exciton state density with an 1-exciten state

density, to obtain the n-exciton state density:

(5) w(n,E) - i I w(n-l.E-e) w(i,e) denf Jo

with eigenvalue spacing given by Eqs.3 and 4.

Considering pure p-particle configurations and noting that

(6) w(l,e) = g(e) = 2 a e + b,

the following recursive expression for w(p,E) is obtained:

(7) 2a)p-"xf (2a)

The same approach is unpractical in the case of hole configurations,

because the analytical form of g(e) does not provide a reasonably simple

expression after several convolutions have been performed, therefore we

propose an approximate solution of the problem. Instead of deriving an

exact p-h state density formula, taking energy dependence of g explicitly
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into account, we propose to retain the standard form given by

in which G stands for the effective density of eigenvalues defined as the

average over excitation energy, weighted with the probability of finding an

exciton at a given energy ( exciton distribution):

(9) G(n,E) " p P(n,e) g(«) de - ( ^ P (E-e)""2 g(«) de

where P(n,€)' is defined by:

- ( ^ P

(10) P(n,e)d€ - k ^ " T 1 ' ! : 0 d€
a>(n,E)

and k is a normalization factor.

Using Eq. 3 and considering the case of neutron particle levels, we get

(11) Gi,(n,E) = b , + ^ E

and the corresponding expression for protons is obtained by exchanging y

with TT.

The same procedure applied to neutron holes yields a more complicated

recursive relation:

(12) G,(n,E) = o , ( " ' 1 ) - , p [(4 a, E + hi) G,(n-1,E) - b j

in which 6,(1 ,E) - g^(E) .

The analogous expression for protons is obtained by the exchange of

subscripts. We note that the effective density G becomes energy and

exciton number dependent. In Fig. 9 predictions of Eq. 8 for 3-exciton state

densities in S3Ni are compared with the exact counting of states.

A closed formula (Eq. 8) was evaluated using common choice G-N/13 and

using effective G determined from Eqs. 12 and 13, with a* , bv , a* , and b»

parameters obtained from the fit of the cumulative number of levels. It is
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evident that the Williams formula with G-N/13 greatly underestimates the

exact density of particle configurations and overestimates the density of

the hole ones. Use of the effective G in Eq. 8 results, in both cases, in a

net improvement regarding the magnitude and slope of the state density.
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ABSTRACT

An experimental program is in progress at the Los Alamos National Laboratory
WNR/LAMPF facility to perform high-resolution measurements of (n,xy) cross sec-
tions for individual lines up to incident neutron energies in the medium-energy range
for a variety of target materials. Part of the purpose of these measurements is to pro-
vide a data base for testing the details of nuclear models in this energy range, with the
goal of facilitating model improvements. In this paper initial calculations using the
GNASH nuclear theory code and the level density models of Gilbert-Cameron and
Ignatyuk are described. The results are compared to the existing experimental data
base for 204,206,207,208pb isotopes at lower energies and to preliminary data from the
WNR/LAMPF measurements on natFe and ̂ P b up to En = 100 MeV.

I. INTRODUCTION

An experimental program is in progress at the Los Alamos National Laboratory
WNR/LAMPF facility to perform high-resolution measurements of (n,xy) cross sections for indi-
vidual lines up to incident neutron energies in the medium-energy range for a variety of target ma-
terials. These measurements utilize the white neutron source at WNR and make use of high reso-
lution germanium detectors to provide signatures of individual (n,xn) reactions. Preliminary mea-
surements of gamma rays from a natFe target, corresponding to (n,n'), (n,2n), (n,3n), n,np), and
(n,a) reactions, were reported by Nelson et al.1 in 1989. More recently, preliminary results from
(n,xny) reactions on separated targets of 204Pb, 206?^ 207pb ^d 208pb over the range 1 £ x £ 11
have been described by Haight et al.2 for neutron energies to over 100 MeV. In addition to provid-
ing data useful for programmatic activities such as accelerator shielding, an important goal of these
measurements is to develop a data base that will permit testing of the details of nuclear models that
are presently used in this energy range and to thereby facilitate improvements in the underlying
nuclear theories.

Over the past several years Los Alamos National Laboratory has been involved in extending
the capabilities of nuclear models for more reliable calculations in die incident nucleon energy range
of 20-100 MeV.3 Much of this work has focussed on development of the GNASH nuclear theory
code.4 Recently, an initial set of transport data libraries was completed for incident neutrons and
protons up to 100 MeV on 10 target materials, with the library based mainly on calculations with
the GNASH code.5 The new experimental program at WNR/LAMPF offers a unique opportunity
to validate and improve the nuclear models used in nuclear theory codes such as GNASH.

* This work is supported by the U.S. Department of Energy.
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In the present paper initial calculations of a small sampling of preliminary data from the new
experiments is described. The calculations make use of two existing level density representations,
namely, the standard level density parameterization of Gilbert and Cameron6 that has been used in
many lower energy calculations, and the model of Ignatyuk et al.,7 which utilizes an energy-de-
pendent level density parameter that is more appropriate for higher energies.

Most of this paper deals with calculations of neutron-induced reactions on 204Pb, 206Pb,
207Pb, and 208Pb. These calculations are described in Section II, and the results are presented in
Section HI with comparisons to experimental data. In Section IV, similar calculations for n + 56Fe
reactions are described, making use of parameters from an earlier analysis of 54»56Fe up to 40
MeV8 but including the Ignatyuk et al. level density model as well as that of Gilbert and Cameron.
Finally, conclusions and observations from the comparisons are presented in Section V.

II. DESCRIPTION OF THE CALCULATIONS

A. General Description

The GNASH nuclear theory code4 is based on Hauser-Feshbach statistical theory with full
conservation of angular momentum. Preequilibrium corrections are calculated using the exciton
model of Kalbach,* and width fluctuation corrections are obtained from the COMNUC code10 us-
ing the approach of Moldauer.11 Transmission coefficients for neutrons and charged particles are
calculated using an optical model, and gamma-ray transmission coefficients are obtained from a
simple giant dipole resonance approximation,12 making use of detailed balance. The level structure
for each residual nucleus in a calculation is divided into discrete and continuum regions, with the
former obtained from experimental compilations and the latter from phenomenological level density
representations.

Except as noted below for radiative capture cross sections, the calculations for n +
204,206,207,2D8pb reactions were performed using the default parameters in the GNASH code with
no optimization for either the old or new experimental data under consideration. This procedure
was followed in order to provide a set of base calculations, against which future improvements can
be compared.

B. Optical Model

The spherical optical model potential resulting from the analysis by Finlay et al.13 of n +
208pb experimental data in the range 7 £ En ^ 50 MeV was used for all die present calculations
below 75 MeV. At higher energies the global phenomenological optical potential of Madland,14

developed for the energy range 50 MeV < En>p <, 400 MeV and the mass range 24 £ A < 208, was
utilized. Neutron transmission coefficients were computed to 100 MeV using the SCAT2 code by
Bersillion.15

The neutron total cross section calculated from the optical model for ^ P b is compared with
the available experimental data16 for najPb up to 100 MeV in Fig. 1. A similar comparison is given
in Fig. 2 for the nonelastic cross section. While the nonelastic curve depends on the GNASH
compound nucleus calculations at lower energies, above a few MeV it corresponds essentially to
the optical model reaction cross section. The total and reaction cross sections that result from the
Finlay et al. and Madland optical model parameterizations are seen in Figs. 1 and 2 to be consistent
with the experimental data base. Slight mismatches occur near 80 MeV in the neutron total and
nonelastic cross sections computed from the two potentials but the effect on the present calculations
is small.

C. Gamma-Ray Transmission Coefficients

Transmission coefficients for gamma-ray transitions were obtained using detailed balance and
exploiting the inverse photo-absorption process. The Brink-Axel hypothesis12 is utilized, permit-
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ting the cross section for photo-absorption on an excited state to be equated with that on the ground
state. The gamma-ray transmission coefficients for El decay are determined from the expression

TE1(ey)=K(0.013A)
7c(hcf (E - e*)

(1)

where By is the gamma-ray energy and A is the atomic mass number. The Lorentzian parameters of
the giant-dipole resonance, E and F, are taken from the tables of Dietrich and Berman.17

We usually obtain the normalization constant, K, by matching the theoretical gamma-ray
strength function for s-wave neutrons to experimental values compiled by Mughabghab.18 Be-
cause of the lack of such data for the Pb isotopes, however, in this case we determined a normal-
ization constant by roughly matching our calculations to measurements of the radiative capture
cross sections for the Pb isotopes at neutron energies below 1 MeV. Comparisons are given in
Fig. 3 of the calculated (n/y) cross sections (after determination of K) for 204Pb, 2°6pb, and
^ 'Pb . Essentially the same value of K was used in the calculations for all the lead isotopes

D. Level Density Models

A base set of Hauser-Feshbach calculations was performed for each of the Pb isotopes us-
ing the level density model of Gilbert and Cameron.6 At high excitation energies this model uti-
lizes a Fermi-gas form for the level density, which is matched to a constant temperature form at
lower excitation energies. For the full angular momentum calculations, a Gaussian distribution of
spin states is taken to describe the angular momentum of levels at given excitation energies, E,

2O2
P(U), (2)

where U = E - A (A is the pairing energy) and a2 is the spin cutoff parameter which is determined
via

2.

o2 = 0.146/aUA3 , (3)
for the Fermi-gas region. The spin-cutoff factor is determined empirically in the discrete level re-
gion from the spins of the measured levels and is then linearly interpolated in the constant tempera-
ture region to the value given by Eq. 3 at the lower energy limit of the Fermi-gas region.

The Fermi-gas expression for p(U) used in the higher excitation energy region is given by

exp(27aU)
1M » V*V

and at lower energies the constant temperature form is given by

(5)

The pairing energies and shell corrections were obtained from the Cook parameter set.19

The level density parameter, a, was taken from the empirical expression in Gilbert and Cameron.6
The temperature T, the parameter Eo, and the matching energy Em that separates the constant tem-
perature and Fermi-gas regions were obtained by requiring mat p and dp/dE from Eqs. 4 and 5 be
continuous, while at the same time requiring the integral of Eq. 5 to match the cumulative number
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of levels in the discrete or measured region. The spin- and parity-dependent level densities used in
the GNASH calculations then come from Eq. 2.

The Gilbert and Cameron level density formulation (and others such as the back-shifted
Fermi gas model of Dilg et al.2^) utilizes an energy-independent level density parameter, a, which
somewhat restricts flexibility at higher energies. This difficulty is compounded by the effects of
shell closures on the Fermi gas level density parameter and on their propagation to higher energies.
To address these problems in the present calculations, we carried out a second set of base calcula-
tions (204Pb and 208Pb only) using the phenomenological level density model developed by
Ignatyuk et al.7 In this model the Fermi gas parameter is assumed to be energy dependent and is
given as a function of excitation energy U by the expression

a(U) = a [1 + f(U) 8W/U], (6)
where a is the asymptotic value occurring at high energies. Shell effects are included in the term
5W which is determined via 8W = MeXp(Z,A)- Mid(Z,A,P). In our calculations we determined the
experimental masses, Mexp(Z,A), through use of a preliminary version of the 1988 Wapstra et al.
mass compilation,21 and calculated Mid(Z,A,P) through use of standard liquid drop expressions
evaluated at a deformation p. Additional energy dependence in a(U) occurs via the term f(U)
which is given by

f(U) = l-exp(-yU) (7)

where y = 0.05 MeV-1 was determined by Ignatyuk et al.

Thus, this model permits shell effects to be included at low excitation energies while at high
energies such effects disappear as a(U) reaches the asymptotic value a. This form is in better
agreement with results from microscopic Fermi gas models than the assumption of energy inde-
pendence for a. The asymptotic value of a(U)—»oc is given by Ignatyuk et al. as a function of
mass by the expression

f (8)
with TJ = 0.154 and p = 6.3xlO'5, and with a in units of MeV-1 and A in amu. In the initial calcu-
lations described here, however, we utilize Arthur's parameterization5 of Eq. 8, which is based on
fits to s-wave resonance data18 and which resulted in the parameters T| = 0.1375 and P = -8.36x10"

The Ignatyuk et al. level density model is implemented in the GNASH code using exactly
the same Fermi gas and constant temperature formulas as are applied with the Gilbert and Cameron
representation, mat is, Eqs. 2-5 above, and the continuum matching and matching to the discrete
levels is done in the same manner. The only difference is the energy dependence of the level den-
sity parameter, a(U), as specified in Eqs. 6-8.

III. RESULTS OF THE Pb CALCULATIONS

GNASH calculations were made with the Gilbert and Cameron (GC) level density represen-
tation to a neutron energy of 80 MeV for 2<*Pb, 60 MeV for 2<*Pb, 40 MeV for 2<>7Pb, and 100
MeV for ^ P b . The calculations with the Ignatyuk et al. QG) level density model were carried out
over the same energy ranges but thus far only for 204Pb and ̂ 08Pb.

A. Comparison with the Existing Neutron Data Base

The calculations with the GC level densities of the total (n,2n) cross sections for 206pb and
207Pb are illustrated in Fig. 4 with the experimental data of Frehaut et al.22 The agreement is rea-
sonable although there is a tendency to overpredict Frehaut's higher energy values. The
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natPb(n,2n) cross section, obtained by summing the isotopic values weighted by their natural
abundances, is compared to the available experimental data16 in Fig. 5. Again, the agreement is
reasonable, although the calculation is higher than Frehaut's 1980 data at the highest energies. An
earlier version of Frehaut's data, presumably without final corrections, is in better agreement with
the calculations.

Several measurements of the activation cross sections for metastable states have been made
for Pb isotopes. Such measurements impose additional requirements on calculations in that they
are sensitive to the gamma cascades from higher states as well as the specific excitation cross sec-
tions of the levels involved. Comparisons of calculations (GC) and measurements are given in
Fig. 6 of activation cross sections to metastable states in 205Pb (Ex= 1.014 MeV, J7t= 13/2+, ti/2 =
5.5 ms) and 204Pb (Ex = 2.186 MeV, J* = 9", ti/2 = 67 m) excited by (n,2n) and (n,3n) reactions
on 206Pb. In the lower half of Fig. 6, the dashed curve includes the calculated contribution from
the 204Pb(n,n')204mPb reaction as well as the 206Pb(n,3n)204mPb cross section, because a natural
lead target was used for the Welch et al.2^ measurements. In Fig. 7 the calculation of the
207Pb(n,n1)207mPb (Ex = 1.633 MeV, J71 = 13/2+, t\p. = 0.8 s) cross section is compared to the
available data. In both Figs. 6 and 7, the agreement between calculation and measurement is rea-
sonable.

The IG and GC calculations of the total 204Pb(n,2n) and 208Pb(n,2n) cross sections are
compared to the available measurements in Fig. 8. The IG results are seen to increase with energy
initially more rapidly than the GC calculations but to also fall off more rapidly at energies above the
peak cross section. The GC results appear to agree somewhat better with the data in Fig. 8, par-
ticularly with the Frehaut results22 for the 208Pb(n,2n)207Pb cross section. It might be noted,
however, that the recent Dceda et al.24 data for the 204Pb(n,2n) cross section agree well with both
calculations at higher energies whereas the Frehaut results for 206,207,208pb an^L natpfc QXQ sys-
tematically lower man the calculations.

Activation cross sections for the metastable states in 204Pb and 207Pb excited through the
204Pb(n,n')204mPb and 208Pb(n,2n)207mPb reactions are compared to the GC and IG calculations
in Fig. 9. Both calculations underpredict the single measurement for 204mpj, below 10 MeV but
are in reasonable agreement near 14 MeV, especially the IG result The IG calculation also appears
to represent the ^""Pb data best, although both calculations are somewhat lower than much of the
data near 14 MeV.

B. Comparison with the WNR/LAMPF 208Pb(n,xnY) Measurements

Because of the higher incident neutron energies involved, a broad span of residual nuclei are
covered in the WNR/LAMPF 204,206,207,208pb(njXny) measurements by Haight et al.,2 ranging
from N ~ 196 to N = 208. A complication exists in interpreting the results of these measurements,
however, because of the large number of high spin states (and therefore isomers) that are present.
Because a white source of neutrons is utilized for the experiment, timing of the gamma-ray events
is required to determine the incident neutron energy for any given event. States with very short or
very long lifetimes clearly offer no problem in the measurement, as the former decay instanta-
neously relative to the experiment and the latter do not decay at all during the measurement intervals
and can be simply removed from the cascades in the calculations. States that decay with half lives
of the order of the timing of the experiment, however, produce a time-dependent "background" that
will require a non-trivial correction. The details of the experiment are such that states with half
lives in the range 10 ns < ti/2 ̂  10 |is produce this time-dependent background. Final analysis and
correction of the measurements has not yet been carried out, and additional measurements are
planned during 1990. The preliminary results shown here are examples from several cases that are
relatively straightforward to interpret

The first example concerns the 0.803-MeV gamma ray from the 208Pb(n,3ny)206Pb re-
action and is illustrated in Fig. 10. Shown in the figure is the preliminary measured cross section
for this line together with calculated values using the GC and IG level density models. This
gamma ray corresponds to the Jn = 2+ —> 0+ transition from the first excited state in 206pb to the
ground state.25 One of the states that ultimately feeds this 2+ level (through several cascades) is
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the .F = 7" level at Ex = 2.200 MeV.25 Because the T level has a half life of ti/2 = 124 jxs, which
is relatively long compared to the measurement times, all contributions from this level were re-
moved from both calculated curves in Fig. 10. The calculated excitation cross section for the 7"
level is significant (maximum of ~ 1 b near 25-30 MeV), so this adjustment is essential. When the
experimental results are completely analyzed, this correction should be verified by the absence of
gamma rays from the 7" level.

The second example considered here is the WNR/LAMPF measurement of the 0.960-MeV
gamma ray from the 208Pb(n,7ny)202Pb reaction, shown in Fig. 11. This gamma ray results from
the Jn = 2+ -> 0+ transition from the first excited state in 202Pb to the ground state.26 This case
also requires correction of the calculations for a higher isomer that does not decay on the time scale
of the experiment. In particular, there is a 3.5-h, JF = 9" state at Ex = 2.170 MeV that decays
ultimately 100% through the first excited state.26 The calculated curves in Fig. 11 both have all
contributions from the 9" level removed.

The comparisons in both Figs. 10 and 11 show the same effect noted earlier for the (n,2n)
cross sections, namely, that the calculations with the IG level densities tend to rise sooner near
threshold and fall off with energy more rapidly after peaking than do the GC calculations. In both
figures the IG calculations appear to better represent the experimental data. In Fig. 10, the
2"°Pb(n,3ny) measurement is reproduced quite well over the entire range of the measurement. The
calculations for the 208Pb(n,7ny) measurement in Fig. 11 overpredict the measurement by a factor
of ~ 2. In this case as well, however, the more rapid rise of the IG calculation appears to be sup-
ported by the data.

To further explore the observed differences between the calculations with the GC and IG
level densities, the integrated ^Pbfoxn) cross sections obtained using both models are illustrated
in Fig. 12 for 1 < x < 5 and in Fig. 13 for 6 ̂  x ^ 10. The effects noted earlier in isolated compar-
isons are seen to occur systematically in the (n,xn) reactions. It is interesting to note that at certain
energies the differences in the calculations are quite significant, which underscores the potential
usefulness of measurements such as those described here in providing insight on level density
models.

IV. RESULTS OF THE 56Fe CALCULATIONS

The first preliminary data taken in the WNR/LAMPF gamma ray measurements described
above were for natFe(n,xy) reactions.1 The lifetimes of levels in most of the important residual
nuclei formed in these reactions are in the picosecond range, and interpretation of the results is less
ambiguous. While the impact of shell effects in this case should be considerably less than for
208Pb, it was felt worthwhile to compare calculational results using both the GC and IG level
densities with these preliminary measurements as was done for 208Pb.

The same models and calculational methods were used as are described in Section EL In this
case, however, the optical model potentials developed in an earlier analysis8 of neutron-induced re-
actions with 54«56Fe were used to calculate neutron and charged-particle transmission coefficients.
All significant proton, deuteron, and alpha-particle emitting reactions were included in the calcula-
tions, as well as the neutron and gamma ray emitting processes. Calculations were performed
between 1 and 60 MeV using the GNASH code with the GC and the IG level density options alter-
natively activated.

The results of the calculations are compared in Fig. 14 to the preliminary data reported by
Nelson et al.1 for the 0.931-MeV gamma ray, corresponding to a 56Fe(n,2ny)55Fe reaction, and to
the results of an earlier, more extensive measurement at ORELA by Larson.27 This gamma ray
corresponds to a transition from the 5/2" second excited state of 55Fe to the 3/2" ground state. As
expected, the difference in the calculations using the different level density models is not as great as
was observed for the 208Pb cases. The shift in energy of the peak cross sections between the
models that was seen in the 208Pb calculations is not apparent in Fig. 14. There does appear to be
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better agreement, however, between the experimental data and the calculation using the IG level
density model, which results in a somewhat higher cross section near 20 MeV.

V. CONCLUDING REMARKS

The comparisons of the calculations with experimental data at the lower energies given in
Figs. 4-9 generally indicate reasonable agreement using either level density model. The agreement
between the GC calculations of the 208Pb(n,2n)207Pb cross section with experiment in Fig. 8 is
better than the IG case, although the reverse is true for the 208Pb(n,2n)207mPb comparison in Fig.
9. Additionally, it is likely that some refinement in the parameters used in Eq. 8 to obtain a(U) in
the IG level density model might be possible.

Although the calculations at higher energies described here as well as the new
WNR/LAMPF experimental data1*2 are regarded as preliminary, several observations can be made.
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It appears clear that measurements of this nature should be useful in refining theoretical models
used for calculations in the -10 - 100 MeV range. The differences seen in the 208Pb calculations
with the two level density models indicate a sensitivity of these measurements that should be useful
in model refinement, particularly for target nuclei near closed shells. While firm conclusions must
await complete analysis of the final data from the 56Fe and 208Pb(n,xny) measurements, there ap-
pears to be better agreement at higher energies between the measurements and calculations using
the IG level densities than with those that utilize the GC model. The 208Pb(n,3ny)206Pb measure-
ment (Fig. 10) agrees quite reasonably with the IG calculations, as do the results for the
56Fe(n,2ny) reaction in Fig. 14. Both sets of calculations significantly overpredict the
208Pb(n,7ny)202Pb measurement shown in Fig. 11. These differences could be symptomatic of
the inadequacy of the nuclear reaction models used in the 70-100 MeV range, where the discrep-
ancies occur, or they could simply indicate the presence of additional isomers in 202Pb that are not
decaying rapidly enough to be included in the measurements, particularly at higher energies where
shorter neutron flight times are involved. We expect that, as these measurements and analyses are
refined, information will become available on a wide range of transitions and firmer conclusions
can be reached.
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Abstract

We propose a quantum-statistical framework that provides an integrated perspec-
tive on the differences and similarities between the many current models for multi-step
direct reactions in the continuum. It is argued that to obtain a statistical theory two
physically different approaches are conceivable to postulate randomness, respectively
called leading-particle statistics and residual-system statistics. We present a new
leading-particle statistics theory for multi-step direct reactions. It is shown that the
model of Feshbach et al. can be derived as a simplification of this theory and thus can
be founded solely upon leading-particle statistics. The models developed by Tamura
et al. and Nishioka et al. are based upon residual-system statistics and hence fall into
a physically different class of multi-step direct theories, although the resulting cross-
section formulae for the important first step are shown to be the same. The widely
used semi-classical models such as the generalized exciton model can be interpreted
as further phenomenological simplifications of the leading-particle statistics theory. A
more comprehensive exposition will appear before long1).

1 Introduction

Multi-step direct (MSD) reactions in the continuum are experimentally characterized
by strongly forward-peaked, but smooth, angular distributions and by pronounced high
energy tails in the emission spectra. In applied experimental and phenomenological work
they are also commonly called precompound or pre-equilibrium reactions, and they are
viewed as intermediate between direct and (multi-step) compound reactions. A wide vari-
ety of MSD theories has been proposed in past years. The oldest are the so-called general-
ized exciton models that go back to the work of Mantzouranis et al. 2); for a survey see3).
These statistical models have a clear phenomenological and semi-classical background,
and they have been shown to be quite successful in practice4) and are still being used in
the analysis of experiments5). In more recent years several quantum-statistical theories of
MSD reactions have been developed. The most important ones are those of Feshbach et
al.6) (henceforth denoted the FKK model), of Tamura et al.7) (the TUL model), and of
Nishioka et al.8) (called here the NWY model).

At a global level, these MSD models have several ideas and concepts in common. They
share the physical picture of a fast, 'leading', incident particle in the continuum (> 10
MeV per nucleon) that creates new particle-hole pairs on its way through the nucleus. The
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fact that it usually leaves the nucleus after only a few interactions ('steps') implies that
upon emission it retains some memory of the incident energy and direction. This explains
the high energy tails in the spectra and the forward-peaked angular distributions. Another
idea all MSD models have in common is that some statistical approach is warranted, since
one is dealing with regions with a high level density.

If we look more closely, however, it appears that the various MSD models are quite
diverse. First, there is the split between semi-classical and quantum models. They further
differ in the nature and the way of application of statistical hypotheses and of other
simplifying assumptions. Most importantly, the derived expressions for MSD cross-sections
are clearly different. In general, it can be said that the relationships between the various
MSD theories are only partially understood.

In this paper we will propose a quantum-mechanical framework that clarifies the simi-
larities and dissimilarities of the various MSD models. A salient feature of this framework is
that we consider two possible, and physically different, randomness postulates that provide
a foundation for a statistical MSD theory. The first postulate, that we call leading-particle
statistics, supposes that at each step the leading particle can create many configurations
from the given one, and that this process can be described in a probabilistic fashion. This
idea of branching or of a "garden of forking paths" matches very well with the classical
physical intuition and provides an explanation for the widespread occurrence of Markov
chain concepts in work on nuclear reactions far from equilibrium9). The second statistical
postulate, denoted residual-system statistics here, assigns the randomness properties not
to the leading particle but to the residual nucleus, by assuming a random configuration
mixing. This type of statistics was first proposed by 10).

On this quantum-statistical basis, we will construct a new leading-particle statistics
theory of MSD reactions, of which the FKK model is a special case. This implies that
the FKK model cannot be well interpreted as a simplification11) of the TUL model, since
the latter has a fundamentally different physical basis, viz., residual-system statistics.
Nevertheless, it will be shown that in certain cases different physical assumptions may
still lead to the same expressions for MSD cross-sections. Finally, we will indicate how the
semi-classical approaches can be understood in a quantum-mechanical context.

2 The MSD Born Series

In this section we give two expressions for the MSD cross-section distributions that
are representative of the MSD reaction process before any statistical hypothesis has been
introduced. The first expression corresponds to the general case whereby all residual
interactions have been included, whereas the second one is a limiting case of the first
and gives a description purely in terms of independent particle states. The latter form is
of interest, since it provides the link with the widely used semi-classical pre-equilibrium
models as well as with computer implementations of the FKK model. We will restrict
ourselves to nucleon-induced inelastic scattering and charge exchange. Furthermore, we
assume the leading particle to have no internal structure (i.e., its nuclear eigenstate can
simply be omitted). This is to avoid an overburdening of the notation that would divert
the attention from the more important statistical issues. A generalization to other reaction
types poses, in principle, no problems.

252



2.1 Hamiltonian and Eigenstates

The total Hamiltonian that describes the direct reaction process is:

H = H0 + Hi + K(A) + Uopt(A) + V, (1)

where Ho is the shell-model Hamiltonian, Hi the residual interaction of the residual
nucleus, K the kinetic energy, Uopt the optical potential and V the residual interaction of
the leading particle with the residual nucleus. The explicit distinction between a residual
nucleus and a leading particle is typical both for the description of a direct reaction
process and for models of precompound processes2). It is also essential in the discussion
of statistical assumptions in this paper.

The shell-model Hamiltonian generates a complete set of particle-hole eigenstates
being anti-symmetrized direct products of A — 1 one-particle states,

= Emfl\mfj,), (2)

where m determines the exciton class (rapra/i-states), fx is a running index for the particular
particle-hole configuration within each class and Emfl is the energy of the particle-hole
state. Similarly, the real residual states \n) (with eigenenergies En) are eigenstates of
#0+1:

H0+i\n) = En\n). (3)

The presence of -ffi causes configuration mixing, which is represented by the expansion
of \n) as a linear combination of particle-hole states

m/j,

Thus, each particle-hole state |ra/i) is distributed over the real states \n) and the
strength of each contribution is determined by the distribution amplitude a^. If Hi
vanishes, a^ — 8mfXin, corresponding to no configuration mixing.

The dynamics of the leading particle is described by a distorted wave x ^

[K(A) + £WA)]|X
(+)(k)> = £*lx(+)(k)>, (5)

where Ek is the relative kinetic energy. Together with their bi-orthogonally conjugated
counterparts j ^ + \ they form a complete and orthonormal set.

2.2 The Cross-Section Distribution

As discussed in detail in ref.1), standard perturbation theory gives us the cross-section
distribution, a convenient tool in the description of multi-step direct reactions to the
continuum. For the real nuclear model (i.e., in the presence of Hi) the one-step cross-
section distribution is
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E E E
£*) • (6)

The corresponding expression for the independent particle model i.e., obtained by
taking the limit Hi -> 0 is,

^ ^ ^ 2 - ^ ) . (7)

The two-step cross-section distribution in the real nuclear model is

n'

1
E-En,- Eu - iel

X o.^-—- -——(x(+)^i)\MV\0)\x(+)(^o))S(Ef-Ex), (8)

whereas we have in the independent particle model

X f? - E ; - B , - fe

x <2i/|y|i/*>|x
(+>(k1)>jE_ j ; + .

x 6{E2v-Ex). (9)

The importance of the above equations lies in the fact that all statistical MSD reaction
models discussed in this paper have Eqs. (6)-(9) as their starting point.
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3 The Statistical Problem: Postulating Randomness

It is clear from the previous section that the non-statistical expressions for MSD re-
actions are highly complicated, due the presence of quantum interference effects in the
cross-section formulae. This makes it virtually impossible to perform (individual) cross-
section calculations in regions with a high level density. Naturally, it is at this point that
statistical assumptions are introduced in order to remove interference effects (upon en-
ergy averaging) to give relatively simple expressions for the energy-averaged cross-section.
An additional reason to do so is the observation that the experimental characteristics of
MSD reactions are rather simple, and can be reasonably well predicted by straightforward
semi-classical models or even by systematics12'13).

3.1 Different types of randomness

From the structure of the total Hamiltonian (1) it follows that there are two candidates
for generating the statistical properties desired for manageable pre-equilibrium reaction
theories: the residual interactions Hi and V, respectively. With these interactions we can
associate two physically different types of randomness:

1. leading-particle statistics. The interaction of the leading particle with the nucleus
is modeled by V. If it is assumed that in a certain energy interval many states
can be created by the leading particle, and that the corresponding matrix elements
vary widely both in magnitude and sign, we obtain what we will call leading-particle
statistics. Actually, this is the intuitive picture behind most of the semi-classical
pre-equilibrium models.

2. residual-system statistics. The interactions within the residual nucleus are given by
# 1 . If it is assumed that the resulting configuration mixing has a random character,

\m) \n)

Figure 1: Leading-particle statistics: many |n)-states can be created in a random manner
by the leading particle from a given state |ra).
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we have what we will call residual-system statistics. This type of randomness lies
at the basis of the MSD theories of Tamura et al.7) and of Nishioka et al. 8) and
relates to recent studies of quantum chaos in nuclei14'15).

Below we will discuss the formal expressions for the respective statistical hypotheses.
In subsequent sections we will explore their consequences for theories of MSD reactions.

3.2 Leading-Particle Statistics

Leading-particle statistics16) supposes that V connects a given nuclear state to many other
nuclear states (of the residual nucleus, as depicted ift Fig. 1), and that the associated set
of matrix elements is randomly distributed. The residual nucleus is viewed here as a
subsystem of the reacting composite system consisting of residual nucleus plus leading
particle.

Leading-particle statistics can formally be expressed as follows:

E E / /dk1dk'1(x(+)(k2)|(n'|F|m')|xW(k'1))(x(+)(ki)|{m|y|n)|x(+)(k2)> =
'n'J J

E
m,nm',n

x (x(+)(ki)|{m|y|n)|X(+)(k2)) - ^ E / ^ ^ M H ^ M I x ^ k x ) ) ! 2 . (10)
m,n

The bar denotes an average over the residual excitation energy Ex(= Ek0 — E^),
whereby the averaging interval AE is chosen such that it contains a sufficiently large
number of accessible states. The physical assumption here is that non-diagonal cross-
products of matrix elements cancel upon energy averaging, because these matrix elements
widely vary both in magnitude and sign and therefore can be considered to be random
variables. Eq. (10) refers to the intermediate steps in a multi-step process. A similar
postulate for the final steps will be used whereby x occurs instead of x- As a consequence
of the assumed two-body nature of V, there is at most a lplh difference in complexity
between the \m) and \n) states of the residual nucleus. Thus, a special instance, important
for the first step, of Eq. (10) is:

The above form of statistics resembles that of Ref. 1 7) , but here it is worked out for
MSD rather than for multi-step compound reactions. The difference lies in whether or not
it makes sense to retain the distinction between a leading continuum particle and other,
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slower, particles in the composite nuclear system. Leading-particle statistics is a necessary
condition for the —both conceptually and computationally attractive— convolution-type
structure of the FKK model and the generalized exciton models.

3.3 Residual-System Statistics

This type of randomness8'10) is based on the properties of the residual nucleus alone, in
other words, its existence is not related to the particular dynamics of the reaction. For
sufficiently high excitation energies Ex, the spectrum of the residual nucleus contains many
states within a relatively small interval AE around Ex. For each state, we expect the linear
combination (4) to be very complicated. Now, residual-system statistics is introduced
by assuming a random configuration mixing, i.e., the amplitudes a^M are supposed to
be elements of a random probability distribution. As a consequence, the non-diagonal
elements vanish upon energy averaging:

(12)

the bar denoting the average over the residual excitation energy. More detailed discussions
of the nuclear structure aspects concerning the distribution of the amplitudes can be found
in Refs. 18~22). i n this paper, we assume the above statistical hypothesis to be valid and
apply it to the previously derived MSD cross-section distributions.

As an illustration, let us consider the one-step cross-section distribution (6). Upon
energy averaging, the non-diagonal terms vanish and the distribution c-i^Ex) =
Z)n \amn\2K^n — Ex) can now be interpreted as the relative contribution of the model
state |1^) to the real level with energy Ex. The statistical mixing between the particle-
hole model states and the real nuclear states is depicted in Fig. 2. It is imagined that

Figure 2: Residual-system statistics: the dashed lines represent the particle-hole states,
each contributing differently to the real nuclear state (solid line) according to some random
distribution (here: a Lorentzian).
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around each particle-hole state a probability distribution Cî  is given, its width being a
measure for the magnitude of the residual interaction H\. Then, the contribution of each
particle-hole state to a real state is represented by the value of ciM at the considered ex-
citation energy. Existing examples of the application of residual-system statistics are the
TUL and the NWY models, which will be discussed later.

3.4 Generating simple MSD models

Even with the introduction of statistical hypotheses, the quantum MSD theories tend
to become quite complicated. On the other hand, as already pointed out, experimental
data concerning MSD reactions display a simple, smooth structure and are fairly well
explained by simple approaches. In addition to the mentioned statistical postulates, we
will therefore also investigate further approximations that are useful to obtain simple MSD
models. The most important of these are the on-shell approximation and the independent-
particle limit. With these ingredients, it will be sketched how one can generate a variety
of different theories that includes both existing and new MSD models. In particular, it is
possible to give a quantum-statistical interpretation of the phenomenological models that
are most widely used in practice.

4 The One-Step Cross-Sect ions

4.1 The Real Nuclear Model

The cross-section distribution for the first step given by Eq. (6) can now be averaged over
the final energy using either leading-particle statistics (11) or residual-system statistics
(12). Recalling the previously discussed physical difference between the two hypotheses,
we come to the interesting conclusion that in either case the same expression for the
averaged one-step cross-section is found:

(13)

where the true partial level density pmtl is defined by

Pmn = Cmn{Ex). (14)

This coincides with the expression obtained for the TUL model in 7) and for the NWY
model in8), although there it was specifically associated with residual-system statistics.

In the practical implementation of (13) by the computer code ORION-TRISTAR23),
the diagonal terms of Eq. (6) are averaged over an energy interval, whereby the distribution
citi(Ex) of Eq. (12) is taken to be a Gaussian or a Lorentzian. The DWBA cross-section
is calculated for each particle-hole state and the result is multiplied by the corresponding
statistical factor (cf. Fig. 2). Repeating this procedure for some neighbouring values of
Ex yields the averaged result (13).
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4.2 The Independent Particle Model

Also the independent particle model leads to an interesting finding, since Eq. (7) shows
that in this case there are no interference effects to be destroyed and, thus, no randomness
hypothesis whatsoever is necessary to obtain the desired result. In this case, the energy-
averaged one-step cross-section becomes

We see that in the independent particle model the individual DWBA cross-sections
have equal weights in the averaged cross-section. This is in contrast to the previous case
where each DWBA cross-section is weighted by a factor cin(Ex). Eq. (15) can be rewritten
in the equivalent form

(16)

where pipih(Ex) denotes the particle-hole model level density of the residual nucleus.
Usually it is estimated by the Williams formula24). In the computer code of Bonetti et
al25), Eq. (16) has been implemented as the one-step cross-section of the FKK model.
This is done by decomposing Eq. (16) into different transferred angular momenta and
estimating the average for each angular-momentum value by drawing a small sample.

In sum, for the real nuclear model we find that both leading-particle statistics and
residual-system statistics lead to the same expression for the one-step cross-section. For
the independent particle model we do not even need a statistical assumption to obtain
the desired energy-averaged result. The model level density p differs from the true level
density p and therefore Eq. (16) differs from the TUL, NWY and leading-particle statistics
models already in the first step. In the limit Hi —> 0 the probability distributions ci^Ex)
of Fig. 2 reduce to delta functions and, consequently, Eq. (13) will then coincide with Eq.
(16).

4.3 A computa t iona l i l lustrat ion

As already pointed out, Eqs. (13) and (16) have both been implemented as part of a
multi-step direct computer program, in the TUL code of Tamura et al.23) and in the
FKK model code of Bonetti et al25), respectively. As an illustration, we have carried
out some calculations with these computer codes and the results are presented in Fig. 3.
Here, a comparison is given between the calculated one-step cross-sections, for inelastic
proton scattering on 58Ni at 65 MeV of incident energy and 51 MeV of outgoing energy.
For the sake of comparison, the input parameters were made equal as much as possible
(same optical model, same maximum lvalue for distorted waves, etc.). In the FKK code
the energy average is taken over an interval of 20 MeV. The distribution ciM has been
taken in the TUL code to be a Lorentzian with a width of 4 MeV which is also the used
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Figure 3: Double-differential one-step cross-sections for 58Ki(p,p') at 65 MeV incident
energy and 51 MeV outgoing energy. The solid line is the FKK result, the short-dashed
line is the TUL result with a width of 4 MeV, and the long-dashed line is the TUL result
in the limit of zero width.

averaging interval. In the figure we have also displayed the result for a distribution width
that is virtually zero, thus computationally simulating the independent particle limit. The
experimental data are from Ref.26).

It is perhaps helpful to add a remark on the calculation of the true and model level
densities p and p. The difference between them is that p includes the configuration mixing
of the residual states, whereas p neglects this effect. The FKK code uses the model level
density p, for which the Williams formula is generally used. The TUL code uses the
true level density p. Here, a problem is that this is the concept that naturally occurs
in the theory, but it is very difficult to give an adequate computational prescription for
it. Only a few recent papers deal with this problem27'28). In our calculations, we follow
the suggestion of Tamura et al. who estimate p by an energy average over Lorentzian
distributions.

A first conclusion from the figure is that all models —and we recall that the TUL result
also represents that of the NWY model and of our leading-particle statistics theory—
indeed predict that the first step provides the major contribution (say, 80 per cent of
the total cross-section) to the MSD cross-section. This reconfirms' the results from the
many studies done on the basis of the generalized exciton models. The various models
also roughly predict the same shapes and absolute values, although at a more detailed
level there are clear differences. The independent-particle limit of the TUL code should,
theoretically speaking, yield the same result as that of the FKK code. That this is actually
not the case can therefore not be attributed to differences in the underlying physics of
the models, but it is rather located in more practical aspects like different choices for
various model parameters that are embedded in the computer codes. Accordingly, the
results presented should not be taken as a detailed comparison of MSD-theories with
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experimental data. The figure as a whole shows that practical parameter choices are at
least as important as physical differences in the implemented MSD theories and, thus,
that a proper computational comparison of theories is not simple and needs to be carried
out with care. Accordingly, a more thorough model and code comparison for the quantum
MSD theories would be very useful.

5 The Two-Step Cross-Section: Leading-Particle
Statistics

In the previous section it has been demonstrated that different physical routes lead to
more or less the same first-order expressions. We will see, however, that the descriptions
for the two-step process show more diversity. In this section, we will give the various
two-step results that have their physical basis in leading-particle statistics, whereas the
corresponding results for residual-system statistics are discussed in the next section. For
detailed derivations we refer to ref. ).

5.1 The General Leading-Particle Statistics Theory

Our starting point is Eq. (8) and we employ the usual never-come-back assumption by
supposing that the dominant process is that the leading particle creates a new particle-
hole pair, leaving the rest of the nucleons as spectators. Then, applying leading-particle
statistics on the intermediate and the final states yields the result:

dndEk

•*-* n s n • \/V v 1 ) \ \ AM I / l/v V Oy/ I * \ J

We stress that although the distribution amplitudes a ^ and fl/j^ have been aver-
aged over energy, no random configuration mixing was used to eliminate the associated
interference effects.

5.2 The FKK model as a Simplified Leading-Particle Statistics Theory

The FKK model6) can be viewed as a simplification of the above leading-particle statistics
theory 16). An attractive feature of the FKK model is its simple convolution structure,
which is not present in the above equation as a result of the occurrence of the Green
function. The basic ingredient to obtain this convolution structure is the use of the on-shell
approximation, which physically corresponds to the classical idea of energy conservation
at each step. Except for the additional use of this approximation, the derivation of the
FKK result employs the same assumptions as in the previous subsection. It reads:

* * & 9. f It / T \ / T-i//\ / nl \l I I \ / l \ l / - . . I K r l n l l / I W» \ l |2 ^

(18)
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This is basically the two-step result for the FKK theory (see Eq. (2.5) of Ref.6)) and
the expression that has been implemented in the computer codes of Bonetti et a/.25) and
of Marcinkowski et al.29). There are two differences with the result given in the original
FKK paper6). First, these authors introduced a further simplification by replacing x by
X, a choice argued in more detail in30), but criticized in11). Although computationally
very convenient (and present in the mentioned computer programs), in our opinion this
assumption is likely to constitute an oversimplification, since it would imply that the
probability of emission equals that of particle-hole creation. The second difference lies
in an additional summation over neighboring particle-hole states in the original FKK
expression. This summation is not present here as a result of our use of the never-come-
back assumption. We mention in passing that it does also not occur in the implementations
of25) and29).

Further, we point out that the independent-particle limit is not a crucial element in
the above derivation, although it is employed in the computer codes of25) and29). In other
words, the FKK result for the real nuclear model can be obtained by replacing p by p.

The derivation given in1) demonstrates that the FKK result can be seen as only based
upon leading-particle statistics. There is no need at all to invoke residual-system statistics,
although this was explicitly mentioned in6). In addition, we have shown that the FKK
model is a simplification of a more general leading-particle statistics theory, resulting from
the additional introduction of the on-shell approximation. Both leading-particle statis-
tics and the on-shell approximation are necessary to obtain its characteristic convolution
structure.

5.3 The generalized exciton model

In this subsection we will sketch how the generalized exciton model 2) , which is still
widely used in practice but has a semi-classical and phenomenological character3), can be
interpreted in terms of our theory. Basically, it can be viewed as a classical interpretation
and a further phenomenological simplification of the FKK model. We point out that a
rigorous derivation will not be possible, because the exciton model treats the precompound
process as a whole and therefore embodies a mixture of multi-step compound and MSD
concepts. Nevertheless, its physical ideas can be qualitatively explained and its main
characteristics, in particular the shape of the angular distributions and of the energy
spectra, can be semi-quantitatively understood in terms of the present quantum-statistical
framework16).

Several of the physical ideas behind the generalized exciton model can be interpreted
in a straightforward manner. It consistently employs particle-hole model states and thus
neglects the residual interaction Hi within the final nucleus. Accordingly, residual-system
statistics does not play an essential role in the exciton model. Indeed, the picture behind
the generalized exciton model is that the fast incident particle can at each step create many
different configurations in a probabilistic manner. This idea is formally expressed in our
leading-particle statistics postulate. That Eq. (10) is indeed a proper quantum-statistical
formalization of the MSD part of the exciton model is corroborated by comparing it to the
statistical hypothesis proposed by 17) for (what now would be called) multi-step compound
reactions and its attempted extension to the leading-particle concept in2). Furthermore,
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the exciton model assumes that classical conservation of energy applies to all transitions,
these being expressed in terms of particle-hole model states.

Thus, the MSD part of the exciton model can be reformulated in a quantum-mechanical
framework in a manner that is truthful to its conceptual ideas by employing: (i) leading-
particle statistics; (ii) the on-shell approximation; (iii) the independent-particle limit.
Hence, this reformulation is given by Eq. (16) for the first step and by Eq. (18) for the
second step. This conclusion has some interesting corollaries16). First, in contrast to what
is often stated in exciton-model studies, no equiprobability assumption for the creation of
different configurations is being invoked. Second, no statistical assumption is needed in
obtaining the one-step expression, since it is simply proportional to the sum of the squared
residual DWBA matrix elements within the considered energy interval. Finally, and most
importantly, the above discussion shows that the FKK model (as we have interpreted
it here) represents the proper quantum-mechanical reformulation of the MSD part of the
exciton model, in the sense that it embodies the same conceptual physical ideas, but avoids
the classical and ad hoc aspects of the exciton model.

We will now shortly discuss the phenomenological simplifications used by the general-
ized exciton model and to be introduced into Eqs. (16) and (18). A peculiar feature of the
exciton model is that it displays a convolution-type structure for the double-differential
cross-sections, but unlike the FKK model only for the angle dependency and not for the
energy-dependent part 2 '3) . The reason for this is mainly historical: the original exciton
model was an extension of statistical compound ideas31) and the leading-particle concept
was only introduced later on and is therefore something of a patch-up. We can obtain this
structure from Eqs. (16) and (18) by assuming (as is indeed done in the generalized exci-
ton model) that the occurring averaged matrix elements factorize into an angular and an
energy-dependent part. An additional simplification is then introduced by not estimating
the angle-dependent factor (called the "scattering kernel" in phenomenological work) from
DWBA theory, but from classical isotropic (in the nucleon-nucleon center-of mass system)
scattering or, in later work, from the Kikuchi-Kawai expressions32). These assumptions
generate from Eqs. (16) and (18) the angular distributions as given by the generalized
exciton model. Although very simple, they nevertheless produce reasonable predictions
4 '5).

In order to explain how the exciton model obtains expressions for the emitted energy
spectra from Eqs. (16) and (18), even more simplifications are needed. The intermediate
matrix elements are replaced by global quantities independent of the intermediate energy
(albeit that we do not need this assumption for the first step). As a result, the n-step
cross-sections become proportional to pnpnh(Ex). Next, an additional average over Ek is
carried out and the final step matrix elements are then estimated from the inverse process
using detailed balance considerations. This yields the energy dependence of the exciton-
model emission rates as discussed in the Appendix of31). Although these procedures are
not very convincing in the MSD context (as they clearly have their roots in compound
concepts), they again yield reasonable results for the emission spectra. It is to be noted,
however, that the main precompound contribution stems from the first step.

From this discussion it is evident, first, that the generalized exciton model is physically
speaking a simplified version of the leading-particle statistics theory and especially of the

263



FKK model and, second, that the estimates and simplifications used in the final expressions
of the exciton model are very crude. Accordingly, if one adheres to the physics as embodied
in the exciton model, we would recommend to employ FKK model implementations for
practical applications.

6 The Two-Step Cross-Section: Residual-System
Statistics

In this section we will outline the consequences of the residual-system statistics hy-
pothesis (12). Using the previously developed framework both the TUL7) and the NWY8)
models can be derived1). We will also mention the implications of the on-shell approx-
imation in conjunction with residual-system statistics, and give a comparison with the
leading-particle statistics results.

6.1 The TUL Model

Here, the formal development is completely analogous to that of Sec. 5, with the excep-
tion that we use residual-system statistics instead of leading-particle statistics. Assuming
residual-system statistics for the final states and the intermediate states (this is called the
adiabatic approximation), we find for the two-step energy averaged cross-section:

JdSldEk

I) |2 . (19)

Together with Eq. (13) for the one-step cross-section, this constitutes the TTJL model.
Taking the independent-particle limit here does not make much sense, since the presence
of Hi is necessary to generate the statistics, in contrast to the leading-particle statistics
case.

Comparing Eq. (19) with the analogous leading-particle statistics cross-section (17)
demonstrates that leading-particle statistics is a stronger assumption than residual-system
statistics. Equation (17) resembles, but is simpler than the TUL equation (19), since in
the former the interference effects related to the leading particle are also eliminated (i.e.,
the integral over ki is outside the square), while the residual-system statistics employed
in this section merely destroys those of the A - 1 particle states. This is physically
understandable, because leading-particle statistics makes assumptions about the behavior
of the leading particle, whereas residual-system statistics does not.

6.2 The NWY Model

The NWY model8) is identical to the TUL model for the first step. For the intermediate
stage of the second step the NWY model assumes that additional particle-hole creation is a
much faster process than residual configuration mixing (while the TUL model takes it the
other way around). This so-called sudden approximation gives the two-step cross-section:
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where we have used a more explicit particle-hole notation. In contrast to the other two-
step models we have discussed so far, the two-step cross-section of the NWY model employs
a statistical energy average only once. As a consequence, the final state 'remembers' which
particle-hole pair was created in the intermediate step. Thus, the NWY model uses a
weaker statistical hypothesis than the other models and gives therefore rise to a more
complicated expression.

6.3 Residual-System Statistics and the On-Shell Approximation

Previously we have argued that in conjunction with leading-particle statistics the on-shell
approximation yields a simple and transparent model, i.e. the FKK model. Combining
residual-system statistics and the on-shell approximation gives the two-step cross-section:

d2a(2)

X

x {x (- )(k)|(l I/ |y|0)|x (+ )(k1))(x (+ )(k1) |(l/ . |F|0)|x (+ )(ko)). (21)

Accordingly, residual-system statistics together with the on-shell approximation leads
to a model that is simpler than the full TUL model. It is interesting to compare the
above result with the FKK result which was obtained by using leading-particle statistics
combined with the on-shell approximation. We see that in the case discussed here there
is energy conservation in the intermediate step (due to the on-shell approximation), but
there are still interference terms left regarding the intermediate angle related to the leading
particle. This is to be expected because residual-system statistics does not say anything
about the leading particle. Hence, it does not lead to a convolution structure as is the
case in the leading-particle statistics theory. This confirms that the structure of the FKK
model cannot be obtained by means of residual-system statistics, and thus that the FKK
theory is essentially a leading-particle statistics theory.
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7 Summary

The analysis given in this paper intends to provide an integrated perspective on the
similarities and differences between the many current theories of MSD reactions in the con-
tinuum. We have argued that, starting from the framework of distorted wave theory, there
are essentially two different possibilities to generate a statistical MSD theory. The first
is to introduce a randomness postulate that we have denoted leading-particle statistics.
Here, it is assumed that at each step many states are accessible to the leading continuum
particle and that the associated residual matrix elements are randomly distributed. The
second possible randomness postulate, called residual-system statistics, is to assume that
there is a random configuration mixing due to the residual interactions within the residual
nucleus. The latter hypothesis does not make any statistical assumption about the inter-
actions of the leading particle. These physically different randomness postulates generate
two distinct classes of statistical MSD theories.

As discussed in Sec. 3, residual-system statistics is related to Hi and leading-particle
statistics is related to V. Employing these statistical hypotheses produces a variety of
different MSD models. Using residual-system statistics yields the TUL model ) as well as
the NWY model8). The difference is that the former applies residual-system statistics at
all steps (the 'adiabatic' approximation), while the latter applies it only in the final step,
because it was argued in8) that in the intermediate steps particle-hole creation is a faster
process than configuration mixing (the 'sudden' approximation). This is shortly discussed
in Sec. 4 for the first step and in Sec. 6 for the second step.

We have presented a new leading-particle statistics theory for MSD reactions. Its
one-step cross-section is given by Eq. (13) and its two-step cross-section by Eq. (17).

Interestingly, the one-step expression (??) of our leading-particle statistics model is
identical to that of the TUL and NWY models, although the physical basis of the deriva-
tion is entirely different. In addition, it has been shown that no statistical hypothesis is
needed in obtaining the first-step result (16) of the independent particle model. These con-
clusions are of practical importance, because the first step provides the major contribution
(typically 80 per cent, as also illustrated in Sec. 4.3) to the MSD cross-sections.

Another interesting conclusion is that the above leading-particle statistics theory re-
duces to the FKK model if we in addition employ the on-shell approximation and take
the independent-particle limit (i.e., neglect Hi), see Sec. 5.2. This shows that the FKK
model6) is to be understood as being based upon leading-particle statistics. Hence, it is
physically not justified to view the FKK model as a simplification of the TUL model,
as argued in11), since the latter employs residual-system statistics. In other words, the
TUL model needs to employ the presence of H\ to generate its statistical foundation,
whereas the FKK model can completely neglect this term of the Hamiltonian. We have
furthermore indicated (Sec. 5.3) how the semi-classical approaches such as the generalized
exciton models2'3) can be interpreted as further phenomenological simplifications of the
leading-particle statistics and FKK models. Accordingly, the relationships between the
various MSD models can be represented as in Fig. 4. Here, LPS stands for leading-particle
statistics, RSS for residual-system statistics and IPM for independent particle model.
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INFLUENCE OF COLLECTIVE EXCITATIONS ON
PREEQUILIBRIUM AND EQUILIBRIUM PROCESSES

A.V. Ignatyuk, V.P. Lunev
Institute of Physics and Power Engineering, Obninsk, USSR.

A B S T R A C T

In all models used for calculations of nuclear cross sections, the

reaction mechanisms are separated into one-step and multistep direct,

multistep compound, preequilibrium and compound equilibrium. However,

essential variances in estimates of the direct and preequilibrium process

contributions still exist. This paper presents a demonstration of the

connection of these variances with the influence of collective

excitations on the direct and compound processes.

In all models used for calculations of nuclear cross sections
the reaction mechanisms are separated on one- and multistep
direct, multistep compound preequilibrium and compound equilibrium
/1/. But essential variances in estimations of the direct and
preequilibrium processes contributions exist nowadays. We want to
demonstrate the connection of these variances with the influence
of collective excitations on the direct and compound processes.

Integral contribution of the direct processes

The results of calculations of integral cross sections for
all three types of processes mentioned above are shown in Pigs.
1-3. The dashed curves present the result of Feshbach-Kerman-
Koonin approach with the direct processes contribution estimated
empirically from the observed asymmetry of the angular
distribution of secondary particles /2/. The solid lines are the
results of more complex and consistent analysis, where the direct
processes cross sections are calculated in terms of the couple
channel and DWBA approaches /3/.

The direct transitions probabilities are determined by the
dynamic deformation parameters p^ of the multipole coherent
nuclear excitations /4/. For the nuclei under consideration there
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Flg.1. The contributions of different reaction mechanisms to the
Inelastic scattering cross sections as a function of Incident
neutron energy for the Fe-56 nucleus. The dashed lines represent
the results of FKK approach and solid lines are the calculations
taking Into account the collective effects.
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Fig.2. The same as flg.1 for Nb-93.
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Fig.3. The same as flg.1 for Bi-209.

is relatively detailed experimental information about these
parameters in the excitation energy region up to 7 MeV. These data
allows to calculate correctly the contribution of the direct
processes to the neutron scattering cross sections for incident
energy up to 14 MeV. As the incident particles energy increases
the pigmi and giant resonances of different multipolarity as well
as superposition of these resonances with low-laying states begin
to contribute to the direct transitions.

Large uncertainties exist nowday in the calculations of the
parameters p^ especially for multipolarities X > 4 /3/. These
uncertainties immediately transform into the ambiguities of the
calculated cross sections for direct transitions. Also there are
some problems concerning the calculations of multistep direct
transitions via quasideutron intermediate states /5/. Nevertheless
the general conclusion about the dominant role of collective
excitations in the description of the direct processes seems
doubtless proved /3, 5, 6/.
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Collective enhancement of the level density

The level density of excited nuclei is one of the main
characteristic in the statistical description of compound
processes. For its calculation the Fermi gas model most frequently
is used with the parameters obtained from fitting the observed
densities of neutron resonances and low-laying levels. But such a
model does not considers correctly the shell effects, pairing
correlations of the superconducting type and collective nuclear
excitations. These effects must be included in the consistent
analysis of experimental data. That can be done in frame of micro-
scopic approaches based on the generalized superfluid model /7/.

Fig. 4 shows the results of the level density calculations in
91different approaches for the Zr nucleus. The effective pairing

interaction is reliably qualified from the odd-even differences of

Zr-91

0
0 8

U, MeV
Fig.4. Energy dependence of states density for the Zr-91 nucleus.
The histograms shows the microscopical combinatorial calculations
of quasiparticle's excitations (dashed lines) and with addition of
collective modes (solid lines), the dot-dashed line is the
phenomenological description, dark and bright circles are the
experimental data.
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nuclear masses, therefore the total density calculations of all
possible quasiparticles excitations do not contain fitting
parameters. Still, we can see, that the level density calculated
in this approach do not reproduce the experimental data. We should
use the vibration enhancement of the level density both for low
excitation energies and for region of neutron resonances. The
methods of the collective enhancement calculations considered in
Refs. /8, 9/. Only after inclusion of such enhancement we come to
agreement with the experimental data.

In the phenomenological approach developed in Refs. /7,10/ we
use the same relations of the superfluid nuclear model and nearly
the same coefficient of the level density vibration enhancement,
but the correlation functions and the level density parameters are
obtained by fitting the experimental data. As a rule these
parameters are noticeably distinguished from the parameters of the
Fermi-gas model, that describes the same data. Differences of the
phenomenological description and microscopic calculations are
relatively small if we use the same factors of the level density
enhancement.

In analysis of the description of collective effects in highly
excited nuclei It Is of more interest to compare the collective
enhancement factors than the total level densities. Fig. 5 shows
these factors calculated In different approaches /9/. All
microscopic calculations prove invalidity of the adiabatic
approximation for vibration modes in highly excited nuclei and the
necessity of dumping for the vibration enhancement factors as the
excitation energy increases. This is also indicated by
"experimental" data obtained from the ratio of the observed level
densities to the calculated ones In model without collective
effects.

Recently new experimental Information for the level density
was obtained from the neutron spectra analysis in the iron mass
region /11/. These data are shown in Fig. 6 together with the
phenomenological description of neutron resonance density and
low-laying levels. There are many similar examples of the neutron
spectra and excitation functions analysis /11/. These examples
demonstrate a good agreement between all sets of experimental data
and the generalised superfluid model predictions.
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Fig.5. Energy dependence or the vibration enhancement factors for
Fe-56 as a function of excitation energy. The dot-dashed lines are
the adlabatic estimation, the dashed line is the phenomenological
description /10/, the histogram is the combinatorial calculations
/9/, the symbols are the evaluations from experimental data.

Fig.6. Level density data for Mh-54 and Mh-56 obtained from (n,p)
and (n,a) spectrum analysis. The solid line shows the
phenomenological description.



Influence of collective effects on the state
densities with a fixed number of quasiparticles

If we want to achieve a consistent description of
preequilibrium and equilibrium processes, the calculations of
qusiparticle excitations in preequilibrium stage must be realised
in the same approach as the total level density description.
Within the framework of generalized superfluid model alongside
with the particle-hole excitations the particle-particle and
hole-hole excitations should be considered, as well as collective
excitations, which correspond to coherent superposition of the
interactive quasipartlcle excitations. Stated differently,
together with the diagrams in Fig. 7a usually considered in
preequilibrium models /1, 2/, the diagrams in Figs. 7b and 7c
should be taken into account.

a) bj c)

Fig.7. Diagrams for n ->• n+2 transitions in the superfluid model
(a,b) and with the collective excitation inclusion (c).

Fig. 8 demonstrates the differences of the 3- and 5- quasi
particles state densities connected with account particle-particle
and hole-hole excitations as well as collective modes. Inclusion
of collective effects results In n-quasiparticle excitation
threshold's decrease and a certain increase in their density for
low energy region. For higher energies the density of these
excitations does not differ significantly from the predictions of
the "pure" superfluid model /12,13/.

A more complicated problem Is consideration of mean
lifetimes of n-quasiparticles excitations. Using usual separation
of active and passive quasiparticles the density of accessible
states can be obtained on the basis of the relationship:

u
or 3n

1 (u)J* <3s w1 (8)w3(e)wn_2(u-6)
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Fig.8. Energy dependence of the state densities for 3 - and 5-quasiparticle excitations in Zr-91:
a) p -h excitation only (dashed lines) and all quasiparticle excitation (solid lines);
b) quasiparticle excitations only (solid lines) and collective modes included (dashed lines).



Collective effects should be included in the corresponding
calculations of the partial densities. On the other hand, for the
simplest configurations, n = 3 for example, the direct
combinatorial calculations of the densities corresponding to
diagrams Pig. 7 can be realized. Such calculations will
demonstrate the influence of the Pauli's principle limitations and
the discrete quasiparticle spectrum structure on the transition
state densities.

But in lifetime calculations the issue of separating the
density of accessible states and averaged matrix element remains
to be settled. After inclusion of collective excitations this
question became more important due to their higher values of
transition probabilities in comparing with quasiparticles
transitions. To answer on these questions we are going to make
calculations of the mean lifetimes for 3-quasiparticie excitations
with realistic residual Interaction. We think that only such

approach will able to solve consistently the existing problem of
the preequilibrium processes description.
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