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Foreword

This report contains the texts of the invited presentations delivered at
the third Research Co-ordination Meeting of the Co-ordinated Research
Programme on Methods for the Calculation of Neutron Nuclear Data for
Structural Materials of Fast and Fusion Reactors. The meeting was held at the
TAEA Headquarters, Vienna, Austria, from 20 to 22 June 1990. Since the
meeting there have been many requests to make the texts of the presentations
available in printed form. The texts are reproduced here, directly from the
Authors' manuscripts with little or no editing, in the order in which the

presentations were made at the meeting.
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*Methods for the Calculation of Neutron Nuclear Data

for Structural Materials of Fast and Fusion Reactors"

S. Chiba*, P.T. Guenther, R.D. Lawson and A.B. Smith
Argonne National Laboratory
Argonne, Illinois, U.S.A.

ABSTRACT

The calculation of neutron inelastic-scattering cross sections of
vibrational nuclei is discussed, and it is shown that they are large for
the yrast levels for A =~ 110. It is shown that, in addition to common
size and isospin effects, shell and collective effects are requisite to
explanations of neutron elastic-scatering ratios., Explicit optical
potentials are presented for the interaction of neutrons with 58Ni
(spherical and vibrational models), and with zirconium (spherical). It
is shown that these potentials provide excellent descriptions of the

results of recent comprehensive experimental results.

I. PREFACE

This Project has generally addressed generic issues, frequently at higher energies
well above those of primary applied interest. As the Project draws to a close, it is proper
to give focus to specific concepts suitable for the explicit calculation of structural—material
nuclear data for applied purposes. This contribution is directed toward that end. Section
IT of this report briefly addresses two issues that arose at the prior meeting. New
measurements and their interpretations have substantively contributed to resolving these
issues. Section III presents two potentials explicitly suitable for use in the structural-

material regions. The first is for 58Ni, and is formulated in the context of both the
spherical optical model (SOM), and the coupled—channels model (CCM). The second
potential is for elemental zirconium and its isotopes, formulated in the context of the SOM.
These potentials are suitable for quantitative applied calculations and demonstrate certain
physical properties generic to the respective mass regions. Some suggestions for future
studies are given.

II. ISSUES FROM PRIOR MEETING

A. Inelastic Excitation of Vibrational Levels in the
A = 100110 Region

At the previous meeting it was suggested that the inelastic neutron scattering cross
sections of the first few vibrational levels of even isotopes in this mass region might be
large (e.g., ® 1.5 b) at relatively low incident—neutron energies (e.g., at 1 MeV). Of
particular applied interest are the even isotopes of palladium and ruthenium. This issue
was examined using high—resolution experimental measurements and complementary CCM

*Visiting scientist from Japan Atomic Energy Research Institute



interpretations. The results of the work are extensively described in the Laboratory report,
ANL/NDM~112, and outlined in a journal paper (Ann. Nucl. Energy 16 637 (1989)). The
abstract of the Laboratory report follows:

ABSTRACT: The cross sections for the elastic—scattering of 5.9, 7.1 and 8.0 MeV
neutrons from elemental palladium were measured at forty scattering angles distributed
between % 15¢ and 1600. The inelastic—scattering cross sections for the excitation of
palladium levels at énergies of 260 keV to 560 keV were measured with high resolution at
the same energies, and at a scattering angle of 800. The experimental results were
combined with lower-energy values previously obtained by this group to provide a
comprehensive database extending from near the inelastic—scattering threshold to 8 MeV.
That database was interpreted in terms of a coupled—channels model, including the
inelastic excitation of one— and two—phonon vibrational levels of the even isotopes of
palladium. It was concluded that the palladium inelastic-scattering cross sections, at the
low energies of interest in assessment of fast—fission—reactor performance, are large (~ 50%
greater than given in widely used evaluated fission—product data files). They primarily
involve compound-nucleus processes, with only a small direct—reaction cemponent
attributable to the excitation of the one—phonon, 2+, vibrational levels of the even isotopes
of palladium.

B. Ambiguities in Elastic—Scattering Ratios

At the past meeting it was shown that observed ratios of the differential elastic-

scattering of 8 MeV neutrons from 900 and 98Ni were not consistent with the predictions
of either a "global" or "regional" SOM. This type of ratio ambiguity has been extensively
investigated over the mass range A~ 51-209, and a number of possible physical
contributions to the phenomena have been examined. This work is described in the
Laboratory report, ANL/NDM-114, and a shorter version has been submitted to Nucl.
Phys. The abstract of the Laboratory report is as follows:

ABSTRACT: Ratios of the cross sections for the elastic scattering of 8 MeV neutrons from
adjacent nuclei are measured over the angular range x 200—1600 for the target pairs 5tV//Cr,
59Co/58Ni, Cu/Zn, 89Y/93Nb, 89Y/Zr, 93Nb/Zr, In/Cd and 209Bi/Pb. The observed ratios
vary from unity by as much as a factor of ~ 2 at some angles for the lighter target pairs.
Approximately half the measured ratios (Cu/Zn, In/Cd and 209Bi/Pb) are reasonably
explained by a simple spherical optical model, including size and isospin contribiitions. In
all cases (with the possible exception of the 5{V—Cr pair), the geometry of the real
optical-model potential is essentially the same for neighboring nuclei, and the
real—potential strengths are consistent with the Lane Model. In contrast, it is found that
the imaginary potential may be quite different for adjacent nuclei, and the nature of this
difference is examined. It is shown that the spin—spin interaction has a negligible effect on
the calculation of the elastic—scattering ratios, but that channel coupling, leading to a large
reorientation of the target ground state, can be a consideration, particularly in the
58Co/58Ni case. In the A = 50—60 region the calculated ratios are sensitive to spin—orbit
effects, but the exact nature of this interaction must await more definitive polarization
measurements. The measured and calculated results suggest that the concept of a
conventional "global", or even "regional", optical potential provides no more than a
qualitative representation of the physical reality for a number of cases.

III. EXPLICIT POTENTIALS FOR STRUCTURAL MATERIALS
A. Potential for $8Ni

A—1. Introductory Comments

Nickel is a prominent component of radiation—resistant ferrous alloys.
Sixty—eight percent: of the element consists of 58‘Ni, and the remainder is largely the
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60Ni., 58

similar isotope Ni is a relatively simple nucleus consisting of closed neutron and

proton shells (N = Z = 28), plus two 1p3 /2 neutrons.1 The fast—neutron interaction with
58Ni shows characteristics of a direct process, but the details are not clear as the nucleus is
neither a simple vibrator or rotator. It has recently been shown that SOMs in the

A = 50—60 region are very specific to the particular ta,rget.2 "Global", or even "regional",
models fail to describe the interaction with a particular nucleus in quantitative detail. A

comprehensive study of the fast—neutron interaction with 58Ni, including measurements
and calculations, has been undertaken and is now nearing completion. The following
remarks summarize the status of this work, particularly defining detailed SOM and CCM
interpretations suitable for quantitative structural-material calculations.

A—2. The Database

A—2—a. Total Cross Sections

_ Broad—resolution neutron total cross sections were measured
from 1 - 10 MeV, with attention to self—shielding effects. These results are consistent with

i
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Fig. 1. Neutron total cross sections of O8Ni. The present
broad-resolution results are indicated by "0" symbols, and the high-resolution
results of Ref. 3 by the curve.

energy averages of high—resolution measurements3, as illustrated in Fig. 1, and provide a
database consistent with the concept of an energy—averaged model.

A—2-b. Elastic—Scattering Cross Sections

Differential elastic—scattering cross sections were measured
from 1.5-+10 MeV with sufficient energy—angle detail to define the energy—averaged
behavior, with the results shown in Fig. 2. The results are in qualitative agreetnent with
the few comparable distributions found in the literature.

A—2—c. Inelastic—Scattering Cross Sections

Cross sections for the inelastic excitation of the first 2+ (1.454
MeV) level were measured concurrently with the above elastic scattering, with the results
shown in Fig. 3. At lower energies the compound—nucleus process appears to dominate,
while the direct reaction predominates at higher energies. High resolution measurements,
illustrated in Fig. 4, gave additional information, particularly for the higher—lying levels.

A—2-d. Strength Functions

S— and p—wave strength functions were taken from the
compilation of Ref. 4.
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Fig. 2. Measured differential elastic-scattering cross sections.
Symbols indicate the measured values, and the curves the results of
Legendre-polynomial fits to the data. Data are in the laboratory coordinate

system.
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Fig. 3. Measured cross sections (symbols) for the excitation of the
1.454 MeV level of 58Ni. Curves indicate the results of Legendre-polynomial

fits. Data are given in the laboratory system.
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Fig. 4. Time-of-flight spectrum obtained by scattering 8 MeV neutrons
from 98Ni over a flight path of 14.65 m. Observed excitation energies are
numerically given.

58

A-3. Ni Model Derivation

A—3—a. Phenomenological Spherical Optical Model (SOM)

The objectives of the SOM interpretation were: (i) to provide
a basis for the subsequent CCM interpretation, (ii) to gain some physical understanding of
the interaction, and (iii) to obtain a simple SOM for, applied use. The SOM interpretation
was based upon explicit chi—square fitting of the elastic—scattering data, with supporting
consideration of total cross sections and strength functions. The elastlc—scattermg
database was taken from the present work to 10 MeV, with five additional distributions

extending to 24 MeV taken from the 11terature.5_8

The interpretation assumed a Saxon—Woods real, a Saxon—Woods—derivative
imaginary, and a real Thomas spin—orbit potentia.l.9 Compound—nucleus processes were
explicitly considered to 8 MeV using the Hauser—Feshbach formulalo, as extended by
Moldauer.!! Discrete level excitations were considered to 3.5 MeV12, and higher—lying

levels were represented using the statistical formalism of Gilbert and Cameron.'® Above 8
MeV, it was assumed that the elastic scattering was entirely a "shape" process. The fitting
is sensitive to the experimental error specification, and that is reasonably known only for
the present measurements. For the higher—energy distributions, the uncertainties given in
the literature were accepted, though they probably represent only statistical error.

The spin—orbit potential parameters were assumed to be

Vso = 5.5 MeV
Teo = 1.0 fm (1)
a'SO = (.65 fm.

These values are similar to those reported from polarization studies in this mass region.14

With the fixed spin—orbit potential, the elastic—scattering was fitted, starting with
six parameters and working progressively to two parameters, constraining first the
geometries of the real potential and then those of the imaginary potential. The resulting
geometric parameters were
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r, = (1.305—0.0064-E) fm

a_ = 0.6461 fm

r, = (1.16 +0.0023-E) fm (E » 5 MeV) (2)
= (1.50 — 0.066-E) fm (E ¢ 5 MeV)

a,  =1{0.26 + 0.0205-E) fm,

where E is neutron energy in MeV and the subscripts V and W refer to real and imaginary
potentials, respectively. Using these geometries, two parameter fits gave the potential
strengths, in volume integral per nucleon, shown in Fig. 5.

550
.512-6.03E
—
Jy i
G
300 { 1 ] 1 ]
150 [
e
1.33-3.9E
&p 8,00
Jw i © - 2] [} [3)
b LA [5) o
- L. o4
50 ! ] 1 ] |
(8] 5 10 15 20 25
E,MeV)

Fig. 5. Real (Jy) and imaginary (Jy) potential strengths for the
SOM, as expressed in volume integrals per nucleon. The dimensionality is
MeV—fm3.

The above SOM provides a good description of the observed elastic scattering to
more than 20 MeV, as illustrated in Fig. 6. Measured neutron total cross sections are also
reasonably represented, as shown in Fig. 7. The calculated strength functions (in units of

10_4) are 5 = 2.34 and 5; = 0.79, compared to the experimentally deduced values of (2.8

+ 0.6) and (0.5 = 0.1), respectively.4 The SOM also qualitatively represents the compound-
nucleus contribution to the inelastic scattering but, of course, cannot represent the direct-
reaction contribution evident in Fig. 3. The real—potential geometry is common in this
mass region, with the small energy dependence of I J v generally falls with energy in the

familiar manner predicted by Hartree—Fock calculations, but the magnitude is large, and
there is a pronounced "dip" in the few—MeV region. This dip is not associated with
inappropriate treatment of compound-nucleus effects but, rather, may be a manifestation of
collective structures. Above = 6 MeV, the imaginary potential radius is significantly
smaller than that of the real potential. This is characteristic of SOM interpretations of

vibrational nuclei.15 Below = 6 MeV, the imaginary potential radius sharply increases and
the diffuseness decreases as E ~ 0, and both become similar to values found for potentials

largely based upon strength functions.'® The SOM does not contain a volume absorption
term, as it could not be supported by the data.

12
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Fig. 6. Differential elastic-scattering cross sections of 38ni.
Symbols indicate measured values and curves the results of SOM calculations.
Data are in the laboratory system.
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Fig. 7. Comparison of energy-averaged measured (symbols) and SOM
(curve) total cross sections of 8Ni.

A—-3-b. Vibrational Coupled Channel Model (CCM)

58

It was assumed that Ni is a simple vibrator, with

one—phonon (27, 1.454 MeV) and two—phonon (41, 2.459 MeV, 2%, 2.776 MeV, and o™,
2.942 MeV) excited states. o Was taken to be 0.25. With these assumptions, the fitting of

the elastic—scattering data was repeated using the coupled—channels formalism, coupling
the ground and four excited states. The spin—orbit potential was fixed to

V., = (65-0.035-E) MeV
r, =1017fm (3)
a = 0.60 fm.

SO

This is the spin—orbit potential of Ref. 14 and similar to that given in Eq. 1. In addition,
the real—potential radius was fixed to that of the SOM (see Eq. 2). With these constraints,

13



the fitting procedure was identical to that of the SOM derivation outlined above. The
resulting potential geometries were

I, = (1.305 — 0.0064-E) fm

a, = 0.6531 fm

r, = (1.17+0.0033-E) fm (E > 5.6 MeV) (4)
= 21.50 —0.055-E) fm (E < 5.6 MeV)

a, =029 + 0.018-E) fm (E > 6 MeV)

= (0.10 + 0.050-E) fm (E < 6 MeV),

with the volume integrals per nucleon given in Fig. 8.

550
Jy
300 1 1 1 1 1
150
J B 69+ 0.67E
w - QGEQ) o ~ . o
m 3} 3]
50 | | { | !
0 5 10 15 20 25
E(MeV)

Fig. 8. Real (Jy) and imaginary (Jy) volume integrals per nucleon
obtained using the CCM. The dimensionality is MeV-fm3.

The above CCM gave at least as good a description of the elastic—scattering as the
above SOM representation, as illustrated in Fig. 9. The total cross section calculated with
the CCM was essentially identical to the SOM result shown in Fig. 7, and the calculated

s—wave strength function was 2.49 x 1074 as compared to (2.8 + 0.6) x 10™* deduced from
resonance measurements.4 The calculated cross sections for the excitation of the 1.454

MeV (2+) state are reasonably representative of the experimental results, as shown in Fig.
10. The prediction of the direct inelastic scatterihg from this level at higher energies is
good, as shown in Fig. 11 where the angle—integrated cross section is significant to well
above 20 MeV. The calculated angle—integrated cross sections in the = 3.5-5.5 MeV region
are sensitive to the temperature used in the calculation of the compound—nucleus
competition. In order to obtain the results shown in Figs. 10 and 11, the temperature had
to be raised by = 150 keV from the value given in Ref. 13. The cross sections calculated for
the excitation of the higher—lying levels was reasonably consistent with the observed
values, as discussed in Ref. 17.

The above SOM provides a simple calculational vehicle for many applications. Its
inherent shortcoming is the lack of a direct reaction, and this is reflected in both unusual
energy dependencies of some of the potential parameters and in the inability to describe
inelastic processes of significant size. The CCM vibrational model alleviates some of these

14
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Fig. 9.
Data are in the laboratory system.
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Fig. 10. Comparison of measured (symbols) and calculated (curves) CCM
cross sections for the excitation of the 1.454 MeV level in 28Ni. Data are

in the laboratory system.

shortcomings, particularly those associated with the inelastic scattering. However, 58Ni is
neither a simple vibrator nor a rotator, and more complex coupling schemes than used
above must be present. They are probably the source of the unusual parameter energy
dependencies in the above vibrational model. They are most evident in the context of the
imaginary potential, and will take a different character when a rotational—coupling scheme
is assumed, as discussed in Ref. 15. If the fundamental character of the interaction could
be reasonably represented using matrix elements derived, for example, from the shell
model, it is hoped that a more general representation could be achieved, perhaps even on a

regional or global basis. Such an effort is now being attempted.
15
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Fig. 11. Angle-integrated cross sections for the excitation of the

1.454 MeV level. Measured values are indicated by symbols and the results of
CCM calculations (including compound-nucleus contributions) by the curve.
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Fig. 12. Elastic scattering cross sections of zirconium. The measured
values are indicated by symbols and the results of Legendre-polynomial fits to
the data by curves. The data are in the laboratory system.

B. Potential for Elemental Zirconium

B-1. Introductory Comments

Zirconium has been a primary structural component of nuclear—energy
systems for more than four decades. Elemental zirconium consists of five isotopes (gOZr

(51.45%), Nzr (11.27%), %22r (17.17%), 2421 (17.33%), and %2 (2.78%)). There is some
information on the various isotopic reactions, but remarkably little directly relevant to the
element that is used in the applications. The model development is complicated by the
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multi—isotopic nature of the element and the variation of the potential parameters as the
isotopes move away from the closed N = 50 neutron shell. 18

B—2. The Database

B—2-a. Total Cross Sections

The experimental values were assembled from the literature,

and combined with results obtained at this laboratorylg, to provide a database extending
to more than 20 MeV. This experimental database was evaluated using rigorous statistical

met;hods.20

B—2—b. Elastic—Scattering Cross Sections

The elemental elastic—scattering cross sections were measured
from =~ 1.5- 10 MeV, with the results shown in Fig. 12. There is remarkably little
zirconium elastic—scattering data in the literature. ‘However, a 24 MeV distribution was

awa,ilable21 and was.added to the present results to form the database for the
interpretation. '

B—2—c. Inelastic—Scattering Cross Sections

Due to the complex isotopic nature of the element,
measurements of elemental inelastic—scattering cross sections do not provide unambiguous
results. The literature does contain a few isotopic inelastic—scattering results that can be

used to verify the calculational predictions.22’23 The primary obstacle to more definitive
experimental definition is measurement—sample availability.

B—-3. Zirconium Potential Derivation

The zirconium isotopes are near the closed neutron shell and, thus, the SOM
should be appropriate. The major problem in the interpretation is the disparate structure
of the five isotopes. The present model derivation was based upon the chi—square fitting of
the elemental zirconium elastic—scattering data, concurrently explicitly treating the

compound—nucleus processes in each isotope. J T values for the discrete levels were taken
from the Nuclear Data Sheets24, and the Gilbert and Cameron statistical formalism was
used to represent higher—energy excitations.!>  The requisite calculational code was
developed for this elemental fitting.

The interpretation was based upon the Saxon—Woods real, Saxon—Woods-derivative
imaginary, and Thomas spin—orbit potentials.9 The fitting procedure was essentially the

same as that outlined above for the 58Ni SOM, progressively determining the real potential
geometries, the imaginary potential geometries and then the potential strengths. The
spin—orbit potential was fixed to

VSo = 5.5 MeV
r,, =10fm (5)
a,, =065 fm,

which is similar to that of global models giving emphasis to polarization phenomenaL.14
The geometries resulting from the fitting were

17



r, = (1310 -0.0064-E) fm

a, =0667fm (6)
r, = (1390 —0.0064-E) fm

a, = (0310 +0.0182-E) fm,

where the slight energy dependence of r  was assumed to be suitable for - also. The
potential strengths following from the fitting (in volume integral per nucleon) were

J,  =474.64—53485-E MeV—im )
J, =62493 + 0.4811-E MeV—fm®

where these numerical values are for 907, They will be slightly different for the other
isotopes due to the simple Al/ 3 size effect.

de/d0 (h/er)

(1] 90 180 0 -] 180

6(deg)

Fig. 13. Comparison of measured (symbols) and calculated (curves)
elastic—scattering cross sections of elemental zirconium. The data are in the
laboratory system.

The above potential provides a very good description of the elastic scattering, as
illustrated in Fig. 13, and the total cross section, as shown in Fig. 14. The model

reproduces the general trends of s— and p—wave strength functionszs, though it cannot
reproduce the rather large fluctuations from isotope to isotope evident in the

experimentally deduced values.4 Calculations give a reasonable description of the available
inelastic—scattering data, but the latter are not particularly detailed and, thus, do not
provide a stringent test of the model.

Some isotopic zirconium elastic—scattering data are available in the

literature21’22’26’27, particularly for 07, and 92Zr. The above model very nicely
describes these isotopic elastic—scattering results, as illustrated in Fig. 15. The present
model does not explicitly deal with symmetry effects (i.e., the effect of the isovector

18
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Fig. 14. Comparison of measured (symbols) and calculated (curve) total
cross sections of zirconium.
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Fig. 15. Comparisons of measured (symbols) and calculated (curves)
elastic-scattering cross sections of 909Zr and 92zr. The data are in the
laboratory system.

portion of the potential). The mass range of the zirconium isotopes of significant
abundance is relatively small (A = 90 + 94); therefore, there is not a strong isovector effect.
This is illustrated in Fig. 16 where 10 MeV elastic scattering is calculated without (curves
"A") and with (curves "B") the isovector potentials of Ref. 14. The curves are zeferenced
to the mean elemental mass. The effect of the isovector potential is negligible except for

the 94‘Zr case, and even there the differences between curves A and B are less than the
respective experimental uncertainties; furthermore, the isotope is only 17.33% abundant.
The differences in the calculated results are most sensitive to the imaginary portion of the
isovector strength.

The above potential is suitable for zirconium model calculations to well above 20
MeV. It is a relatively simple SOM formulation, strongly supported by experimental
observation. The real potential geometry is conventional, with a reasonable emergy
dependence of J v The imaginary potential radius is somewhat larger than that of the real
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Fig. 16. Tllustration of sensitivity to the isovector potential.
Curves "A" were obtained with no isovector potential, and curves "“B*" with that
of Ref. 14. Data are in the laboratory coordinate system.

potential, as is generally found for spherical nuclei at lower energies and as indicated by

strength functions.16 The imaginary diffuseness increases quite sharply with energy, and
there is a conventional increase of J W Clearly, the linear energy trends are approximations

of a more complex behavior, applicable to the % 0 -+ 25 MeV range, and they cannot extend
well into the bound region or to very high energies. Below = 25 MeV there is no
experimental support for a volume absorption term.

IV. SUMMARY RI?MARK

This Report resolves some outstanding issues from the prior meeting. It also
presents two explicit potentials that are very suitable for the calculation of quantitative

nuclear data for 58Ni and elemental zirconium, respectively. These potentials are the

result of a comprehensive measurement and analysis program. The 58Ni potential
illustrates the difficulties in handling complex coupling schemes of collective vibrational
and/or rotational nuclei. The conventional SOM is only an approximation in this case, and
more complex physical concepts are probably required for detailed understanding. These

are now bein explored.15 In contrast, the elemental zirconium potential is illustrative of
the success of the simple SOM in a region near shell closures. The potential presented is
well-founded on experimental evidence and provides a basis for very quantitative
calculations.
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Neutron Emission Cross Sections on 93Nb

at 20 MeV Incident Energy

A. Marcinkowski and D. Kielan
Soltan Institue for Nuclear Studies
PL-00-681 Warsaw, Poland

ABSTRACT

Over the last years fully quantum-mechanical theories of nuclear
reactions have been developed that provide, at least in principle,
parameter-free methods of calculating double-differential continuum cross
sections. The DWBA-based theory of direct processes to the continuum was
derived by Tamura et al. The statistical theory of Feshbach, Kerman and
Koonin (FKK) introduced two reaction types in parallel as complementary
mechanisms contributing to the preequilibrium decay. The multistep
compound mechanism (MSC) results in symmetric angular distributions of
the emitted particles, whereas the multistep direct mechanism (MSD) gives
rise to the forward-peaked angular distributions. The theories of the
MSC reactions differ in that the FKK theory incorporates the never come
back" hypothesis, which allowed the formulation of an applicable model
that was successfully used in practical calculations. On the other hand
the FKK theory of the MSD reactions differs conceptually from the theory
of Tamura et al. and from the more general theory developed most recently
by Nishioka et al. The latter theories were shown to be founded upon a
postulated chaos located in the residual nucleus. 1In contrast, the
theory of FKK assumes a chaotic interaction of the continuum particle to
be emitted with the residual nucleus. The continuum or leading-particle
statistics of the FKK theory results in the simple, convolution like, MSD
cross section formula, which facilitates numerical calculations.
Nevertheless two-step statistical DWBA calculations have been also
performed. This paper entends the application of the FKK theory to the

93
Nb(n,xn) reaction at 20 MeV incident energy.

1. Introduction
Over the last years fully gquantum—-mechanical theories of
nuclear reactions have been developed, that provide, at least in
principle, parameter—free methods of calculating the required
double~differential continuum cross sections. The DWBA based

theory of direct processes into the continuum was derived by
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Tamura et al.lb CTUL>. The statistical theory of Feshbach, Kerman
and Koonin 2) CFKK> introduced two reaction types in parallel as
complementary mechanisms contributing to the pre—equilibrium
decay. The one, refered to as the nmultistep compound mechanism
(MSCY results in symmetric angular distributions of the emitted
particles, whereas the multistep direct mechanism (MSD) gives rise
to the forward-peaked angular distributions.

The theories of the MSC reactions differ in that the FKK
theory incorporates the never come back hypothesis, which allowed
to formulate an applicable model 2) successfuly used in practical
3’4). On the other hand the FKK theory of the MSD

reactions differs conceptually from the theory of Tamura et al.ib

calculations

and from the more general theory developed most recently by
Nishiocka et a1.5). The latter theories were shown to be founded
upon a postulated chaos 1located in the residual nucleus, in
contrast the theory of FKK assumes a chaotic interaction of the
continuum particle to be emitted with the residual nucleus 6). The
continuum or leading particle statistics of the FKK theory results
in the simple, convolution like, MSD cross section formula, which
7’8). Nevertheless the

twostep statistical DWBA calculations have been also performed 1).

facilitates the numerical calculations

This paper extends the application of the FKK theory to the

g3Nan.xn) reaction at 20 MeV incident energy.

2.1 The multistep compound reactions

For the statistical multistep compound emission, due to the
decay from a chain of quasi-bound states of the composite system
this theory Qrédicts a double~différential MSC cross section
expressed via three multiplicative terms: the entrance channel
strength function, the depletion term, describing that part of the
absorbed projectile flux, which survived emission prior to
reaching the N-th stage of the reaction and the probability of
emission from the N-th stage states, which occurs only wvia the
continuum states, accessible in the exit transitions wv=N#i,N. The
latter two terms are expressed by the emission width,
<F;;S'DCU3p5CU.I’D>. and the damping width, <TI' NJ>' The density of
the bound-particle-hole states is PE' By assuming a &-type

residual interaction all the widths factorize,

1’'S’y B , _ 2, v, v
I’ NI CU)vaU.I J)> = 2nl xNYN' c1>
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with I being the overlap integral of the radial wavefunctions for
the two active bound-particles holes and the two final
particles-holes,X the angular momentum coupling function and Y the
density of levels accessible in the transition. The MSC formulae
describe the for neutron and proton channels only.

In the exciton representation p+h=n= 2N+1, and the three
possible exit transitions denote a particle-hole creation,
annihilation and exciton scattering, respectively. The X- and
Y-functions were calcuiated according to refs. 4'9;) with

corrections of ref.iO). e.g. for the exit transition annihilating

a particle-hole pair, v=n-2, one obtains:

B B
- Pz, 1B~ We o P
YyTE = , cad
n B (B>
P, h
R _CI™
X = — C2Q+1OFCC2] +1OR, C§.) ., (3
nJ R_CID 3 1T Lt
n QJ3 e 2

where E and U are the excitation energies of the composite system
and the residual nucleus, and J'J1'J2'J3 and Q are the total
angular momenta of: the ejectile, the exciton initiating the
transition, the particle and the hole annihilated, and the total
angul ar momentum-of the pair of interacting particles (initiating
particle and the particle of the annihilated paird), respectively.
The spin distriﬁution of the single particle states g=A-13 is
EnCJ). The r.h.s. of egq.(3) holds for j-I'<( J {j+I' and equals O

otherwise.
£.2 The multistep direct reactions

In order to describe the forward peaked angular distributions
observed in experiment it is assumed that the incident continuum
particle looses stepwise its energy and direction in a sequence of
collisions, each creating a new particle~hole pair. At each step
emission may take place and the MSD cross section is considered as
a sum of emissions in all the reaction stages N. By introducing
the probability wN.N—i for transition from the C(N-1>th to the Nth

stage the multistep cross section becomes

2 - 2

d o 2 2 d e
_[ —1 _[ W, T C4d
v N N N-1
dUdeultlstep N w»=N cen ) cen ) dUonnestep
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The integrations in eq. (8) are over all angles and momenta kN of
the particle in the contonuum, which makes the transition from
stage N. The FKK theory provides the basis for expressing the

transition probability

2
mh k deC® D .DW
W = —N-1 Y c21+15p,CU) 1< NoN-1 > s
1 &Y

and the one-step cross section,

%o, | doC®, > JDW

—ai = 2 C21+1dp_CU, ,10¢ | —=+3— >, 4]

dU, do &1 dQ 1

1 1onestep 1 1

in terms of incoherent contributions of the DWBA

angle-differential c¢ross sections for spinless particles BD.The

summation in formulae (82 and (103 is over the transferred
orcatal angular momenta 1, my_q is the reduced mass of the
continuum particle and ®N.N—1 is the angle between kN,N—i and kN.

The angular brackets denote averaging of the elementary angular
distributions, computed with microscopic two-particle form factor,
over many final fpih configurations, efg. of the shell model.

An adequate description of experimental neutron scattering
data requires inclusion of the collective, low energy, surface
vibrations of quadrupole and octupole multipolarity into
consideration. This can be done by the method of Kalka et al.iib.
who have derived the cross sections for the one- and two-phonon
transitions from Green’s function and random matrix formalism. The

one-phonon cross section is

deo mv 4n k
=2 1
— = S, . SCU-w, D == P Ce OP . Ce,D>, C11D
4au. [ anha ]Ck'RDa i1 2 AR A ki 1771774774
1phon i A
.. 4 .3 _ 1,3 — 12_ .
where V —gwE » R —roA , ﬁx[4nC2K+1)J = Bx, and A, w, and ﬁk

are the collective mode multipolarity, energy and deformation
parameter, respectively. The penetrability factor PiCsi) is equal
unity for neutrons. The angular distributions of the collective,
continuum cross sections have not been derived in ref.iib. but
they can be calculated with use of the collective form factors in

the frame of the DWEA.
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5. Calculations and comparison with experiment
Iin caiculating of the particle-hole form factors, which enter
the MSD cross sections we assumed spinless particles and a
zero-spin target, so that the only contribution to the spins of
the final states comes from the transferred orbital angular
momentum 1. For each value of 1 the final 1pih configurations have
been choosen according to the shell model of Seeger 12). For these
configurations the angular distributions of emitted neutrons have
been caiculated microscopically by using the DWUCK-4 code. The
Yukawa residuai interaction of 1.0 fm range and with strength Vo=
25 MeV, was acting on the bound state wavefunctions generated in a
real Saxon-Woods potential. The distorted waves were calculated

using the giobal optical model of Wilmore and Hodgson 13).
In order to obtain smooth neutron spectra the calculated
cross sections were averaged over the final shell model
particle-hole states contained in overlaping energy intervals of

5.0 MeV width and centered on the experimental energy bins. The

densities of the final states, were evaluated with global
parameter a = A/8 and the spin cut-off fixed at a value ¢ =2.6 for
83

Nb. The calculated MSD cross sections are shown in fig. 1 as the
dott-dashed (onestep) and two-dott-dashed (twostepd line. At the
high energv end of the emission spectrum these MSD cross sections
need to be completed by adding the contribution due to collective
enhancement. The one~phonon quadrupole and octupole excitations
contribute according to eq. (115, with following energies and
deformation parameters of the low lyin%xfollective states: w2=0.93

MeV, Ba=0.13, w3=8.30 MeV, ﬁ3=0.18 in Nb. The delta function in

{115 was replaced by a Lorentzian of a collective width 0.7 MeV
11) broadened in accord with the experimental energy resolution.
For the odd-mass nucleus the weak coupling model was adopted. The
summed collective, one-phonon c¢ross sections are shown by the
dashed line labelled 1VIB.

The MSC calculations were split into the three steps and an
r-th stage, i.e. the r-th stage emission contained all emissions
from stages arfter the third, including the compond nucleus
cont.ribut.ion. The entrance channel strength function was
calculated from the optical model +transmission coefficients

reduced in order to account for the loss of the absorbed flux due

to the MSD emission 43. The reduction was evaluated from
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experiment.al angular distributions, by assuming that their forward
peaked pobtions are due to MSD processes, or by calculating
directly the M3D cross sections. Both ways provided consistent
reduction factor R=0.8 for gsNb.

The harmonic-oscillator wavefunctions for the bound nucleons
and the optical model scattering wavefunctions for the continuum
particle were used for calculating the overlap integral I, which
provides the absolute normalization in eq. (2>. The particle-hole
state densities, e.g. those entering eq. (43, were calculated with
restriction to bound particle orbital only by +the numerical
cut—-off technique developed by Bonetti et a1.14) with parameters

like in the MSD calculations.

" Nb+n+20 MeV

b aaal

mb

CROSS SECTION

2, 4 s 8 10 12 14 16 18
NEUTRON ENERGY - MeV
Fig.1
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The results of the MSC calculations are also shown in fig. 1
as the dashed line labelled CN, for all emissions after the third
step Ccompound nucleus cross sections), and the dashed line
labelled MSC+CN for all emissions dCincludung the three MSC
stages). One can see that the latter cross sections dominate the
low energy part of the neutron emission spectra, up to about 8 MeV
of the outgoing neutron energy. The nmultiparticle emission MCN
contributes stronly into the lowest outgoing energy bins. In spite
of it seems to be underestimated by the theory. The overall

description of the recent Chio experiment is goed, this holds for

the angular distributions as well.
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Calculation of Cross Sections of the (n,p) Reaction on

Zirconium Isotopes

A. Marcinkowski and D. Kielan
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PL~00-681 Warsaw, Poland

ABSTRACT

In our earlier analyses of the (n,p) reaction cross sections on several
isotopic chains in the medium-mass domain, we used the geometry-dependent
hybrid model for calculating the preequilibrium emission cross sectioms.
This model accounts for the enhanced emission from the nuclear surface by
assuming that the reaction proceeds in spherical shell-shaped regions of
a radius determined by the projectile impact parameter. These analyses
indicate that good overall agreement between theory and experiment may be
obtained at the expense of some parameter adjustment. In the present
paper, a more rigourous treatment of preequilibrium emission, such as the
statistical multistep compound and the multistep direct processes, in the
framework of the theories developed by Feshbach et al. (FKK) and Tamura
et al. (TUL), was applied in the calculations. The results of
calculations are compared with the cross sections of the
90’91’92’94Zr(n.p) reactions measured within a research programme

coordinated by the International Atomic Energy Agency.

1. Introduction

In our earlier analyses of the C(n,pd) reaction cross sections,

on several isotopic chains in the medium-mass domain 1.2

the geometry-dependent hybrid model 3) for calculating the

), we used

preequilibrium emission cross sections. This model accounts for
the enhanced emission from the nuclear surface by assuming that
the reaction proceeds in spherical shell-shaped regions of a
radius determined by the projectile impact parameter. These
analyses indicate that good overall agreement between theory and
experiment may be obtained at the expense of some parameter
adjustment. Here the more rigorous treatment of preequilibrium
emission, such as the statistical multistep compound and the
multistep direct processes. in the framework of the theories
developed by Feshbach et a1.4) CFKK> and Tamura et al. 5) CcTULS,

was applied in the calculations. The results of calculations are
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compared with the c¢cross sections of the 90.91.9

ZrCn, pd
reactions measured within the research project coordinated by the

IAEA-NDS.

2. Theoretical formalism
The measured cross sections were analysed in terms of the
decay of the compound nucleus preceded by the preequilibrium
emission. For this purpose the extended version of the computer
code EMPIRE 6) was used. As described earlier the standard
Hauser-Feshbach theory was applied for calculation of the

evaporation spectra and the multistep compound theory of FKK was
multistep direct emission, which is characterized by forward
peaked angular distributions, can be calculated either by using
the FKK, or the TUL theory. Both theories of the multistep direct
reactions derive the one-step cross section in the same way. The
calculational procedures are different however. In the FKK theory
the microscopic DWBA cross sections a;e averaged over many final
i1pith states. On the other hand TUL average the microscopic form
factors to get the macroscopic form factor, which subseq#ently was
used in calculating the continuum cross sections. The latter
approach reduces the number of the DWBA calculations to a few
only, and is therefore more practical for comparison with the
angle— and energy-integrated activation data. We used the TUL

formalism in the present analysis.

2.1 Multistep compound emission

For the statistical multistep compound emission the FKK
theory predicts the Hauser-Feshbach-like cross section consisting
of three multiplicative terms: the entrance channel strength
function, the factor describing the depletion of flux due to
emission on preceding reaction stages and the emission
probabiiity. The entrance channel strength function has been
related, for the purpose of the present calculation to the optical
model absorption cross section via a reduction factor R=0.86,
which accounts for the loss of flux due to multistep direct
processes and which was evaluated from experimental angular
distiriputions 6). The depletion factor and the emission
probability are expressed by the emission and the spreading

widths. which for transition matrix elements of a &-type factorize
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1S B 2,0,V
i - 2y = 2 2 . ]
< ’}j pSuCU ) anl YNXN c1
Here i» S, and J are the spins of the ejectile, the residual

nucleus and composite nucleus, respectively. The emission from
stage N of the reaction, which 1nvolves statez with n=2N+1
exclrtons, occurs wvia three exit modes v=nr8.n. corresﬁonding to
particie-hole creation, annihilation and exciton scattering.,
respectivelv. The radial overlap integral I 1z over the two initial
interacting excitons and the two final ones. The functions Y are

the densities of levels accessible in the transition and X are the

angular momentum coupling functions. The particle-hole level
density pB involves only bound-particle orbitals /'83.
From refs. 6’/3 ane finds, Lhat e g. for a transition
creating a iplh pair v=n+2;
B
n+s_ 1 pp'h+1CUD
Y = ZghCh+1d)—5—, =)
n 27 B
pp.h
N2 2j+1>Ca2s+1>
X0.5 = WD 2 CBQHIOR, CQDCRIL+IIFCIOR € 0
n -
Qigdy
J Q Jg 48 dgJ Q42
> 1 -1 . 3
= = T'
z =z © T iy s
were jl,ja,Js,j4 and Q are the total angular momenta of the

particle and the hole in the newly created pair, the total angular
momentum of the pair, that of the noninteracting core and of the
exciton initiating the transition, respectively. The
single-particie state density is g =A-13 and its spin distribution
is Rn. The function describing the angular momentum decomposition

o the created pair 1is

. . . Jp Jg Ix;E
FCid = z Caji*1JE1C11)CEJE+1)E1CJED[ Ly ] . c4d
iz z 2

Tne overlap integral 1 has been approximated by assuming,
that the radial wavefunctions for the active excitons Q.j,jl and
are constant 1nzide tfthe nucleus. These assumption results in an

. - &
anaiviical formula for I P
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In the present calculation three stages were found to
contribute significantly. The Hauser-Feshbach theory was used to

calculate the compound nucleus cross section due to the remaining

stages,

c.& Cne-step Direct emission

For tive one-step direct transition with a zero spin transfer

and for even targets TUL derived a cross section of the form,

dCoCE, > do. CE, ,8, )
b - 1 ’
—>- = § o e b b 4>
dEbde 1 de
where the spectroscopic density takes the form,
pCED = Y S ¢ CEDCdDZ, e

M

Tne function CM is the probability per unit energy that there
is a model state M at an excitation energy Ex‘ In practical

calculations one takes, e.g. a lorentzian form

C.CE > = (I'/adICE —EM32+ Ta]—i. 7>
x x

with T' being the spreading width of the model state.The model
states were assumed to be the particle-hole states of the sherical
sihell model and the spectroscopic amplitude d? .
geometric factor was assumed to be unity. The ﬁl's are the

which is a purely

transferred orbital angular momentum l-dependent parameters, which

scale Lthe average form facior.

%, Calculations and Comparison with Experiment

The cross sections, which are compared with experiment, are
calculats=a as an 1ncoherent sum of the contributions from the
decay of the compound nucleus, from the multistep compound
emission and of the one-step direct emission. The latter
centriputes, in the studied cases, at most 3% of the total proton
emisslon yield

Global oprical potentials were used in the calculations. For

redirons the potential of Moldauerg) and of Bjorklund and
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(
Farnbachljb were iused. The potential of ref.lo) was also used for

protons and the enizsion of alphas was described with use of the
oedeniial of MoFadden and Satchler 11).
The Tour parameter formulae, derived by Cameron and Gilbert
12). were used for calculating the compound nucleus Jlevel
densities.

The one-step direct cross sections were calculated with the

neutron-particle proton-hole states of the spherical Nilsson model

and the spreading width I = 4MeV, was taken from Traxler et

a1.1 3. The elementary DWBA angular distributions were calculated

()
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with the code DWUCK-4, usihg a macroscopic form factor option with
the deformation parameters ﬁl = 0.028, for 1 = 0-9, adjusted to fit

'
b

the measured anqular distributions of protons 13). The comparison

of the calculatgons with the measured excitation curves for the

1

S0, 91,92, 84 ZrCn, ﬁ) reactions is shown \in fig. A. The compound
nucleus dominates athIow idcident energies and for the lightest
target. With inereasing neutron. number ih the target the
evaporation of protons decreases, falling below iOV of the total
Cn,p> reaction yleld for g44r The multistep compound emission
rises steeply wlth bombardidg4energy and dominates at about 18
MeV. The one—step d;rect cross ‘section does’ not exceed'15A of the
tn.pY) reaction .cross sectlon\ The applled formallsm describes
successfully also the proton emission spectrum measuned at 14.8

MeV 14). For further details concerning both the-calculatlons and

the experimantal; data the reader is refered to ref.ls}
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Effect of Different Level Density Prescriptions on the

Calculated Neutron Nuclear Reaction Cross Sections

S.B. Garg
Neutron Physics Division
Bhabha Atomic Research Centre
Trombay, Bombay 400 085, India

ABSTRACT

A detailed investigation is carried out to determine the effect of
different level density prescriptions on the computed neutron nuclear
data of Ni-58 in the energy range 5-25 MeV. Caleculations are performed
in the framework of the multistep Hauser-Feshbach statistical theory
including the Kalbach exciton model and Brink-Axel giant dipole resonance
model for radiative capture. Level density prescriptions considered in
this investigation are based on the original Gilbert-Cameron, improved
Gilbert-Cameron, backshifted Fermi-gas and the Ignatyuk, et al.
approaches. The effect of these prescriptions is discussed, with special
reference to (n,p), (n,2n), (n, alpha) and total particle-production

cross sections.

1. INTRODUCTION

It i1s well known that level density parameter plays a
pivotal role in the determination of various nuclear reaction
cross—-sections. In this paper a detailed investidation of the
four different level density prescriptions has been carried out
for Ni-58 with special reference to (n,p), {(n,of ), (n,2n) and
total production cross-sections for neutron, proton, alphe-
particle and gamma-rays in the neutron energy range 5-25 MeV.
The study has been performed in the framework of the multistep
Hauser~Feshbach statistical model scheme /1/ which includes
Kalbach exciton model /2/ and the Brink-Axel giant dipole
radiation model /3/. The following four level density recipes
have been examined in this investigations

(1) Original Gilbert-Cameron Prescription /4/ (OGCP)

(11) Improved Gilbert-Cameron Prescription /5/ (IGCP)
(iii)Back-Shifted Fermi-Gas Prescription /8/ (BSFGP} and

(iv) Prescription +to include the effect of shell closures

developed by Ignatyuk et al /7/ called the Ignatyuk
Prescription (IP) in this write up.
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2. LEVEL DENSITY FORMULATIONS
(i) Originai Gilbert-Cameron Prescription
It is a two enerdy region representation of level densities.

In the higher excitation energy region a Fermi gas level density
form of the following type is used

Po (E,7) = JW = exp( 2 @J * P) (1/20-:1/“‘ e
e oy o ) e [ O] oo

This formula is valid for all enerdgies greater than Ex defined by

U
X

E =0, + P(Z) + P(N)

2.5 + 150/A

Below this energy the following constant temperature formula is

used .
f(ET) = 2¢p [(E-EJfT| % P()/r
where !
a = level density parameter
2
7 = Spin cut-off factor
= 0.0888 xJaU x a%/3
a/A = 0.00917 x [S(Z) + S(N}] + C
C = 0.142 for spherical nuclides
= 0.120 for deformed nuclides
P(Z) and P(N) are the pairing energy corrections for protons
and neutrons respectively. S(Z) and S(N) are the corresponding
shell enerdgy corrections. These parameters are taken from Cook
et al /8/.

The parameters T and E_ are determined by fitting Pé and Fl
and their derivatives at th& matching energy Ex as given below :

' 3
—‘!-l: = O.'/Ux - = Ux

E, =E - T log [T Py(U)]

(ii1) Improved Gilbert-Cameron Prescription

This 1is essentially the same as given above except that the
spin cut-off factor in this formulation is given by

2
o= 0.146 x Jau # A%/5,
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(iii)Back~-Shifted Fermi-Gas Prescription

Here only a single form of the level density describes the
entire excitation energy region. The formula used is

PED) = et 2[T]x PEo) 1 o ure)'
pis) = (@) exp -7 2] o2

U =E - A = a t? -t

2.
0= 0.015 x t % a°/3

where

Here t is the nuclear temperature and A is the energy shift.
a’s and A ’'s are taken from Ivascu et al /9/ for this analysis.

(iv) Ignatyuk Prescription

The formulation accounts for the energy dependence of the
‘a’ parameter which is brought about by the effect of shell

closures. In this prescription
a (U) = & [1+ £(U). W/U 1]

where 'g is the asymptotic value of the Fermi das parameter
occurring at high energies and is given by

-~ —
Qfp = 0-1375-8-36% [0 A
The shell effects are included in the term 5.W given by

W = Mpxp (Z,8) - My, (Z, A, o)

-

experimental mass of the nuclide

=
i

liquid drop model based mass of the nuclide
with deformation

f (U) gives the energy dependence expressed as
f(U) =1 - exp [- 0.05 U]

This model allows the shell effects to be included at low
excitation energies while at higher energies such effects
disappear.

The pairing enerdy corrections are again taken from Coock et
al.

The level densities calculated with these four prescriptions
are given 1in Fig.1l. It may be noted that the level densities
given by OGCP, IGP and IP are converging at about 5 MeV and then
they start diverging with the increase in the excitation enerdy.
Around 25 MeV IGCP and IP give level densities by factors of 2
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and 6 respectively compared to that calculated with OGCP. BSFGP
vields higher level density in the entire energy region by a
factor of 10 compared to that given by OGCP.

3. CALCULATIONAL PROCEDURE AND DATA INPUT DETAILS

As already stated, the computations are carried out in the
framework of the multistep Hauser-Feshbach data evaluation

scheme. The reaction decay chain depicting the various
participating nuclides considered in this investigation is shown
in Fig. 2. Emissions of neutron, proton, alpha-particle and

gamma-rays are included at every stage of the reaction in the
equilibrium process while the emission of gamma-rays is excluded
in the pre-equilibrium process.

Discrete energy levels, their spins, parities and gemme-ray
branching ratios for all the nuclides depicted 1n Fig.2 are taken
from the literature.

Transmission coefficients for neutron, proton and alpha-
particles are calculated with good optical model potential
parameters. For neutrons; optical model potential is that of
Prince /10/, for protons; the potential is due to Mani /11/, and
for alpha-particles; the potential is given by Strohmaier et al
/12/. These potential parameters are listed below

(i) Optical Model Potential Parameters For Neutrons

V (MeV) = 49.33 - 0.48 E + 0.0024 E°
W (MeV) = 0.0
Wy (MeV) = 12.0 + 3.358 E - 0.007 E° : E < 25 MeV
= 0.445 + 0.908 E - 0.011 EZ : 25 ¢ E 45 MeV
U (MeV) = 6.75
r, (fm) = 1.2583 + 0.00258 E : E < 12 MeV
r, (fm) = 1.4645 - 0.0146 E : E < 12 MeV
r, = r, =1.3128 - 0.00196 E : 12 < E ¢ 100 MeV
r, T r,. 8, =&, = 0.7813 fm
a, = 0.63 fm.

(ii) Optical Model Potential Paramters For Protons
V (MeV) = 41.3 ; W (MeV) = 0.9
WD(MeV) = 8.2 ; U (MeV) = 7.5

1.25

il

ry (fm) = 1.2 ; rW (fm)
ry (fm) = 1.16; re (fm) = 1.25
0. 56

ay (fm) 0.64; ay (fm)
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(iii)Optical Model Potential Parameters For Alpha-Particles
V (MeV) = 173.0 - 0.30 E
W (MeV) = 20.5 + 0.1 E

1.445

ry (fm) = ry (fm)

i

0.51

ay (fm) ay (fm)
re (fm) = 1.3

The various symbols are defined below :

= incident energy (MeV)
= real well depth (Woods-Saxon)

= imaginary well depth (Woods-Saxon)

2 E < =
|

Q = imaginary well depth (Gaussian)

imaeginary well depth (Derivative Woods-—-Saxon)

a =
<
1]

= Spin-orbit well depth (Thomas)

rys rw, rU = radii for various potentials
re = radius for the Coulomb potential

ay. & 8y = diffuseness for various potentials.
(iv) Parameters for Gamma-Rays

The Brink-Axel model of giant dipole radiation has been
employed to calculate the transmission coefficients for gamma-
rays. For El1 radiation, the following resonance parameters due
to Reffo /13/ have been used :

El = 16.0 MeV: M1 = 3.70 MeV
E2 = 18.6 MeV: 2 = 5.10 MeV
<l > = 2200 meV: <D> = 14 keV

For M1l radiation default values of E = 8 MeV and M= 5 MeV
are assumed.

In the pre~equilibrium description of the reaction, internal
transition rates to the various exciton states are determined in
terms of the average two body interaction matrix element as
defined by Kalbach /14/. The exciton-state densities are
calculeted according to the Williams relation /15/. The K-
parameter of the gverage reaction matrix element has been
extracted as 135 MeV™ in this analysis by matching the calculated
and measured total neutron emission spectrum at 14.1 MeV as
described in ref. /16/.

The computations have been performed with GNASH Code /17/.
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4, CALCULATED CROSS-SECTIONS
The various computed cross-—sections with the above described
four level density recipes are intercompared in Figs. 3 to 8 with

the OGCP case taken as the base case. A discussion of the
suitability of data generated follows )

(i} (n,p) Cross-sections

The calculated (n,p) cross-sections are dgiven in Fig.3 along

with the measured data. It is noted that in the enerdy rande
extending upto 12 MeV the OGCP and IGCP yield similar results
with deviations of 3% or less. The IP predictions are lower,

variations being 15% or less. The data generated with BSFGP show
variations “20% or less when compared with the OGCP results.

In the energy range above 12 MeV all the four predictions
fall within 15% of one-another or less. At several enerdy points
close agreement is, however, noted between the different data
sets.

The IGCP and OGCP predictions are close to the experimental
values. However, in the energy range above 15 MeV all the four
recipes reproduce the measured data reasonably well.

(ii) (n,ol ) Cross-sections

(n, ) cross—sections obtained with the four level density
recipes are shown in Fig.4 together with the measured data. It
is noted that in the energy rande extending up to 12 MeV the data
generated with BSFGP are quite low, by factors of 2 or more, when
compared with the data obtained with the other three recipes
which show close agreement at several energy points.

In the energy range above 12 MeV the various prescriptions
vield similar cross-sections at several energy points although
the maximun deviation is also seen around 30% among the different
sets of data at some energy points.

The IGCP, OGCP and IP predictions are noted to be within the
experimental error limits.

(iii)(n, 2n) Cross-sections

The (n,2n) cross—sections are depicted in Fig.5 together
with the measured data. It is noted that the IP predictions are
higher throughout the entire enerdy range. The maximum deviation
seen amongst the various sets of data is about 20% although close
agreements are also noted at some energy points.

The more recent measured data of Hudson et al are
represented well both in the IGCP and OGCP cases.

(iv) Total Neutron Production Cross-sections
Fig. 6 intercompares total neutron production cross-sections

in the four cases. It 1is seen that the BSFGP case shows
enhancement by 1-4% upto neutron energies of 15 MeV and above
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this energy it shows depletions by about 5% compared to the QOGCP
case. The data 1s depleted by about 4% in the IGCP case whereas
in the IP case it is enhanced by 1-10%.

(v Total Hydrogen Production Cross—-sections

The total hydrogen production cross-sections in the IGCP
case are reduced over a wide enerdy rande by 5-18% as shown in
Fig. 7. The IGCP and IP cases show mardinal depletions amongst
them but these two cases produce almost identical results above
12 MeV.

(vi) Total Helium Production Cross-sections

As shown in Fig.8 the total helium production cross-sections
are most affected in the BSFGP case, the reduction being 40%¥ or
more. The IGCP case shows enhancement while the IP case is
identical to the base OGCP case above 12 MeV.

(viiYTotal Gamma-Ray Production Cross-sections

The gamma-ray production cross-section are somewhat enhanced
in all cases as depicted in Fig.8 compared to the OGCP case. The
IGCP and IP cases produce almost identical results.

3. CONCLUSIONS

The following conclusions are drawn from the analysis
carried out in this paper

(1) Total neutron production cross—-sections in all the four
level density recipes are close to one another at several
energy points although a maximum deviation of about 10% is
noted at some of the energy points. The (n,2n) cross-
sections also exhibit a similar variation.

(ii) The (n,p) and total hydrogen production cross-sections show
a maximum deviation of 20%.

(1iii)The (n, « )} and total helium production cross-sections are
adversely affected in the BSFGP case.

(iv} The gamma-~ray production cross-—-sections are enhanced in the
BSFGP case by sbout 20% whereas they are comparable in other
cases.

(v) The IGCP and IP cases yield almost identical results for
many of the reactions investigated in this study. Since the
IP case accounts for the energy dependence of the ‘a’
parameter, it may be adopted in the binary, tertiary and
total particle production cross-sections required in reactor
technology.
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Investigation of Neutron Induced Reaction Cross Sections

of Ni-58 and Ni-60 with Various Nuclear Model Evaluation Schemes

S.B. Garg
Neutron Physics Division
Bhabha Atomic Research Centre
Trombay, Bombay 400 085, India

ABSTRACT

Three different nuclear data evaluation approaches, namely, the Multistep
Hauser-Feshbach scheme (MSHF), the Geommetry Dependent Hybrid Model
(GDHM) and the Unified Exciton Model (UEM) are utilized to compute
neutron nuclear cross-section data of Ni-58 and Ni-60 in the energy range
1-26 MeV. Multiparticle reaction cross sections, total particle and
gamma-ray production cross sections, energy spectra of the emitted
particles and gamma-rays and the angle-energy correlated double
differential cross sections for the emitted neutrons are specially
investigated. Appropriate optical model potential parameters are
selected to include the competition of neutron, proton and
alpha-particles in the reaction decay. The Brink-Axel approach is
adopted to account for gamma-ray emission. Direct inelastic cross
sections to the discrete states are determined using the DWBA technique.
A detailed intercomparison of the above stated three evaluation schemes

is presented.

1. INTRODUCTION

Various nuclear reaction model schemes are currently being
applied in order to evaluate and generate neutron induced binary,
tertiary and multiparticle reaction cross-sections for the
structural and other reactor elements for applications in fission
and fusion based nuclear technology. In this paper we have
investigated the three data evaluation schemes, namely, multistep
Hauser-Feshbach scheme (MSHF), deonmetry dependent hybrid model
scheme (GMHM) and the unified exciton model scheme (UEM) with
special reference to the neutron nuclear data of Ni-58 and Ni-60.
In particular, we have evaluated the following types of neutron
cross—section data in the energy range 1-26 MeV :

i) (n,p), (n, ), (n, 7 ), (n,2n), (n,np), (n,pn), (n,nL),
(n,¢ n} and (n, 2p) cross-sections.

ii) Energy spectra of the emitted neutron, proton, alpha-
particle and gamma-rays.

iii) Discrete enerdy 1level excitation and total inelastic
scattering cross-sections.
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iv} Andle-energy correlated double differential cross-sections
for the secondary emitted neutrons.

V) Total production cross-sections for neutron, hydrogen,
helium and gamma-rays.

Measured cross-section data for several reactions listed
above do not exist for Ni-58 and Ni-680 in the entire energy range
considered in this paper and thus this study serves to
extrapolate or dgenerate such data for these reactions. In this
redard, the above mentioned MSHF, GDHM and UEM schemes have been
intercompared and appropriate conclusions are drawn.

2. OPTICAL MODEL POTENTIAL PARAMETERS

Appropriate optical model potential parameters are needed
for neutron, proton and alpha-particles in-order to compute their
transmission coefficients and inverse reaction cross-sections to
account for their competition in the reaction decay mechanism.
We have selected these parameters from the literature i.e. for

neutrons ; potential used }is that of Prince /1/, for protons ;
potential is due to Mani /2/, and for alpha-particles ; potential
selected is that of Strohmaier et al /3/. These parameters are

listed below :

(i) Neutrons

(a) Ni-58
V (MeV) = 49.33 - 0.48 E + 0.0024 E°
W (MeV) = 0.0
Hg(MeV) = 12.0 + 0.358E - 0.007 EZ ; E < 25 MeV

2

= 0.445 + 0.908E - 0.011 E™ ; 25 £ E £ 45 MeV

\

U (MeV) = 6.75

rv(fm) = 1.2583 + 0.00258 E ; E < 12 MeV

r(fm) = 1.4645 - 0.0146 E ; E < 12 MeV
r, =r, = 1.3128 - 0.00196 E ; 12 < E & 100 MeV
r =r_ ; a =a_ = 0.7813 fm
u v u v
aw = 0.63 fm
(b) Ni-80
V (MeV) = 48.5514 - 0.474 E + 0.0022 E2
Hg(MeV) = 12.0 + 0.358 E - 0.007 E2 ; E < 25 MeV
2

0.2875 + 0.914 E - 0.0105 E™ ; 25 ¢ E £ 45 MeV
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E < 12 MeV
; E < 12 MeV
12 L E £ 100 MeV

= 0.7851 fm

spin—-orbit potential depth (Thomas)

radii for various potentials

diffuseness for various potentials.

0.9

}]

7.5

1

1.25
1.25

i

0.56

{Derivative Woods-Saxon)

U (MeV) = 6.585
r (fm) = 1.2574 + 0.00255 E ;
r (fm) = 1.46 - 0.0146 E
r, =r, = 1.3113 - 0.00194 E ;
r, = r,; a, = a,
a, = 0.6331 fm
where
E = incident energy (MeV)
V = real well depth (Woods-Saxon)
W = imaginary well depth (Woods-Saxon)
WG= imaginary well depth (Gaussian)
U =
rys T T, =
e, &, a, =
(ii) Protons
V (MeV) = 41.3 ; W (MeV)
WD(MeV) = 8.2 ; U (MeV)
rv(fm) = 1.2 ; rw(fm)
ru(fm) = 1.16 ; rc(fm)
av(fm) = 0.84 ; aw(fm)
a, = a,
vhere
WD = imaginary well-depth
ro = coulomb radius
Optical model potential

Becchetti - Greenlees /5/ have

(1ii)

Alpha - Particles

V (MeV)
W (MeV)

H

173.0 - 0.30 E

20.5 + 0.1 E

parameters due to Perey

/4/ and

also been applied in the analysis.
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r, (fm) = r, (fm) = 1.445
a,, (fm) = a., (fm) = 0.51
r, (fm) = 1.3

(iv) Gamma-rays

Transmission coefficients for gamma—rays have been
calculated according to the Brink-Axel giant dipole resonance
model /6/. The following resonance parameters for E1 radiation
due to Reffo /7/ have been used in the computations

(a) Ni-58
El = 16.0 MeV ; N - 3.70 MeV
E2 = 18.6 MeV ; 2 = 5.10 MeV
<];;> = 2200 meV ; <D> = 14 keV

(b) Ni-860
El = 16.0 MeV : i = 3.7 MeV

i
ot

E2 = 18.4 MeV ; [Z = 5.1 MeV
L[> = 1300 meV ; <D> = 14 keV

For M1 radiation default values of E = 8 MeV and [7= 5 MeV
are assumed.

3. DWBA PARAMETERS

Direct level excitation cross-sections for several discrete
energy 1levels of Ni-58 and Ni-60 have been obtained wusing the
distorted wave Born approximation (DWBA) /8/ of +the direct
reaction theory. The deformation parmeters for the following
energy levels are taken from Hetrick et al /9/

Ni-58 Ni-80
E(MeV) JH E(MeV) Jm
1.454 2+ 0.1871 1.333 2+  0.2345
2.459 4+ 0.0774 2.159 2+ 0.0224
2.776 2+  0.0066 2.506 4+ 0.0837
3.038 2+ 0.0538 3.120 4+ 0.0566
3.265 2+ 0.0832 3.045 3-  0.1812
4.470 3-  0.140

4. NUCLEAR REACTION MODELS AND CODES

As described earlier the following three data evaluation
schemes are investidated in this analysis

(i} Multistep Hauser-Feshbach scheme (MSHF) /10/ comprizing
optical model, Kalbach exciton model, Brink-Axel giant dipole
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radiation model and the DWBA model. Computer codes SCATZ2 /11/,
DWUCK4 /12/ and GNASH /13/ are used.

(ii) Geometry dependent hybrid model scheme (GDHM) /14/ which
includes optical model and Weisskopf-Ewing evaporation model.
ALICE-87 code /15/ which accounts for the equilibrium and pre-
equilibrium emission of gamma-rays in an approxXimate manner is
employed in the computations.

(iii) Unified exciton model scheme (UEM) /16/ involving the
Brink—-Axel model and optical model. Calculations are carried out
with GRAPE code package /17/.

All these schemes gfve consistent desoripfions of all the

energetically allowed reactions. Emission of neutrons, protons,
alpha-particles and gamma-rays are included at each stage of the
reaction. In the MSHF scheme gamma-decay competition is not

included in the pre—-equilibrium stage. The reaction decay chains
selected in the MSHF scheme for Ni-58 and Ni-60 are shown in

Figs.1l and 2 respectively. Discrete energy levels, their spins,
parities and gamma-ray branching ratios for all the nuclides
included in these figures are taken from the literature. In the
GDHM and UEM schemes discrete level data are not used. This may

affect the threshold reactions in these two schemes.

5. LEVEL DENSITY INFORMATION

The continuum energy redion in the MSHF schenme is
represented by the level density formulae of Gilbert and Cameron
/18/ with the pairing energy corrections of Cook et al /18/. In
the UEM scheme back-shifted Fermi-gas model is used with the
parameters of Dilg et al /20/. In the GDHM scheme the level
density parameter ‘a’ is taken as A/9, A being the mass no. of
the composite nucleus and the pairing nergy corrections are
taken as zero for even—-even nuclides, - for odd-even and - 2
for odd-odd nuclides, 5 being equal to 11/ VA. Thus, the three
evaluation schenes make use of different level density
formulations.

In the pre-equilibrium decay considerations the exciton-
state densities are calculated according to the Williams formula
/21/. In the UEM scheme it is renormalized to coincide with the
back-shifted Fermi gas formula.

6. INTERNAL TRANSITION RATES

The GDHM and UEM schemes make use of the nucleon-nucleon
interaction cross—-sections to calculate the internal transition
rates. In the MSHF scheme these are defined in terms of the
average matrix element for two body interaction which is
parmeterized by Kalbach /21/ as a function of enerdy involving a
constant parsmeter K. K is determined by matching the calculated
and measured particle emission cross-sections and their energy
spectra.
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7. CALCULATED CROSS-SECTIONS

The cross-—-sections calculated with the MSHF scheme are
compared in the following with the available measured data. An
intercomparison of the MSHF, GDHM and UEM schemes is also brought
out in a separate section.

{i) Neutron Emission Energy Spectrum

Total neutron emission  enerdy spectrum for Ni-58 at neutron
incident energdy of 14.1 MeV is shown in Fig.3 with the K-
pargmeter of the averade reaction matrix constant taken as 135
MeV®. The maximum deviation between the calculated and measured
spectra in the applicability range of the model is about 25%,
although there is a close agreement at several emission energies.

(ii) (n,o ) Cross—-sections

(n, o{ ) reaction in structural materials is of importance
since it leads to the production of helium ¢gas which is
considered to be responsible for swelling in these materials.
(n,o{ ) cross—sections for Ni-58 are shown in Fig.4 visa-vis the
measured data. It is noted that the calculated cross-sections
are within the experimental errors.

(iii) Inelastic-Scattering Cross-—-sections

Direct inelastic scattering cross-sections to the various
levels of Ni-58 and Ni-60 computed with the DWBA technique are

depicted in Figs. 5 and 6 respectively. Utilizing these direct
contributions, total inelastic cross-section is estimated as a
function of neutron incident energy. Figs. 7 and 8 represent

this cross-section for Ni-58 and Ni-60 with the direct component
included (curve 1) and without the direct component i.e. only
compound statistical (curve 2). It is noted that curve 1 with
the direct component included describes the measured data rather
well.

It is also noted that the direct inelastic component becomes
almost constant in the energy range 10 to 20 MeV. In the case of
Ni-58 it is 85 mb and in Ni-60 it is about 130 mb.

(iv) (n,p) Cross-sections

The calculated and measured (n,p) cross—-sections for Ni-58
and Ni-60 are shown in Figs. 9 and 10 respectively. In the case
of Ni-58, it has been seen that the measured data given by the
different authors are discrepant amongst themselves by a factor
of 2 or more. The calculated solid curve in ¥Fig.9, however,
shows good agreement with the more recent data of Hudson et al.
In the case of Ni-60, the calculated cross-sections (Fig.10) are
within the experimental errors over a wide range of enerdy.
However, above 16 MeV the measured data are higher by about 50%,

In order to investigate the effect of proton optical model
potentials on (n,p) cross-section data, we have carried out a
comparative study using three sets of potentials given by Mani,
Perey and Becchetti-Greenlees for Ni-58. Fig. 11 represents the
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results. It is noted that the calculated cross-section data with
these potentials are almost similar in the energy range above 14
MeV. Below this energy, deviations ~10% are, however, seen among
the various predictions. In short, it may be stated that the
different sets of potentials do not produce sany significant
chandge in (n,p) cross-section data.

(v} (n,2n) Cross-sections

{n,2n) cross-sections for Ni-58 are given 1in Fig. 12.
Measured cross-section data for this reaction are rather sparse
for Ni-60 and therefore are not shown separately. It is seen
from the figure that there 3is a close adreement between
calculated and measured data.

(vi) Tertiary Reactions

{n,pn}j, (n,np), (n,ne), (n,ol{ n) and (n,2p) reaction cross-
sections for Ni-58 and Ni-80 are shown in Figs. 13 and 14
respectively along with (n,p}, (n,o } and {(n,2n) cross-sections
for the sake of comparison. The measured tertiary cross-section
data, being rare, are not shown. All the cross—sections depicted
in these figures are consistently evaluated in the MSHF scheme.

(vii) Total Production Cross-—-sections

Total production cross-sections for neutron, hydrogen,
heliun and gamma-rays are given in Figs. 15 and 18 for Ni-58 and
Ni~80 respectively. No comparison with the measured data is
brought out for lack of such data. It is noted that helium
production cross-section is the lowest 7 100 mb and damma-ray
production cross—section is the highest 7 1000 mb or more.

Proton production cross—-sections calculated with the Mani,
Perey and Becchetti-Greenlees potentials are shown in Fig.17. It
is noted that the cross-sections are within 7% of one-another and
show similar enerdy dependence.

{viii) Angle-Energy Correlated Double Differential Cross-—
Sections

Angle-energy correlated double differential cross-sections
calculated in the framework of the GDHM scheme are depicted in
Figs. 18 to 23 for Ni-58 at neutron incident energies of 14.1 MeV
and 18 MeV and at emission angles of 45°, 80%and 120°. It is
noted from these figures that the calculated data are within the
experimental errors over the neutron emission energy range of 2
to 10 MeV. Above this enerdy, larde deviations are, however,
noted in some cases. This aspect may not be of much consequence
in fusion or fission applications since the absolute magnitudes
involved are insignificantly small.

The corresponding calculated double differential cross-

sections for Ni~-60 are given in Fidgs. 24 and 25. In this case no
comparison is made with the measurements because of lack of data.
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(ix) Gamma-Emission Enerdy Spectrum

The calculated damma-emission energy spectra for Ni-58 and
Ni-60 at 14.1 MeV are shown in Figs. 26 and 27 respectively. A
resonant behaviour is noted 1in the emission energy region
extending upto 5 MeV due to the presence of discrete energy
levels.

8. INTER~COMPARISON OF MSHF, GDHM AND UEM SCHEMES

{n,2n), (n,p), (n, ¢ ), n and cross-sections
calculated with the MSHF, GDHM aﬁ& UEMegchemes gRe intercompared
in Figs. 28 to 35. The GDHM scheme predicts the highest (n, 2n)
cross—sections for Ni-58 as noted from Fig.28. It is followed by
the UEM scheme, the difference between them being about 25%. The
MSHF scheme represents well the measured (n,2n}) cross-—~section
data but there exist factors of 3 or more between the MSHF and
GDHM predictions. The (n,2n) cross—-sections for Ni-60 shown in
Fig. 29 do not show as viclent a variation. In this case GDHM
and UEM schemes yield comparable results while the MSHF
predictions are low by about 20%.

The (n,p) cross-sections for Ni-58 given in Fig.30 are
within 20% of one-another in the three schemes while those for
Ni-60 depicted in Fig.31 show a variation of 30% or less.

The GDHM results for (n, o€ )} cross-sections for Ni-58 and
Ni-80 shown in Figs. 32 and 33 are lower than those for the MSHF
scheme, the deviation being 20% to 70%. The UEM results for this
reaction are the highest and differ from others by several
factors. It has been already brought out in the text that the
MSHF results closely reproduce the measured data. This analysis
indicates that the mechanism of of -emission in the UEM scheme
needs re—-examination and improvements.

Total neutron emission cross-sections for NI-58 represented
in Fig.34 reveal that the UEM results are higher than the MSHF
predictions by 1.5% to 15%. They are lower than the GDHM results
by 5% to 15%. Similar trends are noted for Ni-B60 in Fig.35, the
UEM data being higher than the MSHF data by 10% or less and lower
than the GDHM data by 6% or less.

Total proton emission cross-sections for Ni-58 in the MSHF
scheme are higher than those in the UEM scheme by about 30% while
these are higher by 5% to 20% compared to those in the GDHM
scheme. In the case of Ni-60 also similar trends are seen with
deviations being somewhat higher.

Total alpha-emission cross-sections for Ni-b8 show agdreement
within 5% over most of the enerdy range in the MSHF and GDHM
schemes. The UEM scheme gives higher results by 25% to 50%. In
the case of Ni-60 variations ranging upto 70% are noted among the
various schemes.
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9.

CONCLUSIONS

The following conclusions are drawn based on the

investidations carried out in this study :

(i)

(11)

(1ii)

(iv)

(v)

(vi)

10.
1.

66

The multistep Hauser-Feshbach scheme with pre—-equilibrium
corrections reproduces the measured cross-section data
rather well and may be adopted to extrapolate the data to
those energy regions where the measurements are lacking.

The neutron and proton emission cross-—sections predicted by
the three schemes are. within 15% to 30% of one another.
The GDHM scheme being the simplest of the three schenes
from computational considerations may provide quick
estimates for these reactions and thus may be useful in the
planning and design of suitable experiments to measure
them.

Alpha-emission cross-sections calculated with the three
schemes show wide deviations. The MSHF data, however,
represent the measured data quite well. This study points
out that there 1is a scope to reexamine and improve the
mechanism of alpha-emission in the GDHM and UEM schemes.

The proton potentials currently being employed in the
proton emission reactions lead to similar results. Perhaps
a new look is desired for the proton potentials in the mass
region H50-60 based on recent proton induced measurements.

The GDHM scheme gives a good representation of the angle-
enerdy correlaeted double differential cross-—sections. For
reactor oriented applications this scheme may be employed
to denerate such data.

The direct discrete inelastic contributions should be
estimated and utilized to obtain the total inelastic cross-
section.
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The Use of Dispersion Relations to Construct Unified

Nucleon Optical Potentials
I’E. llodgson
Nuclear Physics Laboratory, Oxford, U.K.

Abstract: The dispersion relations provide a simple and accurate way of para-
metrising the optical potential for a particular nucleus over a range of energies. A

method is proposed for obtaining a global nucleon optical potential incorporating

the dispersion relations.

1. Introduction

The optical model is now established as a convenient and accurate way of para-
metrising a wide range of nucleon scattering of data. Global potentials have been
obtained that give good fits to differential elastic scattering cross sections and polari-
sations for all but the lightest nuclei over a range of energies and these potentials have
parameters that are almost the same for all nuclei and have a known energy dependence.

The quality of fit obtained with such global potentials does however vary through
the periodic table, due to the effects of nuclear structure. For optimuin fits to the data
these effects are rather small for the real part of the potential but may be appreciable
for the imaginary part of the potential. In particular, if the scattering nucleus has
a strongly collective character the coupling between the elastic and inelastic channels
affects the elastic scattering and renders inadequate the predictions of a global potential.

There are several ways of tackling this difficulty. One is to use the coupled chan-
nels formalisin for such nuclei and thus include explicitly the eflects of the coupling to
inelastic channels. This restores the global quality of the fits but requires a knowledge
of the coupling parameters. A further disadvantage is that coupled calculations are
lengthy and so most of the simplicity of the model is lost.

Another response is to develop a new global potential valid for nuclei of similar
structures, as has been done for the actinide nuclei by Madland and Young (1978).
This retains the computational simplicity of the optical model but is useful only for a
particular set of nuclei. It is thus necessary to develop a new parametrisation for each
set of nuclei with different level structures. For lighter nuclei it may even be necessary
to have a different set of parameters for each to achieve suflicient accuracy.

This paper emphasises the usefulness of a third method that makes use of the
dispersion relations that connect the real and imaginary parts of the optical potential.
As described in recent reviews (Hodgson, 1988, 1989) these dispersion relations auto-
matically take into account the coupling between the elastic and inelastic channels. If
we know the iinaginary potential then the dispersion relations enable the correction to

the real part due to the coupling to be evaluated. 1t is still necessary, of course, to insert
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into the calculation some information concerning the structure of the target nucleus,
but hopefully this can be done by a single normalising constant instead of by the many

numbers necessary to specify the collectivity in coupled-channels calculations.

It is usual in precise parametrisations of the optical potential to fix the form factor
parameters and to allow the real and imaginary potential depths to vary in a way that
optimises the fit to the data. Iowever recent work has shown (Finlay et al, 1985, Su
Zong Di and Hodgson, 1988) that the radius parameter must also be allowed to vary
with energy if an optimum fit is to be obtained. This could of course be included in
the parametrisation at the cost of more adjustable parameters. The advantage of the
dispersion relation method is that the energy variation of the radius of the potential
is included automatically, without additional parameters. Since it is physically based,
the dispersion potentials are likely to retain their validity when the accuracy of the
data increases, whereas this is not necessarily the case for an ad hoc parametrisation,
however elaborate. Furthermore, it seems possible that the interaction can be described
by a global potential, valid for many nuclei, in which the structure of each individual

nucleus is represented by just one adjustable parameter.

If these assumptions are correct, then it should be possible to define a global
optical potential that when inserted into an optical model code modified to include the
dispersion correction gives the elastic scattering cross-section at all energies for all nuclei.
All the parameters of this potential are fixed and known, except a single parameter that
normalises the imaginary potential and thus takes account of the nuclear structure
effects. This parameter has to be determined for each nucleus by an optical model
analysis at any one energy; once found the values of this parameter can be tabulated for
future use. It is to be expected that the values will be the same for nuclei with similar
collective structure like the actinides, and it may prove possible to develop simple rules
connecting this parameter with say the deformation parameter for the lowest collective
state. Such rules would make possible the prediction of cross-sections for nuclei for
which no scattering measurements are available, provided something is known of their

low-lying band structures.

An advantage of the dispersion relation analysis is that it unifies the data over a
range of energies so that once the parameters are determined it is possible to calculate
cross-sections at any required energy.

In this paper, the dispersion relations are described in Section 2, together with
the results of some recent analyses. In Section 3 a global method of analysing nucleon
data is proposed, and some conclusions are presented in Section 4.
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2. Dispersion Relations Analysis

The essential idea is to use the dispersion relations to connect the real and imagi-
nary parts of the potential, instead of treating them as independent of each other. The
most useful form is
W(E'")

!

g dE (2.1)

V(E) = VHF(E)+ {:—/:_oo

where Vyp(FE) is the Hartree-Fock potential that varies linearly with ‘energy and can

be represented by a Saxon-Woods radial form

Vur
Vire(r) = T 2

a

The imaginary potential W(FE) has volume and surface-peaked components. The vol-
ume component gives a volume contribution and so may be absorbed in the Hartree-
Fock field, while the surface-peaked component gives a surface-peaked addition to the
Hartree-Fock field, thus automatically giving the required energy-dependent radius.
Many analyses of experimental data have now been made using the dispersion
relations, and here we present a selection of recent results.
One of the advantages of dispersion relations analyses is that they unify the optical

potential over the whole range of energies. This is shown for 2°°Bi in Figure 1, which
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Fig.1 Volume integral per nucleon of the real neutron potential for 2°9Bi for bound
and unbound energies. The points at positive energies are obtained from optical
model analyses of elastic scattering data and those at negative energies from the
binding energies of particle and hole states. The curves show: a, a linear fit to
the scattering data from 4.5 to 19 MeV; b, a linear fit to all scattering data; c,
calculated from the dispersion relation (Lawson, Guenther and Smith, 1987).
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compares the data for bound and scattering states with the extrapolation made using the
dispersion relations. The potentials giving the bound states at their measured energies
are given much more accurately than by a simple linear extrapolation of potentials
obtained from analyses of scattering data. This is also shown by the energy spectra
in Figure 2, where the experimental energies are in much better agreement with those

found from a potential with the dispersion correction.
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Fig.2 Proton single-particle energies Ey;; in 4°Ca. The column labelled EXP represents
the experimental values. The columns labelled vy r and vy p+ Av give the energies
obtained from the Hartree-Fock potential and from the real part of the full mean
field, respectively (Tornow, Chen and Delaroche, 1989).

At positive energies, the dispersion relations have now been used to obtain the
analysing powers as well as the diflerential cross-sections, and a recent example is shown
in Figure 3. A very precise analysis of differential cross-sections for the elastic scattering
of 4 to 10 MeV neutrons by 2°®Pb has shown that the differences between the data and
the dispersion analyses found by Johnson et al (1987) may be attributed to overlapping
resonances in that energy range. This shows a limitation on the accuracy of dispersion
analyses.
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Fig.3 Differential cross-sections and analysing powers for the elastic scattering of 8 MeV
neutrons by ?°®Pb compared with dispersion relation calculations (Roberts et al,
1989).

In the case of analyses of neutron data, a particular feature is that the dispersion
relations give automatically the increase in radius of the potential at low energies, which
produces notable effects on the differential cross-sections (Finlay ef al, 1985) and on the
total cross-sections (Zong Di and Hodgson, 1988). In the past the effects of the increase
in radius has been parametrised by using different potentials in different energy regions.
The dispersion relations enable the saine potential to be used over the whole energy

range.

3. Determination of Global Optical Potentials

The success of the dispersion relations analyses of neutron and proton data sug-
gests that it would be useful to use them to obtain global potentials that represent the
data to good accuracy over a wide range of nuclei and energies. A method of doing this

is described in this section.
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The optical model analysis of a set of data for the interaction of nucleons with
nuclei over a substantial range of energies can be carried out by a global fitting proce-
dure that differs in several important respects from a standard optical model analysis.
The form factor parameters may be fixed to standard average values, and Vg allowed
to vary linearly with energy. The main difficulty is that the dispersion relation (2.1)
requires the imaginary potential over the whole energy range. The optimuimn form is
suggested by those successfully used in some recent detailed analyses of neutron scat-
tering (Johnson et al, 1987; Hicks and McElistrem, 1988) and specified below. These
give simple parametrised expressions for the energy variation of both the real and the
imaginary parts of the potential. The sane energy variations can be used for other
nuclei, with a normalising factor applied to the imaginary part to take account of the
structures of the different nuclei. This does however assume that the relative contribu-
tions of the volume and surface absorption are the same for all nuclei. The particular
feature of these potentials is that the surface imaginary potential falls to zero above a
certain energy so that the integral in (2.1) converges.

The two parametrised forms of the imaginary potential already mentioned are:

1. The straight line segment potentials of Johnson et al (1987) for 2°%Pb

=0 for £ < 10 MeV
Wu(E) =0.17(FE - 10) for 10 < E < 50 MeV (3.1)
= 0.8 for It > 50 MceV
= 0.4(FE - Ep) for —6 < E <10 MeV
and W,(E) = -0.103(FE — 72) for 10 < E < 72 MeV (3.2)
=0 for E > 72 MeV

(and symmetric expressions for E < Ejy).

2. The potentials used by Hicks and McEllistrem (1988) for osmium

and platinum
=0 for £ < 8 MeV
W.(E) =233(E} -8} 8 < E < 40 MeV (3.3)
=2.33(40} - 8}) =~ 8.1 MeV  for I > 40 MeV

_ ap+ay(E - EF_)_Z_
{E§ +(E - EF)*}?

and W,(FE)

(and symmetric expressions for £ < Er)
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The peak strengths of these potentials are:

Surface Volume
Pb 6.4 6.8
Os — Pt 9.2 8.1

It is encouraging that these potentials are very similar in overall shape and abso-
lute and relative magnitudes, with the OsPt potential slightly stronger, as it should be.
The difference is quite small, encouraging the hope that all nuclei can be fitted with
multiplying factors for W in quite a narrow range. To verify this, it is necessary to fit
a wide range of data to find the optiu‘lum values of these factors for many nuclei.

4. Conclusions

The dispersion relations potential has several clear advantages over the standard
parametrisation. It includes the physically-necessary connection between the real and
imaginary parts of the potential and thus automatically includes without additional
parameters the energy dependence of the radius that is required by precision analyses.
Furthermore, it holds out the hope that it will prove possible to represent the eflects of
nuclear structure by a single parameter that has a characteristic value for each nucleus.

The extent to which these hopes can be realised can only be evaluated by a series
of careful analyses of extensive data sets for several nuclei. The work that has already
been done is sufficiently encouraging to suggest that precision optical model analyses

should in future be made with the dispersion relations potential.
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Global Calculations of (n,p) and (n,a) Cross-sections

from 10 to 20 MeV

D. Wilmore
Dairy Flat, Buckland, Faringdon, Oxon SN7 8QR, UK

P.E. Hodgson

Nuclear Physics Laboratory,
University of Oxford,
Keble Road, Oxford OX1 3RH, UK

Abstract

The Weisskopf-Ewing and exciton model theories are combined to give a
simple and fast method of calculating the total cross-sections of (n,p) and (n, a)
reactions for many nuclei from 10 to 20 MeV.

1. Introduction

It has long been known that the total (n,p) and (n,a) cross-sections at
14 MeV for many nuclei vary rather smoothly with N and Z, and several sim-
ple empirical formulae have been proposed to parameterise them. These have
recently been compared with an extensive set of experimental data by Forrest
(1986).

These formulae are useful for estimating rapidly the cross-sections of many
reactions required in the design of fusion reactors, so it is worthwhile considering
how they may be improved. Furthermore the latest designs of these reactors
also require the cross-sections for a range of lower energies, and these cannot be
obtained from the empirical formulae. This energy variation can be obtained
from reaction theories, and modern computers enable rapid calculations to be
made.

The aim of this work is to develop and test a simple physically-based
method of calculating total (n,p) and (n,a) cross-sections. This is done by
combining the Weisskopf-Ewing and exciton model theories. The method is
described in §2, and compared with the experimental data for (n,p) reactions
in §3 and for (n,a) reactions in §4. Some conclusions are given in §5.

2. Method of Calculation

At 14.5 MeV, both compound nucleus and direct reactions contribute to
the cross-sections, so theories are required for both these processes. The require-
ment of simplicity and computational convenience rules out the Hauser-Feshbach
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theory (1952), which requires listing the energies and quantum numbers of many
states of each nucleus, and also the distorted wave theories that require the cal-
culation of wavefunctions and matrix elements.

For the compound nucleus cross-sections we therefore use the Weisskopf-
Ewing theory (1940) which requires only level density parameters, which are
extensively tabulated, and transmission coefficients, which can be easily calcu-
lated using global optical model parameters. Also required are the Q-values for
the reactions, which can be obtained from a table of nuclear masses; it is not suf-
ficiently accurate to use the semi-empirical mass formula. All these parameters
for all nuclei are stored in the computer.

For the direct reactions, which are increasingly important for the reactions
on heavy nuclei, we investigate the usefulness of (a) a simple empirical formula
and (b) the exciton model. We test the results of our calculations by compar-
ing the fit to the data with that obtained by Forrest. Here we encounter a
difficulty due to the uncertainties in the measured cross-sections. It is already
clear from Forrest’s work that many if not most of the discrepancies between
his calculations and the experimental data are due to errors in the data. This
sets a limit to the sharpness of the test of any proposed method of calculating
the cross-sections. Indeed it seems likely that a method which gave perfectly
accurate cross-sections would, when compared with the presently available data,
give results not much better than the Forrest formulae.

This makes it difficult to develop a method which is clearly better than

that of Forrest. However we consider that the attempt is worthwhile for several
reasons: :

(a) as the experimental data improves, the advantages of a physically based
method of calculation should become increasingly apparent,

(b) the new method will make it easy to calculate cross-sections over a range
of energies if required, whereas the formulae of Forrest refer only to 14.5
MeV,

(c) the availability of the cross sections as a function of energy makes it possible
to identify those cross-sections that are varying rapidly with energy and
so are not fitted simply because, for example, they have been measured at
14 MeV, whereas the formulae are fitted to data around 14.5 MeV.

3. The (n,p) Reaction.

Calculations were made for the (n,p) reaction for those nuclei for which
experimental data are available, using the Weisskopf-Ewing theory. The absorp-
tion cross-sections were obtained by using the optical model with the equivalent
non-local potential of Wilmore and Hodgson (1964) for the neutrons and the
Perey potential (1963) for the protons. It was found that the results for the
heavier nuclei were too low by orders of magnitude, but for light nuclei they
were of the right order of magnitude. This is due to the neglect of direct reac-
tions, and since it might be expected that the direct reaction cross-section will
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be a smooth function of mass, an attempt was made to fit the experimental
cross-sections by adding an estimate of the direct contribution obtained from
a simple formula to the compound nucleus results from the Weisskopf-Ewing
calculations. It was found by using a least squares fit procedure that a formula
of the form

(—46.80 4- 0.9492A + 0.001784%) exp(2.1435 — 116.495?) (3.1)

where A is the mass number and S = (N — Z)/A, gives a fit to the data. For
light nuclei the predictions of the Weisskopf-Ewing theory are large enough to
explain the data without the addition of a direct component. If these nuclei
are neglected, the results of the above procedure, give fits to the data which is
about as good as the Forrest formulae.

A simple physically-based model for the direct reactions is the exciton
model, and this has been used by Braga-Marcazzan et al (1972) to calculate
the (n,p) cross-sections for medium and heavy nuclei. They did not include
compound nucleus effects and their results are therefore not applicable to light
nuclei. We made calculations using the standard value for the single particle
energy spacing ¢ = A/13, but subsequent work showed that variations in this
parameter did not offer much improvement. The exciton formalism described
by Jahn (1984) was used with a value of K = 700 MeV?, and the exciton master
equations were solved numerically until equilibrium was reached. The calcu-
lation was then terminated assuming that any further particle emission could
be explained by the compound nucleus process. The results of the Weisskopi-
Ewing theory were reduced by renormalisation to take account of the loss of flux
in the pre-equilibrium process. The results obtained by this procedure are of
the correct order of magnitude throughout the periodic table.

To obtain a numerical measure of the overall goodness-of-fit, the value of
T/E, where T is the theoretical result and E is the experimental datum, was
calculated for each experimental point, and the results are presented in Figures
1-3 for the Forrest formula, the Weisskopf-Ewing theory plus the simple formula,
and the Weisskopf-Ewing theory plus the exciton model, respectively. It can be
seen that the Forrest formula and the Weisskopf-Ewing theory plus the simple
formula, show the best fit to the data, with the Weisskopf-Ewing theory plus the
exciton model being somewhat worse. However the fit given by the Weisskopf-
Ewing theory plus the exciton model is not too bad when the errors in the data
are considered. Both the other two formulae are fitted to the actual data which
are presently available, and as better data become available they will have to be
altered to maintain the fit. The exciton model is physically based and can be
expected to be useful with new data as well as having the advantage that it can
be used to extrapolate to other energies where no data are available.
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Figure 1. Distribution of T/FE for (n,p) reactions at 14.5 MeV for the Forrest
formula.
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Weisskopf-Ewing + empirical formula.
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pared with Weisskopf-Ewing -+ exciton model calculations.

To see how well this model fits the energy variation of the cross-section,
calculations were made for the (n, p) reaction on isotopes of selenium and molyb-
denum, and the results are shown in Figures 4 and 5. It is apparent that in each
case the energy variation is well reproduced by the theory, although as already
poted the absolute value may be jncorrect by up to a factor of two.

This work shows that it is practicable to make rapid calculations of (n,p)
cross-sections using the Weisskopf-Ewing and exciton theories, and that the
results are in good overall agreement with the experimental cross-sections and
their energy variation.

4. The (n,a) Reaction.

The calculations for the (n, a) reaction were made in a similar way to those
for the (n,p) reaction, but encounter two additional difficulties. Firstly there
is no reliable global optical potential for alpha-particles, and such a potential
would be less accurate than those for nucleons because of the sensitivity of the
alpha scattering to the nuclear surface. We adopted the alpha potential with
U =173.3,r, = 1.49,a, = 0.6, Wy = 13.8, 7w = 1.49, aw = 0.4 (Saxon-Woods
forms).

The second difficulty is that the exciton model calculations for alpha-
particles require the alpha-particles preformation factor. This is not well-known,
although several estimates indicate values around 0.1 to 0.2. There is some ev-
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Figure 6. Distribution of T/ E for (n, a) reactions at 14.5 MeV using Weisskopf-
Ewing + exciton model.

idence for a shell effect in the alpha preformation factors, which is another
complication. However since Forrest obtained a good overall fit to (n,a) cross-
sections without explicit inclusion of shell effects it seems likely that they are

not important.
The exciton model calculations require the alpha particle level density,

and this was obtained using the formula of Williams (1971). This gives the level
density for n excitons (p particles and n holes) in terms of the single nucleon
level density g and energy U:

gnUn—l

N = DR — 1) (4.1)

This formula does not distinguish between the different types of particles
involved, whether they are neutrons, protons or alpha-particles. We assume
that the single particle level density for a neutron or proton is given by ¢/2 and
for an alpha-particle by g/4. Since neutrons and protons are distinguishable
the p! in the above formula is replaced by p,!p,!p,! where p,, p, and p, are
the numbers of neutrons, protons and alpha-particles. The factor k! similarly
becomes hpthylh,! Thus for example the expression for one neutron and one
alpha-particle with an alpha-particle hole becomes

Wa = (%)2 (3) 1!1U!12!2! (4.2)
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This is usually written in terms of Williams’ formula by the expression
w = kphwN (4.3)

Tables of the k,j are listed by Gadioli et al (1977).

Several calculations of (n,a) cross-sections at 14.5 MeV were made using
(1) the level density of Gilbert and Cameron and g = A4/13, (2) the same with
the Gilbert and Cameron values of g, and (3) the level densities and g of Holmes
et al (1976). The results are rather similar, and one of them is shown in Figure
6. The spread is appreciably greater than that given by the empirical formula
of Forrest. There is some evidence of systematic behaviour but for the reasons
already mentioned this is unlikely to be a real effect. In all the calculations
the alpha-particle pre-formation factor was fixed at 0.19 (Ferrero et al, 1979),
independent of 4. Three calculations were made of the energy variation of the
(n, ) cross-section, and the results are compared with the experimental data in
Figures 7-9.
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Figure 7. Experimental cross-sections for the **Mo(n, a)®®Zr reaction (Liskien
et al 1990) compared with an eye-guide (full curve), the Weisskopf-Ewing + Ex-
citon Model calculations (dotted curve) and the same normalised to the formula
of Forrest at 14.5 MeV (dashed curve).
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(Liskien et al 1990) compared with an eye-guide (full curve), the Weisskopf-
Ewing + Exciton Model calculations (dotted curve) and the same normalised to
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5. Conclusions

The calculations described in the previous sections shown that it is not yet
possible to obtain better cross-sections from the physically-based theories than
from the Forrest empirical formulae. They do however give the energy variations
of the cross-sections, which is not given by Forrest. For practical purposes at
present it would seem that the best estimates can be obtained by using the
method described here to calculate the energy variation if the cross-sections,
and to normalise them to the Forrest values at 14.5 MeV. The results of such
calculations are also included in the Figures.
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Analyses of Multistep Reaction Cross-Sections

with the Feshbach-Kerman-Koonin Theory

P.E. Hodgson
Nuclear Physics Laboratory, Oxford, UK

Abstract: Recent calculations of the cross-sections of multistep compound and
multistep direct cross-sections using the Feshbach-Kerman-Koonin theory are
reviewed, and their usefulness assessed.

1. Introduction

The Feshbach-Kerman-Koonin (FKK) theory of multistep reactions is now
established as a generally useful method of calculating cross-sections for nucleons
from 10 to about 100 MeV. More analyses have been made at low energies,
especially around 14 MeV, where multistep compound reactions dominate, than
at higher energies where the multistep direct reactions account for most of the
cross-section.

To evaluate the usefulness of the FKK theory it is necessary to apply it to
analyse the cross-sections of many reactions on different nuclei over a range of
energies. Many such analyses have been completed recently, and the results are
reviewed here.

Analyses at lower energies using the multistep compound theory are dis-
cussed in Section 2 and those at higher energies using the multistep direct theory
in Section 3. Some conclusions are given in Section 4.

This review is restricted to papers published in 1989 and after.

2. Multistep Compound Reactions

The number of analyses using the multistep compound theory is now suffi-
cient to establish the validity of the theory, and so recent work has concentrated
on investigating the importance of possible refinements, extending the analy-
sis over a wider range of reactions, energies and nuclei, and determining the
interaction strength to higher accuracy.

In the first of these categories, Chadwick et al (1988) showed that taking
explicit account of the nucleon spii does not significantly affect the results.
It is therefore sufficiently accurate to ignore the nucleon spin. The effect of
distinguishing neutrons and protons in the intra-nucleus cascade was studied
by Chadwick et al (1989) who found that it increases the (n,n') cross-section
and decreases the (n,p) cross-section. While the absolute cross-section can be
adjusted by an overall normalisation, the ratio of these two cross-sections cannot,
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and so this refinement should be included in analyses that include both (n,n')
and (n,p) data.

Several (n,n'), (n,p) and (p,n) reactions for a range of nuclei at inci-
dent energies from 9 to 18 MeV have been studied by Chadwick et al (1989),
The (n,p) and (p,n) reactions provide better tests of the theory because there
is no contribution from the scattering with excitation of collective states that
complicates the analysis of (n,n') reactions. As shown in Figure 1 the (p,n)
cross-sections are very well given by the theory. It would be useful to select
one of these reactions and study it over a range of energies to find the energy
variation of the strength V4 of the effective interaction potential.

A stringent test of the theory is obtained by analysing at the same time
the cross-sections in all the open channels in a consistent way. Many of the pa-
rameters used, such as the optical potentials, are applicable to several channels,
and the requirements of a consistent overall analysis sets closer limits on other
parameters such as the strength of the effective interaction. For similar reasons
it is advantageous to analyse neutron and proton data together.

This method of analysis has been applied to the interactions of 14 MeV
neutrons with *°Co and ?3Nb by Koumdjieva and Hodgson (1989), and the
results of their FKK calculations agree well with the experimental data as shown
in Tables 1 and 2. In these calculations the Williams formula for the exciton
level density was restricted to bound states, so that the particles above the Fermi
energy must have energies less than their binding energy in the nucleus and the
holes must have energies greater than the depth of the potential. The effective
interaction strength Vy was adjusted to fit the (n,nz) and (n, pz) reactions, and
also the (p,nz) reaction on both nuclei and the values obtained were closely
consistent, ranging from 7.0 to 8.8 MeV. This shows that the FKK theory is
able to give a fully consistent account of the more important reaction channels
in the interaction of 14 MeV neutrons with 3*Co and **Nb. This supports the
conclusions of several previous papers (Field et al, 1986; Chadwick et al, 1988,
1989) that the FKK theory is able to give reliable (n,nz) and (n,pz) cross-
sections for neutrons for around 14 MeV on medium weight nuclei. Further
work is necessary on the (n, a) reactions, which probably take place mainly by
a direct process.

The FKK theory has recently been extended to gamma emission by Oblozin-
sky and Chadwick (1990). They calculated the multistep compound gamma
emission cross-sections for °Co, ®*Nb and '®!Ta using detailed balance and ex-
isting parametrisations of photoabsorption cross-sections (Dietrich and Berman
1988). The gamma ray escape widths are shown in Figure 2 as functions of
gamma ray energy, together with the r-stage widths calculated assuming that
all stages with N > 4 contribute only to the r-stage. The Figure clearly shows
that gamma rays from the early reaction stages are harder than those from
the fully equilibrated compound nucleus, so that including multistep compound
emission enhances the high energy region of the gamma ray spectrum.
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Table 1. Total cross sections of 14 MeV ncutron reactions on *?Co.

Reaction Theory (mb) Experiment (mb)

(n, nx) 1253 —

(n, px) 82 —

(n, n") 469 402 + 140"

(n, 2n) 687 695 + 23

(n, pn) 30 - e

(n, np) 97 }—- (11-60)

(n, p) 52 54 + 5*

(n, @) — 33 + 1%

neutron emission 1971 1840 £ 128*; 2069 + 69"; 2300 + 184’
proton emission 179 108 + 22°;, 97 + 10¢
alpha emission — 40 £ 3'; 33 4 2¥

total reaction 1368 1370 £ 30"; 1430 % 110'

* Hermsdorf er al (1974). ® Grabmayr (1978). € Alvar (1972). Y Colli et al (1961).
¢ Guenther et al (1988). fKneff (1986). & Fischer er al (1985). " MacGregor et al
(1957). ' St Picrre et al (1959). ! Degtyarcv et al (1981). * Average from McLane et
al (1988).

Table 2. Total cross scections of 14 MeV ncutron reactions on **Nb.

Reaction Theory (mb) Expecriment (mb)
(n, nx) 1692 —

(n, px) 37 —

(n, n') 401 —

(n, 2n) 1285 1350 + 33¢

(n, pn) 16 —

(n, np) 3 —

(n> P) 21 -

(n, @) —_ 9.4¢

(n, na) 3 —

neutron enission 2993 3155 % 220¢
proton cmission 40 394 2" 42.4 4: 2% 42.3 + 44
alpha emission — 14 4 3¢; 14f

total reaction 1738 —

“Degtyarev et al (1981). " Traxler et al (1985). ©Fischer et al (1988).
Y Koori et al (1984). € Knell (1986) ' Grimes et al (1978). * Average lrom
McLance et al (1988).

(Koumdjieva and Hodgson, 1989).
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Figure 2. Gamma ray escape widths for the compound nucleus **Nb at 21.1
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To calculate the gamma emission cross-sections, ObloZinsky and Chadwick
used the multistep compound formalism as described by Chadwick et al (1989)
and by Koumdjieva and Hodgson (1989). The effective interaction strength Vj
was determined by equating the r-stage emission widths with those calculated
from the equilibrium statistical model; this effectively normalises the multistep
compound calculations to the well understood equilibrium spectra at lower emis-
sion energies in the equilibrium limit. The results for the (n,v) cross-sections
on 3Nb and '8 Ta are compared with the experimental data in Figures 3 and 4.
The values of Vy were 7.9 and 5.3 respectively. The cross-sections for emission
from the fully equilibrated compound nucleus are also shown, and these clearly
fail to account for the emission at the higher energies. The multistep compound
calculations show enhanced emission at the higher energies but still fall short
of the experimental data because the cross-sections for multistep direct gamma
ray emission have not yet been evaluated.

3. Multistep Direct Reactions

A detailed analysis of the (p,nz) reactions at 26.7 MeV by Holler et al
(1985) showed that at this energy the reaction for higher emission energies takes
place mainly by the multistep direct process. The double-differential cross-
sections were very well fitted by FKK multistep direct calculations supplemented
by small contributions from the multistep compound process.

Subsequently, multistep direct calculations have been made for (p,n) reac-
tions at energies from 25 to 160 MeV by Mordhorst et al (1986), Trabant et al
(1988, 1989) and Scobel et al (1990).

Trabant et al analysed the (p, n) reaction on *°Zr and 2°®Pb at 80 MeV with
a Yukawa interaction of range 1 fm and strength Vp = 20 MeV. They obtained
good agreement with the angular distributions of the emitted neutrons at various
outgoing energies, as shown in Figure 5. Calculations based on the hybrid
model of Blann et al (1984) were able to fit the angle-integrated neutron spectra
to within a factor of two overall, but not the angular distributions at various
outgoing energies, particularly in the backward direction. The value of the
effective interaction strength at this energy is less than the value V4 = 27 MeV
found by Holler et al at 26.7 MeV, indicating that it decreases with increasing
incident energy.

Subsequently this analysis was extended to (p,n) reactions at 120 and
160 MeV, and the effective interaction strength was again found to decrease
with increasing energy (Scobel et al 1990). It is notable that for the lower
emission energies the reaction is not dominated by the first step, even at the
forward angles. This is essential in order to fit the experimental data: the semi-
classical pre-compound models overestimate the first step cross-section and so
give angular distributions that are too strongly peaked in the forward direction.

Analyses of inelastic scattering have been made by Marcinkowski et al
(1989) for neutrons and by Cowley et al (1991) for protons.
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Figure 5. Double differential cross-section for the (p, zn) reaction at 80.5 MeV
on °Zr and 2°Pb compared with multistep direct reaction calculations with
interaction strengths V = 20 and 25 Mev (Trabant et al, 1989).

Marcinkowski et al (1989) studied the inelastic scattering of 11.5 and 26
MeV neutrons by '**W and found that both the multistep compound and the
multistep direct processes contribute substantially to the cross-sections. In the
multistep direct calculations, the individual angular distributions for the exci-
tation of sets of particle-hole pairs did not show the striking similarity apparent
some earlier work. The average distorted wave differential cross-section thus
depends rather strongly on the outgoing neutron energy and also quite signifi-
cantly on the number of contributing particle-hole pairs. To average out these
fluctuations it was found necessary to include up to twelve particle-hole states
for each L-value. This implies averaging the calculated cross-sections for the
individual particle-hole states over a series of overlapping energy intervals with
widths up to 9 MeV. This averaging interval is comparable with the widths of
single-particle states measured by (p, 2p) reactions (Jacob and Maris, 1973). The
value of the effective interaction strength used in these calculations was V4 = 25
MeV.

The results of these calculations are compared with the experimental data
in Figure 6 for several outgoing neutron energies. The angular distributions of
the neutrons with lower outgoing energies are well reproduced by the sum of
the one-step and two-step multistep direct and the multistep compound calcu-
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Figure 6. Double diflerential cross-section for the inelastic scattering of 26
MeV neutrons by ***W compared with one-step direct (dash-dotted curves),
plus two-step direct (dash-double dotted curves) plus collective contributions
(dashed curve) plus multistep compound (solid curves) (Marcinkowski et al,
1989).

lations. At the highest outgoing energies the experimental cross-sections are
greater than the calculated ones, and this is attributable to direct processes, in
particular to the excitation of low-lying quadrupole and octupole surface vibra-
tions (Marcinkowski et al, 1983; Kalka et al, 1988). The contribution of such
processes was estimated using the energy-weighted sum rule for isoscalar electric
transitions, and is also shown in the Figure. Comparison with the experimental
data shows that there is still some cross-section unaccounted for at these higher
outgoing energies.

Extensive analyses of the (p,p') cross-section have been made by Cowley
et al (1991) and some of their results ard compared with FKK calculations in

Figures 7 and 8.
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In all these analyses of multistep direct and multistep compound reactions
it is usual to treat the effective interaction strength V, as an adjustable param-
eter and to fix it by fitting the absolute value of the differential cross-section. It
is then important to examine the values obtained and see whether they behave
in a systematic way that can be connected with other types of analysis. This
comparison is however complicated by the progressive improvement in the for-
mulation of the theory, since each improvement affects the value of V, obtained.
Three main types of analysis have been used, namely (i) using constant wave-
functions inside the nucleus. Such analyses give values of V; around 1-2 MeV.
Subsequent analyses used the more realistic harmonic oscillator wave functions
for the bound nucleons and optical model wavefunctions of the emitted nucleons,
with (ii) a delta function two-body interaction, which gives V around 5-10 MeV,
and (iii) a Yukawa two-body interaction which gives V around 20-30 MeV. Here
we consider only the calculations of type (iii) with realistic wavefunctions.

The results of several analyses are shown in Table 3 and Figure 9. The
spread of values of Vj is due partly to other differences in the analyses and also
to the energy dependence of the effective interaction. Thus the multistep direct
analysis of Bonetti et al (1981) was made using V = 25 MeV for the first step
and V = 15 MeV for subsequent steps, so these values are not included in the
Table. Some analyses were made distinguishing between neutrons and protons
in the intra-nuclear cascade; this had rather little effect (less than 10%) on the
shape of the cross-section but requires an increased Vj in the case of the more
recent analyses of (p,n) reactions.

Table 3. Values of the Effective Strength V; of the
Yukawa Potential of Range 1 fin for Nucleon Interactions.

Reference Reaction Vo (MeV)
Austin, 1980 (N, N') discrete states 27.9
Holler et al, 1985 (pyn) 26.7 MeV MSC+MSD 27
Mordhorst et al, 1986 (p, n) 25.6 MeV MSC+MSD 25
Marcinkowski et al, 1989 (n,n') 11.25 MeV MSC4+MSD 25
Trabant et al, 1988, 1989 (p,n) 80 MeV MSD 20+ 1
120 MeV MSD 161
Scobel et al, 1990 (p,n) {160 MeV MSD 12.5 4 1
80 MSD 23
Cowley et al, 1991 (p, p) {120 MSD 175

The values of Vj are found to decrease with increasing incident energy and
this is indeed what would be expected from the similar decrease of the real optical
potential, which also depends on the strength of the two-body interaction. We
can thus estimate the energy variation of Vy by taking the value Vp = 27.9£3.5
MeV obtained by Austin (1980) from a survey of the analyses of inelastic proton
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Figure 9. The effective interaction strength Vj as a function of incident energy
for nucleons with the Yukawa form factor with range 1 fm. The use of the
delta function effective interaction decreases the value of V4 by a factor of about
three, as determined by calculations on the same reaction with both types of
effective interaction (Bonetti and Colombo, 1983). It is also notable that the
same value of Vp is obtained from both the multistep compound and multistep
direct analyses of reactions to which both processes contribute substantially
(Mordhorst et al, 1986). The line Vy = 30.8 exp(—0.16 £/30.8) is obtained from
the energy dependence of the optical model potential. The references for the
data points are given in Table 3.

scattering at around 20 to 50 MeV to discrete final states, and then assume that
it has the same energy variation as the real optical potential.

Since the incident particle loses energy as it passes from stage to stage in
the multistep process it would be more exact to allow the effective interaction
to increase down the chain. It is however simpler to use an averaged value, but
this effect should be taken into account when comparing the energy dependence
of Vo with that of the optical potential.

An estimate of the magnitude of the effect can be made by assuming that
the incident particle loses about half its energy in the first interaction, and
emission from the first and second stages are equally likely (Scobel et al 1990).
This would reduce the energy-dependent term by about a factor of 3/4. The
real optical potential, normalised to the Austin value of V; at 20 MeV is

V~34-02E
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Allowing for the increase of V5 down the chain thus gives
V =31 -0.15F

This is plotted in Fig.9 and has an energy dependence similar to the em-
pirical values.

A rather better fit to the overall energy dependence can be obtained using
the expression found by Johnson et al (1987) for neutrons on lead

V = 46.4exp(—0.31(E — Er)/46.4)

Taking Er = —6 MeV, normalising and introducing the factor 3/4 as

before gives
V ~ 30.8exp(—0.162E/30.8)

which is also compared with the empirical values in Fig.9.

More direct evidence of the energy dependence of the effective interaction
is provided by the analysis of the Zr(p,d)Zr reaction at energies from 20 to
120 MeV by Kosugi and Kosugi (1983). In order to obtain energy-independent
spectroscopic factors they found it necessary to allow the effective interaction
to vary with energy. Normalising their result to that of Austin gives

V = 31.5 - 0.12E

which is very similar to that found above.

The Feshbach-Kerman-Koonin multistep direct theory has also been used
to calculate (a,a') and (p,a) cross-sections to continuum states. Bonetti et
al (1984) analysed the %°Zr(a, ') reaction at 140 MeV to the continuum and
found that good fits can be obtained to the angular distributions for residual
nucleus excitation energies from 10 to 60 MeV by taking account only of the
interaction between the incoming alpha-particles and preformed alpha-particles
on the surface of the target nucleus. The normalisation of the calculations to
the data gave values of the alpha clustering probability around 0.1, in accord
with the results of other analyses in that mass region. it was not possible to fit
the data with a standard distorted wave Born approximation calculation taking
into account only the interaction with the target nucleons. The contributions of
these two processes to the angular distribution corresponding to an excitation
energy of 10 MeV are sliown in Figure 10.

The (p, @) reaction can take place either by the triton pickup or by the
alpha knockout processes, and it is difficult to distinguish between them because
they often give the same angular distribution. The analysing power sometimes
provides more discrimination, and calculations by Bonetti et al (1989) using
the multistep direct theory showed that at high energies the reaction to the

continuum proceeds primarily by the knockout mechanism, as shown in Figure
11.
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4, Conclusions

Extensive calculations of (p, n), (n,p), (n,n') and (p, p') reactions have now
been made at lower energies with the FKK multistep compound theory and at
high energies with the multistep direct theory. Satisfactory agreement with the
experimental data is found in all cases with consistent values of the effective
interaction strength V.

Further work is desirable to extend these analyses over a wider range of
nuclei, and to determine the parameters more precisely. It is also important to
study in more detail the emission of alpha and other composite particles, and
also multiparticle emission at the higher energies.
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of Ni- and Mo-isotopes
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Abstract
The neutron cross sections of Ni- and Mo-isotopes have
been evaluated with the system SINCROS-II. The results are
compared with experimental data and JENDL-3.

I. Introduction

Evaluation of activation cross sections for the
JENDL-activation file started three years ago(l) and more
than 1,000 reaction cross sections have been evaluated. The
code system SINCROS-II(Nuclear Cross Section Calculation
System with Simplified Input-Format, Version II)(Z) has been
developed and used for the evaluation of more than half of
them. In this evaluation the unified evaluation method has
been employed using the global optical model parameters and
the systematical values of level density parameters.
Calculated cross sections have never been changed by the
normalization. When the calculated cross sections differ
significantly from experimental values, the input parameters
have been changed. Since we are aiming at accurate
evaluation of important reaction cross sections for
applications to fission and fusion reactor technologies, the
number of the reactions has been reduced. Still many
reaction cross sections should be evaluated for the

activation file. Review of the evaluated data is being made

103



by comparing the evaluated data with measured values and
with other evaluation. In this paper evaluation procedure
of the activation cross sections and the results for Ni- and
Mo-isotopes are shown.

IT. Evaluation Method

The main part of SINCROS-II consists of the
ELIESE(3)—GNASH(4) joint program and the simplified-input
version of DWUCK(S).

The system is very convenient for the evaluation of a
number of reactions, because the input data have been
simplified. The input data consist of discrete level
data(level energy, spin, parity and branching ratio of decay
channels) which were taken from ENSDF(G), direct inelastic
scattering cross sections calculated with DWUCK and the data

designating reaction channels. .
The global optical model potentials have been used.

For neutrons a modified Walter-Guss potentia1(7) was used.
The Walter-Guss potential was derived for A>53 and 10<En<80
MeV. To apply the potential even below 10 MeV neutron
energy, the surface absorption part WD (in MeV) between O
and 20 MeV has been changed from

W. = 10.85 - 0.157E - 14.94(N-Z)/A (Walter - Guss)

D
to

WD = 7.71 - 14.94(N-Z)/A MeV. (1)
This was determined so that the calculated nonelastic cross
sections of 63Cu, 1208n and Pb agree with the experimental

data within about 10 7.

For protons, the Perey potential(a) was used below 10
MeV proton energy and the Walter-Guss potential was used
between 10 and 20 MeV proton energy.

The Lemos set modified by Arthur and Young(g) was used
for a-particles and deutrons. The Becchetti-Greenlees
potential(lo)was used for tritons and 3He-particles.

The single particle level density constant g is related
to the level density parameter a by the formula

g = (6/7%)a. (2)
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In addition to the normalization factor F2 which is equal to
the Kalbach constant divided by 100, adjusting factors F3
and F4 were introduced for pick-up and knock-out processes,
respectively. The factor F2 and the contribution of the
direct inelastic scattering to cross sections were
determined so that the calculated neutron emission spectra
were in agreement with the high energy part of measured
neutron spectra. The values of F2 sometimes were adjusted
by using proton emission spectra.

The pick-up factor F3 was determined from oa-particle
emission spectra. Since the measured o-particle emission
spectra could be reproduced with F3 = 0.5 for almost all
medium-weight nuclei, F3 was assumed to be 0.5. The factor

F4 for the knock-out process was assumed to be 1.0 for the
calculation of the cross sections of the Ni- and

Mo-isotopes.

The level densities were determined uniquely by the
level density parameter a not only in the Fermi gas model
but also in the constant temperature model, because the
nuclear temperatures were determined automatically from ,the
level density parameter a in the code or by the equation

T= 7.50 2 0-8%, (3)
The level density parameter a is plotted against the mass
number in Fig. 1 for the nuclei of Ni- and Mo-regions.

Resonance parameters for neutron capture cross sections

(11). The

normalization factors were chosen for the evaluated capture

were taken from the JENDL-3 general purpose file

cross sections to fit those calculated with the resonance

parameters at 100 keV.

ITXY. Results and Discussion

1. Ni-isotopes

The present evaluation deviates a little from measured
data below 15 MeV, while JENDL-3 is very close to them,
Above 15 MeV there are two kinds of experimental data. The

present evaluation is close to the lower data, while JENDL-3
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Fig. 1. Level density parameter "a" as a function of mass
number for nuclei related to the calculation of the

reactions of Ni- and Mo-isotopes.

follows the higher data. Recent measurements support the
higher data. JENDL-3 has been evaluated based on
experimental data.
(2) 285i(n,p)>%co

JENDL-3 has been evaluated based on experimental data
and follows them very well. The present evaluation is in
agreement with experimental data only near the threshold and
15 MeV neutron energy, but it reproduces the energy
1.(12)y

As the Ohio University data are proton emission cross

dependence of the Ohio University data(Graham et a

sections, the agreement can be improved when the present
evaluation including (n,np) reaction is compared with them.
(3) 58Ni(n,np)57Co
The present evaluation is higher than experimental
data, while JENDL-3 is lower than those. JENDL-3 is closer
to them than the present evaluation. JENDL-3 has been

evaluated based on experimental values.
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(4) 28Ni(n,«)> Fe
The comparison is shown in Fig.2. The present
evaluation has quite a different energy dependence from
those of JENDL-3 and ENDF/B-VI. The energy dependence of
JENDL-3 is in good agréement with that of ENDF/B-VI, while
the normalization is a little different. The average values
of JENDL-3 and ENDF/B-VI seem to be in good agreement with
experimental data. The present evaluation is in good
agreement with the Ohio University data(Graham et al.(lz)).
JENDL-3 has been evaluated using PEGASUS code(13) and
normalized to experimental data. There are some evaluations
which have the same shape as the present evaluation.
(5) 60Ni(n,p)6OCo
JENDL-3 has been evaluated based on experimental data.
The energy dependence of the present evaluation is quite
different from that of JENDL-3. It is impossible to judge
which evaluation agrees with measured data. There are some
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evaluations which have the same shape as the present
evaluation.

(6) 60y;(n,a)’ Fe

For o emission cross section the present evaluation is
in better agreement with the Ohio University data(Grimes et
al. (X)) . Granham et a1.(12)) than JENDL-3. The difference
among them is not so large. JENDL-3 has been evaluated

using PEGASUS code(13) and normalized to experimental data.

2. Mo-isotopes
Since the comparison of the present evaluation with

(15)

experimental data is described in detail elsewhere , only
brief explanation is given here.
(1) 92Mo(n,Zn)glMo
As is shown in Fig. 3, the present evaluation for the
ground state, isomeric state and total cross sections is in
good agreement with experimental data except a few data.
(2) 92Mo(n,np+d)91Mo
The present evaluation for the isomeric state cross
section reproduces the energy dependence of experimental
data and is in general agreement with them.
(3) *2Mo(n,«)8%2r
Experimental data for the total (n,a) cross section do
not show any definite energy dependence. The present
evaluation fairly agrees with Ikeda et al.'s isomeric state
and total cross sections(16).
(4) *Mo(n,2n)?3Mo
The evaluated values are higher than all experimental
values for ground and isomeric state cross sections. The
effective threshold energy is different between the present
evaluation and the experimental data for the isomeric state
cross section.
(5) 94Mo(n,p)94Nb
The present evaluation is in agreement with
experimental data for the total cross section but shows a
little different excitation function in comparison of that

of measured data.

108



Cross Section (barns)

Mo92 (n, 2n) Mo91 Production Cross Sections

800 m—r—rrrrrrrrrrr—
total

o Brolley {1952)

O Abboud (1957)

¢ Bormann{1976) +

- ground

S00F 4 Katoh (1989)

400:_ isomer + o o

[ o Marcinkowski {1986)

700

—lp—m

600 |

{mb)

Cross Section

200 F 16{0‘6

100 f X

e

- p
"Q&"l'l!!l‘tlllllnl]lall\llll;l

——]

paa bt s aada e bag o,

total
o

A

beaaadaay

isomer (1/2%,65s)

o‘...
12 3 14 5 16
Neutron energy

Fig. 3. 2

7 18 19 20
(MeV)

211%)(115-211) 92111().

0.060

0.050——

0.040——

0.030——

~m—— PRESENTITOTAL)
------ PRESENT( GROUD }

—-~— PRESENT( | SOMER }
——— JENDL-3(TOTAL)
S M. 0ATK+

K. FUKUDA+
S.ANEMIYA+

H.ATSUMI+
H.OATSUMI+

K.N. RAHKAN#

A MARCINKOWSK 1+
A KARCINKOWSK I+

L.R.GREENWDOD+
Y. IKEDA+

Y. IKEDA+
H.LISKIENs
H.LISKIENs

HOB4IOBD+DO®®O0 B

0.020

0.010

0.000

5.0

10.0

Neutron Energy |

MeV)

Fig. 4. 95Mo(n,p)gsNb. Symbols enclosed with a circle
denote the ground state production cross sections.

Symbols enclosed with a square represent the isomeric

state production cross sections.
the total (n,p) cross sections.

Other symbols show

20,0

109



(6) 94Mo(n,np+d)93Nb

The present evaluation is in good agreement with the
(17)
9

data measured by Greenwood and Bowers
(7) 95Mo(n,p)95Nb, 96Mo(n,p)96Nb and 7Mo(n,p)97Nb

As is shown in Fig. 4, the general agreement between
the present evaluation and experimental data is obtained for
the ground and isomeric state cross sections except for the
data above 16 MeV of Liskien et al.(la), which are higher
than the present evaluation. This is due to the
contamination of the 96Mo(n,np+d) and 98Mo(n,np+d)reactions

95

into the Mo(n,p) and 96Mo(n,p) reactions, respectively.

(8) 95Mo(n,np+d)94Nb, 96Mo(n,np+d)95Nb and
97Mo(n,np+d)96Nb
The present evaluation is in good agreement with the
data measured by Greenwood et al.(lg) Ikeda et al.(16)
(9) 98Mo(n,p)gSNb
The present evaluation is in good agreement with the

data measured by Ikeda et al.(16), Marcinkovski et al.(ZO)

and Rhaman and Qaim(ZI).
(10) 98Mo(n,n,np+d)97Nb
The present evaluation is in good agreement with the
data measured by ITkeda et al.(16) and Katoh et al.(zz).
(11) 98Mo(n,a)gSZr
Including the excitation function the general agreement
between the present evaluation and measured data was
obtained.
(12) 9% (n,2n)% Mo
The present evaluation is in good agreement with
measured data of Rhaman and Qaim(21) and Marcinkovski et
al.(zo) and especially well with Tkeda et al.(16)
(13) 100Mo(n,a)97Zr
The general agreement between the present evaluation

and measured data was obtained for this reaction.
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IV. Conclusion

From the comparison with experimental data the present
evaluation of the Mo-isotopes is found to reproduce the
experimental data better than JENDL-3, while for the
Ni-isotopes JENDL-3 follows better the experimental data
than the present evaluation. Moreover « production cross
sections of natural Ni can be reproduced by JENDL-3 very
well as shown in Fig. 5 (Fig. 5 is reproduced from Fig. 2
in Ref.23). The present evaluation on the Mo-isotopes and
the evaluation of the Ni-isotopes in JENDL-3 will be adopted
for the JENDL activation cross section file.

Acknowledgments

The authors are grateful to Mr. T. Nakagawa and Mr. T.
Narita for help of handling of the evaluated data with
computers. They are much indebted to the members of the

working group on activation cross section data of JNDC.

111



References

(1)

(2)
(3)
(4)
(5)

(6)
(7)

(8)

Y.Nakajima et al., Proc. Specialists' Meeting on Neutron
Activation Cross Sections for Fission and Fusion Energy
Applications, Sep. 1989, Argonne National Laboratory,
NEANDC-259"U", p. 285(1990).

N.Yamamuro, JAERI-M 90-006(1990).

S.Igarasi, JAERI 1224(1972).

P.G.Young and E.G.Arthur, LA-6947(1977).

P.D.Kunz, "Distorted Wave Code DWUCK4", University
Corolado(1974).

BNL, Evaluated Nuclear Structure Data File.

R.L.Walter and P.P.Guss, Proc. Int. Conf. Nuclear Data
for Basic and Applied Science, Vol. 2, p. 1079, Gordon
and Breach(1986).

F.G.Perey Phys. Rev. 131, 745(1963).

(9) E.D.Arthur and P.G.Young, LA-8626-MS(1980).
(10)F.D.Becchetti,Jr. and G.W.Greenlees, "Polarization

Phenomena in Nuclear Reactions'", the University of
Wisconsin Press, p.682(1971).

(11)K.Shibata et al., JAERI 1319(1990).
(12)S.L.Graham et al., Nucl. Sci. Eng. 95, 60(1987).
(13)S.Iijima et al., JAERI-M 97-025, p. 337(1987).
(14)S.M.Grimes et al., Phys. Rev. C19, 2127(1979).

(15)N.Yamamuro, '"Calculation of Activation Cross Sections

for Molybdenum Isotopes", preprint(1990).

(16)Y.Ikeda et al., JAERI 1312(1988).
(17)L.R.Greenwood and D.L.Bowers, J. Nucl. Materials

155-157, 585(1988).

(18)H.Liskien et al., Appl. Radiat. Isot. 41, 83(1990).
(19)L.R.Greenwood et al., Phys. Rev. C35, 76(1987).

(20)A.Marcinkovski et al., Z. Phys. A323, 91(1986).
(21)M.M.Rahman and S.M.Qaim, Nucl. Phys. A435, 43(1985).
(22)T.Katoh et al., JAERI-M 89-083(1989). In Japanese.
(23)s.Iijima et al., Proc. Int. Conf. Nuclear Data for Basic

112

and Applied Science, p. 627, Saikon Publishing
Co.(1988).



Consequences from Testing Measured and Calculated 14.6 MeV Neutron
Inelastic Scattering Cross Sections by Means of Comparison with Results of
Fast Proton Inelastic Scattering Using DWBA and GDH") Approaches

S. Ercakir and H. Jahn**)

Faculty of Physics, University of Karlsruhe

ABSTRACT

In this paper we show that the possibility of calculating
double differential inelastic neutron cross sections is consid-
erably improved if we add information from the results of
measurements of the inelastic proton scattering cross-sec-
tions. With this additional information we obtain a suffi-
cient starting point to calculate rather accurate and unique
results for the double differential cross-sections of inelastic
neutron scattering at the high energy tail of the seondary
energy. This is demonstrated by a few examples of 56Fe.
Moreover by applying certain averages to the angle inte-
grated inelastic cross-sections the results of Blanns geome-
try dependent hybrid model*) are obtained. Consequently
thifi I{light be a hint to a more rigorous derivation of this
model.

1. DISCREPANCIES AND ERRORS OF THE MEASURED FAST (n, n')-
CROSS SECTIONS

The investigations of this paper start from the fact that the measured results
of the different experimental groups for the 14.6 MeV inelastic neutron cross
sections show not only considerable experimental erros in particular in for-
ward direction but also remarkable discrepancies between them must be
noted. This is demonstrated in a previous investigation31) showing measured
and calculated angular distributions of 14.6 MeV (n, n')-cross sections of 93Nb
and 56Fe. It can be seen very clearly from the Figures la and b of31) that the
measured results are not accurate enough to enable a decision concerning the
validity of the different concepts. The error bar situation in forward direction
survives also with the improved measured results of32),

*) GDH **) Retired from the Institute of Neutron Physics and Reactor
Technic, Kernforschungszentrum Karlsruhe
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2. RESORT TO CHARGED PARTICLE RESULTS

One way out of this situation can be to resort to the results of measured cross-
sections of inelastic scattering of fast protons. The very high resolution ob-
tainable in the proton-channel is presented by the measured results of the in-
elastic 17,5 MeV proton-cross-section in the work of Peterson!0).Similar re-
sults but for inelastically scattered protons with an incident energy of 49,35
MeV also with very high energy resolution of the cross section energy distri-
butions have been considered by Mani!2), In both cases, for 49,35 MeV inci-
dent protons as well as for 17,5 MeV incident protons, the 26 lowest excited
states of 56Fe are exhibited as the peaks of the very high energy resolved
proton-cross section energy distributions. As results of DWBA-analyses of Pe-
terson10) and Manil2) the energies and spins of these states are listed in Tab.
1. These results are obtained from DWBA-calculations according to the for-
mulae

.,
dou’f (Bi,Lf.v,G) -
— X v
do - ﬁv Ov (Ll’Lt'v’O) (1)
rV
i (x) kr” m R‘z’ (1a)
X
s, € ,0:——(——-—) la
o, (& Lrv ) K\ g2/ 241
- aU(X) m
m v ar v
Y
and
R = roA”3; r,=1.25 10" % fm; U::; = optical potential (1b)
0 = scattering angle
Q = space angle of scattering
0] = projectile coordinate angle
ki, kg, = initial and final projectile wave vectors belonging to the inci-
dent and final energies ¢ and e, with the target excitation ener-
BY Ev
yxE(x) = optical model scattering states of projectile (x) indicating pro-

ton (p) or neutron (n):
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Y1,(0) = spherical harmonics

m = nucleon mass
1, = transferred angular momentum belonging to level v
m, = component of the angular momentum belonging to level v

(1) - (1b) represent the DWBA-formulae based on the collective vibrational
model. But beyond of this (1) - (1b) have been used by Peterson10), Manil2)
and Ignatyuk13) also for the phenomenological analysis of any excitation by
direct inelastic proton scattering. Then B, is a parameter to be chosen to fit
the experimental angular distribution. As above the index (x) denotes the
type of nucleon (eg. proton or neutron). No index (x) is attached to By because
the dependence of By on the type of nucleon can be neglected. But B, depends
on the target nucleus. Thus B, can be obtained by fitting the experimental
data for one type of nucleon and can then be used to calculated the angular
distribution for the other type of nucleon, for the same target nucleus. Conse-
quently once we have obtained [y experimentally from the proton-channel we
are able to calculate the scattering for the neutron-channel, in particular for
small angles.

3. COMPARISON OF DWBA- AND GDH AVERAGE CROSS SECTION
RESULTS

To obtain the appropriate angular distributions of the inelastic neutron
cross sections we insert the B, -values from the proton channel analysis of
Peterson10) and Manil2) shown in Tab. 1 into the expressions of the equations
(1) - (1b) together with the scattering states x *(n), calculated from the optical
model of the neutron channel instead of the scattering states x*(p) from the
optical model of the proton channel analysis of Peterson and Manil0,12),
Calculations of this type for the neutron channel have been carried out by
Kinney and Perey14), by Penny and Kinney15) and by Ful6), Scattering angle
dependent neutron cross sections obtained by these authors and can be found
on the ENDFB/IV files of the US neutron cross section library.

To proceed with developing our methodFig. 1 may be considred. Fig. 1 shows
experimental and theoretical results for the angle-integrated 14,6 MeV in-
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56Fe STATES

TABLE 1
Energy levels (Mev) and spin values obtained in Ref.12) and Ref.10)
Peak Ref.12) Ref.10)
no
v 2 2
& By B | W& | B D R
1 0.849 }0.2 0.040 2* 10.85 10.29 ]0.0841 | 2%
2 2.118 (4*) 12.08
3 2.695 10.06 |0.0036 | 2* |2.65 ]0.107 |[0.0115 | 2+
2.968 (0%) ]2.94
4 2968 [0.02 10.0004 |(2*) }2.96 [0.044 |[0.0019 | 2*
5 3.159 [0.087 [0.0077 | 4* 13.12 }0.124 [0.0154 | 4%
6 3.411 |0.06 ]0.0036 | 2* 13.37 |0.043 |0.0011 | 2%
3.411 (6*) {3.39 |0.03 |0.0009 | 6%
7 3.635 10.05 |0.0025 | 2* }3.60 |0.053 [0.0028 | 2+
Ta 3.75 10.082 0.0067 | 2%
8 3.850 [0.03 [0.0009 | 2+ 382 0.069 [0.0048 | 2+
4,
9 4,124 10.045 |0.0020 | 4* [4.10 |0.095 |0.0090 | 4%
440 ]0.053 10.0028 |(4%)
446 )0.074 |0.0055 | 4*
10 4.512 10.154 10.0237 3- 4.51 10.198 10.0392 3-
11 4.660 [0.071 [0.0050 | 4* }4.61 |0.055 |0.0030 | 4*
11la 469 |0.064 |0.0041 | 4+
11b 4.73 10.050 |0.0025 | z'
12 14.860 |0.039 ]0.0015 | 4* ]4.88 |0.100 |0.0100 | 4*
13 5.106 10.041 ]0.0017 | 5- [5.15 ]0.097 [0.0094 |(4%)
14 5.195 [0.046 [0.0022 ((4-) |5.20 |0.078 |0.0061 |(3-)
15 5.266 [0.050 |0.0025 4% 15.26
16 5.5635 [0.050 }0.0025 2* |5.51
5.58
5.69
17 5.763 10.03 10.0009 |[(5*) |5.73
18 5.880 |]0.039 |[0.0015 | 4* 15.90
19 6.067 10.037 |0.0014 | 4* |6.00
20 6.273 ]10.053 }0.0028 | 4* {6.30
21 6.410 (3,4)
6.48 2(%)
22 6.635 10.084 }0.0071 [(3,4)
23 6.870
24 6.966 [0.06 10.0025 3
25 7.080 [0.046 10.0021 |(3,4)
26 7.189 10.046 }0.0021 }(3,4)
27 7.312 10.038 10.0014 |(3,4)
28 7.475 (0.051 {0.0028 {(3-)
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Fig.1 Neutron emission cross-section of 56Fe; Ej, = 14.6 MeV

elastic neutron cross section. The step curve of Fig. 1 with 1 MeV interval of
the steps is obtained by Hansen et al.17) from measurements of the neutron
leakage spectrum from an assembly of iron. This experimental step curve is
in particular at the high-energy tail quite well reproduced by the smooth
straight line which is obtained from calculated results6) of Blann's geometry-
dependent hybrid model (GDH) with optical model option. This approach has
no fit-parameters other than those of the usual optical model. This is a re-
markable improvement compared to the excitation master equation approach
where the internal transition rate between the excitation steps has to be ad-
justed as an extra fit parameter if the high-energy tail of the secondary ener-
gy-dependent inelastic nucleon cross section should be taken into accountb).
On the other hand it can be shown that the experimental step curve of Fig. 1
can quite well be reproduced by average results of the neutron-channel-
DWBA-calculations outlined above with }, taken from the proton-channel as
shown in Tab. 1 inserted into the equations (1) - (1b) used to calculate the in-
elastic neutron cross section. By angle-integrating the results obtained from
the equations (1) - (1b) by these equations according to
do(“'.“ &, e ,0)
[ dQ LA, = (o!"’<a.,e )) (2)
f dQ, DWBA it T, owBa

Y
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we obtain on the right hand side of equation (2) cross section results for the
single levels which are shown in Fig. 1 by the discrete endpoints of the verti-
cal lines for the first 13 levels obtained by14-16),

We now turn to reproduce the experimental step curve of Fig. 1 by averaging
the measurable angle-integrated secondary energy-dependent inelastic neu-
tron cross section over intervals I being equal to the widths of the steps. Then

we obtain
T —— st et (n) t
1 (et12 do. '(e.,2")
( (n) (f: e)) —_ _[ 1 1 — de' —
I 12 de'
DWBA (3)
1 Ic*l-[/fl ( Z )
(] ) | n
= - p (e )0 (e ,¢€) =~ ( N ))
I e-172 g Y fV lfv ! DWBA V DWBA

where the py (¢, g,) are the normalized energy distributions around the exci-
tation energies of the single levels and where the single terms in the sum at
the most right hand side of eq. (3) and in the integrand of the expression be-
fore it are given by the right hand side of eq. (2). Equation (3) expresses that
the average angle-integrated inelastic fast-neutron cross section is at the
high-energy tail of the secondary energy equal to the sum of the discrete cross
section values of Fig. 1 within each averaging interval I.

The results of this summing up for the two intervals 10 - 11 MeV and 11 - 12
MeV are represented in Fig. 1 as horizontal dotted lines which are seen to co-
incide quite well with the experimental step curve as well as with the ny=3
contribution of the geomety dependent hybrid model. Since the latter is the
only calculated contribution of this model to the angle integrated secondary

energy dependent neutron cross section at this high energy tail of secondary
energy it can be presumed that thg ny, =3 component of the geometry depen-

dent hybrid model represents a certain average over the direct component of
the inelastic nucleon cross section. With the definitions and the results of
equations (2) and (3)we therefore conclude

e +1/2 o
- e,t ) = de’
-1 1 fv o bwBa 1"z.—I/‘z de’ (4)
e =cj—1/2 J n=n =3

14

The averaging intervals I in equations (3) and (4) do not include very many
levels. For instance the interval 10 - 11 MeV includes 6 levels and the inter-

118



val 11 - 12 MeV includes 5 levels according to Tab. 1. Such a small number of
levels is obviously already enough to obtain for the inelastic nucleon cross
section at the high-energy tail of the secondary energy an average with a
physical meaning in the sense that it can be calculated by a physical model
like in this case by Blann's geometry dependent hybrid model. Because of the
small number of included levels we conclude that it may not be a statistical
average we have to do with in this case. Instead we may have to do here with
a summing up in the sense of the well-known sum rules of Satchler!5) and
Lane20) (see also Lewis21)),

If we consider the derivation from equations (1) to (4) then we arrive at the
conclusion that it should make sense to introduce the averaged measured
angle-dependent differential inelastic fast-neutron cross section at the high-
secondary energy tail according to

de'
de. dQ, T ¢ (5)
) J dir

2 (n) 2 _(n) '

+1/2 e
d o (ei,ej,Oj) ] [ej d Ch (LI,L,OJ.)
dir

1), e de'dQ,
b J

Corresponding to equation (3) we then obtain

tn),, ¢
d%' Ve ,e,0.) c+1/22 doje &, 6; )
Lt ) —-I-I’ > e, (e )\ — — | de'= (6)
de. dQ. . Lieip By r, dQ DWBA
) ] dir ) v rv
e +1/2 do'™(e.,e. ,0. )
1 JZ lrv ! lv lv l z B? (n)( e)
— v = = g .., €, U,
Lo Zomin @, Twd B0 T
ep =g v DWBA

A4

Moreover corresponding to the far right of (6) it follows from (3):

: (n) - i 2¢(n),
(oif e, & )) = B, O &g ) (7)
v v JDWBA v v

which corresponds to the structure of (1) - (1b) with the definition

l dQ o‘j’ (e & ,0) (8)

» l‘v’

(n)
& (g8 )
A4 A4

The integrand on the right of (8) is given by (1a).
Equation (7) inserted into (4) yields:

GDH
e +1/2 e (n) '
lim 1 ][5t do. " (e, ,¢")
o7 2 EHes) = g L, @
—_ e =sj_”2 v v Ej—l/2 n:n0:3
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We now take into consideration that the cross section fluctuations with the
secondary energy of the inelastic scattering cross sections are predominatly
given by B2 . Then the slowly varying function (8) can be considered constant
within the intervalsIandIin (9) according to

¢ (n) - ), it
oifv (ci,crv) =~ o (Li,LJ) vel ;1 (10)

By inserting (10) into (9) we then obtain

GDH
] S g2y g0 do‘ijm(cl,cj)
(> B9Ya.” (e ,e) = (11)
Y vel Y 4 b dcj n:n0=3
and (11) inserting into the far right of (6) yields:
2820 (e ,¢,0.) GDH
d2 (n)( 0) [iv Y l ! ! d (n)( ‘)
O ‘&g Y _ vel O % (12)
S a) @ : =n =
dGdY foupa B 6 e) G Jrenge3
2]

vel

Ifin the intervals T and I only one angular momentum I, = 1is contained then

(12) reduces to:
GDH
2 (n) (n) (n)
doij (ci,t‘],ej) ) 0% (ci,cj.Gj) dou. (e.,t']) 13)

40, o(n) . de. =n =
de,dQ, DWBA 6. (g, 8) i n=n_=3

Equation (12) and Equation (13) both fulfill the following relation:
! {

GDH
dzoi;”(ci ) OJ.) do;"’(cl ,cj)
dQ = —_— (14)
dcdej DWBA J dLj n=n0:3

This conclusion is obtained if attention is paid to the definition of equation

(8).

5. SIMPLIFIED DWBA-APPROACH ACCORDING TO KROMINGA AND
MCCARTHY

On the right hand sides of the expressions (12) and (13) only the first factor
depends of the scattering angle. Any DWBA-approach based on the DWBA-
expressions (1) - (1b) may be inserted into this factor. For the sake of simplic-
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ity and transparency we introduce here the simplified DWBA-approach of
Kromminga and Mc¢Carthy22) which is obtained by introducing into (1) - (1b)
as an approximation of the optical model wave function the following 2-pa-
rameter Ansatz:

| £ Lo 15
with
k:\/imc (16)

In (15) the first term in the bracket is caused by the imaginary part of the
optical model according to

y= %‘—’1 R 2————————_____12_ 5 (17)
where (16) is approximated by the assumption of a square well potential
U(n) =V + iW whilst by the second term in the bracket of (15) the focus effect
is taken into account. By inserting (15) into the DWBA-equations (1) - (1b) we
obtain with the trapecoid potential as the most simple choice for Uln) (r)
according to:

t ich T
Of[‘xr0<r<Ro_ 5 Bereic

) (n)
Uiy | Yg L : (18)
= firR — - <r< R + - Bereich II
ar t o2 o 2

t .
0 fir Ro + -2- <r Bereich III

with the finite surface thickness t and the potential depth U,, where (18) has
the consequence that only the surface region of the nucleus of thickness t con-
tributes to the integration in the expression (1a) with the substitutions (15) -
(18). Thus (15)-(18) inserted into (1) - (1b) yields for our simplified DWBA -
approach the result:
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1 { ‘ 2 ( . 2 2 2
— il | P e, €]k )+ l £, +|f]| +
21V+1 m (4”)2 ! lV v v 2 3
+2Re |f f, - Plv(_gv,gl/gvki) +4) £ Plv(—_&;v,_lg.v/gvkt.v) (19)

+ I‘l I‘s . P]v(— cos 0)

|

In (19) the f3, fo, and f3 are functions which are given by the following expres-
sions:

t
R+~
2

0

1 2
f =4u(i)ijl (€ rdr=

t
R -~
o 2
1 t t 1 12 (20)
~ - ~ 13 i <2 _ PR 2 .
411(1) 3 [(RO+ 2) —(Ro_ 2) }~'lv(£‘vRo)—4“(l) t<R0+ -—12>_}lv(f,vl{0)

itk, — k., cos R + ycos©
9 i fv 0
f2=aR e
)

i(kf -~ k.cos®HR_ + ycos 0
9 v i o
f, =aR’e
3 0

In order to be able to calculate f) we introduced into the integrand of (20) the
value of the Besselfunction j Ji, ( )atr = R, as a constant value. We then ob-
tained the expressions after the last sign of equality of (20) as an approximate

result for f;. The Py, ( ) in (19) are the Legendre-Polynomials. Finally we
have in (19) the komplex vector

Y l'('l '—tv
g=5-i“‘iry'“f{(["i) (21)
0 i lv
with the komplex length
6=V E.5)=
2 1
=V IK2+Kk2 —2k k cosO-—2-Y-—(l—c030)+2i—Y—(k + k )(1-—cos0)
i fV 1 f'v R’2 R'o i if

(4]

122



6. RESULTS AND COMPARISONS

Now theGDH yields for the present only angle integrated cross sections as
shown in Fig. 1. Therefore first attempts already have been made to attach an
angular distribution to the GDH (see5.6,23,24) and3"). Now the concept of
these attempts can be extended by means of the above developed method. In
order to proceed this way we make use of the GDH-results of Fig. 1 where the
contributions of the excitation steps with n > 3 are shown separated. This re-
presentation has been presented by Bahm24,31). Almost only the n, = 3-
component shows the geometry dependent behaviour. Therefore according to
Blann4) the ny,=3-component should in the main represent the direct pro-
cesses. Consequently the angular distribution derived above should be nor-
malized with the ny=3-component of the GDH (see Fig. 1), according to (12)
and (13). On the right hand sides of (12) and (13) the numerator is given by
(1a) with (19), (20) and (21) and the denominator by (8) also with (1a) and
with (19), (20) and (21). ¢; is the value of the secondary energy being located in
the middle of the respective interval like those intervals shown in Fig. 1 and
Fig. 2 being attached through the GDH-curve of Fig. 1 and Fig. 2. If an inter-
val of this kind is large enough such that the equation (4)* and with it also
equation (14) and the already mentioned equations (12) or (13) respectively
with (1a) and with (19), (20) and (21) are valid, then for such an averaging in-
terval of the secondary energy of the inelastically scattered neutrons the an-
gular distribution of the inelastic-neutron-scattering cross section averaged
over this interval can be calculated by use of the mentioned equations, but
that firstly only as far as the direct component is concerned which according
to Fig. 1 is almost the only contribution to the total cross section until down to
a secondary energy of roughly 9 MeV. The Figs. 3 and 4 show the results of
this kind of calculations for intervals in which according to Tab. 1 2*-levels
either exclusively or predominantly are represented. Consequently to obtain
the calculated results of the Figs. 3 and 4 we inserted 1, = 2 into the preced-
ingly mentioned equations.

Into those equations different values for the parameters a and y are intro-
duced. Thus to obtain Fig.4a = 0 and y = 0,9 and toobtain Fig.3a = 1,5 fm

* seealso Avrigeanu et al.29) and Jahn30),
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and y = 0,7 had to be inserted into equations (19), (20) and (21). This last
mentioned y-value of y = 0,7 fits best the formula of Gl. (17) with the values
of V and W for the usual optical model of roughly V = 50 MeV and W = 80
MeV inserted into Gl. (17). Additionally to the curves, calculated as explained
in the preceding lines, points are drawn in the Figs. 3 to 5, which are calculat-
ed by Bahm?24) by averaging the measured results of the respective experi-
mental group over the respective interval of the secondary energy of the in-
elastically scattered neutrons for the measured scattering angles shown in
the Figures. The points shown in the Figures 3 to 5 are obtained from the
measured results of the Dresden group?). They are quite well compatible with
the measured results of Peterson10) and Manil2) for the proton-channels cor-
responding to Tab. 1. Fig. 4 shows also points which are obtained from the
measured results of different groups. It can be seen that those points of Fig. 4
which are obtained from the measured results of the Dresden group?) are in
much better agreement with the curve calculated using the equations (19),
(20) and (21) with the measured results for the proton-channel of Peterson10)
and Manil2) as shown in Tab. 1 than the points which are obtained from the
other experimental groups.

In order to obtain additional results for the inelastic-scattering cross section
of the 14,6 MeV neutrons we consider a region of secondary neutron energies
which consist of quite lower secondary neutron energy values than those of
Figs.3 - 4. We select as such a region of lower secondary neutron energies the
interval of 6 - 7 MeV which joins the upper limit uf the excitation energies of
the target nucleus of Tab. 1. Since in this region in the main 1, = 4-levels are
to be found we insert 1, = 4 into the expressions (19), (20), (21), (12) and (13)
for our angular dependent average cross-section calculations. Moreover we
neglect the n>3 precompound components since they yield a contribution of
not more than 10 % within the considered interval of secondary neutron ener-
gy of 6 - 7 MeV. Finally we add as the compound component the evaporation
component shown in Fig. 1 averaged over this interval, whereas the contribu-
tion of its angular distribution is assumed to be isotropic. The result as pre-
sented in Fig. 5 shows an agreement with the points obtained from the mea-
sured results of the Dresden group which is quite satisfactory*. Thisis also in

* The small angle region still has to be improved.
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agreement with the results of an Obninsk group26) which show that the sec-
ondary energy dependent angle integrated cross-section for inelastic scatter-
ing of 14,6 MeV neutrons on 52Cr can quite well be reproduced by only an ad-
dition of the compound plus the direct component without taking into account
a precompound contribution. Obviously this neglecting of any precompound
component for the sake of reproducing the measured inelastic scattering
cross-sections of 14,6 MeV neutrons by theoretical calculations including only
the direct plus compound contributions should be valid for a whole group of
neighbouring nuclei of structural materials as for instance for 51V till 65Cu
provided the direct component is properly averaged.

7. SUMMARY

In this paper a method is described to reduce the uncertainties and unaccura-
cies of the measured results of the inelastic-scattering cross sections of 14,6
MeV neutrons. This method consists of taking into account informations from
the inelastic scattering of fast protons. Measurements of inelastic-fast-pro-
ton-scattering cross sections which are appropriate to this purpose are carried
through up to now only for 56 Fe gnd for neighbouring nuclei as 51V, 52Cr,
and 55Mn. These are investigations by Peterson!0) and Manil2) of which the
results for 56Fe are discussed and used in the present paper to supplement the
partially very unaccurate and discrepant results of the inelastic-scattering
cross section measurements for 14,6 MeV neutrons of the various experimen-
tal groups. The method carried through in this way in the present paper for
56Fe leads to a preference of the measured results of the Dresden group?.
Consequently this preference should also be recommended with regard to the
measured inelastic-scattering cross section results of 14,6 MeV neutrons on
the other nuclei which are mentioned above as 51V, 52Cr and 55Mn as well as
on nuclei which are not mentioned above as for instance Co, Ni, Cu, Nb and
ts of ref.
In contrast to the method of the present paper the procedure of Pavlik and
Vonach27) should be mentioned who propose a certain averaging over the
measured results of the various experimental groups, while the principle of

Pb. These findings are also supported by the measured agi\ggéﬁflate 32

our method of the present paper is a selection with respect to the relationship
between the cross section results of the inelastic neutron and proton scatter-
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ing, where data of much higher quality can be obtained for the fast proton
case than for the fast neutron case as pointed out in31).

It could be indicated in the present papers as well as by the results of the Ob-
ninsk group26) that for structural materials as for instance at least for 51V to
65Cu a precompound contribution can be neglected for 14,6 MeV inelastic
neutron cross sections, and only direct plus compound contributions have to
be taken into account. This yields angular distributions which could be quite
different from those of the systematics of Kalbach and Mann4) or of the
PRANG- or PREANG-codes!,28). The latter are derived from some precom-
pound formalisms of which the solutions are assumed to cover the whole cross
section?). This isin contrast to our just mentioned finding that at least for 51V
to 65Cu precompound contributions should be neglected for 14,6 MeV inelas-
tic neutron cross sections and only direct plus compound contributions must
be taken into account for those cases. On the other hand the systematics of
Kalbach and Mann is obtained from a kind of fitting of inelastic neutron cross
sections between 25 MeV and 14,6 MeV4), However estimations of inter-
nuclear transition rates by Gadioli et al. (see Trieste Cours Contribution 0f28)
and Fig. A6 in6)) show that there could occur a drastic change in the cross sec-
tion behaviour at around 14,6 MeV. Thus we should obtain problems by con-

cluding from the cross section behaviour above 14,6 MeV to that one below

14,6 MeV. The measured and calculated results of ref?z)also contradict

1 i . he K h-Mann-systematics.
Finally it should be stressed that at the hxgh-e;}%%yttzﬁl STKs Secon aryen-

ergy dependent inelastic-14,6 MeV neutron cross section the angular-distri-
bution as for instance presented in this paper (see Fig. 3) and in 32) can show a
predominance of the Legendre-polynomials of higher order as for instance 10
if analyzed accordingly. In contrast to that Legendre-polynomials up to order
only 3 are taken into account by the users of the PREANG- or PRANG-codes
or 4 of the systematics of Kalbach and Mann respectively28), This kind of as-
sumption of taking into account only low order Legendre-polynomials has

also been applied by Pavlik and Vonach?27) in order to obtain their compila- 32)

tion. This also contradicts to the measured and calculated results of ref?
for inelastic neutron and proton scattering cross sections.
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RECENT DEVELOPMENTS IN THE THEORY OF NUCLEAR
LEVEL DENSITIES

A.M. Anzaldo Meneses
Institut fir Theoretische Physik
Universitit Karlsruhe. D-7500 Karlsruhe
Federal Republic of Germany.

Abstract:

We present here an alternative approach to obtain a better description of nuclear level
density, its shell effects and their energy dependency. Our method is statistical, is based on
analytical number theory, and considers a system of neutrons and protons in a given single
particle spectrum as usual.

1.Introduction.

This work was motivated by the original work of H.A.Bethe (1936/37),
N.Bohr (1936), C.Van Lier and G.E.Uhlenbeck (1937), S.Goudsmit (1937) and
others over 50 years ago. These authors obtained a formula which showed with
very simple analytical relations the most important behaviour of the level
density, parametrized by means of quantities with a clear physical meaning. No
parameter was introduced in an ad-hoc way to reproduce experimental results.
The connection to number theoretical problems was also known. Nevertheless,
their results are only a crude approximation which needs to be implemented.

By introducing the shell structure into the single particle spectra, we
obtain here new results expressed with simple formulas using as guide
calculations from modern analytic number theory (see for example
G.E.Andrews, "The Theory of Partitions", Addison-Wesley Publishing Company,
London, 1976). In this way it becomes easy to recognize the relevant
mathematical quantities which must be related to the physical parameters.

We succeed here to obtain an analytical description throughout, such that
only a minimum of numerical computer calculations is needed to carry out the
comparison with the experimental results. During the last 30 years, there have
been many extensive numerical works under the title “microscopic calculations".
But of course they are done without the existence of a consistent fundamental
("microscopic”) nuclear theory. It is well known since many years that different
spectra lead to the same average results for the level density, there is no
unique way to fix the “correct” nuclear Hamiltonian from these considerations.
Here we adopt a different point of view. We consider classes of single particle
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spectra with common analytic properties. We stress the importancy to recognize
the most relevant parameters, which must be common to all single particle
spectra, whenever they are to reproduce the experimental data. In this way we
do not need to limit ourselves to a certain special kind of Hamiltonian and it
is also not necessary to diagonalize it. We attempt rather to introduce nuclear
structure properties in the form of well founded mathematical quantities. This
approach should conduce to the study of invariants associated to heavy nuclei.

2. Starting Equations.

We sketch the method for one kind of nucleons only, the extension to any
other number of distinguishable kinds is immediate. The density of excited
states of a system of N particles with total energy E is given by po(N,E) in the
expression:

Z(w,B) = H (1 + exp(u-Bey) ) = }: xN yE o(N,E), o, B € C (1)
v N.E

with x=e%, y=e-# and the single particle spectrum {g,}. Thus, the objective is

to obtain a simple expression for p(N,E) valid for all energies E in a certain

interval. We assume that the excitation energy U= E-E, , where B, is the

ground state energy, is not large enough to excite the lowest nucleons in the

spectrum. This means that we study only “"degenerated systems".

The Darwin-Fouler method consists in the evaluation of the contour integral:

_ L . _
PNE) = L f_diio ﬁdf)o exp( 1nZ(cw.B) + BE - oN ) , )

The power series in eq.(1) is of course only formal, because it is strongly
divergent in general, but we can deform the integration path to evaluate the
integrals in eq.(2) by the saddle point method. The well known result is:

N,E) = exp_S ‘
o(N,E) o VD 3)

where S is the "entropy" of the system:
i

S (,B) = In Z(xB) + BE - «N = 2Va(U-6) . (4)
a is the so called "a-parameter”. 6 an energy shift and

dgp ln Z 9dyp3 1n Z
D = det 6o B (5)
g In Z dyy In Z
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The saddle point is obtained solving the equations:
B S(e,B) = 0 , 3p S(e,B) = 0, (6)

and we must evaluate In Z(c,B) at the saddle point. The a-parameter, the
energy shift 6 and the determinant D are all energy dependent in general.
From this point on our calculation departs from the usual one. Normally, see
for example T.Ericson (1958), the partition function is expressed as an integral
over a smooth single particle level density. Different simple Ansitze for such
function lead to the well known results (see for example the review by
V.S.Ramamurthy (1989)).

3. Formalism of Modern Analytic Number Theory.

We prefer to continue the use of analytic number theoretical functions.
The formal series and products as those of equation (1) have a precise analytic
meaning restricting the complex variables to a particular region of the complex
plane.

We write: ‘
Cc+t+loo
= 1)kt L gkt = -1 me*Z Z(B7)
In Z(wB)= D (1)k1 £ ek Z(kp)= —L fdz ) o 0<e<l (D)
k>0 c-ico
where we defined the function:
Z(x) = Z exp( -xe,) = Tr exH | en > 0, (8)

The last integral on the far right hand side of eq.(7) can be shown to be
equivalent to the infinite series of that equation using the Laurent series for
1/sin(nz) and evaluating the residues at z=1.2,... .

3a. Introduction of Dirichlet Series.

In general, series of the form

> a@esMn) | s € C,N\n) > 0,am) 20,

are called general Dirichlet series if {k (n)} is a strictly increasing sequence of
real numbers such that An)—oo as n—oco. Hence for Z(x) the a(n) give the
degeneracy of the corresponding £, -

The series is called ordipary Dirichlet series if Mn) = In{n). We shall assume

that all Dirichlet series we consider are absolutely convergent for the half-
plane s > 6 >0. Further we asume that they possess an analytic continuation

133



in the region s> -c, 0< ¢ <1, and that in such a region they are analytic
except for a finite number of real simple poles.

The contour in eq.(7) is selected in such a way to allow the interchange
of the integration and the summation. We are thus naturally lead to study the
function Z(x) in the complex plane. Further, if we express the other factors in
the integral in a Laurent series, we recognize that the ordinary Dirichlet
series:

D@ = Z(eLm)z = Z

[ o]
b Tlti) f dx x2-1 Z(x) , %0, 230 , 9)
0

will play a central role. We have assumed that the e, are integer numbers,
this can be done by taking a sufficiently small energy unit. The function D(z)
will contain all the relevant information of this problem. The most famous and
simple case results from g, € Z* leading to the Riemann ¢-function. The
integral in eq.(9) is called the Mellin transform of Z(x) (see I.N.Sneddon,"The
Use of Integral Transforms",McGraw-Hill Book Company,New York, 1972).

3b. Poles and Residues of the Dirichlet Series.

The function Z(x) can be obtained, once we know D(x) using the integral:

o+ico
Z(x) = 5 f dz x2T(z) D@) , x € F ¢ €, >0, (10)
g-ico

where we assumed that D(z) has only poles, localized to the left of the contour.
For simplicity, we will further assume that these poles are simple and are
localized at the points d,>dy>...>dy>0, dy integer, with residues A,, Ay etc,
(higher order poles can be easily included). We find:

M o
Z() = > Ap Tdp) x°m+ > (-1)k xk D(K)/k! , XEF ¢ C, (11)
0 0

This expression can be interpreted as an asymptotic series for Z(x) as x—~ +0.

From relation (11) we see that the quantities to which we have to give a
physical interpretation are the residues, the position of the poles and the
values at zero, and negative’integers of D(x) which determine the analytic
structure of the infinite sum. This can be easily seen. By partial summation we
notice that if :

Sag = > Amum ypg) | (12)
j=1 m=o dp



then, we can approximate D(s) as follows:
DE) = > A; 4 - d; + D= A0 % sin(n(s-d; + 1)/2)Td-)6(dp-8),  (13)

and this means that D(s) has simple poles at s =d; with residues A; . The
assumption given by eq.(12) can be interpreted on the other hand as a
description of the increase of the single particle level density and expresses the
total number of particles up to level p, Equation (13) gives us the analytic
continuation of D(s) to the left of the succesive poles. Additionally, we can use
eq.(13) to obtain D(-k) entirely in terms of the set {d;A;}. We need only to
remember the values: §(0) = -1/2, ¢(-2m) = 0 aand §(1-2m) = - B, /2m for
m=1,2,.. . Note also that if we naively write z=-1 in eq.(9) we obtain an
infinite number, the analytic continuation eq.(13) gives the correct answer.
This last observation leads to the {-function regularization in quantum gravity
(see for example S.W.Hawking (1977)).

Conversely, by a formula due to Perron (c.f. T.M.Apostol, "Introd.to Analytic
Number Theory", Springer Verlag, N.Y.,1976), we know that:

Ct+ioo

x
an _ 1 J’ z
= dz D(z+s) ¥ > > > -

nZu-o oS 2ni J P >0, u,>0,Res > o0, -¢,

where the last term in the sum must be multiplied by 1/2 if p is an integer.
From this formula for s=0 and if D(z) has only simple poles at dj with
residues A;, we return to eq.(12).

3c. Bxpression of the Partition Function bv the Poles and Residues.

We need now to solve the saddle point equations whose solution will be then
parametrized by the set of constants {dj, Ai}. But first we need to insert
expression (11) for Z(x) into Z(w«,B) in eq.(7).

With eq.(11) we have, for a restricted kind of spectrum, a Laurent series for
Z(x) which allows a very simple integration of eq.(7), under the condition that
the sums are well defined, at least asymptotically.

The integration in eq.(7) has now three different contributions:

a) The pole at z=0 with terms of different multiplicities, resulting from the
poles of D(x). ' -

b) The simple poles of 1/sin (nz) for z<0 integer.

¢) The singularities from the function given by the infinite series in eq.(11)
with coefficients D(-k).

135



Let us write these contributions separately as:
In Z((X,B) = Ia + Ib + IC ’ (14)

We evaluate them now further. First we have from eqs.(7) and (11), expanding
1/sin x in a Laurent series:

n o0
=% [d en(Yanrme n 6 n + > C1ykaRDER/K) -

0

. 1 1 2 2(22 -2 -1} __\2i2
+ ————( +-- -+ 2B:+-- -}, (15
[ﬂz 72 6 360 "2) 2! 2 N ] (1)

where C, is a small contour enclosing the origin and we have expressed the
regular part of the cosecant by a power series. The B; are the Bernoulli
numbers. We find after integration:

L= S A r@d)gde] ot - odmt A2
a= "D ApT(d)f [ n% @y ws**kmu%aﬂﬂ a
e ]+« D) -8 DED, (e

The sum in the bracket is finite and its last term is of order zero in o if d
is odd and is of order one in « if dj; is even.

For the second integral around the negative integers we obtain from
eq.(7), shifting the contour to the left:

Iy = In Z(-«, -B) , 17
We shall disregard this term since we consider systems for which « is large.
Nevertheless, let us mention that this term is very important for a another
reason. It reflects important properties associated with modular forms (see for

example H.Rademacher, “Topics in Analytic Number Theory”, Springer-Verlag,
N.Y., 1973).

Finally, for the last integral we need a similar estimation as for the first
case. Since we evaluate the integral in eq.(7) over the imaginary axis (without
the origin), we need to know the behaviour of Z(s+it) for s—>+0 and fixed
[t|>0. Again, using partial summation and the assumption given by eq.(12) we
find:

Z(x) ~Z AL zndk- -xn _z Ak r(dk)(i & +2mn) —————g,, dg=1,..; (18)
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we see clearly that this function will have for |Im x|>0 poles of order dy at
x=*2nni, n$+0 . We obtain from eqs.(7) and (18):

IC= Akﬂ [ eO(z ] (dk'l) (19)
di.8 dy ==£°° z sin(nz) z=2min/B ’
n¥0

where (dy-1) denotes the (dy-1)-th derivative and is to be evaluated at 2nin/@.

From eq.(19) we recognize an oscillatory behaviour as function of the
"chemical potential" p=o/B and the “temperature” 1/B. This contribution leads
to the energy dependent shell effects which will allow a better description as
that given in the current formulae for nuclear level densities.

The saddle point equations can now be readily written using the two
contributions for In Z(«,B) given by equations (16) and (19). The parameter
set {dj,Ak} could be selected for protons in a different way as for neutrons.

3d. Explicit Expressions for the Most Relevant Sums.

The partial derivation with respect to B of eq.(16) leads to an “asymptotic"
series in positive powers of the chemical potential =« /B and the temperature
1/8 plus a constant term :

dptl 1 dm-1  d_n2
= - 7} © m .- (D(-
gl = - > Am[ s ks (DC-1), (20)

the last term is of order -(d,+1) in B. This contribution constitutes what
is usually called the “smooth part" of the excitation energy. The constant term
is a shift of the ground state energy. This is the proper origin of what leads to
the so called "back-shifted" formulas of the literature of nuclear level densities.
On the other hand, this constant is intimately related to the "dimensions" of
the modular forms mentioned after eq.(17).

To interpret the coefficients appearing in eq.(20) we extend the expression
(12) somewhat using the formula of Perron and write:

dpte

Znn a, = Z(ETATmc) (T + D(-k), k positive integer, (21)
m

For £=1 we recognize the first order term of eq.(20). Physically, this is an
estimation of the ground state energy for g equal to the Fermi level, denoted
by uo since a, is the degeneracy of the level n and we add the corresponding
energies up to level p,. For k=0 we obtain the number of particles N, as
explained before, if wp=p, Therfore it is patural to define the partial
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derivative of N with respect to p, as the “smooth" (or asymptotic) single
particle level density:

gw) = 2. Ap ™™+ D D) 6yt ©2)

expressed only in terms of the residues and the poles of the Dirichlet series
associated with the spectrum. The second sum is added to obtain formally, after
integration, eq.(21).

Now we can express all the coefficients of powers of 1/8 by g(a/B8) and its
derivatives, for example:

dp-1 ,
D Apdg u = gu) + g,
is the coefficient of 1/82 in eq.(20).

The partial derivation of I, with respect to « is:

dm 1 9m-2 (4 _1)n2
dgly = ZAm[ * -+ H gL +...]+D(O)’ (23)
m 6!32
where again we can express all coefficients in terms of g(«/B) and its
derivatives.

If we consider only the contributions given by eqs.(20) and (21) to the
saddle point eqs.(6) we obtain a result valid for large excitation energies but
without energy dependent shell corrections. Nevertheless, also in such a
situation we have a good explanation for the constant shiftings in the
excitation energy dependency. We find easily:

U+ (B, -By = 6—"!;2- Ag ulm,

where U is the excitation energy , E, is the ground state energy and Eo is its
estimation given by eq.21) for x=1. In this crude approximation we have
disregarded all irregularities of the spectra. Thus, for example the chemical
potential 4 was approximated by the Fermi level u,. The following calculations
will remove these restrictions.

To write down the contributions which lead to the shell effects we
introduce the following sums to simplify the notation:
¥

Zo(ﬂ-,t) = i sin(Znnu) . t=1/B, (24)
-oo  2nn2 sinh(2n2nt)

and its derivatives:
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Lo = L1 ; 0Ly = -nly; 8320 = -2nlg ; atﬁ Lo = -2n2L4 , * (25)

These sums are directly related with the Jacobi 8-functions (see for example E.
Whittaker and G.Watson, 1927: Modern Analysis, Cambridge University Press).
Thus we find from eq.(19) for 1. :

- dy -2 dy -2 di-
o= 2 B [ufil 5y - (gt 2, - Tp(agitile] vowl), @6

and after derivation we find:

Ap  dp-t 2n2 dy-3
gl = > it [a-a2r; + 2nuzy + —g-(z-dk)m] rod?y @7
k
and:
dy-3
0 Io = %de S (1-d9Ly] + O, (28)

With these relations we can compute the energy dependent shell corrections to
the energy and the entropy for “large” temperature. Unfortunately the series
are not always well defined. They have discontinuities and if 1/B is not large
enough they converge only slowly.

To be able to compute the needed sums also for the cases where the
temperature is not large enough or near a discontinuity we need to transform
the sums in terms of 1/B8 into sums in terms of . This is here possible
because of the connections with the 8-function. We obtain:

(-1)" sinh(myB)
m2 sinh(mpB/2)’

(e o]

= B2 1y, 2 .

Lo = 3 y(y2. T + g Y 32 y €(-1/2, 1/2), (29)

where we introduced y= p - [u], e.g. the chemical potential minus its integral
part. For all other sums similar relations follow after derivation.

The calculations sketched above are all what we need to compute the
entropy at the saddle point as expressed by equations (4) and (6). We can
calculate with the given relations explicitely, in the saddle point approximation,
the nuclear level density once we know the analytic properties of a given class
of single particle spectra. These properties can be obtained easily using
relation (12).

4. Calculations for the Single Particle Spectrum of Kahn and Rosenzweig.

To test the applicability of our results we computed the a-parameter
defined in eq.(4) using a periodic spectrum first studied by P.Kahn and
N.Rosenzweig (1969) and given by:
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g = (k + m() ) Ho, k integer, j=1, ... .e; > m(j) = O. (30)

where the numbers m(j) give the position of level j in each shell and e is the
degeneracy of the shell. The shell width is simply the difference between the
largest and the smallest m(j), W=(m(e) - m(1)) hw and we assume W<huw,e. g.
non-overlapping shells.

Since the constants m(j) do not depend on k we write:

Z(x) = Zlexp(-xn) jZl exp(-xm(j)), (1)

The Dirichlet series corresponding to eq.(31) is expressed easily using the
generalized Riemann ¢-function ¢(s,m)=) (n+m)-S which has only one simple
pole at s=1 with residue one. Thus, here D(s)= ) ¢(sm()), A=e, d=1,
D(0)=¢e/2, D(-1)=-e/12 - 172) m(j)? .

The saddle-point equations lead to:

2
U= I¢€  + EBgpei(?) - Esnenn(0) » (32)

6fwp2

where 7=2n2/HwB and the temperature dependent energy shell correction is:

(1]

< (-1)kr2c0s(2 rk(y-m(()) coshk

where y = p - [u] -1/2 . For =0 we find the well known result of Kahn and
Rosenzweig, obtained using the Buler summation formula:

Xe e

1

Eshel1(0)/ho = -2%- + -lz—xe(l—x) + > m() +7Z m(j)? (33a)
j=1 j=1

The temperature dependent y is now:

-1)k -
o=y ey > Clirsnluinn) L

j=1 k=1

For the entropy we find:

e ©o
(-1)%cos(2nk(y-m())){kr coth(kr) - 1}
* jZI Z_ : k smh((jlz)) 1) ’

(35)
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Kahn and Rosenzweig did not consider the energy dependency of the shell
effects given by eq.(33). The temperature dependency of the chemical potential
described by eq.34) was also neglected by them.

It is usually argued that, for relatively large excitation energies, the Fermi
level ep at zero temperature and the chemical potential p are practically equal
and thus u is substituted by e in all formulae. This is correct only for terms
depending on powers of u, but it is not necessarely correct for circular
functions of u, since in such case the relevant quantity is the departure of p-
(1] from the average energy spacing between shells and not the absolute
value of p. In other words, it is not allways correct to substitute y by the shell
filling parameter x for relatively large excitation energies. Thus to complete
the set of equations that we need in our example, we need also an equation
to obtain a good estimation for y when the series in eq.(34) do not converges
sufficiently fast. This equation is:

e (-1)k sinh(2n2k(y-m())/7) *[1 (-1 sinh(@n2k(1-y+m(])/7)
=3 O3 B3 :

3 en sinh(n2k/7) ] € & e sinh(rn2k /7)

Here, the sum I’ runs over -1/2< y-m(j) < 1/2 and the sum L' runs over 1/2
< y-m() < 3/2.

In our calculation we computed the a-parameter for the nuclei reported by
T.von Egidy, H.Schmidt and A.Behkami (1988)  at the corresponding neutron
binding energies. We used the definition contained in eq.(4) for the a-
parameter and of course, we considered two kinds of fermions. Thus, we added
in the given equations for the excitation energy, the chemical potential and the
entropy the corresponding terms for the other kind of nucleons present. The
shift § given in eq.4) is know: §=Ego(1)-Eshen(0), for large excitation
energies.

The adopted shell width was fixed for all nuclei belonging to the same
shell in a harmonic oscillator type potential. Besides the shell widths and the
average spacing between shells fixed by the shell model, we did not adjust any
other parameter. We used only the first terms of the corresponding infinite
series, depending on the convergency of the series. In figure 1, we show the
results of our calculation in comparison with the experimental results
compilated by v.Egidy et al. which include also former compilations of G.Rohr
et al. The agreement is encouraging. In a forthcoming publication we will
show more details of this calculation and the results for the nuclear level
density as well as additional developments of theoretical as well as practical
interest.
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S. Conclusions.

[n conclusion we like to stress the following points:

1) We have shown a consistent method to study and include the most relevant
characteristics of the adopted single particle spectra. This includes the "smooth"
behaviour as well as the shell corrections and their excitation energy
dependency.

2) Only the consideration of an energy dependent chemical potential can lead
to a correct description of the shell effects in the nuclear level density. This
follows from the discontinuous character of the infinite sums as a whole.
Instead to take only few terms of a given series it is necessary to understand
its transformation properties.

3) All other analytic attempts in the current literature (to our best knowledge)
on nuclear level densities can be seen as particular cases of the presented
method. Also those which assume a smooth single particle level density given
by a power or a Fourier series.

4) The presented method is not only of academic interest but provides us a
tool for applications as our calculations showed. The consideration of more
“realistic" spectra e.g. of the Nilsson or Woods-Saxon types is also possible
without difficulty. In a work to be published we will show further results.
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ABSTRACT
We compare angular distributions calculated by folding nucleon-nucleon
scattering kernels, using the theory of Feshbach, Kerman and Koonin, and the
systematics of Kalbach, with a wide range of data. The data range from (n, xn) at 14
MeV incident energy to {p, xn) at 160 MeV incident energy. The FKK theory works
well with one adjustable parameter, the depth of the nucleon-nucleon interaction
potential. The systematics work well when normalized to the hybrid model single
differential cross section prediction. The nucleon-nucleon scattering approach

seems inadequate.

*Work performed under the auspices of the U. S. Department of Energy by
the Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
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1. INTRODUCTION

The purpose of this brief report is to look somewhat critically at our ability to
predict precompound angular distributions. Much of the early work was focussed
on data from 14 MeV incident neutron energy; these data had large uncertainties
due to experimental difficulties, and were not well suited for testing our ability to
predict angular distributions. More recently data sets for (p,n) reactions, spanning a
very broad dynamic range of incident energies, have become available. Data on 90Zr
have been obtained at 25, 35, 45, 80, 120 and 160 MeV over an angular range of 0-
160°.1-3 Measurements at higher energies are planned. We will use some of these
data to see how well different approaches to treating angular distributions work as
predictive tools. These will include formulas based on systematics,4 on folded
nucleon-nucleon scattering kernels,” and on the quantal formulation of Feshbach,

Kerman and Koonin (FKXK).6

2. COMPARISONS OF MEASURED AND CALCULATED ANGULAR

DISTRIBUTIONS

In Fig. 1 we show several data sets for the 93Nb(n,xn) angular distributions.>?
These are compared with hybrid model angular distribution calculations involving
nucleon-nucleon scattering kernels. The agreement with data seems reasonable,
due in part to the large experimental uncertainties.

In Figs. 2-5 we show similar calculations versus data taken at incident proton
energies of 25, 45, 80 and 160 MeV. For the 25 MeV incident energy (Fig. 2) for the 9
MeV exit energy one can do a parameter manipulation - called 'refraction' in this
application - to force a reasonable back angle 'fit' with data. At the higher exit
energy of 14 MeV, not even this parameter game works. An arbitrary isotropic
(compound) component would again give the appearance of agreement over the
entire range of angles. This is apparently used in some approaches, but is not
consistent with statistical theory. As data from higher incident energies are

analyzed, the discrepancies between both forward and backward angles becomes
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Fig.1 Experimental and calculated angular distributions for the %3Nb(n, xn)
reaction with 14.7 MeV incident neutrons. Results are shown for 4 and 9
MeV emitted neutrons. Data (circles, squares, and triangles) are from Ref. 7.
The dotted lines are the calculated equilibrium components which have
been added to the histogram results. The dotted-dashed histograms are the
results of the semiclassical calculation using the folded N-N scattering result
described in the text. The solid histograms are the results of the same
calculation but with an additional folding for "refraction” in the entrance

channel as described in the text.

more evident (Figs. 3-5). In Figs 4 and 5 no 'refraction’' has been used in one
example using the nucleon-nucleon scattering calculation. Here the quasi-elastic
peak may be seen as the first collision contribution, and the higher order collision
contributions may be seen as the component with softer slope extending to higher
angles. The data do not show this dichotomy; quantal effects may be expected to
reduce it. Adding the 'refraction’ folding to these calculated angular distributions
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Fig.2 Results for the 90Zr(p, n) reaction at 25 MeV incident proton energy.

Experimental results are from Ref. 1 (horizontal bars) and from Ref. 8

(circles). The data of Ref. 1 are more reliable than those of Ref. 8 at angles
forward of 20°, The isotropic (dotted and dashed) components are the
calculated evaporation contributions which have been added to the Fig.3  As in Fig. 2 for an incident proton energy of 45 MeV. Data (horizontal bars)

precompound results shown. are from Ref. 1.
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Fig.4 Angular distributions for 90Zr(p, xn) for 80 MeV proton energy in
comparison with the normalized results of Ref. 4 (dot-dash line) and the
hybrid model (dashed-short line) using a nucleon-nucleon scattering kernel.
The heavy solid curve is the hybrid model with nucleon-nucleon scattering

and refraction in entrance and exit channels.

will help to reduce the change in slope noted at around 90° but does not change the
inability of the calculated result to fit the data, as may be seen in Figs. 4 and 5.

Kalbach? has recently revised her formulation of angular distributions based
on systematics. Results of this formula, normalized to the single differential cross
sections predicted by the hybrid model, are shown in Figs. 4 and 5. The agreement is
quite good, and the computation exceedingly fast. While there is no gain in
knowledge of physics from using this approach, it is fast and it gives good results
o(rer a wide range of targets and projectile/ejectile energies.

Finally we investigate the theory of FKK in reproducing angular
distributions. In Fig. 6 we show results for 65Cu(p,xn) due to Holler et al. for 26.7
MeV incident proton energy.8 In Fig. 7 we show comparisons for incident energies

of 120 and 160 MeV for 208Pb(p,n) reactions. In Figs. 8 and 9 we show similar
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(Ref. 4) for the 90Zr(p, n) reaction at 160 MeV incident energy. The exit
neutron energies from 40 to 140 MeV are indicated. The hybrid model N-N
scattering result is without refraction (dot-dashed line) and with entrance

and exit channel refraction. This figure is from Ref. 3.
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xn) at 26.7 MeV incident proton energy. This figure is from Ref. 8. Solid
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energies. The solid line is the resuit of the FKK theory summed over

several scattering terms. The dashed line is the first term only.
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Fig.7 Experimental angular distributions of neutrons of several c.m. energies for
the reactions p+208Pb in comparison to SMDE calculations with Vg =16

MeV (for Ep = 120 MeV) and Vg = 12.5 MeV (for Ep = 160 MeV).

comparisons for %0Zr(p,xn) reactions at 120 and 80 MeV. The FKK theory does very
well across the entire range of energies - but there is an adjustable parameter. This is
the square of the nucleon-nucleon interaction potential depth, Vg2; it has thus far
been selected to force-fit the data. The values used for reactions on 90Zr are shown
in Fig. 10. These values seem to be independent of target mass, but strongly
dependent on incident energy. Thus far the theory has not been predictive; perhaps
Fig. 10 may be used to interpolate values necessary for Vg2, making this approach

predictive within the range of prior measurements.

4. CONCLUSIONS

Semiclassical /exciton approaches to angular distributions may not be
extrapolable with accuracy much beyond the regime of reactions of neutrons of up to
14 MeV. They probably lack an adequate treatment of the physics. The FKK theory
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offers hope of an approach containing the proper physics, but we must understand

the variation of Vo2 with incident energy. We may be able to interpolate this from

Fig. 10 for energies within the range where measurements have been made.

Because the exciton model weights higher order terms more heavily than the hybrid

model, a thorough investigation should be made of the N-N scattering approach

within this (exciton model) formulation.

The systematics of Kalbach provide a very satisfactory means of predicting the

shapes of the angular distributions. At present this may be the best approach for

applied nuclear data needs.

N o A~ LN
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A REAL PART OF NEUTRON OPTICAL POTENTIALS CONSTRAINED BY
RMFA CALCULATIONS

S. Gmuca

Institute of Physics, Slovak Academy of Sciences,
Dubravska cesta 8, CS-842 28 Bratislava, Czechoslovakia

Abstract

We test an applicability of Dirac optical model for
neutron elastic scattering at low energies. Real parts of
scalar and vector potentials are ~constrained by a
relativistic mean field approach to nuclear structure. We
find that by this way we are able to produce a good
agreement with experimental data.

1. Introduction

In recent years there has been growing interest in using
relativistic approaches in nuclear structure calculations
and scattering of nucleons on nuclei. Relativistic quantum
field theoretical approaches have been reviewed recently by
Celenza and Shakin (1] and Serot and Walecka (2]. The
success of the RIA at intermediate energy proton scattering
is now well documented [3]. Nuclear optical model studies
using the Dirac equation containing large canceling Lorentz
scalar and Lorentz four-vector potentials have shown 1ts
superiority to the standard Schrddinger equation based
phenomenology [4] at higher energies.

Contrary to these previous studies, in this work we
present the results of an analysis of neutron-nucleus
elastic scattering at low energies. The aim is to test some
aspects of relativistic approach at this energy region. In
particular, we constrain the real parts of the optical
potentials by relativistic mean field calculations. To be
consistent with conventional studies and to facilitate the
comparison with nonrelativistic analyses we transform the

Work performed under IAEA Research Contract No. 4325/RB
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Dirac equation to the Schrédinger-like one with effective
central and spin-orbit potentials. The real parts of these
potentials are constructed wusing the aforementioned
relativistic fields. The imaginary part of the central
potential is then taken to be of conventional surface plus
volume terms. The imaginary spin-orbit potential is ignored.

The analysis presented here is made on some spin-zero
nuclel at energy region 8-40 MeV. We test the usefulness of
the Dirac approach and seek for a possible energy dependence
of the potential parameters.

In the next section we describe essentials of the
relativistic mean field approach to nuclear structure.
Section 3 is devoted to the Dirac optical model and its
transformation to the Schrodinger picture. In Sec. 4 we
present the results of our analysis and Section 5 gives
conclusions of this work.

2. Relativistic Mean Field Approach

We start with the Lagrangian density of the QHD-II
theory with scalar selfinteractions [2] which reads

—

w[iy“a“ - (M-g 0} - gwr“w“ - gpr“t.p“]w

1[a,00% - nCoP] - JpM(g® - Jetg et (D
1 1.2 -1 e

T Pw Y +-2mww“w” 'prvp“v +'%mpp“.p“

i

Lly,0,w0,p0)

+

This includes the baryon field (), neutral scalar and
vector meson fields (o,w) and the charged isovector meson
field (p) in a renormalizable field theory.

Exact solutions of the field equations given by the
Lagrangian density (1) are very complicated. Instead the
corresponding Euler-Lagrange equations are usually solved by
replacing the meson fields by their mean values (the so
called relativistic mean field approach - RMFA).

We restrict ourselves to the spin-zero closed shell
nuclei which possess the spherical symmetry. This symmetry
greatly simplifies calculations. As a result we obtain the
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coupled set of nonlinear differential equations which have
to be solved iteratively up to the selfconsistency is
reached. The details of this procedure may be found in ref.
{2). In particular, the baryon field y is given as a product
of single-particle spinors y, (« labels all relevant quantum
numbers) which obey the Dirac equations

[—ia.v + BIM-SC(r)) + V(r)]wa = Ey, &)
where the scalar potential is simply
S(r)=g o(rj, (3

while the vector potential has more complicated structure

V(r)=gww(r)+1/8. r3gpp(r) (4

The o(r), o(r) and p(r) are the scalar o-meson field, the
time-like component of the vector w-meson field and the
time-like part of uncharged component of the
isovector-vector p-meson field, respectively. These fields
obey the second order radial Klein-Gordon equations with an
appropriate density as a source term.

At the end of the iterative selfconsistent procedure we
obtain:

- single-particle Dirac wave functions,

- single-particle spectra,

- proton and neutron baryon and scalar densities,
- mean meson fields, etc.

These quantities may be then used in other computations
which need nuclear structure information.

The Lagrangian (1) has to be considered as an effective
Lagrangian and the meson masses and theirs couplings are to
be understood as effective parameters of the theory. Now
there are several parameter sets (see ref.(5] for review
some of them) which are suitable for the RMFA calculations.
In the course of this work we use the RMFA parameters of
ref.{6] which have been obtained by fitting the charge

density distribution of 208Pb and have been approved also
for other closed-shell nuclei.
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3. Relativistic Optical Model
3.1 Dirac equation and its transformation

In most relativistic studies of nucleon scattering the
Dirac equation containing large Lorentz scalar,S(r), and
time-like component of Lorentz four-vector potential, V(rl,
is used [7]. These potentials are wusually static, local and
spherically symmetric.

The Dirac equation for nucleon scattering may be written
as

[a.p + BIM + S(M - (E - V(r)]]w = 0 (5)

This remembers the eq.(2) of RMFA. Now, however, the optical
potentials S and V are complex gquantities.

Often it is customary to eliminate the small components
of the Dirac spinor in eq.(5). One then obtains, without
loss of physical insights, the Schrédinger equation with
central and spin-orbit potentials. This procedure gives (71

2
_ 1 - 3__(aA)°.
Ugen(rd= 5 [2EV(r) + 2MS(r) - VEr) + SEr) + 73ery (2

m.g;[ragﬁ] (6)

and 1 0A
Usolr)= = ZEACOT or (7
where
A= M +8(r) + E - V(D ]AE + W (8
As one can see the explicit nonlinearities and energy
dependencies of the Schrodinger optical potentials Ueen, and

USO do occur in this approach, even if the scalar and vector
Dirac potentials S and V are energy independent. In
addition, the spin-orbit potential of the conventional model
arises naturally from reduction of the Dirac equation to

2—-component Schrodinger form.
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3.2 Construction of real parts of Dirac potentials by using
RMFA fields

To utilize the resulis of the Sec.2 we assume that the
relativistic scalar and vector potentizals are given by the
bound-state relativistic mean meson fields. However, since
the nucleon finite-size effects are neglected in the RMA,
the potentials really entering into the Dirac equation are
determined by folding over a suitable single-nucleon {form
factor F(r). One may write

Splri= jdr'.gau(r).F(lr—r'l) (2
for the real part of scalar potential, and
Vp(rd= jdr'[gww(r) + 1/2.‘r3gpp(r)].F(|r-r' 1 (10

for the real part of vector potential.

The discussion of possible forms of the nucleon form
factor F is beyond the scope of this work. The detailed form
of F(r) is, however, not very important, as long as the
nucleon rms radius is approximated. Now it is almost
commonly accepted that the nucleon rms radius (precisely,
the baryon rms radius of the nucleon) should be smaller than
the typical electromagnetic rms radius of the proton which
is 0.85 fm.

In this work we have used the nucleon form factor of a
Gaussian form

F(r) = —=b—= exp[-rén® (11)
3723 [ )

with a range t=0.56 fm. This corresponds to the nucleon rms
radius of 0.68 fm. This range parameter has been obtained by
fitting the neutron elastic scattering on the 40¢, nucleus
at 19 MeV and has been used also for other nuclei and
energies.
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4. Analysis of Experimental Data

The aim of this work is to test the Dirac approach to
the low-energy neutron-nucleus elastic scattering and the
usefulness of the RMFA constraints on the real parts of the
Dirac optical potentials.

To facilitate the comparison with previous
nonrelativistic studies we have transformed the Dirac
equation (5) to the Schrédinger form. The real central and
spin-orbit potentials have been obtained by eqs. (6) and (7)
using the folded RMFA scalar and vector potentials. These
were scaled by factors xs and Ay respectively, to account
for a possible energy dependence.

The effective Schrédinger central imaginary potential
has been taken as a sum of conventional volume and surface
terms

uptry = [y - dapy4:).rerpLap (12)

where the symbols have their usual meaning. The form factor
f(r,a) is of the Woods-Saxon type.

The model thus contains a total of six free parameters
which were varied to obtain fits to experimental neutron
elastic scattering data for each energy and each target.

We considered 40Ca, 54Fe and 208Pb targets at energies
from 8 to 40 MeV.

The final values of parameters are listed in Tabs. 1-3.
In Figs. 1-3 we show some representative results of neutron
elastic scattering on the nuclei considered. As we see the
acceptable fits to the data for all nuclei have been found.
The quality of fits as measured by xz/N is comparable with
results obtained by the conventional Schrodinger
phenomenology. This indicate that the procedure used for the
construction of the real parts of Dirac optical potentials
is reasonable.

Qur primary concern in the present paper 1is the
behaviour of the scaling factors A, and A,. We left out,
therefore, the discussion of the imaginary optical potential
parameters. In Fig.4 we show the wunscaled real parts of
vector and scalar potentials for the 40Ca nucleus as
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TABLE 1: Optical model parameters for 208ph, +

E, Ag Ay Wy Wn ry ay xa/N Exp. data
(MeV) (MeV) (MeV) (fm) (fm) [Ref]
7.75 0.673 0.626 0.00 7.02 1.249 0.440 15.0 (9]
20.0 0.761 0.719 1.18 8.47 1.185 0.456 11.9 (10]
22.0 0.723 0.677 1.30 8.34 1.246 0.476 12.2 (10]
24.0 0.777 0.738 2.04 7.60 1.243 0.441 28.1 (10]
30.3 0.708 0.663 4.28 6.39 1.227 0.475 7.6 (11]
40.0 0.694 0.649 8.50 2.38 1.274 0.470 16.6 (11]

TABLE 2: Optical model parameters for 40ca + n

E. A A, Wy Wy ] a; 2°N  Exp. data
(MeV) (MeV) (MeV) (fm)  (fm [Ref]
9.91 0.725 0.673 0.00 10.51 0.827 0.448 1.70  [12]
11.91 0.691 0.632 0.00 5.88 1.151 0.560 0.85 [12]
13.91 0.716 0.655 0.00 9.56 1.282 0.408 0.78 [12]
19.0 0.673 0.629 0.00 10.30 1.106 0.488 5.77  (13]
21.7 0.719 0.66Q 0.00 8.47 1.187 0.566 8.63 (13
25.5 0.702 0.653 0.52 O.61 1.161 0.526 4.66  [13)
30.3 0.702 0.651 0.35 8.29 1.188 0.552 2.85  [14]
40.0 0.693 0.663 2.76 4.71 1.256 0.543 11.6  [14)

TABLE 3: Optical model parameters for Sre + n

E, e Ay Wy Wy ry a;  2°/N  Exp. data
(MeV) (MeV) (MeV) (fm)  (fm [Ref]

7.96 0.704 0.657 0.60 13.20 1.021 0.386 6.62 [15]
13.92 0.711 0.667 2.52 6.38 1.209 0.552 4.18 [15]
c0.0 0.687 0.640 2.22 7.20 1.248 0.495 Q.20 (161
6.0 0.706 0.664 1.13 8.35 1.132 0.547 10.30 [16]
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Fig. 2: As in Fig. 1 for 54Fe.
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obtained by folding the RMFA fields with the Gaussian form
factors. The results for other nuclei are similar. The
dependence of the scaling factors for the scalar and vector
potentials on energy are shown in Fig.5 and Fig.6,
respectively. We see that these scaling factors show no
significant energy dependence. In addition, they seem to be
the same also for all three nuclei involved in our analysis.
These are very encouraging results. This is an indication
that one may construct by this way the reliable global
optical potential parameter set (at least for real
potentials). The procedure used also provides the link
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Fig. 8: As in Fig. 7 for the spin-orbit potential.

between the nuclear structure RMFA calculations and the
Dirac (Schrédinger) optical model phenomenology.

The average values of the scaling factors A, and A, are
0.709 and 0.663, respectively. Thus the strengths of the
real scalar and vector potentials to be used in the
relativistic scattering calculations are damped by about 30%
in comparison with the strengths used in the RMFA. These
findings agree well with the results of S. Hama et al.[8],
where a similar approach has been used to study the proton
elastic scattering at intermediate energies. This damping
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may be probably resolved by simultaneous fitting of both the
ground-state and scattering problems together.

At the end of this section we compare the effective real
central and spin-orbit potentials as obtained by the egs. (6)
and (7) with the phenomenological terms obtained by the
conventional optical model analysis. This is done in Figs. 7
and 8 for the case of 4%ca at 19 MeV. We see that the
effective potentials correctly reproduce the
phenomenological terms both in character as well as in
absolute values.

5. Summary

We have shown that Dirac optical model potentials, real
parts of which are constrained by the relativistic mean
field calculations, may be used for reliable description of
neutron elastic scatterlng also at low energies. The model
has been tested on *“Ca, 4Fe and Pb spin-zero nuclei.
The results indicate that scaling factors for real parts of
Dirac potentials are essentially energy independent. This
opens the possibility to construct a reliable global
parameterization of Dirac optical potentials.
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ABSTRACT

The significance of uncertainties on the choice of neutron, proton and
alpha-particle transmission coefficients and level density models for the
calculation of threshold reaction cross-sections, particle emission spectra
and angular distributions is analysed with TNG and GNASH-codes taking

56Fe and 93Nb as examples. Both the proton and alpha emission

spectra show some sensitivity to level density changes, but these and other
minor reaction channels can be rather sensitive to other effects. Optical
model parameters for a-particles seem to be not satisfactory and all the
relevant experimental information available should be analysed to obtain the

respective parameters.

Introduction

One of the tasks to be solved when organizing the International Training
Courses on Application of Nuclear Models for Calculation and Prediction of
Neutron Cross-Sections is which computer codes should be used for this
purpose. At least two criteria can be applied for choosing codes - the
reliability (or correctness of physical assumptions used) and general
availability of the code. Two codes have been chosen from this point-of-view
— GNASH and TNG. These codes were put into operation on PC — TNG in the
MS-D0OS system and GNASH in 0S/2.

The first experience in running these codes will be presented here, with
particular emphasis on impact of uncertainties in input parameters on
calculated neutron cross—sections, including the uncertainties in optical
potential parameters. The unusual energy dependence of neutron optical
potential parameters in the low energy region is possibly the most interesting
development of the optical model which has been established over the last few

decades.
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This paper takes the 56Fe and 93Nb--nuclei as an example to

investigate the significance of uncertainties in the choice of neutron
transmission coefficients for the calculation of threshold reaction
cross—sections, particle emission spectra and angular distributions in the
incident neutron energy range up to 35 MeV.

From the relatively large number of different exciton models that have
proved successful, we have selected Fu's formulation [1l], which is attractive
because it attempts to give a unified description of the compound and
precompound stages of the reaction, with allowance for conservation of angular
momentum.

The simplest Fermi gas models [2-5] as well as more systematic
approaches [6, 7] were used to calculate the level density.

The Fu method [8, 9] was used to obtain a unified description of level
density for both the compound and precompound stages of the reaction.

Two free parameters, a and D, similar to the corresponding parameters in
the back-shift Fermi gas model, are used in the state density formula.
However, summation for all possible particle-hole states leads naturally to a
one—-fermion level density formula, whereas the parameters a and D in the
systematics of Dilg [4], for example, were obtained from experimental data
analysis using a two-fermion level density formula. Traditional level density
systematics are therefore not accurate enough for calculation of the
parameters a and D.

We have taken the values of a and D from Ref. [10], obtained from
systematic analysis of experimental data according to the one-fermion model.

For example, we have a = 5,44, D = 1,22 for >6

Fe, instead of the values from
Cook's systematics [3] of a = 5,936, D = 0,75, or from Dilg et al. [4]:
a= 5,998, D = 0,749,

The analysis includes the neutron optical potentials that are most
typical and most widely used in practical calculations, i.e., those of
Becchetti-Greenlees [11], Wilmore-Hodgson [12] and Rapaport et al. [13], which
should by definition be appropriate to describe a wide range of nuclei over a
broad energy range. We can compare the results of calculations using such
potentials with results obtained from the Arthur-Young potential [14],
optimized over a narrow range for the case of 56Fe, and a potential in which
the neutron optical potential geometry also takes account of the energy
dependence in order to give a consistent description of both weakly bound

single-particle states in the shell model, and scattering at low

= 1,315 - 0,0167 E, a_ = 0,663 and all the other

energies [15]: r R

R
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parameters are taken to be as in [13]. The potentials in Refs [11, 16] were
used for protons and in [17, 18] for alpha-particles.

If we confine ourselves to the total cross-section (ct) data, then
there is no need to include an energy dependence of the potential geometry
parameters which is unusual for traditional parameterizations -~ it is
sufficient for E. ¢ 5 MeV to increase the depth of the well by ~ 24% (for
R = 59,73 -0,76 E). However,
taking account of a wider range of data (differential elastic and inelastic

example, in the case of 56Ni, to take V

scattering cross—sections, level excitation functions) makes it necessary to
increase the potential well radius with a decrease in the energy of the
incident neutron. A modification of traditional parameterizations to take
this fact into account solves the problem of extrapolating the parameters of
the optical potential to the low energy range. It has been shown that, in the
case of the iron group of nuclef, "anomalous"” potential geometry shows up in
the range En < 5-7 MeV [15]. It would be logical to expect a similar
"anomaly" in the threshold reaction cross-section calculations for the (n,2n)
and (n,p) reactions and so on, which, as Young has shown [19], are sensitive
to the values of neutron transmission coefficients at low energies.

A preequilibrium, statistical nuclear-model code GNASH [29] was used for
calculation of reaction and level cross-sections and spectra of neutron,
gamma-ray and charge-particles. It became possible to put into operation
GNASH, originally developed on CDC 6600 and CRAY 1, on a personal computer
PS/2 using the 0S/2 systemn.

Results and Discussion

Figure 1 compares various OP (optical potential) parameterizations for
calculations of % on for 56Fe. As ve can see, uncertainties in the

choice of the OP parameters may lead to an error of ~ 25% in the final value

of ®on for En > 14 MeV. Moreover, the potentials that are most

2
reliable in the En > 14 MeV region, at going to lower energies give values

of o, that are too high. At the same time, potentials of the type in

2n
Ref. [14], although producing the best results for calculations of o

at En < 14 MeV, are scarcely suitable at higher energies. It shoulinalso
be remembered that they are optimized over too narrow a range, which means
that there are significant errors in the calculations even for near neighbour
nuclei. The situation here is quite similar to what we used to find in

dop,

calculating opp, y ot [15], and so it would seem natural to
dQ
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- Fig. 1(a), (b). A comparison of experimental and theoretical data for

c (56Fe). The neutron OP used are:
n2n

3 —.- Wilmore-Hodgson [12], 2 ——- Rapaport et al. [13],
5 ~..— Becchetti-Greenlees [11], 4 ... Arthur-Young [14],
1 [15].

adopt the same method for "correcting” the traditional global
parameterizations with a view to possible extrapolation to the low energy
region. The results look promising (solid curve in Figs. 1(a), (b)).

In this connection it is imperative to recall that in calculating
threshold reaction cross-sections, a further problem arises - in addition to
the uncertainty in the neutron transmission coefficients - namely the choice
of level density parameters.

We can take the neutron optical potential in the form given in
Ref. [12] for example, and then see how various approaches to the selection of

level density parameters affect the calculation of on

Figure 2 shows that the maximum differences do not exceed 10% and that

the errors are less than those resulting from an incorrectly chosen optical

potential. However, there remains the problem which set of parameters to use.
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No firm conclusion can be drawn from a comparison of calculated and

experimental data for o The true answer is masked by the additional

uncertainty, in the optiigl potential: the fact is, we are dealing with the
combined contributions of two factors which are very difficult to separate.

We shall therefore assume that the traditional Fermi gas model is too
crude an approximation, and although in the case of 56Fe the discrepancies
between different level density models are small (solid curve in Fig. 2, 1is
obtained using the method by Ignatyuk et al. [6], intermediate value between
Cook et al. [3] and Dilg et al. [4]), we have used [6] as a basis for
furhter calculation (all calculations in our paper, including Fig. 1, allow
for the energy dependence a (U) ).

The sensitivity of the neutron emission spectrum (incident neutron
energy 14 MeV) to the selection of neutron optical potential parameters is
shown in Fig. 3.

In spite of the wide spread of experimental data for the soft
(equilibrium) part of the spectrum, one firm conclusion may be drawn: the
potentials which give excessively high values of L. and % on have a
similar effect for the process we are now considering, which is of course
simply and easily explained. The situation is less clear for the rigid part
of the spectrum - the differences between parameterizations are weaker against
a background of broadly scattered experimental data.

In the low energy region we can opt for the potentials in

Refs. [14, 15]. The high energy part of the spectrum is determined by rapid
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Fig. 3. Neutron emission spectrum for incident neutron energy
56

En = 14 MeV for ~ Fe. The potentials used: 1 [15],
2 [13], 3 [12], 4 [14]. Experimental data from the Vonach

compilation.

direct processes at discrete levels. Here we may note the 7-9 MeV range, in
particular, where - if we can go by the latest experimental data of
Takahashi - there may be a limitation on the validity of the exciton model:
here two-phonon excitations of many different multipolarities must be taken
into account. However, the exciton model has an arbltrary free parameter K
which defines the /M/z-square of the matrix element for intranuclear
transitions. All calculations in Fig. 3 were made with K = 400 HeV3.

Figure 4 shows that the rigid part of the spectrum is very sensitive to
the value of this parameter, an& the choice of a value K = 200 MeV3
facilitates agreement with the experimental data over the entire energy

interval.

The relationship between K and the approximations used for state
density in the exciton model must be considered. Accordingly, the value which
we obtained for K is correct only if Fu's method [8, 9] is used for the state
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Fig. 4. Neutron emission spectrum for incident neutron energy

En = 14 MeV for 56Fe as a function of K = 200, 400,
700 Mevs. The neutron optical potential was selected in

the form given in Ref. [12].

density calculations to ensure proper consideration of nuclear
characteristics, Thus the question whether K = 200 MeV3 can be regarded as

a value with universal validity - i.e. applicable to a wide range of nuclei -
requires further investigation.

If we consider the substantial contribution of (n,np) and (n,pn)
reactions to the total proton yield and the increased sensitivity in the soft
part of the calculational spectrum to the choice of neutron optical potential,
we may expect the proton emission spectrum to provide much additional, useful
information.

Figure 5 shows a calculated proton emission spectrum for an incident
neutron energy of En = 14 MeV (the parameterization from Ref. [14] was used
for protons). As we can see, in the proton spectrum, the differences between
neutron OPs emerge even more clearly than in the neutron spectrum.

The experimental value for total proton production according to

S.M. Grimes et al. [21] is 190 + 22 mb. The various neutron OpP
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parameterizations produce the following values: Wilmore-Hodgson [12]}:
158,36; Becchetti-Greenlees [11]: 161,44; Arthur-Young [14]: 164,04;
Rapaport et al. [13]: 181,82; [15]: 198,46 mb, for K = 400 MeV3. For
K =200 MeV3 all the figures shown above should be reduced by
approximately 10 mb,

If we compare the results given by the potentials in Refs [14, 15] (for
the neutron spectrum they were approximately equal), then those in Ref. [15]
are clearly preferable. Let us turn our attention to the main discrepancy in
the form of the proton spectrum. Although the potentials in Refs. [15] and
[13] differ only slightly from the point of view of the total proton
production given (the difference is more significant for the neutron
spectrum), the structure of their proton spectra is fundamentally different.
Potential parameters from reference [15] give only a small maximum around
Ep = 2 MeV and a main peak at Ep = 5 MeV, whereas from Ref. [13] the
picture is quite the opposite. S.M. Grimes et al. [21] carried out an
experiment with an energy resolution of 500 keV, but a further experiment is
needed to establish a physicaliy substantiated energy debendence for the
neutron OP parameters. We may note that in the case of the proton spectrum
the uncertainty in the selection of the proton optical potential parameters
adds to the total error. For example, the use of the Wilmore-Hodgson [12]
neutron potential with the Perey-Perey [16] proton potential (instead of the
Becchetti-Greenlees proton potential [14]) gives a total proton production of
137.11 mb (see Fig. 5(b)), but even against this background we may conclude
that energy dependence of the geometry should be included in the neutron OP.

The calculation of double differential cross-sections

The method of calculating double differential cross-sections suggested
by Fu and Plyujko [22, 23] is based on an entirely valid observation: in at
least two limiting cases, definite conclusions can be drawn concerning the
phases. After a sufficliently large number of collisions within the systenm,
leading to the formation of "holes", a particle forgets its previous history
entirely and the random phase approximation becomes valid. In contrast, the
second limiting case, h = 0, corresponds to fully correlated phases., All
really occurring processes are located somewhere between these two limiting

cases, and they can be taken into account by introducing a random correlation

coefficient C which takes values of C = 0 for h = h and C = 1 for h = 0.
The main problem with the Fu model [24] is how to choose the

parameter C. We can take, for example, C = 0,5, as in Refs [23, 25]. As we
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Fig. 6. Angular distributions of neutrons emitted at En =1, 3, 5,

6, 7 and 9 MeV for incident neutron energy En = 14 MeV for

56Fe .

Emission energy E =1 MeV: 1 — Fu model, neutron 0P [15],
solid curve C = 0.5, dotted curves C = 0, C = 1.0;
2 - neutron OP {11]; 3, 4, 5, 6 — calculation according to

the systematics of C. Kalbach [26], ﬁ%, En = 1 MeV,
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Fig. 6. calculated with neutron OP [15]; curves: 3-fmsd = 1.0;
4-fmsd = 0.5; 5-fmsd = 0 and the separation energy of two

neutrons, S is taken into account;

2n’
curve 6-fmsd = 0, the separation energy of only one neutron,
Sn, is taken into account. The neutron OP from Ref. [15]

is used in all calculations.

Neutron emission energy 7 MeV: the dotted line shows the

calculation according to Kalbach systematics [26];

fmsd = 0.5, S, was used.

In
Neutron emission energy 9 MeV: 1 - Fu model, neutron OP
[15]}, C = 0.5, K = 400 MeVa; 2 — the same as 1, except

that K = 200 MeVa.

The experimental data in the figures are taken from Ref. [27].
The signs e and A mean, respectively, with and without

corrections for multiple scattering.

can see, in the emitted neutron energy interval (4 - 7 MeV) this "universal"”
value of C gives good agreement with the experimental data. The calculation
results are scarcely affected by the various sets of neutron OP parameters.
The shape of the angular distribution in this case is midway between full
symmetry in relation to 90° (the case of the compound process C = 0) and a
pronounced peak further ahead (C = 1,0, direct process). At the transition to
higher energies it is naturally to be expected that the existing uncertainties
would be reflected in the rigid part of the neutron emission spectrum. At

9 MeV we see both forward and backward peaking, as before, in the angular
distributions, and the value C = 0.5 is therefore acceptable, The value

K = 200 MeVa, which gives the best description of the rigid part of the
spectrum (instead of K = 400 MeVa), is also preferable for the description

of angular distributions.

The situation is more complicated for En < 4 MeV. Firstly, in this
case Takahashi's experimental data reveal an isotropic distribution in
relation to 90°; this corresponds to a purely compound process, and therefore
C should be taken as 0. At the same time the sensitivity of the final
calculation results to the specific value of C falls off sharply, as we can
see. Secondly, it is precisely at low energies that the emission of secondary
neutrons becomes significant, and this, by definition, is not considered in
Fu's formalism. No variation in the model's free parameters can compensate

for this defect. Thus Fu's method requires further development in two areas if
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it is to be applied to a wide energy range: the inclusion of secondary
neutron emission and parameterization of the constant C as a function of the
number of collisions in the system, which would give it a clear physical
meaning. Let us compare the results given by the rather complex Fu-Plyujko
theory with the predictions of the much simpler systematics of C. Kalbach
[26], according to which:

d2o = 1 ( do a [Cos h (a Cos 8) + fmsdeSin h a(Cos 6) 1,
dedQ 4w de Sin h(a)

where in our case a = 0,04 la + 1,8010—6(1a)3 + 3,35010—7(1a)4, la=E+8,
E is the incident neutron energy, Sn is the neutron separation energy, fmsd
is the multistep direct (MSD) fraction in relation to the multistep
compound (MSC), i.e. the equivalent of the parameter C in the Fu model. In
the case where En = 1 MeV fmsd = 0 naturally gives the best agreement. The
separation energy of two neutrons, S2n = 20,5 MeV, should be taken as Sn
instead of the separation energy of a single neutron, S1n = 11,2 MeV,
In the case of En ~ 7 MeV, excellent agreement is obtained with

f = 0,5, and the choice between S and S1n is not as important as at low

energies; 1indeed, both lead to aigular distributions within the limits of
experimental error.
When the Kalbach systematics are used, the uncertainty in the
calculation of (_ES__) acquires great importance: this uncertainty, as we
de n
have shown, is particularly large in the soft and rigid parts of the
spectrum, so that a correct choice of neutron OP parameters is clearly

important.

Nuclear model calculation of data for neutron-induced reactions on 93Nb in

the energy region up to 35 MeV

Test calculations were carried out for 93Nb using the code GNASH.
Niobium was selected to make it possible to compare present calculations
with a recent revision of previous statistical model calculations made by
Strohmaier [28].

The calculations were made for neutron, proton, a-particle and
y—-channels. The level density models used were those of Ignatyuk [6] and
Gilbert and Cameron [2].
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Fig. 7. Comparison of neutron emission spectrum for incident neutron
energy En = 14.4 MeV for 93Nb calculated using GNASH and

STAPRE.

The neutron emission spectrum indicates no sensitivity to level density
changes (Fig. 7, 8). It is understandable as neutron emission channels
dominate the statistical model calculation of both partial and total widths
and thus high level density changes produce little impact on this ratio.
This was also observed by Arthur [29].

From Fig. 7-10 1t can be seen that the neutron channel of the reactions
can be described quite well and there is very good agreement between
calculations made with STAPRE [28] and GNASH [20]. GNASH calculations
support the observation made in [28] that the (n,2n) cross-section data of
Frehaut [30] should on average be 8% higher. From Fig. 11 one can see that
the Hauser-Feshbach model with the pre-equilibrium correction, such as
GCNASH, may give results which are very close to those obtained with more
unified models for neutron emission spectra [31].

The total gamma-ray emlssion spectrum can be reasonably reproduced by
calculations (Fig. 12) and a similar lack of sensitivity to the chosen level
density models up to 10 MeV is displayed in Fig. 13. The difference in
gamma-ray spectra in the energy region above 10 MeV is a factor of two in

the case where two level density models are used ([2] and [6]).
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Results of calculations of proton emission spectra at 14 and 35 MeV
neutron incoming energies are shown in Fig. 14-16. A rather high
sensitivity of proton emission spectra, in particular in the energy region 4
to 9 MeV, to level density models can be seen, The difference in using
Gilbert-Cameron [2] and Ignatyuk [6] models is more than a factor of two.
Experimental information on proton emission spectra can be described using
the Ignatyuk level density model and proton OM Perey [16]. Parameterization
of Becchetti and Greenlees [11f for the proton OM potential leads to a

slightly higher value (~ 10%) than [16]. The same level of sensitivity to
the level density can be seen at 35 MeV neutron energy.

Figures 17-20 give the results of calculations of a—emission spectra
and (n,a) cross—sections. It can be seen that both MacFadden et al. [17]
and Huizengo and Igo [18] optical potential parameters for a-particles
(curves 1 and 5 on Fig. 17) underestimate a-spectra and (n,a) cross-

sections by a factor of two (using the Ignatyuk level density model).
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Application of the Gilbert-Cameron parameterization [2] may improve the
agreement but at 14 MeV only, as at 35 MeV there is practically no
sensitivity to level densities. The increase of the diffusibility values
(from ap = 0.52 fm to 0.70 fm) has allowed good agreement between the
calculated and experimental (n,a) cross-sections and a-emission

spectra. But still the problem remains concerning the description of
experimental data on the a-particle reaction cross-sections as well as
(a,n)-reaction cross-sections as they are greatly overestimated using the
diffusibility values adopted for the (n,a)-reaction [32]. The same
conclusion on the necessity to increase the diffusibility parameter was
reached in [32] (aR = 0.64 fm for Fe) and [33] (aR = 0.80 fm for Fe).

The optical model parameters for a-particles do not seem to be
satisfactory and all the relevant information available should be analysed
to extract the respective parameters.,

Dependence of secondary neutrons, protons, alpha- and gamma-spectra on
incoming neutron energy is presented in Fig. 21-24. The most significant
contribution to the total gamma-spectrum at 14 MeV is due to (n,2ny),
(n,n'y) and (n,py)-reactions to the soft part of the gamma-spectrum and

the (n,y)-reaction to the rigid part.

Conclusions

1. Both the proton and alpha emission spectra show some sensitivity to
level density changes, but these and other minor reaction channels can
be rather sensitive to other effects resulting from optical model
transmission coefficients, pre-equilibrium and direct reaction models,

angular momentum transfer, etc.

2. To improve the confidence of cross-section calculations it is necessar
to have input from other areas such as higher energy neutron and proto

induced reactions.

3. Optical model parameters for a-particles do not seem to be
satisfactory and all the relevant experimental information available

should be analysed to extract the respective parameters.

4, A phenomenological level density model by Schmidt et al. [34] needs to
be included in applied calculations and its predictive power should be
tested.
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1SOTOPIC EFFECTS AND REACTION MECHANISMS INDUCED BY FAST NEUTRONS
IN THE MASS RANGE A = 50

M. Avrigeanu and V. Avrigeanu
Institute for Physics and Nuclear Engineering
P.0. Box MG-6, Bucharest, Romania

Abstract

A test of generalized GDH pre-equilibrium emission model and
Hauser-Feshbach statistical model predictions across the valley of stability,
in the mass region A = 50, has been performed. Both the absolute cross
section values and the "steepness" of the isotope trend have been obtained in
good agreement with the experimental data. By using the calculated cross
sections, the fast neutron reaction isotope effect has been discussed. The
applicability of the generalized Qgg—systematics of deep inelastic
collisions between complex nuclei has been extended to fast neutron reactions.

1. Introduction

The significant improvements made in recent years in the prediction and
interpretation of non-compound contributions in fast neutron induced
reactions as well as the availability of many new experimental data have
led to the necessity to perform re-evaluations of fast neutron reaction
data for structural elements and isotopes (Fe, Cr, Ni and some others)
most important for fission and fusion reactors. The pre-equilibrium and
statistical emissions from the composite nuclei formed in these reactions
are rigourously described by the master-equation exciton model [1] or the
quantum-mechanical theory of Feshbach, et al. [2]. On the other hand,
semiclassical pre-equilibrium emission models coupled with the Hauser-
Feshbach statistical model have been proved valuable in the analyses of
large experimental data bases. The unitary account of a whole body of
related experimental data for isotope chains of neighbouring elements
(e.g., Cr, Fe and Ni [3]), over a large incident energy range, has
increased the predictive capability of these calculations.

Complementary analyses of cross section values at an incident energy of
14.7 MeV are able to provide both: (a) tests of model predictions across
the valley of stability [4], a large experimental data base existing at
this energy, and (b) unknown cross section prediction with higher
accuracies, relative to gross systematics of the isotope effect [5].
These are also goals of this work, following a previous analysis [3] of
consistent pre-equilibrium emission and statistical model calculations of
(n,p) (n,a), and (n,2n) reaction cross sections for 39.52,53¢r,

54,56F¢ and 58,60Ni isotopes, used to validate a realistic approach

for nuclear level densities at excitation energies up to 40 MeV. An
attempt for a better understanding of the importance of various reaction
mechanisms for these processes, as well as of their parameter systematics,
is also performed. Use of more general concepts of nuclear reactions,
like the Qg -systematics of the deep inelastic collisions between
complex nuciei [6], has been made in this respect.

The nuclear models used in the reported calculations are briefly reviewed

in Sec. 2. A comparison between the calculated and experimental cross
sections at an incident energy of 14.7 MeV is given in Sec. 3. A
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discussion of the isotope effect for the (n,p), (n,a), (n,2n) and

(n,n'p) reactions is presented in Sec. 4, including the validation of the
generalized Qgg—systematics for the fast neutron induced reactions.
Conclusions are given in Sec. 5. Preliminary results were given elsewhere
[7), while the detailed analysis of the consistent parameter set can be
found in [3,8,9].

2. Nuclear Models and Parameters

The Distorted Wave Born Approximation (DWBA) method has been used to
describe the neutron direct inelastic scattering on discrete excited
nuclear states by means of the code DWUCK4 [10], while the phenomenological
pre-equilibrium emission Geometry-Dependent Hybrid (GDH) model [11,12]
(included in the computer code STAPRE-H [13], a local version of STAPRE
[14]) has been proved able to account for the same process in the
continuum [15). The spherical optical model potential (OMP), used for the
calculation of the transmission coefficients within the pre-equilibrium
and statistical models, and a conventional collective form factor have
been involved. The deformation parameters have been derived from the
results of similar macroscopic DWBA analyses of (n,n') and (p,p') data, by
imposing the condition of equal deformation lengths. Typical excitation
functions of the neutron direct inelastic scattering on the discrete
levels for nuclei of interest are shown elsewhere [3), the uncertainties
due to uncertainty in the deformation parameter being around 15% [15].

Pre-equilibrium emission has been described by using a generalized version
of the GDH model [11,12]. The generalization concerns the inclusion of:
(a) angular momentum and parity conservation [8,17) and (b) alpha-particle
emission [3]. Moreover, the consistency of the exciton state density,
used within the GDH model, and the nuclear level densities involved in the
statistical model calculations has been obtained [18]). The pairing and
two-fermion system corrections to the exciton state density of Williams
[19) have been taken into account in this respect, by using a single set
of two-fermion level density parameters.

The multi-step Hauser-Feshbach-Moldauer model calculations were performed
by taking into account the neutron, proton, alpha-particle and gamma-ray
competition. The input parameters other than the level density at higher
excitation energies have been determined by a consistent analysis of
various independent experimental data (s-wave neutron strength functions,
neutron total cross sections, (p,n) reaction cross sections in the
sub-Coulomb energy range and (n,p) reaction data in the first 2-3 MeV of
the excitation functions, low-lying discrete levels and s-wave neutron
resonance spacings). The particle transmission coefficients and the other
OM data were calculated by using the subroutine SCAT2 [20] (also included
in STAPRE-H). The same OMPs have been employed in the all three
reaction-mechanism models (DWBA, GDH and Hauser-Feshbach). The use of a
consistent set of input parameters within consistent pre-equilibrium
emission and statistical model calculations finally allowed the
establishing of a realistic nuclear level density approach. 1t was
obtained [16] by taking into account the semi-empirical Back-Shifted Fermi
Gas (BSFG) model for excitation energies lower than 12 MeV and the
realistic analytical formula of Schmidt et al. [21] for higher
excitations. The interpolation rule, suggested by microscopic level
density calculations, has been obtained through the comparison of the
calculated and exgerimental excitation functions of the (n,p) and (n,2n)
reactions on 39s32¢r, 54,56p¢ and 58,60yi isotopes [3].
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First, a good agreement between the calculated and experimental cross
sections has been obtained for all types of the available data. Thus,
cross sections for (n,p), (n,a), (n,2n) and [(n,n'p)+(n,pn)+(n,d)]
reactions measured by the activation technique (Figs. 1-4 and Tables I and
I1), as well as charged particle emission data (Table I) have been taken
into account. It can be emphasized that both the present agreement and
the one obtained for the (n,p), (n,x), and (n,2n) excitation-function
data [3] have been found with no further change of the model parameters.
In conclusion, both the absolute cross section values and the "steepness"
of the isotope trend - a very sensitive test of the reaction mechanism
model [4,22] - have been given by the present calculation method with no
free pre-equilibrium emission parameters.

The second point concerns the accuracy of the predicted reaction cross
sections for cases in which experimentally data are missing. In the early
70's Qaim and Molla [5] stated that small-mass-region studies for series
of isotopes are able to predict unknown cross sections more accurately
than gross isotope-effect systematics. Finally, the difference existing
between the present calculated and experimental cross sections, 3-10%,
could be claimed as the errors of the predicted values.

Under these circumstances the calculated cross sections, taken as an
evaluation, have been used to study the factors affecting the isotope
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Table 1. Comparison of calculated and experimental’) cross sgections for nuclear reactions induced
by 14.7 MeV neutrons.
Target Tin,p) (mb) Ia,xp) (WD) Oin, o) (M) O(n,xe) (mb) O(n,2n) (mb)
auclide calc. exp. Ref. calc. exp.”’ calc. exp. Ref. calc. exp. Ref. calc. exp.‘n Ref.
50Cr 326.6 747.6 830(100) 69.3 76.3 121.,0(85) 52 21.1 24 (5) 34
94 (15) 32 21.9 (S) 55
76.4(9) 53 20.4(11) S1
52Cr 95.4 94(10) 34 167.4 180(25) 39.6 39.8 40.2(36) 52 359 377(31) 56
80{ 6) 22 36 (6) 32 361(22) 51
91( 3) 35
82( 8) 36
53Cr 48.5 48(7) 22 53.5 43.2 43.6 45.1(37) 52 877
50(4) s
46(6) 36
47.2(17) 37
54Cr 20.8 15(4) 34 20.9 16.5 13.4(12) 48 18.0 37.2(30) 52 778
18(3) 22 15.0(16) 49
14(2) 36
16.4(5) 37
54Fe 306.7 308(11) 38 858.2 900(110) 78.4 B84.0(75) 47 79.4 79(13) 32 13.3 11.9(3) 57
346(22) - 35 88 (19) 24 7.9(7) 37
307( 9) 37 88 ( 6) 37
56Fe 109.3 107.6(31) 40 172.4 190(22) 43.3 45.9 41 (7) 32 488 519(41) 58
110.9(14) 41 44 (2) 54 440(40) 22
104 (6) 35
57Fe 51.2 55.4(40) 42 59.0 41.7 46.2 1086
89 (5) 137
58Fe 20.1 13.6(7) 37 20.3 18.9 21.5(20) S0 20.1 833
58NL  294.4 295 (23) 43 929 1000(120) 111 125(15) 22 122 106(17) 32 36.7 35 (3) 22
269 (10) 35 37.7(28) 44
319.5(120)37 38.6(21) 59
292.2( 54)44
60Ni 138.5 112(12) 22 262.8 325(40) 60.5 77.0 76 (12) 32 415
134(11) 47 69.6(31) 54
131( 4) 37
61N1 89.1 92( 7) 22 121.8 64.1 77.0 1013
84(15) 35
84(4) 37
62Na 39.2 21,0(25) 22 42.9 22.4 20 (3) 22 74.1 769
39.4(15) 37 25.8(33) 47
64Ni 12.1 12.1 5.11 3.7(2) 37 5.18 963
4.28(16) 51
8The uncertainty given is in the last significant figures.
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effects for these reactions, namely the strong dependence of the reaction
cross sections on the target asymmetry parameter (N - Z)/A.

Proton and a-particle Emission Isotope Effects

4.1. Generalized ggg—sttematics

The isotope effect for the (n,p) reaction cross sections of 14 MeV

neutrons was pointed out by Gardner [51,52] as a Q-value effect.

a systematic study of these data, for medium and heavy mass nuclei,
Molla and Qaim [37] interpreted the isotope effect in terms of the
proton binding energy, which varies as a function of the (N - Z)/A
parameter.
statistical model calculations that the large changes in the total

On the other hand, Pai et al.

[53] showed by means of

In



Table II. Comparison of calculated and experimental activation cross

sections for (n,d)+{n,n‘p)+(n,pn) reactions induced by
14.7 MeV neutrons.

9 Y Sum 0 .
2p)t(n, n,d)+(n,n +(n,pn)]
Target [(n n(gl)))(n pn)] (ﬁb‘}) (mb) [( ) (mbg) p
nucleus \ .
calculated exp.%’ syst.>! exp. Ref.

56Cr 421. 12(4) 433 405(65) 33

52Cr 72.0 8(3) 80.0 175(85) 33

53Cr 5.04 12(3) 22

54Cr 0.107 3.0(8) 22

54Fe 452 10(4) 562. 4990(150) 33

56Fe 63.1 8(3) 71.1 200( 90) 33

57Fe 7.78 11.0(24) 22

h8Fe 0.192

58Ni 635 14(6) 649 619(49) 45
630(27) 46
520(50) 33
656(40) 44
649(34) 44

60N1 124.3 11(4) 135 225(1190) 33

61Ni 32.7

62Ni 2.79 7.3(14) 33

64Ni 0.010 3.0( 4) 33

a

Ref. 32

bref. 33

proton emission cross sections between neighbouring nuclei are
accounted for by an “"effective" Q-value, given by

Q'np = an + & - 5p (L)

where &8, and &, are the depressions of the ground state

energies of the related nuclei produced by pairing and shell
correlations. Subsequently, Pai proved that this quantity is
responsible for the exponential decrease of the cross-section ratio
o'np/'nn [54] or o'np/opon [55), where o'pp is the

first-proton cross section, that is, S'np = o(n,py) + o(n,pn) +
o(n,2p), o'y is the first-neutron cross section, and opo, is the
non-elastic cross section.
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From a more general point of view, the experimental data for
multinucleon transfer reactions in the interaction of heavy ions with
nuclei have made evident the role of Q-values even for a complex
process. The mechanism of the deep inelastic collisions between two
complex nuclei, considered as two-body processes, is associated with
the formation of a specific double nuclear system, combining the
features of both classical direct processes and compound nucleus
decay. An estimation of the production cross sections for individual
isotopes and, therefore, determination of the direction in which the
double nuclear system evolves, have been allowed by a generalized

Q g—systematics (e.g., [6) and reference therein). This is
characterized by the logarithm of the cross sections for the
formation of isotopes of a given element lying on straight lines when
the abscissa corresponds to the quantity Q - §(n) - &(p),

where Qgg is the Q-value of the transfer reactlon proceeding as a
two—body process with final nuclei in the ground state, and &(n)

and §(p) are non-pairing corrections for the transferred nucleons.
Actually, this generalized Q g—dependence takes into account all

the factors effecting the f1nal excitation energy during nucleon
transfer. The straight lines corresponding to different final
light-product elements have similar slopes, related to a temperature
parameter characterizing the partial statistical equilibrium of the
double nuclear system.
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Following the above-mentioned systematics, it seems possible to
introduce also for fast neutron induced reactions an empirical
effective Q-value given by

! -
Qn‘xz. I_.!““—-— Z: Alt (2)

where the A; are the ground state backshift parameters of the

BSFG level density, corresponding to the nuclei reached through the
respective x-particle emission. Within the statistical theory

the total emission cross section o'y, for a particle x from a
compound nucleus is

P

[}
u-n‘ = G.“

where Iy, Fp and T, are the partial probabilities for neutron,
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Fig. 4(a). %ame as Fig. 1, for (n,n’p)+in,pn) reactions. The expe-
rimental data shown are got by subtracling experimental (n,d) reac-
tion cross sections from the total Don,D+n,n"pd+in,pn)l  reaction
cross seclions obtained ewperimentally (full symbols) or based an
systematics 321 Copen circles) There are also shown total activa-
Liom  cross seclions (open sguares) when the corresponding  eperi-
mental (n,d) data are oot nown The dashed curves are those esta-
blished by Qaim [32] as characteristically for the [in,d)+(n,n"pd+
(r,pnY] reaction cross sections of the target nuclei with Ens
fcurve A and, respectively, Se<8; (curve B). Experimental data
e [42], aL43], € L321,p [50]1 (b) Calculated cross sections of  the
tn,n ) reactions (dashed lines) and (n,pn) reactions (dotted 1i-
nes)  al 14.7MeV incaident energy, for Cr, Fe, and Ni i1sotopes  (+,x
and e symbols, respectively) The arrows at the top of figure
indicate the (N - 2)/A values at which the (n,n"p) reaction cross
sections become  smaller then the correspondent  (n,pn) reaction
cross sectioms.



proton, and a-particle emission, respectively; it results [54],
by using the constant temperature level density formula,
[
G}m _ ¥

'&_—:‘:‘ = F‘" = Q!Pl(alnﬂ _Q‘n‘nl ‘V'g )/T] (4)

a—

where Vy is an effective Coulomb barrier, and T is a nuclear
temperature related to the compound-nucleus evaporating system gather
than to a residual nucleus [54]. Thus, the difference Q'np - Qn,n'
of the empirical effective Q-values (2) replaces the former quantity
(1), because it represents, in fact, the difference between
excitation energy regions or, rather, equal nuclear level densities
in the neutron and particle x channels, respectively. The second

meaning seems more adequate. Both the reaction Q-values {56} and the
difference Q&,x - Qﬁ,n' of the effective Q-values for the present
(n,p) and (n,a) reactions are shown in Fig. 5. The backshift
parameter values have been taken from the previous analysis [3].

There is evidence of correlation between the trends of the reaction
cross section logarithm and the effective Q-values difference
especially for the (n,p) reactions, with only one exception concerning
the neutron-poorest isotope of each element. 1In this case the (n,pn)
reaction cross section has higher values (see below), and thus
represents a significant contribution to 9" np-

By using the nuclear model calculation results for the neutron,
proton and a-particle total emission cross-sections, one obtains
the values of the ratio (4) for protons and a-particles shown in
Fig. 6. It could be said that the generalized Qgg—systematics is
valid also in the case of fast neutron induced reactions.
Unfortunately, even if the effective Q-values (2) can be defined for
multiple particle emission reactions, the change of the emitting
compound nucleus during the sequential particle emission seems to
prevent the extension of these systematics beyond the (n,p) and
(n,a) reactions (including most of the respective particle total
emission cross sections).

While the above discussion is devoted to the compound nucleus
contribution, a special attention has to be paid, in fast neutron
reactions, to pre-equilibrium emission. However, taking into account
the advanced pairing correction for the exciton-state density
calculation [58] within the pre-equilibrium emission model, a
significant reduction of this limit is apparent. This pairing
correction being exciton configuration dependent, its value P, ,
corresponding to the ny initial exciton number (configuration

giving the main contribution to the pre-equilibrium emission), is
chosen here to estimate the maximum energy Q - P, (x) of the pre-
equilibrium emitted x particles. The distinct dependence of this
revised limit on (N - Z)/A, compared to that of the difference

Q&.x - Q'n,n', is also shown in Fig. 5. The relative

importance of the systematic variation of these two quantities could
be suggested by the presently calculated values of the ratio of the
pre-equilibrium to total emission cross sections, for particle x
(Fig. 7).

The account of the pre-equilibrium emission on the base of the
Q-values may be illustratively used to explain the following point.
There is a quite evident difference between the trends of the
one (Fig. 2) and the (Q&,a - Q&,n')—values (Fig. 5b), respectively,

205



206

-2 4+ ]
- -4 Fe -
A | T G 7
-6} N :: :
¥ £ %

(N-Z)IA

Fig. 5.(a) The dependence on (N < 2)/A parameter of the n,pd
reaction @ - values [5E6]1, the difference Q;@ - Qa“,of the effective
Q@ wvalues defined in texti, and the ma<imum energy of the pre-
equilibrium emitted protons, for Cr, Fe, and Ni isotopes (x,x, « ),
RppFPafd) (b)) Same as (a), for the (1,40 reaction.

10° — —— ™
- I 3
i 1 {n,p) ]
. 107k -~ -
c 3 T 3
~c T .
o L 1 3
S— = - -
& - 4+ (na) 4
102 -+ -
F G 1sotopes T Fe rsalopes T ;
- be - T"i ISOtOFQS ¢ _

L1 L L. 1 1.1 A b 2 VORI WA YN WOUR GE ¥ ) S YRS G T PRI WIS SIS W 1

T A0 V7Y B

Fig. 6. The dependence of the ratio Tpy/Gam. at 14.7 MeV incident
energy , where x=n,p, on the difference Q. - Q4o of the effective
@ - values defined in text, for Cr, Fe and Ni stable isotopes.



proton emission -

—————— o emission

1 1 I

1 i |
0.08 0.10 012

(N-Z)/A

0.04 0.06

Fig. 7. Ratios of the pre—equilibrium emission to the total “first”
particle emss)on oross sections, for protons and L-particles, in
in 14,7 MeV neutron induced reactions on the stable isotopes of Cr,
Fe and Ni, versus the asymmetry parameter of the target nucler.

versus (N — Z)/A. The reaction cross sections show a local maximum
for the odd-A stable isotope of each element, while the Q'-value
differences are rather decreasing. However this behaviour could be
explained by the corresponding maxima shown by the (N - Z)/A
dependence of the pre-equilibrium emission energy limit Qn,a -~
Pno(a) (Fig. Sb).

4.2, The (n,n'p) + (n,pn) reactions

A further comment is required by the (n,n'p) reaction analysis.
Deuteron emission was not considered within the present pre-
equilibrium and statistical model calculations due to its direct main
component. The calculated (n,n'p) and (n,pn) reaction cross sections
are summed with the experimental (n,d) reaction cross sections [23]
and, finally, compared with the experimental or systematic [48]
activation cross sections for the [(n,d)+(n,n'p)+(n,pn)] reaction
(Table II). Alternatively, to get a sight on the [(n,n'p)+(n,pn)l]
reaction isotope effect, experimental data are gained by subtracting
the (n,d) reaction experimental cross section from the experimental
or systematic cross sections of the [(n,d)+(n,n'p)+(n,pn)] processes
(Fig. 4a). For some nuclei with higher asymmetry parameters
(53’54Cr, 57Fe, 62’64Ni), only the total activation cross

sections are shown in Fig. 5; (n,d) reaction data are missing. The
following supplementary conclusions could be derived, in connection
with the exhaustive analysis of the gross trends in (n,p), (n,d) and
[(n,d)+(n,n'p)+(n,pn)] reaction cross sections made by Qaim [48]:

(a) Unknown cross sections can be predicted by model calculations
with accuracies higher than those from gross systematics.
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mmetry parameter (N-Z1/A of the target nucleus, for the stable iso-
topes  of Cr, Fe, and Nij the same dependece for their difference
(b)), as well as for the difference of the corresponding effective
Q-values (c).

(b) The [(n,n'p)+(n,pn)] reaction cross sections display nearly the
same exponential decrease with the asymmetry increase as the
(n,p) reaction cross sections. Actually, this behaviour results
by summing the two channel contributions with similar trends.
Thus, the (n,pn) reaction channel follows the (n,p) reaction
channel, the sum of the corresponding cross sections accounting
for “first" proton emission which is exponentially decreasing as
discussed above. Moreover, the (n,pn) reaction cross section is
additionally reduced by the increase of proton binding energy
with asymmetry parameter increasing. On the other hand, the
(n,n'p) reaction plays a dominant role for the daughter nuclei
with 8, > S, [48]. The separate calculated cross sections of
the (n,n'p) and (n,pn) reactions are shown in Fig. 4b. Once the
Q-values difference Qp n'p ~ Qn,2n becomes lower even than
the effective Coulomb barriers (Fig. 8b), the (n,n'p) reaction
cross sections are faster decreasing than those of the (n,pn)
reactions (Fig. 4b). Further considerations could make use of
the effective Q-value difference

— Q’

) A-4 (3

Qf - 0’ =\la”
“agp Cnidn [T

characterizing the comparative population of the n'p and 2n
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reaction channels. Q-values in the right-hand term refer to the
target isotope with one less mass unit. The constant diminishing
of this term (Fig. 8c¢) is well correlated with that of the ratio

%,n'p/%n,2n-

(¢) In conclusion, the (n,d) reaction cross section - of the order of
10 mb along the valley of stability [23,48] - is not significant
for the lightest isotopes (daughter nuclei with S, > Sp) but
the most important one for the neutron-rich isotopes
(S < Sp). Afterwards, it may be considered as mainly
responsible for the curve B (Fig. 4) characteristic of the
[(n,d)+(n,n'p)+(n,pn)] reaction cross sections for nuclei with
Sn < Sp.

Conclusions

A test of generalized GDH pre-equilibrium emission model and
Hauser-Feshbach statistical model predictions across the valley of
stability, in the mass region A~50, has been performed. Both the
absolute cross section values and the "steepness™ of the isotope trend
have been obtained in good agreement with the experimental data. A
distinctive aspect of these calculation methods, relative to other
semiclassical pre-equilibrium models, is that no free internal parameter
is used for pre-equilibrium emission.

The correlation of the isotope effects of the fast neutron reaction cross
sections with the trend of significative quantities for the statistical
and pre-equilibrium particle emission has been consequently analyzed, by
using calculated cross sections. These isotope effects were largely
studied both experimentally (e.g., [5,37,48)) and theoretically [51-5S5,
59,60]. A new relation is put into evidence in the present work,
extending the applicability of the generalized @ g-Systematics [6] from
heavy ion induced reactions to fast neutron physics. The possibility to
use these systematics to increase the accuracy of the predicted cross
sections has to be confirmed by following analyses of an enlarged basis of
experimental data.

An analysis of the [(n,n'p)+(n,pn)+(n,d)] reaction cross section, also in
connection with the (n,2n) process, has confirmed by means of nuclear
model calculations the previously [48] emphasized importance of the
(n,n'p) reactions for neutron-poor nuclei. On the other hand, the (n,d)
reaction is proved to be mainly responsible for curve B of the Qaim's
systematiecs.
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OF THE DIFFERENTIAL PREEQUILIBRIUM SPECTRA
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ABSTRACT

A new PC code PCROSS for neutron induced reaction calculations up to 25
MeV incident was developed, where the latest theoretical development in
the model was employed. A combination of exciton model and multistep
direct reaction model parametrization was used in order to describe the
high energy part of the spectra. 1In the PCROSS code several models for
level density calculations are available. The code includes a subroutine
to generate the input data. 1In the present paper some calculation
results for (n,n') and (n,p) emission spectra in the range of 5 to 25 MeV
and for (n,p) and (n,2n) excitation functions up to 20 MeV are shown. A

good description of the experimental data was achieved.

INTRODUCTION

Meeting the nuclear data needs of the fission and fusion technolo-
gies requires a wide use of theories and phenomenological models.
There are now several well—established codes for nuclear data cél—
culations for structural materials involving statistical and pre-
equilibrium models. Qur aim was to develop a new PC-based user
friendly code for nucleon induced reaction calculations, where the

latest theoretical development 1n the preequilibrium field was

employed.

As is well known, for the proper description of the high energy
tail of the emission spectra the direct contribution should be
taken into account. The combination of the preequilibrium exciton
model and direct reaction parameterization should give satisfac-—

tory results for the emission spectra and excitation function
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calculations. Therefore, we used the exciton model plus SMD para-—

meterization for a theoretical description of the reaction process

In Section I of this paper, we will shortly review the emploved
theoretical framework. In Section 11 some test calculations and
comparison with experimental data will be shown. Finally, we will

give some conclusions and comments about the future work.

I.The exciton model and SMD parameterization

In the PCROSS code a combination of the exciton model[l] and SMD
description of the direct interaction of the incident nucleon waith
the low-lvying <collective states of the target nucleus was
employed. The exciton model used is based on the solution of the
master equation[2] in the form proposed by Clinel3] and
Ribansky([4]). To obtain the numerical solution of the system of the
algebraic equations for T{(n), we use the algorithm proposed by
Akkermans, Gruppelaar and Reffo(5], which produces anexact result
for any initial condition of the problem. The preequilibrium and

equilibrium spectra can be calculated in the unified form as

follows:
dgab comp
dgb (Sb) = Gab (Einc) Dab(Einc) § Wb(E.n,Sb) T(n) (1)

where the usual notation is used, and Dab(Einc) is the depletion
factor, which takes into account the flux loss as a result of the
direct reaction processes. Using the direct reaction cross section
we can calculate the derpletion factor in the following way:

1. ndir comp
Dab(Einc) 1 oab /Gab (2)

For the calculation of the direct reaction contribution to the

inelastic emission spectra., and therefore, of the Ogir

the parame-
terization proposed by Kalka et al.[6] was wused. According to

this, we can write the direct differential emission cross section

as
dir
do 2 k
ab 2 U c 4 b 2
———(8)=6[ ] P(e)P () Vv
deb b abl 22 (kiR)z ka a'“a! "vp*vp’ 'R (3)

$ B swea)
}\;2(2 +1) A
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where ¥=(all/3)R°>, R=r0A”3

VR=48 MeV is the potential depth

Bk'wk are the deformation parameters and phonon energies
of multipolarity A

Pa(Sa) is the penetration factor which can be calculated

for neutrons in the following way
Pa(Sa)=4kaKa/ (ka+Ka) (4)

The delta function in the r.h.s. of equation (3) is replaced by a
Gaussian with an averaging width according to the experimental

data resolution.

For the calculation of the emission rates Wb(E,n,ab) a state den-
sity formula 1s needed. At present, the PCROSS code uses the
Williams formulal[7] where the Pauli correction is calculated 1in
accordance with Kalbach's method(8]. In addition, one has the op-
tion of using the Ful[9] or Kalbach[l10] pairing corrections. We
must ensure the consistency between equilibrium and preequilibrium
emission, as was suggested by Fu{9]. Therefore, the level density
parameters tabulated in [11] were emploved for all the
calculations. The use of these parameters allows us to avoid re-
normalization of the particle-hole state densities, thus simpli-
fying the calculation algorithm. Perhaps the D parameter syste-—
matics of Ref.[1l1] doesn't work very well. We should change the D
parameter for some nuclei in order to achieve a good description
of the threshold excitation functions. Emplovying the adjusted
value of the D parameter from the excitation function an overall
good emission spectra description in the whole energy range was

achieved.

We war.t to remark that in the state density calculations we set
W(p,h,U) equal to zZero when the excitation energy U is less than
the Pauli energy (p2+h2)/(29) for a given configuration. Physi-
cally, this assumption is clear because you cannot have any confi-

guration with energy less than the Pauli energy by definition!

For the alpha and gamma emission rates the Iwamoto—Harada([12,13]
and Akkermans et al.[14,15) formulations were used, respectively.
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For the transition rate calculation we use the parameterization
proposed by Blann{[l1l6]. Using this parameterization Machner{17]

deduced the following expressions:

At (E. n)=—— [l.4x1021 E'——2_ 6x1018 E'Z]
k n+1l
mfp (3)
K_(E.n)*kl (n-1) (“'2;"“ [1.4x1021E‘— E—f—l—6x1018E'2]
mfp (gE"')

In the PCROSS code the additional 3/8 factor introduced by
Gupta[l8] was taken into account in the r.h.s. of equations (5).
This factor results from the reduction of a two—component master
equation(i.e. with the neutron-proton distinction) to an effective
one—component equation{18]. Taking also into account the direct
reaction contribution, as has been mentioned above, we obtained an
overall value of 1.3 for the mean free path parameter kmfp' The
slight increase above unity is possible if we bear in mind that
effects such as parity and angular momentum conservation are not
considered in the Blann parameterization{l4}. These effects taken
together would produce an increase of the nucleon mean free path
in the nuclear matter. The assumed value of 1.3 is in good agree-
ment with the one employed in the hybrid model calculations. We
believe that this is a direct result of the whole correct theore-—
tical approach in the state density and transition rate fields,
and also of the account for the direct reaction contribution in

the inelastic emission spectra.

According to the research performed by Akkermans and Gruppe-
laar[19,20] , in the energy range up to 50 MeV the preequilibrium
emission subsequent to primary emission can be neglected. The
PCROSS code uses the Weisskopf-Ewing[2l]evaporation model in all

cases to calculate the secondary emission.

IT.Results

The calculations of threshold excitation functions (n,p) and
(n,2n) up to 20 MeV incident energy were performed for cobalt and
iron isotopes. For ngmp(E) the reaction cross section of the glo-
bal optical potential (Wilmore-Hodgson for neutrons and Bechetti-

Greenless for protons) is used in the parameterized form of the
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Chaterjee et al.[22]. Some adjustment of the D parameters was
needed for a correct description of the excitation function. The
calculated excitation functions are depicted in Fig.la-le. There
is a good agreement with experimental data. For the same 1sotopes
the calculated emission spectra i1n the energy range from 5 to 26
MeV are shown 1in Fig.2a-2f. In this calculation, the previously
fixed values of the D parameter were emploved. The obtained des-
cription of the experimental data in the neutron and proton chan-

nels 1is good.

Finally, we performed calculations of the emission spectra for
indium. The calculation results are shown in Fig.3a-3e. A good
agreement with the experimental data 1s obtained within the whole
energy range. In the 14 MeV inelastic emission spectra the SMD
contribution is shown. As can be seen direct contribution domina-

tes the high energy tail of the 1nelastic emission spectra.
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Conclusions

We have developed the PCROSS program which enables us to use the
exciton model+SMD parameterization to calculate the emission spec-—
tra and excitation functions for the neutron induced reactions up
to 25 MeV incident energy. The program lays particular stress on
ensuring that equilibrium and preequilibrium emission are mutually
consistent, and on making data input as simple and interactive as
possible. The direct excitation of low-lying collective states is
taken into account by the simple parameterization of Kalka et
al.[6]. Blann's parameterization[l6] was used to the calculation
of the internal transition rates. An overall good description was
obtained using the mean free path parameter equal to 1.3. Some
calculations have been performed for (n,n') and (n,p) emission
spectra for 5 up to 26 MeV incident energy and for (n.,p) and
(n,2n) excitation function up to 20 MeV. A good descraiption of the
experimental data was achieved. All calculations were carried out

at the PC—AT computer and took only few minutes of computer time.

Future development

Recently, an exact formulation of particle-hole state densities
taking into account the Pauli and pairing corrections(23] was ob-
tained 1n our group. The corresponding internal transition rates
for the exciton model were also derived(24]. We will try to make
some calculations using this new state density formulation to com-
pare with the currently used Williams formulation(7]. The impact
of the new state density formulation on the alpha emission will be
also studied with the systematic comparison with the new

(n,o), (0l,n) experimental data(25].
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ABSTRACT

We present a summary of activities carried out at E.N.E.A. in Bologna on
the development of the preequilibrium emission models. We start with the
first application of the Muitistep Compound Model in the Heidelberg for-
mulation, which is followed by the Multistep Direct calculations. Next, the
comparison between the exciton and Multistep Compound model by
Feshbach, Kerman, and Koonin is presented. Finally we discuss energy and
isotop dependence of the average single particle level spacing.

1. Precompound reactions in terms of the Heidelberg Multistep-Compound Theory
(M.Herman, G.Reffo, H.A. Weidenmiiller)

Modern statistical theories of nuclear reactions'* distinguish between the multistep-direct and the
multistep-compound (MSC) mechanisms, the latter describing the composite system on its way
toward formation of an equilibrated compound nucleus. By definition, the MSC mechanism in- -
volves only bound configurations embedded in the continuum, yields angular distributions sym-
metric about 90° c.m., and is expected to be relevant mostly at relatively low (10-20 MeV) incident
energies. On the contrary, multistep-direct mechanism treats the evolution of the open configura-
tions, yields forward peaked angular distributions, and is supposed to be dominant at higher inci-
dent energies. So far, all MSC calculations’~1® have used the theory of Feshbach, Kerman, and
Koonin! (FKK). In this paper we present the first results obtained in the framework of an alter-
native approach to MSC processes formulated in Ref.3 to which we refer as NVWY. This theory
is based on a well-defined quantum-statistical input and yields precise definitions of emission and
internal transition widths.

The average cross section connecting channel a and b via the MSC mechanism has the form
o= (1+ 6ab)z T:znmnTﬁ - 1
mn

(We have omitted kinematical and angular-momentum dependent factors.) The sums run over all
classes (m or n) of particle-hole excitations. 7% is the transmission coefficient coupling channel a and
class m. It is important to realize that 72 = 3 7% is the usual transmission cocfficient in channel q,
given by the unitarity deficit of the average"S -matrix, and thus available from standard optical-
model calculations.

The probability transport matrix I, is defined via its inverse,
-1
(M = 6mn(2"pm)(r}n + rf;z“) — (1 = é,pp)2np,y Vr%m 2rp, - 3
Here, V2, is the mean squared matrix element coupling states in classes m and n, [k = 223 V2, p,

1s the average spreading width of states in class m, and I'e¥ = (2np,)"'Y. T4 is the the averagé decay
width in class m. «

To calculate [}, we relate it to the imaginary part of the optical-model potential, parametrized in
Ref.11 as W(e) = ce? with ¢ = 0.003 MeV-! , ¢ being the excitation energy of the particle (hole)
above (bclow) the Fermi energy. In calculating I'}, we average W(e) over the exciton distribution.
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The calculations were performed by means of the statistical model code EMPIRE!? which was
appropriately modified to allow for the MSC mechanism. In summing Eq.1 over final channels,
we took rigorously account® of proper angular-momentum coupling. The calculations were done
for the reaction »*Nb(n, 7’} at a neutron bombarding energy of 14.6 MeV. As input we used binding
energies, target spin and parity, global optical-model parameters'? , and a value g = A/13 Mev for
the single-particle level density. Allowing for 12 classes, it was possible to calculate equilibrium
emission of the first neutron within MSC theory and use the Hauser-Feshbach approach only for
the secondary neutrons.

The results of the calculations show a good agreement with the experimental data up to about 8
MeV of the outgoing neutron energy. For higher energies the calculations fell well below the ex-
perimental results showing the importance of the multistep-direct processes. Simultaneously,
our calculations reproduce also proton spectrum emitted in the Nb(np) reaction.

We conclude that Heidelberg MSC theory allows for parameter free calculations of the nucleon
spectra, consistent with the experimental results.
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2. Multistep-direct Contribution to the **Nb(n,n’) Reaction

(M.Herman, G.Reffo, H.Lenske, H.H.Wolter)

The forward peaked angular distributions and failure of the multistep-compound model to describe
the high energy tail of the spectra, provide a clear evidence that more direct processes contribute
significantly to this energy region, even at such relatively low incident energies as 14 MeV. These
processes may be treated within so called ‘multistep-direct’ theories, which are an extension of the
DWBA method to the continuum transitions and account for multlple interaction of the projectile
with the target nucleus. In the present note we report on such calculations performed in terms of
the theory formulated by Tamura, Udagawa, and Lenske".

We consider #Nb(n,n’) reaction at 14.6 MeV, for which also multistep-compound calculations have
been performed (see contribution to this meeting). We allow for 2 reaction steps each of which is
assumed to creaté l-particle 1-hole configuration in the target nucleus. To calculate transition
densities we use single-particle wave functions calculated in Wood-Saxon potential and schematic
RPA approach. Strength parameters of the multipole field were chosen to reproduce experimental
energies of the first 0+, 2+, 3-, and 4+ states in **Zn which was considered to play the role of a core.
For multipolarity 1 = 1 transitions the field strength was fitted to the GDR energy.

The results of the calculations describe very nicely high energy tail of the experimental spectra at
various angles. We note, that also the structure in the spectra is approximately reproduced. The
first step dominates at the very end of the spectrum, peaking at outgoing energy of about 12.5 MeV.
At energies below 10 MeV the second step becomes overwhelming. It should be stressed, that such
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an agreement is only possible if collective effects are taken into account in the transition densities.
Neglecting collective correlations yields not only different energy structure of the spectra but results
in cross sections which are by an order of magnitude smaller.

We conclude that multistep-direct calculations combined incoherently with the multistep-
compound ones provide with a very good description of the neutron induced reactions at low in-
cident energes.

1. T.Tamura, T.Udagawa, and H.Lenske, Phys. Rev. C26 379(1982).

3. Comparison of exciton and multistep compound models

(M.Herman, G.Reffo)

Durning the last two decades, various preequilibrium models proved to describe processes, that lay
between fast direct reactions and slow compound nucleus decay. These essentially classical models,
considerably contributed to our understanding of the equilibration process, as well as of the reaction
mechanism itself. These models turn out to predict the high energy portion of nucleon spectra
surprisingly well, and became an indispensable tool for many basic studies and applications.

The explanation of the preequilibrium model success is, in our opinion, twofold. First of all, we
trace it to the fruitful idea describing equilibration of the composite nucleus. On the other hand,
experimental data, interpreted with preequilibrium models, do not offer enough inforrhation for
testing commonly used approaches unambiguously. In fact, all what is available, are parts of
spectra and inherent angular distributions, laying between two regions dominated by direct and
compound reactions respectively. Both these observables are rather of simple, structureless form,
which does not impose sufficient constraints on the theoretical models, used for their interpretation.
It seems, that most data may be equally well reproduced in terms of different models by “allowed”
adjustment of parameters, that are always involved even in the so called “parameter free” models.

The most popular semiclassical models are the exciton model (EM) /1-10/ and the hybrid model
(HM) /11-14/. A detailed analysis of the different physical assumptions underlaying EM and HM
has been performed recently /15/ and will not be considered here.

To improve classical preequilibrium models better founded quantum mechanical approaches
/16-23/ have been introduced.

Here, we attempt to compare the widely used exciton model with the multistep compound (MSC)
/17/, the quantum mechanical formulation of preequilibrium decay that has been most frequently
applied /24-29/. We will concentrate on the physical ideas underlying both models, and discuss in
details the cross section expressions, paying not much attention to the obviously different derivation
of.both expressions. We shall try to relate the assumptions, that are physically equivalent but dif-
ferently formulated in the two models. We shall also point out similarities and/or differences in
practical calculations using both models.

The basic concept, common to EM and MSC, assumes that the composite nucleus is formed in a
relatively simple state and proceeds toward equxhbnum through a chain of stages with increasing
complexity. Even though, complexity is not specified exphc1tly in the MSC, it 1s understood as
number of available degrees of freedom, and exciton number is adopted in practical calculations.
In both models transitions are mediated by the two-body interaction. This leads to the chaining
hypotheses in MSC, or equivalently to the condition regarding the change in exciton number AN2
in EM. There is, however, a well known difference between model space as used in EM and in
MSC. While EM makes no restriction regarding model space, the MSC involves only closed con-
figurations (i.e. those built up only with the nucleons placed in the bound shell-model orbitals).
This difference has an essential influence on the angular distributions. In the EM  /8-10/ the linear
momentum in the incoming channel is gradually distributed among excitons, leading eventually to
the loss of the direction memory in the compound stage. In the initial stages, however, the projectile
direction is still favored, which results in the prediction of forward peaked angular distributions. In
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this respect, EM is a classical equivalent of the quantum mechanical models known as multistep
direct (MSD) /17,19-23/. The important difference is that the latter consider only open configura-
tions (i.e. those with at least one unbound particle), while EM treats close and open conﬁgura-
tions indifferently. As a consequence, one faces a conceptual difficulty in the EM. It is possible
to ascribe certain direction to the wave function in the open space. In this case, we deal with a
scattering-like wave function containing excited nucleus plus nucleon in the continuum. Such a
function extends outside the nucleus and may reveal asymmetry in the configuration space related
to the direction of the nucleon in the continuum. Using such a function in the MSD results in
asymmetric angular distribution. On the other hand, it is unclear how the same result may be ob-
tained in the case of closed configurations, in which all nucleons occupy bound orbitals, with the
wave function vanishing outside the nucleus. Accordingly, MSC  process assumes complete loss
of the initial direction memory (except of the angular momentum conservation), that results in
angular distribution symmetric around 90°. On the contrary, the EM follows the MSD treatment
of the linear momentum in the entire model space, including the closed subspace. This should lead
to an underestimation of the backward part of the angular distribution, which is in fact usually
observed.

In the following discussion, we shall neglect angular distributions and splitting of the model space
in closed and open subspaces.

The second important assumption in the EM is the uniform population probability of all accessible
nuclear states in the equilibration process. This implies, that particular structure of the initial and
final states can be, on the average, neglected so that the decay is governed by the density of states.

A very similar assumption is also found in the MSC model. To assure equal populatlon of the states
in the next reaction stage, the average spacmgs between states in a decaying stage is assumed to be
small compared to the width of the states in the next stage. This condition is referred to as “self
averaging”, and is given in terms of physical quaatities, so that its validity may be tested. Alterna-
tively, one could say, that both models are working in a strong coupling limit, so that configurations
are expected to be well mixed (see ref.15 in the case of EM).

In addition to the “self averaging”, MSC assumes also random distribution of the matrix element
phases, that implies vanishing of the interference terms. Such an assumption is not con'sidered in
the frame of the EM, because no explicit averaging is performed. It does not mean, however, that
this assumption is not implicitly included in the EM.

Formal development of both models is obviously very different. The exciton model employs Pauli
master equation to describe the flux flow through different stages. The approach is semiclassical,
time dependent, and makes use of the detailed balance to estimate internal transition and escape
rates. Derivation of the MSC, instead, consists in the calculation of the averaged value of the
squared element of the fluctuating part of the transition matrix. The transition matrix is expressed
in terms of the nuclear Hamiltonian and optical model Hamiltonian, which formally account for
all the characteristics of the system. In the course of the derivation several averaging procedures
are involved. These have been subject to criticisms, as beeing performed not over matrix elements,
for which statistical distributions are well established. The way the averages are performed in MSC
is, however, intuitively convincing; at least to the same extent as EM denvation.

Conservation of the flux in MSC is not trivially fulfilled due to the coupling to the open subspace.
To ensure the flux conservation, one has to assume weak coupling between closed and open sub-
spaces. Naturally, this problem does not arise in the EM, since entire model space is considered.

Our final remark, concerning general formulation of the two models, regards the “never come back”
hypothesis. This assumption is not necessary (but optional) in the EM, because the master
equation takes all possible intranuclear transitions into account. Therefore, the EM provides us
with a unified model for the description of preequilibrium and equilibium mechanisms. The
multistep compound model makes use of a time independent theory and the “never come back”
hypothesis is never invoked. In fact, transition matrix elements contain propagators, which describe
the transitions to the compound stage and backwards. However,-the MSC cross section formula
reveals typical “never come back” structure, that prevents the unified description including equilib-
rium contribution. The latter is'included in the MSC formalism somewhat artificially by setting to
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zero spreading width for a sufficiently complicated reaction stage. In order to keep both models
as close as possible, we will use the “never come back” version of the EM for our further discussion.

After this general discussion, let us consider the cross section expressions in both models. We take

" the simplest version of EM  neglecting angular distributions., In the case of the MSC  we adopt
a simplified version, which makes use of the exciton concept to classify stage complexity. It is in
fact, the only version of the MSC, that has been applied in practical calculations. To keep our
discussion as simple as possible, we also assume that target, projectile, and ejectile have no spin.
Accordingly, cross section for the emission of the particle with angular momentum 1 from the n-th
stage of the composite nucleus with spin J, leaving residual nucleus at excitation energy U and spin
s, is formally written in the same way in both models

de r (1)

doy; TaAU) ﬁ . .
nJ =1 r 17
where, I'%, 'k, and T,y are the averaged emission, spreading, and total widths respectively, and o,
stands for the formation cross section of a composite nucleus in the stage n=1 with specified spin
J. Note, that the EM is usually formulated in terms of transition rates 1, which are related to widths
by I' = 4. In the Eq.] one may distinguish three factors, with transparent physical meaning. The
first one (from the nght) is the, above mentioned, formation cross section. The sccond one is the
probability of finding the composite nucleus in the n-th stage, after having survived emissions from
the preceding stages (depletion factor). Finally, the third factor is an emission probability from the
n-th stage. Eq.l shows, that EM and MSC, in their versions discussed here, are equivalent to the
extent that widths and formation cross scctions can be related to each other in both approaches.

Let us consider the formation cross section first. In EM  the optical model reaction cross section
is usually taken. This can be corrected for the loss of flux due to the direct reactions, cither by in-
troducing a multiplicative factor or, more consistently, by using transmission coefficients calculated
in the DWBA or coupled channel approaches. In MSC the formation cross section is expressed
in terms of the strength function for the formation of the doorway states and is given by

in

1J

, 2

D,, )

oy =nA(2 + 1)2xn

where I'fy is the average entrance width for the configurations in the first stage, and Dy, is the av-
erage spacing of such configurations having spin J. These quantities, essentially, may be calculated
directly from the known nuclear Hamiltonian, this being, however, very impractical. Alternatively,
the strength function may be obtained using a technique similar to the one employed for the de-
termination of the escape width (see the discussion below). The latter involves, however, unknown
strength of the interaction (¥,), and depends strongly on the spacing of the doorway states. It is
our feeling, that such a procedure does not meet accuracy required in applications. The third pos-
sibility is based on the observation that strength function under discussion is,approximately equal
to the suitably averaged strength function for the formation of the compound nucleus /30,31/.
Accordingly, predictions of the optical model may be used, and analogy with the EM is recovered.
The only difference is, that the reduction has to take into account also multistep direct processes,
in addition to the direct ones. Such an approach has been followed in Ref.28.

The remaining difference between EM and MSC may only be contained in the emission and
spreading widths, because depletion factor and total width are identically expressed in terms of Tk,
and I'’s in both models.

Assuming factorization of the spin dependence in the state densities, and using explicit form for the
matrix element of the delta-function interaction, the spreading width in the MSC model is written
Ry

2
T} = XYM 3)
where X}, describes angular momentum coupling, and Y} carries all energy dependence. Note that,
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as compared to Ref.17, we have separated factor | M}? from X}. In the case of the S-interaction,
M factor is proportional to the interaction strength V,, and to the overlap integral of the radial parts
of the wave functions for the nucleons taking part in a transition. Clearly, this factor corresponds
to the averaged matrix element in the EM. In Ref.32 it was shown, using identity relation for the
Heaviside function, that the factor Y} corresponds exactly to the accessible density of final states,
as used in the EM. Therefore, both quantities are equal when the same state densities are used.
The energy dependent part of the spreading widths are, thus, completely equivalent, if the same
model space is considered in both cases. The difference is found in the angular momentum struc-
ture. The MSC performs the detailed spin coupling of all excitons followed by averaging over initial
configurations and by summation over final ones, that results in a complicated X} factor. Most
of the EM formulations disregard angular momentum conservation at all. Only some of them
take it into account /33/, but treat it in a much simpler way, including simply spin distributions in
the state densities. This'may be considered the main difference between MSC and EM as7ar as the
spreading width is concerned. It should be mentioned, however, that the J dependence of the X
factor, as calculated in the frame of the MSC, is rather weak /28,34/, therefore is expected not to
affect nucleon spectra to a great deal.

An essential conceptual difference concerns treatment of the escape widths in both approaches. The
EM assumes that the emission from a given stage occurs with a certain rate, which is proportional
to the inverse reaction cross section and to the probability of having the particle with the appro-
priate channel energy. The latter probability is given as a ratio of the state densities. No intrinsic
interaction is involved in the emission process, that reminds similar treatment of the emission in the
compound nucleus theory. On the contrary, in the MSC the emission is always mediated by the
nucleon-nucleon scattering. This scattering may lead to particle-hole annihilation or creation or it
may leave the number of excitons unchanged, thus giving rise to the three so called “exit modes”.
These resemble the three possible internal transitions in the EM without “never come back” as-
sumption. This way MSC accounts for the A n= + 1,0,-1 transitions in the emission. In the result
of scattering, one of the nucleons is lifted to the open subspace and is considered to escape the
composite nucleus. Due to the scattering, that precedes emission, whole process can be described
similarly to the damping transition (Eq.3), using explicit expression for the matrix element of the
d-interaction and accessible state density. Calculating radial overlap integral, we have to keep in
mind, that one of the excitons in the final state is described by the wave function belonging to the
open subspace. This brings the transmission coefficient into the expression avoiding, however, the
danger of using the detailed balance principle. Accessible state densities are calculated in the same
way as for the corresponding internal(!) transitions in the exciton model, but having one exciton less
in the final configuration. As far as angular momentum is concemned, the appropriate discussion
for the spreading width should be here repeated.

In the MSC the escape and spreading widths are both proportional to the interaction strength,
which cancels in the cross section expression (Eq.1). It follows, that the MSC can be made inde-
pendent of the unknown interaction strength, if the formation cross section o, is calculated in the
frame of the optical model. This is due to the assumption, that nucleon-nucleon scattering is in-
volved in each emission. On the contrary, all classical preequilibrium models need some estimate
for the interaction strength to calculate the ratio between the escape and damping widths.

We have shown that, basic ideas, underlaying the EM and MSC, are very similar. Closest corre-
spondence is found between the never come back version of the EM and exciton formulation of the
MSC, when neglecting angular and linear momenta considerations. In this case, the main difference
concerns treatment of the emission process.

In addition, EM attempts to describe MSC and MSD processes simultaneously. In this respect, the
angular distributions, resulting from both models, are very different, since EM is closer to MSD in
the treatment of the linear momentum. Disagreement is also found in the way the angular mo-
mentum coupling is performed in both models. The approach applied in the MSC is more micro-
scopic, and much more involved.

In the present comparison, we have left apart the most recent approach to the preequilibrium
mechanism by the Heidelberg group /18,19/. We mention only, that the latter reveals that ““effective
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state densities”, are involved in place of the ones presently used. So far, the extent of their impact,
on the practical calculations, has not yet been clarified. The complete, systematic intercomparison,
including Heidelberg model, would be highly desired.
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4. Systematics in Exciton State Densities

(G.Giardina, M.Herman, A.ltaliano, G.Reffo, and M.Rosetti)

In most applications the average spacing of the shell-model hamiltonian
eigenvalues is taken to be energy independent and its inverse (density of
eigenvalues or density of single particle levels), denoted by g, is taken
usually to be proportional to the nuclear mass number A:
g = % with ¢ =~ 13, but such an approach lacks any microscopic
foundation and may introduce large errors when used for the determination
of dynamical quantities. This has motivated the present investigation of
the average dependenc_e of the unperturbed shell-model hamiltonian spacings

on the energy, the neutron and the proton numbers. We have analyzed the

extensive set of single particle levels, as determined by Nix and Moller.
This set contains results for more than 4000 isotopes in the mass range
from A=12 up to A=269 and also covers nuclei far from the stability line,
allowing for an investigation of the isotopic effects. We have ana%yzed a
cumulative number of eigenvalues (for particle and hole excitation) as a
function of energy above and below the Fermi level.

Observing Fig.l is evident that above the Fermi level the cumulative
number of eigenvalues increases faster than in the case of eqﬁidistaut
distribution'(linear energy dependence). A quadratic energy dependence

(1) NE)=aE’+bE+c¢c

gives a resonable description (see Fig. 1). In the case of the eigenvalues
lying below the Fermi level, the energy increase of the cumulative plot is
slower than the one for equidistant levels and may be approximated by

@ E=&W-2% -2 '

(the constant 2 appears to ensure two possible hole states at zero energy).

The average density of eigenvalues which appears to be energy dependent:
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(3) g(E) = (—1—'?1%%@ =2aE+b (above the Fermi level)

€3] g(E) = 5‘;_’;%@ =(b*+43E )V (below the Fermi level).
For each isotope, cumulative plots for neutrons and protons were
separately fitted with Egqs. 1 and 2 providing values for a, b, c, & and b
paremeters.

In Figs. 2 and 3, the parameters a and b are plotted versus the neutron or
the proton numbers. The a, and ax determine energy dependence of the
average spacing of neutron and proton single particle levels (s.p.l.) above
the Fermi energy:

- a, (Fig. 2) has a rather well determined dependence on the neutren
number N. Some spread of the points in Fig. 2 may be related to the
influence of the proton number Z. This effect is explained in Fig. 4.

- ax (Fig. 3) shows slightly different systematics. It increases linearly for

small Z, peaks at Z=55 and eventually decreegses. For Z>10 one observes a

pronounced isotopic effect, which is manifested by a large spread of the
points. This effect is pointed out in Fig. 5.

- a, and ax do not show pronounced shell effects.

This is qualitatively understood, since these parameters account for the
decrease of spacings between high lying single particle levels, being
therefore rather insensitive to the region close to the Fermi level.

Now we consider the constant term in Eq. 4.

- b.(for neutrons) appears to be, on the average, an increasing function
of N (Fig. 2). Close to the Fermi level this parameter mainly determines
eigenvalue spacing. It is, therefore, expected that it should carry on the
effects of the shell closure (discontinuities at N=50, N=82 and at N=126
confirm that this is actually the case).

For light nuclei, usually far from the stability line, one occasionally finds
negative values of b, (see Fig. 2). In terms of Eq. 3 it means that g
acquires a physical (positive) value only abovg certain energies, at which
the energy dependent term becomes greater than b, . Such cases are related
to the large ‘gap between the Fermi level and a first é.p.l. above it. A very

wide spread of b, around the mean value (see Fig. 2) indicates a strong
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isotonic effect, that is pointed out in Fig. 4, where the b, values are
plotted versus Z for several fixed values of N. Clearly b, is @ smooth and
strongly decreasing function of Z. If only stable, or nearly stable, nuclei
(heavy points in Fig. 2) are taken into account, the spread is considerably
reduced.

- bx (for protons) is remarkably constant (usually negative) for Z=20+50
and increases linearly for higher Z. In this case, the shell closures
manifest themselves as discontinuities. Strong isctopic effects are only
observed for light nuclei, and are strongly suppressed for nuclei with
Z>40. Neutron number dependence of bx for several fixed Z is presented
in Fig. 5.

The treatment of the s.p.l. spacings below the Fermi level appears to be
difficult. Figs. 6 and 7 show that the & and b parameters of Eq. 4 for
neutrons (or protons) decrease rapidly with increasing N (or Z), varying by
two orders of magnitude between very light and heavy nuclei. One can
observe extremely strong shell effects, which show up not only at main
shell closures, but also when certain more pronounced sub-shells are filled.
Therefore, we can only predict the very general behaviour of the a and b
parameters.

In Fig. 8 densities of single particle levels for neutrons and protons are
shown as a function of energy above (or below) the Fe;mi level. These
densities were calculated from the values of a, b, @ and b parameters for
192au and 7°Rb obtained in the fit. In the case of '%8Au, the density for
holes appears, at very low energies, much higher than the density of states
available for particles. At higher excitation energies, however, the density
of particle states becomes much larger, thus particle contribution to p-h
state density is overwhelming. From Fig. 8 one may conclude that an
assumption of equal single particle state densities and holes is a crude
approximation at low excitation energies, and does not hold at all when
single particle levels far from the Fermi level are involved.

The g parameter plays an important role in the determination of the state
densities within the independent particle model. If the spectrum of s.p.l is
assumed to be equidistant the expressions for partial (n-exciton in Ericson’s

and Williams's formulae) and total (formula type Bethe) state densities are
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derived. Our previous analysis proves that this assumption does not hold.
Therefore we attempt to work out the method of calculating state density
when the equidistant restriction is relaxed. One of these methods consists
of the convolution of an n-1 exciton state density with an l-exciten state
density, to obtain the n-exciton state density:
E

(5) w(n,) =1 f win-1E-e) w(le) de
with eigenvalue spacing given by Eqgs.3 and 4.

Considering pure p-particle configurations and noting that
(6) w(l,e) = gle) = 2 a € + b,
the following recursive expression for w(p,E) is obtained:

p=t-1
~ o - 1 vl i T30
o) W(pE) = S_l c® (2a)°""! b1 E
The same approach is unpractical in the case of hole configurations,
because the analytical form of g(¢) does not provide a reasonably simple
expression after several convolutions have been performed, therefore we

propose an approximate solution of the problem. Instead of deriving an

exact p-h state density formula, taking energy dependence of g explicitly
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into account, we propose to retain the standard form given by

Py Nn ~ -
% G G% Gh~ En!

@) WpnhuPohsE) = S

in which G stands for the effective density of eigenvalues defined as the
average over excitation energy, weighted with the probability of finding an

exciton at a given energy ( exciton distribution):

E -1 [
(9) G(n,E) = I P(n,e) gle) de = —E—;—l— J (E-€)2 g(e) de
0 0
where P(n,e)l' is defined by:
_ w(n-1,E-¢)
(10) P(n,e)de = k OB de

and k is a normalization factor.

Using Eq. 3 and considering the case of neutron particle levels, we get

(11) GunE) = b, + 224 E

and the corresponding expression for protons is obtained by exchanging
with =.
The same procedure applied to neutron holes yields a more complicated

recursive relation:

(4 3, E + b3) G,(n-1,E) - b.)

- = _ (n-1)
(12) Gum,E) 245, 2n-3) E

in which G.(1,E) = g.(E) .

The analogous expression for protons is obtained by tﬁe exchange of
subscripts. We note that the effective density G becomes energy and
exciton number dependent. In Fig. 9 predictions of Eq. 8 for 3-exciton state
densities in 5°Ni are compared with the exact counting of states.

A closed formula (Eq. 8) was evaluated using common choice G-N/\13 and
using effective G determined from Egs. 12 and 13, with a, , b, , a, , and by

parameters obtained from the fit of the cumulative number of levels. It is
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evident that the Williams formula with G=N/13 greatly underestimates the
exact density of particle configurations and overestimates the density of
the hole ones. Use of the effective G in Eq. 8 results, in both cases, in a

net improvement regarding the magnitude and slope of the state density.
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ABSTRACT

An experimental program is in progress at the Los Alamos National Laboratory
WNR/LAMPF facility to perform high-resolution measurements of (n,xYy) cross sec-
tions for individual lines up to incident neutron energies in the medium-energy range
for a variety of target materials. Part of the purpose of these measurements is to pro-
vide a data base for testing the details of nuclear models in this energy range, with the
goal of facilitating model improvements. In this paper initial calculations using the
GNASH nuclear theory code and the level density models of Gilbert-Cameron and
Ignatyuk are described. The results are compared to the existing experimental data
base for 204.206,207,208pp isotopes at lower energies and to preliminary data from the
WNR/LAMPF measurements on "Fe and 208Pb up to Ep = 100 MeV.

I. INTRODUCTION

An experimental program is in progress at the Los Alamos National Laboratory
WNR/LAMPF facility to perform high-resolution measurements of (n,xy) cross sections for indi-
vidual lines up to incident neutron energies in the medium-energy range for a variety of target ma-
terials. These measurements utilize the white neutron source at WNR and make use of high reso-
lution germanium detectors to provide signatures of individual (n,xn) reactions. Preliminary mea-
surements of gamma rays from a NatFe target, corresponding to (n,n’), (n,2n), (n,3n), n,np), and
(n,0) reactions, were reported by Nelson et al.l in 1989, More recently, preliminary results from
(n,xnY) reactions on separated targets of 204Pb, 206Pb, 207Pb and 208Pb over the range 1 < x < 11
have been described by Haight et al.2 for neutron energies to over 100 MeV. In addition to provid-
ing data useful for programmatic activities such as accelerator shielding, an important goal of these
measurements is to develop a data base that will permit testing of the details of nuclear models that
are presently used in this energy range and to thereby facilitate improvements in the underlying
nuclear theories.

Over the past several years Los Alamos National Laboratory has been involved in extending
the capabilities of nuclear models for more reliable calculations in the incident nucleon energy range
of 20-100 MeV.3 Much of this work has focussed on development of the GNASH nuclear theory
code.* Recently, an initial set of transport data libraries was completed for incident neutrons and
protons up to 100 MeV on 10 target materials, with the library based mainly on calculations with
the GNASH code.5 The new experimental program at WNR/LAMPF offers a unique opportunity
to validate and improve the nuclear models used in nuclear theory codes such as GNASH.

* This work is supported by the U.S. Department of Energy.
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In the present paper initial calculations of a small sampling of preliminary data from the new
experiments is described. The calculations make use of two existing level density representations,
namely, the standard level density parameterization of Gilbert and Cameron® that has been used in
many lower energy calculations, and the model of Ignatyuk et al.,” which utilizes an energy-de-
pendent level density parameter that is more appropriate for higher energies.

Most of this paper deals with calculations of neutron-induced reactions on 204Pb, 206pp,
207pb, and 208Pb, These calculations are described in Section II, and the results are presented in
Section III with comparisons to experimental data. In Section IV, similar calculations for n + 56Fe
reactions are described, making use of parameters from an earlier analysis of 54:56Fe up to 40
MeV38 but including the Ignatyuk et al. level density model as well as that of Gilbert and Cameron.
Finally, conclusions and observations from the comparisons are presented in Section V.

II. DESCRIPTION OF THE CALCULATIONS
A. General Description

The GNASH nuclear theory code? is based on Hauser-Feshbach statistical theory with full
conservation of angular momentum. Preequilibrium corrections are calculated using the exciton
model of Kalbach,? and width fluctuation corrections are obtained from the COMNUC codel0 us-
ing the approach of Moldauer.!! Transmission coefficients for neutrons and charged particles are
calculated using an optical model, and gamma-ray transmission coefficients are obtained from a
simple giant dipole resonance approximation,12 making use of detailed balance. The level structure
for each residual nucleus in a calculation is divided into discrete and continuum regions, with the
former obtained from experimental compilations and the latter from phenomenological level density
representations.

Exc%t as noted below for radiative capture cross sections, the calculations for n +
204,206,207,208pp reactions were performed using the default parameters in the GNASH code with
no optimization for either the old or new experimental data under consideration. This procedure
was followed in order to provide a set of base calculations, against which future improvements can
be compared.

B. Optical Model

The spherical optical model potential resulting from the analysis by Finlay et al.13 of n +
208pb experimental data in the range 7 < E, < 50 MeV was used for all the present calculations
below 75 MeV. At higher energies the global phenomenological optical potential of Madland,14
developed for the energy range 50 MeV < Ep p < 400 MeV and the mass range 24 < A <208, was
utilized. Nlegutron transmission coefficients were computed to 100 MeV using the SCAT2 code by
Bersillion.

The neutron total cross section calculated from the optical model for 208Pb is compared with
the available experimental datal6 for M2tPb up to 100 MeV in Fig. 1. A similar comparison is given
in Fig. 2 for the nonelastic cross section. While the nonelastic curve depends on the GNASH
compound nucleus calculations at lower energies, above a few MeV it corresponds essentially to
the optical model reaction cross section. The total and reaction cross sections that result from the
Finlay et al. and Madland optical model parameterizations are seen in Figs. 1 and 2 to be consistent
with the experimental data base. Slight mismatches occur near 80 MeV in the neutron total and
nonelastic cross sections computed from the two potentials but the effect on the present calculations
is small.

C. Gamma-Ray Transmission Coefficients

Transmission coefficients for gamma-ray transitions were obtained using detailed balance and
exploiting the inverse photo-absorption process. The Brink-Axel hypothesis!2 is utilized, permit-
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ting the cross section for photo-absorption on an excited state to be equated with that on the ground
state. The gamma-ray transmission coefficients for E1 decay are determined from the expression

1 2 &r
(ey) =K (0.013A) 55 5 - 1)
n(hc)” (B &) + (g

where £y is the gamma-ray energy and A is the atomic mass number. The Lorentzian parameters of
the giant-dipole resonance, E and T, are taken from the tables of Dietrich and Berman.17

We usually obtain the normalization constant, K, by matching the theoretical gamma-ray
strength function for s-wave neutrons to experimental values compiled by Mughabghab.18 Be-
cause of the lack of such data for the Pb isotopes, however, in this case we determined a normal-
ization constant by roughly matching our calculations to measurements of the radiative capture
cross sections for the Pb isotopes at neutron energies below 1 MeV. Comparisons are given in
Fi&. 3 of the calculated (n,y) cross sections (after determination of K) for 204Pb, 206Pb, and
207Pb. Essentially the same value of K was used in the calculations for all the lead isotopes

D. Level Density Models

A base set of Hauser-Feshbach calculations was performed for each of the Pb isotopes us-
ing the level density model of Gilbert and Cameron.6 At high excitation energies this model uti-
lizes a Fermi-gas form for the level density, which is matched to a constant temperature form at
lower excitation energies. For the full angular momentum calculations, a Gaussian distribution of
spin states is taken to describe the angular momentum of levels at given excitation energies, E,

(7 + 42
1@:0 02 o, @

EJ,n) =
PEIT =2 e | 26

where U = E - A (A is the pairing energy) and 62 is the spin cutoff parameter which is determined
via

2

o? = 0.146/aU A?, (3)

for the Fermi-gas region. The spin-cutoff factor is determined empirically in the discrete level re-
gion from the spins of the measured levels and is then linearly interpolated in the constant tempera-
ture region to the value given by Eq. 3 at the lower energy limit of the Fermi-gas region.

The Fermi-gas expression for p(U) used in the higher excitation energy region is given by

F 1 exp(ZﬁlfJ—)
12 ro (aUS)m

and at lower energies the constant temperature form is given by

E-E
P(E) =-1T-exp[[ °)] : 5)

T
The pairing energies and shell corrections were obtained from the Cook parameter set.19
The level density parameter, a, was taken from the empirical expression in Gilbert and Cameron.6
The temperature T, the parameter Eq, and the matching energy Epy, that separates the constant tem-
perature and Fermi-gas regions were obtained by requiring that p and dp/dE from Egs. 4 and 5 be
continuous, while at the same time requiring the integral of Eq. 5 to match the cumulative number

P(U) = ’ 4)
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of levels in the discrete or measured region. The spin- and parity-dependent level densities used in
the GNASH calculations then come from Eq. 2.

The Gilbert and Cameron level density formulation (and others such as the back-shifted
Fermi gas model of Dilg et al.20) utilizes an energy-independent level density parameter, a, which
somewhat restricts flexibility at higher energies. This difficulty is compounded by the effects of
shell closures on the Fermi gas level density parameter and on their propagation to higher energies.
To address these problems in the present calculations, we carried out a second set of base calcula-
tions (204Pb and 208Pb only) using the phenomenological level density model developed by
Ignatyuk et al.7 In this model the Fermi gas parameter is assumed to be energy dependent and is
given as a function of excitation energy U by the expression

a(U) = a [1 + £f(U) dW/U] , ©)
where o is the asymptotic value occurring at high energies. Shell effects are included in the term
OW which is determined via 8W = Mexp(Z,A)- Mig(Z,A,B). In our calculations we determined the
experimental masses, Mexp(Z,A), through use of a preliminary version of the 1988 Wapstra et al.
mass compilation,2! and calculated Mj4(Z,A,B) through use of standard liquid drop expressions
evaluated at a deformation 8. Additional energy dependence in a(U) occurs via the term f(U)
which is given by

f(U) =1 - exp(-yU) @
where ¥ = 0.05 MeV-! was determined by Ignatyuk et al.

Thus, this model permits shell effects to be included at low excitation energies while at high
energies such effects disappear as a(U) reaches the asymptotic value o. This form is in better
agreement with results from microscopic Fermi gas models than the assumption of energy inde-
pendence for a. The asymptotic value of a(U)—0 is given by Ignatyuk et al. as a function of
mass by the expression

o
A =N+PpA ®
with 1 =0.154 and B = 6.3x10-5, and with o in units of MeV-1 and A in amu. In the initial calcu-

lations described here, however, we utilize Arthur's parameterization> of Eq. 8, which is based on
glts to s-wave resonance datal8 and which resulted in the parameters | = 0.1375 and B = -8.36x10-

The Ignatyuk et al. level density model is implemented in the GNASH code using exactly
the same Fermi gas and constant temperature formulas as are applied with the Gilbert and Cameron
representation, that is, Egs. 2-5 above, and the continuum matching and matching to the discrete
levels is done in the same manner. The only difference is the energy dependence of the level den-
sity parameter, a(U), as specified in Egs. 6-8.

III. RESULTS OF THE Pb CALCULATIONS

GNASH calculations were made with the Gilbert and Cameron (GC) level density represen-
tation to a neutron energy of 80 MeV for 204Pb, 60 MeV for 206Pb, 40 MeV for 207Pb, and 100
MeV for 208Pb. The calculations with the Ignatyuk et al. (IG) level density model were carried out
over the same energy ranges but thus far only for 204Pb and 208Pb.

A. Comparison with the Existing Neutron Data Base

The calculations with the GC level densities of the total (n,2n) cross sections for 206Pb and
207pb are illustrated in Fig. 4 with the experimental data of Frehaut et al.22 The agreement is rea-
sonable although there is a tendency to overpredict Frehaut's higher energy values. The
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natPh(n,2n) cross section, obtained by summing the isotop1 ¢ values weighted by their natural
abundances, is compared to the available experimental datal6 in Fig. 5. Again, the agreement is
reasonable, although the calculation is higher than Frehaut's 1980 data at the highest energies. An
earlier version of Frehaut's data, presumably without final corrections, is in better agreement with
the calculations.

Several measurements of the activation cross sections for metastable states have been made
for Pb isotopes. Such measurements impose additional requirements on calculations in that they
are sensitive to the gamma cascades from higher states as well as the specific excitation cross sec-
tions of the levels involved. Comparisons of calculations (GC) and measurements are given in
Fig. 6 of activation cross sections to metastable states in 205Pb (Ex= 1.014 MeV, J¥ = 13/2+, t1, =
5.5 ms) and 204Pb (Ex = 2.186 MeV, J* =9, t12 = 67 m) excited by (n,2n) and (n,3n) reactions
on 206Pb, In the lower half of Fig. 6, the dashed curve includes the calculated contribution from
the 204Ppb(n,n")204mPp reaction as well as the 206Pb(n,3n)204mPp cross section, because a natural
lead target was used for the Welch et al.23 measurements. In Fig. 7 the calculation of the
207Pb(n,n")207mPh (Ex = 1.633 MeV, J® = 13/2*, t3» = 0.8 s) cross section is compared to the
available data. In both Figs. 6 and 7, the agreement between calculation and measurement is rea-
sonable.

The IG and GC calculations of the total 204Pb(n,2n) and 208Pb(n,2n) cross sections are
compared to the available measurements in Fig. 8. The IG results are seen to increase with energy
initially more rapidly than the GC calculations but to also fall off more rapidly at energies above the
peak cross section. The GC results appear to agree somewhat better with the data in Fig. 8, par-
ticularly with the Frehaut results22 for the 208Pb(n,2n)207Pb cross section. It might be noted,
however, that the recent Ikeda et al.2# data for the 204Pb(n,2n) cross section agree well with both
calculations at higher energies whereas the Frehaut results for 206,207,208pp and matpb are sys-
tematically lower than the calculations.

Activation cross sections for the metastable states in 204Pb and 207Pb excited through the
204Pb(n,n")204mPh and 208Pb(n,2n)207MPb reactions are compared to the GC and IG calculations
in Fig. 9. Both calculations underpredict the single measurement for 204mPb below 10 MeV but
are in reasonable agreement near 14 MeV, especially the IG result. The IG calculation also appears
to represent the 20/mPb data best, although both calculations are somewhat lower than much of the
data near 14 MeV.

B. Comparison with the WNR/LAMPF 208Pb(n,xny) Measurements

Because of the higher incident neutron energies involved, a broad span of residual nuclei are
covered in the WNR/LAMPF 204,206,207,208pb(n,xny) measurements by Haight et al.,2 ranging
from N ~ 196 to N = 208. A complication exists in interpreting the results of these measurements,
however, because of the large number of high spin states (and therefore isomers) that are present.
Because a white source of neutrons is utilized for the experiment, timing of the gamma-ray events
is required to determine the incident neutron energy for any given event. States with very short or
very long lifetimes clearly offer no problem in the measurement, as the former decay instanta-
neously relative to the experiment and the latter do not decay at all during the measurement intervals
and can be simply removed from the cascades in the calculations. States that decay with half lives
of the order of the timing of the experiment, however, produce a time-dependent "background" that
will require a non-trivial correction. The details of the experiment are such that states with half
lives in the range 10 ns <ty < 10 ps produce this time-dependent background. Final analysis and
correction of the measurements has not yet been carried out, and additional measurements are
planned during 1990. The preliminary results shown here are examples from several cases that are
relatively straightforward to interpret.

The first example concems the 0.803-MeV gamma ray from the 208Pb(n,3n7)206Pb re-
action and is illustrated in Fig. 10. Shown in the figure is the preliminary measured cross section
for this line together with calculated values using the GC and IG level density models. This
gamma ray corresponds to the J® = 2+ — O* transition from the first excited state in 206Pb to the
ground state.25 One of the states that ultimately feeds this 2+ level (through several cascades) is
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the J* = 7- level at Ex = 2.200 MeV.25 Because the 7- level has a half life of t) = 124 us, which
is relatively long compared to the measurement times, all contributions from this level were re-
moved from both calculated curves in Fig. 10. The calculated excitation cross section for the 7-
level is significant (maximum of ~ 1 b near 25-30 MeV), so this adjustment is essential. When the
experimental results are completely analyzed, this correction should be verified by the absence of
gamma rays from the 7- level.

The second example cons1dered here is the WNR/LAMPF measurement of the 0.960-MeV
gamma ray from the 208Pb(n,7ny)292Pb reaction, shown in F1g 11. This gamma ray Ie results from
the J® = 2% — O* transition from the first excited state in 202Pb to the ground state.26 This case
also requires correction of the calculations for a higher isomer that does not decay on the time scale
of the experiment.  In particular, there is a 3. 5 h, J® = 9- state at Ex = 2.170 MeV that decays
ultimately 100% through the first excited state.2 6 The calculated curves in Fig. 11 both have all
contributions from the 9- level removed.

The comparisons in both Figs. 10 and 11 show the same effect noted earlier for the (n,2n)
cross sections, namely, that the calculations with the IG level densities tend to rise sooner near
threshold and fall off with energy more rapidly after peaking than do the GC calculations. In both
ﬁd%ures the IG calculations appear to better represent the experimental data. In Fig. 10, the

Pb(n,3ny) measurement is reproduced quite well over the entire range of the measurement. The
calculations for the 208Pb(n,7ny) measurement in Fig. 11 overpredict the measurement by a factor
of ~ 2. In this case as well, however, the more rapid rise of the IG calculation appears to be sup-
ported by the data.

To further explore the observed differences between the calculations with the GC and IG
level densities, the 1ntegrated 8Pb(n,xn) cross sections obtained using both models are illustrated
in Fig. 12 for 1 < x <5 and in Fig. 13 for 6 < x < 10. The effects noted earlier in isolated compar-
isons are seen to occur systematically in the (n,xn) reactions. It is interesting to note that at certain
energies the differences in the calculations are quite significant, which underscores the potential
usefulness of measurements such as those described here in providing insight on level density
models.

IV. RESULTS OF THE 56Fe CALCULATIONS

The first preliminary data taken in the WNR/LAMPF gamma ray measurements described
above were for MatFe(n,xy) reactions.! The lifetimes of levels in most of the important residual
nuclei formed in these reactions are in the picosecond range, and interpretation of the results is less
ambxguous While the impact of shell effects in this case should be considerably less than for

08pp, it was felt worthwhile to compare calculational results usmg both the GC and IG level
densities with these preliminary measurements as was done for 208Pb,.

The same models and calculational methods were used as are described in Section II. In this
case, however, the optical model potentials developed in an earlier analysis8 of neutron-induced re-
actions with 34.56Fe were used to calculate neutron and charged-particle transmission coefficients.
All significant proton, deuteron, and alpha-particle emitting reactions were included in the calcula-
tions, as well as the neutron and gamma ray emitting processes. Calculations were performed
between 1 and 60 MeV using the GNASH code with the GC and the IG level density options alter-
natively activated.

The results of the calculations are compared in Fig. 14 to the prehmmary data reported by
Nelson et al.1 for the 0.931-MeV gamma ray, corresponding to a 36Fe(n,2nY)35Fe reaction, and to
the results of an earlier, more extensive measurement at ORELA by Larson.27 This gamma ray
corresponds to a transition from the 5/2- second excited state of 55Fe to the 3/2- ground state. As
expected, the d1fference m the calculations using the different level density models is not as great as
was observed for the 208Pb cases. The shift in energy of the peak cross sections between the
models that was seen in the 208Pb calculations is not apparent in Fig. 14. There does appear to be
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better agreement, however, between the experimental data and the calculation using the IG level
density model, which results in a somewhat higher cross section near 20 MeV.

V. CONCLUDING REMARKS

The comparisons of the calculations with experimental data at the lower energies given in
Figs. 4-9 generally indicate reasonable agreement using either level density model. The agreement
between the GC calculations of the 208Pb(n,2n)207Pb cross section with experiment in Fig. 8 is
better than the IG case, although the reverse is true for the 208Pb(n,2n)207mPb comparison in Fig.
9. Additionally, it is likely that some refinement in the parameters used in Eq. 8 to obtain a(U) in
the IG level density model might be possible.

Although the calculations at higher energies described here as well as the new
WNR/LAMPF experimental datal.2 are regarded as preliminary, several observations can be made.
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It appears clear that measurements of this nature should be useful in refining theoretical models
used for calculations in the ~10 - 100 MeV range. The differences seen in the 208Pb calculations
with the two level density models indicate a sensitivity of these measurements that should be useful
in model refinement, particularly for target nuclei near closed shells. While firm conclusions must
await complete analysis of the final data from the 56Fe and 208Pb(n,xnY) measurements, there ap-
pears to be better agreement at higher energies between the measurements and calculations using
the IG level densities than with those that utilize the GC model. The 208Pb(n,3n'y)206Pb measure-
ment (Fig. 10) agrees quite reasonably with the IG calculations, as do the results for the
56Fe(n,2ny) reaction in Fig. 14. Both sets of calculations significantly overpredict the
208pb(n,7nY)202Pb measurement shown in Fig. 11. These differences could be symptomatic of
the inadequacy of the nuclear reaction models used in the 70-100 MeV range, where the discrep-
ancies occur, or they could simply indicate the presence of additional isomers in 202Pb that are not
decaying rapidly enough to be included in the measurements, particularly at higher energies where
shorter neutron flight times are involved. We expect that, as these measurements and analyses are
refined, information will become available on a wide range of transitions and firmer conclusions
can be reached.
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Abstract

We propose a quantum-statistical framework that provides an integrated perspec-
tive on the differences and similarities between the many current models for multi-step
direct reactions in the continuum. It is argued that to obtain a statistical theory two
physically different approaches are conceivable to postulate randomness, respectively
called leading-particle statistics and residual-system statistics. We present a new
leading-particle statistics theory for multi-step direct reactions. It is shown that the
model of Feshbach et al. can be derived as a simplification of this theory and thus can
be founded solely upon leading-particle statistics. The models developed by Tamura
et al. and Nishioka et al. are based upon residual-system statistics and hence fall into
a physically different class of multi-step direct theories, although the resulting cross-
section formulae for the important first step are shown to be the same. The widely
used semi-classical models such as the generalized exciton model can be interpreted
as further phenomenological simplifications of the leading-particle statistics theory. A
more comprehensive exposition will appear before longl).

1 Introduction

Multi-step direct (MSD) reactions in the continuum are experimentally characterized
by strongly forward-peaked, but smooth, angular distributions and by pronounced high
energy tails in the emission spectra. In applied experimental and phenomenological work
they are also commonly called precompound or pre-equilibrium reactions, and they are
viewed as intermediate between direct and (multi-step) compound reactions. A wide vari-
ety of MSD theories has been proposed in past years. The oldest are the so-called general-
ized exciton models that go back to the work of Mantzouranis et al. 2); for a survey see®).
These statistical models have a clear phenomenological and semi-classical background,
and they have been shown to be quite successful in practice?) and are still being used in
the analysis of experiments®). In more recent years several quantum-statistical theories of
MSD reactions have been developed. The most important ones are those of Feshbach et
al.®) (henceforth denoted the FKK model), of Tamura et al.”) (the TUL model), and of
Nishioka et al.8) (called here the NWY model).

At a global level, these MSD models have several ideas and concepts in common. They
share the physical picture of a fast, ‘leading’, incident particle in the continuum (> 10
MeV per nucleon) that creates new particle-hole pairs on its way through the nucleus. The
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fact that it usually leaves the nucleus after only a few interactions (‘steps’) implies that
upon emission it retains some memory of the incident energy and direction. This explains
the high energy tails in the spectra and the forward-peaked angular distributions. Another
idea all MSD models have in common is that some statistical approach is warranted, since
one is dealing with regions with a high level density.

If we look more closely, however, it appears that the various MSD models are quite
diverse. First, there is the split between semi-classical and quantum models. They further
differ in the nature and the way of application of statistical hypotheses and of other
simplifying assumptions. Most importantly, the derived expressions for MSD cross-sections
are clearly different. In general, it can be said that the relationships between the various
MSD theories are only partially understood.

In this paper we will propose a quantum-mechanical framework that clarifies the simi-
larities and dissimilarities of the various MSD models. A salient feature of this framework is
that we consider two possible, and physically different, randomness postulates that provide
a foundation for a statistical MSD theory. The first postulate, that we call leading-particle
statistics, supposes that at each step the leading particle can create many configurations
from the given one, and that this process can be described in a probabilistic fashion. This
idea of branching or of a “garden of forking paths” matches very well with the classical
physical intuition and provides an explanation for the widespread occurrence of Markov
chain concepts in work on nuclear reactions far from equilibriumg). The second statistical
postulate, denoted residual-system statistics here, assigns the randomness properties not
to the leading particle but to the residual nucleus, by assuming a random configuration
mixing. This type of statistics was first proposed by 10y,

On this quantum-statistical basis, we will construct a new leading-particle statistics
theory of MSD reactions, of which the FKK model is a special case. This implies that
the FKK model cannot be well interpreted as a simplification'?) of the TUL model, since
the latter has a fundamentally different physical basis, viz., residual-system statistics.
Nevertheless, it will be shown that in certain cases different physical assumptions may
still lead to the same expressions for MSD cross-sections. Finally, we will indicate how the
semi-classical approaches can be understood in a quantum-mechanical context.

2 The MSD Born Series

In this section we give two expressions for the MSD cross-section distributions that
are representative of the MSD reaction process before any statistical hypothesis has been
introduced. The first expression corresponds to the general case whereby all residual
interactions have been included, whereas the second one is a limiting case of the first
and gives a description purely in terms of independent particle states. The latter form is
of interest, since it provides the link with the widely used semi-classical pre-equilibrium
models as well as with computer implementations of the FKK model. We will restrict
ourselves to nucleon-induced inelastic scattering and charge exchange. Furthermore, we
assume the leading particle to have no internal structure (i.e., its nuclear eigenstate can
simply be omitted). This is to avoid an overburdening of the notation that would divert
the attention from the more important statistical issues. A generalization to other reaction
types poses, in principle, no problems.
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2.1 Hamiltonian and Eigenstates

The total Hamiltonian that describes the direct reaction process is:

H =Ho+ Hy + K(A)+ Uopi(4) + V, (1)

where Hy is the shell-model Hamiltonian, H; the residual interaction of the residual
nucleus, K the kinetic energy, U,p: the optical potential and V the residual interaction of
the leading particle with the residual nucleus. The explicit distinction between a residual
nucleus and a leading particle is typical both for the description of a direct reaction
process and for models of precompound processesz). It is also essential in the discussion
of statistical assumptions in this paper.

The shell-model Hamiltonian generates a complete set of particle-hole eigenstates |mp),
being anti-symmetrized direct products of A — 1 one-particle states,

Holmp) = Emu|mp), (2)

where m determines the exciton class (mpmh-states), 4 is a running index for the particular
particle-hole configuration within each class and E,,, is the energy of the particle-hole
state. Similarly, the real residual states |n) (with eigenenergies E,) are eigenstates of
H, 041-

Hoyi1|n) = Eyln). (3)

The presence of Hy causes configuration mixing, which is represented by the expansion
of |n) as a linear combination of particle-hole states

n) =D amulmp). (4)

Thus, each particle-hole state |mp) is distributed over the real states |rz) and the
strength of each contribution is determined by the distribution amplitude ay,,. If H;
vanishes, ay,, = émpu,n, corresponding to no configuration mixing.

The dynamics of the leading particle is described by a distorted wave x)
[K(4) + Uopt( A)]IxH(K)) = BxlxH(K)), (8)

where Fy is the relative kinetic energy. Together with their bi-orthogonally conjugated
counterparts )2("'), they form a complete and orthonormal set.

2.2 The Cross-Section Distribution

As discussed in detail in ref.'), standard perturbation theory gives us the cross-section
distribution, a convenient tool in the description of multi-step direct reactions to the
continuum. For the real nuclear model (i.e., in the presence of H;) the one-step cross-
section distribution is

253



d2o0) 1
Mdm, = LITilole(E - E)

f
= S5 Y alal, (X (ko)(O[V 1) |x ) (K))
f o»

(X X)(LIV10)[x P (ko))S(Es — Es). (6)

X

The corresponding expression for the independent particle model i.e., obtained by
taking the limit H; — 0 is,
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The two-step cross-section distribution in the real nuclear model is
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whereas we have in the independent particle model
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The importance of the above equations lies in the fact that all statistical MSD reaction
models discussed in this paper have Eqs. (6)-(9) as their starting point.
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3 The Statistical Problem: Postulating' Randomness

It is clear from the previous section that the non-statistical expressions for MSD re-
actions are highly complicated, due the presence of quantum interference effects in the
cross-section formulae. This makes it virtually impossible to perform (individual) cross-
section calculations in regions with a high level density. Naturally, it is at this point that
statistical assumptions are introduced in order to remove interference effects (upon en-
ergy averaging) to give relatively simple expressions for the energy-averaged cross-section.
An additional reason to do so is the observation that the experimental characteristics of
MSD reactions are rather simple, and can be reasonably well predicted by straightforward
semi-classical models or even by systematics®?3).

3.1 Different types of randomness

From the structure of the total Hamiltonian (1) it follows that there are two candidates
for generating the statistical properties desired for manageable pre-equilibrium reaction
theories: the residual interactions H; and V, respectively. With these interactions we can
associate two physically different types of randomness:

1. leading-particle statistics. The interaction of the leading particle with the nucleus
is modeled by V. If it is assumed that in a certain energy interval many states
can be created by the leading particle, and that the corresponding matrix elements
vary widely both in magnitude and sign, we obtain what we will call leading-particle
statistics. Actually, this is the intuitive picture behind most of the semi-classical
pre-equilibrium models.

2. residual-system statistics. The interactions within the residual nucleus are given by
H. If it is assumed that the resulting configuration mixing has a random character,

[m) |}

Figure 1: Leading-particle statistics: many |n)-states can be created in a random manner
by the leading particle from a given state |m).

255



we have what we will call residual-system statistics. This type of randomness lies
at the basis of the MSD theories of Tamura ef al.”) and of Nishioka et al. ®) and
relates to recent studies of quantum chaos in nuclei'®%).

Below we will discuss the formal expressions for the respective statistical hypotheses.
In subsequent sections we will explore their consequences for theories of MSD reactions.

3.2 Leading-Particle Statistics

Leading-particle statisticsls) supposes that V' connects a given nuclear state to many other
nuclear states (of the residual nucleus, as depicted in Fig. 1), and that the associated set
of matrix elements is randomly distributed. The residual nucleus is viewed here as a
subsystem of the reacting composite system consisting of residual nucleus plus leading
particle.

Leading-particle statistics can formally be expressed as follows:

> 3 [ [ akadid (0 (ko) VI XD D Qe [ Vm) 56 (ka)) =

m,n m’,n’

1 ~
= 255 O [ [ dcdibmmbam (s — KR ()l IV I x D (0)

m,nm! n!

< D lmIVImIE e)) = 75 3 [ dkal (29 o)l (nlV m) D o)) (10)

The bar denotes an average over the residual excitation energy E (= Ey, — Ey,),
whereby the averaging interval AE is chosen such that it contains a sufficiently large
number of accessible states. The physical assumption here is that non-diagonal cross-
products of matrix elements cancel upon energy averaging, because these matrix elements
widely vary both in magnitude and sign and therefore can be considered to be random
variables. Egq. (10) refers to the intermediate steps in a multi-step process. A similar
postulate for the final steps will be used whereby x occurs instead of Y. As a consequence
of the assumed two-body nature of V, there is at most a 1plh difference in complexity
between the |m) and |n) states of the residual nucleus. Thus, a special instance, important
for the first step, of Eq. (10) is:

S5 [ [ dladi (R0 0ea) 11V 10) D 06)) (D (ea) 01V 1) 569 () =

= 5 2 [ BP0 VIO k). (1)

The above form of statistics resembles that of Ref. '7), but here it is worked out for
MSD rather than for multi-step compound reactions. The difference lies in whether or not
it makes sense to retain the distinction between a leading continuum particle and other,
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slower, particles in the composite nuclear system. Leading-particle statistics is a necessary
condition for the —both conceptually and computationally attractive— convolution-type
structure of the FKK model and the generalized exciton models.

3.3 Residual-System Statistics

This type of ra.ndomnesss’m) is based on the properties of the residual nucleus alone, in
other words, its existence is not related to the particular dynamics of the reaction. For
sufficiently high excitation energies E, the spectrum of the residual nucleus contains many
states within a relatively small interval AF around E,. For each state, we expect the linear
combination (4) to be very complicated. Now, residual-system statistics is introduced
by assuming a random configuration mixing, i.e., the amplitudes ay,, are supposed to
be elements of a random probability distribution. As a consequence, the non-diagonal
elements vanish upon energy averaging:

Za;,u,a;;wa(En ~E,) = 5,,,,,,,5““,2 lan, ,|26( E, — E.) (12)

the bar denoting the average over the residual excitation energy. More detailed discussions
of the nuclear structure aspects concerning the distribution of the amplitudes can be found
in Refs. 18_22). In this paper, we assume the above statistical hypothesis to be valid and
apply it to the previously derived MSD cross-section distributions.

As an illustration, let us consider the one-step cross-section distribution (6). Upon
energy averaging, the non-diagonal terms vanish and the distribution e¢5,(E;) =
Sonlak [?6(F, — E;) can now be interpreted as the relative contribution of the model
state |1p) to the real level with energy E,. The statistical mixing between the particle-
hole model states and the real nuclear states is depicted in Fig. 2. It is imagined that

o

Cuh

le

| |
1w E, 1,
— E

t I
1y, 1y,

Figure 2: Residual-system statistics: the dashed lines represent the particle-hole states,
each contributing differently to the real nuclear state (solid line) according to some random
distribution (here: a Lorentzian).
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around each particle-hole state a probability distribution ¢y, is given, its width being a
measure for the magnitude of the residual interaction H;. Then, the contribution of each
particle-hole state to a real state is represented by the value of ¢;, at the considered ex-
citation energy. Existing examples of the application of residual-system statistics are the
TUL and the NWY models, which will be discussed later.

3.4 Generating simple MSD models

Even with the introduction of statistical hypotheses, the quantum MSD theories tend
to become quite complicated. On the other hand, as already pointed out, experimental
data concerning MSD reactions display a simple, smooth structure and are fairly well
explained by simple approaches. In addition to the mentioned statistical postulates, we
will therefore also investigate further approximations that are useful to obtain simple MSD
models. The most important of these are the on-shell approximation and the independent-
particle limit. With these ingredients, it will be sketched how one can generate a variety
of different theories that includes both existing and new MSD models. In particular, it is
possible to give a quantum-statistical interpretation of the phenomenological models that
are most widely used in practice.

4 The One-Step Cross-Sections

4.1 The Real Nuclear Model

The cross-section distribution for the first step given by Eq. (6) can now be averaged over
the final energy using either leading-particle statistics (11) or residual-system statistics
(12). Recalling the previously discussed physical difference between the two hypotheses,
we come to the interesting conclusion that in either case the same expression for the
averaged one-step cross-section is found:

25(1)
:lingk = 5 p1u(E) (X X1V 10) X (ko)) ?, 13)

where the true partial level density p,,, is defined by

ﬁmp = Cmn(Ea:)- (14)

This coincides with the expression obtained for the TUL model in ?) and for the NWY
model in®), although there it was specifically associated with residual-system statistics.

In the practical implementation of (13) by the computer code ORION-TRISTAR?®),
the diagonal terms of Eq. (6) are averaged over an energy interval, whereby the distribution
c1,(F) of Eq. (12) is taken to be a Gaussian or a Lorentzian. The DWBA cross-section
is calculated for each particle-hole state and the result is multiplied by the corresponding
statistical factor (¢f. Fig. 2). Repeating this procedure for some neighbouring values of
E_ yields the averaged result (13).
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4.2 The Independent Particle Model

Also the independent particle model leads to an interesting finding, since Eq. (7) shows
that in this case there are no interference effects to be destroyed and, thus, no randomness
hypothesis whatsoever is necessary to obtain the desired result. In this case, the energy-
averaged one-step cross-section becomes

“d20(1)
deEk = 25 2 O LAV IOX ko)) . (15)

We see that in the independent particle model the individual DWBA cross-sections
have equal weights in the averaged cross-section. This is in contrast to the previous case
where each DWBA cross-section is weighted by a factor ¢;,(E;). Eq. (15) can be rewritten
in the equivalent form

d?a(1) o1k
dQdEy = p1p1n(E2)|(x() (k) [(1p1|V[0)|x(+) (ko)) |2 P , (16)

where p1p1n(E;) denotes the particle-hole model level density of the residual nucleus.
Usually it is estimated by the Williams formula?*). In the computer code of Bonetti et
al.?®), Eq. (16) has been implemented as the one-step cross-section of the FKK model.
This is done by decomposing Eq. (16) into different transferred angular momenta and
estimating the average for each angular-momentum value by drawing a small sample.

In sum, for the real nuclear model we find that both leading-particle statistics and
residual-system statistics lead to the same expression for the one-step cross-section. For
the independent particle model we do not even need a statistical assumption to obtain
the desired energy-averaged result. The model level density p differs from the true level
density p and therefore Eq. (16) differs from the TUL, NWY and leading-particle statistics
models already in the first step. In the limit H; — 0 the probability distributions ¢1,(E;)
of Fig. 2 reduce to delta functions and, consequently, Eq. (13) will then coincide with Eq.
(16).

4.3 A computational illustration

As already pointed out, Eqs. (13) and (16) have both been implemented as part of a
multi-step direct computer program, in the TUL code of Tamura et al.?®) and in the
FKK model code of Bonetti et al.?®), respectively. As an illustration, we have carried
out some calculations with these computer codes and the results are presented in Fig. 3.
Here, a comparison is given between the calculated one-step cross-sections, for inelastic
proton scattering on 58Ni at 65 MeV of incident energy and 51 MeV of outgoing energy.
For the sake of comparison, the input parameters were made equal as much as possible
(same optical model, same maximum {-value for distorted waves, etc.). In the FKK code
the energy average is taken over an interval of 20 MeV. The distribution ¢y, has been
taken in the TUL code to be a Lorentzian with a width of 4 MeV which is also the used
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Figure 3: Double-differential one-step cross-sections for *®Ni(p,p’) at 65 MeV incident
energy and 51 MeV outgoing energy. The solid line is the FKK result, the short-dashed
line is the TUL result with a width of 4 MeV, and the long-dashed line is the TUL result
in the limit of zero width.

averaging interval. In the figure we have also displayed the result for a distribution width
that is virtually zero, thus computationally mmulatmg the independent particle limit. The
experimental data are from Ref.%®).

It is perhaps helpful to add a remark on the calculation of the true and model level
densities p and p. The difference between them is that p includes the configuration mixing
of the residual states, whereas p neglects this effect. The FKK code uses the model level
density p, for which the Williams formula is generally used. The TUL code uses the
true level density p. Here, a problem is that this is the concept that naturally occurs
in the theory, but it is very difficult to give an adequate computational prescription for
it. Only a few recent papers deal with this problem?7>2%), In our calculations, we follow
the suggestion of Tamura et al. who estimate p by an energy average over Lorentzian
distributions.

A first conclusion from the figure is that all models —and we recall that the TUL result
also represents that of the NWY model and of our leading-particle statistics theory—
indeed predict that the first step provides the major contribution (say, 80 per cent of
the total cross-section) to the MSD cross-section. This reconfirms- the results from the
many studies done on the basis of the generalized exciton models. The various models
also roughly predict the same shapes and absolute values, although at a more detailed
level there are clear differences. The independent-particle limit of the TUL code should,
theoretically speaking, yield the same result as that of the FKK code. That this is actually
not the case can therefore not be attributed to differences in the underlying physics of
the models, but it is rather located in more practical aspects like different choices for
various model parameters that are embedded in the computer codes. Accordingly, the
results presented should not be taken as a detailed comparison of MSD-theories with
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experimental data. The figure as a whole shows that practical parameter choices are at
least as important as physical differences in the implemented MSD theories and, thus,
that a proper computational comparison of theories is not simple and needs to be carried
out with care. Accordingly, a more thorough model and code comparison for the quantum
MSD theories would be very useful.

5 The Two-Step Cross-Section: Leading-Particle
Statistics

In the previous section it has been demonstrated that different physical routes lead to
more or less the same first-order expressions. We will see, however, that the descriptions
for the two-step process show more diversity. In this section, we will give the various
two-step results that have their physical basis in leading-particle statistics, whereas the
corresponding results for residual-system statistics are discussed in the next section. For
detailed derivations we refer to ref.').

5.1 The General Leading-Particle Statistics Theory

Our starting point is Eq. (8) and we employ the usual never-come-back assumption by
supposing that the dominant process is that the leading particle creates a new particle-
hole pair, leaving the rest of the nucleons as spectators. Then, applying leading-particle
statistics on the intermediate and the final states yields the result:

a2
;;d;k = % [ 4B EDpuEL [ dia 16 K1VION D )
x . (D ) (Ll 0) X (ko)) [2. (17)

E — El — Ei, +ic

We stress that although the distribution amplitudes a7, and a{lu) , have been aver-
aged over energy, no random configuration mixing was used to eliminate the associated
interference effects.

5.2 The FKK model as a Simplified Leading-Particle Statistics Theory

The FKK model®) can be viewed as a simplification of the above leading-particle statistics
theory '®). An attractive feature of the FKK model is its simple convolution structure,
which is not present in the above equation as a result of the occurrence of the Green
function. The basic ingredient to obtain this convolution structure is the use of the on-shell
approximation, which physically corresponds to the classical idea of energy conservation
at each step. Except for the additional use of this approximation, the derivation of the
FKK result employs the same assumptions as in the previous subsection. It reads:

d? @ 1plh
o = ™ [ Sapk)pan B BN TP TAVIO )P
h
x (RO E)[{IpTAVIOX® (ko)) 2 (18)
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This is basically the two-step result for the FKK theory (see Eq. (2.5) of Ref.%)) and
the expression that has been implemented in the computer codes of Bonetti et al.25) and
of Marcinkowski et al.?). There are two differences with the result given in the original
FKK papers). First, these authors introduced a further simplification by replacing x by
X, a choice argued in more detail in®®), but criticized in'!). Although computationally
very convenient (and present in the mentioned computer programs), in our opinion this
assumption is likely to constitute an oversimplification, since it would imply that the
probability of emission equals that of particle-hole creation. The second difference lies
in an additional summation over neighboring particle-hole states in the original FKK
expression. This summation is not present here as a result of our use of the never-come-

back assumption. We mention in passing that it does also not occur in the implementations
of?%) and??).

Further, we point out that the independent-particle limit is not a crucial element in
the above derivation, although it is employed in the computer codes of25) a.nd29). In other
words, the FKK result for the real nuclear model can be obtained by replacing p by /.

The derivation given in') demonstrates that the FKK result can be seen as only based
upon leading-particle statistics. There is no need at all to invoke residual-system statistics,
although this was explicitly mentioned in®). In addition, we have shown that the FKK
model is a simplification of a more general leading-particle statistics theory, resulting from
the additional introduction of the on-shell approximation. Both leading-particle statis-
tics and the on-shell approximation are necessary to obtain its characteristic convolution
structure.

5.3 The generalized exciton model

In this subsection we will sketch how the generalized exciton model ?), which is still
widely used in practice but has a semi-classical and phenomenological character®), can be
interpreted in terms of our theory. Basically, it can be viewed as a classical interpretation
and a further phenomenological simplification of the FKK model. We point out that a
rigorous derivation will not be possible, because the exciton model treats the precompound
process as a whole and therefore embodies a mixture of multi-step compound and MSD
concepts. Nevertheless, its physical ideas can be qualitatively explained and its main
characteristics, in particular the shape of the angular distributions and of the energy
spectra, can be semi-quantitatively understood in terms of the present quantum-statistical
framework'®),

Several of the physical ideas behind the generalized exciton model can be interpreted
in a straightforward manner. It consistently employs particle-hole model states and thus
neglects the residual interaction Hy within the final nucleus. Accordingly, residual-system
statistics does not play an essential role in the exciton model. Indeed, the picture behind
the generalized exciton model is that the fast incident particle can at each step create many
different configurations in a probabilistic manner. This idea is formally expressed in our
leading-particle statistics postulate. That Eq. (10) is indeed a proper quantum-statistical
formalization of the MSD part of the exciton model is corroborated by comparing it to the
statistical hypothesis proposed by 17) for (what now would be called) multi-step compound
reactions and its attempted extension to the leading-particle concept in2). Furthermore,
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the exciton model assumes that classical conservation of energy applies to all transitions,
these being expressed in terms of particle-hole model states.

Thus, the MSD part of the exciton model can be reformulated in a quantum-mechanical
framework in a manner that is truthful to its conceptual ideas by employing: (i) leading-
particle statistics; (ii) the on-shell approximation; (iii) the independent-particle limit.
Hence, this reformulation is given by Eq. (16) for the first step and by Eq. (18) for the
second step. This conclusion has some interesting corollaries’®). First, in contrast to what
is often stated in exciton-model studies, no equiprobability assumption for the creation of
different configurations is being invoked. Second, no statistical assumption is needed in
obtaining the one-step expression, since it is simply proportional to the sum of the squared
residual DWBA matrix elements within the considered energy interval. Finally, and most
importantly, the above discussion shows that the FKK model (as we have interpreted
it here) represents the proper quantum-mechanical reformulation of the MSD part of the
exciton model, in the sense that it embodies the same conceptual physical ideas, but avoids
the classical and ad hoc aspects of the exciton model.

We will now shortly discuss the phenomenological simplifications used by the general-
ized exciton model and to be introduced into Egs. (16) and (18). A peculiar feature of the
exciton model is that it displays a convolution-type structure for the double-differential
cross-sections, but unlike the FKK model only for the angle dependency and not for the
energy-dependent part 2*). The reason for this is mainly historical: the original exciton
model was an extension of statistical compound ideas!) and the leading-particle concept
was only introduced later on and is therefore something of a patch-up. We can obtain this
structure from Egs. (16) and (18) by assuming (as is indeed done in the generalized exci-
ton model) that the occurring averaged matrix elements factorize into an angular and an
energy-dependent part. An additional simplification is then introduced by not estimating
the angle-dependent factor (called the “scattering kernel” in phenomenological work) from
DWBA theory, but from classical isotropic (in the nucleon-nucleon center-of mass system)
scattering or, in later work, from the Kikuchi-Kawai expressions”). These assumptions
generate from Egs. (16) and (18) the angular distributions as given by the generalized

exciton model. Although very simple, they nevertheless produce reasonable predictions
4,5).

In order to explain how the exciton model obtains expressions for the emitted energy
spectra from Egs. (16) and (18), even more simplifications are needed. The intermediate
matrix elements are replaced by global quantities independent of the intermediate energy
(albeit that we do not need this assumption for the first step). As a result, the n-step
cross-sections become proportional to pppnn(Ez). Next, an additional average over E is
carried out and the final step matrix elements are then estimated from the inverse process
using detailed balance considerations. This yields the energy dependence of the exciton-
model emission rates as discussed in the Appendix of®!). Although these procedures are
not very convincing in the MSD context (as they clearly have their roots in compound
concepts), they again yield reasonable results for the emission spectra. It is to be noted,
however, that the main precompound contribution stems from the first step.

From this discussion it is evident, first, that the generalized exciton model is physically
speaking a simplified version of the leading-particle statistics theory and especially of the
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FKK model and, second, that the estimates and simplifications used in the final expressions
of the exciton model are very crude. Accordingly, if one adheres to the physics as embodied
in the exciton model, we would recommend to employ FKK model implementations for
practical applications.

6 The Two-Step Cross-Section: Residual-System
Statistics

In this section we will outline the consequences of the residual-system statistics hy-
pothesis (12). Using the previously developed framework both the TUL7) and the NWY?®)
models can be derived'). We will also mention the implications of the on-shell approx-
imation in conjunction with residual-system statistics, and give a comparison with the
leading-particle statistics results.

6.1 The TUL Model

Here, the formal development is completely analogous to that of Sec. 5, with the excep-
tion that we use residual-system statistics instead of leading-particle statistics. Assuming
residual-system statistics for the final states and the intermediate states (this is called the
adiabatic approximation), we find for the two-step energy averaged cross-section:

24(2)
niE, 2.2 [ 4B (BDpED | [ a1V I0) D er))
x : ()| LIV I0) XM (o)) P (19)
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Together with Eq. (13) for the one-step cross-section, this constitutes the TUL model.
Taking the independent-particle limit here does not make much sense, since the presence
of H; is necessary to generate the statistics, in contrast to the leading-particle statistics
case.

Comparing Eq. (19) with the analogous leading-particle statistics cross-section (17)
demonstrates that leading-particle statistics is a stronger assumption than residual-system
statistics. Equation (17) resembles, but is simpler than the TUL equation (19), since in
the former the interference effects related to the leading particle are also eliminated (z.e.,
the integral over k; is outside the square), while the residual-system statistics employed
in this section merely destroys those of the A — 1 particle states. This is physically
understandable, because leading-particle statistics makes assumptions about the behavior
of the leading particle, whereas residual-system statistics does not.

6.2 The NWY Model

The NWY model®) is identical to the TUL model for the first step. For the intermediate
stage of the second step the NWY model assumes that additional particle-hole creation is a
much faster process than residual configuration mixing (while the TUL model takes it the
other way around). This so-called sudden approximation gives the two-step cross-section:
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where we have used a more explicit particle-hole notation. In contrast to the other two-
step models we have discussed so far, the two-step cross-section of the NWY model employs
a statistical energy average only once. As a consequence, the final state ‘remembers’ which
particle-hole pair was created in the intermediate step. Thus, the NWY model uses a
weaker statistical hypothesis than the other models and gives therefore rise to a more
complicated expression.

6.3 Residual-System Statistics and the On-Shell Approximation

Previously we have argued that in conjunction with leading-particle statistics the on-shell
approximation yields a simple and transparent model, i.c. the FKK model. Combining
residual-system statistics and the on-shell approximation gives the two-step cross-section:

d20(2)
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Accordingly, residual-system statistics together with the on-shell approximation leads
to a model that is simpler than the full TUL model. It is interesting to compare the
above result with the FKK result which was obtained by using leading-particle statistics
combined with the on-shell approximation. We see that in the case discussed here there
is energy conservation in the intermediate step (due to the on-shell approximation), but
there are still interference terms left regarding the intermediate angle related to the leading
particle. This is to be expected because residual-system statistics does not say anything
about the leading particle. Hence, it does not lead to a convolution structure as is the
case in the leading-particle statistics theory. This confirms that the structure of the FKK
model cannot be obtained by means of residual-system statistics, and thus that the FKK
theory is essentially a leading-particle statistics theory.
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7 Summary

The analysis given in this paper intends to provide an integrated perspective on the
similarities and differences between the many current theories of MSD reactions in the con-
tinuum. We have argued that, starting from the framework of distorted wave theory, there
are essentially two different possibilities to generate a statistical MSD theory. The first
is to introduce a randomness postulate that we have denoted leading-particle statistics.
Here, it is assumed that at each step many states are accessible to the leading continuum
particle and that the associated residual matrix elements are randomly distributed. The
second possible randomness postulate, called residual-system statistics, is to assume that
there is a random configuration mixing due to the residual interactions within the residual
nucleus. The latter hypothesis does not make any statistical assumption about the inter-
actions of the leading particle. These physically different randomness postulates generate
two distinct classes of statistical MSD theories.

As discussed in Sec. 3, residual-system statistics is related to H, and leading-particle
statistics is related to V. Employing these statistical hypotheses produces a variety of
different MSD models. Using residual-system statistics yields the TUL model7) as well as
the NWY model®). The difference is that the former applies residual-system statistics at
all steps (the ‘adiabatic’ approximation), while the latter applies it only in the final step,
because it was argued in®) that in the intermediate steps particle-hole creation is a faster
process than configuration mixing (the ‘sudden’ approximation). This is shortly discussed
in Sec. 4 for the first step and in Sec. 6 for the second step.

We have presented a new leading-particle statistics theory for MSD reactions. Its
one-step cross-section is given by Eq. (13) and its two-step cross-section by Eq. (17).

Interestingly, the one-step expression (??) of our leading-particle statistics model is
identical to that of the TUL and NWY models, although the physical basis of the deriva-
tion is entirely different. In addition, it has been shown that no statistical hypothesis is
needed in obtaining the first-step result (16) of the independent particle model. These con-
clusions are of practical importance, because the first step provides the major contribution
(typically 80 per cent, as also illustrated in Sec. 4.3) to the MSD cross-sections.

Another interesting conclusion is that the above leading-particle statistics theory re-
duces to the FKK model if we in addition employ the on-shell approximation and take
the independent-particle limit (i.e., neglect Hy), see Sec. 5.2. This shows that the FKK
model®) is to be understood as being based upon leading-particle statistics. Hence, it is
physically not justified to view the FKK model as a simplification of the TUL model,
as argued in''), since the latter employs residual-system statistics. In other words, the
TUL model needs to employ the presence of Hy to generate its statistical foundation,
whereas the FKK model can completely neglect this term of the Hamiltonian. We have
furthermore indicated (Sec. 5.3) how the semi-classical approaches such as the generalized
exciton models2’3) can be interpreted as further phenomenological simplifications of the
leading-particle statistics and FKK models. Accordingly, the relationships between the
various MSD models can be represented as in Fig. 4. Here, LPS stands for leading-particle
statistics, RSS for residual-system statistics and IPM for independent particle model.
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Figure 4: Family tree of statistical MSD-theories
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INFLUENCE OF COLLECTIVE EXCITATIONS ON
PREEQUILIBRIUM AND EQUILIBRIUM PROCESSES

A.V. Ignatyuk, V.P. Lunev
Institute of Physics and Power Engineering, Obninsk, USSR.

ABSTRACT

In all models used for calculations of nuclear cross sections, the
reaction mechanisms are separated into one-step and multistep direct,
multistep compound, preequilibrium and compound equilibrium. However,
essential variances in estimates of the direct and preequilibrium process
contributions still exist. This paper presents a demonstration of the
connection of these variances with the influence of collective

excitations on the direct and compound processes.

In all models used for calculations of nuclear cross sections
the reaction mechanisms are separated on one- and multistep
direct, multistep compound preequilibrium and compound equilibrium
/1/. But essentlal variances in estimations of the direct and
preequilibrium processes contributions exist nowadays. We want to
demonstrate the connection of these variances with the iIinfluence
of collective exclitations on the direct and compound processes.

Integral contribution of the direct processes

The results of calculations of Integral cross sections for
all three types of processes mentloned above are shown in Figs.
1-3. The dashed curves present the result of Feshbach-Kerman-
Koonin approach with the direct processes contribution estimated
emplirically from the observed asymmeiry of the angular
distribution of secondary particles /2/. The solld 1lines are the
results of more complex and consistent analysis, where the direct
processes cross sections are calculated In terms of the couple
channel and DWBA approaches /3/.

The direct transitions probabllities are determined by the
dynamic deformation parameters f, of the multipole coherent
nuclear exclitations /4/. For the nuclel under consideration there
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Fig.1. The contributions of dilfferent reaction mechanlsms to the
inelastic scattering cross sectlons as a function of Iincident
neutron energy for the Pe-56 mucleus. The dashed lines represent
the results of FKK approach and solid lines are the calculations
taking into account the collective effects.
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Fig.2. The same as fig.1 for Nb-93.
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Fi1g.3. The same as fig.1 for Bi-209.

is relatively detalled experimental Information about these
parameters in the excitation energy region up to 7 MeV. These data
allows to calculate correctly the contribution of the direct
processes to the neutron scattering cross sections for incident
energy up to 14 MeV. As the incldent particles energy increases
the pigml and glant resonances of different multipolarity as well
as superposition of these resonances with low-laying states begin
to contribute to the direct transitions.

Large uncertalnties exist nowday in the calculations of the
parameters §, especlally for multipolarities A > 4 /3/. These
uncertainties Immediately transform into the ambiguities of the
calculated cross sections for direct transitions. Also there are
some problems concerning the calculations of multistep direct
transitions via quasideutron intermediate states /5/. Nevertheless
the general conclusion about the dominant role of collective
excitations In the description of the direct processes seems
doubtless proved /3, 5, 6/.
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Collective enhancement of the level density

The 1level density of excited nuclel 1s one of the main
characteristic 1In the statistical description of compound
processes. For 1ts calculation the Fermi gas model most frequently
is used with the parameters obtained from fitting the observed
densities of neutron resonances and low-laying levels. But such a
model does not considers correctly the shell effects, pairing
correlations of the superconducting type and collective nuclear
excitations. These effects must be 1Included in the consistent
analysls of experimental data. That can be done iIn frame of micro-
scopic approaches based on the generalized superfluid model /7/.

Fig. 4 shows the results of the level density calculations in
different approaches for the 7r nucleus. The effectlve pairing
interaction is reliably qualified from the odd-even differences of

15— Zr—91
) A
j 4 e
) o1 i
- S
10 -
) /i
"
E -
5]
0 TI TV T T T T T T T P T T T i v rrrrrrriT
0 4 8 12

U, MeV

Fig.4. Energy dependence of states denslity for the Zr-91 nucleus.
The histograms shows the microscoplcal combinatorial calculations
of quasiparticle's excltatlons (dashed lines) and with addition of
collective modes (solid 1lines), the dot-dashed line 1s the
phenomenological description, dark and bright circles are the
experimental data.
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nuclear masses, therefore the total density calculations of all
possible quasiparticles excltations do not contain fitting
parameters. Still, we can see, that the level density calculated
in this approach do not reproduce the experimental data. We should
use the vibration enhancement of the level density both for low
excitation energies and for region of neutron resonances. The
methods of the collectlive enhancement calculations considered in
Refs. /8, 9/. Only after inclusion of such enhancement we come to
agreement with the experimental data.

In the phenomenological approach developed in Refs. /7,10/ we
use the same relations of the superfluid nuclear model and nearly
the same coefficient of the level density vibration enhancement,
but the correlation functions and the level density parameters are
obtained by fitting the experimental data. As a rule these
parameters are noticeably distinguished from the parameters of the
Fermi-gas model, that describes the same data. Differences of the
phenomenological description and microscopic calculations are
relatively small if we use the same factors of the level density
enhancement.

In analysis of the description of collective effects in highly
excited nuclel 1t 1is of more Interest to compare the collective
enhancement factors than the total 1level densities. Fig. 5 shows
these factors calculated 1In different approaches /9/. All
microscopic calculations prove 1nvalidity of the adiabatic
approximation for vibration modes In highly excited nuclel and the
necessity of dumping for the vibration enhancement factors as the
excltation energy 1Increases. This 1s also indicated by
"experimental® data obtained from the ratio of the observed level
densities to the calculated ones 1In model without collective
effects.

Recently new experimental information for the level density
was obtained from the neutron spectra analysis in the iron mass
region /11/. These data are shown 1in Fig. 6 together with the
phenomenological description of neutron resonance density and
low-laying levels. There are many similar examples of the neutron
spectra and excitation functions analysis /11/. These examples
demonstrate a good agreement between all sets of experimental data
and the generalized superfluld model predictions.
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Fig.5. Fnergy dependence of the vibration enhancement factors for
Fe-56 as a function of excltation energy. The dot-dashed lines are
the adiabatic estimation, the dashed line 1s the phenomenological
description 710/, the histogram is the combinatorial calculations
/9/, the symbols are the evaluations from experimental data.
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Fig.6. Level density data for Mn-54 and Mn-56 obtained from (n,p)
and (n,a) spectrum analysis. The solid 1line shows the
phenomenological description.



Influence of collective effects on the state
densities with a fixed number of quasiparticles

If we want to achleve a consistent description of
preequilibrium and equilibrium processes, the calculations of
quslparticle excitations 1n preequilibrium stage must be realized
in the same approach as the total level density description.
Within the <framework of generalized superfluid model alongside
with 1the particle-hole excitations the particle-particle and
hole-hole excitations should be consldered, as well as collective
excitations, which correspond to coherent superposition of the
Interactive quasiparticle excitations. Stated differently,
together with the diagrams in Fig. 7a usually considered in
preequilibrium models /1, 2/, the diagrams in Figs. 7b and Tc
should be taken into account.

ol Iad B

a) b)

Fig.7. Diagrams for n — n+2 transitions in the superfluld model
(a,b) and with the collectlve excitation Inclusion (c).

Fig. 8 demonstrates the differences of the 3- and 5- quasi
particles state densities connected with account particle-particle
and hole-hole excitations as well as collective modes. Inclusion
of collective effects 7results 1In n-quasiparticle excitation
threshold's decrease and a certain increase in their density for
low energy region. For higher energies the density of these
exclitations does not differ significantly from the predictions of
the "pure" superfluid model /12,13/.

A more complicated problem 1s consideration of mean
lifetimes of n-quasiparticles excitations. Using usual separation
of active and passive quasiparticles the density of accessible
states can be obtained on the basis of the relationship:

U
w;’l(U)= m;l" (U&f de w, (g)wg(e)w, ,(U-€)
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Fig.8. Energy dependence of the state densities for 3— and 5-quasiparticle excitations in Zr-91:
a) p—h excitation only (dashed lines) and all quasiparticle excitation (solid lines);
b) quasiparticle excitations only (solid lines) and collective modes included (dashed lines).
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Collective effects should be 1ncluded 1Iin the corresponding
calculations of the partial densities. On the other hand, for the
simplest configurations, n = 3 for example, the direct
combinatorial calculations of the densitles corresponding to

diagrams Flg. 7 <can be realized. Such calculations will
demonstrate the influence of the Paull's principle limitations and
the discrete quasiparticle spectrum structure on the fransition
state densities.

But 1n 1lifetime calculations the issue of separating the
density of accessible states and averaged matrix elementi remains
to be settled. After inclusion of collective excitations this
question became more Important due to their higher values of
transition probabilities 1In comparing with quasiparticles
transitions. To answer on these questions we are going to make
calculations of the mean lifetimes for 3-quasiparticie excitations
with realistic residual interaction. We think that only such

approach will able to solve consistently the existing problem of
the preequilibrium processes description.
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