ACTIVATION CROSS SECTIONS FOR THE GENERATION OF
LONG-LIVED RADIONUCLIDES OF IMPORTANCE IN
FUSION REACTOR TECHNOLOGY

Summary Report of the Second IAEA Research Coordination Meeting
hosted by
TSI Research, Del Mar, California, USA
29 to 30 April 1993

Edited by A.B. Pashchenko
IAEA Nuclear Data Section
Vienna, Austria

November 1993
ACTIVATION CROSS SECTIONS FOR THE GENERATION OF
LONG-LIVED RADIONUCLIDES OF IMPORTANCE IN
FUSION REACTOR TECHNOLOGY

Summary Report of the Second IAEA Research Coordination Meeting
hosted by
TSI Research, Del Mar, California, USA
29 to 30 April 1993

Edited by A.B. Pashchenko
IAEA Nuclear Data Section
Vienna, Austria

November 1993
ABSTRACT

The present report contains the Summary of the Second IAEA Research Co-ordination Meeting (RCM) on "Activation Cross Sections for the Generation of Long-Lived Radionuclides of Importance in Fusion Reactor Technology" which was hosted by TSI Research at Del Mar near San Diego and held from 29 to 30 April 1993. This RCM was organized by the IAEA Nuclear Data Section (NDS), with the cooperation and assistance of local organizers from TSI Research and Westinghouse Hanford Company.

The papers prepared and presented by the participants at the meeting has been published as separate report INDC(NDS)-286/L.
Table of Contents

1. Introduction 5
2. Organization of the Meeting 5
3. Meeting Proceedings 5
4. Conclusions and Recommendations 6
5. Time and Place of Next Meeting 6
6. Acknowledgement 6

Attachments

Attachment 1: Meeting Agenda 7
Attachment 2: List of CRP Participants 11
Attachment 3: List of Attendees 13
Attachment 4: Conclusions and Recommendations 17
(1) Introduction

The second Research Co-ordination Meeting (RCM) of the Agency's Co-ordinated Research Programme (CRP) on "Activation Cross Sections for the Generation of Long-Lived Radionuclides of Importance in Fusion Reactor Technology" was organized by the IAEA Nuclear Data Section (NDS) with co-operation and assistance of local organizers from TSI Research (Dr. E.T. Cheng) and Westinghouse Hanford Company (Dr. F.M. Mann) and held at Del Mar near San Diego, California, U.S.A., from 29 to 30 April 1993.

The purpose of this meeting was to discuss and evaluate the results of the researches carried out by each participating laboratory under this CRP and to review the status and remaining gaps in the required cross sections for those well-defined activation reactions leading to long-lived radionuclides supposed to be of most importance for radioactive waste disposal and material recycling for fusion reactor materials and, if necessary, to identify further measurements and calculations needed to fill these gaps.

The CRP was started in 1992, and the first Research Coordination Meeting of the CRP was held at the IAEA Headquarters, Vienna, from 11 to 12 November 1992. It has 10 participating institutes from Austria, China, Germany, Hungary, Italy, Russia, United Kingdom and USA. The CRP is expected to be finished after a third RCM in 1995.

(2) Organization of the Meeting

The CRP Meeting was convened in conjunction with the International Workshop on Nuclear Data for Fusion Reactor Technology which was also held in co-operation with the Agency at the same place in the following week, from 3 to 6 May 1993, in order to maximize the interactions between the data developers and users.

The RCM was chaired by Professor H.K. Vonach, and Dr. A.B. Pashchenko acted as the IAEA Scientific Secretary.

The Meeting was attended by 35 scientists from 13 Member States. The meeting agenda, the list of CRP participants and the list of attendees are attached to the summary report as Attachments 1, 2 and 3, respectively.

(3) Meeting Proceedings

The Meeting was opened by Dr. E.T. Cheng from TSI Research. Then the IAEA Scientific Secretary for the Meeting, after welcome address, briefly emphasized the scope and goals of the CRP and objectives of the Meeting.

At the first two sessions of the Meeting (Participants' Reports on Measurements and Theoretical Calculations and Evaluations) each research agreement/contract holder made presentations on the work currently being
carried out under the CRP. Each presentation was followed by extensive and occasionally rather intensive discussions.

At the next session of the RCM the participants discussed activation cross section data needs for fission and fusion reactor technology. Dr. E.T. Cheng presented a very interesting report on "Nuclear Data Needs for Fusion Waste Management". Contributions presented by Dr. P. Oblozinsky, Bratislava, Slovak Republic, and Dr. B.Ya. Guzhovskij, Arzamas, Russia emphasized an important role of charged particle reactions on the production of radioactive inventories in fusion reactor materials.

After these presentations and accompanying discussions, the RCM participants split in three Working Groups for more detailed discussions and for the preparation of extended summary reports. The following Working Groups were formed:

I. Working Group on Experimental Measurements (Chairman: Prof. Dr. J. Csikai).

II. Working Group on Cross Section Calculations (Chairman: Dr. M.B. Chadwick).

III. Working Group on Charged Particle Reactions (Chairman: Dr. P. Oblozinsky).

(4) Conclusions and Recommendations

The main objectives of the second CRP Meeting have been achieved to a large extent and as a result of the discussions, the next steps in the work programme under the CRP have been worked out.

The detailed conclusions and recommendations of the three working groups that were formed during the Meeting are presented in Attachment 4.

(5) Time and Place of the Next Meeting

It was unanimously proposed to have the next CRP-meeting in Russia (either St. Petersburg or Obninsk) in Summer 1995, as two more years are needed for completion of some of the ongoing measurements which still require cooling times of more than one year. It was further agreed to have an informal meeting of the CRP members on the occasion of the 1994 Nuclear Data Conference in Gatlinburg.

(6) Acknowledgement

The CRP meeting participants wish to thank the Agency for focusing much needed attention on the important problems discussed here and wish to thank the staff of TSI Research for the warm hospitality and valuable assistance in conducting the meeting.
INTERNATIONAL ATOMIC ENERGY AGENCY

The Second Research Co-ordination Meeting
on
"ACTIVATION CROSS SECTIONS FOR THE GENERATION OF LONG-LIVED RADIONUCLIDES OF IMPORTANCE IN FUSION REACTOR TECHNOLOGY"

Del Mar, California, U.S.A.

29 to 30 April 1993

AGENDA

Thursday, 29 April

a.m. 08:30 Opening of the RCM

Opening Remarks: E.T. Cheng, TSI Research
A.B. Pashchenko, IAEA

Election of the Chairman
Adoption of the Agenda

a.m. 08:50 Session 1.
Progress Reports by CRP Participants on Measurements.

(1) Prof. Dr. J. Csikai, Debrecen, Hungary: A. Grallert, J. Csikai, S.M. Qaim, S. Sudár: "Some results on the production of long-lived radionuclides in fast neutron induced reactions".

(3) Dr. Y. Ikeda, JAERI, Japan (observer): "Recent measurements on the cross sections for 94Mo(n,p)95Mo(n,np)94Nb, 158Dy(n,p)158Tb, 187Re(n,2n)186mRe, and 182W(n,x)182m2Hf reactions at 14 MeV".

(4) Dr. R.A. Forrest, Harwell, United Kingdom: "Measurements of 14 MeV neutron cross-sections for the production of isomeric states in hafnium isotopes".

a.m. 10:30 Coffee break
a.m. 10:50 (5) Dr. S.M. Qaim, Jülich, Germany: "Radiochemical studies of some long-lived soft β− emitting radioisotopes formed in fast neutron induced reactions".

(6) Dr. LU Hanlin, Beijing, China:
(a) "Measurement of cross sections for the reactions 137-Ba(n,p)Cs-137, 182-W(n,n'a)Hf-178m2 and 193-Ir(n,2n)Ir-192m2 at 14 MeV".
(b) "Cross section measurement for 108-Cd(n,p)Ag-108m reaction".

(7) Dr. M.V. Blinov, St. Petersburg, Russia: M.V. Blinov, A.A. Filatenkov, S.V. Chuaev: "Measurements of some activation cross sections for generation of long-lived nuclides".

a.m. 11:50 Discussion on technical problems with measurements.

p.m. 01:00 Lunch break

p.m. 02:00 Session 2. Progress reports by CRP participants on theoretical calculations and evaluations.

(1) Prof. Dr. H.K. Vonach, Vienna, Austria: "Evaluation of the 14 MeV cross-sections for the reactions 94Mo(n,p)94Nb, 109Ag(n,2n)108mAg, 151Eu(n,2n)150mEu, 153Eu(n,2n)152g+m2Eu, 159Tb(n,2n)158Tb and 179Hf(n,2n)178mHf".

(2) Dr. M.B. Chadwick, Oxford, United Kingdom: "Application of the Feshbach-Kerman-Koonin preequilibrium theory and Hauser-Feshbach theory (FKK-GNASH codes) to isomer production calculations".

(3) Dr. A.V. Ignatyuk, Obninsk, Russia: O.T. Grudzevich, A.V. Ignatyuk, A.B. Pashchenko, A.V. Zelenetsky:
(a) "Consistent calculations of isomer excitation functions in neutron reactions".
(b) "Difference of transmutation cross sections for ground and isomer states".

p.m. 3:30 Coffee break

p.m. 3:45 (4) Prof. Dr. J. Csikai, Debrecen, Hungary: J. Csikai, A. Grallert, Cs.M. Buczko, S. Sudár: "Investigations on the systematics in (n,α) cross sections at 14.5 MeV".
p.m. 04:30 Discussion on predictive power of calculational methods and status of evaluated data.

Friday, 30 April

a.m. 08:30 Session 3. Activation cross section data needs for fission and fusion reactor technology.

(1) Dr. P. Oblozinsky, Bratislava, Slovakia (observer): "Influence of sequential (x,n) reactions on production of long-lived radionuclides in fusion reactors".

(2) Dr. B.Ya. Guzhovskij, Arzamas, Russia (observer): "Review of the activation data for fast charged particle induced reactions".

(3) Dr. E.T. Cheng, Solana Beach, California, U.S.A. (observer): "Nuclear data needs for fusion waste management".

a.m. 09:50 Coffee break

a.m. 10:15 Session 4. General discussion on the future scope of the CRP. Organization of working groups to draft the report of the RCM. Drafting of Meeting Conclusions.

Completion of the RCM Working Group Reports.

p.m. 01:00 Lunch break

p.m. 02:00 FINAL CONSIDERATIONS Discussion of Conclusions and Recommendations. Drafting of the RCM Conclusions and Recommendations. Corrections and Adoption of the Final Report. Adoption of Schedule for Work and Future Meetings. Closing of the RCM.
List of the CRP Participants

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>Fax Number</th>
<th>Research Agreement No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prof. Dr. H.K. Vonach</td>
<td>Institut für Radiumforschung und Kernphysik</td>
<td>Boltzmanngasse 3, A-1090 Vienna, Austria</td>
<td>3191366-482</td>
<td>6242/CF</td>
</tr>
<tr>
<td>2</td>
<td>Dr. LU Hanlin</td>
<td>Chinese Nuclear Data Center</td>
<td>P.O. Box 275 (3), Beijing 102413, China</td>
<td>86-1-935 7008</td>
<td>5060/CF</td>
</tr>
<tr>
<td>3</td>
<td>Dr. S.M. Qaim</td>
<td>Institut für Nuklearchemie</td>
<td>Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany</td>
<td>2461615327</td>
<td>5061/CF</td>
</tr>
<tr>
<td>4</td>
<td>Prof. Dr. J. Csikai</td>
<td>Institute of Experimental Physics of Kossuth Lajos University</td>
<td>Bem tér 18/a, P.O.B. 105, H-4001 Debrecen, Hungary</td>
<td>0036-52-16181 or 0036-52-14050</td>
<td>4882/CF</td>
</tr>
<tr>
<td>5</td>
<td>Dr. G. Maino</td>
<td>Centro di Calcolo del E.N.E.A.</td>
<td>Viale G.B. Ercolani, 8, I-40138 Bologna, Italy</td>
<td>51498151</td>
<td>6416/CF</td>
</tr>
<tr>
<td>6</td>
<td>Dr. M.V. Blinov</td>
<td>V.G. Khlopin Radium Institute</td>
<td>Ul Rentgena 1, St. Petersburg 197022, Russia</td>
<td>(812)5347752</td>
<td>5677/CF</td>
</tr>
<tr>
<td>7</td>
<td>Dr. A.V. Ignatyuk</td>
<td>Fiziko-Energeticheskij Institut</td>
<td>Ploshchad Bondarenko, 249 020 Obninsk, Russia</td>
<td>095-2302326</td>
<td>6719/CF</td>
</tr>
<tr>
<td>8</td>
<td>Dr. M.B. Chadwick</td>
<td>Nuclear Physics Laboratory</td>
<td>University of Oxford, Keble Road, Oxford, UK</td>
<td></td>
<td>5062/CF</td>
</tr>
</tbody>
</table>
9. Dr. R.A. Forrest
 Nuclear Physics and Instrumentation Division
 Building 418
 Harwell Laboratory
 Didcot
 Oxon OX11 ORA
 UNITED KINGDOM
 Fax: 235432916
 Research Agreement No. 5063/CF

10. Dr. D.L. Smith
 Applied Physics Division
 Bldg. D-314
 Argonne National Laboratory
 8700 South Cass Avenue
 Argonne, IL 60439
 U.S.A.
 Fax: 7089722206
 Research Agreement No. 5064/CF
LIST OF ATTENDEES

AUSTRIA
Dr. J.J. Schmidt
IAEA Retiree
Wagramerstr. 5, P.O. Box 100
A-1400 Vienna

Prof. Dr. H.K. Vonach
Institut für Radiumforschung
und Kernphysik
Boltzmanngasse 3
A-1090 Vienna

BELGIUM
Dr. A.J. Deruytter
Bureau Central de Mesures Nucléaires
Steenweg naar Retie
B-2440 Geel

Dr. E. Wattecamps
Bureau Central de Mesures Nucléaires
Steenweg naar Retie
B-2440 Geel

CHINA
Dr. Lu Hanlin
Institute of Atomic Energy
P.O. Box 275(3)
Beijing 102413

GERMANY
Dr. W. Mannhart
Physikalisch Technische Bundesanstalt
Abteilung 7.23
Bundesallee 100
D-38116 Braunschweig

Dr. S.M. Qaim
Institut für Nuklearchemie
Forschungszentrum Jülich GmbH
Postfach 1913
D-52425 Jülich

HUNGARY
Prof. Dr. J. Csikai
Institute of Experimental Physics
Kossuth Lajos University
P.O. Box 105
H-4001 Debrecen
ITALY
Dr. G. Reffo
E.N.E.A. - Centro Ricerche Energia "E. Clementel"
Div. Fis. e Calcolo Scientifico
Via Mazzini 2
I-40138 Bologna

JAPAN
Dr. Y. Ikeda
Fusion Neutronics Laboratory
Department of Reactor Engineering
Japan Atomic Energy Research Institute (JAERI)
Tokai-mura, Naka-gun
Ibaraki-ken 319-11

NETHERLANDS
Dr. J. Kopecky
Department of Physics
Netherlands Energy Research Foundation (ECN)
3 Westerduinweg, P.O.B. 1
NL-1755 ZG Petten

RUSSIAN FEDERATION
Dr. S. Abramovich
All-Union Scientific Research Institute
of Experimental Physics
Arzamas 16
Nizhnii Novgorod 607 200

Dr. M.V. Blinov †
V.G. Khlopin Radium Institute
Ul. Rentgena 1
St. Petersburg 197022

Dr. B.Ya. Guzhovskij
All-Union Scientific Research Institute
of Experimental Physics
Arzamas 16
Nizhnii Novgorod 607 200

Dr. A.V. Ignatyuk
Fiziko-Energeticheskij Institut
Ploshchad Bondarenko
249020 Obninsk, Kaluga Region

Dr. B.D. Kuzminov
Fiziko-Energeticheskij Institut
Ploshchad Bondarenko
249020 Obninsk, Kaluga Region

Dr. G.E. Shatalov
Institut Atomnoi Energii I.V. Kurchatova
Ploshchad Kurchatova
Moscow D-182, 123182
RUSSIAN FEDERATION
Dr. A.G. Zvenigorodskij
All-Union Scientific Research Institute
of Experimental Physics
Arzamas 16
Nizhnii Novgorod 607 200

SLOVAKIA
Dr. P. Oblozinsky
Institute of Physics
Slovak Academy of Sciences
842 28 Bratislava
Currently: IAEA Nuclear Data Section

UNITED KINGDOM
Dr. M.B. Chadwick
c/o Dr. R.W. White
Physics Department, MS L-298
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94551, USA

Dr. R.A. Forrest
Nuclear Physics and Instrumentation Division
Building 418
Harwell Laboratory
Didcot, Oxon OX11 0RA

U.S.A.
Dr. E.T. Cheng
TSI Research
225 Stevens Avenue, Suite 110
Solana Beach, CA 92075

Dr. M.A. Gardner
L-234
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94551

Dr. R.C. Haight
Group P-15, MS-D406
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. S. Herring
Fusion Safety Program
EG & G Idaho, Inc.
P.O. Box 1625, MS-3880
Idaho Falls, ID 83415
U.S.A.

Dr. F.M. Mann
Westinghouse Hanford Company
MS-H0-36
P.O. Box 1970
Richland, WA 99352

Dr. D.L. Smith
Applied Physics Division
Bldg. D-314
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

INTERNATIONAL ORGANIZATIONS

OECD/NEA

Dr. M. Konieczny
OECD Nuclear Energy Agency
Le Seine Saint-Germain
12 blvd des Iles
F-92130 Issy-les-Moulineaux
France

IAEA

Dr. S. Ganesan
IAEA Nuclear Data Section
Wagramerstr. 5, P.O. Box 100
A-1400 Vienna, Austria

Dr. A.B. Pashchenko (Scientific Secretary of the Meeting)
IAEA Nuclear Data Section
Wagramerstr. 5, P.O. Box 100
A-1400 Vienna, Austria
Conclusions and Recommendations

The conclusions and recommendations of the meeting were formulated in three working groups, thereafter discussed and unanimously adopted by all CRP participants. In the following they are given in the form of three working group reports.

A. WORKING GROUP ON EXPERIMENTAL MEASUREMENTS

Chairman: J. Csikai (KLTE, Debrecen)

Members: S. Ganesan (IAEA, Vienna)
M. Blinov (KRI, St. Petersburg)†
D.L. Smith (ANL, Argonne)
H. Vonach (IRK, Vienna)
Lu Hanlin (IAE, Beijing)
W. Mannhart (PTB, Braunschweig)
R.C. Haight (LANL, Los Alamos)
A.J. Deruytter (IRMM, Geel)
E. Wattecamps (IRMM, Geel)
S.M. Qaim (KFA, Jülich)
Y. Ikeda (JAERI, Tokai-mura)

(1) Status of cross sections measured under the CRP. Status of measurements was summarized by Vonach and is given in Tables 1, 2 and 3 (14 MeV region and lower energy data). These tables, which contain the data available prior to the 2nd RCM, will have to be updated with the data presented at this RCM.

Considerable progress has been achieved since the last meeting held in Vienna in 1991.

(a) Preliminary experimental 14 MeV values were presented by Vonach and are given in Table 1. The cross section values for the 151Eu(n,2n)150mEu and 159Tb(n,2n)158Tb reactions at 10 MeV and lower energies reported from ANL and Jülich/Debrecen appear to be lower than those from nuclear model calculations.

* A number of new measurements of these cross sections were reported at the second RCM at Del Mar and some cross section values presented earlier at the first RCM were slightly revised. Accordingly, the evaluation was updated after this meeting and in its present form contains also all information presented at the Del Mar meeting. Final results of the evaluation will be published in Proceedings of the meeting, INDC(NDS)-286/L, in the paper by H. Vonach and M. Wagner entitled: "Evaluation of some activation cross sections for formation of long-lived activities important for fusion technology".

17
<table>
<thead>
<tr>
<th></th>
<th>IRK-89 Evaluation</th>
<th>Debrecen</th>
<th>JAERI/ANL</th>
<th>Beijing</th>
<th>JAERI</th>
<th>St. Petersburg</th>
<th>ANL (Greenwood)</th>
<th>Jülich</th>
<th>Lanzhong University</th>
</tr>
</thead>
<tbody>
<tr>
<td>63Cu(n,p)63Ni</td>
<td>689 ± 73</td>
<td>Measurement in progress</td>
<td>694 ± 32</td>
<td>753 ± 23</td>
<td>50 ± 18</td>
<td>709 ± 122</td>
<td>54 ± 4</td>
<td>(new measurement in progress)</td>
<td></td>
</tr>
<tr>
<td>99Mo(n,p)99Nb</td>
<td>1325 ± 94</td>
<td>Measurement in progress</td>
<td>1257 ± 73</td>
<td>1219 ± 28</td>
<td>56 ± 11</td>
<td>1090 ± 84</td>
<td>1142 ± 60</td>
<td>(new measurement in progress)</td>
<td></td>
</tr>
<tr>
<td>109Ag(n,2n)$^{109m+}$Ag</td>
<td>1442 ± 60</td>
<td></td>
<td>1258 ± 52</td>
<td>1544 ± 42</td>
<td>723 ± 35</td>
<td>1142 ± 60</td>
<td>50.1 ± 5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151Eu(n,2n)151mEu</td>
<td>1930 ± 49</td>
<td></td>
<td>2037 ± 160</td>
<td>1968 ± 56</td>
<td></td>
<td>1492 ± 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153Eu(n,2n)153mEu</td>
<td></td>
<td></td>
<td>2072 ± 190</td>
<td></td>
<td></td>
<td>~ 1580 ± 110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159Tb(n,2n)159Tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~ 1580 ± 110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1
14 MeV Cross Sections (mb)
<table>
<thead>
<tr>
<th>IRK-89 Evaluation</th>
<th>< 100</th>
<th>184 ± 44</th>
<th>592 ± 122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debrecen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAERI/ANL</td>
<td>7.2 ± 0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAERI</td>
<td>6.3 ± 0.6</td>
<td>.014 ± .008</td>
<td>.026 ± .013</td>
</tr>
<tr>
<td>Beijing</td>
<td>7.7 ± 0.6</td>
<td>.016 ± .010</td>
<td>134 ± 80</td>
</tr>
<tr>
<td>St. Petersburg</td>
<td></td>
<td>.009 ± .005</td>
<td></td>
</tr>
<tr>
<td>ANL/Greenwood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jülich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanzhon University</td>
<td>6.04 ± 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harwell/Patrick</td>
<td>5.9 ± 0.6</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

All cross-sections reported to the CRP were renormalized to the new half-life of 433 years for 108mAg.
Table 2

Cross Sections below 14 MeV

(Status of the data as available at the 2nd CRP meeting)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>63Cu(n,p)63Ni</td>
<td>Jülich/Debrecen</td>
</tr>
<tr>
<td>94Mo(n,p)94Nb</td>
<td>Jülich/Debrecen</td>
</tr>
<tr>
<td>109Ag(n,2n)108mAg</td>
<td>$38.5 \text{ mb } \pm 10.6% \text{ at } 10.3 \text{ MeV ANL/LANL}$</td>
</tr>
<tr>
<td>151Eu(n,2n)150mEu</td>
<td>$215 \pm 17 \text{ mb at } 10.3 \text{ MeV ANL/LANL}$; 9.7 - 10.7 MeV Jülich/Debrecen</td>
</tr>
<tr>
<td>153Eu(n,2n)152gEu</td>
<td>$575 \pm 57 \text{ mb at } 10.3 \text{ MeV ANL/LANL}$; 8.7 - 10.7 MeV Jülich/Debrecen</td>
</tr>
<tr>
<td>159Tb(n,n2)158Tb</td>
<td></td>
</tr>
<tr>
<td>179Hf(n,2n)178mHf</td>
<td></td>
</tr>
<tr>
<td>182W(n,n'α)178mHf</td>
<td></td>
</tr>
<tr>
<td>158Dy(n,p)158Tb</td>
<td></td>
</tr>
<tr>
<td>193Ir(n,2n)192mIr</td>
<td></td>
</tr>
<tr>
<td>187Re(n,2n)186mRe</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

(n,γ) Reactions

(Status of the data as available at the 2nd CRP meeting)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>98Mo(n,γ)99Mo → 99Tc</td>
<td>Chengdu) reasonable agreement in St. Petersburg) overlapping region</td>
</tr>
<tr>
<td>$E_n = 29 - 1100 \text{ keV}$</td>
<td></td>
</tr>
<tr>
<td>$E_n = 700 - 2000 \text{ keV}$</td>
<td></td>
</tr>
<tr>
<td>165Ho(n,γ)166mHo</td>
<td>$2.92 \pm 0.6 \text{ mb at } E_n = 674 \text{ keV}$</td>
</tr>
<tr>
<td>191Ir(n,γ)192mIr</td>
<td>no work done</td>
</tr>
</tbody>
</table>

20
(b) For the $^{182}W(n,n')^{178m2}Hf$ reaction now 5 cross section values are available. The mean of those values will satisfy the need.

c) For the $^{187}Re(n,2n)^{186m2}Re$ reaction one measurement has been reported and two others are in progress (in Russia and in the P.R. of China).

d) Due to impurity problems the $^{158}Dy(n,p)^{158g}Tb$ reaction is with present experimental techniques not measurable. The contribution of this process in comparison to the $^{159}Tb(n,2n)^{158}Tb$ process is negligible. This reaction is, therefore, discarded.

e) For capture reactions no new data have been reported; the status is thus the same as given in the previous report.

f) Measurements on $^{63}Cu(n,p)^{63}Ni$ are on-going. In view of the large difficulties in activation measurements, direct measurements of emitted protons at $E_n < 8$ MeV should be considered as an alternative.

(2) Decay Data

The half-life of ^{108m}Ag has been slightly revised by PTB. It is given now as 433 ± 15 years. The half-life value of ^{150m}Eu has been reported from Los Alamos as 36.9 ± 0.9 years, slightly larger than the presently accepted value. It is further stressed that uncertainties in half-lives and branching ratios are still among the largest sources of uncertainty for some cross sections included in the CRP.

(3) Plans for future work

(a) IRK will update and extend the evaluation of 14 MeV cross sections in the near future.

(b) Vonach/Mannhart, Qaim/Csikai will consider to perform (n,2n) cross section measurements on $^{109}Ag(n,2n)^{108m}Ag$, $^{151}Eu(n,2n)^{150m}Eu$ and $^{159}Tb(n,2n)^{158}Tb$ in the 10 to 12 MeV region, if possible using highly enriched isotopes as target materials.

(c) On-going measurements at St. Petersburg, JAERI, Jüllich, Debrecen and Beijing at 14 MeV and other energies will be continued and the results presented at the next CRP meeting.

(d) $^{151}Eu(n,\gamma)^{152}Eu$ and $^{177}Hf(n,\gamma)^{178m2}Hf$ at 179 keV and higher energies will be completed at Sichuan University (Chengdu) and IAE (Beijing) PR China.

(e) Measurement of $^{63}Cu(n,p)$ reaction by direct proton detection at $E_n < 8$ MeV will be considered at IRMM Geel.

(f) The question of background neutrons and consideration of neutron energy scale are still being addressed at ANL. In this context further cooperative work
between Jülich and Debrecen will also be done on d-d neutrons in the energy range of 10 to 12 MeV.

(g) Studies on $^{28}\text{Si}(n,n'p)^{27}\text{Al}$ process will be considered at Los Alamos. Results on the $^{27}\text{Al}(n,n'\alpha)^{23}\text{Na}$ reaction will be reported by Vonach.

B. WORKING GROUP ON CROSS SECTION CALCULATIONS

Chairman: M.B. Chadwick (Lawrence Livermore National Laboratory)

Members:
- F.M. Mann (Westinghouse Hanford Company, Richland)
- A.B. Ignatyuk (Obninsk)
- G. Reffo (E.N.E.A. Bologna)
- M.A. Gardner (Lawrence Livermore National Laboratory)
- A.B. Pashchenko (IAEA, Vienna)

1. **Status of the cross section calculations**

 (a) In accordance with recommendation (4h) from the previous CRP meeting in Vienna (see INDC(NDS)-263/G, p. 14), M.B. Chadwick has calculated excitation functions of reactions measured by D.L. Smith and the ANL/LANL/JAERI collaboration. Charged particle producing reactions were also considered, as was the theoretical implication of using the Feshbach-Kerman-Koonin theory in evaluation work. See contributed paper for full details.

 (b) In accordance with recommendation (4j) from the previous CRP meeting, the Obninsk group calculated transmutation cross sections for a number of long-lived radionuclides. The isomeric ratios for different reactions to a given isomeric state were investigated, along with their energy dependences. Systematics of isomeric ratios for threshold reactions were investigated. See contributed paper for full details.

 (c) As Dr. Maino was not present at the meeting, progress on calculating the reactions described in (4g) of the previous CRP recommendations is not known. We recommend that Dr. G. Reffo should calculate the reactions $^{109}\text{Ag}(n,2n)^{108m}\text{Ag}$, $^{63}\text{Cu}(n,p)^{63}\text{Ni}$, $^{62}\text{Ni}(n,\gamma)^{63}\text{Ni}$.

2. **Plans for future work**

 (a) By the end of May 1993, M.B. Chadwick and A.V. Ignatyuk will consider all theoretical calculations of excitation functions for the reactions considered by the CRP, and will provide preliminary recommendations for theoretical excitation functions. In addition to the $(n,2n)$ and (n,p) reactions considered by the CRP, the $^{178}\text{Hf}(n,n')^{178m}\text{Hf}$ will be calculated as this contributes to the measured ^{178m}Hf cross section for neutron energies below 14 MeV.
(b) Differences between all theoretical calculations will be investigated in detail before the next CRP. All input parameters for the theoretical calculations will be sent to M.B. Chadwick before the end of summer 1993, and will be compiled into a computer file which will allow the reproduction of all theoretical results.

(c) Differences between experimental and theoretical results for excitation functions will be investigated before the next CRP meeting. At present the theoretical calculations exceed measured cross sections in the 10-12 MeV range.

(d) The IAEA NDS will organize an informal meeting for all CRP participants during the May 1994 Nuclear Data Conference at Gatlinburg. Our progress in theoretical calculations will be discussed.

(e) The reactions 27Al(n,n'α), 45Ca(n,α) will be calculated due to their great importance in proposed fusion reactors.

C. WORKING GROUP ON CHARGED PARTICLE REACTIONS

Chairman: P. Obložinský (Bratislava, presently IAEA/Nuclear Data Section)

Members: G.E. Shatalov (Moscow)
S. Herring (EG & G, Idaho)
J. Kopecky (ECN, Petten)
R.A. Forrest (Harwell Laboratory, Didcot)
S. Abramovich (Nizhnii Novgorod)
B.Ya. Guzhovskij (Nizhnii Novgorod)
A.G. Zvenigordskij (Nizhnii Novgorod)

The RCM recognizes important contributions to the understanding of the role of charged particle reactions on production of radioactive inventories in fusion reactor materials (contributions presented by P. Obložinský and B. Guzhovskij). IAEA should encourage KfK Karlsruhe to continue its work (in collaboration with Bratislava) on sequential (x,n) reactions.

The RCM recommends to extend the current CRP by considering charged particle reactions. The following 4 tasks have been identified:

1. Impact of sequential charged particle reactions on production of radioactivities should be demonstrated in realistic materials (Li with impurities, Be with impurities, V5Cr5Ti and SS316).

2. Current KfK libraries should be compared with experimental data for light elements (from hydrogen to oxygen).

3. FISPACT code should be extended so that sequential charged particle reactions can be included and made transparent to the user. In addition the decay library needs to be extended to include nuclides only formed by sequential charged particle reactions (currently 213 isotopes). It will also be necessary in the future to extend EAF to
include cross section data for long lived targets that are only formed by sequential charged particle reaction.

(4) Estimates should be performed of induced activities on the first wall due to direct charged particles (p and α) irradiation. Materials to be considered are Be, graphite, V5Cr5Ti and SS316.