

International Atomic Energy Agency

<u>INDC(NDS)-361</u> Distr : G + FE

INTERNATIONAL NUCLEAR DATA COMMITTEE

ESTABLISHMENT OF AN INTERNATIONAL REFERENCE DATA LIBRARY OF NUCLEAR ACTIVATION CROSS SECTIONS

Summary Report of the Second Research Co-ordination Meeting organized by the International Atomic Energy Agency in co-operation with the Instituto de Fusión Nucleár de la Universidad Politécnica de Madrid and held in Madrid, Spain, from 13 to 16 May 1996

Prepared by
A.B. Pashchenko
IAEA Nuclear Data Section

July 1997

IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5, A-1400 VIENNA

ESTABLISHMENT OF AN INTERNATIONAL REFERENCE DATA LIBRARY OF NUCLEAR ACTIVATION CROSS SECTIONS

Summary Report of the Second Research Co-ordination Meeting organized by the International Atomic Energy Agency in co-operation with the Instituto de Fusión Nucleár de la Universidad Politécnica de Madrid and held in Madrid, Spain, from 13 to 16 May 1996

ABSTRACT

The present report contains the Summary of the Second IAEA Research Co-ordination Meeting of the Co-ordinated Research Programme on "Establishment of an International Reference Data Library of Nuclear Activation Cross Sections". The meeting was organized by the IAEA Nuclear Data Section with co-operation and assistance of local organizers from the Instituto de Fusión Nuclear de la Universidad Politécnica de Madrid, Spain, from 13 to 16 May 1996. Summarized are the conclusions and recommendations of the meeting together with a list of actions and deadlines. Attached are the detailed agenda and list of participants.

Prepared by
A.B. Pashchenko
IAEA Nuclear Data Section

CONTENTS

SUMMARY OF THE MEETING

1.	1. Introduction		7
2.	2. Objectives and organization of the meeting		7
3.	3. Meeting proceedings and results		8
4.	4. Final CRP meeting		9
5.	5. Acknowledgements		9
CO	CONCLUSIONS AND RECOMMENDATIONS		
	• Master list	1	1
	Wiaster fist		•
•	• File format		2
•	• Deadlines	1	2
•	Selection procedure	1	3
•	• File production		3
•	Candidate selection		3
•	• Other matters		6
Atta	Attachment 1: Agenda		7
Atta	Attachment 2: List of participants	2	1
Atta	Attachment 3: Preparation of master list of important neutron induced reactions	2	3

Second IAEA Research Co-ordination Meeting

on

"Establishment of an International Reference Data Library of Nuclear Activation Cross Sections"

Madrid, Spain, 13 - 16 May 1996

organized in co-operation with the Instituto de Fusión Nucleár de la Universidad Politécnica de Madrid

SUMMARY OF THE MEETING

(1) Introduction

In 1994 the IAEA launched a Co-ordinated Research Programme (CRP) with the aim of providing an universal database of neutron activation cross sections. For this purpose the IAEA Nuclear Data Section succeeded in obtaining the participation of eight laboratories from seven countries: China, Hungary, Japan, Netherlands, Russia, Spain and United Kingdom.

The new International Reference Data Library, IRDL, will be applicable to nuclear and fusion technology, environmental protection and the estimation of potential radiation hazards connected with any kind of nuclear installation and technique.

The first Research Co-ordination Meeting (RCM) was held in Debrecen, Hungary, in October 1994.

(2) Objectives and organization of the meeting

The second RCM was organized in co-operation with local organizers from the Instituto de Fusión Nucleár de la Universidad Politécnica de Madrid and held in Madrid, Spain. from 13 to 16 May 1996. The purpose of the RCM-2 was to discuss the status of work performed under the CRP, to provide a forum for discussion of related problems and to coordinate future activities. The detailed Agenda is given in <u>Attachment 1</u>.

The meeting was attended by Chief Scientific Investigators and programme members of all eight laboratories participating in the project, by one consultant and one observer. Participating laboratories were represented by Yu Baosheng (Beijing, China), J. Csikai (Debrecen, Hungary), T. Nakajima (Tokai, Japan), J. Kopecky (Petten, Netherlands),

O. Grudzevich and A. Ignatyuk (Obninsk, Russia), J.M. Perlado and J. Sanz (Madrid, Spain) and R. Forrest (Culham, UK). G. Reffo (Bologna, Italy) attended the meeting as an observer and K. Zolotarev served as a consultant. A. Ignatyuk of the Institute of Physics and Power Engineering, Obninsk, Russia, acted as Chairman of the meeting. The list of attendees and their affiliations is given in <u>Attachment 2</u>.

(3) Meeting proceedings and results

The meeting was opened by Professor Velarde, Director of the Instituto de Fusión Nucleár. After the welcome by A.B. Pashchenko on behalf of the Agency and the election of the meeting chairman, the participants discussed and adopted the meeting Agenda.

A considerable part of the actions resulting from the 1st RCM held in Debrecen, Hungary, in October 1994 has been successfully completed and results have been reported at the meeting.

One of the actions resulting from the RCM-1 was the preparation of a master list of important reactions to be considered for the IRDL. As agreed in Debrecen, this library should be suitable for many applications that require neutron induced activation cross sections. The reference library should not cover all possible reactions but concentrate on a limited number of very important reactions. In preparing the master list, the following applications were considered:

- Magnetic confinement fusion
- Inertial confinement fusion
- Fission reactors
- Geophysical and borehole logging
- Dosimetry
- Astrophysics

Various lists were prepared by CRP members for each application and R. Forrest compiled the master list based on contributions. The paper describing the preparation of the master list is given in Attachment 3.

The content of the master list and procedure for selection of candidate evaluations were discussed at the meeting, and the conclusions and recommendations, as well as a schedule of actions for the assembling of the IRDL starter file are summarized below. It was stressed that the starter file should be assembled at the NDS DEC Alpha computer and it should be maintained by NDS staff. The IRDL starter file should be accessed by users through the electronic networking system via "ftp".

The CRP members greatly appreciated the presence of G. Reffo, Chairman of the forthcoming International Conference on Nuclear Data for Science and Technology, Trieste, May 1997, as an observer to the meeting. In his presentation, G. Reffo provided information about NDST-97 and answered numerous questions. The meeting participants agreed that results of the CRP should be reported at this Conference. The paper should describe the range of applications to be covered by the IRDL, progress achieved in the assembling of the starter file and procedure for validation and testing of the starter file.

(4) Final CRP meeting

It was agreed that the 3rd and final CRP meeting should be organized at the IAEA Headquarters in Vienna in October/November 1997. The main task of the final meeting should be the preparation of a joint final report of CRP members to the IAEA, summarizing the results of the programme. In addition, an IAEA-NDS document should be produced after the final meeting that should contain the full description of the IRDL.

(5) Acknowledgements

The RCM had full and sufficient support from the local organizers. The meeting participants wish to thank the management of the Instituto de Fusión Nucleár de la Universidad Politécnica de Madrid for the warm hospitality and Professor Perlado for the efficient organization of the meeting.

CONCLUSIONS AND RECOMMENDATIONS

IRDL is a reference library for many applications. Astrophysics is one of the applications that should be considered. It was noted that the master list contains a list of reactions for astrophysics prepared by F. Kaeppeler. However, it appears that these selections are for reactions where more accurate data are required, rather than a complete list of reactions important for astrophysics. It was agreed that A. Pashchenko and A. Ignatyuk will communicate with F. Kaeppeler to obtain a more comprehensive list of reactions important for astrophysics. It will also be confirmed that the pointwise files (FENDL/A format) are suitable for use by the astrophysics community.

Dosimetry is another application that has been identified as relevant for IRDL. It was agreed that the current master list needs to be expanded to include additional dosimetry reactions. K. Zolotarev will take responsibility for extending the list. This new list will be presented at the next meeting of the Working Group on Reactor Dosimetry for VVER Type Reactors (Prague, 1-6 September 1996) and agreement from the dosimetry community obtained.

One of the recommendations of the 1st RCM (Debrecen) was that IRDL should include charged particle reactions. However because of the new IAEA CRP on charged particles it was agreed that all information on Development of Reference Charged Particle Cross Section Data Base for Medical Radioisotope Production already generated by the current CRP will be transfered to the new CRP. A. Pashchenko will be responsible for ensuring that this transfer is handled efficiently at the NDS.

The current energy range for the IRDL is 20 MeV. At this stage the energy range will not be extended to higher energies for all reactions, however if new files are submitted to NDS containing higher energy values then these data will be retained for that reaction. J. Csikai stated that several reactions for medical applications are required at energies greater than 20 MeV, it is the responsibility of the data producers to submit candidates containing higher energy data if necessary.

J. Sanz noted that it is necessary to include a further reaction (¹⁹²Ir(n,n')) in the master list for inertial fusion applications. M. Perlado requested that a few additional capture reactions on fission products (⁹⁰Sr, ⁹³Zr, ⁷⁹Se, ¹²⁶Sn, ¹³⁵Cs, ¹³⁷Cs) be included in the master list as these appear to be very poorly known, yet are important for transmutation studies and fusion applications. Some additional reactions important for liquid metal fission reactors will be added after discussions at the next meeting of the Subgroup on Evaluation Co-operation (Argonne, June 1996). Several other additional reactions that should be added to the master list were noted. These will be communicated to A. Pashchenko.

It was noted that many of the evaluations presented by K. Zolotarev have involved renormalization of EXFOR data due to changes in monitor cross sections. It was agreed that such a procedure is very valuable and should be applied more generally.

File Format

Since much of the starter file for IRDL will use FENDL/A-2 as the data source it was proposed that the FENDL/A file format (as originally defined for the EAF libraries) be adopted for IRDL. This was accepted with the following conditions:

- FENDL/A format is an accepted format for the activation community, however other users of the data require data in ENDF-6 format. It was therefore agreed that IRDL will be available in both formats.
- All new candidate files will be supplied to the NDS in FENDL/A format.
- O. Grudzevich will take responsibility for converting the starter file (compiled by NDS) from FENDL/A to ENDF-6 format.
- J. Kopecky will provide A. Pashchenko with a complete description of the FENDL/A (EAF) format. This will be available on the NDS open area so that it may be obtained by FTP.
- A. Pashchenko will provide a brief description of the type of ENDF-6 format used. This will probably be MF=3 for the total cross sections and MF=10 for reactions split into isomeric daughter states.
- If available for a particular reaction, covariance data will be supplied in ENDF-6 format.

Deadlines

The following deadlines were agreed for the various tasks:

- 1/6/96 J. Kopecky to supply to NDS details of the FENDL/A (EAF) format
- 15/6/96 A. Pashchenko will supply whatever data are already available in the starter file to O. Grudzevich so that testing of the conversion procedure can be carried out. A. Pashchenko will provide a description of ENDF-6 format used
- 15/7/96 Final version of master list of reactions produced (R.A. Forrest) and distributed (A. Pashchenko)
- 1/9/96 Camera ready versions of contributions for publication in Proceedings of 2nd RCM sent to NDS
- 1/10/96 Candidates for inclusion in IRDL starter file available at NDS
- 1/11/96 Complete starter file available in FENDL/A format (A. Pashchenko)
- 1/12/96 Complete starter file available in ENDF-6 format (O. Grudzevich)
- 10/97 Possible date for final meeting of CRP in Vienna. Informal meeting of CRP members will be organised in Trieste (May 1997) at the Nuclear Data conference if possible

Selection procedure

The following procedure was agreed for selection of candidate data for the starter file:

- All reactions in the master list will have data in the starter file.
- By default all data will be extracted from the existing FENDL/A-2 library.
- If a new data source is agreed either at this meeting or in the future, then it is the responsibility of the author to supply the new data to the NDS in the FENDL/A format.
- It was agreed that the author of a new candidate for inclusion in the starter file must give a justification for the replacement of the existing evaluation by the new data.
- This justification will be circulated to the members of the CRP by A. Pashchenko and comments compiled. A. Pashchenko will be responsible for deciding (based on a majority decision) if the new data will be used in the starter file. E-Mail will be used for discussions whenever possible.

File production

- The IRDL starter file will be available from NDS in both the FENDL/A and ENDF-6 formats. The file is a point-wise file, no processing to form group-wise libraries will be undertaken by NDS; it is the responsibility of users to prepare working libraries from IRDL.
- Files will be stored on the NDS open area so that they can be accessed by users via FTP. Only NDS (A. Pashchenko) will have permission to edit data; all others will only be able to view/copy the data.
- Maintenance of the IRDL will be the responsibility of NDS.
- NDS will publicise the availability of the IRDL starter file through the existing channels of the Data Centre Network.

Candidate selection

The current master list of reactions (see Attachment 3) considers in detail only those reactions which were not already discussed by the FENDL/A selection panel (for recommendations of selection panel see reports INDC(NDS)-341 and 352, 1996). The decisions on the remaining reactions are shown in Table 1. The comments collected during the review process, are given in the "comments" column.

Table 1: Results of selection reached at the CRP meeting

Reaction	Source	Comments
$^{10}\mathrm{B}(\mathrm{n},\alpha)$	FENDL/A-2 (IRDF 90.2)	
¹² C(n,n')	Reaction removed	No isomeric state
$^{12}C(n,2n)$	FEI	
$^{16}O(n,n'\alpha)$	JENDL/A-3.2	
¹⁶ O(n,n')	Reaction removed	No isomeric state
²⁹ Si(n,d)	FENDL/A-2 (ADL-3)	
²⁹ Si(n,n'p)	FENDL/A-2 (ADL-3)	
$^{30}\mathrm{Si}(\mathrm{n},\alpha)$	FEI	Need for new experimental work at 11 MeV. Also the slope of cross section function at 14 MeV is required to decide between evaluations
³¹ P(n,p)	FENDL/A-2 (IRDF 90.2)	
³⁵ Cl(n,2n)	ADL-3	
⁴⁶ Ti(n,p)	FEI	Better evaluation is available since the FENDL selection procedure
⁴⁷ Ti(n,d)	FEI	Properly split by K. Zolotarev
⁴⁷ Ti(n,n'p)	FEI	Properly split by K. Zolotarev
⁴⁸ Ti(n,d)	FEI	Better evaluation is available since the FENDL selection procedure
⁴⁸ Ti(n,n'p)	FEI	Better evaluation is available since the FENDL selection procedure
⁴⁸ Ti(n,p)	FEI	Better evaluation is available since the FENDL selection procedure
⁴⁸ Ti(n, α)	FEI	Better evaluation is available since the FENDL selection procedure
⁴⁹ Ti(n,d)	Reaction removed	Accuracy of available data not adequate for dosimetry applications
⁴⁹ Ti(n,n'p)	Reaction removed	Accuracy of available data not adequate for dosimetry applications

Reaction	Source	Comments
⁴⁹ Ti(n,t)	Reaction removed	Accuracy of available data not adequate for dosimetry applications
⁵² Cr(n,n')	Reaction removed	No isomeric state
⁵² Cr(n,2n)	FENDL/A-2 (IRDF 90.2)	
⁵³ Cr(n,d)	FENDL/A-2 (EFF-4.2)	
⁵³ Cr(n,n'p)	FENDL/A-2 (EFF-4.2)	
⁵⁴ Cr(n, α)	FEI	
⁵⁵ Mn(n, α)	FEI	New experimental data required. Recent measurements at 14 MeV suggest cross section much lower (23 mb) than current values
⁵⁴ Fe(n,2n)	FEI	Properly split (isomers) by K. Zolotarev
⁵⁹ Co(n, α)	FENDL/A-2 (IRDF 90.2)	Add dosimetry as an application
⁵⁸ Ni(n,n')	Reaction removed	No isomeric state
⁵⁸ Ni(n,p)	FEI	Result of collaboration between FEI and IRK Vienna
⁶³ Cu(n,n')	Reaction removed	No isomeric state
⁶⁹ Ga(n, α)	JENDL/A-3.2	New measurements at 14 MeV (22mb) suggest that JENDL/A-3.2 better than ADL-3
⁹³ Nb(n,n')	FEI	
¹¹⁵ In(n,n')	IRDF 90.2	
¹¹⁵ In(n, γ)	IRDF 90.2	Add dosimetry as an application, O. Grudzevich will supply correctly split data
¹³⁹ La(n,γ)		Add dosimetry as an application. The source of data may be changed to RDF, and A. Ignatyuk and K. Zolotarev will investigate
190 Os(n, α)	ADL-3	·
¹⁹⁷ Au(n,n')	FENDL/A-2 (ADL-3)	
¹⁹⁷ Au(n,γ)		Add dosimetry as an application
¹⁵⁸ Dy(n,p)	FENDL/A-2 (?)	
¹⁹³ Ir(n,2n)	FENDL/A-2 (?)	

Other matters

It was agreed that a summary of progress in the CRP will be presented at the Trieste Nuclear Data Conference. A. Pashchenko, A. Ignatyuk and R.A. Forrest will be responsible for preparation of a paper.

It was recognised that the current CRP had encouraged several collaborations between groups, especially for data measurements. The collaborations are vital to ensure efficient use of the very restricted manpower and facilities available for work in the area of activation cross section measurements.

The members of the CRP greatly appreciate the presence of K. Zolotarev as a consultant at the meeting. His contribution on candidates for dosimetry reactions is considered vital for ensuring that IRDL is of the greatest use for the dosimetry community.

Attachment 1

2nd IAEA Research Co-ordination Meeting

on

Establishment of an International Reference Data Library of Nuclear Activation Cross Sections

Madrid, Spain, 13 to 16 May 1996

Organized in co-operation with the Instituto de Fusion Nuclear de la Universidad Politécnica de Madrid

AGENDA

Monday, 13 May

9:30-10:30

Opening Session

Opening of the meeting: Host (G. Velarde, Director, Instituto de Fusión Nuclear) IAEA (A.B. Pashchenko)

- Election of Chairman
- Adoption of Agenda and Time Schedule
- Announcement of Organizational Matters

10:30-13:30

Session 1: Progress reports by CRP participants on improvements/selection of evaluations for the IRDL

Presentation by R. Forrest

"Preparation of master list of important neutron induced reactions for IRDL"

Presentation by Yu. Baosheng

"The CNDC candidate evaluations for the IAEA Reference Data Library and future of China Activation Cross Sections Library"

Presentation by J. Kopecky

"Candidate evaluations for IRDL from the IAEA FENDL/A-2.0 Library"

Presentation by Y. Nakajima

"Evaluation of cross sections for JENDL Activation Cross Sections File 96"

Presentation by K. Zolotarev

"Evaluation of threshold reactions for the IAEA Reference Data Library"

13:30-15:00

Lunch break

15:00-17:30

Session 1 (cont'd)

Presentation by J. Kopecky

"Capture cross sections in activation libraries"

Presentation by A. Ignatyuk

"Analysis of capture cross section evaluations for most important structural materials and fission products"

Coffee break.

Session 1 (cont'd)

Discussion

Tuesday, 14 May

9:00-13:30

Session 2: Progress reports on measurement of activation cross sections, testing and validation of selected evaluations.

Presentation by J. Csikai

"Some measured, calculated and evaluated activation cross sections from threshold to 20 MeV neutron energy"

Presentation by O. Grudzevich

"Validation and testing of selected evaluations"

Coffee break

Session 2 (cont'd)

Presentation by R. Forrest

"Maintenance of the European Activation File with SYMPAL"

Presentation by J.M. Perlado

"Nuclear data influence in radiological assessment in recycling and waste management of inertial fusion reactors"

Presentation by G. Reffo

"Information about International Conference on Nuclear Data for Science and Technology, May 19-24, Trieste, Italy"

Discussion

13:30-15:00

Lunch break

15:00-17:30

Session 3: General discussion. Starter File and Structure of IRDL. Coordination of Activity

- General discussion on selected evaluation for inclusion to the Reference Library
- Creation of Starter File of IRDL:
 - format of evaluations,
 - structure of IRDL.
 - contributions and file exchange,
 - maintenance of IRDL,
 - access to the open area of IAEA/NDS Alpha server.
- Overview of current tasks, future scope of the CRP and coordination of activity
- Actions and deadlines

Wednesday, 15 May

9:00-13:30

Session 4: Conclusions and Recommendations

- Formation of Working Groups to draft the Conclusions and Recommendations
- Working group's sessions on drafting of meeting Conclusions and Recommendations

13:30-15:00

Lunch break

15:00-17:30

Session 4 (cont'd)

- Working group's sessions on drafting of meeting

Conclusions and Recommendations

Thursday, 16 May

9:00-13:30

Session 4 (cont'd)

- Completion of Working Group Reports

13:30-15:00

Lunch break

15:00-17:00

Session 5: Final Considerations

- Discussion of Conclusions and Recommendations

- Corrections and Adoption of Final Report of the present meeting, including assignments and responsibilities for the Starter File and Final Report CRP members to the IAEA
- Adoption of the Schedule of Work and Future Meeting
- Closing of the RCM

2nd IAEA RCM

Establishment of an International Reference Data Library of **Nuclear Activation Cross Sections**

13 - 16 May 1996, Madrid, Spain

LIST OF PARTICIPANTS

CHINA

Yu Baosheng

Chinese Nuclear Data Center China Institute of Atomic Energy

P.O. Box 275 - 41 Beijing 102413

Phone: (86 10) 6935 7830 Fax: (86 10) 935 7008

e-mail: cndc@mipsa.ciae.ac.cn

HUNGARY

Julius G. Csikai

Institute of Experimental Physics Kossuth University

4001 Debrecen 1, Pf. 105, Bem tér 18/a

Phone: (36 52) 415 222 Fax: (36 52) 315 087

csikai@falcon.atomki.hu e-mail:

h470csi@ella.hu

ITALY

Gianni Reffo

E.N.E.A. Centro Ricerche Dipartimento Energia Centro Dati Nucleari C.R.E.E. Clementel Via Martiri di Monte Sole, 4

40129 Bologna

(39 51) 609 8522 Phone: (39 51) 609 8705 Fax:

reffo@nudace.arcoveggio.enea.it e-mail:

JAPAN

Yutaka Nakajima

Nuclear Data Center

Japan Atomic Energy Research Institute

Tokai Research Establishment

Tokai-mura, Naka-gun Ibaraki-ken 319-11

81-292-82-5481 Phone: Fax: 81-292-82-6122

e-mail:

nakajima@cracker.tokai.jaeri.go.jp

NETHERLANDS

Jura Kopecky

Kalmanstraat 4 1817 HX Alkmaar

Phone: (31 72) 511 40 54 e-mail: juko@pi.net

RUSSIA

Anatoly V. Ignatyuk

Fiziko-Energeticheskij Institut Ploshchad Bondarenko 249 020 Obninsk, Kaluga Region

(7 084) 399 8035 Phone:

(7 095) 230 2326 Fax:

e-mail: ignatyuk@cjd.obninsk.su

Oleg Grudzevich

Institute of Nuclear Power IATE, Studgorodok 1 Obninsk, Kaluga Region

Phone:

(7 084) 397 8522

Fax:

(7 095) 255 2225 (5463902)

e-mail:

iate@storm.iasnet.com

K.I. Zolotarev

Centr po Jadernum Dannym Fiziko-Energeticheskij Institut 249 020 Obninsk, Kaluga Region

Phone:

(7 084) 399 5498

Fax:

(7 095) 230 2326

e-mail:

zolotarev@cjd.obninsk.su

SPAIN

J.M. Perlado

Local Organizer
Instituto de Fusión Nuclear (DENIM)
Escuela Técnica Superior Ingenieros
Industriales (E.T.S.I.I.)
Universidad Politécnica de Madrid
José Gutiérrez Abascal, 2
28006 Madrid

Phone:

(34 1) 336 31 08 / 09 / 10

Phone:

(34 1) 730 4069 (home)

Fax:

(34 1) 336 30 02 / 411 41 48

e-mail:

mperlado@denim.upm.es

Javier Sanz

Instituto de Fusión Nuclear (DENIM)
Escuela Técnica Superior Ingenieros
Industriales (E.T.S.I.I.)
Universidad Politécnica de Madrid
José Gutiérrez Abascal, 2
28006 Madrid

Phone:

one: (34 1) 336 31 08 / 09 / 10

Fax:

(34 1) 336 30 02 / 411 41 48

e-mail:

isanz@denim.upm.es

UNITED KINGDOM

Robin A. Forrest

UKAEA

Fusion Physics Department, Fusion Culham, Abingdon

Oxfordshire OX14 3DB

Phone:

(44 1235) 46 3586

Fax:

(44 1235) 46 3435 or 3647

e-mail:

robin.forrest@ukaea.org.uk

I.A.E.A.

Anatoly B. Pashchenko

(Scientific Secretary of the Meeting) IAEA Nuclear Data Section Wagramer Strasse 5, P.O. Box 100 A-1400 Vienna

Phone:

+43-1-2060-21708

FAX:

+43-1-20607

e-mail:

pashchenko@iaeand.iaea.or.at

Presented at IAEA RCM-2, Madrid, 13-16 May 1996

Preparation of master list of important neutron induced reactions

RA Forrest

UKAEA Fusion, Culham, Abingdon, Oxon OX12 3DB, UK (UKAEA/Euratom Fusion Association)

Abstract

The contents of the master list of reactions, selected for consideration in the IAEA project to construct an international reference library of nuclear activation cross sections, are presented.

Introduction

One of the actions resulting from the First Research Co-ordination Meeting on the establishment of an international reference data library of nuclear activation cross sections held in Debrecen Hungary in October 1994 [1], was the preparation of a master list of important neutron induced reactions. This paper summarises the applications and presents the master list. Some recommendations about the sources of data for the library are presented.

Applications for data

The scope of the proposed library is that it should be relevant for any application that requires neutron induced activation cross sections. In preparing the master list the following applications were considered:

- Magnetic confinement fusion
- Inertial confinement fusion
- Fission reactors
- Geophysical and borehole logging
- Dosimetry
- Astrophysics

For each application a list of important reactions was prepared by experts attending the Debrecen meeting. Many reactions are important for more than one application and Table 1 was prepared showing the following information for each reaction:

Column heading	Explanation
ZAI	A number (10000*Z+10*A+Isomeric state) specifying the target nuclide
Target	Conventional symbol for target nuclide (m=1st isomeric state, n=2nd isomeric state)
Reaction	Reaction label
Daughter	Conventional symbol for daughter nuclide (m=1st isomeric state, n=2nd isomeric state)
F-2	1 indicates that the reaction has been assessed during the selection of the FENDL/A-2 library
Application_n	Application (n=1-4) for which reaction is of importance
Reason_n	Reason (n=1-4) that the reaction is important to corresponding application.

Preparation of Master list of important neutron induced reactions

In some of the Reason_n columns information about the production of a nuclide is given. This is done where the reaction produces an intermediate nuclide that can subsequently react to produce a radionuclide important for that application.

It should be noted that for the targets Si-28, Si-29, Ti-47, Ti-48, Ti-49, Cr-53, Ni-58, Mo-92, Mo-93, Mo-94 and Mo-95, Table 1 shows the reaction (n,d); for these reactions it must be understood that the reaction (n,n'p) producing the same daughter is also required.

Table 1 includes a few (n,n') reactions where there is no well defined isomeric state. The targets are: C-12, O-16, Cr-52, Ni-58 and Cu-63, and the reactions are included for borehole applications. These inelastic cross sections are not included in activation libraries, and thus should not be included in the IAEA's reference activation library.

The column F-2 included in Table 1 indicates whether the reaction is included in the recent FENDL/A-2 activation library [2]. It is recommended that as these reactions have already received consideration by a panel of experts, the FENDL/A-2 data be used for these cases.

Since the compilation of the master list it has been suggested [3] that the following additional reactions important in production of long-lived radionuclides be added:

ZAI	Target	Reaction	Daughter	F-2
561370	Ba-137	(n,p)	Cs-137	1
631510	Eu-151	(n,2n)	Eu-150	1
631530	Eu-153	(n,2n)	Eu-152	1
631530	Eu-153	(n,2n)	Eu-152n	1
651590	Tb-159	(n,2n)	Tb-158	-
661580	Dy-158	(n,p)	Tb-158	
671650	Ho-165	(n,g)	Ho-166m	1 ,
721790	Hf-179	(n,2n)	Hf-178n	ι
741820	W-182	(n,n'a)	Hf-178n	ı
771930	lr-193	(n,2n)	lr-192n	

It is suggested that the next IAEA meeting on this topic (Madrid, May 1996) decide on whether to add these reactions to Table 1.

For the reactions in Table 1 that have not already been considered during the selection of FENDL/A-2, the author recommends that data from EAF4.1 [4] be used. The split of these 56 reactions is (n,γ) 37, (n,α) 7, (n,2n) 4, (n,d+n'p) 3, (n,n') 2, $(n,n'\alpha)$ 1, (n,p) 1, (n,t) 1. It should be noted that especially in the case of capture reactions the EAF library is world class.

Acknowledgement This work was funded jointly by the UK Department of Trade and Industry and Euratom.

References

- [1] AB Pashchenko, 'Establishment of an international reference data library of nuclear activation cross sections', IAEA report, INDC(NDS)-320, 1995.
- [2] AB Pashchenko, 'Completion of FENDL-1 and start of FENDL-2', IAEA report, INDC(NDS)-352, 1996.
- [3] Yu Baosheng, private communication.
- [4] J Kopecky and D Nierop, 'The European Activation File EAF-4 Summary documentation', ECN-C-95-072, 1995.

Preparation of Master list of Important neutron induced reactions

Table 1. Master list of reactions important for applications involving neutron induced activation.

Reason 4																																													
i Application 4 R																																-													
1 Redbon 3 I i. A																Interfering			Safety (Ne-22 from SI)																										Safety
Application 3 x 1																Geophysical			Inertial Fusion								Borehole logging																		Landing C. miles
Romanga							Weste				Safety/maintenance		Safety/maintenance	Safety/maintenance		Safety	Weste		Safety/maintenance		Safety (Na-22 from SI)						Safety			Saffety															Colon American
Application 2							Magnetic Fusion V			_	┪			Magnetic Fusion S	_1	۶	Inertial Fusion V		Magnetic Fusion S		┪	Borehole logging				Т	Magnetic Fusion S		7	Magnetic Fusion S														_	
Resson 1					High energies	Decommissioning	Waste			Interfering		Safety/maintenance		0			Waste	Safety/maintenance	Interfering	Defector			Trittum from SIC		Interfering	gu.	Safety		Interfering	Safety				Leconstitution of the control of the	Interneting	Inherhering	Safativime intercent	Waste	Interfering	Decommissioning		Waste			
Application_1	Borehole logging	Borehole logging	Borehote logging	opping		Fission reactors		Borehole logging		Ĺ	Dosimetry	Fusion			П		Magnetic Fusion		L		non		Н			Geophysical	Į.	Ĭ		┱	Borehole logging	Borehole logging	ュ	_	Т	Borehole booing		Τ	I _	т	1	1	Borehole logging		
Br F.2			L			1	-		ļ	ŀ	-	-	-	-	-	-	ı	ŀ	<u>-</u>	-	-	-	-	1			-		-	-	-	+	1	-	+	- -	+	╬	-	-	-	-	-	-	ŀ
Devoluter	Н-2	2.71	C-12	C-13	C-11	C-14	C-14	0-16	N-16	C-12	F.18	Na-22	N8-24	Na-24	Mg-27	Mq-27	AI-26	Na-23	Na-24	Al-28	AL-27	AI-28	AL27	AI-29	AL-28	Mg-27	St-31	St-31	AL28	P-32	P-34	S-37	ج ا	3	200	3 2	5	2 2	5	7	¥ 4	Ar42	Ce-49	Sc-46	
Reaction	(B'u)	(n.e)	(n,n)	(b.n)	(n,2n)	(a.n)	(u.p)	(n,n)	(d.n)	(n,n'e)	(n,2n)							(n,na)	(u, e)	(B, F)	(D'U)	(a'u)	(J.C)	(d.r.)		(n, a)	(n.g)	(d'u)	(n,a)	(n,g)	a a	(B,n)	(n,2n)	8	a i	6 L	R (8-L	T	(0 0	(a'u)	(a.r.)	(a.n	(n,9)	
Terget			П			Г		Г	Г	Γ	Γ	Т	Т	1	Г	П	Г				Γ		Γ	Г	Г			П			٦		П	1	1	1.	1	T	Τ	T	Т	T	M		1
3	0	50100 B-10	60120 C-12	60120 C-12	60120 C-12	60130 C-13	70140 N-14	80160 0-16	80160 0-16	80160 0-16	90190 F-19	110230 Na-23	110230 Na-23	120240 Mg-24	120280 Mg-28	130270 AL27	130270 AL-27	130270 AL-27	130270 AL27	130270 AJ-27	140280 SI-28	140280 Si-28	140290 Si-29	140290 Si-29	140290 St-29	140300 St-30	140300 Si-30	150310 P-31	150310 P-31	150310 P-31	160340 S-34	160360 S-36	170350 CI-35	170350 CL35	170370 Cl-37	1/03/0 CI-3/	1/03/0 CF-3/	180400 AI-40	100410 K 41	200400	200440 Ca 44	200450 Ca 45	200480 Ca-48	210450 Sc-45	

		Decommissioning	Fission reactors	Waste	Inertial Fusion	Waste	Magnetic Fusion	- 1	E9-IN	(g,n)	NI-62	380820
		Onionianimmone()	2000000 001013	3,33,0	anion 3 Join and	(o) 8						
	ì			Waste (Ni-63 from Co)	Inertial Fusion	iN mon 68-iN) elseW	Magnetic Fusion		N!-62	(6·u)	19-IN	019082
				100 may 60 ild other		Waste	Magnetic Fusion	-	69-IN	(uz·u)		280800
		Decommissioning	Fission reactors	Safety/maintenance	noizu i Isinani	Safety/maintenance	Magnetic Fusion	-1	CO-60	(0.0)		280600
		Ononiesimmone()	Engine market	endendiniem/viole2	golati3 laibaal	000000000000000000000000000000000000000	Dosimetry	- †	29-!N	(u,2n)		280580
		European Process	EINNORD LINKER I	Waste	noizu i laiment	Waste	Magnetic Fusion	-i	69-IN	(8.0)		280580
		Decommissioning	Fission reactors	eteeW	poistid Englos	- decky	Borehole logging		89-IN	(n,n)		280580
				Decomissioning	Fission reactors	Safety/maintenance	Magnetic Fusion	- 1	CO-57	(p.n)		280580
			212222211122211		Magnetic Fusion	eggenetriem/stele2	Dosimetry		65-00	(a-a)		290590
		Decommissioning	Fission reactors	Safetymeintenance		Waste	Inertial Fusion		09-94	(4.0)		270600
				Waste	Magnetic Fusion					(g.n)		270600
				Waste (Ni-63 from Co)		Waste (Ni-63 from Co)	Magnetic Fusion	!	Co-61	(8.0)		
Decommissioning	Fission reactors		Astrophysics	Safety/maintenance	noisu? leihen!	Safety/maintenance	Magnetic Fusion	ᆜ	09-00			270590
						gohehetal	Geophy sical		99-UW	(B,n)	85-00	270590
				(e3 mon 08-o2)	_	(67 mont 08-02)				40		
				Safety/maintenance	Magnetic Fusion	Safety/maintenance	Inertial Fusion		65-67	(8·u)	66.93	260580
				(60-60 from Fe)	_	(So-60 from Fe)				40		
				Safety/maintenance	Magnetic Fusion	Safety/maintenance	Inertial Fusion	_1	Fe-58	(6'u)	72-93	072092
				(Co-60 from Fe)	_	(Co-60 from Fe)]				l
				sonanatnism\yeta2	Magnetic Fusion	Safety/maintenance	· noisu 7 isineni	ŀ	Fe-57	(6'u)		280560
		Decommissioning	Fission reactors	Safety	Inertial Fusion	Safety	Magnetic Fusion		Fe-55	(u,Zn)		360560
				Safety/maintenance	Magnetic Fusion	poinemental	Geophysical	<u> </u>	99-UM	(q.n)		260560
						Fusion	Dosimetry		Fe-53	(uz.n)		260540
						Decommissioning	Fission reactors		Fe-55	(B.n)		260540
				Decommissioning	Fission reactors	Safety/maintenance	Magnetic Fusion	ŀ	Mn-54	(q.n)	16-64	260540
			Borehole logging	Decommissioning	Fission reactors	Safety/maintenance	Magnetic Fusion	ŀ	Mn-54	(n,2n)	SS-nM	220220
						gnheheini	Geophysical		A-52	(s.n)		250550
20ineheing	Borehole logging		Astrophysica	Yele?	noieu7 leibeni	Safety/maintenance	Magnetic Fusion	ī	Mn-56	(B.n)		520220
						Defector	Geophysical	1	Mn-54	(Q .n)	EG-UM	250530
						grinehetri	Borehole logging		15-11	(s.n)	PG-10	240540
						gninehetril	Ceophysical		۸-23	(b,n)	Ct-53	540530
				Safety/maintenance	Magnetic Fusion		Dosimetry		Ct-51	(n.2n)	Cr-52	540250
						grineheini	Geophysical	1	۸٠25	(đ·u)	Ct-52	240520
			 				Borehole logging		Ct-52	(n.n)		240520
			Borehole logging	Yelek	noisu 7 Isibeni	Safety/maintenance	Magnetic Fusion	\neg	Ct-51	(5 ·u)	Ct-50	540200
			22,221,212,422,0	1773		Buheheani	Borehole logging	ī	16-11	(q.n)	18-7	230510
			 			Safety/maintenance	Magnetic Fusion	1	81-0S	(B,n)		230510
			Vatrophysics	Safety	Magnetic Fusion	Defector	Geophysical	1	V-52	(B'u)	15-V	230510
				7-1-3	1 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	Waste	Magnetic Fusion	ī	61-1	(n.2.n)		530200
<u> </u>						(Jajes	Magnetic Fusion	ì	Ca-47	(s,n)		550200
.			· · · · · · · · · · · · · · · · · · ·		<u> </u>	guneheini	Borehole logging		15-17	(6'U)		220500
			 	 	 		Dosimetry		11-0S	(1'u)		220490
				 	 		Dosimetry		81-0S	(p'u)		550480
			 	SISBVV	noizu4 laiheni	Waste	Magnetic Fusion	ı	C= 45	(6,n)		550480
				- stock	Solow3 leibeet	Safety/maintenance	Magnetic Fusion	i	81-05	(d.n)		220480
						2200221212217140103	Dosimetry	÷	41-0S	(b,n)		220480
			 	 		Safety/maintenance	Magnetic Fusion	\dashv	21-0S	(9.0)		220470
			 	···	 	and addiewidate?	Dosimetry Magnetic Eusion	\dashv	91-0S	(n,d)		220470
<u> </u>				Market - The Control of the Control	. William mand de	Kesson 1		70		Reaction		
- A_noesea A	Application 4	C. hobbs Alling	6 nothestiqqA	KINESTHOSOOR	6 antientingA	I meted	> antie-stonA	6.3		-altaca@	******	1.174

——————————————————————————————————————						D)CDA4	LIGIER LONGUARIN		1111.71.410	(8·u)	2U-150	TOOZIOG
						Wasie	Dosimetry Magnetic Fusion	 	mrsr-ns			1 051161
						D-D diagnostics	Astrophysics	├	CQ-115		P11-03	
						Autocon autoco		٠.	MOTT-DA		601-9A	
						Decominationing	Fission reactors	 -	m801-gA			060174
				Decommissioning	Fission reactors	Waste		├ ÷				070174
		Decommissioning	Fission reactors	elssW	noisu4 leitheni	elseW		1	m801-gA			
							Astrophysics	<u> </u>	RU-105	-		010111
							Astrophysics		EO1-UA	78.		441020
							Astrophysics	╙	₹8-uЯ			0960++
						Waste		<u> </u>	86-oT	(uz·u)		130800
							Astrophysics	<u> </u>	101-0M	(g.n)	001-0M	421000
						(oM mont		ł		1		
						Safety Waste (Tc-99	Magnetic Fusion	<u> </u>	66-0W	(uz.n)	001-0M	421000
(Tc-99 from Mo)				(oM mon		(OM mon				اريما		l _
Decommissioning	Fission reactors		Astrophysics	Safety Weste (Tc-99	Inertial Fusion	Safety Waste (Tc-99	Magnetic Fusion	Į.	86-9W	(B.n)		420980
						Safety/maintenance	Magnetic Fusion	ı	NP-82	(d.n)	MO-85	450820
				Waste	Inertial Fusion	etesW	Magnetic Fusion	1	NP-84	(b,n)	98-OM	450820
						Waste	Magnetic Fusion	1	K6-93	(nS,n)	16-0W	450940
				Waste	Inertial Fusion	elsaW	Magnetic Fusion		16-9N	(q,n)	16-0M	450940
				Safety/maintenance	Inertial Fusion	Safety/maintenance	Magnetic Fusion	1	MP-83W	(b,n)	16-0W	450940
						otesto	Magnetic Fusion	$\overline{}$	NP-85	(b.n)		450830
						9)SEW	Magnetic Fusion	\vdash	WO-83	(8'u)		450850
				Waste	noisu3 leitheni	Waste	Magnetic Fusion	H	IB-9N	(p,n)		450850
				3,03,11	aniana lainaani	Waste	Magnetic Fusion		NP-85	(ā·u)		450850
-						Siste	Magnetic Fusion		NP-85	(uz'u)		410830
		Decomissioning	Fission reactors	AAS216	noisu i leimeni	OISBAA	Magnetic Fusion	H	96-9N	(8.0)		410830
		Decomissioning	Fission reactors	Safetymaintenance	Magnetic Fusion	Fission reactors	Dosimetry Mostable Eurise	┝╌┆	MP-93M	(n,n)		410930
		- coinciestamone()	andreas anies/3	Calab Imaintenance	Second Circles	Safety/maintenance	Magnetic Fusion	H	\$6-12	(nS,n)		096001
			· · · · · · · · · · · · · · · · · · ·			Safety/maintenance	Magnetic Fusion	├	\$6-1Z	(8.0)		400940
							Magnetic Fusion	┝╌	68-1Z	(nS.n)		00600+
						Safety/meintenance		- -	06-1S	(g.n)		380890
						Decommissioning	Fission reactors			(8·n)		
							Astrophysics	_	Rb-85	(8.0)		02807£
							Astrophysics		78-1XI			360860
							Astrophysics	\Box	Kr-82	(6·u)		360840
							Astrophysics		Kr-81	(6·u)		360800
							Astrophysics		17-40	(8 u)		014016
						prinering	Geophysical		Cu-66	(s.n)		310690
							Astrophysics	-	69-uZ	(5 'u)		300680
						gnhehetni	Geophysical	1	Cu-66	(q.n)		300660
							Dosimety	L	Cu-64	(q.n)		300640
						Decommissioning	Fission reactors	į,	28-n5	(6·u)		300640
				Safety	Magnetic Fusion	Defector	Geophysical	ı	Cu-66	(B.n)	C0-62	380820
						Safety	Magnetic Fusion	I	19-ng	(n,2n)	Cu-65	380920
							Bonehole logging		Ca-63	(n,n)	C0-63	380930
			Astrophysics			Safety	Magnetic Fusion		Cu-64	(g.n)	C0-63	280630
						Waste	Magnetic Fusion	I.	NF63	(q.n)	Cn-63	580930
				Safety/maintenance	Inertial Fusion	Safety/maintenance	Magnetic Fusion	ī	09-0D	(8,n)	C0-03	380930
						Waste	Magnetic Fusion	-	Ni-63	(u,2n)	1-9-IN	290640

ZAI	Target	Reaction	Daughter	F-2	Application_1	Reason_1	Application_2	Reason_2	Application_3	Reason_3	Application_4	Reason_4
501210		(n,g)	Sn-122		Astrophysics							
		(n,2n)	Sn-121m	1	Magnetic Fusion	Waste						
	Sn-125	(n,g)	Sn-126		Magnetic Fusion	Waste						
		(n,g)	Sb-124	1	Astrophysics		Fission reactors	Decommissioning (production of Sb-125)				
511240	Sb-124	(n,g)	Sb-125	1	Fission reactors	Decommissioning						
521280	Te-128	(n,g)	Te-129		Astrophysics					<u> </u>		
521300	Te-130	(n.g)	Te-131		Astrophysics							
531270	1-127	(n.g)	1-128		Astrophysics							
531280	1-128	(n.g)	I-129		Fission reactors	Decommissioning				<u> </u>		
541340	Xe-134	(n,g)	Xe-135		Astrophysics							
	Xe-136	(n.g)	Xe-137		Astrophysics					<u> </u>		
	Cs-133	(n.g)	Cs-134	1	Astrophysics		Fission reactors	Decommissioning		1		, <u></u>
551360	Cs-138	(n.g)	Cs-137		Fission reactors	Decommissioning						
	Ba-130	(n.g)	Ba-131	1	Astrophysics							
	Ba-132	(n,g)	Ba-133	1	Fission reactors	Decommissioning						
561360	Ba-138	(n,a)	Xe-135		Magnetic Fusion	Waste (Cs-135 from Ba)	Astrophysics					
571390	La-139	(n,g)	La-140		Astrophysics							
581430	Ce-143	(n,g)	Ce-144		Fission reactors	Decommissioning						
301460	Nd-148	(n.g)	Nd-147		Astrophysics							
301480	Nd-148		Nd-149	1	Astrophysics							
	Nd-150		Nd-151		Astrophysics							
821520	Sm-152	(n.g)	Sm-153	Т	Astrophysics							
821540	Sm-154	(n,g)	Sm-155		Astrophysics							
		(n.g)	Eu-152	1	Astrophysics		Fission reactors	Decommissioning				
831530	Eu-153	(n,g)	Eu-154	11	Fission reactors	Decommissioning					_ \	
			Eu-155	1	Fission reactors	Decommissioning						
	Ho-165		Ho-166	1	Astrophysics	1						
		(n,g)	Er-163	1	Astrophysics			1				
	Er-164	(n,g)	Er-165	1	Astrophysics	 						
		(n,g)	Er-171		Astrophysics						I	
	Yb-176	(n,g)	Yb-177	1	Astrophysics							
		(n,g)	Lu-176	 	Astrophysics	<u> </u>						
	Lu-176	(n,g)	Lu-177	\vdash	Astrophysics	 						
	Ta-181	(n,3n)	Ta-179	1	Magnetic Fusion	Safety (Hf-178 from Ta)						
731810	Ta-181	(n.g)	Ta-182	1	Magnetic Fusion	Safety						
	W-182	(n,2n)	W-181	1	Magnetic Fusion	Safety/maintenance						
	W-183	(n,g)	W-184	1	Inertial Fusion		Magnetic Fusion	Waste (Re-166m from W)				
741840	W-184	(n.g)	W-185	1	Magnetic Fusion	Safety	Inertial Fusion	Waste				
	W-186	(n,2n)	W-185	1	Magnetic Fusion	Safety						
	W-186	(n,g)	W-187	1	Geophysical	Detector	Magnetic Fusion	Safety	Inertial Fusion	Safety		
	W-186	(n,na)	Hf-182	1	Magnetic Fusion	Waste						
	Re-185	(n,2n)	Re-184	11	Magnetic Fusion	Maintenance						
		(n.g)	Re-186m	11	Magnetic Fusion	Waste	Inertial Fusion	Waste	1			
	Re-187		Re-188	li	Inertial Fusion	Safety	Magnetic Fusion	Safety				

_
0
둉
ě
pes
ğ
Ē
Por
2
ב
Ē
ğ
=
5
ť
ste
ŝ
ō
Š
arat
ã.
ă

ZAI Targ	pet Reaction	Daughter	F-2	Target Reaction Daughter F-2 Application 1	Reason 1	Application_2	Reson 2	Application 3	Region 3	Application 4	Reason 4
751870 Re-187	187 (n.2n)	Re-186m	Ŀ	Magnetic Fusion	Waste						
751870 Re-187	187 (n.p)	W-187	ے	Geophysical	Interfering	Magnetic Fusion	Maintenance				
761680 Os-188 (n,g)	188 (n,g)	09-189	Ŀ	Inertial Fusion	Waste	Magnetic Fusion	Waste				
761900 Os-190 (n.a)	190 (n.a)	W-187		Geophysical	Interfering						
781900 Os-190 (n.g)	190 (n.g)	0s-191	_	Inertial Fusion	Safety	Magnetic Fusion	Safety	Astrophysics			
761920 Os-192 (n.g)	192 (n.g)	0s-193	-	Astrophysics							
771910 ir-191	(n.g)	Ir-192n	_	Inertial Fusion	Waste	Magnetic Fusion Waste	Waste				
781920 Pt-192	92 (n.g)	Pt-193		Inertial Fusion	Waste	Magnetic Fusion	Waste	Astrophysics			
781940 Pt-194	94 (n.g)	Pt-195	Ц	Astrophysics							
781960 Pt-196	(B:U) 96	Pt-197	L	Astrophysics							
781980 Pt-198	(6·u) 86	Pt-198	ے	Astrophysics							
791970 Au-197 (n.n')	197 (n.n')	Au-197		Borehole logging							
791970 Au-197 (n.g)	197 (n.g)	Au-198	-	Astrophysics		Borehole logging					
822040 Pb-204 (n,2n)	204 (n,2n)	Pb-203	_	Magnetic Fusion	Safety/maintenance						
822060 Pb-206 (n,2n)	206 (n,2n)	Pb-205	_	Magnetic Fusion	Waste						
822060 Pb-206 (n,s)	208 (n.a)	Hg-203	_	Magnetic Fusion	Safety/maintenance						
822080 Pb-208 (n.g)	208 (n.g)	Pb-209		Magnetic Fusion	Safety						
832090 Bi-209	.09 (n,2n)	Bi-208	_	Magnetic Fusion	Waste	Inertial Fusion	Waste				
832100 Bi-209 (n.g)	09 (n.g)	Bi-210m	Ŀ	Magnetic Fusion	Waste	Inertial Fusion	Waste				

Nuclear Data Section

International Atomic Energy Agency

P.O. Box 100

A-1400 Vienna Austria

online:

TELNET or FTP: IAEAND.IAEA.OR.AT

username: IAEANDS for interactive Nuclear Data Information System

username: ANONYMOUS for FTP file transfer

username: FENDL for FTP file transfer of FENDL files For users with web-browsers: http://www-nds.iaea.or.at

e-mail, INTERNET: SERVICES@IAEAND.IAEA.OR.AT

fax: (43-1)20607

cable: INATOM VIENNA a

telephone: (43-1)2060-21710

telex: 1-12645 atom a