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Abstract 

 
 Results obtained during the first six months of the Coordinated Research Project (CRP) 
on Improvement of the Standard Cross Sections for Light Elements were presented.  
Attention focused on studies of the reduction in uncertainty for the model and non-model 
least squares fits, intercomparison and testing of different computer codes based on the 
nuclear model, non-model general least square and Bayesian approaches to the evaluation of 
standard reaction cross sections and covariance matrix of their uncertainties.  The reasons 
leading to the underestimation of uncertainties and bias in the evaluated values were 
discussed and solutions to these problems were outlined.  A coordinated working plan was 
prepared which will result in the preparation of new reaction cross section standards for light 
and heavy elements by 2004. 
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1. Meeting summary 
 

V. Pronyaev, the Scientific Secretary, opened the meeting and presented a welcome 
address by A. Nichols, Head of the Section, who was unable to attend the meeting.  After 
brief self-introductions by the participants, A. Carlson was elected as a Chairman and G. Hale 
as Rapporteur of the meeting.  The Agenda was adopted with a few corrections and changes 
(see Appendix 1). 

 
The objectives of the Coordinated Research Project (CRP) as formulated at the 

Consultants� Meeting on Improvement of the Standard Cross Sections for Light Elements (2-
4 April 2001, Report INDC(NDS)-425 (2001), available on http://www-
nds.iaea.org/indc_sel.html) were converted into an Action Plan and presented by V. 
Pronyaev.  Primary aims will be to improve the evaluation methodology for the covariance 
matrices of the uncertainty in the R-matrix model fits, R-matrix evaluation of standards cross 
sections for light elements, and combining the light and heavy elements standards 
evaluations.  At their May 2002 meeting, the Working Party on Evaluation Cooperation 
(WPEC) urged the RCM to accelerate the preparation of new standards evaluations, because 
work has already begun on new versions of national evaluated data libraries with their 
expected releases as early as 2005.  These general purpose and specialized evaluations will 
require knowledge of the updated standards.  Therefore, substantial changes should be 
introduced in the CRP working plan with extension of the objectives on evaluation of both 
light and heavy element standard reactions, and aiming the issue of the first version of the 
Standards evaluation in 2004.  A. Carlson, as Chairman of Subgroup 7 of the WPEC (Nuclear 
Data Standards), which coordinates the measurements and updating of the data base for the 
standards, informed participants about the recommendations from the last WPEC meeting.  
He also summarized the evaluation process used for the ENDF/B-VI standards and provided 
recommendations for improvements to the new international evaluation process. RCM 
participants have agreed with the requested changes in the working plans.  A problem is that 
some participants are heavily involved in laboratory tasks not related directly with standards, 
and cannot devote much time to the desired evaluations. 

 
Session 1 was devoted to presentations by participants and follow-up discussions.   

 
The capabilities of the microscopic resonating group model (RGM) with realistic 

two- and three-nucleon forces for prediction of the 3He(n,p) reaction cross section (states in 
4He system) were demonstrated by H. Hofmann.  This method requires very large amounts of 
computer time.  Using three-body force calculations, the practical limit is approximately A=5.  
With two-body force calculations, it may be possible to calculate A=7, thus contributing to 
the 6Li(n,t) cross section evaluation.  The RGM results show more poles effecting the energy 
region where the cross section can be used as a standard, although some poles are very broad.  
The transformation to the R-matrix type of pole is needed in order to use them in the R-
matrix analysis. 

 
The results of R-Matrix fits of 5 sets (numbered from 0 to 4, see Attachment 1) of 

6Li(n,t) reaction cross section data treated as absolute for the TEST1 intercomparison were 
shown by G. Hale.  The thermal value of the reaction cross section and one experimental data 
set for the total cross section were added to avoid an ambiguous determination of 10 free 
parameters.  The normalization for Set 4 (Friesenhahn), which was discrepant compared with 
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all the others, was eventually released (constrained by error), but made only a small 
improvement in the fit.  In fact, the EDA fit was not influenced very much by the Friesenhahn 
data, perhaps due to inconsistencies with the other data sets.  The cross sections as well as 
covariance matrix for 13 energy points were calculated from the evaluated parameters and 
their covariance matrices.  It was shown that the uncertainty of the evaluated curve increases 
from 0.5% at low energy (2.5 keV), where the influence of the additional thermal point value 
is extremely high, up to 1.5% at high energy (0.8 MeV).  The correlation matrix shows clearly 
some strong medium energy range correlations, which are intrinsic features of the model fits, 
and small anticorrelations between some energies.  Hale noted that all three R-matrix codes 
(EDA, RAC, and SAMMY) gave the same results when calculating cross sections from the 
same R-matrix parameters, using non-relativistic kinematics.  Unfortunately, the additional 
data sets used for the EDA parameter search did not permit direct intercomparison with the 
results of the TEST1 exercise for other model and non-model fits.  The participants discussed 
later in the meeting how the test data might be expanded and modified to allow such direct 
comparisons to be made (see the item about R-matrix intercomparison below). 

 
Detailed studies of error propagation in the R-matrix model fitting were presented 

by Chen Zhenpeng.  The simulated data set for each type of data (channel) was prepared from 
realistic R-matrix parameters for standard reactions passing though 7Li, 11B or 16O composite 
systems in the energy region of interest.  Realistic uncertainties were assigned to the 
simulated cross sections in different channels.  The covariance matrix of the simulated data 
was constructed from 3 components: Long Energy Range Correlation (LERC), Medium 
Energy Range Correlation (MERC) and Short Energy Range Correlation (SERC) 
components.  The relative contributions of components can be varied, keeping the total 
variance unchanged and the Error Propagation Coefficient (EPC) was defined as the ratio of 
the average relative uncertainty of the model evaluated data to the same quantity for the 
experimental data of a given type.  Thus EPC shows which role is played by different 
components of the uncertainty for a given type of data (channel).  The result for the 6Li(n,t) 
reaction shows that consideration and inclusion of MERC can substantially increase the EPC.  
Hence treatment of all non-statistical components of error only as a LERC will lead to the 
underestimation of the uncertainty.  An empirical formula for evaluation of the EPC was 
proposed. 

 
The intercomparison of capabilities of different R-matrix fitting codes EDA, RAC 

and SAMMY was given by N. Larson.  Because the codes were initially oriented for solution 
of different tasks, each of them has its own specific features.  The SAMMY code presented 
by N. Larson can (and should, where it is possible) work with raw data.  This means that 
counts per channel in time-of-flight measurements can be introduced as primary data.  Cross 
sections and their covariance matrices will be obtained through data reduction based on the 
use of the error propagation law and detailed information about the experiment (spectrometer 
resolution function, background, etc.) and corrections, which should be applied.  There are 
built-in options for possible adjustment of the data considered as discrepant due to possible 
errors in energy calibration, background separation, etc. These features of data reduction in 
the SAMMY code can be used for the preparation of cross sections and covariance matrices 
used by other R-matrix codes for evaluation of standard cross sections. It was pointed out that 
the raw data (counts) could be fitted with a covariance matrix that is diagonal (purely 
statistical, non-correlated).  However, it is not likely that many experimentalists would 
provide necessary information to do this. 
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Carlson presented studies of the database for the standard reaction cross sections and 
new experimental data, obtained after the last standards evaluation, that should be 
incorporated in the database.  Although many experiments have been completed, a large 
number are still in the data processing and analysis stage.  The list of experiments for which 
data have been obtained or measurements are underway was given.  Contributions, which can 
lead to significant changes in the evaluated values, are expected in the H(n,n), 10B(n,α), 
235U(n,f) and 238U(n,f) cross sections. As a result some important discrepancies in the 
experimental database for the H(n,n) and 10B(n,α) reactions are expected to be resolved.  A 
new evaluation of  the 235U(n,f) cross section completed by T. Kawano et al. for the JENDL 
library with inclusion of all the latest data is several percent higher than the present 235U(n,f) 
standard in the energy region from about 1 to 5 MeV.  It is unclear to which extent this 
discrepancy is due to inclusion of new data or because data from EXFOR were used without 
their renormalization to new standards and additional corrections (as was done by W. Poentz 
for the standards database). 

 
The problem of the underestimation of evaluated cross-section uncertainties is 

addressed in paper presented by S.Badikov and E.Gai. Two basic sources of the 
underestimation of evaluated cross-section uncertainties - a) inconsistency between declared 
and observable experimental uncertainties and b) inadequacy between applied statistical 
models and processed experimental data - are considered. Both the sources of the 
underestimation are mainly a consequence of existence of the uncertainties unrecognized by 
experimenters. A model of a �constant shift� is proposed for taking unrecognised 
experimental uncertainties into account. The model predicts for each data set the 
renormalization coefficient, systematic and statistical uncertainties. The model is applied for 
statistical analysis of the 238U(n,f)/235U(n,f) reaction cross-section ratio measurements. The 
authors demonstrate that multiplication by sqrt(χ2) as instrument for correction of 
underestimated evaluated cross-section uncertainties fails in case of correlated measurements. 
It is also shown that arbitrary assignment of uncertainties and correlation in a simple least 
squares fit of two correlated measurements of unknown mean (like in case of Peelle�s Puzzle) 
leads to physically incorrect evaluated results. 

 
The problem of obtaining reliable (in the sense of statistical significance) evaluated 

covariance matrices in the least squares model and non-model fits with implementation of full 
error propagation law were discussed by Soo-Youl Oh.  The simple model of three non-
correlated sets presenting data at four points was taken to avoid unneeded complexity.  Model 
fits with splines of different orders and non-model GMA fits were done.  As expected, the 
model fit with a spline of third order gives the same evaluated central value and covariance 
matrix as non-model GMA fit.  Fits with second order, linear and inverse linear splines give 
different evaluation of central values and covariance matrices.  Because of near-linear 
dependence of the fitted data, the difference in central values is small.  The general tendency 
is the increasing the diagonal and decreasing off-diagonal covariances, with the growth of the 
order used for the spline.  This is how such an intrinsic property of the model function as 
shape propagates into the covariance matrix of evaluated data.  A peculiar feature observed is 
that with good accuracy all fits give the same univariate (one-group) collapsed variance, 
namely the sum of all elements of a covariance matrix does not depend on the order of the 
spline or type of model/non-model fit (type of sum rule for uncertainty).  The presence of the 
Peelle�s Pertinent Puzzle (PPP) in the fitting of discrepant data, which can lead to an 
unphysical decrease of evaluated values and use of Box-Cox transformation to overcome this 
problem, was demonstrated.  In many cases it requires just a logarithmic transformation of the 
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data and uncertainties, a least squares fit and back transformation of evaluated data and 
uncertainties.  Although the expert�s solution for removing discrepancies is preferable, the 
inclusion of this procedure in the least squares fitting codes is desirable. 

 
The use of the KALMAN system for error analysis was presented by T. Kawano.  The 

system includes the SOK code, which provides preparation of data and their least square 
fitting based on the Bayesian approach.  Runs with TEST1 data was undertaken for a spline 
function with a variable number of nodes (parameters): 10, 18 and 35.  Unfortunately, direct 
intercomparison with the fits using non-model GMA, GLUCS and R-matrix model RAC code 
for TEST1 case was impossible, because these codes evaluate data for 51 points (nodes).  The 
general tendency observed is that with increasing number of nodes (that gives larger freedom 
to the shape of the model function) all elements of the covariance matrix of uncertainty of the 
data evaluated in these nodes decreases with a larger decrease of the non-diagonal elements in 
comparison with the diagonal ones.  The uncertainties of data evaluated at 35 nodes for a very 
complex model function were still well above that of non-model least square fitting.  If the 
fitting could be done with a spline of 51 nodes, evaluated data and covariance matrix 
uncertainty would be identical to the non-model fitting for 51 points (as was shown by Soo-
Youl Oh above for case of four nodes).  Another model function selected for test, was a 
Lorentzian resonance with 1/v addition, which (as could be expected) with only four 
parameters might describe the shape of fitted data.  The fitting with this model function was 
carried out at 35 points to make possible a comparison with 35 knots spline fitting.  Chi-
square of fitting was rather large due to a clear inability of the model to describe the energy 
dependence on the right side of the resonance at 247 keV.  Adding the constant term as a fifth 
parameter will substantially improve the chi-square of fitting.   

 
V. Pronyaev presented the results of TEST1 data fitting with the generalized least 

square code GMA versus the Bayesian code GLUCS.  A simple correction was introduced in 
the version of the GMA code transferred to the IAEA in November 1999.  Without this 
correction, GMA accumulated in the adjustment vector of the evaluated cross section the 
contribution only from the last block (correlated set) of the data.  This correction does not 
influence the covariance matrix of uncertainty of the evaluated data.  The results of fitting of 
TEST1 discrepant data with GMA and GLUCS codes based on different numerical 
algorithms, had shown a difference of stochastic nature in the limits not exceeding 0.5%.  A 
check was made to ensure that the order of data input does not influence the final GMA and 
GLUCS results.  TEST2 was prepared, to check the numerical convergence of the results of 
calculations with GLUCS and GMA when large numbers of data are treated by the codes.  
Thus, TEST2 was designed in such a way, that the result of evaluation of the cross section in 
the limit of a large number of data sets should asymptotically converge to the values known 
prior to the process of evaluation.  For 501 data sets fitted with GMA, the difference from the 
known asymptotic value was to be less than 0.1%.  The conclusion about good performance 
of GMA code should be still reviewed independently in other conditions of GMA fitting.  The 
effect of PPP was clearly observed in the fitting of TEST1 data sets over the resonance in the 
6Li(n,t) reaction.  Fitting the logarithms of the data points and revising the uncertainties of 
discrepant data sets might exclude the PPP effect.  

 
The next session was devoted to the discussions of open (unsolved) problems in the 

standards evaluation, which are summarized below.  An Action List based on these 
discussions was prepared after the meeting and agreed upon by the participants. 
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 Problems with least-squares fits:  Kawano stated that he uses log(sigma) in data fitting.  
Although GLUCS and GMA appear to agree very well, Kawano will do his calculations with 
SOK.  This comparison will involve using the same starting values.  Kawano and Talou have 
done comparison work at Los Alamos with GLUCS, which appears (visually) to give the 
same results.  Pronyaev will send information to Kawano to make direct comparisons using 
the same starting values.  Badikov pointed out that GMA handles more different types of 
input data than GLUCS.  However, overall, there were no real problems seen with least-
squares fitting.  Pronyaev pointed out that large variation in cross sections may cause 
numerical instabilities in GMA/GLUCS fittings if correlations are large.  It could be 
worthwhile incorporating Chiba�s modifications to GMA into a new GMAR, and PPP 
problem might be overcome.  Perhaps we should also make a new GMA version (GMAR4) 
incorporating the logarithmic transformation discussed by Oh.  Badikov suggested further 
discussion on PPP.  Vonach pointed out that RAC calculations shown in the Pronyaev 
presentation �Test and Intercomparisons�� is systematically lower than the experimental 
data in the low-energy range.  Chen replied that he has a newer solution that is better. 
 
 Oh noted the interesting result that the correlation matrix for his fitting of an 
approximately linear function was the same for any function having the same number of 
fitting parameters. 
 
 Kawano showed SOK results with and without the logarithmic transformation.  When 
there are cross-energy correlations in the data sets, the results with the log(sigma) 
transformation are different (and better) than those without; without cross-energy 
correlations, the results are the same.  Also, he confirmed that the log transformation gives a 
reasonable result for combining the correlated points in the classic PPP example. SOK results 
without the log transformation agree within a few tenths of a percent with those of 
GMA/GLUCS.  Differences may be explained by rounded-off values of covariances used for 
input in SOK. 
 
 Oh pointed out that the log transformation is a special case of the Box-Cox 
transformation, and may work in PPP because this transformation linearizes the dependence 
on normalization factors.  
 
 Non-diagonal elements of covariance matrices:  Chen talked about the effect of long- 
and medium-range correlations on output covariances in R-matrix fitting.  For only statistical 
(uncorrelated) error, the error reduction is about 1/20.  For non-zero amounts of Y (long-
range correlations) and M (medium-range correlations), the error-reduction factors rise 
rapidly.  He showed contour plots of the correlation coefficients for the 6Li(n,t) cross section 
with features that correspond to local and non-local effects of the resonance parameters.  He 
also showed results for 16O(n,n) reaction that has more resonances.  He showed results of 
6Li(n,t) to illustrate effect of input covariances on the output values.  Input correlations tend 
to increase output correlations.  This work is important and needs further study, elucidation 
and documentation. 
 
 Chen also showed various RAC fits which included the five 6Li(n,t) cross sections, 
supplemented by various other measurements, including a thermal value, total cross sections, 
and charged-particle data.  The results using only the five reaction cross section sets were 
similar to those from GMA/GLUCS.  Removing the discrepant Friesenhahn data changed the 
RAC fit considerably.  This result is different from that obtained by Hale in his EDA analysis.  
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Badikov commented on �ill-posed� mathematical problems for the case where there is no 
unique solution.  For a positive definite covariance matrix of the parameters, the propagated 
covariance matrix is also positive definite if the rank of the sensitivity matrix is equal to the 
number of  parameters.  If the rank exceeds the number of parameters, the result is 
semipositive-definite (zero eigenvalues), and the predicted uncertainties are only lower limits.  
Hofmann pointed out that numerical round off could even cause such matrices to have 
negative eigenvalues that are meaningless. 
 
 Pronyaev discussed uncertainty for correlated data, starting from the standpoint of 
information entropy.  For the case of a simple univariate Gaussian, this becomes proportional 
to the log of the variance.  In the multivariate case, it is proportional to the log of the 
determinant of the covariance matrix.  Further, he discussed a means of collapsing (grouping) 
the multivariate case to produce a single quantity.  He showed how Chen�s RAC fit for the 
first data set (Lamaze) changes the uncertainties on the input experimental data.  The 
variances changed, but the covariances exhibited little changes.  Also he showed the behavior 
of GMA, GLUCS, and RAC when all five data sets were fitted.  There was again a reduction 
of the variances, but very little difference in the output off-diagonal covariances of the three 
different codes. 
 
 R-matrix intercomparison:  Hale proposed that a common set of initial data and 
covariances be used to compare the behavior of the three R-matrix codes.  He volunteered to 
put together a set of neutron total cross sections and a thermal reaction value to supplement 
the existing 5 sets of reaction data.  Pronyaev suggested gradually reduce the influence of 
these additional data to see the effect on the R-matrix fits.  In the limit that the additional data 
became noninformative, his expectation was that the R-matrix results would approach those 
of the model-independent fits.  However, the physical constraints on the energy dependence 
of the R-matrix calculations would not allow this sort of equivalence to be realized fully, even 
in that limit. 
 
 Improvements in R-matrix codes were discussed briefly.  One item that might 
eventually be required is the addition of medium-range initial correlations to EDA, but that 
would be difficult to achieve because of the structure of the code.  Another was checking for 
positive-definiteness of the parameter covariance matrix at a solution in RAC and SAMMY, 
as does EDA. 
 
 Proposed format for resonance data and their uncertainties was presented by Larson.  
The Reich-Moore format is too restrictive for many cases of interest.  The proposed format is 
more general, but not all the necessary conventions have been considered.  She also proposed 
a compact format for storing the parameter covariances from a resonance analysis that 
involved truncating them to two significant digits.  Hofmann again pointed out the problem 
with this truncation introducing spurious negative eigenvalues, and suggested tabulating the 
most significant eigenvalues and their associated eigenvectors. 
 
 Kawano raised concerns about how Poenitz had renormalized the cross sections that 
were used in the ENDF/B-VI.  Carlson emphasized that the larger effects from Poenitz were 
corrections to experiments he deduced by studying the documentation, etc.  The 
renormalization to the new hydrogen cross section was a rather small correction in most 
cases.  Poenitz is attemping to obtain from long-term storage his data books containing the 
information he used to make the various corrections.  These books could then be used to 
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verify the corrections that were made, before being properly archived.  
 
 Pronyaev showed measurements from EXFOR and CINDA that were made after, or had 
not been included in, Poenitz�s data base.  Several data sets appeared to have been missed, 
and Carlson said he would check on them.  There were many new data sets for 235U(n,f), 
including a large high-resolution measurement with much structure at energies between 0.1 
and 2 keV.  Carlson was unsure how much effort would be necessary in dealing with such 
data (energy averaging), but would consider the possibility later in the meeting.  The same 
question arose with a similar measurement for 239Pu(n,f).  Pronyaev volunteered to help 
obtain experimental papers and possibly data, especially from Russian reports which are more 
easily obtained from the IAEA, to ensure that the data listed in EXFOR reflect the latest, 
revised values.  Pronyaev�s suggestion that the hydrogen cross section be included in the 
GMA data base initiated a long discussion about whether the ratios or cross sections had been 
included in the ENDF/B-VI GMA data base.  It appears that cross sections were used, but 
Kawano pointed out that it was not always obvious what (earlier) hydrogen standard had been 
used to obtain the ratio data that were then converted to cross sections using the Version VI 
hydrogen cross section.  Carlson pointed out that it was usually easy to determine what 
hydrogen standard was used in a given experiment from the documentation.  When direct 
information was not given in the documentation, it was assumed that the standard used was 
that of the ENDF/B version available at the time of the experiment.  This assumption is quite 
likely to be correct since so few evaluations of the hydrogen cross section have been made. 
 
 Hale gave a brief update on the status of the n-p analysis, which continues to give a very 
good fit to the n-p total cross section and differential scattering cross sections at energies up 
to 30 MeV.  
 
 Kawano described work on 235U(n,f) and other standards using SOK.  He saw 
differences with ENDF/B-VI presumably starting from the same experimental data base.  The 
differences may come from the logarithmic transformation of the cross sections in SOK, and 
from the treatment of normalizations and experimental corrections by Poenitz.  Czirr shape 
data have a very strong effect on the outcome, and therefore it is very sensitive to the 
corrections made by Poenitz (and others) for this data set.  
 
 Pronyaev showed recent results from Mannhart�s evaluation of the 235U thermal neutron 
induced fission neutron spectrum averaged 235U(n,f) cross section.  The new value (1219 ± 14 
mb) had increased somewhat (1.6%) from his 1985 value.  The same tendency is seen for 
252Cf spectrum averaged cross sections.  Result of NIST (I.G. Schroder et al., 1985) 
measurements of 252Cf spectrum averaged 235U(n,f) cross section (1234 ± 17 mb) is also 
about 2% above the 1987 Mannhart evaluation (1210 ± 15 mb).  There is a strong need to re-
evaluate the 252Cf spontaneous fission neutron spectrum averaged cross sections, as well as 
thermal neutron spectrum averaged cross sections. 
 
 A definite schedule for the work plan was discussed.  The R-matrix codes will be 
compared starting from the same data set, as constructed by Hale.  This data set will include 
the five 6Li(n,t) cross-section sets given by Pronyaev, a thermal value, and total cross sections 
from thermal up to about 1 MeV.  The construction of this data set is will take less than two 
months, while further comparison of the R-matrix results (solutions, output covariances) will 
take another two months.  The next step is to investigate the effects of medium-range 
correlations in RAC and SAMMY on the output covariances (estimated to take two months). 
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 During the same six-month period, Hofmann and Hale will investigate how to extract 
R-matrix parameters from microscopic resonating group calculations.  They will first try the 
procedure on the 4He system, in the hope of improving the 3He(n,p) cross section, and then 
extend to resonances in the 7Li system, in order to obtain information about background 
levels and possibly unknown broad states in the region of interest.  The work on 7Li system is 
expected to improve the 6Li(n,t) cross-section standard.  
 
 The group returned to matters related to the generalized least-squares codes.  There was 
a long discussion about the use of the logarithmic transformation (or its generalization) in 
these codes to take care of PPP-type effects.  An alternative is to adjust the errors on 
discrepant data (or neglect them), so that the PPP effects may not appear.  Oh will investigate 
the 5-set test data using GMA with and without the logarithmic transformation (estimated to 
take three months). 
 
 New experimental data for the analyses should be available before August of 2003. 
 
 Discussion followed on the combination process.  The most likely path is to use the 
output from the R-matrix and least-squares codes to undertake the combination, probably 
using GMA.  Other possibilities would be to use Muir�s code ZOTT, or to modify SAMMY 
to treat the results from the GMA analysis.  Kawano pointed out that SOK can also be used, 
and has the advantage that the experimental data do not have to be placed on a fixed grid.  
GLUCS is no longer needed now that favorable comparisons have been established.  Further 
CRP work with GLUCS would require significant additional coding effort.  
 
 Preparation of the experimental data base will be handled by Carlson and Pronyaev 
(EXFOR), with help from Vonach and possibly others.  Techniques developed by Badikov 
and Gai will be useful for identifying data that require special attention.  Also the procedure 
suggested by Vonach using auto-correlation studies should be considered.  A similar 
procedure was used in an iron total cross-section evaluation. 
 
 Kawano will produce simulated data with known means in order to investigate what 
happens with the different codes in the case when the data are forced to be discrepant, and 
with strong correlations.  By fitting these data with R-matrix parameters, as for 56Fe, Kawano 
may gain insight into how the PPP may enter R-matrix fits.  Badikov also has a simple 
procedure for producing such data sets.   Vonach suggested looking at these effects in just 
some (say two) of the data sets.  Kawano did this for sets 0 (Lamaze) and 3 (Poenitz) using 
SOK, and saw no difference using the log transformation.  Pronyaev could use GMA to 
investigate the effect of increasing the off-diagonal correlations for this test case.  The 
covariance matrices of experimental data should be prepared for this test as the sum of 
covariance matrices for long-range (LER) and short-range (SER) correlation components, but 
not through artificially assigning the same correlation coefficient to all the off-diagonal 
elements of the correlation matrix. 
 

 Based on work done by Zhou, the consistent view of the group was that PPP relates to 
an idealization that should not occur in practice.  It was felt that a more physical construction 
of covariances would eliminate this problem in GMA.  This feeling was reinforced by the 
GMA test of the Lamaze/Poenitz data (they are rather consistent) performed by Pronyaev, in 
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which the output cross sections were much lower than the measurements for 99% long-ranged 
correlations.  Vonach pointed out that such a large correlation is not physically possible, but a 
similar effect was also evident for 50% correlation.  This raised concerns about whether this 
effect actually occurred in ENDF/B-VI, and could occur in the new GMA evaluation. Again, 
the possibility was raised that the logarithmic transformation could mitigate this effect.  
Carlson reminded the CRP that Poenitz increased the uncertainties of data which were greater 
than three standard deviations away from the output results in an effort to remove problems 
with discrepancies. 

 
 Carlson suggested that a trial combination of the 6Li and 10B data along the lines of the 
ENDF/B-VI combination be done with GMA about six months into the next year.  Hale will 
provide preliminary output from the 7Li and 11B system analyses at that time for this trial.  
 
 Larson said she would investigate putting a GMA-type algorithm in SAMMY to 
evaluate the physical reasonableness of covariance matrices.  She described how experimental 
covariances are constructed with SAMMY.  Vonach suggested an iterative procedure for 
correcting his estimates of the medium-range correlations. 
 
 Kawano commented that the log transformation has the effect of weighting all data with 
the same percentage uncertainty the same way, independent of the size of the cross section; 
whereas using the cross section tends to weight smaller values with the same percentage 
uncertainty more heavily.  He also asked about the role of normalization parameters and their 
covariances in GMA analyses. 
 
 Oh asked about energy uncertainties in GMA.  There is a �slot� to give this type of 
information in the input to the code, and all agreed that this feature should be used.  However, 
Carlson was not sure how these uncertainties were actually used (if at all) in the fitting 
process, and suggested this behavior be checked. 
 
 Pronyaev commented on the types of publications that could be produced in connection 
with the project.  He advised us that, while not required, electronic publications of any length 
dealing with any part of the research can be put on the IAEA website.  The proceedings of 
this meeting are planned to be published within about two months.  He will produce, with 
help from Carlson and Hale, an initial draft of recommendations (primarily the work plan) 
and conclusions from the meeting, and then circulate them for comment to all participants. 
 
 The next meeting was tentatively scheduled for 13-17 October of 2003 near 
Washington DC (NIST at Gaithersburg, MD).   
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2. Action list 
 
 1. Input from Resonating Group Microscopic Nuclear Model (RGM) predictions to the 
R-Matrix (RM) Phenomenological Model Fit 
 
No. Action Participant(s) Terms 
1.1. To prepare specification for conversion of the RGM 

parameters in the parameters of the R-Matrix model. 
H. Hofmann,  
G. Hale 

October 
2002 

1.2. To prepare the subroutines for this conversion. H. Hofmann February 
2003 

1.3 To make RGM calculations which account for all channels 
contributing in the energy range of the interest of standards for 
system with A=4 and A=7 trough poles located in this energy 
range or through distant poles.  To prepare the information on 
R-Matrix poles. 

H. Hofmann July 
2003 

 
 2. R-Matrix codes inter-comparison and data evaluation: testing of different approaches 
to the implementation of the error propagation law in codes EDA, SAMMY and RAC, testing 
of the convergence in the parameters search, testing in the cases when strong non-linearity in 
parameters/cross section exists; comparison of the results of the R-matrix model with non-
model fit based on the same sets of the experimental data 
 
No. Action Participant(s) Terms 
2.1. To prepare specification for R-Matrix codes search and 

covariance matrix inter-comparison, which should include 5 
data sets for 6Li(n,t) reaction specified for TEST1 (all treated as 
absolute cross-section measurements), thermal cross section 
and one data set for each 6Li(n,total) and 6Li(n,elastic).  Data 
for additional cross sections/channels can be used for 
unambiguous determination of R-Matrix parameters which will 
be used as starting values in fittings with gradual conversion of 
additional cross sections/channels in the non-informative ones.  
To distribute data for this test to all participants. 

G.Hale October 
2002 

2.2. To test to what extent the linear approximation for presentation 
of sensitivity coefficients is good for case of R-Matrix fit of 
6Li(n,t) reaction.  To test the accuracies of numerical versus 
analytical determination of sensitivity coefficients applied in 
different R-matrix codes. 

G.Hale, Chen 
Zhenpeng, 
N.Larson 

November 
2002 

2.3. To run PADE-2 model fit for TEST1 case (5 data sets) and 
send results to the NDS for intercomparison. 

S.Badikov November 
2002 

2.4. To intercompare the results of least-squares fits with R-Matrix 
codes EDA, RAC and SAMMY and R-Matrix codes versus 
non-model codes GLUCS, GMA and SOK. 
To demonstrate the factors leading to the reducing of the 
variances in the R-Matrix model fits: unitarity following from 
relations between total and partial channels and intrinsic 
medium and long energy range correlations induced by model 
through predetermined functional shape. 

G.Hale, Chen 
Zhenpeng, 
N.Larson, 
S.Tagesen, 
V.Pronyaev, 
Soo-Youl 
Oh, 
T.Kawano 

December 
2002 
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2.5. To finalize the studies of error propagation in the model fits 

and send the paper to the NDS/IAEA for publication as INDC 
report. 

Chen 
Zhenpeng 

January 
2003 

2.6. To review and prepare data for neutron induced channels in 
3He+n, 10B+n and 6Li+n reactions, which will be processed by 
R-matrix codes and exclude these data from the non-model fits. 

G.Hale, 
N.Larson, 
A.Carlson, 
H.Vonach, 
V.Pronyaev 

January 
2003 

2.7. To review and prepare data for all other channels which are 
needed for R-matrix fitting of 3He+n, 10B+n and 6Li+n 
reactions. 

G.Hale, 
N.Larson, 
A.Carlson, 
H.Vonach, 
V.Pronyaev 

February 
2003 

2.8. To extend SAMMY code with inclusion of the option for 
simultaneous fits of direct and inverse channels. 

N.Larson May 2003 

2.9. To evaluate 3He(n,t), 10B(n,α) and 6Li(n,t) reactions in R-
Matrix model fits with EDA, RAC and SAMMY codes. 

G.Hale, Chen 
Zhenpeng, 
N.Larson 

September 
2003 

 
 
 3. GMA database of experimental cross sections for standards evaluation and 
evaluation of data with GMA. 
 
No. Action Participant(s) Terms 
3.1. To prepare the list of experimental data which are not included 

in the Poenitz database (as September 1997) for standards and 
compile them in EXFOR (or EXFOR-like shortened format). 

A.Carlson, 
V.Pronyaev 

December 
2002 

3.2. To explore the possibility of re-evaluation of thermal cross 
sections and resonance integrals needed for standards 
evaluations (revision of Axton evaluation, paying attention to 
the solution of the �puzzles� in the least squares fit and 
benchmark experiments). 

A. Carlson December 
2002 

3.3. To analyze new data and prepare input for generation of 
covariance matrices of these data with RCL.F and DAT.F 
codes (data preparatory codes for GMA).  Test these new data 
for consistency with other data in the database. 

A.Carlson, 
H.Vonach, 
V.Pronyaev 

February 
2003 
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3.4. To analyze all of the database for data consistency and local 

discrepancy and to improve discrepant data by correcting 
(including cutting of the data at the edges) or revision of their 
covariance matrices using method of introducing of medium 
energy correlations for data discrepant with a posterior 
evaluated data (by H. Vonach and S. Tagesen) or method of 
treatment of unrecognized systematical error proposed by 
S.Badikov. 

A.Carlson, 
H.Vonach, 
S.Badikov, 
S.Tagesen, 
V.Pronyaev 

July 2003 

3.5. To run GMA with a full database and to estimate quality of the 
fitting, paying special attention to the energy regions where 
cross sections has no smooth behavior ((n,f) and (n,γ) cross 
sections at heavy elements for energy below 10 keV). 

Soo-Youl 
Oh, 
V.Pronyaev 

September 
2003 

3.6. To prepare database of cross sections for high energy standard 
cross sections (En > 20 MeV) and input for GMA 

A.Carlson, 
V.Pronyaev 

September 
2003 

3.7. To make decision about possible exclusion of data for this 
region, if data reduction introduces large uncertainty in data. 

A.Carlson, 
Soo-Youl 
Oh, 
V.Pronyaev 

September 
2003 

3.8. To run GMA with updated GMA database with exclusion of 
data, which where used in R-Matrix fit. 

Soo-Youl 
Oh, 
V.Pronyaev 

October 
2003 

3.9. To run GMA with inclusion of high energy standard cross 
sections 

Soo-Youl 
Oh, 
V.Pronyaev 

November 
2003 

 
 
4. Study of Peelle�s Pertinent Puzzle (PPP) and improvement of the GMA and other general 
least-squares codes to exclude bias of evaluated data caused by the PPP. 
 
No. Action Participant(s) Terms 
4.1. To prepare the MC numerically simulated data for testing at the 

PPP presence, e.g.: 6Li(n,t) reaction with 51 data points as in 
TEST1 grid (cross sections are calculated from resonance 
parameters) with an equal Long Energy Range Correlation 
(LERC, 20%) and average Short Energy Range Correlation 
(SERC, 20%) components.  Few tens (statistically significant 
number) of such uncorrelated data sets should be prepared, 
where each (central values) biased randomly (as MC 
numerically simulated) relative to the basic unbiased curve 
calculated from resonance parameters.  The average value 
(half-width) of normally distributed bias could be taken as 
sqrt(20**2+20**2)=28.3%. 

T.Kawano November 
2002 
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4.2. To introduce Box-Cox transformation (logarithm 

transformation of data and covariance matrices of data if 
parameter λ=1) in the GMA code, which reduces PPP. 

Soo-Youl Oh November 
2002 

4.3. To run GMA and SOK with and without logarithm 
transformation for test data prepared under 4.1. for study of 
presence of PPP. 

T.Kawano, 
Soo-Youl Oh 

November 
2002 

4.4. To study the possibility of implementing S.Chiba&D.Smith 
ansatz in the GMA and SOK for exclusion of the PPP. Run test 
case prepared under 4.1., to demonstrate exclusion of PPP and 
comparison with logarithm transformation ansatz. 

Soo-Youl 
Oh, 
T.Kawano 

February 
2003 

 
 
5. Combining of the results of R-Matrix model fits for 10B(n,α) and 6Li(n,t) reaction cross 
sections with general least-squares non-model evaluations of light and heavy element 
standards evaluations. 
 
No. Action Participant(s) Terms 
5.1. To study an option when light-element standard cross sections 

evaluated in R-Matrix model are introduced as data sets with 
their evaluated covariance matrix in the final combined GMA 
fit of light and heavy elements. 

Soo-Youl 
Oh, 
T.Kawano, 
V.Pronyaev 

November 
2003 

5.2. To study an option in which R-matrix parameters, their 
covariance matrices and sensitivity coefficients are used and 
combined with the results of non-model general least square 
fits (ZOTT, KALMAN). 

T.Kawano November 
2003 

5.3. To study an option when cross sections and their full 
covariance matrix evaluated in the non-model least-squares fit 
are used as input data set for R-matrix fitting. 

N.Larson November 
2003 

 
 
6. Other different important topics. 
 
No. Action Participant(s) Terms 
6.1 To prepare CRP Web-site and make available to participants 

for downloading and uploading 
V. Pronyaev February 

2003 
6.2. To make best evaluation of the numerical uncertainties 

introduced by the method of solution and numerical procedures 
(GLUCS versus GMA). 

S.Tagesen, 
V.Pronyaev 

February 
2003 

6.3. To undertake best evaluation of the components of the 
uncertainty related with the underestimation of cross-energy, 
cross-reaction or cross-material correlations in the GMA 
database, which could be added to the final evaluated result. 

H.Vonach July 2003 

6.4. To study the data reduction and preparation of the covariance 
matrices of experimental data selected for R-Matrix model fit 
based on implementation of law of error propagation for 
separate components of the uncertainties. 

N.Larson May 2003 
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3. Annexes 

 Annex 1. Agenda and time schedule 

 
International Atomic Energy Agency 

First Research Co-ordination Meeting on 
Improvement of the Standard Cross Sections for Light Elements 

IAEA Headquarters, Vienna, Austria 
23�27 September 2002 

Meeting Room A-1972 (phone extension 21381) 
 

Monday, 23 September 

08:30 - 09:30  Registration (at Gate 1, IAEA Headquarters) 

09:30 - 10:45  Opening Session: 
   - Welcome 

- Round table self-introductions by participants 

- Election of Chairman and Rapporteur 

- Adoption of Agenda (Chairman) 

- Objectives of CRP (V.G. Pronyaev and A.D. Carlson) 
10:45 – 11:00 Coffee break 

11:00 - 12:20  Session 1: Presentations by Participants, and Discussions 

 (max. 40 minutes for each presentation and discussion): 

 
1. Microscopic Calculations in the 4He Systems using realistic two- and 

   three-nucleon forces, Hartmut M. Hofmann, Universität   
   Erlangen-Nürnberg, Erlangen, Germany. 

2. R-matrix Results from n+6Li Test Data Using EDA, Gerry M. Hale, 
   Los Alamos National Laboratory, USA. 

12:20 - 14:00 Lunch and Administrative/Financial Matters (Ms. Monica Wirtz) 

14:00 - 17:15 Session 1: Presentations by Participants, and Discussions (cont.) 
   [Coffee break when appropriate] 

3. Covariance Propagation in R-matrix Model Fitting, Chen Zhenpeng, 
   Tsinghua University, Beijing, China. 

4. A Different Perspective on Resonance Fitting, Ms. Nancy M. Larson, 
   Oak Ridge National Laboratory, USA. 

5. Status of Experimental Database for Standard Reactions,   
   Allan D. Carlson, National Institute of Standards and Technology, 
   Gaithersburg, USA. 

17:15  Reception, NDS: floor A-23 (adjacent to room A-2340) 
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Tuesday, 24 September 

9:00 - 12:30  Session 1: Presentations by Participants, and Discussions (contd.) 
   [Coffee break when appropriate] 

6. Some Sources of Underestimation of Evaluated Cross Section  
   Uncertainties, Sergei A. Badikov, Evgenij V. Gai, Institute of Physics 
   and Power Engineering, Obninsk, Russia. 

7. Arbitrariness of Evaluated Covariance in Least-Squares Method, 
   Soo Youl Oh, KAERI, Republic of Korea. 

8. Error Analysis with the KALMAN  Code, Toshihiko Kawano, Kyushu 
   University, Kasuga, Japan. 

9. Tests and Intercomparisons of Data Fitting with General Least  
   Squares Code GMA Versus Bayesian Code GLUCS,    
   Vladimir G. Pronyaev, IAEA Nuclear Data Section, Austria. 

   Session 2: Discussions and Presentations (everyone) - Objectives of 
   CRP Revisited – Work to be Performed 

  - problems in least squares fits; 

  - non-diagonal elements of covariance matrix in R-matrix fit  
     (Chen Zhenpeng); 

  - positive definiteness of covariance matrices (S.A. Badikov); 

  - measure of uncertainty for correlated data (V.G. Pronyaev); 

  - test to compare uncertainty reduction in model and non-model least 
     squares fit; 

  - R-matrix codes intercomparison (G.M. Hale, Chen Zhenpeng and 
     Ms. N.M. Larson); 

  - improvements in R-matrix codes; 

  - new ENDF format for resonance data and their uncertainties         
      (Ms. N.M. Larson); 

  - reductions in uncertainty (under accounting for data correlations; 
     discrepant data); 

  - GMA code and experimental database; 

  - evaluation of basic scattering standards [H(n, n) and C(n, n)]; 

  - 235U and 239Pu (n,f) evaluation for JENDL-3.3 (T. Kawano); 

  - combining R-matrix and basic scattering standards with general 
     GMA least squares fit 

  - etc. 
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12:30 - 14:00 Lunch 

14:00 - 17:00 Session 2: Discussions and Presentations - Objectives of CRP Revisited 
   - Work to be Performed (cont.) 
   [Coffee break when appropriate] 

 - see above. 

 

Wednesday, 25 September 

09:00 - 12:30  Session 2: Discussions (cont.) 
   [Coffee break when appropriate] 
   - see above. 
12:30 - 14:00 Lunch 

14:00 - 17:00 Session 2: Discussions (cont.) 
   [Coffee break when appropriate] 

 - see above. 

19:30   Dinner at restaurant 
 

Thursday 26 September 

09:00 - 12:30  Session 3: Distribution of Workloads 
   [Coffee break when appropriate] 

   Assignment of tasks, including name and contents of the package, 

   List of actions, 

TECDOC: structure and individual writing assignments? 
12:30 - 14:00 Lunch 
14:00 - 15:00 Session 3: Distribution of Workloads (cont.) 
   [Coffee break when appropriate] 
 
Friday, 27 September 

09:00 - 12:30  Session 4: Drafting of the Meeting Report, and Conclusions 

   [Coffee break when appropriate] 
   - prepare meeting report (in Working Groups), 
   - recommendations, 
   - review of actions. 
 
   Any other business 
   - next RCM. 
12:30   Lunch 
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 Annex 2.  List of participants  
 
AUSTRIA 
 
Mr. Herbert K. VONACH 
Institut für Isotopenforschung und   Phone: +43 1 3177205 
  Kernphysik der Universität Wien   Fax:  +43 1 4277 51752 
Boltzmanngasse 3     E-mail: Herbert.Vonach@utanet.at 
A-1090 Vienna        
 
 
CHINA 
 
Mr. CHEN Zhenpeng 
Physics Department     Phone: +86 10 62782163 
Tsinghua University     Fax:  +86 10 62781604 
Beijing, 100084      E-mail: ZhpChen@mail.tsinghua.edu.cn 
 
 
GERMANY 
 
Mr. Hartmut M. HOFMANN 
Room No. 02.534, Building B2   Phone: +49 9131 852 8470 
Institut für Theoretische Physik III   Fax:  +49 9131 852 7704 
Universität Erlangen-Nürnberg  E-mail: HMH@theorie3.physik.uni-erlangen.de 
Staudtstrasse 7        
D-91058 Erlangen 
 
 
JAPAN 
 
Mr. Toshihiko KAWANO 
Department of Advanced Energy   Phone: +81 92 583 7587 
  Engineering Science     Fax:  +81  2 583 7586 
Kyushu University     E-mail: Kawano@aees.kyushu-u.ac.jp 
6-1 Kasuga-kouen, Kasuga-shi 
Fukuoka-ken 816-8580 
 
 
KOREA, Republic of 
 
Mr. Soo-Youl OH      
HANARO Center      Phone: +82 42 868 2961 
Korea Atomic Energy Research Institute  Fax:  +82 42 868 8341 
P.O. Box 105      E-mail: SYOh@kaeri.re.kr 
Yuseong, Daejeon, 305-600     
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RUSSIA 
 
Mr. Sergei A. BADIKOV    Phone: +7 08439 98847 
Institute of Physics and Power Engineering Fax:  +7 095 883 3112 
Bondarenko Sq. 1      Fax:  +7 095 230 2326 
249 033 Obninsk, Kaluga Region   E-mail: Badikov@ippe.obninsk.ru 
 
 
UNITED STATES OF AMERICA 
 
Mr. Allan D. CARLSON     
Building 245, Room C308    Phone: +1 301 975 5570 
National Institute      Fax:  +1 301 975 4766 
  of Standards and Technology (NIST)  Fax:  +1 301 869 7682 (for larger jobs) 
100 Bureau Drive Stop 8463    E-mail: Carlson@nist.gov 
Gaithersburg, MD 20899-8463   E-mail: Allan.Carlson@nist.gov 
 
Mr. Gerald M. HALE      
Group T-16, MS B-243    Phone: +1 505 667 7738 
Los Alamos National Laboratory   Fax:  +1 505 667 9671 
Los Alamos, NM 87545    E-mail: GHale@lanl.gov 
 
Ms. Nancy M. LARSON     
Bldg 6011, Rm 118, MS 6370   Phone: +1 865 574 4659 
Oak Ridge National Laboratory   Fax:  +1 865 574 8727 
P.O. Box 2008      E-mail: LarsonNM@ornl.gov 
Oak Ridge, TN 37831-6370     
 
 
IAEA, Vienna, AUSTRIA 
 
Mr. Vladimir G. PRONYAEV 
IAEA Nuclear Data Section    Phone: +43 1 2600 21717 
Wagramer Strasse 5     Fax:  +43 1 26007 
P.O. Box 100      E-mail: V.Pronyaev@iaea.org 
A-1400 Vienna       
 
Mr. Andrej TRKOV 
IAEA Nuclear Data Section 
Wagramer Strasse 5     Phone: +43 1 2600 21712 
P.O. Box 100      Fax:  +43 1 26007 
A-1400 Vienna      E-mail: A.Trkov@iaea.org 
 
Mr. Michal W. HERMAN 
IAEA Nuclear Data Section 
Wagramer Strasse 5     Phone: +43 1 2600 21713 
P.O. Box 100      Fax:  +43 1 26007 
A-1400 Vienna      E-mail: M.Herman@iaea.org 
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Annex 3.  List of working papers presented at session 2 or submitted after the meeting 
 
1. “Evaluation of Covariance Matrices for Resolved and Unresolved Resonance Regions”  

by T.Kawano, K.Shibata. 
 
1. “235U and 239Pu (n,f) evaluation for JENDL-3.3”  by T.Kawano. 
 
2. “Standard Error Propagation in R-matrix Model Fitting for Light Elements”  by Chen 

Zhenpeng, Zhang Rui, Sun Yeying and Liu Tingjin. 
 
3. “New Function for Deal with Covariance Matrix in RAC”  by Chen Zhenpeng and  Sun 

Yeying. 
 
4. “Progress Report on Calculation of 6Li(n,t) with RAC”  by Chen Zhenpeng and  Sun 

Yeying. 
 
5. “Does Model Fit Decrease the Uncertainty of the Data in Comparison with a General 

Non-model Least Squares Fit?”  by V.G.Pronyaev. 
 
6. “Peelle’s Pertinent Puzzle: Way of Solution”  by V.G.Pronyaev. 
 
7. “Standards Database Extension: New Results Since 1997 (data not included in 

ANL/NDM-139, 1997)”  by V.G.Pronyaev. 
 
8. “Proof that Bayes and Least Squares Give Exactly Equivalent Results for Arbitrary 
Number of Data Sets (assuming linearity)” by N.M.Larson. 
 
8. “Box-Cox Transformation for Resolving Peelle’s Pertinent Puzzlein Curve Fitting” by 
Soo-Youl Oh. 
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Annex 4. Input data for TEST1 intercomparison 
 
 Five pseudo-experimental (but realistic) data sets (cross section and covariance matrices 
for 6Li(n,α) reaction) have been prepared for testing GMA, GLUCS and RAC codes and 
study of the uncertainty reduction in the least-squares fits. 
 
Data set #0 which covers all energy nodes and can be used as a prior for Bayesian fit. 
 
CROSS SECTION      6Li(n,a)        
 
 YEAR 1978 TAG  1 AUTHOR:  G.P.LAMAZE ET AL.   NSE68,183(1978) 
 
SYSTEMATICAL (LONG ENERGY RANGE CORRELATION - LERC) UNCERTAINTY 1.6% 
 
NO MEDIUM ENERGY RANGE CORRELATION (MERC) UNCERTAINTY 
 
  ENERGY/MEV   VALUE   TOT. ABS.UNCERT. TOT. UNCERT./% 
 
  0.2500E-02  0.3042E+01  0.2125E+00      7.0 
  0.3500E-02  0.2570E+01  0.1695E+00      6.6 
  0.4500E-02  0.2302E+01  0.1099E+00      4.8 
  0.5500E-02  0.2078E+01  0.7621E-01      3.7 
  0.6500E-02  0.1934E+01  0.6919E-01      3.6 
  0.7500E-02  0.1821E+01  0.6031E-01      3.3 
  0.8500E-02  0.1720E+01  0.5398E-01      3.1 
  0.9500E-02  0.1585E+01  0.4060E-01      2.6 
  0.1500E-01  0.1275E+01  0.3167E-01      2.5 
  0.2000E-01  0.1130E+01  0.2807E-01      2.5 
  0.2400E-01  0.1003E+01  0.2728E-01      2.7 
  0.3000E-01  0.9217E+00  0.2220E-01      2.4 
  0.4500E-01  0.7724E+00  0.1860E-01      2.4 
  0.5500E-01  0.7240E+00  0.1690E-01      2.3 
  0.6500E-01  0.6908E+00  0.1716E-01      2.5 
  0.7500E-01  0.6516E+00  0.1569E-01      2.4 
  0.8500E-01  0.6578E+00  0.1443E-01      2.2 
  0.9500E-01  0.6619E+00  0.1594E-01      2.4 
  0.1000E+00  0.6514E+00  0.1385E-01      2.1 
  0.1200E+00  0.6984E+00  0.1397E-01      2.0 
  0.1500E+00  0.8613E+00  0.1723E-01      2.0 
  0.1700E+00  0.1140E+01  0.2500E-01      2.2 
  0.1800E+00  0.1341E+01  0.2851E-01      2.1 
  0.1900E+00  0.1597E+01  0.3395E-01      2.1 
  0.2000E+00  0.1897E+01  0.4033E-01      2.1 
  0.2100E+00  0.2275E+01  0.4292E-01      1.9 
  0.2200E+00  0.2770E+01  0.5226E-01      1.9 
  0.2300E+00  0.3107E+01  0.6214E-01      2.0 
  0.2400E+00  0.3222E+01  0.7066E-01      2.2 
  0.2450E+00  0.3181E+01  0.6976E-01      2.2 
  0.2500E+00  0.3062E+01  0.6715E-01      2.2 
  0.2600E+00  0.2797E+01  0.5594E-01      2.0 
  0.2700E+00  0.2398E+01  0.5259E-01      2.2 
  0.2800E+00  0.1956E+01  0.4159E-01      2.1 
  0.3000E+00  0.1425E+01  0.3030E-01      2.1 
  0.3250E+00  0.1022E+01  0.2386E-01      2.3 
  0.3500E+00  0.8002E+00  0.1868E-01      2.3 
  0.3750E+00  0.6561E+00  0.1580E-01      2.4 
  0.4000E+00  0.5624E+00  0.1576E-01      2.8 
  0.4250E+00  0.4666E+00  0.2361E-01      5.1 
  0.4500E+00  0.4512E+00  0.2758E-01      6.1 
  0.4750E+00  0.4248E+00  0.2352E-01      5.5 
  0.5000E+00  0.3877E+00  0.1962E-01      5.1 
  0.5200E+00  0.3684E+00  0.1725E-01      4.7 
  0.5400E+00  0.3489E+00  0.1503E-01      4.3 
  0.5700E+00  0.3309E+00  0.1184E-01      3.6 
  0.6000E+00  0.3153E+00  0.9896E-02      3.1 
  0.6500E+00  0.2867E+00  0.8510E-02      3.0 
  0.7000E+00  0.2742E+00  0.7682E-02      2.8 
  0.7500E+00  0.2568E+00  0.6986E-02      2.7 
  0.8000E+00  0.2463E+00  0.6308E-02      2.6 
 
   CORRELATION MATRIX OF DATA BLOCK 
 
  1.00 
  0.06 1.00 
  0.08 0.08 1.00 
  0.10 0.11 0.15 1.00 
  0.10 0.11 0.15 0.20 1.00 
  0.11 0.12 0.16 0.21 0.22 1.00 
  0.12 0.12 0.17 0.22 0.23 0.25 1.00 
  0.14 0.15 0.21 0.27 0.28 0.30 0.32 1.00 
  0.15 0.16 0.22 0.28 0.29 0.31 0.33 0.40 1.00 
  0.15 0.16 0.22 0.28 0.29 0.31 0.33 0.40 0.41 1.00 
  0.13 0.14 0.20 0.26 0.26 0.28 0.30 0.37 0.38 0.38 1.00 
  0.15 0.16 0.22 0.29 0.30 0.32 0.34 0.42 0.43 0.43 0.39 1.00 
  0.15 0.16 0.22 0.29 0.30 0.32 0.34 0.42 0.43 0.43 0.39 0.44 1.00 
  0.16 0.17 0.23 0.30 0.31 0.33 0.35 0.43 0.44 0.44 0.40 0.46 0.46 1.00 
  0.15 0.16 0.22 0.28 0.29 0.31 0.33 0.40 0.41 0.41 0.38 0.43 0.43 0.44 1.00 
  0.15 0.16 0.22 0.29 0.30 0.32 0.34 0.42 0.43 0.43 0.39 0.44 0.44 0.46 0.43 1.00 
  0.17 0.18 0.24 0.32 0.33 0.35 0.37 0.46 0.47 0.47 0.43 0.48 0.48 0.50 0.47 0.48 1.00 
  0.15 0.16 0.22 0.29 0.30 0.32 0.34 0.42 0.43 0.43 0.39 0.44 0.44 0.46 0.43 0.44 0.48 1.00 
  0.17 0.18 0.25 0.33 0.34 0.36 0.38 0.47 0.48 0.48 0.44 0.50 0.50 0.52 0.48 0.50 0.55 0.50 1.00 
  0.18 0.19 0.27 0.35 0.36 0.39 0.41 0.50 0.52 0.52 0.47 0.53 0.53 0.55 0.52 0.53 0.58 0.53 0.60 1.00 
  0.18 0.19 0.27 0.35 0.36 0.39 0.41 0.50 0.52 0.52 0.47 0.53 0.53 0.55 0.52 0.53 0.58 0.53 0.60 0.64 1.00 
  0.17 0.18 0.24 0.32 0.33 0.35 0.37 0.46 0.47 0.47 0.43 0.48 0.48 0.50 0.47 0.48 0.53 0.48 0.55 0.58 0.58 1.00 
  0.17 0.18 0.25 0.33 0.34 0.36 0.38 0.47 0.48 0.48 0.44 0.50 0.50 0.52 0.48 0.50 0.55 0.50 0.57 0.60 0.60 0.55 1.00 
  0.17 0.18 0.25 0.33 0.34 0.36 0.38 0.47 0.48 0.48 0.44 0.50 0.50 0.52 0.48 0.50 0.55 0.50 0.57 0.60 0.60 0.55 0.57 1.00 
  0.17 0.18 0.25 0.33 0.34 0.36 0.38 0.47 0.48 0.48 0.44 0.50 0.50 0.52 0.48 0.50 0.55 0.50 0.57 0.60 0.60 0.55 0.57 0.57 
  1.00 
  0.19 0.21 0.28 0.37 0.38 0.41 0.43 0.53 0.55 0.55 0.50 0.56 0.56 0.58 0.55 0.56 0.62 0.56 0.64 0.68 0.68 0.62 0.64 0.64 
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  0.64 1.00 
  0.19 0.21 0.28 0.37 0.38 0.41 0.43 0.53 0.55 0.55 0.50 0.56 0.56 0.58 0.55 0.56 0.62 0.56 0.64 0.68 0.68 0.62 0.64 0.64 
  0.64 0.72 1.00 
  0.18 0.19 0.27 0.35 0.36 0.39 0.41 0.50 0.52 0.52 0.47 0.53 0.53 0.55 0.52 0.53 0.58 0.53 0.60 0.64 0.64 0.58 0.60 0.60 
  0.60 0.68 0.68 1.00 
  0.17 0.18 0.24 0.32 0.33 0.35 0.37 0.46 0.47 0.47 0.43 0.48 0.48 0.50 0.47 0.48 0.53 0.48 0.55 0.58 0.58 0.53 0.55 0.55 
  0.55 0.62 0.62 0.58 1.00 
  0.17 0.18 0.24 0.32 0.33 0.35 0.37 0.46 0.47 0.47 0.43 0.48 0.48 0.50 0.47 0.48 0.53 0.48 0.55 0.58 0.58 0.53 0.55 0.55 
  0.55 0.62 0.62 0.58 0.53 1.00 
  0.17 0.18 0.24 0.32 0.33 0.35 0.37 0.46 0.47 0.47 0.43 0.48 0.48 0.50 0.47 0.48 0.53 0.48 0.55 0.58 0.58 0.53 0.55 0.55 
  0.55 0.62 0.62 0.58 0.53 0.53 1.00 
  0.18 0.19 0.27 0.35 0.36 0.39 0.41 0.50 0.52 0.52 0.47 0.53 0.53 0.55 0.52 0.53 0.58 0.53 0.60 0.64 0.64 0.58 0.60 0.60 
  0.60 0.68 0.68 0.64 0.58 0.58 0.58 1.00 
  0.17 0.18 0.24 0.32 0.33 0.35 0.37 0.46 0.47 0.47 0.43 0.48 0.48 0.50 0.47 0.48 0.53 0.48 0.55 0.58 0.58 0.53 0.55 0.55 
  0.55 0.62 0.62 0.58 0.53 0.53 0.53 0.58 1.00 
  0.17 0.18 0.25 0.33 0.34 0.36 0.38 0.47 0.48 0.48 0.44 0.50 0.50 0.52 0.48 0.50 0.55 0.50 0.57 0.60 0.60 0.55 0.57 0.57 
  0.57 0.64 0.64 0.60 0.55 0.55 0.55 0.60 0.55 1.00 
  0.17 0.18 0.25 0.33 0.34 0.36 0.38 0.47 0.48 0.48 0.44 0.50 0.50 0.52 0.48 0.50 0.55 0.50 0.57 0.60 0.60 0.55 0.57 0.57 
  0.57 0.64 0.64 0.60 0.55 0.55 0.55 0.60 0.55 0.57 1.00 
  0.16 0.17 0.23 0.30 0.31 0.33 0.35 0.43 0.44 0.44 0.40 0.46 0.46 0.47 0.44 0.46 0.50 0.46 0.52 0.55 0.55 0.50 0.52 0.52 
  0.52 0.58 0.58 0.55 0.50 0.50 0.50 0.55 0.50 0.52 0.52 1.00 
  0.16 0.17 0.23 0.30 0.31 0.33 0.35 0.43 0.44 0.44 0.40 0.46 0.46 0.47 0.44 0.46 0.50 0.46 0.52 0.55 0.55 0.50 0.52 0.52 
  0.52 0.58 0.58 0.55 0.50 0.50 0.50 0.55 0.50 0.52 0.52 0.47 1.00 
  0.15 0.16 0.22 0.29 0.30 0.32 0.34 0.42 0.43 0.43 0.39 0.44 0.44 0.46 0.43 0.44 0.48 0.44 0.50 0.53 0.53 0.48 0.50 0.50 
  0.50 0.56 0.56 0.53 0.48 0.48 0.48 0.53 0.48 0.50 0.50 0.46 0.46 1.00 
  0.13 0.14 0.19 0.25 0.26 0.28 0.29 0.36 0.37 0.37 0.34 0.38 0.38 0.39 0.37 0.38 0.42 0.38 0.43 0.46 0.46 0.42 0.43 0.43 
  0.43 0.48 0.48 0.46 0.42 0.42 0.42 0.46 0.42 0.43 0.43 0.39 0.39 0.38 1.00 
  0.07 0.08 0.11 0.14 0.14 0.15 0.16 0.20 0.20 0.20 0.19 0.21 0.21 0.22 0.20 0.21 0.23 0.21 0.24 0.25 0.25 0.23 0.24 0.24 
  0.24 0.27 0.27 0.25 0.23 0.23 0.23 0.25 0.23 0.24 0.24 0.22 0.22 0.21 0.18 1.00 
  0.06 0.06 0.09 0.11 0.12 0.13 0.13 0.16 0.17 0.17 0.15 0.17 0.17 0.18 0.17 0.17 0.19 0.17 0.20 0.21 0.21 0.19 0.20 0.20 
  0.20 0.22 0.22 0.21 0.19 0.19 0.19 0.21 0.19 0.20 0.20 0.18 0.18 0.17 0.15 0.08 1.00 
  0.07 0.07 0.10 0.13 0.13 0.14 0.15 0.18 0.19 0.19 0.17 0.19 0.19 0.20 0.19 0.19 0.21 0.19 0.22 0.23 0.23 0.21 0.22 0.22 
  0.22 0.25 0.25 0.23 0.21 0.21 0.21 0.23 0.21 0.22 0.22 0.20 0.20 0.19 0.17 0.09 0.08 1.00 
  0.07 0.08 0.11 0.14 0.14 0.15 0.16 0.20 0.20 0.20 0.19 0.21 0.21 0.22 0.20 0.21 0.23 0.21 0.24 0.25 0.25 0.23 0.24 0.24 
  0.24 0.27 0.27 0.25 0.23 0.23 0.23 0.25 0.23 0.24 0.24 0.22 0.22 0.21 0.18 0.10 0.08 0.09 1.00 
  0.08 0.08 0.11 0.15 0.15 0.17 0.17 0.21 0.22 0.22 0.20 0.23 0.23 0.23 0.22 0.23 0.25 0.23 0.26 0.27 0.27 0.25 0.26 0.26 
  0.26 0.29 0.29 0.27 0.25 0.25 0.25 0.27 0.25 0.26 0.26 0.23 0.23 0.23 0.20 0.11 0.09 0.10 0.11 1.00 
  0.09 0.09 0.12 0.16 0.17 0.18 0.19 0.23 0.24 0.24 0.22 0.25 0.25 0.25 0.24 0.25 0.27 0.25 0.28 0.30 0.30 0.27 0.28 0.28 
  0.28 0.31 0.31 0.30 0.27 0.27 0.27 0.30 0.27 0.28 0.28 0.25 0.25 0.25 0.21 0.12 0.10 0.11 0.12 0.13 1.00 
  0.10 0.11 0.15 0.20 0.20 0.22 0.23 0.28 0.29 0.29 0.26 0.30 0.30 0.31 0.29 0.30 0.33 0.30 0.34 0.36 0.36 0.33 0.34 0.34 
  0.34 0.38 0.38 0.36 0.33 0.33 0.33 0.36 0.33 0.34 0.34 0.31 0.31 0.30 0.26 0.14 0.12 0.13 0.14 0.15 0.17 1.00 
  0.12 0.12 0.17 0.22 0.23 0.25 0.26 0.32 0.33 0.33 0.30 0.34 0.34 0.35 0.33 0.34 0.37 0.34 0.38 0.41 0.41 0.37 0.38 0.38 
  0.38 0.43 0.43 0.41 0.37 0.37 0.37 0.41 0.37 0.38 0.38 0.35 0.35 0.34 0.29 0.16 0.13 0.15 0.16 0.17 0.19 0.23 1.00 
  0.12 0.13 0.18 0.24 0.24 0.26 0.27 0.34 0.35 0.35 0.32 0.36 0.36 0.37 0.35 0.36 0.39 0.36 0.41 0.43 0.43 0.39 0.41 0.41 
  0.41 0.46 0.46 0.43 0.39 0.39 0.39 0.43 0.39 0.41 0.41 0.37 0.37 0.36 0.31 0.17 0.14 0.16 0.17 0.18 0.20 0.24 0.27 1.00 
  0.13 0.14 0.19 0.25 0.26 0.28 0.29 0.36 0.37 0.37 0.34 0.38 0.38 0.39 0.37 0.38 0.42 0.38 0.43 0.46 0.46 0.42 0.43 0.43 
  0.43 0.48 0.48 0.46 0.42 0.42 0.42 0.46 0.42 0.43 0.43 0.39 0.39 0.38 0.33 0.18 0.15 0.17 0.18 0.20 0.21 0.26 0.29 0.31 
  1.00 
  0.13 0.14 0.20 0.26 0.26 0.28 0.30 0.37 0.38 0.38 0.35 0.39 0.39 0.40 0.38 0.39 0.43 0.39 0.44 0.47 0.47 0.43 0.44 0.44 
  0.44 0.50 0.50 0.47 0.43 0.43 0.43 0.47 0.43 0.44 0.44 0.40 0.40 0.39 0.34 0.19 0.15 0.17 0.19 0.20 0.22 0.26 0.30 0.32 
  0.34 1.00 
  0.14 0.15 0.21 0.27 0.28 0.30 0.32 0.39 0.40 0.40 0.37 0.42 0.42 0.43 0.40 0.42 0.46 0.42 0.47 0.50 0.50 0.46 0.47 0.47 
  0.47 0.53 0.53 0.50 0.46 0.46 0.46 0.50 0.46 0.47 0.47 0.43 0.43 0.42 0.36 0.20 0.16 0.18 0.20 0.21 0.23 0.28 0.32 0.34 
  0.36 0.37 1.00 
 
 

Data set #1. 
 
 
YEAR 1972 TAG  1 AUTHOR:  E.FORT+J.P.MARQUETTE  EANDC(E)148"U" 
 
SYSTEMATICAL (LONG ENERGY RANGE CORRELATION - LERC) UNCERTAINTY 4.4% 
 
NO MEDIUM ENERGY RANGE CORRELATION (MERC) UNCERTAINTY 
 
  ENERGY/MEV    VALUE  TOT. ABS. UNCERT. TOT. UNCERT./% 
 
  0.1500E-01  0.1201E+01  0.8181E-01      6.8 
  0.2000E-01  0.1052E+01  0.7166E-01      6.8 
  0.2400E-01  0.9835E+00  0.6404E-01      6.5 
  0.3000E-01  0.9390E+00  0.5977E-01      6.4 
  0.4500E-01  0.8134E+00  0.4729E-01      5.8 
  0.5500E-01  0.7176E+00  0.3947E-01      5.5 
  0.6500E-01  0.6509E+00  0.3503E-01      5.4 
  0.8500E-01  0.6490E+00  0.3493E-01      5.4 
  0.9500E-01  0.6449E+00  0.3879E-01      6.0 
  0.1000E+00  0.6617E+00  0.3562E-01      5.4 
  0.1200E+00  0.7309E+00  0.3812E-01      5.2 
  0.1500E+00  0.8620E+00  0.4591E-01      5.3 
  0.1700E+00  0.1027E+01  0.6038E-01      5.9 
 
   CORRELATION MATRIX OF DATA BLOCK 
 
  1.00 
  0.42 1.00 
  0.44 0.44 1.00 
  0.45 0.45 0.47 1.00 
  0.49 0.49 0.51 0.52 1.00 
  0.52 0.52 0.54 0.55 0.61 1.00 
  0.53 0.53 0.55 0.57 0.62 0.65 1.00 
  0.53 0.53 0.55 0.57 0.62 0.65 0.67 1.00 
  0.47 0.47 0.49 0.51 0.55 0.59 0.60 0.60 1.00 
  0.53 0.53 0.55 0.57 0.62 0.65 0.67 0.67 0.60 1.00 
  0.54 0.54 0.57 0.58 0.64 0.67 0.69 0.69 0.62 0.69 1.00 
  0.53 0.53 0.56 0.57 0.63 0.66 0.68 0.68 0.60 0.68 0.70 1.00 
  0.48 0.48 0.51 0.52 0.57 0.60 0.61 0.61 0.55 0.61 0.63 0.62 1.00 
 
 

Data set #2. 
 
 
YEAR 1970 TAG  1 AUTHOR:  E.FORT  70HELSINKI,CN26/72 
 
SYSTEMATICAL (LONG ENERGY RANGE CORRELATION - LERC) UNCERTAINTY 4.0% 
 
NO MEDIUM ENERGY RANGE CORRELATION (MERC) UNCERTAINTY 
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  ENERGY/MEV    VALUE  TOT. ABS. UNCERT. TOT. UNCERT./% 
  
  0.8500E-01  0.6926E+00  0.2913E-01      4.2 
  0.1000E+00  0.7396E+00  0.4132E-01      5.6 
  0.1200E+00  0.7369E+00  0.3821E-01      5.2 
  0.1500E+00  0.8583E+00  0.4397E-01      5.1 
  0.1700E+00  0.1043E+01  0.4712E-01      4.5 
  0.1800E+00  0.1295E+01  0.6475E-01      5.0 
  0.1900E+00  0.1445E+01  0.7225E-01      5.0 
  0.2000E+00  0.1867E+01  0.9335E-01      5.0 
  0.2100E+00  0.2187E+01  0.1068E+00      4.9 
  0.2200E+00  0.2548E+01  0.1244E+00      4.9 
  0.2450E+00  0.3032E+01  0.1516E+00      5.0 
  0.2500E+00  0.3133E+01  0.1530E+00      4.9 
  0.2600E+00  0.2945E+01  0.1472E+00      5.0 
  0.2700E+00  0.2716E+01  0.1358E+00      5.0 
  0.2800E+00  0.2357E+01  0.1151E+00      4.9 
  0.3000E+00  0.1685E+01  0.8425E-01      5.0 
  0.3250E+00  0.1151E+01  0.6194E-01      5.4 
  0.3500E+00  0.8390E+00  0.4687E-01      5.6 
  0.3750E+00  0.6973E+00  0.4251E-01      6.1 
  0.4000E+00  0.6012E+00  0.3850E-01      6.4 
  0.4250E+00  0.4688E+00  0.3226E-01      6.9 
  0.4500E+00  0.4023E+00  0.2935E-01      7.3 
  0.4750E+00  0.3830E+00  0.2989E-01      7.8 
  0.5000E+00  0.3289E+00  0.2510E-01      7.6 
  0.5200E+00  0.3230E+00  0.2576E-01      8.0 
 
   CORRELATION MATRIX OF DATA BLOCK 
 
  1.00 
  0.68 1.00 
  0.73 0.55 1.00 
  0.74 0.56 0.60 1.00 
  0.84 0.63 0.68 0.69 1.00 
  0.76 0.57 0.62 0.62 0.71 1.00 
  0.76 0.57 0.62 0.62 0.71 0.64 1.00 
  0.76 0.57 0.62 0.62 0.71 0.64 0.64 1.00 
  0.78 0.59 0.63 0.64 0.73 0.66 0.66 0.66 1.00 
  0.78 0.59 0.63 0.64 0.73 0.66 0.66 0.66 0.67 1.00 
  0.76 0.57 0.62 0.62 0.71 0.64 0.64 0.64 0.66 0.66 1.00 
  0.78 0.59 0.63 0.64 0.73 0.66 0.66 0.66 0.67 0.67 0.66 1.00 
  0.76 0.57 0.62 0.62 0.71 0.64 0.64 0.64 0.66 0.66 0.64 0.66 1.00 
  0.76 0.57 0.62 0.62 0.71 0.64 0.64 0.64 0.66 0.66 0.64 0.66 0.64 1.00 
  0.78 0.59 0.63 0.64 0.73 0.66 0.66 0.66 0.67 0.67 0.66 0.67 0.66 0.66 1.00 
  0.76 0.57 0.62 0.62 0.71 0.64 0.64 0.64 0.66 0.66 0.64 0.66 0.64 0.64 0.66 1.00 
  0.71 0.53 0.57 0.58 0.66 0.59 0.59 0.59 0.61 0.61 0.59 0.61 0.59 0.59 0.61 0.59 1.00 
  0.68 0.51 0.55 0.56 0.63 0.57 0.57 0.57 0.59 0.59 0.57 0.59 0.57 0.57 0.59 0.57 0.53 1.00 
  0.62 0.47 0.51 0.51 0.58 0.52 0.52 0.52 0.54 0.54 0.52 0.54 0.52 0.52 0.54 0.52 0.49 0.47 1.00 
  0.59 0.45 0.48 0.49 0.55 0.50 0.50 0.50 0.51 0.51 0.50 0.51 0.50 0.50 0.51 0.50 0.46 0.45 0.41 1.00 
  0.55 0.42 0.45 0.45 0.51 0.46 0.46 0.46 0.48 0.48 0.46 0.48 0.46 0.46 0.48 0.46 0.43 0.42 0.38 0.36 1.00 
  0.52 0.39 0.42 0.43 0.49 0.44 0.44 0.44 0.45 0.45 0.44 0.45 0.44 0.44 0.45 0.44 0.41 0.39 0.36 0.34 0.32 1.00 
  0.49 0.37 0.40 0.40 0.45 0.41 0.41 0.41 0.42 0.42 0.41 0.42 0.41 0.41 0.42 0.41 0.38 0.37 0.34 0.32 0.30 0.28 1.00 
  0.50 0.38 0.40 0.41 0.46 0.42 0.42 0.42 0.43 0.43 0.42 0.43 0.42 0.42 0.43 0.42 0.39 0.38 0.34 0.33 0.30 0.29 0.27 1.00 
  0.48 0.36 0.39 0.39 0.44 0.40 0.40 0.40 0.41 0.41 0.40 0.41 0.40 0.40 0.41 0.40 0.37 0.36 0.33 0.31 0.29 0.28 0.26 0.26 
  1.00 
 
 

Data set #3. 
 
 
YEAR 1972 TAG  1 AUTHOR:  W.P.POENITZ+J.W.MEADOWS  72VIENNA,95(1972) 
 
SYSTEMATICAL (LONG ENERGY RANGE CORRELATION - LERC) UNCERTAINTY 1.4% 
 
NO MEDIUM ENERGY RANGE CORRELATION (MERC) UNCERTAINTY 
 
 
  ENERGY/MEV    VALUE  TOT. ABS. UNCERT. TOT. UNCERT./% 
 
  0.8500E-01  0.6546E+00  0.2347E-01      3.6 
  0.9500E-01  0.6550E+00  0.2591E-01      4.0 
  0.1200E+00  0.7590E+00  0.2861E-01      3.8 
  0.1500E+00  0.9672E+00  0.3290E-01      3.4 
  0.1900E+00  0.1798E+01  0.5952E-01      3.3 
  0.2000E+00  0.2169E+01  0.7378E-01      3.4 
  0.2100E+00  0.2453E+01  0.8568E-01      3.5 
  0.2200E+00  0.2871E+01  0.9505E-01      3.3 
  0.2300E+00  0.3130E+01  0.1065E+00      3.4 
  0.2400E+00  0.3250E+01  0.1135E+00      3.5 
  0.2450E+00  0.3238E+01  0.1101E+00      3.4 
  0.2500E+00  0.3068E+01  0.1044E+00      3.4 
  0.2600E+00  0.2732E+01  0.9542E-01      3.5 
  0.3000E+00  0.1436E+01  0.5280E-01      3.7 
  0.3750E+00  0.6663E+00  0.2574E-01      3.9 
  0.4000E+00  0.6001E+00  0.2374E-01      4.0 
  0.4750E+00  0.4005E+00  0.1926E-01      4.8 
  0.5400E+00  0.3591E+00  0.1590E-01      4.4 
  0.6000E+00  0.3030E+00  0.1370E-01      4.5 
 
   CORRELATION MATRIX OF DATA BLOCK 
 
  1.00 
  0.14 1.00 
  0.15 0.13 1.00 
  0.16 0.15 0.15 1.00 
  0.17 0.15 0.16 0.17 1.00 
  0.16 0.15 0.15 0.17 0.17 1.00 
  0.16 0.14 0.15 0.16 0.17 0.16 1.00 
  0.17 0.15 0.16 0.17 0.18 0.17 0.17 1.00 
  0.16 0.15 0.15 0.17 0.17 0.17 0.16 0.17 1.00 
  0.16 0.14 0.15 0.16 0.17 0.16 0.16 0.17 0.16 1.00 
  0.16 0.15 0.15 0.17 0.17 0.17 0.16 0.17 0.17 0.16 1.00 
  0.16 0.15 0.15 0.17 0.17 0.17 0.16 0.17 0.17 0.16 0.17 1.00 
  0.16 0.14 0.15 0.16 0.17 0.16 0.16 0.17 0.16 0.16 0.16 0.16 1.00 
  0.15 0.13 0.14 0.16 0.16 0.16 0.15 0.16 0.16 0.15 0.16 0.16 0.15 1.00 
  0.14 0.13 0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 1.00 
  0.14 0.13 0.13 0.15 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.13 0.13 1.00 
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  0.11 0.10 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.10 1.00 
  0.12 0.11 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.11 0.11 0.09 1.00 
  0.12 0.11 0.11 0.13 0.13 0.13 0.12 0.13 0.13 0.12 0.13 0.13 0.12 0.12 0.11 0.11 0.09 0.10 1.00 
 
 

Data set #4. 
 
 
YEAR 1974 TAG  1 AUTHOR:  S.J.FRIESENHAHN ET AL. INTEL-RT7011-001(197 
 
SYSTEMATICAL (LONG ENERGY RANGE CORRELATION - LERC) UNCERTAINTY 2.7% 
 
NO MEDIUM ENERGY RANGE CORRELATION (MERC) UNCERTAINTY 
 
  ENERGY/MEV    VALUE  TOT. ABS. UNCERT. TOT. UNCERT./% 
 
  0.2500E-02  0.2763E+01  0.1178E+00      4.3 
  0.3500E-02  0.2296E+01  0.9439E-01      4.1 
  0.4500E-02  0.1938E+01  0.7967E-01      4.1 
  0.5500E-02  0.1809E+01  0.7037E-01      3.9 
  0.6500E-02  0.1616E+01  0.6286E-01      3.9 
  0.7500E-02  0.1478E+01  0.5749E-01      3.9 
  0.8500E-02  0.1451E+01  0.5242E-01      3.6 
  0.9500E-02  0.1322E+01  0.4218E-01      3.2 
  0.1500E-01  0.1067E+01  0.3404E-01      3.2 
  0.2000E-01  0.9708E+00  0.3321E-01      3.4 
  0.2400E-01  0.9001E+00  0.3135E-01      3.5 
  0.3000E-01  0.7525E+00  0.2574E-01      3.4 
  0.4500E-01  0.6587E+00  0.2424E-01      3.7 
  0.5500E-01  0.6198E+00  0.2367E-01      3.8 
  0.6500E-01  0.6247E+00  0.2430E-01      3.9 
  0.7500E-01  0.6009E+00  0.2294E-01      3.8 
  0.8500E-01  0.6240E+00  0.2519E-01      4.0 
  0.9500E-01  0.6535E+00  0.2542E-01      3.9 
  0.1000E+00  0.6387E+00  0.2439E-01      3.8 
  0.1200E+00  0.6698E+00  0.2333E-01      3.5 
  0.1500E+00  0.8824E+00  0.3073E-01      3.5 
  0.1700E+00  0.1144E+01  0.4210E-01      3.7 
  0.1800E+00  0.1303E+01  0.5068E-01      3.9 
  0.1900E+00  0.1571E+01  0.5675E-01      3.6 
  0.2000E+00  0.1768E+01  0.6751E-01      3.8 
  0.2100E+00  0.2130E+01  0.8133E-01      3.8 
  0.2200E+00  0.2576E+01  0.9836E-01      3.8 
  0.2300E+00  0.2919E+01  0.1074E+00      3.7 
  0.2450E+00  0.3224E+01  0.1186E+00      3.7 
  0.2500E+00  0.3452E+01  0.1270E+00      3.7 
  0.2700E+00  0.2996E+01  0.1102E+00      3.7 
  0.2800E+00  0.2794E+01  0.1067E+00      3.8 
  0.3000E+00  0.1951E+01  0.7179E-01      3.7 
  0.3250E+00  0.1349E+01  0.5247E-01      3.9 
  0.3500E+00  0.9862E+00  0.3980E-01      4.0 
  0.3750E+00  0.8116E+00  0.3157E-01      3.9 
  0.4000E+00  0.7030E+00  0.2943E-01      4.2 
  0.4250E+00  0.6254E+00  0.2765E-01      4.4 
  0.4750E+00  0.4555E+00  0.2013E-01      4.4 
  0.5000E+00  0.4249E+00  0.1878E-01      4.4 
  0.5200E+00  0.4004E+00  0.1802E-01      4.5 
  0.5700E+00  0.3699E+00  0.1694E-01      4.6 
  0.6000E+00  0.3524E+00  0.1614E-01      4.6 
  0.6500E+00  0.3358E+00  0.1565E-01      4.7 
  0.7000E+00  0.3038E+00  0.1491E-01      4.9 
  0.7500E+00  0.2833E+00  0.1462E-01      5.2 
 
   CORRELATION MATRIX OF DATA BLOCK 
 
  1.00 
  0.42 1.00 
  0.42 0.43 1.00 
  0.44 0.46 0.46 1.00 
  0.44 0.46 0.46 0.48 1.00 
  0.44 0.46 0.46 0.48 0.48 1.00 
  0.47 0.49 0.49 0.52 0.52 0.52 1.00 
  0.54 0.56 0.56 0.59 0.59 0.59 0.63 1.00 
  0.54 0.56 0.56 0.59 0.59 0.59 0.63 0.72 1.00 
  0.50 0.52 0.52 0.55 0.55 0.55 0.59 0.67 0.67 1.00 
  0.49 0.51 0.51 0.54 0.54 0.54 0.58 0.66 0.66 0.61 1.00 
  0.50 0.52 0.52 0.55 0.55 0.55 0.59 0.67 0.67 0.62 0.61 1.00 
  0.46 0.48 0.48 0.51 0.51 0.51 0.55 0.62 0.62 0.58 0.57 0.58 1.00 
  0.45 0.46 0.46 0.49 0.49 0.49 0.53 0.60 0.60 0.56 0.55 0.56 0.52 1.00 
  0.44 0.46 0.46 0.48 0.48 0.48 0.52 0.59 0.59 0.55 0.54 0.55 0.51 0.49 1.00 
  0.45 0.46 0.46 0.49 0.49 0.49 0.53 0.60 0.60 0.56 0.55 0.56 0.52 0.50 0.49 1.00 
  0.42 0.44 0.44 0.46 0.46 0.46 0.50 0.57 0.57 0.53 0.52 0.53 0.49 0.47 0.46 0.47 1.00 
  0.44 0.46 0.46 0.48 0.48 0.48 0.52 0.59 0.59 0.55 0.54 0.55 0.51 0.49 0.48 0.49 0.46 1.00 
  0.45 0.46 0.46 0.49 0.49 0.49 0.53 0.60 0.60 0.56 0.55 0.56 0.52 0.50 0.49 0.50 0.47 0.49 1.00 
  0.49 0.51 0.51 0.54 0.54 0.54 0.58 0.66 0.66 0.61 0.60 0.61 0.57 0.55 0.54 0.55 0.52 0.54 0.55 1.00 
  0.49 0.51 0.51 0.54 0.54 0.54 0.58 0.66 0.66 0.61 0.60 0.61 0.57 0.55 0.54 0.55 0.52 0.54 0.55 0.60 1.00 
  0.46 0.48 0.48 0.51 0.51 0.51 0.55 0.62 0.62 0.58 0.57 0.58 0.54 0.52 0.51 0.52 0.49 0.51 0.52 0.57 0.57 1.00 
  0.44 0.46 0.46 0.48 0.48 0.48 0.52 0.59 0.59 0.55 0.54 0.55 0.51 0.49 0.48 0.49 0.46 0.48 0.49 0.54 0.54 0.51 1.00 
  0.47 0.49 0.49 0.52 0.52 0.52 0.56 0.63 0.63 0.59 0.58 0.59 0.55 0.53 0.52 0.53 0.50 0.52 0.53 0.58 0.58 0.55 0.52 1.00 
  0.45 0.46 0.46 0.49 0.49 0.49 0.53 0.60 0.60 0.56 0.55 0.56 0.52 0.50 0.49 0.50 0.47 0.49 0.50 0.55 0.55 0.52 0.49 0.53 
  1.00 
  0.45 0.46 0.46 0.49 0.49 0.49 0.53 0.60 0.60 0.56 0.55 0.56 0.52 0.50 0.49 0.50 0.47 0.49 0.50 0.55 0.55 0.52 0.49 0.53 
  0.50 1.00 
  0.45 0.46 0.46 0.49 0.49 0.49 0.53 0.60 0.60 0.56 0.55 0.56 0.52 0.50 0.49 0.50 0.47 0.49 0.50 0.55 0.55 0.52 0.49 0.53 
  0.50 0.50 1.00 
  0.46 0.48 0.48 0.51 0.51 0.51 0.55 0.62 0.62 0.58 0.57 0.58 0.54 0.52 0.51 0.52 0.49 0.51 0.52 0.57 0.57 0.54 0.51 0.55 
  0.52 0.52 0.52 1.00 
  0.46 0.48 0.48 0.51 0.51 0.51 0.55 0.62 0.62 0.58 0.57 0.58 0.54 0.52 0.51 0.52 0.49 0.51 0.52 0.57 0.57 0.54 0.51 0.55 
  0.52 0.52 0.52 0.54 1.00 
  0.46 0.48 0.48 0.51 0.51 0.51 0.55 0.62 0.62 0.58 0.57 0.58 0.54 0.52 0.51 0.52 0.49 0.51 0.52 0.57 0.57 0.54 0.51 0.55 
  0.52 0.52 0.52 0.54 0.54 1.00 
  0.46 0.48 0.48 0.51 0.51 0.51 0.55 0.62 0.62 0.58 0.57 0.58 0.54 0.52 0.51 0.52 0.49 0.51 0.52 0.57 0.57 0.54 0.51 0.55 
  0.52 0.52 0.52 0.54 0.54 0.54 1.00 
  0.45 0.46 0.46 0.49 0.49 0.49 0.53 0.60 0.60 0.56 0.55 0.56 0.52 0.50 0.49 0.50 0.47 0.49 0.50 0.55 0.55 0.52 0.49 0.53 
  0.50 0.50 0.50 0.52 0.52 0.52 0.52 1.00 
  0.46 0.48 0.48 0.51 0.51 0.51 0.55 0.62 0.62 0.58 0.57 0.58 0.54 0.52 0.51 0.52 0.49 0.51 0.52 0.57 0.57 0.54 0.51 0.55 
  0.52 0.52 0.52 0.54 0.54 0.54 0.54 0.52 1.00 
  0.44 0.46 0.46 0.48 0.48 0.48 0.52 0.59 0.59 0.55 0.54 0.55 0.51 0.49 0.48 0.49 0.46 0.48 0.49 0.54 0.54 0.51 0.48 0.52 
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  0.49 0.49 0.49 0.51 0.51 0.51 0.51 0.49 0.51 1.00 
  0.42 0.44 0.44 0.46 0.46 0.46 0.50 0.57 0.57 0.53 0.52 0.53 0.49 0.47 0.46 0.47 0.45 0.46 0.47 0.52 0.52 0.49 0.46 0.50 
  0.47 0.47 0.47 0.49 0.49 0.49 0.49 0.47 0.49 0.46 1.00 
  0.44 0.46 0.46 0.48 0.48 0.48 0.52 0.59 0.59 0.55 0.54 0.55 0.51 0.49 0.48 0.49 0.46 0.48 0.49 0.54 0.54 0.51 0.48 0.52 
  0.49 0.49 0.49 0.51 0.51 0.51 0.51 0.49 0.51 0.48 0.46 1.00 
  0.41 0.42 0.42 0.45 0.45 0.45 0.48 0.55 0.55 0.51 0.50 0.51 0.47 0.46 0.45 0.46 0.43 0.45 0.46 0.50 0.50 0.47 0.45 0.48 
  0.46 0.46 0.46 0.47 0.47 0.47 0.47 0.46 0.47 0.45 0.43 0.45 1.00 
  0.39 0.40 0.40 0.42 0.42 0.42 0.46 0.52 0.52 0.48 0.47 0.48 0.45 0.43 0.42 0.43 0.41 0.42 0.43 0.47 0.47 0.45 0.42 0.46 
  0.43 0.43 0.43 0.45 0.45 0.45 0.45 0.43 0.45 0.42 0.41 0.42 0.39 1.00 
  0.39 0.40 0.40 0.42 0.42 0.42 0.46 0.52 0.52 0.48 0.47 0.48 0.45 0.43 0.42 0.43 0.41 0.42 0.43 0.47 0.47 0.45 0.42 0.46 
  0.43 0.43 0.43 0.45 0.45 0.45 0.45 0.43 0.45 0.42 0.41 0.42 0.39 0.37 1.00 
  0.39 0.40 0.40 0.42 0.42 0.42 0.46 0.52 0.52 0.48 0.47 0.48 0.45 0.43 0.42 0.43 0.41 0.42 0.43 0.47 0.47 0.45 0.42 0.46 
  0.43 0.43 0.43 0.45 0.45 0.45 0.45 0.43 0.45 0.42 0.41 0.42 0.39 0.37 0.37 1.00 
  0.38 0.39 0.39 0.42 0.42 0.42 0.45 0.51 0.51 0.47 0.47 0.47 0.44 0.42 0.42 0.42 0.40 0.42 0.42 0.47 0.47 0.44 0.42 0.45 
  0.42 0.42 0.42 0.44 0.44 0.44 0.44 0.42 0.44 0.42 0.40 0.42 0.39 0.37 0.37 0.37 1.00 
  0.37 0.39 0.39 0.41 0.41 0.41 0.44 0.50 0.50 0.47 0.46 0.47 0.43 0.42 0.41 0.42 0.39 0.41 0.42 0.46 0.46 0.43 0.41 0.44 
  0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.42 0.43 0.41 0.39 0.41 0.38 0.36 0.36 0.36 0.35 1.00 
  0.37 0.39 0.39 0.41 0.41 0.41 0.44 0.50 0.50 0.47 0.46 0.47 0.43 0.42 0.41 0.42 0.39 0.41 0.42 0.46 0.46 0.43 0.41 0.44 
  0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.42 0.43 0.41 0.39 0.41 0.38 0.36 0.36 0.36 0.35 0.35 1.00 
  0.37 0.38 0.38 0.40 0.40 0.40 0.43 0.49 0.49 0.46 0.45 0.46 0.42 0.41 0.40 0.41 0.39 0.40 0.41 0.45 0.45 0.42 0.40 0.43 
  0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.41 0.42 0.40 0.39 0.40 0.37 0.35 0.35 0.35 0.35 0.34 0.34 1.00 
  0.35 0.36 0.36 0.38 0.38 0.38 0.41 0.47 0.47 0.43 0.43 0.43 0.40 0.39 0.38 0.39 0.37 0.38 0.39 0.43 0.43 0.40 0.38 0.41 
  0.39 0.39 0.39 0.40 0.40 0.40 0.40 0.39 0.40 0.38 0.37 0.38 0.35 0.34 0.34 0.34 0.33 0.32 0.32 0.32 1.00 
  0.33 0.34 0.34 0.36 0.36 0.36 0.39 0.44 0.44 0.41 0.41 0.41 0.38 0.37 0.36 0.37 0.35 0.36 0.37 0.41 0.41 0.38 0.36 0.39 
  0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.37 0.38 0.36 0.35 0.36 0.34 0.32 0.32 0.32 0.31 0.31 0.31 0.30 0.29 1.00 
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Motivation

The 4He nucleus is the lightest, stable nucleus with

� many two-body reaction-channels

� di�erent fragmentations

� well developed resonances

� deeply bound ground state

� standard cross-sections

� huge amount of data

� well studied theoretically

� benchmark for models

� still open questions

1



Resonating Group Model

Ideas
Composite system

RGM Ansatz 	l =
Pchan

k=1  
k
chan � �

lk
rel(R)

Variation hÆ	lAjH� Ej 	li = 0

Channel function  chan = [YL(R̂)
 [�
j1
1 
 �

j2
2 ]

Sc]J

Ansatz  =  chan(
P

i bi �Gaussian) (bound state)

or �lkrel(R) = Ælk � Fk(R) + alk � ~Gk(R) +
P

i blki� Gaussian

(scattering state)

Variational parameters alk and b(lk)i

Decompose Hamiltonian
H � E = H1 � E1 +H2 � E2+P

i21
j22

Vij � VCoul+

TR + VCoul � (E � E1 � E2) =

H1 � E1 +H2 � E2 + Vshort +HR � ~E

with A �(Hi � Ei)�i = 0 and (HR � ~E)F=G = 0

) All integrals shortranged

Note: Relative thresholds �xed by ~E

R
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Resonating Group Model

Technicalities

) Expand all functions including F and G

� in terms of Gaussians

� times solid spherical harmonics

) All individual integrals analytically calculable,

provided potential is of Gaussian form including di�erential operators

All operators allowed which occur in Argonne and Bonn (r-space)

potentials and in Urbana IX NNN-force

� Correct center of mass motion

� No limit on number of channels

� NNN-forces limit number of nucleons to 4

) Allow for distortion of fragments via di�erent �

Three- and more-body channels approximately treated via two-body

channels (unitary pole approximation)

Fragment wave functions �1 and �2 must be strongest bound in given

model-space

) Relative thresholds can only be changed by increasing dimension of

model-space or using other potentials

3



Model spaces, binding energies
Deuteron: Eb = -2.224 MeV J� = 1+ ) S=1, L=0,2

) model space 3S1;
3D1

dimension (3,1) Eb = -0.929 MeV

dimension (3,2) Eb = -1.921 MeV

dimension (5,2) Eb = -2.095 MeV

dimension (5,3) Eb =- 2.213 MeV

Eb determined via genetic algorithm

��
��

��
��

��
��

l1

l2

Triton / 3He : Eb = -8.481 MeV J� = 1
2

+
; isospin = 1

2

) S = 1
2
; 3
2
; (l1; l2)

L all combinations (L; S)J with l1 + l2 even

additional T12 = 0 , 1 possible

Model spaces

dimension 29 : (l1; l2)
L = (0,0), (2,0), (0,2), (2; 2)1;2

AV18 Eb = -7.068 MeV, AV18 + UIX Eb = -7.586 MeV

dimension 35 : (l1; l2)
L = (0,0), (2,0), (0,2), (2; 2)0;1;2; (1; 1)1

AV18 Eb = -7.413 MeV, AV18 + UIX Eb = -8.241 MeV

dimension 70 : (l1; l2)
L = (0,0), (2,0), (0,2), (2; 2)0;1;2; (1; 1)1;2

AV18 Eb = -7.572 MeV, AV18 + UIX Eb = -8.460 MeV

Thresholds relative to 3H - p

model space AV18 AV18 + UIX
3He� p d� d 3He� p d� d

0.698 3.227 0.710 3.745

large 0.725 3.572 0.748 4.400

converged 0.715 3.145 0.747 4.033

exp. 0.763 4.033 0.763 4.033
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Triton { proton 0
+ phase shift

Various model spaces, NN{interaction only

0

30

60

90

120

0 0.2 0.4 0.6 0.8

de
gr

ee
s

MeV

Rmat
av18

av18n
av18-l

av18n-l
av-conv

Converged results close to R-matrix analysis
4He binding energy -23.597 � � � -24.112 MeV

S-matrix pole position E0 = Er � i�=2
E0 = 0.093 - i 0.174 MeV, �tot = 0.265 MeV
Pole position far from 90-degrees crossing
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Triton { proton 0
+ phase shift

Various model spaces, NN{interaction + NNN{Urbana IX

0

30

60

90

120

0 0.2 0.4 0.6 0.8

de
gr

ee
s

MeV

Rmat
av18u

au-l
aun-l

au-conv

Results for large model space close to R-matrix ones

Converged results too attractive
4He binding energy -27.106 � � � -28.328 MeV

S-matrix pole position

E0 = 0.096 - i 0.114 MeV, �tot = 0.173 MeV
Pole position far from 90-degrees crossing
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Triton { proton 0
+ phase shift

Various potentials, largest model space

0
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0 0.2 0.4 0.6 0.8

de
gr

ee
s

MeV

Rmat
bonn

av-conv
au-conv

Argonne v18 + Urbana IX too attractive

Operator structure of UIX ?
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2
� phase shifts

Bonn potential
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Too small t{p phase shift reason for missing the polarization data
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2
� phase shifts

Argonne v18 potential
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Triton - proton channel gains attraction

Stronger coupling to 3He - n channel
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2
� phase shifts

Argonne v18 + Urbana IX potentials
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Ecm [MeV]

Rmat-tp
Rmat-he
Rmat-dd
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Compared to NN-force alone

Small modi�cations

Slightly less attractive

Coupling matrix element reduced by 5 percent
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Triton { proton elastic scattering
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m
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av-conv

Di�erential cross section at Ecm = 600 keV

Coulomb { nuclear interference?

Data?
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Triton { proton elastic scattering
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Di�erential cross section at Ecm = 600 keV

NNN { force e�ects tiny
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Triton { proton elastic scattering
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Excitation function at � = 58Æ as function of center-of-mass energy
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Triton { proton elastic scattering
The data are for 4.15 MeV protons
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Standard cross section 3
He(n,p)
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3
H(p,n)3He Reaction
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Deuteron { Deuteron fusion

R { matrix analysis
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Deuteron { Deuteron fusion

RGM calculation
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Deuteron { Deuteron elastic

RGM calculation
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Resonating Group Model

S { matrix approach

RGM Ansatz 	l =
Pchan

k=1  
k
chan � �

lk
rel(R)

Variation hÆ	lAjH� Ej 	li = 0

Channel function  chan = [YL(R̂)
 [�
j1
1 
 �

j2
2 ]

Sc]J

Ansatz  =  chan(
P

i bi �Gaussian) (bound state)

or �lkrel(R) = �Ælk � ~H
�
k
(R) + Slk � ~H

+
k
(R) +

P
i dlki� Gaussian

(scattering state)

With H�(R) = G(R) � iF (R); limR!1H
�(R) = e�ikR

Variational parameters Slk and dlki

Note: �lkrel(R) regular at origin ) regularize H�(R) around origin

For complex k huge cancelations neccessary

Solution

S =

i

��
~H�j~H� Ej~H�

�
�
�
~H+j~H� Ej~H�

�T �
~H+j~H� Ej~H+

��1 �
~H+j~H� Ej~H�

��

Numerically more stable than standard approach

But no guarantee for unitary S
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S { matrix pole positions

R-matrix RGM AV18 + UIX conv

J� T Er �i�=2 Er �i�=2 �tot

0+ 0 0.114 0.196 0.096 0.114 0.173

0 7.680 3.565 4.344 2.288 0.280

12.230 2.186 0.840

1+ 0 8.416 3.008 6.288 3.104 0.419

9.699 1.766 0.369

12.619 1.851 0.738

2+ 0 4.840 3.159 3.156 2.914 0.393

0 8.535 1.600 16.942 2.001 1.205

0� 0 1.031 0.301 0.911 0.224 0.417

1 4.550 11.79 1.657 3.064 0.963

9.858 4.140 0.220

12.611 0.268 0.514

1� 0 2.804 2.336 0.750 1.887 0.704

1 7.404 10.91 1.528 2.339 1.868

0 8.051 1.801 2.028 2.556 1.567

7.902 2.229 0.047

9.936 3.336 0.326

17.500 1.500 0.577

2� 0 1.584 0.732 1.713 1.103 1.749

1 7.230 9.049 3.752 2.945 0.804

7.269 1.330 0.526

9.931 2.262 0.642

17.543 0.826 2.585

RGM calculation might yield more poles
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Model Fitting for light elements 
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Abstract.  The error propagation features with R-matrix model fitting 7Li, 11B 
and 17O systems were researched systematically. Some laws of error propagation 

were revealed, an empirical formula NmSKUUP j
d
j

c
jj ⋅⋅== /  for describing 

standard error propagation was established, the most likely error ranges for 
standard cross sections of  6Li(n,t), 10B(n,α0) and 10B(n,α1) were estimated. 

 
The problem that the standard error of light nuclei standard cross sections may be too small 

results mainly from the R-matrix model fitting, which is not perfect. Yet R-matrix model fitting 
is the most reliable evaluation method for such data.  The error propagation features of 
R-matrix model fitting for compound nucleus system of 7Li, 11B and 17O has been studied 
systematically, some laws of error propagation are revealed, and these findings are important in 
solving the problem mentioned above. Furthermore, these conclusions are suitable for similar 
model fitting in other scientific fields. 

 
1. Data simulation 
 

The formulas used for preparing simulated data are given in the reference [1,2].  In R-matrix 
fit, if experimental data are used to investigate the law of error propagation, there would be the 
following difficulties:  

A. In general, experimental data involve several thousand data points, to make χ2  
minimum would involve especially tremendous calculations; 

B. Usually, the experimental data measured by different laboratories are inconsistent to 
some extent, because some experimental errors were not recognized or were underestimated. 
 

Therefore, it is difficult to get reliable error propagation law if experimental data are used 
in the study, so simulated data (SD) whose central values and errors are determined completely 
were adopted in this work. 

 
Simulated data were prepared for all open reaction channels and reaction types in the 

energy range considered for a light nucleus system. The  reaction channels are (n, 6Li) and (t, 
4He) for  7Li,  (n, 10B), (α0, 7Li) and (α1, 7Li*) for 11B and (n,16O) and (α,13C) for 17O. The data 
types include neutron total cross section σt , all kinds of integral reaction cross sections and 
differential cross section and polarization for elastic scattering.   Energy ranges are En=0.253
×10-7-1.04 (MeV), Et=7.6-10.0 (MeV) for 7Li; En=0.253×10-7-1.04 (MeV), Eα =7.6-10.0 
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(MeV) for 11B; En=0.253×10-7-6.4 (MeV), Eα =2.7-6.2 (MeV) for 17O. 
 
In order to investigate the dependence of the error propagation on data number N, 4 

collections of data with different N (see table 2) were created for each light nuclide; there are 
some independent sub-collections in each collection of data. The points of each sub-collection 
of data are distributed uniformly in the energy range given. 

 
The total relative error of simulated data was assigned according to practical situation. It is 

2% for neutron total cross section, 4% or 5% for integral cross section, 6% for differential cross 
section, and 3% for polarization. In other cases, all relative errors were taken as 5%. Altogether 
264 sets of data were involved in the investigation. The details of error distribution are 
described in reference [1]. 
 

In order to study relation between error propagation and error distribution, two collections 
of simulated data with 3250 data points and 4381 data points were created for 7Li and 11B 

respectively. For a given total variance 2
iU , we can define the ratio of total systematic variance 

to total variance Yi = 22
ii UY , and for a given total systematic variance 2

iY , define the ratio of 

medium-range variance to total systematic variance 22
iii YMM = . So let Y to be increase from 

0.0 to 0.9999 and M from 0.0 to 1.0 with the step 0.05 for both, thus the combinations of all Y 
and M include all together 882 sets of data. In order to research the effect of Medium Energy 
Range Correlation (MERC) part of systematic errors, assume the correlation range follows 
normal distribution versus energy, and define distribution parameter W as the ratio of the 
distribution width to the whole energy range of the data. For a data set of 7Li with N=3250 data 
points, 136 sets of data formed by the combination of different Y, M and W were dealt with. 

 
In addition, the errors of a data collection with 4381 points of 11B were decreased or 

increased in order to study the linear character of error propagation. 
 
Simulated data were calculated according to the following formula 
 

     ])1()()(1[ j
iiiiiit

j
i VYRVSDD −⋅+⋅+= .                                (1) 

 

Here j refers to the sub-collection of the data, i to the data point, itD to the calculated value 

of the data point i by using the R-matrix parameters taken from Chinese Evaluated Nuclear 

Data Library. iR is a random numeral number generated by Monte Carlo and follows standard 

normal distribution. (-1)j expresses the change of sign of the systematic error contribution, to 
bring simulated data more close to the real case. 
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2. Calculation and analysis of error propagation 
 

R-matrix Analyzing Code—RAC[1,3] was used for calculation. RAC is written according to 
the R-matrix formula given by A. M. Lane[4]. The kernel formulas are 
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Parameters of R-matrix include reduced width amplitude γ, position of energy level Eλ, 

width of reduced channel e
λµΓ , boundary condition cB , constant background of distant 

levels ∞
′ccR , channel radius ca . The sensitivities of all parameters were worked out through 

prior trial calculations. The parameters, which are not sensitive to fitted observable, are 
regarded as constant. The numbers of parameters of R matrix used for 7Li, 11B and 17O are 
eventually determined as 18, 50 and 121 respectively. 

 
The simulated data given above were taken as RAC code input and were fitted by adjusting 

the R-matrix parameters one by one to get the best parameters. In fact, for any set of data with 

systematic error contribution in the total error (Y) less than 99.99%, the initial value of 2χ  is 

about 1.0 and no adjusting was needed.  
 
In calculated covariance matrix, the non-diagonal elements of covariance matrix give the 

information about correlation, which will be discussed in another paper. The square root of 
diagonal element of covariance matrix is just the standard error of each calculated data. 
Because the original error of simulated data was known, the information about standard error 
propagation can be obtained. 

 
Relative error is averaged statistically according to following expression and then error 

propagation coefficient (EPC) jP  can be obtained, 

   ∑ ∑⋅=
l l

l
j

l
j

c
l

c
j NNUU / ,                                                           (3) 

   d
j

c
jj UUP /=  .                                                                   (4) 

Here j expresses data type, summing over l means that there are l sets of j-type data and 

there are l
jN  data points for each set. Each data type in each simulated data collection has a 

corresponding error propagation coefficient. The characteristics of error propagation for (n, α) 
reaction, which was paid the most attention to, are discussed here. Of course, the conclusion 
obtained is suitable for other reaction type also. 
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Figs. 1, 2 are �hillock-like� pictures, which show error propagation coefficient P(Y, M) of 
11B and 7Li respectively. In each figure, ordinate expresses variable Y and abscissa expresses 
variable M and P (Y, M) is shown by symbols different in size and shape. Points in the area, 
which is full of solid triangle, give largest P(Y, M). Whole symbols look like a �hillock�, so it is 
called �hillock-like� picture here. In each figure, the central values of P (Y, M) are expressed by 
a corresponding symbol as shown in square box on right. In figs. 1 and 2, they are given with 
steps 0.004 and 0.002 for first five values and 0.01 and 0.005 for last eleven values. Both 
figures have some sense of three dimensions, and have a function of data table in some sense. 
For a given pair of Y and M, approximation of corresponding P (Y, M) can be read out from 
them.  

 
In Fig. 3 is shown P (Y, M) curves of 7Li system, the ordinate expresses error propagation 

coefficient P and abscissa is variable M. From figures above it can be seen that P (0,M) of 7Li 
and 11B are equal to 0.048 and 0.070 respectively when total error is entirely statistic one, 
P(0.9999,1.0) are equal to 0.024 and 0.055 respectively when total error is almost entirely 
MERC of systematic error, and P(0.9999,0.0) are equal to 0.0035 and 0.0033 respectively 
when total error is almost entirely LERC of systematic error. These show that with R-matrix 
model fitting, if only one type of error is taken into account, EPC of statistic error is larger than 
that of systematic error, EPC of the MERC of systematic error is larger than that of the LERC 
of systematic error, and all these EPC are relative small. 

 
If total error includes both statistic and systematic error, P (Y, M) increases first rapidly with 

increasing systematic error until that systematic error is about half the total error, which can be 
seen clearly in fig 3. This shows that with R-matrix model fitting, neglect of systematic error 
would lead evaluated standard error to smaller, and this is just the main reason that makes the 
errors of current light nucleus standard cross section are too small. 

 
When Y is smaller than 0.1, value of M has little influence on P (Y, M), but when Y is larger 

than 0.1, value of M effects error propagation considerably, which can be seen from fig 3. This 
shows that with R-matrix model fitting the influence of MERC of systematic error must be 
seriously considered, and neglect of it would lead evaluated standard error to remarkably 
smaller.  

 
Fig. 4 shows the dependence of P (Y, M) on the correlation parameter W of MERC of 

systematic errors for 7Li system. When the W increases from 0.5% at the beginning, and go 
through 1%, 3% and finally approach to 5%, P (Y, M) increases very rapidly and lies in highest 
value area already. W is relative to the factors such as energy resolution of detector and so on. 
In general, the energy resolution is several percent, so value of W is fixed as 5% in this work. 

 
The propagation coefficients kept unchanged when the initial errors of simulated data were 

increased or decreased in proportion. There are 120 sets of 7Li system simulated data whose 
initial errors were all 5%, are fitted by using R-matrix model, and no larger difference was 
found between the obtained P (Y, M) and that shown in fig 3. 
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  Fig. 1 Hillock-like pictures of σn,α error propa-             Fig. 2 Hillock-like pictures of σn,α error propa- 

    gation coefficient P(Y,M) for 11B system.                         gation coefficient P(Y,M) for 7Li system 

   

 
      Fig. 3   Curves vs. M of σn,α error propagation                 Fig. 4   Curves vs. W of σn,α error propagation   
                  coefficient P(Y,M) for 7Li system                                       coefficient P(Y,M) for 7Li system  

 
In this paper the error distribution of simulated data almost covers the situation of existing 

available experimental data, so the calculated result can be used to estimate the range of 
standard error for evaluated standard cross section of 6Li(n,t) ,10B(n,α) and 10B(n,α1). In table 1, 
P-lower means Y=0.10 and M=0.50,  P-higher means Y=0.50 and M=0.50. For realistic 
experimental data, additional errors caused by normalization and correction for non-consistent 
data also should be considered, and the experience indicates that these two factors could lead 
fairly remarkable contribution to the errors. It is possible that this make the �ideal� error 
increase by 50% or larger. The average of P-lower and P-higher gives the most possible value 
4% and is chosen as the average of relative error of σn,α experimental data, thus the mean values 
of relative error of the three standard cross section mentioned above  are about 0.76%, 1.2% 
and 1.0%.  respectively. 
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          Table 1. Estimated values of standards error for 6Li(n,α), 10B(n,α) and 10B(n,α1 ) 
 

Ideal value Corrected value  p-lower p-higher p-lower p-higher p-mean 
6Li(n,α) 10% 15% 15% 23% 19% 
10B(n,α0) 15 % 26% 23% 39% 31% 
10B(n,α1) 12.9% 20.0% 20% 30% 25% 

 
The theoretical formulas of error propagation in model fitting are very complicated matrix 

operations. An empirical expression for describing standard error propagation coefficient jP  

was deduced according to the results calculated systematically in this work, that is 

  NmSKUUP j
d
j

c
jj ⋅⋅== /                                                       (5)   

Here j expresses the type of nuclear reaction, m the number of parameters, N the total 

number of the data, S  the mean of absolute value of all sensitive matrix elements, and jK  is a 

positive real number and is called �error propagation factor� in this paper. The base of 
mathematics and physics for the formula is qualitatively explained as follows.  

 
The R-matrix model fitting is essentially based on maximum likelihood method and to 

make the best parameter estimation from a great deal of statistical samples. NPi 1∝  comes 

from normal distribution of the sample statistic error. Mean S reflects character of nuclear 
reaction of light nuclide and is relative to the composition of the fitted data, but not to the error 
situation. The value of S  for each data collection for the three nuclides are listed in table 2, 
where the unit of cross section, length and energy is b, fm and MeV respectively. The absolute 
value of each matrix element reflects corresponding sensitivity of a data point to a parameter. 
Whole sensitivity of parameters is ultimately reflected by relative error of parameter; smaller 
relative error means more sensitivity and stronger influence on data error propagation. 
Calculations shows that a parameter with relative error larger than 60% has a very small 
contribution to error propagation, and was treated as a constant in the calculations, so m in 
formula (5) is only the number of parameters with relative error smaller than 60%. It can be 
seen  that the calculations of theoretical covariance need to be summed over m parameters, this 

leads to the dependence of P on the square root of m. Put jP  of each data type and 

corresponding S , m, N into formula (4), the error propagation factors jK  of each data type 

were obtained. 
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Table 2.  N, 2χ ,m, S  of simulated data and P(Y, M),K(Y, M) of  (n,α) reaction 

 
 No N 2χ  m S

v
 P (0,0.5) K 

(0,0.5)
P 

(0.5,0.5) 
K(0.5,0.5) 

A 1980 0.9 18 0.604 0.095 1.287 0.169 2.779 
B 2801 0.9 18 0.397 0.088 1.346 0.165 2.871 
C 3624 0.9 18 0.531 0.072 1.409 0.145 2.832 

7L 

D 4275 0.9 18 0.399 0.065 1.310 0.138 2.777 
A 2713 0.9 50 0.142 0.097 1.904 0.308 6.025 
B 4636 0.9 50 0.145 0.074 1.852 0.277 6.994 
C 7011 0.9 50 0.197 0.058 1.555 0.232 6.193 

11B 

D 8654 0.9 50 0.170 0.051 1.510 0.220 6.435 
A 3928 1.0 121 0.249 0.137 1.559 0.227 2.593 
B 5722 1.0 121 0.256 0.116 1.580 0.170 2.314 
C 7625 1.0 121 0.255 0.096 1.517 0.145 2.284 

17O 

D 9519 1.0 121 0.249 0.085 1.502 0.129 2.299 
 

The values of N, 2χ , m and S  of the four groups of data for each light nuclide system, and 

the value of P and K for the reaction (n,α) are shown in table 2. When systematic error is zero, 
the value of P and K is minimum. For each nuclide system the value of P decreases with the 
increasing of data number N. But it is an exception for the oxygen data, for which, N is larger, P 
is also relatively larger, this is due to more R-matrix parameters were used. There is remarkable 
difference among the four P values of each nuclide system, but the corresponding error 
propagation factors K are very close to each other; this shows that empirical expression (5) has 
impersonal foundation in physics and mathematics. In fact, the empirical expression (5) can be 
directly deduced from formulas 1 to 5, assuming that all data are not correlated, and that all 
sensitive matrix elements are chosen as the mean, and non-diagonal covariance matrix 
elements of parameters are neglected. The errors generated by above approximations are 
reflected in factor K. 

 
Averaging the four groups of data for each nuclide system and treating S ×K as a 

coefficient, it was obtained that ( ) NmLiPn 34.07 ≈α
 , ( ) NmBPn 29.011 ≈α

, ( ) NmOPn 38.017 ≈α
. And 

making approximation further, it was obtained finally that NmPn ⋅≈ 3/1α
. 

In experimental nuclear physics, approximation formula NP 1≈  is taken to estimate 

relative error of measured data, which is very convenient and practical to design and plan the 
experiment. The above empirical formula has similar function for theoretical model fitting and 
experimental data evaluation. For example, when a preliminary result of fitting is obtained 
according to an experiment data collection, the formula (5) can be used to judge the rationality 
of the experiment data collection. Formula (5) also shows that in order to obtain more accurate 
evaluation results, the number of experiment data should be as more as possible, their errors 
should be as small as possible and the number of theory model parameters should be as few as 
possible.  
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3. Conclusion 
 
A. With R-matrix model fitting, if only one kind of data errors is considered, propagation 

coefficient of statistic error is larger than that of systematic error; propagation 
coefficient of MERC of systematic error is larger than that of LERC of systematic error; 
and these propagation coefficients are all quite small.  

B. If total error includes statistic error and systematic error at the same time, with 
systematic error increasing, the coefficient of error propagation increases rapidly at the 
beginning, and then continue to increase until systematic error is about half of the total 
error. This shows that with R-matrix model fitting, neglect of the systematic error must 
lead to the smaller evaluated standard errors.  From the study of this work, the most 
possible mean values of relative standard error for 6Li(n,α), 10B(n,α) and 10B(n,α1 ) are 
about 0.76%，1.2% and 1.0% respectively. 

C.  When the proportion of the systematic error Y is less than 10%, the proportion of 
MERC of systematic error to total systematic error M has little influence on error 
propagation. But when Y is more than 10%, M has a very large influence on error 
propagation. This shows that with R-matrix model fitting, neglect of the MERC of 
systematic error must lead to the remarkably smaller evaluated standard error. 

D. With R-matrix model fitting, theoretical expression for error propagation involves very      
complicated matrix operations, but standard error propagation coefficient P can be 

expressed by a very simple empirical formula NmSKUUP j
d
j

c
jj ⋅⋅== / . This formula 

may play an important role on evaluation of experimental data and is suitable for 
similar fields in other subjects. 
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1. Basic formula for error propagation in Model fitting  
 

The theoretical formula for error propagation in R-matrix model fitting [3] is as follow: 

 )(y 00 PPDy
vvvv −=− ,                                                                         (1) 

0)/( ikki PyD ∂∂= .                                                                           (2) 

Here yv  refers to the vector of calculated values, D to the sensitivity matrix, P
v

 to the 

vector of R-matrix parameters. Subscript 0 means optimized original value, k and i are for 
fitted data and R-matrix parameter subscript respectively.  The covariance matrix of 
parameter P

v
is 

11 )( −−+= DVDVpv  ,                                                                (3) 

here V refers to covariance matrix of the data to be fitted, and its inversion matrix can be 
expressed as following:  
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Here V1,V2�Vk  refer to the covariance matrixes of the sub-set data, which are independent 
with each other. The covariance matrix of calculated values is 

+= DDVV py rr                                                                       (5) 

Formula adopted for optimizing of parameters with R-matrix fitting is 

( ) ( )⇒−−= −+ yVy vvvv ηηχ 12 minimum,                                               (6) 

here ηv  refers to the vector of experimental data, yv  refers to the vector of calculated values. All 

the elements of V are included in calculation. 
 

2. Basic formula for calculation of covariance matrix 

Suppose 2
iU , 2

iS , 2
iL , 2

iM and 2
iY  are total variance, statistical variance, long-range 

component (LERC) of systematic variance, medium-range component (MERC) of systematic 
variance and total systematic variance of i-th experimental data point respectively, and let 

2
iU = 2

iS + 2
iL + 2

iM , 222
iii MLY += . For a given total variance 2

iU , we can define the ratio of total 

systematic variance  to total variance Yi = 22
ii UY ,  for a given total systematic variance 2

iY ,  
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define the ratio of medium-range variance to total systematic variance 22
iii YMM = . 

For differential cross section, assume the correlation among different angles also follows 
normal distribution, and the distribution width is given value (degree).  

The element of covariance matrix is 

                  jiijij UUCV ⋅= .                                                                          (7) 

The diagonal elements Cjj of correlation coefficient matrix C are 1 for all.  
The non-diagonal elements for integral cross section are 

M
ij

L
ijij CCC += ,                                                                            (8) 

here L
ijC  refer to the LERC of systematic errors, M

ijC to the MERC of systematic errors, and  

)( jiji
L
ij UULLC = ,                                                                       (9) 

ijjiji
M
ij fUUMMC ⋅= )( ,                                                                                                 (10) 

2])([ 2WEEExpf jiij −−=  ,                                                       (11) 

here W is a distribution width parameter, iE  and jE  express energy points of the data.  

The non-diagonal elements of C for differential cross section are 

ij
M
ij

L
ijij GCCC ⋅+= )( ,                                                                                                (12)  

}2]160)[({ 2
jiij ExpG θθ −−=  .                                                 (13) 

Here 160 is a distribution parameter related to angle, iθ  and jθ  are angle values. 

   It can be seen from the formulas given above that correlation coefficient is determined 
by total error and systematic error, and a larger systematic error leads to a larger correlation 
coefficient.  

The covariance matrix of parameter was calculated with formula (3), and the sensitive 
matrix elements Dij  were calculated by using finite difference methods , 

 
Dij={T(p+3d)-T(p-3d)+ 9[T(p-2d)-T(p+2d) ]+45[T(p+d)-T(p-d)]}/(60d)    (14) 

In order to ensure reliability of calculations, the best range of the step d was studied in 
very detail.  

Covariance matrix of theoretical value is calculated according to formula (5). Because 
the original error of simulated data is known, all information about standard error propagation 
can be obtained. 

Relative error is averaged statistically according to the following expression and then 
error propagation coefficient (EPC) Pj can be obtained, 

∑ ∑⋅=
l l

l
j

l
j

c
l

c
j NNUU /  ,                                                               (15) 
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d
j

c
jj UUP /=  .                                                                   (16) 

Here j expresses data type, summing over l means there are l sets of j-type data and there 

are l
jN  data points for each set. Each data type in each data collection has a corresponding error 

propagation coefficient.  
 

3. Checking for positive definiteness 
 
      In physics, it is pointed that [3] �matrices which properly represent physical 

uncertainties are positive definite�. So the covariance matrix V of experimental data is real 
symmetric and positive definite.   

       In mathematics it is pointed that, � to every real symmetric matrix A an orthogonal 
matrix H can be found such that 

                          H-1AH=λi,                                                                       (17)  
the matrix H is sometimes called the model matrix of A�.  When A is positive definite, λi is a 
diagonal and positive definite matrix, λi-1 is positive definite too. So that 

                         [H-1AH]-1=H-1A-1H=λi-1,                                                (18) 
It is shown that A-1 is positive definite, and the inverse matrix V-1 is positive definite. 
In mathematics, there is a formula as:  If A ε Rnxn is a positive definite matrix, and the 

column vectors of the matrix X ε Rnxk  are linearly independent, then the matrix 
                               B=XTAXεRkxk                                                                                         (19)  

is also positive definite.             

According to formula (19), in formula (3) 11 )( −−+= DVDVpv  and formula (5) += DDVV py rr , if 

sensitivity matrix D is linearly independent, the covariance matrix of parameters and calculated 
cross sections will be positive definite.  

The calculation of covariance matrix involves inversion of high rank matrix and numerous 
product adding, sometimes the number of product adding reaches several ten million. The 
sensitivity of data points related to energy is very high, and some troubles may easily occur 
when the energy of a data point is in the vicinity of�extraordinary point�and�vertex point�. 
Therefore the code was carefully designed to ensure that sensitivity matrix D is linearly 
independent and every kind of  covariance matrix is positive definite.  By getting eigenvalues 
of calculated covariance matrix we check it�s positive definiteness.        
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Some works on calculation of 6Li(n, t) have been done with RAC, mainly 
in order to make comparison of GMA-fitting and RAC-fitting. 
 

  1.  Data base 
 

In RAC-fitting, the data-base used is shown in Table 1.  It includes the main kinds of data 
in 7Li system, come to total number of 1004 data.  The 5 data-sets of  6Li(n, t) with total number 
of 154 data have been studied with GMA and GLUCS. There exists rather lager discrepancy 
among these data. 

  
                                       TABLE 1      Information of data base in   7Li   system             

 

               AUTHER            NORM.FAC             ER-FAC                      NUMBER  
 

           'HARV-TO1'          1.000000   'F'  2.0      1.00               1             22 
           'HARV-TO2'          1.000000   'F'  2.0      1.00              23             85 
           'KITT-TOT'            1.000000   'F'  2.0      1.00           108           134 
           'LANE-DNN'         1.000000   'F'  2.0      1.00            242            95 
           'MEAD-INT'          1.000000   'F'  2.0      1.00            337              1 
           'RENE-INT'           1.000000   'F'  2.0      1.00            338              3 
           'LAMAZ-NA'        1.000000   'F' 2.0       1.00             341           51 
           'FORT-NA1'          1.000000   'F'  2.0      1.00            392            13 
           'FORT-NA2'          1.000000   'F'  2.0      1.00             405           25 
           'POENI-NA'          1.000000   'F'  2.0      1.00            430            19 
           'FRIES-NA'           1.000000   'F'  2.0      1.00             449           46 
           'OVEL-DNT'        1.000000   'F'  2.0      1.00            495           256 
           'BROW-DNT'       1.000000   'F'  2.0      1.00            751            25 
           'JARM-DTT'         1.000000   'F' 2.0       1.00            776          127 
           'JARM-YTT'         1.000000   F'  2.0      1.00             903            84 
           'DROSG-TN'        0.270000   'F'  2.0      1.00            987            10 
           'DRO-DTN2'        0.200000   'F'  2.0      1.00            997              8 
 
    

2 The dependency on number of data 
 

        By changing the factor of error for a data-set, it’s possible to make the data-set  
informative or non-informative.   The calculation includes 4 situations: 
 

1. D1004. All data are informative. By search to get a good parameter set D1004.par, this 
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parameter set will be taken as starting values for other cases.   
2. D0155. The 5 data-sets of 6Li(n, t) with total number of 154 data are informative, the 

data at 0.253E-07 is informative too.  
      3.  D0154.    Just 5 data-sets of 6Li(n, t) with total number of 154 data are informative;   

4. D0108.  4 data-sets of 6Li(n, t) with total number of 108 data are informative, the data of 
‘FRIES-NA’ is non-informative. 

 
         Table 2 shows some characteristic values of the evaluated data. The first impression is: 
 
1. The value of D1004 is very close to the value of ENDF/B6. 
2. The value of D0154 is lower then the value of ENDF/B6 obviously, and it’s very near the 

value of DGAMS; this is just due to fit 154 data of   6Li(n, t) .   
3. The value of D0155 get much improvement relative to ENDF/B6, this is duo to the data of 

0.253E-07 MeV is included.  This explain that the data at thermal energy is very important 
in the evaluation of 6Li(n, t). But in Table 2 it is shown that the thermal data is relative 
lower then that of ENDF/B6, This explain that other kinds of data have to be Considered 
in evaluation of  6Li(n, t) when with R-matrix fit. 

4. The value of D0108 is higher then all other values. This is because the data of 
‘FRIES-NA’, which are not included, are below any others. 

 
                TABLE 2 .   Comparison of calculated 6Li(n,t)  at some energies 
 
              En(MeV)       0.253E-07        0.25E-02          0.100          0.240        0.800 
 
             ENDF/B6         940983.             2979.1            651.5         3257.0      254.0 
             D1004               938933.             2979.7            670.7         3260.4      250.1 
             D0155               923275.             2922.1            659.3         3235.0      258.6 
             D0154               817995              2595.7            616.6         2995.8      248.4 
             GMAS                                        2665.9            596.3         3939.1       224.1 
             D0108               964407              3094.2            669.2         3220.3      252.5    
 
      3. The dependency on error of data  

 
If for different data sets, the discrepancies exist at many points, which are larger than the 

errors given, then there is no any possibility to get average χ2 close to 1.0 using original error 
values. Tables 3 and 4 show, that when the given error is multiplied by a factor, the calculated 
values of 6Li(n, t) are different in the best fits.  A very important data point is the value 
calculated at 0.253E-07 MeV which with given data is usually below 932 b in normal situations. 
The experimental value 941.8 b was at 0.253E-07 MeV with very small error was added in case 
of D1004 for test. 
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           TABLE 3.  FACTOR OF ERRORS 
     DATA      TOT  DIF(N,N) (N,T)-THE.        INT(N,T)      DIF(N,T)    DIF(T,T)     DIF-(T,N)        
     A1004    1.0       1.0          1.0                  1.0              1.0           1.0            1.0 
     B1004    1.4       1.4          1.0                  1.0              1.0          2.5            1.0 
     C1004    1.0      1.0          0.4                  1.0               1.0           3.5            1.0 
     E1004    1.0      1.0          0.4                   1.0               1.5           2.5           2.0 
     D1004    1.0      1.0          0.1                   1.0             1.0            3.5           1.0 
     F1004    1.0      1.0          1.0                   1.0               1.5           2.5           2.0 
 
 
      TABLE 4.    6Li(n, t) cross section(mb) at some characteristic points  
 
   En (MeV) 0.253E-7   0.0025    0.0095   0.045  0.0950  0.202   0.242   0.402   0.802 
  A1004       913242.8   2892.0   1496.3   756.1  671.2  2141.1   3400.1   538.4   239.7 
  B1004       929857.1  2951.1   1525.5   768.1  678.2   2146.9   3401.7   541.0   241.2 
  C1004      904872.2   2866.4   1484.3   751.9  664.3   2055.1   3280.0   520.7   259.5 
  D1004      938933.2   2971.1   1534.4   766.8  664.5   2007.9   3262.4   520.3   249.7 
  E1004      932374.1   2951.1   1525.5   768.1  678.2   2146.9   3401.7   541.0   241.2 
  F1004      932374.0   2951.1   1525.5   768.1  678.2   2146.9   3401.7   541.0   241.2 
 
4. Comparison among R-matrix code 

 
The comparison among R-matrix code EDA, SAMMY and RAC has been done. Table 5 

presents the result of calculations of integral cross section of 6Li(n, t) and Table 6 - the result 
for differential cross section of 6Li(n, n) reaction.  The agreement is very good.  If RAC will use 
the relativistic kinematics the agreement between EDA and RAC will be even better.     
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Table 5.  Comparison for calculated  6Li(n, t) with same parameter 
 
          En(MeV)  SAM(mb)  RAC(mb) EDA(mb)  (S-E)/E%  (R-E)/E%  (S-R)/R% 
          0.253E-07               926584.0 
          0.0010                     4634.231   4634.227                     0.00011    0.03831 
          0.0020                     3273.382   3273.380                     0.00006    0.04009 
          0.0040   2314.282   2314.280   2314.280    0.00008    0.00000    0.00008 
          0.0060   1891.544   1891.542   1891.543    0.00008   -0.00005    0.00013 
          0.0080   1640.885   1640.882   1640.884    0.00007   -0.00011    0.00018 
          0.0100   1470.794   1470.791   1470.793    0.00007   -0.00016    0.00022 
          0.0150   1209.054   1209.050   1209.054    0.00004   -0.00029    0.00033 
          0.0200   1055.808   1055.803   1055.808    0.00002   -0.00042    0.00044 
          0.0250     953.426     953.421     953.426   -0.00001   -0.00056    0.00055 
          0.0300     879.737     879.731     879.737   -0.00003   -0.00069    0.00067 
          0.0350     824.173     824.166     824.173   -0.00004   -0.00083    0.00079 
          0.0400     780.986     780.979     780.987   -0.00006   -0.00098    0.00091 
          0.0450     746.763     746.755     746.763   -0.00010   -0.00113    0.00103 
          0.0500     719.338     719.330     719.339   -0.00012   -0.00127    0.00115 
          0.0600      679.601    679.591     679.602   -0.00018   -0.00161    0.00143 
          0.0700     654.841     654.830     654.842   -0.00023   -0.00194    0.00171 
          0.0800     641.646     641.633     641.648   -0.00029   -0.00228    0.00200 
          0.0900     638.426     638.411     638.428   -0.00034   -0.00262    0.00228 
          0.1000     644.724     644.707     644.726   -0.00041   -0.00294    0.00254 
          0.1100     660.944     660.925     660.947   -0.00046   -0.00325    0.00279 
          0.1200     688.296     688.275     688.300   -0.00051   -0.00351    0.00300 
          0.1300     728.882     728.859     728.886   -0.00055   -0.00368    0.00313 
          0.1400     785.907     785.882     785.912   -0.00060   -0.00376    0.00316 
          0.1500     864.021     863.994     864.026   -0.00061   -0.00370    0.00309 
          0.1600     969.789     969.761     969.795   -0.00060   -0.00349    0.00289 
          0.1700   1112.227   1112.199   1112.234   -0.00059   -0.00313    0.00254 
          0.1800   1303.120   1303.093   1303.127   -0.00053   -0.00262    0.00209 
          0.1900   1556.243   1556.218   1556.250   -0.00049   -0.00211    0.00162 
          0.2000   1883.305   1883.279   1883.313   -0.00047   -0.00181    0.00134 
          0.2100   2282.458   2282.421   2282.469   -0.00048   -0.00211    0.00163 
          0.2200   2716.121   2716.042   2716.139   -0.00067   -0.00359    0.00292 
          0.2300   3089.881   3089.708   3089.912   -0.00101   -0.00662    0.00561 
          0.2400   3275.455   3275.146   3275.505   -0.00154   -0.01097    0.00944 
          0.2500   3201.237   3200.806   3201.303   -0.00207   -0.01552    0.01345 
          0.2600   2916.738   2916.255   2916.811   -0.00249   -0.01907    0.01658 
          0.2700   2539.009   2538.543   2539.079   -0.00274   -0.02109    0.01835 
          0.2800   2163.991   2163.581   2164.052   -0.00282   -0.02176    0.01895 
          0.2900                     1837.111   1837.506                     -0.02154            
          0.3000   1569.876   1569.592   1569.918   -0.00269   -0.02077    0.01808 
          0.3200   1185.997   1185.805   1186.026   -0.00243   -0.01862    0.01619 
          0.3400     941.487     941.353     941.507   -0.00214   -0.01636    0.01423 
          0.3600     780.245     780.148     780.259   -0.00188   -0.01434    0.01246 
          0.3800     669.169     669.095     669.180   -0.00167   -0.01261    0.01094 
          0.4000     589.423     589.366     589.432   -0.00146   -0.01113    0.00967 
          0.4200     530.054     530.008     530.060   -0.00130   -0.00990    0.00860 
          0.4400     484.451     484.414     484.457   -0.00117   -0.00887    0.00770 
          0.4600     448.475     448.444     448.480   -0.00106   -0.00800    0.00693 
          0.4800     419.435     419.409     419.439   -0.00095   -0.00726    0.00631 
          0.5000     395.525     395.502     395.529   -0.00090   -0.00664    0.00574 
          0.5500     350.874     350.857     350.877   -0.00072   -0.00544    0.00471 
          0.6000     319.753     319.740     319.755   -0.00062   -0.00462    0.00400 
          0.6500     296.620     296.609     296.621   -0.00056   -0.00406    0.00351 
          0.7000     278.560     278.551     278.561   -0.00049   -0.00367    0.00318 
          0.7500     263.910     263.903     263.912   -0.00043   -0.00340    0.00297 
          0.8000     251.657     251.650     251.658   -0.00044   -0.00320    0.00276 
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Table 6.   Comparison for calculated differential 6Li(n, t) with the same parameters 

  
     En(Lab)   ------0.100 MeV------       ----- 0.250 MeV ------        ----- 0.800 MeV ------ 
     A(deg)  RAC    EDA  (R-E)/E%   RAC     EDA    (R-E)/E%   RAC    EDA    (R-E)/E%   
 
          0     27.29     27.29 -0.00449   1123.47 1123.34  0.01143    301.60  301.58  0.00469 
          5     27.42     27.42 -0.00444   1119.04 1118.91  0.01143    300.28  300.27  0.00469 
        10     27.83     27.83 -0.00428   1105.87 1105.75  0.01141    296.36  296.35  0.00466 
        15     28.51     28.51 -0.00403   1084.33 1084.21  0.01138    289.92  289.91  0.00462 
        20     29.46     29.46 -0.00369   1055.02 1054.90  0.01132    281.09  281.08  0.00457 
        25     30.67     30.67 -0.00328   1018.72 1018.61  0.01125    270.06  270.05  0.00450 
        30     32.16     32.16 -0.00281     976.45   976.34  0.01117    257.05  257.04  0.00442 
        35     33.90     33.90 -0.00233     929.35   929.25  0.01104    242.33  242.32  0.00430 
        40     35.90     35.90 -0.00182     878.71   878.61  0.01088    226.19  226.18  0.00417 
        45     38.15     38.15 -0.00130     825.88   825.79  0.01069    208.95  208.94  0.00402 
        50     40.64     40.64 -0.00079     772.28   772.20  0.01043    190.94  190.93  0.00383 
        55     43.36     43.36 -0.00028     719.33   719.26  0.01011    172.50  172.49  0.00362 
        60     46.30     46.30  0.00021     668.42   668.35  0.00971    153.97  153.96  0.00336 
        65     49.45     49.45  0.00068     620.84   620.79  0.00921    135.66  135.66  0.00305 
        70     52.79     52.79  0.00113     577.81   577.76  0.00864    117.89  117.88  0.00269 
        75     56.30     56.30  0.00155     540.35   540.31  0.00796    100.93  100.92  0.00226 
        80     59.96     59.96  0.00195     509.35   509.31  0.00721      85.02    85.02  0.00181 
        85     63.75     63.74  0.00233     485.46   485.43  0.00639      70.38    70.38  0.00115 
        90     67.63     67.63  0.00269     469.12   469.10  0.00554      57.16    57.16  0.00043 
        95     71.58     71.58  0.00302     460.56   460.54  0.00472      45.49    45.49 -0.00043 
      100     75.57     75.57  0.00332     459.74   459.73  0.00398      35.43    35.43 -0.00145 
      105     79.57     79.57  0.00360     466.42   466.40  0.00335      27.02    27.02 -0.00264 
      110     83.55     83.54  0.00386     480.11   480.09  0.00285      20.22    20.22 -0.00389 
      115     87.45     87.45  0.00409     500.12   500.11  0.00248      14.98    14.98 -0.00501 
      120     91.26     91.26  0.00432     525.59   525.57  0.00226      11.18    11.18 -0.00553 
      125     94.93     94.93  0.00451     555.48   555.47  0.00214        8.71      8.71 -0.00468 
      130     98.43     98.43  0.00469     588.66   588.65  0.00210        7.38      7.38 -0.00169 
      135   101.73   101.72  0.00485     623.88   623.87  0.00212        7.03      7.03  0.00292 
      140   104.78   104.77  0.00499     659.88   659.86  0.00219        7.44      7.44  0.00773 
      145   107.55   107.55  0.00511     695.36   695.34  0.00228        8.41      8.41  0.01128 
      150   110.02   110.02  0.00521     729.06   729.05  0.00236        9.75      9.75  0.01352 
      155   112.16   112.16  0.00531     759.83   759.81  0.00245      11.25    11.25  0.01476 
      160   113.95   113.94  0.00538     786.59   786.57  0.00253      12.75    12.75  0.01545 
      165   115.36   115.35  0.00544     808.41   808.39  0.00260      14.09    14.09  0.01581 
      170   116.38   116.37  0.00547     824.55   824.53  0.00264      15.14    15.13  0.01594 
      175   116.99   116.99  0.00556     834.47   834.44  0.00268      15.80    15.80  0.01599 
      180   117.20   117.19  0.00551     837.81   837.79  0.00268      16.03    16.03  0.01600 
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Table: Code Comparison

Feature EDA RAC SAMMY
R-matrix full full Reich-Moore

approximation ( but can
“fake” full )

derivatives analytic numeric analytic
kinematics relativistic(but

with an off-switch)
non-
relativ

non-relativistic

reference frame center-of-mass com laboratory
particles general (spin,

mass, charge)
general general (spin, mass,

charge)
range of
applicability

light elements; 
observables with
little structure

designed for heavier
elements, highly structured
observables

observables: 
cross sections
(energy and
energy-angle
differential)

yes yes yes

observables: 
polarization,
tensor analyzing
power, etc.

yes yes no (but could be added
easily ?)

observables:
integral quantities

no yes? some

inverse reactions yes yes ? yes but awkward (to be
simplified eventually)

multiple nuclides
in sample

no; data must be
for one compound
nucleus only

no yes

Doppler
broadening

no no FGM, HEGA, CLM

resolution
broadening

yes no RSL, ORR, RPI, DEX,
UDR, …

normalization yes yes yes
background no no several options (energy-

dependent)



Feature EDA RAC SAMMY
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sample-size
corrections

no no self-shielding and
multiple-scattering, others

fitting procedure "modified variable-
metric search
algorithm"

least
squares

Bayes’ method
(generalized least squares)

multiple data sets analyzed
simultaneously

simul-
taneous?

analyzed sequentially
using Bayes' method; gives
equivalent-to-simultaneous
results

uses data
covariances

no yes explicitly or implicitly

uses prior param
covariances

no no yes

gives posterior
parameter
covariances

yes yes yes

post-processing convert to Kapur-
Peierls R-matrix
parameters

yes generate multi-group cross
sections with covariance
matrix (other options also
available)

for ENDF files convert to point-
wise cross sections

yes? provide resonance
parameters in ENDF
formats; also give
(concise) param correlation
matrix

number of
resonances

no limits no limits as many as needed
(~1000's) (no limits)

# of data points no limits no limits many (~ 100,000's) (no
limits)

code details FORTRAN (not
portable)

FOR-
TRAN,
VAX

FORTRAN, modern,
maintained on Unix, VMS,
Linux, pc; has been ported
to most modern computer
platforms

size of code ~130,000 lines
availability via RSICC (or NEA)
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SAMMY tests for 6Li(n,α) data –

(Concentrate on features that are not available in other codes)

• locate (& “blindly repair” ) discrepant data sets
• study effects of Doppler- and resolution-broadening
• study effects of finite-size corrections
• study effects of initial data covariances
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Discrepant data

Recall: SAMMY uses consecutive rather than simultaneous
analyses for multiple data sets

Step a:
1. Run SAMMY with this input:

{P0, M0} (initial parameter values plus covariance matrix)
{D1, V1} (first data set plus its covariance matrix)

to obtain this output:
{P1a, M1a} (intermediate parameter values plus covariance matrix)

with chi-squared value:
χ2

1a (for data set 1 after one pass)

2. SAMMY + {P1a, M1a} + {D2, V2} => {P2a, M2a } & χ2
2a 

. . .
n. SAMMY + {Pn-1,a, Mn-1,a} + {Dn, Vn} => {Pna, Mna} & χ2

na

STOP HERE ?
In the best-of-all-possible worlds, here we are done.
In the best-of-all-possible worlds,{Pna, Mna} fit all data sets.

In the real world, we’ve just begun.
* Non-linearity
* Discrepant data sets
* Etc.

SO CONTINUE:
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Step b:
1. SAMMY + {Pn a, Mn a} + {D1, V1} => {P1b, M1b} & χ2

nb
2. SAMMY + {P1b, M1b} + {D2, V2} => {P2b, M2b } & χ2

2b
. . .
n. SAMMY + {Pn-1,b, Mn-1,b} + {Dn, Vn} => {Pnb, Mnb} & χ2

nb

Step c: repeat.
Step d: repeat.
Step e:   etc.

Eventually, either
things converge (values of χ2 do not change very much)

or
things diverge (values of χ2 grow excessively)

If things diverge, probably it’s due to discrepant data.

Sometimes, looking at changes in χ2 values can isolate which
data set has the problem.

[This happened when I first started looking at these data sets, which
pointed to a problem with data set 4.  Unfortunately those results
disappeared into the abyss and I was not able to reproduce them.]
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“Correcting” discrepant data

Steps for evaluator:
! Try to determine what’s wrong – 

" Read the paper re the measurement
" Contact the experimentalist
" etc.

! Fix the mistake

But sometimes that’s not possible.  Then what?
! Throw out the data, or
! Use very large uncertainties, and/or
! Make “blind” corrections

How to make blind corrections ?
! Energy scale

" Fit highest-resolution data (usually, transmission data) to
determine resonance energies
- χ2 / N  = {0.98, 0.56, 2.4, 1.8, 0.00055, 2.1} for data sets

{0,1,2,3,thermal,total} respectively
" Keep R-matrix parameters fixed, fit flight-path-length

and t-zero for other data sets
" Modify energy-scale on those data sets to conform to

the high-resolution data
" This works well for situations with many narrow resonances, may

not work so well for few broad resonances
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+ Original data points
o Energy-adjusted data points
line Curve that fits the other data sets

Initially χ2 /N = 11.8, afterwards χ2 /N = 8.3

Data set # 4 of Vladimir’s
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" Now include data set 4 into the fitting process

Table:    χ2 / N after energy-adjustment on data set 4

data set excluding # 4 energy-adjusted # 4

0 0.98 2.2

1 0.56 0.70

2 2.4 2.5

3 1.8 1.7

4 6.9

thermal 0.00055 0.55

total 2.1 1.8
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How to make blind corrections, continued 
! Normalization and backgrounds

" SAMMY permits fitting the following
- normalization (no energy-dependence)
- constant background
- energy-dependent backgrounds 

# linear in t or 1/t , t raised to a power, exp{-bt}, others

" Start with arbitrary values, vary only the normalization and
background (not the resonance parameters)
- χ2  decreased from 2700 to 1.2
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" Then adjust the data to accommodate the new
normalization and background

" Now include data set 4 into the fitting process

Table:  χ2 / N after norm and background adjustment on
data set 4

data set
excluding
data set # 4

energy-adjusted
data set # 4

# 4 with norm
and background

0 0.98 2.2 1.1

1 0.56 0.70 0.62

2 2.4 2.5 2.2

3 1.8 1.7 1.8

4 6.9 1.0

thermal 0.00055 0.55 0.00065

total 2.1 1.8 2.2
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- Remember: normalization and background
adjustments give rise to off-diagonal data
covariance matrix

- Use IDC = “implicit data covariance matrix”

Table:  χ2 / N after norm and background adjustment on
data set 4, including implicit data covariance for # 4

data set

excluding
data set #
4

energy-
adjusted
data set # 4

# 4 with
norm and
backgrnd

ditto
with IDC

0 0.98 2.2 1.1 1.1

1 0.56 0.70 0.62 0.63

2 2.4 2.5 2.2 2.2

3 1.8 1.7 1.8 1.8

4 6.9 1.0 1.0

thermal 0.00055 0.55 0.00065 .0037

total 2.1 1.8 2.2 2.1
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! Try IDC on all data sets (except thermal)

Table:  χ2 / N with IDC on all data sets except thermal

data set omit # 4

energy-
adjusted 
# 4

# 4 with
norm &
bckgrnd

 IDC on
# 4

IDC on
all but
thermal

0 0.98 2.2 1.1 1.1 2.8

1 0.56 0.70 0.62 0.63 0.47

2 2.4 2.5 2.2 2.2 2.3

3 1.8 1.7 1.8 1.8 4.5

4 6.9 1.0 1.0 1.2

th 0.00055 0.55 0.00065 .0037 0.00066

total 2.1 1.8 2.2 2.1 5.1

Interpretation?

! Maybe there is a normalization/background problem with
those data sets for which χ2 / N is large.

! The normalization is not explicitly included in either the
theory or the data – so not reflected in χ2 / N
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Next obvious step ... let’s DO include normalization explicitly in
the fitting procedure, for everything except thermal

Table:  χ2 / N with normalization on all data sets 
except thermal

data
set

omit
# 4

energy-
adjustd 
# 4

# 4 with
nrm &
bkgrnd

 IDC
on # 4

IDC on
all but
therml

norm
(not on
therml)

0 0.98 2.2 1.1 1.1 2.8 0.56

1 0.56 0.70 0.62 0.63 0.47 0.49

2 2.4 2.5 2.2 2.2 2.3 2.4

3 1.8 1.7 1.8 1.8 4.5 1.2

4 6.9 1.0 1.0 1.2 .94

th .00055 0.55 .00065 .0037 .00066 .000006

total 2.1 1.8 2.2 2.1 5.1 1.5
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Table:  Normalization on the various data sets

data set

χ2 / N
with
norm

value of 
normalization

correlation matrix
(triangular)

0 0.56 1.0212 ± 0.0045 100

1 0.49 1.0016 ± 0.0102 28 100

2 2.4 1.0268 ± 0.0081 51 18 100

3 1.2 1.0564 ± 0.0070 59 21 39 100

4 .94 1.0064 ± 0.0041 60 24 41 47 100

total 1.5 0.9351 ± 0.00 36 -50-14-36-42-37 100

th .000006
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+ +     data
- - -     no normalization

   with normalization
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+ +     data (total cross section)
   resolution-broadened

What might cause normalization < 1 on total cross section?

! Doppler?  No.
! Resolution?  Maybe.



N = Σ
K

i
Ni

Proof that Bayes and Least Squares Give Exactly Equivalent Results 
for Arbitrary Number of Data Sets (assuming linearity)

N.M.Larson, ORNL
December 11, 2002

prepared at request of V. Pronyaev for IAEA CRP 12027

Given:

Independent measurements (data sets) Di with covariance matrix Vi , for i = 1, K.   Data set i contains
Ni data points.

Wanted:

The “best value” for the quantity which these data purport to measure.

Least-Squares Method:

P’ - P = M’ G t V -1 ( D - T )
M’ = W -1

W = G t V -1 G
where

P = initial parameter value (arbitrary)
P’ = final parameter value
M’ = final covariance matrix for parameter value P’
D = experimental data
V = covariance matrix for experimental data
T = theoretical value
G = partial derivative of T with respect to P

The number of data points for this situation is

Let L represent the number of parameters.  Then

P and P’ are vectors of length L
M’ is a L x L matrix
D and T are vectors of length N
V is an N x N  block-diagonal matrix
G is a L x N matrix



D =

D1

D2

...
DK

T =

T1

T2

...
TK

V =

V1 0 ... 0
0 V2 ... 0
... ... ...
0 0 ... VK

G =

G1

G2

... .
GK

W = G t V -1 G

= G t
1 G t

2 ... G t
K

V1 0 ... 0
0 V2 ... 0
... ... ...
0 0 ... VK

-1
G1
G2
... .
GK

= G t
1 G t

2 ... G t
K

V -1
1 0 ... 0

0 V -1
2 ... 0

... ... ...
0 0 ... V -1

K

G1
G2
... .
GK

= G t
1 V -1

1 G1 + G t
2 V -1

2 G2 +... + G t
K V -1

K GK

= Σ
K

i
G t

i V -1
i Gi

M ' = W -1 = Σ
K

i
G t

i V -1
i Gi

-1

Explicitly

where the submatrices are of different sizes: Di and Ti are vectors of length Ni; Vi is a symmetric
matrix of size Ni x Ni , and Gi is a non-square matrix of size Ni by L.  The quantities needed in the
least-squares equations can then be written as

so that the covariance matrix can be written in the form

Hence the updated parameter value P’ is found to be



P ' - P = M ' G t V -1 (D -T )

= M ' G t
1 G t

2 ... G t
K

V1 0 ... 0
0 V2 ... 0
... ... ...
0 0 ... VK

-1
D1 -T1
D2 -T2
... .
DK -TK

= M ' G t
1 G t

2 ... G t
K

V -1
1 0 ... 0

0 V -1
2 ... 0

... ... ...
0 0 ... V -1

K

D1 -T1
D2 -T2
... .
DK -TK

= M ' G t
1 V -1

1 (D1 -T1 ) G t
2 V -1

2 (D2 -T2 ) ... G t
K V -1

K (DK -TK )

= Σ
K

i
G t

i V -1
i Gi

-1

Σ
K

i= 1
G t

i V -1
i (Di -Ti )

QED.



P K -1 = M K -1 Σ
K -1

i= 1
G t

i V -1
i Di M K -1 = Σ

K -1

i = 1
G t

i V -1
i Gi

-1

M K = (( M K -1 )-1 + W )-1 = Σ
K -1

i = 1
G t

i V -1
i Gi + G t

K V -1
K GK

-1

= Σ
K

i = 1
G t

i V -1
i Gi

-1

Bayes Method:

P’ - P = M’ G t V -1 ( D - T )
M’ = ( M -1 + W )  -1

W = G t V -1 G

where, as for least squares,
P = initial parameter value (arbitrary)
M = initial covariance for parameter values P
P’ = final parameter value
M’ = final covariance for parameter values P’
D = experimental data
V = covariance matrix for experimental data
T = theoretical value
G = partial derivative of T with respect to P

In this case we assume that the result holds for K - 1 data sets, and prove that it then holds also for
K data sets.  That is, we take as the prior parameter values and covariance matrix

and use Bayes’ Equations to determine the posterior values.  

From Bayes’ Equations, the updated covariance matrix is

which is the same result as for the Least Squares case. 

The updated parameter values can similarly be found from Bayes’ Equations to be



P K = P K -1 + M K G t
K V -1

K (DK -TK )

= M K -1 Σ
K -1

i= 1
G t

i V -1
i Di + M K G t

K V -1
K (DK -TK )

= M K ( M K )-1 M K -1 Σ
K -1

i= 1
G t

i V -1
i Di + M K G t

K V -1
K (DK -TK )

= M K Σ
K -1

i = 1
G t

i V -1
i Gi + G t

K V -1
K GK Σ

K -1

i = 1
G t

i V -1
i Gi

-1

Σ
K -1

i= 1
G t

i V -1
i Di

+ M K G t
K V -1

K DK - M K G t
K V -1

K TK

= M K Σ
K

i= 1
G t

i V -1
i Di + M K G t

K V -1
K GK M K -1 Σ

K -1

i= 1
G t

i V -1
i Di - M K G t

K V -1
K TK

= M K Σ
K

i= 1
G t

i V -1
i Di + M K G t

K V -1
K GK P K -1 - TK

At this point, we must invoke linearity: in the case where the theory in linear with respect to the
parameters, the quantity in parentheses in the previous equation is zero.  If the theory is not linear,
then this term gives an estimate for the difference between Bayes-sequential and Least-Squares-
simultaneous analyses.

QED.
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p (P |DX ) = p (P |X ) p (D |PX ) , (IIA1.1)

p (P |X ) α exp - 1
2

(P - P̄ ) t M -1 (P - P̄ ) , (IIA1.2)

p (D |PX ) α exp - 1
2

(D -T ) t V -1 (D -T ) . (IIA1.3)

T (P ) = T̄ + G (P - P̄ ) , (IIA1.4)

Gik =
ð Ti
ð Pk

with P = P̄ , (IIA1.5)

p (P |DX ) α exp - 1
2

(P - P̄' ) t M' -1 (P - P̄' )
(IIA1.6)

(P - P̄' ) t M' -1 (P - P̄' ) + Y = (P - P̄ ) t M -1 (P - P̄ ) +

D - T̄ -G (P - P̄ ) t V -1 D - T̄ -G (P - P̄ ) , (IIA1.7)

II.A.1 Details of the Derivation

In Sect. II.A, we stated that Bayes’ equations may be derived directly from Bayes’ theorem,

provided the three basic assumptions are met.  These assumptions are:
i. the prior joint pdf is a joint normal.  That is, the pdf for the parameters, prior to

consideration of the data D, is

ii. the likelihood function is a joint normal.  That is, the pdf for the experimental data is

iii. the true value is a linear function of the parameters.  That is, a Taylor expansion of the
theoretical values around the prior expectation values of the parameters truncates after
the linear term,

where the sensitivity matrix G is defined by

and the theoretical value  (i.e.,  for data point i ) is also evaluated at .T̄i T̄ P = P̄

Given these three assumptions, the posterior pdf  is also a joint normal distributionp (P |DX )
and may be written

Substituting Eq. (IIA1.2) through (IIA1.6) into Eq. (IIA1.1) and equating the exponents yield,
in matrix form,



Section II.A.1 10 (R5) Page 2

(P - P̄' ) t M' -1 (P - P̄' ) + Y

= (P - P̄ ' ) t M -1 + G t V -1 G (P - P̄ ' )

+ (P - P̄ ' ) t M -1 + G t V -1 G ( P̄ ' - P̄ ) - G t V -1 ( D - T̄ )

+ ( P̄ ' - P̄ ) t M -1 + G t V -1 G - ( D - T̄ ) t V -1 G (P - P̄ ' )

+ ( P̄ ' - P̄ ) t M -1 ( P̄ ' - P̄ ) + D - T̄ -G ( P̄ ' - P̄ ) t V -1 D - T̄ -G ( P̄ ' - P̄ ) .

(IIA1.8)

(M ' ) -1 = M -1 + G t V -1 G , (IIA1.9)

(M ' ) -1M = M -1M + G t V -1 GM = I + G t V -1 GM ,

M ' (M ' ) -1M = M ' + M 'G t V -1 GM ,

M = M ' ( I + G t V -1 GM ) , (IIA1.10)

Q = G t V -1 GM , (IIA1.11)

M ' = M ( I + G t V -1 GM ) -1 , (IIA1.12)

where Y represents the normalization constant and is independent of P.  Setting
 in Eq. (IIA1.7), and rearranging terms, we obtainP - P̄ = P - P̄' + P̄' - P̄

Because Eq. (IIA1.8) must hold for all values of P, we may equate terms quadratic, linear, or
constant in .  From the quadratic we obtain Bayes’ equation for updating the covariance(P - P̄ ' )
matrix, and from the linear we obtain Bayes’ equation for updating parameter values.  The
constant yields the invariant “Bayesian χ2”.

We begin with the covariance matrix; the coefficients of the quadratic  in(P - P̄ ') t ... (P - P̄ ')
Eq. (IIA1.8) yield

which is the form used in the MPW inversion scheme, with .  AlgebraicW = G t V -1 G
manipulation of this matrix equation gives us the form used in the other inversion schemes:

where I represents the identity matrix.  Multiplying by M’ gives

which reduces to

Thus we may define Q as

(as in Eq. (IIA.13) and obtain from Eq. (IIA1.10) the result

which is exactly Bayes’ equation for updating the covariance matrix in the IPQ inversion
scheme, Eq. (IIA.12).
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X -1 = Z (XZ ) -1 (IIA1.13)

X = I + G t V -1 GM = I + Q (IIA1.14)

Z = G t (N+V )-1 G , (IIA1.15)

N = GMG t , (IIA1.16)

M ' = MG t (N+V )-1 G I + G t V -1 GM G t (N+V )-1 G -1

= MG t (N+V )-1 G G t (N+V )-1 G + G t V -1 GMG t (N+V )-1 G -1 .
(IIA1.17)

M ' = MG t (N+V )-1 G G t (N+V )-1 + V -1 N (N+V )-1 G -1 . (IIA1.18)

M ' = MG t (N+V )-1 V V -1 G G t V -1 G -1 . (IIA1.19)

M ' = MG t (N+V )-1 (N+V -N) V -1 G G t V -1 G -1

= MG t V -1 G G t V -1 G -1 - MG t (N+V )-1 N V -1 G G t V -1 G -1 .
(IIA1.20)

M ' = M - MG t (N+V )-1 G M , (IIA1.21)

To obtain the NPV version of Bayes’ equations for the covariance matrix, further algebraic
manipulation is required.  Using the identity

with

and

where

gives, from Eq. (IIA1.12),

Substituting the value for N and rearranging give

The quantity in curly brackets is equal to ; making that substitution and introducing theV -1

identity  into the expression giveV V -1 = I

Replacing V by its equivalent N + V - N then gives

When N is replaced by its definition in the second of these terms, the equation immediately
collapses to the form

which is exactly the NPV version of Bayes’ equation for updating the covariance matrix, Eq.
(IIA.9).
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M 'kl = Mk l - Σ
K

n=1
Σ
L

i=1
Σ
L

j=1
Σ
K

m=1
Mk n Gin (N+V )-1

i j
Gjm Mm l , (IIA1.22)

Nij = Σ
K

n=1
Σ
K

m=1
Gin Mnm Gjm . (IIA1.23)

M -1 + G t V -1 G ( P̄ ' - P̄ ) = G t V -1 ( D - T̄ ) . (IIA1.24)

P̄ ' - P̄ = M ' G t V -1 ( D - T̄ ) , (IIA1.25)

P̄ ' - P̄ = M ( I+Q )-1 G t V -1 ( D - T̄ ) , (IIA1.26)

P̄ ' - P̄ = M -MG t (N+V )-1 GM G t V -1 ( D - T̄ ) , (IIA1.27)

P̄ ' - P̄ = M G t (N+V )-1 ( D - T̄ ) . (IIA1.28)

P̄k ' - P̄k = Σ
K

l=1
Σ
L

i=1
Σ
L

j=1
Mk l Gil (N+V )-1

i j
( Dj - T̄j ) . (IIA1.29)

If the indices for the matrices in EQ. (IIA1.21) are explicitly displayed, the equation becomes

where N is given by

To obtain Bayes’ equation for updating the parameter values, we equate the linear terms of
Eq. (IIA1.8).  Since the left-hand-side of that equation has no terms linear in , the(P - P̄ ' )
coefficient of  on the right-hand side must be zero.  That is,(P - P̄ ' )

From Eq. (IIA1.9), the first quantity on the left is just ; we therefore haveM ' -1

which is the form that Bayes’ equation takes in the MPW inversion scheme, Eqs. (IIA.14).
Substituting for M’ from Eq. (IIA1.12) gives the form used in the IPQ inversion scheme,

as in Eq. (IIA.11).

To obtain the expression needed for the NPV inversion scheme, replace M’ in Eq. (IIA1.25)
with Eq. (IIA1.22) to give

which reduces to

Explicitly displaying the indices in this equation gives
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Y = (D -T ) t (N+V )-1 GMG t (N+V )-1

+ ( I - (N+V )-1N ) V -1 ( I -N (N+V )-1 ) (D -T ) ,
(IIA1.30)

Y = (D -T ) t (N+V )-1 (D -T ) (IIA1.31)

Y = (D -T ) t V -1 (D -T ) - (D -T ) t V -1 GM ( I+Q )-1 G t V -1 (D -T ) (IIA1.32)

Finally, we note that the constant term in Eq. (IIA1.8) may be simplified using Eq. (IIA1.29)
to give

which reduces to

In SAMMY, this quantity is referred to as the “Bayesian χ2”.  In the IPQ inversion scheme, this
quantity can be simplified to the form

in which the first term is the usual (least-squares) χ2, and the second term can be viewed as a
“correction” to χ2.  The Bayesian χ2 is, in some sense, a measure of the “best fit” than can be
found between this theoretical formulation and these experimental data.  The goal of a Bayes fit
is, essentially, to have the value of the least-squares χ2 become as near as possible to the value
of the Bayesian χ2 .
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N = GMG t (IIA1.33)

P '-P = (M -MG t (N+V )-1 GM ) G t V -1 (D -T )

= MG t V -1 (D -T ) - MG t (N+V )-1 GMG t V -1 (D -T )

= MG t [1- (N +V )-1 N ] V -1 (D -T )

= MG t [1- (N +V )-1 (N +V -V ) ] V -1 (D -T )

= MG t [1- (N +V )-1 (N +V ) + (N +V )-1 V ) ] V -1 (D -T )

= MG t [1-1+ (N +V )-1 V ) ] V -1 (D -T )

= MG t (N +V )-1 V V -1 (D -T )

= MG t (N+V )-1 (D -T )

(IIA1.34)

Algebra to translate from Eq. (IIA1.27) and (IIA1.28):

Using

we obtain
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Introduction
Measurements of most neutron cross sections are made relative to neutron cross
section standards.  These standards are the basis for the neutron reaction cross section
databases.  It has been more than 15 years since the last comprehensive evaluation of
the neutron cross section standards.  Significant improvements have been made in the
standard cross section database since that time, particularly for the H(n,n), 10B(n,α),
and 235U(n,f) reactions.  In response to the need for new evaluations for the standards,
a new international evaluation is underway that will include the H(n,n), 3He(n,p),
6Li(n,t), 10B(n,α), 10B(n,α1γ), Au(n,γ), 235U(n,f), and 238U(n,f) standard cross sections.
For some of the standards, the energy region will be extended to 200 MeV to provide
new standards in this emerging important energy region.  Efforts will be made to
investigate the need for a new thermal constants evaluation.  A new evaluation will
not be made for the C(n,n) cross section because little new data have been obtained
since the ENDF/B-VI evaluation and what has been obtained is consistent with that
work.

The new cross section standards are shown in Table 1.  In addition to the cross
sections shown in this Table, the 239Pu(n,f) and 238U(n,γ) cross sections will be
evaluated as a result of the process being used.

                               Table 1. The new neutron cross section standards
Reaction Expected energy range
H(n,n)
3He(n,p) �
6Li(n,t)
10B(n,α)
10B(n,α1γ)
C(n,n)*

Au(n,γ)
235U(n,f)
238U(n,f) ��

1 keV to 200 MeV
0.0253 eV to 50 keV
0.0253 eV to 1 MeV
0.0253 eV to 1 MeV
0.0253 eV to 1 MeV
0.0253 eV to 1.8 MeV
0.0253 eV, 0.2 to 2.5 MeV
0.0253 eV, 0.15 to 200 MeV
Threshold to 200 MeV

                                                     �ENDF Standard, not an NEANDC/INDC Standard
                                                   ��Not an ENDF Standard, NEANDC/INDC Standard
                               *  New evaluation will not be done

Status of the Database
Studies are being made of experiments under consideration for the standards database.
For each experiment the documentation is checked for corrections that may need to be
made and possible errors or missing information.  The procedure leads to estimates of



the uncertainties and correlations within an experiment and correlations with other
experiments.  This information is used to form covariance matrices for the
measurements so that a full covariance analysis can be performed.  Recent work and
data which will have an important impact on the evaluation will be the focus of this
status report.  A detailed list of the new experiments which have been considered for
inclusion in the new standards evaluation is given in Table 2 at the end of this report.
This list is not complete.  Additional experiments will continue to be added which are
found in the literature searches which are underway.  Also published corrections to
new or old experiments will be incorporated in the experimental results.  Some effort
will also be made to investigate certain experiments which were included in the
ENDF/B-VI evaluation.

Hydrogen Scattering Cross Section
The hydrogen scattering cross section is the most accurately known of the neutron
cross section standards.  It is a very important standard since many measurements of
other standards, in addition to other cross sections, have been made relative to this
cross section.  There has been considerable recent experimental activity on this cross
section due to the rather large difference between its ENDF/B-V and ENDF/B-VI
evaluations. Unfortunately the largest difference between these evaluations occurs at
~11 MeV and 0º in the laboratory system (180º in the center of mass system (CMS)),
which is the most important angle for use of this standard.  Angular distribution
measurements by Nakamura, and Shirato near 14 MeV, which have small reported
uncertainties, had a large impact on the ENDF/B-VI evaluation and led to these
differences.

Unpublished measurements of Baba of the angular distribution at 14 MeV were made
at Tohoku University.  This work includes angles near 180º in the CMS and are in
good agreement with the ENDF/B-V evaluation, however the uncertainties are about
3%.

Measurements were recently completed of the shape of the H(n,n) angular distribution
at 10 MeV neutron energy in an Ohio University, NIST, LANL collaboration .  The
data have uncertainties from 0.8% to 1.7% for the angular range from 180º to 60º in
the CMS.  The data are in better agreement with the ENDF/B-V evaluation and the
phase shift analysis of Arndt than the ENDF/B-VI evaluation.  This collaboration
investigated the measurements  at 14 MeV referred to above, that had a large impact
on the ENDF/B-VI standards evaluation.  They found problems with some angular
distribution data which led to corrections and expanded uncertainties for those data.
Hale, who evaluated the hydrogen scattering cross section for the ENDF/B-VI
evaluation, has added the precise 10 MeV data to his database and incorporated the
corrections to the 14 MeV data suggested by the Ohio U.-NIST-LANL collaboration.
Using this database his new evaluated results agree well with the 10 MeV data and the
various 14 MeV measurements, within the uncertainties.  The reduction in the quality
of the database at ~14 MeV has led to the need for accurate measurements near that
energy.  Work is planned by the Ohio U.-NIST-LANL collaboration to satisfy that
need.

Recent measurements by the Uppsala group of the differential H(n,n) cross section at
90 and 162 MeV disagree with the evaluated shape given by the Arndt VL40



phase-shift solution.  The Arndt evaluation was accepted by the NEANDC/INDC as a
primary standard for cross section measurements in the 20 MeV to 350 MeV range.
The Uppsala data have a steeper angular shape at back angles by as much as 10%
compared with the VL40 results.  A similar disagreement is observed with recent Paul
Scherrer Institute data.

Using a new neutron tagging facility at Indiana University, absolute measurements at
190 MeV were made of the hydrogen scattering cross section by Vigdor and
collaborators.  The data were obtained with ~1% accuracy in 5º CMS bins between
90º and 170º in the CMS.  The uncertainty increases to ~2-3% in the two bins nearest
180º.  The data are now being analyzed.  This experiment, since it will yield absolute
cross section data, can make an important contribution with respect to both the shape
and normalization of the hydrogen scattering cross section thereby providing needed
information for understanding the back angle problem.

10B+n Standards
There has been significant experimental work on the 10B(n,α) and 10B(n,α1γ) standards
since the completion of the ENDF/B-VI standards evaluation.  The relatively poor
database caused problems with the ENDF/B-VI evaluation process thus leading to this
experimental activity.  Work has been done on the differential cross section for the
10B(n,α)7Li reaction, the branching ratio, the 10B(n,α1γ) cross section, the total neutron
cross section, and the 10Be(p,n) reaction.  The use of the R-matrix allows all these
types of data to be used in helping to define the 10B(n,α) cross sections.

Differential cross section measurements have recently been made by Zhang et al., and
Giorginis and Khriachkov using Frisch-gridded ionization chambers.  In Fig. 1, the
results obtained by integrating the data from those experiments are shown compared
Fig. 1. Comparison of measurements and evaluations of the 10B(n,α)7Li cross
            section.



with other work and evaluations.  There are large differences between the various
measurements and evaluations, but the greatest concern is the differences between the
most recent measurements, for example near 4 MeV neutron energy.  Giorginis
discovered that the reason for these differences is a subtle effect he calls particle
leaking.  Particle leaking results when both reaction products are emitted in the
forward direction. The particle identification feature which is possible with the
gridded chamber treats this as a quasi 7Li+α particle.  It appears in the pile-up portion
of the spectrum and is rejected.  Data taken without taking this into account are
correct over only a limited angular range.  Since particles are lost, the integrated cross
section will be lower than the correct value.  This agrees with the comparison between
the Giorginis and Khriachkov, and Zhang et al. data sets.  Zhang et al. now are
correcting for this effect.

Measurements by Weston and Todd of the branching ratio, (the 10B(n,α0γ)  cross
section/the 10B(n,α1γ)  cross section), are 10 % to 30 % low in the 100 keV to
600 keV energy region compared with the ratios calculated from the ENDF/B-VI
cross sections.  The data  agree with ENDF/B-VI at the lowest and highest energies of
the experiment.  Preliminary measurements of this ratio have been measured by
Hambsch and Bax. These data, the Weston and Todd results, and ENDF/B-VI are
shown in Fig. 2. The measurements of Hambsch and Bax are in better agreement with
ENDF/B-VI than the Weston and Todd measurements.  The higher values obtained by

Hambsch and Bax in the hundred keV energy region are expected to be a result of
backgrounds which have not been subtracted yet.  These data were obtained with a

Fig. 2. Recent measurements of the 10B branching ratio compared with the ENDF/B-VI
           evaluation



Frisch-gridded ionization chamber and require the leaking correction referred to
previously. However the ratio should depend only weakly on particle leaking.

In an NIST/ORNL collaboration, Schrack et al. have made measurements of the shape
of the 10B(n,α1γ) cross section from 0.3 MeV to 4.0 MeV neutron energy.  The cross
sections obtained from this investigation, normalized to the ENDF/B-VI evaluation
over the region from 0.2 MeV to 1 MeV, agree with the ENDF/B-VI evaluation below
1.5 MeV.  The measured cross sections differ as much as 40 % with the ENDF/B-VI
evaluation for neutron energies greater than 1.5 MeV.  An additional measurement
collaboration extended the cross section to lower energies so that better normalization
of shape measurements could be made.  The measurement covered the neutron energy
range from 10 keV to 1 MeV.  These data are lower than the ENDF/B-VI shape by
about 5 % in the region above 100 keV.

Measurements of the 10B total cross section have been made at the IRMM linac and
Van de Graaff facilities.  The linac work extends to 730 keV neutron energy.  The
present results of this work are deviations from ENDF/B-VI by ±2.5% below 10 keV,
with a maximum deviation above ENDF/B-VI of 5% at 100 keV and a maximum
deviation below ENDF/B-VI of 7% at 700 keV.  Further work is underway.  The Van
de Graaff facility data are lower than ENDF/B-VI by 3-4% at 0.3 and 0.4 MeV, and by
6 to 9% from 0.6 to 1.3 MeV.  They agree with that evaluation at 1.7 and 1.9 MeV.
Additional work is being considered.
  
Wasson et al., in an NIST-ORNL collaboration have also made measurements of the
10B total cross section.  These data extend from about 20 keV to 20 MeV and agree
with the ENDF/B-VI evaluation for neutron energies greater than about 2 MeV, but
are lower by as much as 4 % between 600 keV and 2 MeV, and are greater by as much
as about 5 % below 600 keV.

There is generally good agreement among the IRMM linac, IRMM Van de Graaff and
NIST-ORNL measurements within the uncertainties.  The data sets are still
undergoing checks and corrections which are expected to improve the agreement.

Though many of the experiments are preliminary, the lower 10B(n,α1γ)  cross section,
the lower branching ratio and the higher total cross section indicate a discrepancy in
the hundred keV energy region in one or more of the measurements reported here.
The preliminary work of Hambsch and Bax suggests that the problem may be the
Weston and Todd data.

235U(n,f)
The 235U(n,f) cross section is one of the most popular standards.  It is easily used in
detectors such fission chambers for cross section measurements.  The most recent
measurements of the 235U(n,f) cross section below 20 MeV are shown in Fig. 3. The
data sets of Carlson et al., Lisowski et al., and Alkhazov et al. suggest a difference as
large as about 5% compared with the ENDF/B-VI evaluation above 14 MeV.  For the
energy region above 20 MeV, very few measurements have been made.  The recent
work by Nolte et al. is shown in Fig. 4 compared with the earlier measurements.
Except for the data point at 96 MeV, which Nolte et al. suggest may be a
normalization problem, there is agreement within the uncertainties with the Lisowski



et al. data.  This new work is an important contribution since these are the only data
other than those of Lisowski et al. in this energy region that have relatively small
uncertainties.  Since so many cross sections are being measured relative to the
235U(n,f)  cross section, additional corroborative measurements of this important
standard should be made.

E n ( )MeV

E n (MeV)

Goldanski et al., 1955
Pankratov et al., 1962
Lisowski et al., 1991
Nolte et al., 2001 
Fig. 4. Measurements of the 235U(n,f) cross section above 20 MeV.
Fig. 3. Recent measurements of the 235U(n,f) cross section below 20 MeV compared with the
ENDF/B-VI evaluation.



238U(n,f)
The other fission standard, the 238U(n,f) cross section, has an advantage over the
235U(n,f) standard since its high effective threshold makes it useful where low energy
neutron backgrounds are present.  In Fig. 5, absolute measurements of the 238U(n,f)
cross section from 10 to 20 MeV are shown.  The measurements of Lisowski et al.,
Merla et al. and Winkler et al. all indicate the ENDF/B-VI evaluation is low an
average of a few percent from 15 to 20 MeV.

E n ( )MeV
Fig. 5. Recent absolute measurements of the 238U(n,f) cross section from 10 to 20 MeV
compared with the ENDF/B-VI evaluation.
Fig. 6. Comparison of the Nolte measurements with work by Shcherbakov et al. and
           Lisowski et al.

11 10 100

238U

Lisowski et al.
Shcherbakov et al.

Nolte et al.



In Fig. 6, recent measurements of the 238U(n,f) cross section by Nolte et al. are shown
compared with the results of Shcherbakov et al. and Lisowski et al.  The Nolte et
al. values are consistently higher than the other measurements above 20 MeV; but
agree at about 14 MeV where the cross section is thought to be well defined.  Also
shown are the original Newhauser et al. data which required revision.  The corrected
results from that work have been incorporated into the Nolte work.  It should however
be noted that the Shcherbakov measurements are ratio measurements to the 235U(n,f)
cross section that were converted using the Lisowski et al. values of that cross section.
Thus the good agreement between the Shcherbakov et al. and Lisowski et al. data sets
up to about 100 MeV is agreement only in the shape of the cross section.

Preliminary measurements made by Eismont et al. at 22 and 75 MeV neutron energy
are somewhat low compared with the Lisowski et al. work.  However, there is
generally good agreement with the Lisowski et al. data, within the rather large
uncertainties of the Eismont et al. measurements.  Additional work is being done to
improve these data.

239Pu(n,f)
Though this cross section is not considered a standard, there are a number of ratio
measurements of standards to this cross section which are well known.  There also are
absolute 239Pu(n,f) cross section data.  Therefore these data will have an impact in the
simultaneous evaluation.  In Fig. 7, recent 239Pu(n,f) cross section measurements are
Fig. 7. Comparison of the 239Pu(n,f) cross section measurements of Lisowski et al.,
Shcherbakov et al., and Staples and Morley.
shown.  The statement, in the section on the 238U(n,f) cross section above, applies to
the Staples and Morley, and Shcherbakov et al. results since they are both
239Pu(n,f)/235U(n,f) cross section ratio measurements.  The three data sets agree very
well up to about 30 MeV neutron energy.  Between 30 MeV and 60 MeV neutron
energy, the Staples and Morley data are about 5% high compared with the other two



data sets.  Above 60 MeV neutron energy, the Shcherbakov et al. and Lisowski et al.
data sets gradually separate with a maximum difference of about 10% near 200 MeV.

Conclusion
Neutron cross section data continue to be reviewed and prepared for use in the new
international evaluation of the neutron cross section standards.

Table 2. New Experiments for the Standards Database
++ means the data have been reviewed and are in the library
+means the data are available and the review process is underway
no superscript means that final data are not available (possibly final data not taken yet)

H(n,n)
+Nakamura, J. Phys. Soc. Japan 15 (1960) 1359, 14.1 MeV; error in transformation
from laboratory to CMS angles; needs correction for proton scattering, an estimate of
error associated with neglecting these corrections was made; tail problems; note Table
II uncertainty is statistical only (mb/sr).

+Shirato, J. Phys. Soc. Japan 36 (1974) 331, 14.1 MeV, needs correction for proton
scattering; tail problems.

+Ryves, 14.5 MeV, σ(180°)/σ(90°), Ann. Nucl. Energy 17, 657 (1990).

+Buerkle, 14.1 MeV, angular distribution from 89.7° to 155.7°, Few-Body Systems
22, 11 (1997).

+Boukharouba, Phys Rev C 65, 014004, 10 MeV, angular distribution from 60° to
180°, additional work planned for 15 MeV.

Olsson (Uppsala group), 96 & 162 MeV, angular distribution from 70° to 180°,
ND2001 & Private Comm.

+Benck, (Louvain la Neuve), Proc. Conf. on NDST, Trieste (1997) p.1265, 28-75
MeV, angular distribution from 40° to 140°, also NP A615 (1997) p. 222.

Vigdor (IUCF) 185-195 MeV, angular distribution form 90° to 180°.  Data have been
obtained.  A new postdoc is analyzing these data.  Private Comm.

3He(n,p)
++Borzakov,  0.26 keV to 142 keV, relative to 6Li(n,t), Sov. J. Nucl. Phys. 35, 307
(1982).

3He total cross section
+Keith, 0.1 to 500 eV, BAPS DNP Oct 1997 paper IG.03 and thesis of D. Rich, U of
Indiana.

6Li(n,t)
+NIST collaboration, thermal measurement with high accuracy using cryogenic
calorimeter.



+Knitter, (1983) NS&E 83, 229; 6Li(n,t)4He angular distribution, 0.035-325 keV, new
corrections required.

+Drosg, 50 keV to 4 MeV, NIM B94, p.319 (1994), using concept based on the two
groups from the source reaction.

Bartle, 2 to 14 MeV, angular distribution, Proc. Conf on Nuclear Data for Basic and
Applied Science, Sante Fe (1985), p. 1337 (questionable value, due to energy range
and information not available).

Schwarz, 1 to 600 keV, NP 63, p.593, some based on hydrogen scattering cross
section.  Assumptions need study!

Koehler, 1 keV to 2.5 MeV, angular distribution data (ratio of forward and backward
hemispheres responses), private comm.

Gledenov,  .025 eV, ??,  87KIEV   2 237

+Guohui Zhang, 3.67 and 4.42 MeV, angular distribution, Comm. Of Nuclear Data
Progress No.21 (1999) China Nuclear Data Center, also NSE 134, 312 (2000), new
corrections required.

10B(n,α 1γγγγ)
Maerten, 320 keV to 2.8 MeV, GELINA linac, relative to 235U(n,f) and carbon
standards, private comm. from H. Weigmann.

 ++Schrack,  0.2 MeV to 4 MeV, relative to Black Detector (at ORNL), NSE 114, 352
(1993).

+Schrack, 10 keV to 1 MeV, relative to H(n,n) prop ctr (at ORNL), Proc. Conf. on
NDST, Gatlinburg (1994)p. 43.

+Schrack, .3 MeV to 10 MeV, relative to 235U(n,f) ion chamber (at LANL), Private
comm.

10B(n,α) Branching Ratio
++Weston, 0.02 MeV to 1 MeV, Solid State detectors, NSE 109, 113 (1991).

Hambsch and Bax, ND2001, keV to MeV, Frisch gridded ion chamber, in progress.

10B(n,α)
Haight, 1 MeV to 6 MeV, angular distribution at 30°, 60°, 90° and 135°, private
comm.

Hambsch and Bax, ND2001, keV to MeV, angular distribution, Frisch gridded ion
chamber, in progress.

Giorginis and Khriachkov, MeV energies, angular distribution, VdG data.

+Guohui Zhang, 4.17, 5.02, 5.74, 6.52 MeV angular distribution, submitted for
publication to NSE, new corrections required.



10B total cross section
+Wasson, 0.02 MeV to 20 MeV, NE-110 detector, Proc. Conf. on NDST, Gatlinburg
(1994), p. 50.

Wattecamps, Van de Graaff, 1 to 18 MeV, large statistical uncertainty, NE-213
detector, Proc. Conf. on NDST, Gatlinburg (1994), p. 47.

Plompen, Van de Graaff, 0.3 MeV to 1.9 MeV, NE-213 detector, 3 independent
monitors, Proc. Conf. on NDST, Trieste (1997), p. 1283.

Brusegan, Linac data, 80 eV to 730 keV, Li-glass detector, Proc. Conf. on NDST,
Gatlinburg (1994)p. 47, Proc. Conf. on NDST, Trieste (1997)p. 1283 and private
comm.

10Be(p,n) 10B
Massey, Ep from 1.5 MeV to 4 MeV, data at 0°, private comm.  New measurements to
be made at lower energies (~.5 MeV).  Also possibly 10Be (p,α).

C total cross section
+Schmiedmayer and M. C. Moxon, Proc. Conf. Nuclear Data for Science and
Technology Mito, Japan, May 30  June 3, 1988, p. 165,  50 eV to 100 keV, linac,
excellent agreement with ENDF/B-VI.

+Kirilyuk, et al., Proc. of the Int. Conf. on Neutron Physics, Kiev, 1987, vol. 2, p. 298,
filtered beam measurement at 2 keV,very good agreement with ENDF/B-VI.

Au(n,γγγγ)
+Yamamoto, thermal, linac, NEANDC(J)-155,59,9008, 1990.

+Tolstikov, 0.3 to 0.7 MeV, Van de Graaff, Yad Konstanty,1994,4.

++Sakamoto, 23 keV and 967 keV, photoneutron source, activation experiment, NSE
109,215 (1991).

++Davletshin, .16 MeV to 1.1 MeV, relative to H(n,n),  Sov. J. At. Energy 65, 91
(1988),
(Corrected data from Sov. J. At. Energ. 58, 183 (1985)).

++Davletshin, .62 MeV to .78 MeV, relative to 235U(n,f),  Sov. J. At. Energy 65, 91
(1988).

+Kazakov,   Yad Konstanty, 44, 85 (1985); AE,64,(2),152,1988,  Van de Graaff, 200-
420 keV.

+Demekhin, 2.7 MeV, Proc. 36th All Union Conf. on Nuclear Data, p. 94 (1986).

+Voignier, ~.5 MeV to ~3 MeV, NSE, 93, 43,1986, private comm.

235U(n,f)



+Carlson, 2 MeV to 30 MeV, relative to H(n,n), Proc. Spec. Meeting on Neutron
Cross Section Standards for the Energy Region above 20 MeV, Uppsala, Sweden,
1991, Report NEANDC-305, �U�, p. 165.

+Merla, +2.6, +4.45, +8.46, +14.7, +18.8 MeV ?,  associated particle, Proc. Conf. on
NDST Juelich (1991) p.510.

+Lisowski, 3 MeV to 200 MeV, relative to H(n,n), Proc. Spec. Meeting on Neutron
Cross Section Standards for the Energy Region above 20 MeV, Uppsala, Sweden,
1991, Report NEANDC-305, �U�, p. 177, and private communication.

+Nolte, 30 to 150 MeV, ND2001, and Private Comm. to increase energy range,
Preliminary data.

++Buleeva, 0.624 MeV to 0.785 MeV, relative to H(n,n), Sov. J. Atomic Energy, 65,
930 (1988).

Grundl comment, 252Cf spontaneous fission spectrum averaged cross section.  NOTE;
only the last NIST measurement (Schroder) should be used in the evaluation.  The
earlier data are improved upon with each new measurement.

+Kalinin, 14.7 MeV CCW, associated particle,AE,64,(3),194,8803
AE,71,(2),181,9108 (?? Merla).

+Carlson, 0.3 MeV to 3 MeV, relative to black detector, Proc. IAEA Advisory Group
Meeting on Nuclear Standard Reference Data, Geel Belgium, p.163, IAEA-TECDOC-
335 (1985).

+Johnson, 1 MeV to 6 MeV, relative to a dual thin scintillator, Proc. Conf. on NDST
Mito (1988) p.1037.

+Iwasaki, 14 MeV, relative to H(n,n) and associated particle, Proc. Conf. on NDST
Mito (1988) p. 87.

238U(n,f)
+Merla, 5 MeV +?, associated particle, Proc. Conf. on NDST Juelich (1991) p.510.

++Winkler, 14.5 MeV, relative to Al(n,α) & 56Fe(n,p), Proc. Conf. on NDST Juelich
(1991), p.514.

+Lisowski, 0.8 MeV to 350 MeV, relative to H(n,n), Proc. Spec. Meeting on Neutron
Cross Section Standards for the Energy Region above 20 MeV, Uppsala, Sweden,
1991, Report NEANDC-305, �U�, p. 177, and private communication.

+Nolte, 30 to 150 MeV, ND2001, and Private Comm. to increase energy range,
Preliminary data.

+Newhauser, 34, 46, and 61 MeV MeV, absolute, Proc. Conf. on NDST Juelich
(1991), removed from database.

+Meadows, 14.74 MeV, CCW, ANE,15,421,8808, relative to 235U(n,f).



+Baba, 4.6 MeV to 6 MeV, Van de Graaff relative to 235U(n,f), J. Nucl. Sci. &
Techn.,26,11 (1989).

+Shcherbakov, 1-200 MeV, relative to 235U(n.f),  ISTC 609-97, see also Fomichev, 0.7
MeV to 200 MeV, relative to 235U(n.f), Proc. Conf. on NDST, Trieste (1997), p.1283.

+Li Jingwen, 14.7 MeV, CCW, CNP,11,(3),17,89.

Eismont, Trieste conf, p.494,  33.7, 46 and 60.6 MeV, relative to hydrogen scattering
cross section.  See also Gatlinburg conference results at 135 and 160 MeV.

+Garlea, 14.7 MeV, relative to 235U(n,f) cross section, RRP,37,(1),19,92.

238U(n,γγγγ)
+Corvi. Thermal range, linac, Mito conf (1988).

+Macklin, linac, 1 to 100 keV, ANE,18,567,91, relative to 6Li(n,t) cross section.

+Kazakov,   Yad Konstanty, 37, (1986);  Van de Graaff, 4-440 keV, liquid scintillator,
VDG.

++Kobayashi, 0.024 MeV, 0.055 MeV, 0.146 MeV, relative to 10B(n,α1γ), Proc. Conf.
on NDST Juelich (1991), p. 65.

++Quang, 23 keV and 964 keV, photoneutron source, activation experiment, NSE 110,
282 (1992).

++Adamchuck, 10 eV to 50 keV, relative to 10B(n,α1γ), J. Atomic Energy, 65, 920
(1989).

++Buleeva, 0.34 MeV to 1.39 MeV, relative to H(n,n) and 235U(n,f), Sov. J. Atomic
Energy, 65, 930 (1989).

+Voignier, ~0.5 to 1.1 MeV, NSE,93,43,1986, Van de Graaff.

239Pu(n,f)
+Weston, linac, 0.1 keV to 20 keV, fission chamber, 10B(n,α) standard (very large #
of points), NSE,111,415,9208.
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SOME SOURCES OF THE UNDERESTIMATION OF EVALUATED CROSS 

SECTION UNCERTAINTIES 

 
S.A.Badikov, E.V.Gai 

Institute of Physics and Power Engineering,  
249033 Obninsk, Kaluga region, Russia 

 
ABSTRACT 

 
The problem of the underestimation of evaluated cross-section uncertainties is 

addressed. Two basic sources of the underestimation of evaluated cross-section uncertainties -  
a)  inconsistency    between    declared    and    observable    experimental    uncertainties    
and  b) inadequacy between applied statistical models and processed experimental data - are 
considered. Both the sources of the underestimation are mainly a consequence of existence of 
the uncertainties unrecognized by experimenters. A model of a “constant shift” is proposed 
for taking unrecognised experimental uncertainties into account. The model is applied for 
statistical analysis of the 238U(n,f)/235U(n,f) reaction cross-section ratio measurements. 

 
 It is demonstrated that multiplication by sqrt(χ2) as instrument for correction of 

underestimated evaluated cross-section uncertainties fails in case of correlated measurements. 
It is shown that arbitrary assignment of uncertainties and correlation in a simple least squares 
fit of two correlated measurements of unknown mean leads to physically incorrect evaluated 
results. 
 

INTRODUCTION 
 

At present there is concern on extremely low uncertainties resulting from application 
strict statistical methods (least squares method, Bayesian method, maximum likelihood 
method) to processing experimental data. In this connection 2 questions arise: 1) Is there 
underestimation of the uncertainties of evaluated cross-sections? 2) If this is the case, what is 
the value of the underestimation? 

  
Recommended (ENDF/B-VI ) and calculated (within strict statistical methods) 

uncertainties of the neutron standard cross-sections [1] are being often presented as most 
challenging example of the underestimation. Reviewers of the ENDF/B-VI standards have 
expressed the concern on too small calculated uncertainties of neutron standard cross-sections 
and expanded them in few times. For 235U fission cross-section recommended uncertainties 
exceed calculated those in 2 – 3.3 times in the energy ranges 0.6 – 10 MeV, 14.5 – 20.0 MeV 
[1]. For 10B(n,α0)7Li reaction cross-section exceeding is even more: 7.9 – 19 times [1]. 
However it would be erroneous to accept these numbers as a factor of the underestimation of 
the calculated neutron standard cross-section uncertainties. As follows from the comments to 
the ENDF/B-VI neutron standards evaluation [1] these numbers are a ratio between estimated 
spread for future precise cross-section measurements and the uncertainty of evaluated 
standard cross-sections calculated on the basis of existing measurements. So, the question on 
the underestimation of the uncertainties of the ENDF/B-6 neutron standard cross-sections 
calculated within strict statistical methods is still opened. 
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At the same time there exist examples where the underestimation of evaluated cross-
section uncertainties was proved [2,3]. All these examples are related to cases when 
correlations between some components of total uncertainties  recognized by experimenters 
have been ignored. Such simplifications have led to physically incorrect results. However, as 
seen today, the underestimation in cases where it really exists is mainly caused by existence 
of the uncertainties unrecognized by experimenters. 

 
BASIC SOURCES OF THE UNDERESTIMATION OF EVALUATED 

CROSS-SECTION UNCERTAINTIES 
 

Two basic sources of possible underestimation of evaluated cross-section uncertainties 
are: 1) inconsistency between declared and observable experimental uncertainties (as a rule 
experimental uncertainties are underestimated), 2) inadequacy between applied statistical 
models and processed experimental data. Both sources are interconnected and adequate 
statistical model must include validation of declared experimental data and their updating if 
necessary. To position such a model among all existing ones trace a complication of the 
models within strict statistical methods. Let’s consider LSM (least squares method) as an 
example. 

 
Within classical model A proposed by Gauss [4] random experimental errors k

iε  for 

work k are unbiased and independent, uncertainties are constant (E k
iε =0, 

cov( k
iε , l

jε )=σ2δijδkl), minimized functional is a sum of squares of the deviations of the 

approximant from measured values - ∑∑ ∆
k i

k
iy 2)( . Developing classical model Aitken 

have allowed the experimental uncertainties to be different [5] and have got a model B (for 
work k random experimental errors k

iε  are unbiased and independent, uncertainties are 

different - E k
iε =0, cov( k

iε , l
jε )= 2)( k

iσ δijδkl, minimized functional is a weighted sum of 

squares - ∑∑ ∆
k i

k
iik y 2)(ϖ ). All existing neutron cross-section systematics at single 

energies were developed on the basis of model B. At next step of the complication (model C) 
correlations between experimental errors were included in statistical analysis, minimized 
functional has transformed from sum of squares into quadratic form (experimental errors k

iε  

are unbiased and correlated, uncertainties are different - E k
iε =0, cov( k

iε , l
jε )= k

iσ
l
jσ kl

ijρ , 

minimized functional is a quadratic form - ∑∑∑∑ ∆∆ −

k l i j

l
j

kl
ij

k
i yVy )( 1 ). All the modern 

codes apply model C to statistical processing of the experimental data. Finally, now we are 
trying to operate with models D having non-zero expectation of experimental errors ( k

iε  are 

biased and correlated, uncertainties are different - E k
iε ≠0, cov( k

iε , l
jε )= k

iσ
l
jσ kl

ijρ , 

minimized functional is a quadratic form - ∑∑∑∑ ∆∆ −

k l i j

l
j

kl
ij

k
i yVy )( 1

1 ), matrix V1 takes 

biases into account either directly or effectively. Model D describes situation when difference 
between experimental data sets exceeds declared experimental uncertainties, i.e. there exist 
errors unrecognized by experimenters. At present we don’t know  a code realizing this 
model.  
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MODEL OF A “CONSTANT SHIFT” FOR TAKING UNRECOGNISED 
EXPERIMENTAL ERRORS INTO ACCOUNT 

 
Model of a “constant shift”  is a simplest model of the class D. The model is based on 

following idea. Having some initial approximation for the cross-section being evaluated we 
can estimate average shift of the measurements (for each experimental work) relative to the 
approximation and a spread of the measurements relative to shift’s value. The spread can be 
interpreted as a characteristic of statistical error while the shift – as a sample value for 
systematic error. As initial approximation previous evaluation or LSM-estimate for 
measurements processed as independent can be used. Next the approximation can be 
successively improved. Note, that if a database includes one experimental work only 
unrecognized error isn’t detectable. It can be estimated only in comparison with other 
experimental works. 

 
In the model measured value k

iy  for experimental work k is assumed to be a sum of 3 

values:                           kk
ii

k
i fy ξε ++= ,       kNi ,...,1=             where 

if -   true value of the cross-section being estimated, 
k
iε  - random experimental errors, which are unbiased and uncorrelated - E k

iε =0,  

        cov( k
iε , l

jε )= 2)( kσ δijδkl, 
kξ - systematic error – constant for measurements from the work k,  

       E( kξ )= kξ  (averaging over distribution of random error). 

Values kξ  in dependence on k form new distribution – distribution of systematic errors. So, 

cov( kξ , lξ )= klsyst δσ 2)(  (averaging over distribution of systematic error), kN  - number of 
measurements in the work k, M – number of experiments. As one of the justifications of the 
model we mention following fact: at any energy total cross-section error consisting of several 
components with different correlations (0,1,≠0) over energy can be presented as a sum of two 
components (effective statistical with correlation 0 and effective systematic with correlation 
1).  

 
The parameters of the model are the parameters of the approximant, statistical 

uncertainties for each experimental work - kσ , systematic uncertainty - systσ , sample values 

of the systematic error - kξ . The parameters can be found in iterative way: a) a search of 

approximant, b) calculation kξ , kσ  and systσ : 

                )(1
1
∑
=

−=
kN

i
i

k
i

k

k fy
N

ξ ,    ∑
=

−−
−

=
kN

i

k
i

k
i

k

k fy
N 1

22 )(
1

1)( ξσ  

                      ∑
=

=
M

k

k

M 1

1 ξξ ,      ∑
=

−
−

=
M

k

k
syst M 1

2)(
1

1 ξξσ  ⇒ next iteration 

 
Model of a “constant shift” was applied to statistical processing of the 

238U(n,f)/235U(n,f) reaction cross-section ratio measurements. Our evaluated curve (30 
parameters) is shown in comparison with the ENDF/B-VI evaluation and the experimental 
data in Fig.1-3.  Numerical  results  are  summarized  in  Table 1.  Authors of 22 experimental 
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Table 1. Average total and statistical experimental uncertainties estimated in the model of a “constant shift” in comparison with declared average 
experimental total and statistical uncertainties. Data were calculated for the measurements of the 238U/235U fission cross section ratios. 
 

Work 
number 

 

Author Number 
of points 

Shift, % 
 

Declared 
experimental 

total 
uncertainty,% 

Estimated 
experimental 

total 
uncertainty,% 

Estim/Decl 
ratio for total 

exper. 
uncertainties 

Declared 
experimental 

statistical 
uncertainty,% 

Estimated 
experimental 

statistical 
uncertainty,% 

Estim/Decl 
ratio for 

statistical  
uncertainties 

1 Williams 46   [7] 3 -2.35 9.77 2.62 0.27  0.83  
2 Jarvis 53   [8] 1 1.45 1.52      
3 Lamphere 56  [9]  89 -3.83 9.90 13.9 1.40  13.7  
4 White 67  [10] 3 1.25 2.02 3.05 1.50 <2 1.77  
5 Stein 68  [11] 14 -2.40 1.02 5.32 5.21  4.71  
6 Poenits A 72  [12] 1 3.87 1.67   1.60   
7 Poenits B 72  [12] 2 2.23 2.03 3.07 1.51 1.98 1.81 0.91 
8 Meadows 72  [13] 47 -0.37 2.41 5.59 2.32 1.21 5.01 4.14 
9 Meadows 75  [14] 22 2.32 1.45 3.06 2.11 0.76 1.79 2.36 

10 Coates 75  [15] 221 -0.34  6.42  - 5.92  
11 Cieriacks 76  [16] 73 -0.03  5.62  3.31 5.04 1.52 
12 Nordborg 76  [17] 23 1.85 2.62 3.11 1.19 ∼2.5 1.88  
13 Cance 76  [18] 9 -2.25 2.88 2.88 1.00 0.9 1.47 1.63 
14 Behrens 77  [19] 146 3.53 2.65 6.33 2.39 2.55 5.82 2.28 
15 Fursov 77  [20] 39 1.32 1.10 3.65 3.32 0.51 2.68 5.25 
16 Cance 78 [21] 2 -0.18 2.96 2.93 0.99 1.75 1.56 1.12 
17 Varnagy 82  [22] 6 -0.43 5.75 2.86 0.50 1.3 1.43 1.1 
18 Androsenko 83 [23]  52 -5.77 1.74 16.1 9.25 0.76 15.9 20.9 
19 Goverdovsky 83 [24] 1 -0.16 1.03      
20 Goverdovsky A 84 

[25] 
27 -0.06 1.59 2.89 1.81 0.97 1.49 1.54 

21 Goverdovsky B 84 
[25] 

5 -2.08 2.17 3.12 1.44 0.76 1.89 2.49 

22 Meadows 88 [26] 1 3.64 1.15      
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data sets extracted from  the  EXFOR library  are  listed  in  column 2. Column 3 informs on 
the  number of measurements in the  experimental data sets.  Average shift of the 
measurements relative to the approximant for each experimental data set is given in column 
4. Average declared and estimated experimental total uncertainties and their ratios are 
presented in  columns 5, 6 and 7. Columns 8, 9 and 10 include average declared and 
estimated statistical uncertainties of measurements and their ratio. Blank cells are given in 
case when the experimental data are not available or the method doesn’t allow calculating 
corresponding values. 

 
The calculations were carried out in relative units. Parameters of the distribution of sys-

tematic errors (in %): expectation – 0.05, standard deviation – 2.48. As follows from Table 1: 
1) almost all the experimenters underestimate  the total experimental uncertainty, average 
coefficient of the underestimation for total experimental uncertainties (excluding “outliers” – 
data of Williams 46, Androsenko 83) – 1.91; 2) “contributions” of statistical and systematic 
components to the underestimation of the total experimental uncertainties are volatile and 
change sharply from one experimental data set to another. Trying to interpret the values in 
columns 8 and 9 from Table 1 it should be kept in mind that those are not quite comparable. 
The experimenters list an uncertainty in the number of counts as statistical (column 8) while a 
value given in column 9 includes the uncertainty in the number of counts plus the 
uncertainties corresponding to the random parts of components (with correlations different 
from 0 or 1 over energy) of  the total error. Group ratios, their uncertainties and correlations, 
comparison with corresponding values from BNAB evaluation [6] are presented in Tables 2 
and 3. 
 
Table 2. Group ratios of the  238U fission cross section  to  the  235U fission cross-section  and 
their uncertainties calculated  in the model of  a “constant”  shift. In last column – 
uncertainties  of  the  ratios  from  BNAB  evaluation [6]. 

Energy Group 
[MeV] to [MeV] 

Group Number Ratio Uncertainty, [%] Uncertainty, [%] 
(BNAB) 

0.20 - 0.40 1 0.128E-03 4.88 1.5 
0.40 - 0.80 2 0.107E-02 2.22 1.5 
0.80 - 1.40 3 0.328E-01 0.92 1.5 
1.40 - 2.50 4 0.367E+00 0.68 1.5 
2.50 - 4.00 5 0.443E+00 0.68 1.5 
4.00 - 6.50 6 0.521E+00 0.65 1.5 

6.50 - 14.00 7 0.566E+00 0.71 1.5 
14.00 - 20.00 8 0.615E+00 0.96 1.5 

Table 3. Correlation  matrix  ( lower triangle )  of the uncertainties  of group ratios of the  
238U fission cross section  to the  235U fission cross-section  calculated  in  the  model of a 
“constant  shift”.  Upper  triangle  contains  correlation  matrix  from  the  BNAB evaluation 
[6]. Correlations are  given in %. 

Energy Group 
[MeV] to [MeV] 

Group 
Number 

1 2 3 4 5 6 7 8 

0.20 - 0.40 1 100 0 0 0 0 0 0 0 
0.40 - 0.80 2 61 100 100 30 20 20 20 20 
0.80 - 1.40 3 33 45 100 30 20 20 20 20 
1.40 - 2.50 4 9 22 54 100 30 30 30 30 
2.50 - 4.00 5 7 17 51 69 100 100 100 100 
4.00 - 6.50 6 10 21 53 68 80 100 100 100 

6.50 - 14.00 7 7 17 45 59 62 72 100 100 
14.00 - 20.00 8 6 11 31 39 40 40 43 100 
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MULTIPLICATION BY SQRT(χχχχ2)  AS INSTRUMENT FOR CORRECTION OF 
EVALUATED CROSS SECTION UNCERTAINTIES IN CASE OF CORRELATED 

MEASUREMENTS 
 

Multiplication by sqrt(χ2) is generally accepted procedure for the correction of 
evaluated cross section uncertainties calculated within strict statistical methods. Exceeding χ2 
over 1 indicates on the underestimation of declared experimental uncertainties. So, 
multiplication by sqrt(χ2) is a trial to correct declared experimental uncertainties and, 
correspondingly, the uncertainties of evaluated cross sections. However this widely spread 
procedure fails in case of correlated measurements. 

 
 Let’s consider exactly solvable model example. There exist N measurements iy , 

i=1,…,N of a mean θ  to be estimated. Unknown true statistical and systematic uncertainties 
of measurements - statσ  and systσ  , whereas assumed statistical and systematic uncertainties - 

α statσ  and β systσ , here α and β are coefficients of the underestimation. What is the 

relationship between true and assumed (before and after multiplication by sqrt(χ2) ) 
uncertainty of LSM-estimates for the mean θ . Minimized functional has a form: 

     2χ = ∑∑
= =

− −−
−

N

i
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The LSM-estimates and their variances calculated for true and assumed uncertainties of 
measurements are summarized in Table 4. Note that expectation of χ2 (E(χ2) = α-2 ) doesn’t 
depend on the coefficient of the underestimation for systematic uncertainty. 
 
Table 4. The LSM-estimates and their variances calculated for true and assumed uncertainties          
of measurements. 
 

Experimental uncertainties LSM –estimate Variance of LSM-estimate 
True 

 t

∧

θ = ∑
=

N

i
iy

N 1

1
 V( t

∧

θ ) = 2
2

syst
statt

N
σ

σ
+  

Assumed (before  
multiplication by sqrt(χ2) ) a

∧

θ = ∑
=

N

i
iy

N 1

1
 V( a

∧

θ ) = 22
22

syst
statt

N
σβ

σα
+  

Assumed (after 
multiplication by sqrt(χ2)) a

∧

θ = ∑
=

N

i
iy

N 1

1
 V( a

∧

θ ) = 
2

222

α
σβσ syststatt

N
+  

 
Thus, for different α, β (coefficients of the underestimation for statistical and 

systematic uncertainties)  multiplication by sqrt(χ2): 
a) doesn’t reconstruct true uncertainties of measurements unlike the case with  
     purely statistical uncertainties of measurements, 
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b) reconstructs statistical component of true uncertainty of the measurements  
    and doesn’t reconstruct systematic component, 
c) can result in underestimated or overestimated systematic uncertainty in  
    dependence on ββββ-value. 
 

ARBITRARY ASSIGNMENT OF THE UNCERTAINTIES AND CORRELATIONS 
FOR EXPERIMENTAL ERRORS 

 
Finally, we would like to pay attention to simple model example demonstrating 

consequences of arbitrary assignment of the uncertainties and correlations for experimental 
errors. 

 
Let there exist 2 measurements iy , i=1,2  with the uncertainties 1σ  and 2σ  of a mean 

θ  to be estimated. The measurements correlate with coefficient ρ . Minimized functional has 
a form 
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LSM-estimate for θ  and its variance V(θ ) can be written as 
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Let’s consider variances of LSM-solution corresponding to different relationship between 
uncertainties of measurements:  
a) uncertainties of measurements equal each other: 1σ = 2σ = σ  

                                          V(θ ) = )1(
2

2

ρσ
+  

Observable effect confirms our expectations: strong correlation deteriorates quality of 
measurements and leads to expanding the uncertainty of estimate (see Fig.4), 
b) unequal uncertainties of measurements: 1σ = σ , 2σ = 2σ . 

                                       V(θ ) = 
ρ
ρσ

45
)1(4 22

−
−

 

Observable effect is in contradiction with expectations: there exists range (0.5 ≤ ρ  ≤ 1) 
where increasing the correlation results in decreasing the uncertainty of estimate (see Fig.4). 
Moreover for ρ =1  the estimate is known accurately. 
 

The same effect we observe  when the uncertainty of second measurement is 4 times 
more the uncertainty of first measurement: 1σ = σ , 2σ = 4σ .  
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                                         V(θ ) = 
ρ
ρσ

817
)1(16 22

−
−

 

As seen in Fig.4, the uncertainty of the estimate decreases with the increase of correlation in 
the range 0.25 ≤ ρ  ≤ 1. 
 

Thus the uncertainty of the estimate changes differently with the increase of the 
correlation in case of unequal uncertainties of the measurements. There are wide ranges 
where the uncertainty of estimate decreases with increasing ρ . Thus, arbitrary assignment of 
the uncertainties for two experimental errors imposes following constraints on covariance and 
correlation between experimental errors ε1 and ε2: 

 
cov(ε1, ε2) ≤ min (V(ε1),V(ε2)), 

 
where V(ε1) and V(ε2) – variances of the experimental errors ε1 and ε2;  
or  if  1σ =σ , 2σ = kσ , k>1  then correlation between experimental errors ε1 and ε2 must 
be: 

cor(ε1, ε2) ≤ 1/k . 
 

It should be noted that an anomaly known as “Peelle’s Pertinent Puzzle” [27] in the 
interpretation of S.Chiba and D.L.Smith [28] doesn’t satisfy the latter constraints. 
 
 

SUMMARY 
 

1. As seen at present, there are two basic interconnected sources of the underestimation of 
evaluated cross-section uncertainties: a) inconsistency between declared and observable 
experimental uncertainties, b) inadequacy between applied statistical models and processed 
experimental data. 
 
2. Multiplication by sqrt(χ2) as instrument for correction of evaluated cross-section 
uncertainties fails in case of correlated measurements. 
 
3. Arbitrary assignment of the uncertainties and correlations for experimental errors leads to 
physically incorrect evaluated results. 
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1. Work Scope

• Evaluation of standard CS’s for light elements using a 
(non-model) least-squares method: 

– study the error propagation in the least-squares method, 
– evaluate CS’s and covariance matrices for H1 (n,n), 

He3(n,p), Li6(n,t), B10(n,α0), and B10(n, α1γ) reactions using 
GMA (and ZOTT if necessary), and

– participate to the study of inter-comparison between 
model fit and non-model fit 

• Enhancement of the Bayes’ Method  
in cooperation with other participants



2. Issues

! Is the model (design matrix) utilized in the GMA almighty?  
Especially in terms of

- statistical significance of the fitting and 
- justification of covariance matrix of evaluated CS’s
(magnitude of uncertainty as well as correlation) 

! Is there any method not (or less) sensitive to a model utilized in 
a least squares method? 

! Resolution for Peelle’s Pertinent Puzzle in using GMA?



3. Statistical Significance of GMA Fitting

! A sample problem shown in Fig.1. 
- Six data on four energy points 
- Data look very linear to the energy. 

! The F-test indicates that the 2nd and higher order terms are 
insignificant.  

! Evaluated CS’s and their uncertainties seem to be comparable, 
but the resulting covariance matrices are quite different each 
other. 
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Fig.1.  Examples of LSM fitting for very linear data
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For any 4-parameters model tested, results do not alter regardless of the form of regression function.



4. Evaluation with Discrepant, Strongly 
Correlated Data

! A regression model assumes the normality of errors:

! If residuals (i.e., yreg – ymeas) are distributed far from the normal 
distribution, the model is not appropriate. 

! Then, what can we do? 
- Consider a revision of Vy, the covariance matrix of ymeas .
- Consider a revision of the model, X. 
- Consider a transformation of (dependent) variable.

.)σ,(, 2
meas I0εεXβy N=+=



! Peelle’s Pertinent Puzzle: 
For a quantity y, measured are

y1 = 1.50 ± 0.33 (statistical unc. 10%, systematic 20%)
y2 = 1.00 ± 0.22 (statistical unc. 10%, systematic 20%).

What is the estimate of y?

! Solution by Least-Squares Method:
using the design matrix of (1  1)t and  

! There are several interpretations on the origin; improper 
linearization, improper treatment of uncertainty of derived 
quantity…

4.1. The PPP again  

218.0882.0� ±=y
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! Box-Cox transformation:

! The optimum λ maximizes 

where s2 is the Residual Sum of Squares divided by n.  
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4.2. Box-Cox Transformation 



4.3. Box-Cox Transformation in the PPP

! Solution with the optimum λ = 0, 

Cf. Other solutions (Example 11.17 of D. Smith 1991)
y ~ 1.22: mean value of skewed, non-Gaussian pdf
y ~ 1.15 or 0.88: most probable value

! The solution looks reasonable. However, does the 
transformation method always guarantee a reasonable 
solution?  

260.0224.1� ±=y



4.4. Box-Cox Transformation in Example #2  

1
1
2
2
3
3

Meas. 
Set

19
19
19
19
19
19

20
20 
20
20
20
20

0.95
1.00
1.50
1.90
2.00
2.20

10.0
11.0
11.0
12.0
12.0
12.5

Unc. Syst. 
(%)

Unc. Total
(%)

Measured 
CSEnergy

! What we want to investigate: 
• Sensitivity of the solution to the model
• Covariance matrices of evaluated CS’s

! Solutions using the transformation are less sensitive to the 
order of model. 

! The covariance matrices are still model dependent.
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Fig.2.  Solutions using Usual Least Squares Method



����������������

�������� 	
�� ������� ������� �

�� ���� ����� ����� ������ ������� � � � �
�� ���� ����� ����� �������� ���� � � � �

�� ���� ����� ����� � � ����� �������� � �
�� ���� ����� ����� � � �������� ����� � �

�� ���� ����� ����� � � � � ������ �������
���� ���� ����� ����� � � � � ������� ������

�������	
�������	
�������	
�������	


��� 	
��� �� !�" !�"���� #�$$���
��
�� ����� ����� ���� ����

�� ����� ����� ���� ���� ����
�� ����� ����� ���� ���� ��%� ����

���� ����% ����� ���� ���� ���� ��%� ����
&
���$�'
 �(�)*+,

����� ����� ���� ����
���%� ����� ���� ���� ����

����� ����� ���� ���� ���� ����
����� ����� ���� ���� ���� ���� ����

-!�.$
����� ����� ���� ����

����� ����� ���� ���� ����
����� ����% ���� ���� ��%� ����

����� ���%� ���� ���% ���� ���� ����
�$.��$.�$

����� ����� ���� ����
����� ����� ���� ���� ����

����� ����� ���� ���� ��%� ����
����% ����� ���� ���� ���� ��%� ����

&
���$�'
 �(�)*/,
����� ����� ���� ����

����� ����� ���� ���� ����
����� ���%� ���� ���� ���� ����

����� ����� ���� ���� ���� ���� ����



Fig.3.  Solutions using Box-Cox Transformation, then Least Squares 
Method
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5. Summary and Open Questions

! Regardless of good evaluated CS’s from the least-squares 
method, it seems the covariance (or correlation, at best) matrix
of  resulting CS’s is arbitrary.     

! Should we adopt a covariance matrix produced from the most 
statistically significant fitting? 

! Any criteria useful in distinguishing well-evaluated covariance? 
! Modification of GMA? 

- Box-Cox transformation algorithm 
- Treatment of discrepant data proposed by Drs. Smith 
and Chiba (already implemented in GMA-JNDC version)

- others
C:\CRP-STD_CS\Doc\rcm2002r.ppt (2002.12.)
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Abstract 

Incorporating the Box-Cox transformation into a least-squares method is presented as 
one of resolutions of an anomaly known as Peelle�s Pertinent Puzzle.  The transformation is 
a strategy to make non-normal distribution data resemble normal data.  A procedure is 
proposed: transform the measured raw data with an optimized Box-Cox transformation 
parameter, fit the transformed data using a usual curve fitting method, then inverse-transform 
the fitted results to final estimates.  The generalized least-squares method utilized in GMA is 
adopted as the curve fitting tool for the test of proposed procedure.  In the procedure, 
covariance matrices are correspondingly transformed and inverse-transformed with the aid of 
error propagation law.  In addition to a sensible answer to the Peelle�s problem itself, the 
procedure resulted in reasonable estimates of 6Li(n,t) cross sections in several to 800 keV 
energy region.  Meanwhile, comparisons of the present procedure with that of Chiba and 
Smith show that both procedures yield estimates so close each other for the sample evaluation 
on 6Li(n,t) above as well as for the Peelle�s problem.  Two procedures, however, are 
conceptually very different and further discussions would be needed for a consensus on this 
issue of resolving the Puzzle.  It is also pointed out that the transformation is applicable not 
only to a least-squares method but also to other parameter estimation method such as a usual 
Bayesian approach formulated with an assumption of normality of the probability density 
function.  
 
 

1. Introduction: Peelle�s Pertinent Puzzle 
The least-squares method (LSM) is a well-developed, powerful tool for curve fitting 

along with model parameter estimation.  Nevertheless, an anomaly is observed such that the 
method sometimes yields strange, unacceptable estimates.  In the nuclear data society, the 
anomaly is known as Peelle�s Pertinent Puzzle (PPP), which is quoted below for completeness 
from a secondary source:(1)  

�Suppose we are required to obtain the weighted average of two experimental results for 
the same physical quantity.  The first result is 1.5, and the second result 1.0.  The full 
covariance matrix of these data is believed to be the sum of three components.  The first 
component is fully correlated with standard error of 20% of each respective value.  The 
second and third components are independent of the first and of each other, and correspond to 
10% random uncertainties in each experimental result.   
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The weighted average obtained from the least-squares method is 0.88 ± 0.22*, a value 
outside the range of the input values!  Under what conditions is this the reasonable result that 
we sought to achieve by use of an advanced data reduction technique?�   

Several studies have been devoted to investigate the reason and resolution of PPP.(1-5) 
Previous studies will not be reviewed here, but D. Smith�s view(6) on this issue is briefly 
introduced.  He showed seven distinct solutions to PPP and noted that each method is unique 
in concept and each treats the available experimental information differently.  He suggested 
solutions from the Bayesian approach� as the rigorous one, in which quite skewed, non-
normal posterior probability distribution for the quantity under evaluation is properly dealt 
with.  His point is that the anomaly stems from the probability distribution of observable that 
is non-normal but implicitly assumed as normal in, say, a least-squares method. 
Interpretations such that PPP originates from an improper linearization(3) or from an improper 
treatment/calculation of the covariance of derived (or normalized in many cases of nuclear 
data evaluation) quantity(2,4,5) are essentially not far from Smith�s viewpoint.  

Unfortunately, PPP is alive in a real world; for example, in an evaluation of 
115In(n,n�)115mIn cross sections.(1)  During the titled CRP work, Pronyaev also reported(7) PPP 
in the evaluation of 6Li(n,t) cross sections using GMA code(8)�.  Thus, the CRP recently 
decided to revisit PPP and search for a resolving method.  Even though �the Bayesian 
procedure (with due consideration on the governing probability distribution) is both appealing 
and rigorous in principle,� we face up to the question of how to deal with a real problem in a 
practical way because of the complexity of the real problem.(6)  Chiba and Smith proposed a 
practical, iterative procedure for resolving PPP and implemented it into GMA.(1)  That 
version of GMA will be referred as GMAJ(9) for convenience hereafter.  Their idea looks 
working well in a real evaluation, but is based on a more or less subjective interpretation of 
the fractional uncertainties usually provided along with measured data.  In their procedure, 
the absolute uncertainty is computed from fractional uncertainty multiplied by the �true� value, 
not by measured one.  Without knowing the true value, the procedure needs iterations.  

 
 

2. New Procedure for Resolving the Puzzle 

2.1. Outline 
A least-squares method (LSM) assumes a normality of residuals, i.e. the differences 

between estimates and raw data, even though the derivation of necessary formulas does not 
explicitly require the normality.  A distribution of residuals far from the normality implies 
that the fitting model, rather than the methodology, is inappropriate to such kind of raw data.  
Remind that PPP is perceived from biased residuals.  There are three options in dealing with 
non-normally distributed residuals: re-interpret the covariance associated with the 
measurement, transform the �independent� variable (model parameter in other words), or 
transform the �dependent� variable to be a suitable type to the model.  The second option is 

��������������������������������������������

�

� Originally presented was 0.87 ± 0.23, which is essentially identical to 0.88 ± 0.22 obtained from the 
least-squares method.  See the solution in Section 3.1 of this article.�

�
� Methods 1 and 2 in his book are regarded as the Bayesian method.  Method 2 utilizes a logarithmic 

transformation as the other way of obtaining the best mean value estimate, while other methods 
except Methods 1 and 2 give a most probable value. 

�
� In this article, let GMA refer to GMAR, which is a bug-corrected version by Pronyaev of GMA sent 

to IAEA for this CRP. �
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equivalent to a revision of the model.  The last one, while keeping the original model, is the 
approach proposed in this article.  

The fitting procedure proposed is as follows: transform the measured data and their 
covariance matrix, fit the transformed data using a conventional method, then inverse-
transform the estimates and associated covariance into the space of original data.  The key of 
the proposal is a concept dealing with �transformed� data in curve fitting or, equivalently, in 
evaluation of model parameters.  The Box-Cox transformation(10) is utilized as the tool for 
making non-normally distributed data resemble normally distributed data.   

As a tool for curve fitting itself, the generalized LSM of GMA is adopted for tests in this 
study.  The concept, however, can be incorporated not only into a LSM method but also into 
any other methods such as a usual Bayesian approach and maximum likelihood method as 
well.  It is worth to remind that PPP is invoked by the data discrepant and strongly correlated 
each other, not by a fitting methodology.  In other words, even a Bayesian approach, if it 
assumes a normal distribution of the observable in its formulation, is not free from PPP.  In 
addition to the normality assumption, an assumption of linearity of measured quantities with 
respect to model parameters makes the Bayesian method (with non-informative priors) be 
identical to the LSM.(11)  It provides another basis that the concept of variable transformation 
can be applied to a usual Bayesian method. 
 
2.2. Box-Cox Transformation and Associated Formulas 

Box and Cox proposed a transformation§ of dependent (response) variable y to w as 
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which makes the probability density function of w rather close to the normal distribution.  
The transformation is performed for all N data points of a vector y = (y1 y2 � yN)t to the 
vector w.  The power λ is determined to maximize the log-likelihood function  
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where iw�  is the estimate of wi .  A numerical solver, usually a grid search method, is used 
in determining λ since L(λ) in Eq. (2) is a recursive function of w.  The optimum λ is 
searched in the range of [�2, 2] usually.  Note that λ = 1 implies no transformation in fact.  

Vy , the covariance matrix associated and given along with y, is transformed to Vw with 
the aid of the law of error propagation as follows:  

Vw = S Vy St ,                              (3) 

where S is a diagonal sensitivity matrix whose (i, i) element is computed as  
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§
� There are several variations of the transformation function, usually more complex than this, for the 

same purpose.  Nonetheless, the present transformation seems to be enough in dealing with PPP.  
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A curve fitting method, the generalized LSM here, then yields the estimate w�  and its 
associated covariance matrix wV � .  The estimate w�  is easily inverse-transformed into y�  
by 
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The inverse-transformation of wV �  to yV�  is performed similarly to Eq. (3). 
 
 

3. Sample Evaluations  
3.1. Peelle�s Problem 

Before to advance, formulas for the LSM are summarized below**.  With respect to a 
model defined as  

εpGy += , )σ,(~ 2V0ε N , 

the LSM provides the estimate of model parameter vector p and its associated covariance 
matrix as  

( ) yVGGVGp 1
y

11
y� −−−= tt  and ( ) 11

y�
−−= GVGVp

t .             (4) 

G is the design matrix, y the measured data vector, and Vy the covariance matrix of y.  Then 
the estimate y�  is obtained as  

pGy �� = , 

while its covariance matrix yV�  is calculated from the law of error propagation as  

tGVGV py �� = . 

 
LSM Solution 

PPP is modeled, with single parameter p representing the average of two data, as  

εεpGy +⋅
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Measured data y and Vy are given as  
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Then the parameter p is estimated from Eq. (4) as p� = 0.882 ± 0.218, which is outside the 
range of raw data of 1.5 and 1.0.  This is the PPP solution.  
�

��������������������������������������������

** The LSM means the generalized LSM in this paper.  The generalized LSM, which is called as the 
weighted LSM of usual, takes into account the data covariance while an ordinary LSM does not.  
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GMAJ Solution 

The method of GMAJ is based on an assumption that the absolute uncertainties are 
computed in terms of fractional uncertainties from experiments and �true� value.(1,9)  Instead 
of Vy , the LSM deals with Vy

* such that 
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where y0 is the true (unknown) value.  Only one iteration is needed with any initial guess on 
y0 because it is canceled in the evaluation of p�  using Eq. (4).  The GMAJ solution is p� = 
1.250 ± 0.265.   

Even though the GMAJ solution does not differ by too much from the rigorous Bayesian 
solution of 1.21 ± 0.30, it is argued that the method yields a most probable value instead of a 
mean value.(6) 
 
Proposed Method 

Let the Box-Cox solution mean the LSM solution with Box-Cox transformation hereafter.  
The model is same to Eq. (5), but the data that LSM deals with are different.  With the 
optimum value λ = 0, data w and Vw are computed as  
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Eq. (4), i.e. the LSM, yields the model parameter p� = 0.203 ± 0.212 so that 

203.0
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=y  . 

This y� = 1.225 ± 0.260 (let�s use this notation to avoid a confusion with p�  computed with 
w; y� = 1�y = 2�y ) looks reasonable and is same to the solution that Smith gave(6) as Method 2.  
Note that λ = 0 implies a logarithmic transformation.  Normalization is regarded as the very 
origin of PPP in most relevant studies, thus taking a logarithm that eliminates the non-
normality due to the quotient seems to be reasonable and promising.  

Table 1 shows lnL(λ) and y�  varying with λ.  Note that λ = 1, which implies no 
transformation, results in the smallest uncertainty of y� .  

 
Table 2 presents solutions from various LSMs with the same data but different 

uncertainties.  It is noticed that the estimate from GMAJ does not change at all regardless of 
the magnitude of uncertainties.  The estimate from the present procedure with λ = 0 is 
insensitive to the magnitude of uncertainties as is shown in the table (See one different 
estimate only for the case with 20% systematic and 1% statistical uncertainty), but the 
estimate with large absolute value of λ is very sensitive (not shown here).  It might be 
understood such that the magnitude of λ controls the degree of impact of inconsistency and 
correlation between data on the estimate. 

 



- 151 - 

Table 1.  Log-Likelihood Function and Box-Cox Solution to 
  Peelle�s Problem Varying with λ 

λ lnL(λ) y�  

-1.0 
-0.5 
-0.1 
0.0 
0.1 
0.5 
0.8 
1.0 
1.2 
1.5 

1.62 
2.16 
2.75 
2.79 
2.75 
2.16 
1.78 
1.62 
1.52 
1.44 

1.700 ± 0.421 
1.475 ± 0.327 
1.273 ± 0.271 
1.225 ±±±± 0.260 
1.178 ± 0.250 
1.107 ± 0.225 
0.928 ± 0.219 
0.882 ±±±± 0.218 
0.847 ± 0.221 
0.776 ± 0.229 

 
 
Table 2. Various LSM Solutions to Peelle�s Problem with Different Data Uncertainties 

Uncertainty (%) 

Systematic Statistical 
Usual LSM Chiba & Smith(1) 

(GMAJ)  
Present 

Procedure* 

20 
  20** 

10 
10 
10 
 2 
20 

20 
  10** 

10 
20 
 5 
 1 
 1 

1.071 ± 0.278 
0.882 ±±±± 0.218 
1.071 ± 0.139 
1.132 ± 0.202 
0.882 ± 0.109 
0.882 ± 0.022 
0.036 ± 0.042 

1.250 ± 0.306 
1.250 ±±±± 0.265 
1.250 ± 0.153 
1.250 ± 0.217 
1.250 ± 0.133 
1.250 ± 0.027 
1.250 ± 0.250 

1.225 ± 0.300 
1.225 ±±±± 0.260 
1.225 ± 0.150 
1.225 ± 0.212 
1.225 ± 0.130 
1.225 ± 0.026 
1.221 ± 0.244 

*  Optimum λ for Box-Cox transformation is zero for all cases.  

**  Uncertainties in the original Peelle�s problem 
�

 
3.2. Evaluation of 6Li(n,t) Cross Sections  

The cross sections of 6Li(n,t) reaction were evaluated using GMA, GMAJ, and GMA-
like LSM (i.e. a generalized LSM) with Box-Cox transformation.  Five experimental data 
sets were utilized: Lamaze et al. 1978, Fort and Marquette 1972, Fort 1970, Poenitz and 
Meadows 1972, and Friesenhahn et al. 1974.  Cross sections in data sets distributed to the 
CRP participants are those already adjusted to total 51 energy grids from 2.5 keV to 800 keV 
for GMA.  Each set of Lamaze and of Friesenhahn includes data over the whole energy 
range, but these two sets are discrepant from each other.  The Friesenhahn set seems to cause 
PPP in this evaluation.  Meanwhile, note that comparisons(7,12,13) of the LSM with the 
Bayesian method codes with and without physics model have been conducted.  Such inter-
comparisons are beyond the scope of this article, however, it is pointed out here that 
preliminary analysis using RAC, a R-matrix code, seems to reveal PPP, too.  For the same 
reaction, the results from GLUCS, a non-model Bayesian code, are essentially same to those 
from GMA. 



- 152 - 

Table 3 and Figure 1 compare results from three approaches, which are conceptually 
different from each other but utilize same tool in curve fitting itself.  While the GMA 
solution runs below almost all experimental data points, the solution from present procedure 
(say, Box-Cox solution) passes through data points.  The optimum λ for the transformation is 
determined as �0.07.  Throughout the entire energy region, the Box-Cox cross sections are 
consistently higher than GMA cross sections by 10~15 % and than GMAJ�s by 0.5~1.5%. 
GMAJ solution is not well distinguished from the Box-Cox solution in the Figure.  The 
percent uncertainties in Box-Cox cross sections are consistently smaller than those from GMA 
by 2~6% and are comparable with those from GMAJ.  However, absolute uncertainties of 
Box-Cox solution are larger than GMA�s.  

Table 4 shows covariances and correlations between the cross section, as an example, at 
0.2 MeV and cross sections at any other energy grids.  No significant difference in 
�correlations� is found between three solutions except that Box-Cox correlations are slightly 
larger than those from GMA.  Meanwhile, the Box-Cox �covariances� are much larger than 
GMA�s very consistently, by ~13 % at almost every energy point.  The same trend, with 
magnitudes of 12~15% difference, is found from other rows of covariance matrices.  Thus 
the univariate variance from the present procedure is larger than that from GMA by 13%.  
The univariate variance, as a kind of single measure of magnitude of uncertainties, is sum of 
all elements of covariance matrix divided by the number of elements.  

The χ2 value per degree of freedom increases from 9.7 in GMA to 11.2 in Box-Cox 
solution with optimum λ and to 11.0 with λ = 0, as was expected at the beginning.  It is 
reminded, however, that the χ2 is less meaningful when the governing probability distribution 
deviates from the normal distribution.  

Intuitively one may adopt zero for λ  to take a logarithm.  It is equivalent to linearizing 
a quantity in a form of quotient or multiplication of two or more sub-quantities.  Cross 
section from ratio measurement is an example of such quantity.  However, in this test 
evaluation on 6Li(n,t) reaction, the Box-Cox procedure with λ = 0 results in cross sections 
smaller than those with optimum λ = �0.07 by 1% consistently throughout the entire energy 
region.  Very likely, a theoretician may prefer zero to other values near zero.  Nevertheless, 
the 1% difference in the sample evaluation is not negligible, so it is recommended to search 
an optimum value that might be near zero but not zero.  Two-digit precision might be enough 
for most applications including 6Li(n,t) evaluation.  

Figure 2 shows one of sensitivity calculation results.  Only two data sets, Lamaze and 
Friesenhahn, are utilized for the evaluation.  The original systematic uncertainties are 1.6% 
and 2.7% for Lamaze cross sections and Friesenhahn�s, respectively.  Evaluated cross 
sections from GMA and Box-Cox procedure with these two sets are not much different from 
those in Figure 1.  Now let a test problem assume 10% systematic uncertainties to each data 
set.  As shown by a dotted line in lower part of the figure, GMA resulted in meaningless 
cross sections.  However, the present procedure, with the optimum λ = �0.002, produced 
reasonable estimates again.  Indeed, it is not distinguished from the Box-Cox solution with 
the original uncertainty data (optimum λ = �0.04); the differences in two sets of evaluated 
cross sections are less than 0.3%.  In short, with a λ near zero, the proposed procedure is 
insensitive to given data uncertainties.  
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Table 3. Evaluated 6Li(n,t) Cross Sections 

GMA GMAJ Present Procedure 
En (MeV)  

CS (b) Unc. (%) CS (b) Unc. (%) CS (b) Unc. (%) 
2.50E-03 
3.50E-03 
4.50E-03 
5.50E-03 
6.50E-03 

2.568 
2.139 
1.855 
1.739 
1.577 

3.4 
3.2 
3.0 
2.6 
2.5 

2.835  
2.364  
2.072  
1.938  
1.770  

3.4  
3.2  
3.1  
2.5  
2.6  

2.873 
2.395 
2.092 
1.956 
1.783 

3.1 
3.0 
2.8 
2.4 
2.3 

7.50E-03 
8.50E-03 
9.50E-03 
1.50E-02 
2.00E-02 

1.469 
1.414 
1.288 
1.045 
0.955 

2.5 
2.2 
1.8 
1.7 
1.8 

1.659  
1.584  
1.445  
1.172  
1.068  

2.5  
2.2  
1.8  
1.7  
1.8  

1.669 
1.597 
1.456 
1.181 
1.076 

2.3 
2.1 
1.6 
1.6 
1.7 

2.40E-02 
3.00E-02 
4.50E-02 
5.50E-02 
6.50E-02 

0.866 
0.766 
0.670 
0.630 
0.604 

1.9 
1.8 
1.8 
1.8 
1.9 

0.963  
0.865  
0.751  
0.705  
0.672  

1.9  
1.8  
1.7  
1.7  
1.8  

0.971 
0.870 
0.755 
0.709 
0.677 

1.8 
1.6 
1.7 
1.7 
1.7 

7.50E-02 
8.50E-02 
9.50E-02 
1.00E-01 
1.20E-01 

0.579 
0.608 
0.599 
0.597 
0.640 

1.9 
1.4 
1.8 
1.6 
1.4 

0.643  
0.674  
0.662  
0.664  
0.710  

1.8  
1.3  
1.6  
1.5  
1.3  

0.648 
0.679 
0.667 
0.669 
0.715 

1.8 
1.3 
1.6 
1.5 
1.3 

1.50E-01 
1.70E-01 
1.80E-01 
1.90E-01 
2.00E-01 

0.795 
1.005 
1.209 
1.449 
1.727 

1.4 
1.6 
1.6 
1.5 
1.6 

0.881  
1.118  
1.342  
1.610  
1.920  

1.3  
1.5  
1.5  
1.4  
1.4  

0.887 
1.126 
1.352 
1.621 
1.932 

1.3 
1.5 
1.5 
1.4 
1.4 

2.10E-01 
2.20E-01 
2.30E-01 
2.40E-01 
2.45E-01 

2.060 
2.490 
2.804 
2.942 
2.895 

1.4 
1.4 
1.5 
1.8 
1.6 

2.287  
2.765  
3.106  
3.254  
3.200  

1.3  
1.3  
1.4  
1.6  
1.5  

2.301 
2.781 
3.127 
3.271 
3.225 

1.3 
1.3 
1.4 
1.7 
1.5 

2.50E-01 
2.60E-01 
2.70E-01 
2.80E-01 
3.00E-01 

2.859 
2.557 
2.313 
1.908 
1.379 

1.6 
1.5 
1.7 
1.6 
1.6 

3.171  
2.835  
2.605  
2.191  
1.568  

1.4  
1.4  
1.4  
1.3  
1.3  

3.194 
2.850 
2.619 
2.192 
1.571 

1.5 
1.4 
1.5 
1.5 
1.4 

3.25E-01 
3.50E-01 
3.75E-01 
4.00E-01 
4.25E-01 

0.992 
0.760 
0.626 
0.546 
0.481 

1.8 
1.8 
1.8 
2.0 
3.0 

1.126  
0.853  
0.701  
0.611  
0.553  

1.5  
1.6  
1.5  
1.7  
2.3  

1.130 
0.858 
0.705 
0.614 
0.556 

1.7 
1.7 
1.6 
1.8 
2.7 

4.50E-01 
4.75E-01 
5.00E-01 
5.20E-01 
5.40E-01 

0.387 
0.387 
0.358 
0.342 
0.323 

4.8 
2.7 
3.0 
3.0 
3.3 

0.432  
0.428  
0.402  
0.381  
0.354  

4.6  
2.5  
2.7  
2.7  
3.0  

0.434 
0.432 
0.405 
0.385 
0.356 

4.4 
2.5 
2.8 
2.8 
3.0 

5.70E-01 
6.00E-01 
6.50E-01 
7.00E-01 
7.50E-01 

0.315 
0.293 
0.272 
0.256 
0.238 

2.9 
2.4 
2.5 
2.4 
2.4 

0.351  
0.325  
0.305  
0.284  
0.265  

2.5  
2.1  
2.2  
2.2  
2.1  

0.354 
0.327 
0.307 
0.286 
0.267 

2.6 
2.2 
2.3 
2.2 
2.2 

8.00E-01 0.224 2.4 0.250 2.2 0.251 2.2 
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     Figure 1. Evaluated 6Li(n,t) Cross Sections  
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    Figure 2. Results of Test Evaluation of 6Li(n,t) Cross Sections using Two Data Sets 
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Table 4. Evaluated Covariances and Correlations between 6Li(n,t) Cross Sections at 
     0.2 MeV and other Energy Grids 

GMA GMAJ Present Procedure 
En (MeV)  

Covar. (b2) Correl. (%) Covar. (b2) Correl. (%) Covar. (b2) Correl. (%) 
2.50E-03 
3.50E-03 
4.50E-03 
5.50E-03 
6.50E-03 
7.50E-03 
8.50E-03 
9.50E-03 
1.50E-02 
2.00E-02 

4.68E-04 
3.89E-04 
3.38E-04 
3.17E-04 
2.87E-04 
2.68E-04 
2.58E-04 
2.35E-04 
1.90E-04 
1.73E-04 

20 
21 
23 
26 
27 
28 
30 
38 
39 
37 

5.48E-04 
4.61E-04 
4.15E-04 
3.74E-04 
3.48E-04 
3.28E-04 
3.10E-04 
2.85E-04 
2.29E-04 
2.03E-04 

21 
22 
24 
28 
28 
29 
32 
40 
41 
39 

5.27E-04 
4.39E-04 
3.84E-04 
3.59E-04 
3.27E-04 
3.06E-04 
2.93E-04 
2.67E-04 
2.16E-04 
1.97E-04 

21 
22 
24 
28 
28 
29 
32 
40 
41 
39 

2.40E-02 
3.00E-02 
4.50E-02 
5.50E-02 
6.50E-02 
7.50E-02 
8.50E-02 
9.50E-02 
1.00E-01 
1.20E-01 

1.57E-04 
1.39E-04 
1.21E-04 
1.14E-04 
1.09E-04 
1.06E-04 
1.09E-04 
1.05E-04 
1.08E-04 
1.15E-04 

35 
38 
37 
37 
36 
35 
47 
37 
42 
46 

1.80E-04 
1.65E-04 
1.38E-04 
1.29E-04 
1.23E-04 
1.18E-04 
1.17E-04 
1.16E-04 
1.17E-04 
1.24E-04 

37 
40 
39 
39 
38 
37 
49 
39 
44 
48 

1.77E-04 
1.59E-04 
1.38E-04 
1.29E-04 
1.23E-04 
1.19E-04 
1.24E-04 
1.19E-04 
1.22E-04 
1.29E-04 

37 
40 
39 
39 
38 
37 
49 
39 
44 
48 

1.50E-01 
1.70E-01 
1.80E-01 
1.90E-01 
2.00E-01 
2.10E-01 
2.20E-01 
2.30E-01 
2.40E-01 
2.45E-01 

1.42E-04 
1.83E-04 
2.21E-04 
2.59E-04 
7.26E-04 
3.71E-04 
4.48E-04 
5.00E-04 
5.16E-04 
5.15E-04 

46 
43 
41 
43 
100 
48 
48 
44 
36 
42 

1.52E-04 
2.06E-04 
2.43E-04 
2.82E-04 
7.52E-04 
4.06E-04 
4.93E-04 
5.50E-04 
5.62E-04 
5.62E-04 

49 
45 
43 
45 

100 
50 
50 
46 
38 
44 

1.60E-04 
2.07E-04 
2.49E-04 
2.92E-04 
7.82E-04 
4.18E-04 
5.05E-04 
5.63E-04 
5.82E-04 
5.80E-04 

48 
45 
43 
45 

100 
50 
50 
46 
38 
44 

2.50E-01 
2.60E-01 
2.70E-01 
2.80E-01 
3.00E-01 
3.25E-01 
3.50E-01 
3.75E-01 
4.00E-01 
4.25E-01 

5.09E-04 
4.57E-04 
4.23E-04 
3.49E-04 
2.46E-04 
1.81E-04 
1.39E-04 
1.11E-04 
9.57E-05 
8.80E-05 

42 
43 
41 
42 
42 
37 
37 
37 
32 
23 

5.40E-04 
4.96E-04 
4.34E-04 
3.54E-04 
2.53E-04 
1.85E-04 
1.45E-04 
1.16E-04 
9.80E-05 
8.42E-05 

44 
45 
43 
44 
45 
39 
39 
39 
34 
24 

5.75E-04 
5.15E-04 
4.83E-04 
4.04E-04 
2.84E-04 
2.08E-04 
1.58E-04 
1.26E-04 
1.09E-04 
1.02E-04 

44 
45 
43 
44 
45 
39 
39 
39 
34 
24 

4.50E-01 
4.75E-01 
5.00E-01 
5.20E-01 
5.40E-01 
5.70E-01 
6.00E-01 
6.50E-01 
7.00E-01 
7.50E-01 

7.12E-05 
6.65E-05 
6.54E-05 
6.24E-05 
5.28E-05 
5.75E-05 
5.09E-05 
4.97E-05 
4.67E-05 
4.35E-05 

14 
23 
22 
22 
18 
24 
27 
27 
28 
28 

8.21E-05 
7.29E-05 
7.01E-05 
6.67E-05 
5.71E-05 
5.97E-05 
5.47E-05 
5.17E-05 
4.95E-05 
4.64E-05 

15 
25 
24 
24 
20 
25 
29 
28 
29 
30 

8.05E-05 
7.56E-05 
7.46E-05 
7.08E-05 
5.95E-05 
6.50E-05 
5.78E-05 
5.64E-05 
5.27E-05 
4.91E-05 

15 
25 
24 
24 
20 
25 
29 
28 
29 
30 

8.00E-01 4.10E-05 28 4.46E-05 30 4.62E-05 29 

Average 2.20E-04  2.43E-04  2.47E-04  
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4. Conclusion and Remarks 
 
The CRP encountered Peelle�s Pertinent Puzzle during the evaluation of 6Li(n,t) cross 

section as one of standard cross sections of light elements.  For resolving the Puzzle, 
proposed is a method that adopts Box-Cox transformation in combining with a usual curve 
fitting method.  The method incorporated into a generalized least-squares code GMA shows 
good performance in a test, but realistic evaluation of the 6Li(n,t) reaction cross section as 
well as in the Peelle�s problem.  

In addition to the principal conclusion above, several findings, along with future works, 
are summarized as follows.  

(1) The degree of impact of inconsistency and correlation between raw data on the 
resulting estimate is controlled by the magnitude of λ in the Box-Cox transformation.  For 
instance, a logarithmic transform makes the estimate be insensitive to the magnitude of 
uncertainties in the Peelle�s problem.   

(2) The optimum λ is rather small, but not zero, in 6Li(n,t) cross section evaluation.  
Taking zero for λ may look reasonable and even physical for, for instance, normalized cross 
sections.  However, blind taking zero is not recommended.  On the other hand, further 
study is planned for dealing with data types other than the type of absolute cross section, such 
as sum of several cross sections.  Then, if the CRP agrees on the necessity for the proposed 
method instead of or parallel to Chiba�s approach, the method will be implemented to GMA.  

(3) The proposed method results in smaller fractional uncertainties (but larger absolute 
uncertainties) than those from GMA.  Regarding the expansion of �calculated� uncertainties 
as one of the CRP issues, the method seems not to provide any good justification.  When an 
evaluator encounters strange estimates, he/she will review the raw data at hands as the first 
action.  However, doing that is beyond the role of the method proposed here: the method 
deals with the data sets as they are given, neither adds something to raw data nor interprets 
given data subjectively.  As Badikov has proposed,(14) a systematic search for unrecognized, 
thus excluded from the reported uncertainties might be one of resolutions for PPP�� as well as 
for expanding uncertainties.  That approach is the other version of the first option mentioned 
at Section 2.1 of this article.  
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Two approaches are mainly used for non-model nuclear cross section evaluation: 
Gauss-Markov-Aitken general least squares formalism[1] implemented in GMA code [2] and 
Bayes formalism [1,3] implemented in GLUCS code [4].  There are general statements that 
both should led to the same result if the influence of a prior to the posterior evaluation is 
infinitely small (a case of so-called uninformative prior) or if as a prior, the data set which 
contributes in evaluation was chosen.  The analytical proof of equivalence of GMA and Bayes 
formalism is given in paper by N.M. Larson included in this Summary Report. 

Bayes approach uses iteration type of solution for posterior evaluation. At each step 
with inclusion of new data set, the data adjustment vector δT is presented as: 

δT=T'-T=MG+(GMG++V)-1(R-RT), (1) 
where:  T' is a vector of posterior evaluation, 

 T is a prior vector, 

 G is a matrix of sensitivity coefficients with the matrix element gij=∂Ri/∂Tj 

 M is covariance matrix of prior data, 

 V is covariance matrix of experimental data, 

 R is a vector of experimental cross section and 

 RT is a vector of prior cross section wit values interpolated to the point where R is 
 given and the upper scripts (+) and (-1) mean transpose and inverse operation 
 respectively. 

The adjustment matrix δM which brings to the covariance matrix of posterior 
evaluation M' is calculated as: 

δM=M'-M=-MG+(GMG++V)-1GM (2) 
General least squares Gauss-Markov-Aitken (GMA) formalism gives in close 

variables definition (see [1], equations (33.15) and (33.30)): 

δT=T'-T=(G+WG)-1G+WR=(G+V-1G)-1G+V-1(R-RT) (3) 

and 

δM=M'-M=(G+WG)-1G+WV((G+WG)-1G+W)+  =σ2(G+WG)-1=(G+V-1G)-1, (4) 

where:  W is a matrix of relative weights with W=σ2 V-1  

 σ2 is a scale factor, which is determined from the sum of squared residuals. 
Comparing (1) with (3) and (2) with (4), we see that GMA equations do not require 

the knowledge of any prior cross section and its covariance matrix if, under T in (3) we 
understand any experimental data set belonging to the ensemble of data which are fitted.  The 
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same is true for Bayes formalism if as initial prior in successive iteration procedure the 
experimental data set belonging to the ensemble of data to be fitted is selected. 

To check the performance GMA and GLUCS codes and their consistency two tests 
were prepared.  In the first test (TEST1), five non-correlated experimental data sets for 
6Li(n,α) reaction covering neutron energy from 2.5 to 800 keV were used. These pseudo-
experimental cross sections, given in Appendix, were taken from GMA database [4].  Central 
values were taken as they are given in [4] and covariance matrix was prepared from two 
components: systematical (or long energy range correlative component (LERC)) and 
statistical (or short energy range correlative component (SERC)), because some model codes, 
which could also participate in the intercomparison, cannot treat medium energy range 
correlations.  The data for TEST1 with first data set treated by GLUCS as a prior are shown in 
Annex 4 of this Summary Report.  It was found that the version of the GMA code described 
in [4] and submitted to the IAEA at November 1999 contains some simple bug: the 
nullification of the vector BM, which used for calculation of the central value adjustment 
vector was misplaced inside the cycle on experimental data.  As result only last experimental 
block for each data type treated by GMA is contributed in the adjustment vector with right 
account of statistical weight of this data block.   

The results of comparison between GLUCS code and corrected GMA code are 
shown in Fig. 1 together with the experimental data and R-matrix model fit with RAC code 
[5].  The details of RAC fitting will be discussed in another paper.  Figures 2 to 4 shows the 
difference presented as ratio of GMA to GLUCS result more clear.  As we see it has probably 
some stochastic nature and caused presumably pure numerical inaccuracies in the different 
ways of calculations (see equations (1) and (3)).  As we see also from Fig. 1 the data 
evaluated with GMA and GLUCS lay at few per cents below majority of experimental data 
and their R-matrix model fit.  There are no visible discrepancies in the evaluated covariance 
matrices as it will be shown in another paper.  Lets show that this behaviour of central values 
is a direct consequence of the Peelle’s Pertinent Puzzle (PPP) [6] (for strongly variable data 
when some covariances have larger value than variances).  It looks like the fit of resonance 
curve in space of R-matrix model parameters is practically free from PPP.   

As we see from (3), the central values will be not changed if we multiply at the same 
factor the covariance matrices of all fitted data.  This was checked also numerically for GMA.  
By this multiplication we may always reduce the chi-square to the value of order 1.  This can 
be done also with data for TEST1 case.  But this means, that if we have some abnormalities in 
central values after fitting, we can not remove them by simple multiplication of covariances of 
all data at the same factor as well as good (less than 1.0) chi-square can not guarantee that 
PPP does not contribute in the bias of evaluated cross sections. 

To show which role plays PPP in TEST1 case, the fitting with different LERC 
relative contribution in the same total uncertainty was done.  For this the TEST1 experimental 
covariance data for GMA were slightly modified providing the fitting with different long-
range correlation coefficients but with the same diagonal components of covariance matrices.  
The results of calculation are shown in Fig. 5 for 0, 14, 24, 36, 50, 66, 84, and 99% LERC 
correlations.  Chi-square of fitting was respectively 9.2, 9.0, 9.4, 10.5, 15.0, 17.8, 21.8 and 
1134.  It is clearly seen how with the increase of the LERC the central values of evaluated 
data are decreasing.  As discussed in [6] this reduction happens if covariance matrix of fitted 
experimental data contains elements: 

Vij > Vkk            for any i, j, k and i≠j.   (5) 
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This often happened when data have strong variation or have strong LERC or both.  6Li(n,α) 
reaction has one order of magnitude variation in the fitted energy region with rather large 
estimated cross-energy correlations in matrices experimental data.  The covariance matrix will 
contain elements, which satisfy (5).   

The iterative approach to exclude effect of PPP was proposed in [6].  It is based on 
minimization procedure of modified minimized functional containing not variances, but 
percentage errors which are free from “top-bottom” asymmetry in the error presentation.   

Because LERC are determined by the experimental conditions we have no real 
justification to their decrease if constructed covariance matrix of uncertainty of experimental 
data is a positive definite matrix.  But to free from PPP we probably can use also the other 
approach, - transformation of the data in the form where they are more smoothed, their least-
squares fitting free from PPP and then backward transformation.  R-matrix model fit presents 
possibly a particular example of this type of transformation, when the number of parameters is 
changed during transformation. 

It was checked that order of the data input (what is equal to the order in which data 
are processed) does not influence at final GMA and GLUCS results. 

The second test, TEST2, was used to check numerical convergence of the results of 
calculations with GLUCS and GMA in conditions when more and more data are included in 
the fitting.  TEST2 was formulated in such a way, that the result of fitting when number of 
included data sets will be increased to the infinity is a priori known.  For this one data set 
(Lamaze et al. data, see Appendix 1) was taken as a prior data for GLUCS or first data set for 
GMA and Fort&Marquette data set was repeatedly introduced 1, 2, 4, 20, 100 or 500 times.  It 
is evident that evaluated data (central values) should asymptotically converge to the 
Fort&Marquette data in the points where these data are given.  The results of intercomparison 
where also “old” GMA fitting is presented [7] are shown in Table 1 and Fig. 6.  Here we refer 
at “old” GMA, as a version of the code, which was updated by S. Chiba in 1990 and since this 
time was frozen [8].  The comparison of the part of correlation matrix evaluated with GLUCS 
and GMA for 1+20 data sets is shown in Table 2.  Differences marked by bold are 
insignificant.  Good convergence of GMA fitting to the asymptotic value is demonstrated on 
Fig. 7.  The difference from asymptotic value for 1+500 experimental data sets is less than 
0.1%. 

In conclusion we can summarize that: 

1. Data fitting with GMA and GLUCS gives consistent results.  Difference in the 
evaluated central values obtained with different formalisms can be related to the general 
accuracy with which fits could be done in different formalisms. It has stochastic nature and 
should be accounted in the final results of the data evaluation as small SERC uncertainty. 

2. Some shift in central values of data evaluated with GLUCS and GMA relative the 
central values evaluated with R-matrix model code RAC is observed for case of fitting 
strongly varying data and is related to the PPP.  The procedure of evaluation, free from PPP, 
should be elaborated. 
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Fig.2. Intercomparison of GMA and GLUCS fitting for five data sets in TEST1 case. Ratio to the GLUCS result is shown in 
the lower part of the Figure. 
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Fig.3. Intercomparison of GMA and GLUCS fitting for two data sets in TEST1 case. Ratio to the GLUCS result is shown in 
the lower part of the Figure. 
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Fig. 4. Intercomparison of GMA and GLUCS fitting for two and five data sets in TEST1 case. Ratio to the GLUCS result (2 
data sets) is shown in the lower part of the Figure. 



- 167 - 

Fig. 5. GMA least-squares fit for five data sets in dependence from LERC component of the uncertainty. Ratio to 
the GLUCS (LERC=0%) result is shown in the lower part of the Figure. 
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Table 1. Results of TEST2 intercomparison of GLUCS, GMA and “old” GMA runs for fitting 
of 1+20 data sets. 

Energy, 
MeV 

Prior cross 
section, b 

GLUCS 
cross 
section, b 

GLUCS 
uncert., 
% 

“old” 
GMA 
cross 
section, b 

“old” 
GMA 
uncert., 
% 

GMA cross 
section, b 

GMA 
error, 
% 

Asymptotic 
cross section 

0.1500E-01 1.2750E+00 1.2130E+00 1.3 1.216 1.3 1.21287357 1.3 0.1201E+01 

0.2000E-01 1.1300E+00 1.0651E+00 1.3 1.068 1.3 1.06535440 1.3 0.1052E+01 

0.2400E-01 1.0030E+00 9.8248E-01 1.3 0.9835 1.3 0.98247242 1.3 0.9835E+00 

0.3000E-01 9.2170E-01 9.2937E-01 1.2 0.9295 1.2 0.92967401 1.2 0.9390E+00 

0.4500E-01 7.7240E-01 8.0081E-01 1.1 0.8000 1.1 0.80146843 1.1 0.8134E+00 

0.5500E-01 7.2400E-01 7.1557E-01 1.1 0.7160 1.1 0.71542517 1.1 0.7176E+00 

0.6500E-01 6.9080E-01 6.5287E-01 1.1 0.6544 1.1 0.65250817 1.1 0.6509E+00 

0.8500E-01 6.5780E-01 6.4752E-01 1.1 0.6482 1.1 0.64753796 1.1 0.6490E+00 

0.9500E-01 6.6190E-01 6.4476E-01 1.2 0.6460 1.2 0.64512242 1.2 0.6449E+00 

0.1000E+00 6.5140E-01 6.5620E-01 1.0 0.6559 1.1 0.65644364 1.0 0.6617E+00 

0.1200E+00 6.9840E-01 7.1957E-01 1.0 0.7170 1.0 0.71979811 1.0 0.7309E+00 

0.1500E+00 8.6130E-01 8.5719E-01 1.0 0.8573 1.0 0.85736460 1.0 0.8620E+00 

0.1700E+00 1.1400E+00 1.0465E+00 1.1 1.051 1.1 1.04592191 1.1 0.1027E+01 
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Fig.6. Convergence of GMA, “old” GMA and GLUCS evaluated cross sections to their asymptotical values for three energy points. 
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Table 2. Comparison of the correlation coefficients obtained with GMA and GLUCS in 
TEST2 for fitting of 1+20 data sets.  

Code Pt# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
GMA 9 8 8 12 16 16 18 19 24 100            
GLUCS 9 8 8 12 16 16 17 19 24 100            
GMA 10 8 8 12 16 16 18 19 24 42 100           
GLUCS 10 8 8 12 16 16 17 19 24 42 100           
GMA 11 8 8 12 16 16 18 19 24 42 42 100          
GLUCS 11 8 8 12 16 16 17 19 24 43 43 100          
GMA 12 8 9 12 16 17 19 20 26 44 44 45 100         
GLUCS 12 8 9 12 16 17 18 20 26 44 44 44 100         
GMA 13 9 9 13 17 18 20 21 27 47 47 48 50 100        
GLUCS 13 9 9 13 18 18 20 22 28 48 48 48 50 100        
GMA 14 9 10 14 18 19 21 22 29 50 50 51 53 57 100       
GLUCS 14 9 10 14 18 19 21 23 29 51 50 51 53 58 100       
GMA 15 9 10 14 18 19 21 22 29 51 51 52 54 58 61 100      
GLUCS 15 9 10 14 18 19 20 22 28 51 51 52 54 58 61 100      
GMA 16 9 10 14 19 19 21 23 29 51 51 52 55 59 62 63 100     
GLUCS 16 9 10 14 19 19 21 23 29 52 52 52 54 59 62 62 100     
GMA 17 8 9 13 17 18 19 20 27 46 46 47 49 53 56 56 57 100    
GLUCS 17 8 9 13 17 18 19 21 26 46 46 47 49 53 55 56 57 100    
GMA 18 10 10 14 19 20 22 23 30 52 52 53 55 59 62 63 64 57 100   
GLUCS 18 10 10 14 19 20 21 23 30 52 52 53 55 60 62 63 64 57 100   
GMA 19 10 11 15 20 21 22 24 31 54 54 55 57 61 65 66 67 60 67 100  
GLUCS 19 10 11 15 20 21 22 25 31 54 54 55 57 63 65 65 67 60 67 100  
GMA 20 10 10 15 20 20 22 24 31 53 53 54 56 60 64 65 65 59 66 68 100 
GLUCS 20 10 11 15 20 21 22 24 31 54 54 54 56 61 64 64 65 59 66 69 100 
GMA 21 9 9 13 18 18 20 21 28 48 48 49 51 55 58 59 59 53 60 62 61 
GLUCS 21 9 9 13 18 18 20 22 28 48 48 48 50 55 58 58 59 53 60 62 61 
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Fig.7. Convergence of GMA evaluated cross sections to their asymptotical values for fit of (1+500) experimental data sets. 
Ratio to the “asymptotic” (Fort&Marquette) data is shown in the lower part of the Figure. 
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Does model fit decrease the uncertainty of the data  
in comparison with a general non-model least squares fit? 

 
V.G. Pronyaev 

Nuclear Data Section, IAEA 
Last revision: 13 January 2003 

 
 
The quantitative answer at this question may depend from the measure, to be chosen by 

us for characterization of the uncertainty.   
 
 
Information entropy as a measure of our knowledge about the object 
 
It was shown by C.E. Shannon [1], that convenient generalized measure of our 

knowledge about the object can be an information entropy H, determined for any univariate 
probability distribution function as: 

 
iii

ppH lnΣ−=          (1) 

 
if p1,�,pn is a discrete probability distribution function with 1=Σ ii

p , and 

 

∫
+∞

∞−

−= dxxpxpH )(ln)(         (2) 

 

if p(x) is a continuum density distribution function with ∫
+∞

∞−

= 1)( dxxp .  

 
Logarithmic base e is chosen here for convenience.  We should remember also that the 

information entropy is not a directly observed (measurable) quantity.  It is introduced as some 
measure of knowledge about the data characterized by particular probability distribution 
function.  Value of information entropy H0 is equal zero when the probability distribution 
function pk=1 and pi=0, i≠k for discrete and H0 → -∞ for p(x) → δ(x-xk) where δ is a Fermi delta 
function for continuum probability distribution.  For all other cases H is grater than H0. 

 
We will limit our consideration below by continuous normal (Gaussian) probability 

distribution function.  This is because the statistical component of the uncertainty in the nuclear 
data measurements related with the number of counts by detector has this distribution.  Many 
other components of the uncertainty may have different nature and characterized by non-normal 
probability distribution function.  Because of large number of these components having different 
probability distributions and wide spread in the uncertainty, the total non-statistical component 
of the uncertainty according the central limit theorem will be well approximated by the normal 
distribution function. 

 
One-dimensional (univariate) normal (Gaussian) probability distribution function has a 

form: 
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with normalization: 
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Average (most probable) value x0 is determined by the first momentum of the probability 

distribution function: 

∫
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and dispersion σ  is determined as a square root from the second momentum of the probability 
distribution function: 

 

∫
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Information entropy H for univariate normal probability distribution function has the 

value: 
 

)2ln( σπ=H          (7) 
 
Comparing information entropy H for discrete (1) and continuum normal probability 

distribution function (7) we immediately see the difference.  For discrete distribution, H gives 
the absolute measure the entropy with H=0 if pi=1 for all i≠k and H>0 for all other cases.  For 
continuum normal probability distribution function H gives [1] relative (the coordinate system) 
value with H=-∞when σ 0→ , H=0 when σ=1/ π2  and H=+∞when σ +∞→ .  This is because 
discrete pi is dimensionless but continuum pi(x) is a density function, dimension of which 
depends from scale of the axis.  Because here we will be interested only by changes in the 
relative values of information entropy this feature of continuum distribution is considered as 
unimportant. 

 
These formulas can be generalized for case of multivariate probability distribution 

function [2,3].  Let consider N data values x1, x2, �, xN which can be correlated or not, but 
characterized by generalized N-dimension Gaussian (normal) probability distribution function: 
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where 
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and ijC  in the nominator (8) is determinant of adjoint matrix obtained from covariance matrix C 
by deleting i-th row and j-th column and multiplying by (-1)i+j.  The multivariate probability 
distribution function is normalized at 1: 
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Lets evaluate H for multivariate case: 
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Substituting (12) in (11) and taking into account (9) and that CC NC
N

ji
ijij =∑

=1,

, we will get after 

integration: 
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Last presentation of H gives separation at pure �phase space� and �covariance� contributions. 
But �covariance� contribution is presented by the determinant of rank N is clearly depended 
from details (N, number of points) with which data are presented. 
 

Let see the properties of H.  If C is covariance matrix of data uncertainties it should be 
symmetric and positive definite matrix.  The last requirement means that it can be transformed in 
diagonal form where all diagonal elements (eigenvalues) are positive. The determinant of this 
matrix, which should be equal to the determinant of the primary matrix (because the unitary 
transformation is used for reduction to the diagonal form) is just the product of all diagonal 
elements.  Let show that the generalization of H to multivariate case (13) with possible 
interpretation it as a measure of uncertainty contradicts to our common sense in understanding of 
uncertainty. 

 
Consider a simple two-point (bivariate) case with a central values equal to 10 at each 

point and covariance matrix with the values on major diagonal � variances (1, 1) and out of 
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diagonal � covariances (0.5, 0.5). Then the determinant will be equal to D2=1*1-0.5*0.5=0.75 
and H=2.694.  The sign of the off-diagonal elements, which determines the existence of either 
correlations (+) or anti-correlations (-) between points, does not play any role for bivariate case.  
Lets keeping variances unchanged reduce correlations between two points to 0.  Then D2=1 and 
H=2.838.  If we increase correlations to 1, we will have D2=0 and H=-∞.  This means that the 
data with the same variances but with largest correlations between points will have the lowest 
information entropy.  It does not contradict to our feelings, if we interpret H as a measure of 
knowledge about the object, which includes simultaneously the details with which we know the 
object and uncertainty in these details.  Hundred per-cent correlation between points means that 
although there is an error at each point, there is no any uncertainty in the shape. Zero per-cent 
correlation between points means that in addition to the error at each point we have some 
freedom in the shape.  Data in last case are clearly less informative then in previous one.  But if 
we will interpret H as a measure of uncertainty, then increasing of covariances can be interpreted 
as increasing of uncertainties and should led to the increase of the information entropy, but we 
see just opposite behavior.   

 
 
Reduced univariate variance as a common measure of uncertainty 
 
Let introduce a measure of uncertainty, which does not depend from details with which 

data are presented.  This could be so-called one-group uncertainty varU obtained through 
collapsing (reduction, averaging) multivariate distribution to the univariate one.  According the 
error propagation law [4], if we have multivariate correlated data set x1, x2, �, xN  with 
covariance matrix cov(xi,xj) and would like to collapse it in one-group (univariate) value through 
simple arithmetic avarege U=(x1+x2+�+xN )/N, the variance of this one-group value will be: 
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In reality the equation for U can be more complex, accounting the widths of the energy bin or 
weight of each data point but for our demonstration purposes we use the simplest form for U.  

Because 1=
∂
∂

ix
U  for any i we will get the simplest estimation: 
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The following one-group uncertainties can be obtained for two-point (bivariate) 

example given above. For hundred per-cent correlation case the collapsed one-group variance is 
varU=(1+1+1+1) /4=1 (no reduction of uncertainty).  For zero per-cents correlation case the 
reduced one-group variance will be varU=(1+1+0+0)/4=0.5.  For fifty per-cents correlation case 
the one-group uncertainty will be varU=(1+1+0.5+0.5)/4=0.75.  If we have negative off-diagonal 
elements (-0.5, -0.5) (fifty per-cents anti-correlations between points), varU=(1+1-0.5-
0.5)/4=0.25.  For hundred per-cents anti-correlations between points, varU=0 with a full 
cancellation of uncertainties.  This measure does not depend from the number of points, in which 
data are presented and can be considered as a generalized measure of uncertainty of the data 
obtained in different least squares fits. 

 
 
Covariances in the model versus non-model least square fits 
 
The comparison of the covariance matrices obtained in the model and non-model fits of 

the same experimental data is based on preliminary results obtained by Chen Zhenpeng [5] with 



- 176 - 

R-matrix code RAC and by V. Pronyaev [6] with the general least square code GMA and 
Bayesian code GLUCS.  The same five sets of experimental data for 6Li(n,α) reaction were used 
for tests and intercomparisons.  All codes have shown their good performance and close results 
in evaluation of central values [6].  Here we discuss mainly some differences in covariance 
matrixes obtained in the model versus non-model least square fits having relation to the model 
influence.  In all cases when additional (to five selected data sets) data were needed for 
unambiguous run of any code, they have been added mostly as an uninformative prior. 

 
Let consider first the simple case of one experimental data set by G.P. Lamaze et al. 

[8], which is fitted by R-matrix model code RAC (see Table 1).  The model fit smoothed the 
central values of the evaluated cross sections according to the shape predicted by the model.  But 
what we also see is the substantial reduction of the errors, or more strictly speaking variances, in  

 
Table 1. Comparison of experimental data with their model R-matrix fit. 
 
Point 
# 

Energy, 
MeV 

Experimental 
cross section, b 

Model eval. cross 
section, b 

Experimental 
error, % 

Model eval. 
error, % 

1 0.2500E-02 3.0420E+00 0.30559E+01 6.9957E+00 2.2686 
2 0.3500E-02 2.5700E+00 0.25828E+01 6.6189E+00 2.1389 
3 0.4500E-02 2.3020E+00 0.22786E+01 4.7697E+00 2.0451 
4 0.5500E-02 2.0780E+00 0.20622E+01 3.6797E+00 1.9751 
5 0.6500E-02 1.9340E+00 0.18983E+01 3.5651E+00 1.9216 
6 0.7500E-02 1.8210E+00 0.17687E+01 3.3466E+00 1.8805 
7 0.8500E-02 1.7200E+00 0.16630E+01 3.0901E+00 1.8485 
8 0.9500E-02 1.5850E+00 0.15747E+01 2.5673E+00 1.8236 
9 0.1500E-01 1.2750E+00 0.12621E+01 2.4534E+00 1.7584 
10 0.2000E-01 1.1300E+00 0.11018E+01 2.4823E+00 1.7445 
11 0.2400E-01 1.0030E+00 0.10131E+01 2.6829E+00 1.7420 
12 0.3000E-01 9.2170E-01 0.91723E+00 2.4000E+00 1.7401 
13 0.4500E-01 7.7240E-01 0.77713E+00 2.3537E+00 1.7244 
14 0.5500E-01 7.2400E-01 0.72446E+00 2.2694E+00 1.7086 
15 0.6500E-01 6.9080E-01 0.69022E+00 2.4724E+00 1.6948 
16 0.7500E-01 6.5160E-01 0.66929E+00 2.3956E+00 1.6858 
17 0.8500E-01 6.5780E-01 0.65910E+00 2.1861E+00 1.6822 
18 0.9500E-01 6.6190E-01 0.65855E+00 2.3962E+00 1.6828 
19 0.1000E+00 6.5140E-01 0.66180E+00 2.1048E+00 1.6841 
20 0.1200E+00 6.9840E-01 0.70032E+00 1.9945E+00 1.6910 
21 0.1500E+00 8.6130E-01 0.86362E+00 1.9540E+00 1.6964 
22 0.1700E+00 1.1400E+00 0.10968E+01 2.1799E+00 1.6981 
23 0.1800E+00 1.3410E+00 0.12772E+01 2.1074E+00 1.6978 
24 0.1900E+00 1.5970E+00 0.15178E+01 2.1239E+00 1.6956 
25 0.2000E+00 1.8970E+00 0.18314E+01 2.1239E+00 1.6919 
26 0.2100E+00 2.2750E+00 0.22194E+01 1.8839E+00 1.6897 
27 0.2200E+00 2.7700E+00 0.26487E+01 1.8841E+00 1.6929 
28 0.2300E+00 3.1070E+00 0.30272E+01 1.9925E+00 1.7003 
29 0.2400E+00 3.2220E+00 0.32197E+01 2.1840E+00 1.7034 
30 0.2450E+00 3.1810E+00 0.32154E+01 2.1838E+00 1.7019 
31 0.2500E+00 3.0620E+00 0.31439E+01 2.1843E+00 1.6996 
32 0.2600E+00 2.7970E+00 0.28482E+01 2.0246E+00 1.6988 
33 0.2700E+00 2.3980E+00 0.24582E+01 2.2136E+00 1.7068 
34 0.2800E+00 1.9560E+00 0.20760E+01 2.1401E+00 1.7198 
35 0.3000E+00 1.4250E+00 0.14834E+01 2.1145E+00 1.7448 
36 0.3250E+00 1.0220E+00 0.10417E+01 2.2847E+00 1.7752 
37 0.3500E+00 8.0020E-01 0.79387E+00 2.2694E+00 1.8155 
38 0.3750E+00 6.5610E-01 0.64519E+00 2.4249E+00 1.8608 
39 0.4000E+00 5.6240E-01 0.54945E+00 2.8432E+00 1.9018 
40 0.4250E+00 4.6660E-01 0.48398E+00 5.1118E+00 1.9338 
41 0.4500E+00 4.5120E-01 0.43693E+00 6.0860E+00 1.9569 
42 0.4750E+00 4.2480E-01 0.40173E+00 5.5462E+00 1.9738 
43 0.5000E+00 3.8770E-01 0.37451E+00 5.0813E+00 1.9875 
44 0.5200E+00 3.6840E-01 0.35684E+00 4.6797E+00 1.9973 
45 0.5400E+00 3.4890E-01 0.34192E+00 4.2591E+00 2.0063 
46 0.5700E+00 3.3090E-01 0.32344E+00 3.5721E+00 2.0162 
47 0.6000E+00 3.1530E-01 0.30846E+00 3.0707E+00 2.0178 
48 0.6500E+00 2.8670E-01 0.28890E+00 3.0035E+00 1.9884 
49 0.7000E+00 2.7420E-01 0.27399E+00 2.8460E+00 1.9237 
50 0.7500E+00 2.5680E-01 0.26221E+00 2.7457E+00 1.9205 
51 0.8000E+00 2.4630E-01 0.25264E+00 2.6171E+00 2.2400 
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the model fit.  The reduction of variances is not enough to come to the conclusion about the 
reduction of uncertainty.  Table 2 shows how the covariances between chosen points (we select 
points #1 and 25) and all other points are changed in the model fit.  Taking into account that 
although in R-matrix fit all data for exclusion of 51 data points by Lamaze et al. [7] were treated 
practically as uninformative (with assigned large uncertainties), because of their large number, 
they may contribute to a few per-cents covariances reduction in the model fit. 
 
Table 2. Covariances (in b2) for point #1 and #25 with variances marked by bold 
 

Point #1 Point#25 Point # 
Experimental Model fit Experimental Model fit 

1 0.04516 0.00481 0.00145 0.00141 
2 0.00216 0.00383 0.00123 0.00121 
3 0.00187 0.00320 0.00111 0.00107 
4 0.00162 0.00274 0.00101 0.00097 
5 0.00147 0.00243 0.00095 0.00090 
6 0.00141 0.00217 0.00083 0.00083 
7 0.00138 0.00196 0.00083 0.00079 
8 0.00121 0.00179 0.00077 0.00075 
9 0.00101 0.00123 0.00061 0.00060 
10 0.00089 0.00097 0.00054 0.00052 
11 0.00075 0.00083 0.00048 0.00048 
12 0.00071 0.00070 0.00045 0.00043 
13 0.00059 0.00054 0.00038 0.00036 
14 0.00057 0.00050 0.00035 0.00033 
15 0.00055 0.00049 0.00033 0.00032 
16 0.00050 0.00048 0.00032 0.00030 
17 0.00052 0.00049 0.00032 0.00030 
18 0.00051 0.00051 0.00032 0.00030 
19 0.00050 0.00052 0.00032 0.00032 
20 0.00053 0.00057 0.00034 0.00042 
21 0.00066 0.00072 0.00041 0.00044 
22 0.00090 0.00090 0.00055 0.00055 
23 0.00103 0.00102 0.00066 0.00066 
24 0.00123 0.00120 0.00078 0.00079 
25 0.00146 0.00142 0.00163 0.00096 
26 0.00173 0.00172 0.00111 0.00115 
27 0.00211 0.00208 0.00135 0.00135 
28 0.00238 0.00243 0.00150 0.00147 
29 0.00255 0.00262 0.00157 0.00149 
30 0.00252 0.00262 0.00155 0.00147 
31 0.00243 0.00255 0.00149 0.00142 
32 0.00214 0.00228 0.00135 0.00121 
33 0.00190 0.00195 0.00117 0.00112 
34 0.00150 0.00161 0.00096 0.00096 
35 0.00109 0.00113 0.00070 0.00071 
36 0.00086 0.00080 0.00050 0.00050 
37 0.00064 0.00064 0.00039 0.00038 
38 0.00050 0.00054 0.00032 0.00031 
39 0.00044 0.00048 0.00027 0.00026 
40 0.00035 0.00043 0.00023 0.00023 
41 0.00035 0.00039 0.00022 0.00020 
42 0.00035 0.00036 0.00021 0.00019 
43 0.00029 0.00033 0.00019 0.00017 
44 0.00029 0.00031 0.00018 0.00017 
45 0.00029 0.00030 0.00017 0.00016 
46 0.00025 0.00026 0.00016 0.00015 
47 0.00025 0.00025 0.00015 0.00014 
48 0.00022 0.00022 0.00014 0.00013 
49 0.00021 0.00020 0.00013 0.00012 
50 0.00020 0.00020 0.00012 0.00012 
51 0.00019 0.00021 0.00012 0.00011 
Sum 0.09522 0.06293 0.03314 0.03176 

Ratio, 
model 
to non-
model 

0.66 0.96 
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Then the comparison of the results of the model and non-model fits was done for five 
data sets [8] (see Annex 4).  Central values and variances obtained are given in the Table 3 and 
shown in Fig. 1. Table 4 shows the comparison of the covariances obtained in general least 
squares fit (GMA code) [6] with R-matrix model fit (RAC code) [5] the same five sets of 
experimental data.  All other data needed for unambiguous R-matrix fit were treated practically 
as   uninformative   (with   extremely   large   uncertainties  assigned).   As  we  see  from  direct  
 
Table 3. Comparison of model with non-model least squares fit of 5 experimental data sets for 
6Li(n,α) reaction.  
 

Cross section (central values), b Error, % Energy, 
MeV GLUCS 

Bayesian 
non-model 
fit 

GMA 
general least 
squares non-
model fit 

RAC R-
matrix 
model fit 

GLUCS 
Bayesian 
non-model 
fit 

GMA 
general least 
squares non-
model fit 

RAC R-
matrix 
model fit 

0.2500E-02 2.5643E+00 2.56791130 0.265435E+01 3.4736E+00 3.4 1.4952 
0.3500E-02 2.1340E+00 2.13894272 0.224569E+01 3.2550E+00 3.2 1.3900 
0.4500E-02 1.8435E+00 1.85487058 0.198312E+01 3.0100E+00 3.0 1.3163 
0.5500E-02 1.7385E+00 1.73921302 0.179651E+01 2.5948E+00 2.6 1.2631 
0.6500E-02 1.5777E+00 1.57732333 0.165529E+01 2.5518E+00 2.5 1.2244 
0.7500E-02 1.4669E+00 1.46900573 0.154373E+01 2.4718E+00 2.5 1.1960 
0.8500E-02 1.4182E+00 1.41379212 0.145280E+01 2.2237E+00 2.2 1.1754 
0.9500E-02 1.2888E+00 1.28802753 0.137692E+01 1.8064E+00 1.8 1.1606 
0.1500E-01 1.0487E+00 1.04513353 0.110908E+01 1.7278E+00 1.7 1.1330 
0.2000E-01 9.5192E-01 0.95499096 0.972498E+00 1.8265E+00 1.8 1.1359 
0.2400E-01 8.6783E-01 0.86615244 0.897389E+00 1.9348E+00 1.9 1.1403 
0.3000E-01 7.6349E-01 0.76628620 0.816803E+00 1.7740E+00 1.8 1.1429 
0.4500E-01 6.6971E-01 0.66950549 0.701441E+00 1.8026E+00 1.8 1.1279 
0.5500E-01 6.3158E-01 0.63043012 0.659942E+00 1.7502E+00 1.8 1.1120 
0.6500E-01 6.0471E-01 0.60438930 0.634664E+00 1.8674E+00 1.9 1.0988 
0.7500E-01 5.7693E-01 0.57853288 0.621291E+00 1.9369E+00 1.9 1.0907 
0.8500E-01 6.0873E-01 0.60810755 0.617734E+00 1.4020E+00 1.4 1.0873 
0.9500E-01 5.9780E-01 0.59926541 0.623171E+00 1.7722E+00 1.8 1.0869 
0.1000E+00 5.9648E-01 0.59749230 0.629247E+00 1.5888E+00 1.6 1.0872 
0.1200E+00 6.3976E-01 0.64001517 0.678214E+00 1.4318E+00 1.4 1.0877 
0.1500E+00 7.9289E-01 0.79463003 0.854758E+00 1.4012E+00 1.4 1.0836 
0.1700E+00 1.0061E+00 1.00507612 0.109228E+01 1.5597E+00 1.6 1.0828 
0.1800E+00 1.2084E+00 1.20947152 0.127076E+01 1.6308E+00 1.6 1.0826 
0.1900E+00 1.4454E+00 1.44870074 0.150399E+01 1.5343E+00 1.5 1.0816 
0.2000E+00 1.7253E+00 1.72745634 0.180166E+01 1.5556E+00 1.6 1.0802 
0.2100E+00 2.0577E+00 2.06036584 0.216218E+01 1.3899E+00 1.4 1.0810 
0.2200E+00 2.4852E+00 2.49007621 0.255463E+01 1.3842E+00 1.4 1.0861 
0.2300E+00 2.8005E+00 2.80415714 0.290012E+01 1.4850E+00 1.5 1.0930 
0.2400E+00 2.9316E+00 2.94171942 0.308564E+01 1.7320E+00 1.8 1.0950 
0.2450E+00 2.8906E+00 2.89460753 0.309124E+01 1.5753E+00 1.6 1.0938 
0.2500E+00 2.8530E+00 2.85914450 0.303681E+01 1.5706E+00 1.6 1.0925 
0.2600E+00 2.5546E+00 2.55676583 0.278391E+01 1.5635E+00 1.5 1.0956 
0.2700E+00 2.3155E+00 2.31343201 0.242963E+01 1.6837E+00 1.7 1.1086 
0.2800E+00 1.9120E+00 1.90770162 0.206822E+01 1.6422E+00 1.6 1.1259 
0.3000E+00 1.3738E+00 1.37898444 0.148622E+01 1.5593E+00 1.6 1.1524 
0.3250E+00 9.8769E-01 0.99184917 0.103940E+01 1.7859E+00 1.8 1.1734 
0.3500E+00 7.5831E-01 0.75962702 0.785950E+00 1.7949E+00 1.8 1.2007 
0.3750E+00 6.2623E-01 0.62617165 0.633946E+00 1.7922E+00 1.8 1.2349 
0.4000E+00 5.4585E-01 0.54580942 0.536660E+00 2.0282E+00 2.0 1.2666 
0.4250E+00 4.8323E-01 0.48092828 0.470728E+00 2.9850E+00 3.0 1.2897 
0.4500E+00 3.8710E-01 0.38657206 0.423875E+00 4.7772E+00 4.8 1.3035 
0.4750E+00 3.8596E-01 0.38682004 0.389265E+00 2.7247E+00 2.7 1.3113 
0.5000E+00 3.5704E-01 0.35763385 0.362873E+00 3.0459E+00 3.0 1.3180 
0.5200E+00 3.4137E-01 0.34160385 0.345974E+00 3.0316E+00 3.0 1.3256 
0.5400E+00 3.2214E-01 0.32279109 0.331882E+00 3.2962E+00 3.3 1.3368 
0.5700E+00 3.1541E-01 0.31529003 0.314719E+00 2.8556E+00 2.9 1.3611 
0.6000E+00 2.9205E-01 0.29302733 0.301110E+00 2.3312E+00 2.4 1.3905 
0.6500E+00 2.7146E-01 0.27220681 0.283922E+00 2.5621E+00 2.5 1.4259 
0.7000E+00 2.5607E-01 0.25551707 0.271434E+00 2.4689E+00 2.4 1.4123 
0.7500E+00 2.3794E-01 0.23822164 0.262131E+00 2.4283E+00 2.4 1.4248 
0.8000E+00 2.2406E-01 0.22433707 0.255110E+00 2.5081E+00 2.4 1.8872 
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comparison of covariances given  in Tables 2 and 4 and sum of covariances, which as we think is 
a good measure of uncertainty, the model, as seems, does not reduce the uncertainty in the fit.  
What model does, it introduces rather strong short and medium range correlations, which keep 
the shape of the model function used for fit and as result reduces the variances with simultaneous 
and compensating increases of the neighbor covariances.  This is seen also from Fig. 2 and 3, if 
we take into account that more than 900 uninformative data points in the R-matrix fit (including 
thermal value) may have some influence at the uncertainty reduction. 

 
Table 4. Covariances (in b2) for point #1 and #25 with variances marked by bold for model and 
non-model least squares fits of five sets of experimental data 
 

Point #1 Point#25 Point # 
GMA non-model 
fit 

RAC R-matrix 
model fit 

GMA non-model fit RAC R-matrix 
model fit 

1 0.00775 0.00158 0.00047 0.00044 
2 0.00076 0.00123 0.00039 0.00038 
3 0.00064 0.00102 0.00034 0.00034 
4 0.00051 0.00086 0.00031 0.00031 
5 0.00050 0.00076 0.00029 0.00029 
6 0.00048 0.00067 0.00027 0.00027 
7 0.00042 0.00060 0.00025 0.00025 
8 0.00038 0.00055 0.00023 0.00024 
9 0.00032 0.00036 0.00019 0.00020 
10 0.00028 0.00027 0.00017 0.00018 
11 0.00025 0.00023 0.00016 0.00016 
12 0.00022 0.00019 0.00014 0.00015 
13 0.00020 0.00015 0.00012 0.00012 
14 0.00018 0.00014 0.00011 0.00011 
15 0.00017 0.00014 0.000109 0.000109 
16 0.00017 0.00015 0.000106 0.000104 
17 0.00016 0.00015 0.000109 0.000103 
18 0.00016 0.00016 0.000106 0.000104 
19 0.00017 0.00017 0.000108 0.000105 
20 0.00018 0.00019 0.00011 0.00012 
21 0.00022 0.00024 0.00014 0.00016 
22 0.00028 0.00029 0.00018 0.00022 
23 0.00033 0.00032 0.00022 0.00026 
24 0.00039 0.00038 0.00026 0.00031 
25 0.00047 0.00044 0.00072 0.00038 
26 0.00056 0.00053 0.00037 0.00045 
27 0.00067 0.00064 0.00045 0.00051 
28 0.00075 0.00074 0.00050 0.00055 
29 0.00075 0.00080 0.00051 0.00054 
30 0.00076 0.00082 0.00052 0.00053 
31 0.00075 0.00080 0.00051 0.00050 
32 0.00065 0.00071 0.00046 0.00045 
33 0.00064 0.00061 0.00043 0.00040 
34 0.00052 0.00051 0.00035 0.00035 
35 0.00038 0.00036 0.00024 0.00026 
36 0.00027 0.00026 0.00018 0.00019 
37 0.00021 0.00021 0.00014 0.00014 
38 0.00017 0.00018 0.00011 0.00012 
39 0.00014 0.00015 0.000094 0.000097 
40 0.00014 0.00014 0.000089 0.000083 
41 0.000098 0.00012 0.000070 0.000073 
42 0.000102 0.00012 0.000065 0.000066 
43 0.000106 0.000104 0.000065 0.000061 
44 0.000100 0.000098 0.000061 0.000059 
45 0.000075 0.000092 0.000052 0.000057 
46 0.000087 0.000083 0.000058 0.000054 
47 0.000079 0.000076 0.000050 0.000052 
48 0.000079 0.000068 0.000050 0.000050 
49 0.000071 0.000064 0.000047 0.000048 
50 0.000065 0.000064 0.000043 0.000045 
51 0.000063 0.000067 0.000041 0.000041 
Sum 0.023875 0.019656 0.011163 0.011191 

Ratio, model to  
Non-model 

0.82 1.002 
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Fig.2. Intercomparison of GMA and RAC evaluated covariances between point 1 and other points. 
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Fig.2. Intercomparison of GMA and RAC evaluated covariances between point 25 and other points. 
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Peelle’s Pertinent Puzzle: Way of Solution 
 

V.G. Pronyaev 
Nuclear Data Section of the IAEA 

 
 

Effect of evident bias of evaluated data below the majority of experimental data 
observed in general least-squares model fitting of these data was called as Peelle’s Pertinent 
Puzzle (PPP).  It was shown (at least in two-variate case) that this bias happens when covariance 
matrix of experimental data contains the non-diagonal element(s) Vij which are larger than 
diagonal Vkk: 

 
Vij > Vkk for any i, j, k with i ≠ j (1) 
 
This is often happen when the data are strongly varied in the range of evaluation or 

when contribution of Long Energy Range Component (LERC) in the total uncertainty is high.  
To overcome this the iteration procedure with minimization of the functional with percent errors 
characterizing uncertainties was proposed.  Other approach can be based on transformation of 
the data to the form in which they will have no large variations.  For example, if data have 
exponential growth or decrease, logarithm of this data will be a constant.  Reaction 6Li(n,α) in 
the energy region where it is used as the standard has an exponential decrease at low energy and 
a resonance at higher energy.  If Ri presents this data we can transform it to the Yi: 

 
Yi=ln(Ri+C), (2) 
 

where C is a constant that is not always needed. 
 
Then the general scheme of solution free from PPP will be: 
 
1. Prior and experimental data (central values and covariances) transformation based 

on relation (2). 
2. List-squares fitting of transformed data. 
3. Back transformation of evaluated data based on inverse relation to the (2). 
 
As we see from (2) the transformation of the central values is trivial.  Let see how the 

transformation of covariance matrices can be done. 
 
The most general form of propagation errors law for linear transformations which is 

presented through transformation matrix A with elements Amn and m=1,�,M, and n=1,�,N can 
be written as: 

 
+

==
ΣΣ= ljnlin

N

l

N

nij ARCovAYCov )()(
11

 (3) 

 
This is exactly the form, which is used in R-matrix analysis for transformation of the covariance 
matrix of N evaluated parameters to the covariance matrix of the M evaluated values of cross 
sections.  In our case (2), we have M=N.  If number of points, in which data are determined, is 
large enough for good presentation of the data by linear interpolation between points, linear 
approximation to the calculation of elements of matrix A is used.  With M=N and only diagonal 
elements being non-zero, we will have: 
 

Aii=∂Yi/∂Ri=1/(Ri+C) (4) 
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and 

 

CR
R

RRlc
CR

RCRRCovCRARCovAYCov
j

j
ij

i

i
jijijjijiiij ++

=++== + )())/(1)(())/(1()()(  (5) 

 
Obtained result is very interesting, because Rlc(Rij) is relative covariance matrix, 

%100)( ×iiRRlc  is just “percent” error. As we also see if we put C=0 then in fitting of Yij we 
will work with relative covarariances.  
 

To check, how it works numerically, take example, given as PPP in the report 
ANL/NDM-121.   
A)    R1=1.5 

R2=1.0 
Cov(R11)=R11=0.1125 
Cov(R22)=R22=0.05 
Cov(R12)=R12=Cov(R21)=R21=0.06 

On error propagation law evaluated value T’ will be: 
 

T�=((R22-R12)R1+(R11-R12)R2))/((R11-R12)+(R22-R12)) 
 

and T’=0.88 - below the values of R1 and R2.  Using transformation (1) with C=0 we get: 
B)    Y1=04055 

Y2=0. 
Y11=0.05 
Y12=Y21=0.04 
Y22=0.05 

and  
T’=1.224 

This value is within the expected limits 1.0 and 1.5 but slightly below expected “true” value 1.25 
which for this particular case of equal weight of both values is just T’=(1.5+1.0)/2.  Using (1) we 
have for evaluated transformed value Y’=(ln1.5+ln1.0)/2=0.2027, or for T’=1.224. 
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Standards Database Extension: New Results Since 1997  
(data, which are  not included in ANL/NDM-139, 1997) 

V.G. Pronyaev 
Nuclear Data Section of the IAEA 

(10 September 2002) 
 

6Li(n,t) 

Set # Data 
type 

Year Reference # Data 
Values 

Energy 
Range 

Comments Data Source and Status 

 Shape 
ratio to 
10B(n,a) 

1985 A.D. Carlson, 
85 Santa Fe, p. 
1451 

 1.89 to 
36.75 
eV 

Non-inform. 
Ratio =1 

X4:  10946 

  1985 C.M. Bartle, 85 
Santa Fe, p. 
1337 

 2.16 to 
14 
MeV 

Angular 
distribution 

Graphs at 2.16 MeV 
and graphs of Legendre 
coeff. b1 - b4 for other 
energies 

   Koehler  1 keV 
to 2.5 
MeV 

Angular 
distribution 
data 

Private communication 
to A. Carlson 

   Yu.M. Gledenov 
et al., Kiev87, 
v.2, p.237 
(1988) 

 Therm. Methodical 
work with no 
data 

CINDA 

 
6Li(n,total) 

Set # Data 
type 

Year Reference # Data 
Values 

Energy 
Range 

Comments Data Source and Status 

 Absolute 1954 C.T. Hibdon, 
A. Langsdorf, 
ANL-5175 
(1954) 

 0.99 to 
340 keV 

No 
uncertainties, 
“old” data 

X4:  11002 

 Absolute 1974 J.A. Harvey,N. 
Hill,ORNL-
4937,187(1974
) 

3309 185 to 
530 keV 

Should be 
included in 
R-matrix fit 

X4:  13771 

 Absolute 1952 DOK,110,963 
(1956) 

18 10 to 450 
keV 

“old” data X4:  41317 

 Absolute  1972 W, J.A. 
Harvey (1972) 

 4 runs, 
0.008 eV 
to 32 
MeV 

Should be 
included in 
R-matrix fit 

X4:  13772, few 
thicknesses and 
resolutions. 
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10B(n,αααα) Branching ratio 

Set # Data type Year Reference # Data 
Values 

Energy 
Range 

Comments Data Source 

 Shape 
ratio 
10B(n,α0)/1

0B(n,α1γ) 

2001 Hambsh&Bach
C, Tsukuba2001 

 keV to  
MeV 

Frisch 
grided iron 
chamber 

Abstracts, final 
experimental data are in 
preparation 

 
10B(n,αααα1γγγγ) 

Set # Data 
type 

Year Reference # Data 
Values 

Energy 
Range 

Comments Data Source 

 Relative 
H(n,n) 

1994 Schrack 

C, Gatlinburg93, 
p.43 (1994) 

 10 keV 
to 1 
MeV 

 Proceedings; data are 
reviewed (A. Carlson) 

 Shape 
ratio to 
235U(n,f) 

 Schrack  0.3 to 
10 
MeV 

 Private communication 
to A. Carlson; data are 
reviewed (A. Carlson) 

 
10B(n,αααα)= 10B(n,αααα0)+10B(n,αααα1γγγγ) 

Set # Data 
type 

Year Reference # Data 
Value
s 

Energy 
Range 

Comments Data Source 

   R. Haight  1 to 6 
MeV 

Angular distribution at 
30, 60, 90 and 135 
degrees 

Private 
communication to A. 
Carlson 

  2001 Hambsh& 
BachC, 
Tsukuba2001 

 keV to  
MeV 

Frisch grided 
ionisation chamber 

Conf. abstracts, final 
experimental data 
are in preparation 

   Georginis& 
Khriachkov, 
C, 10-th Int. 
Seminar on 
Interaction of 
Neutrons 
with Nuclei 

 1.5 to 
3.8 
MeV 

Angular distributions 
and cross sections, 
gridded ionisation 
chamber, particles 
leaking is studied 

Private 
communication to A. 
Carlson 

   Tang Guoyou 
et al., 
INDC(CPR)-
053, (2001) 

4 4 to 6.5 
MeV 

Angular distributions 
and cross sections, 
gridded ionisation 
chamber 

Data are given in the 
INDC(CPR-053), p. 
1 
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10B(n,tot)=10B(n,αααα0)+10B(n,αααα1γγγγ)+10B(n,n) 

Set # Data 
type 

Year Reference # Data 
Values 

Energy 
Range 

Comments Data Source 

   Wasson, 
Gatlinburg93, p. 
50 (1994) 

 0.02 to 
20 
MeV 

NE-110 
detector 

CINDA 

   A. Plompen, 
Gatlinburg93, 
p.47 (1994); 
Trieste97, p. 
1283 (1997) 

 0.3 to 
18 
MeV 

LiI and Li-
glass detector 

CINDA 

   Brusegan 
Gatlinburg93, 
(1994); 
Trieste97, 
(1997) 

 80 eV 
to 730 
keV 

Li-glass 
detector 

CINDA 
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197Au(n,γγγγ) 

Set # Data type Year Reference # Data 
Values 

Energy 
Range 

Comments Data 
Source 

  1993 Koehler, 
Gatlinburg93, p. 
179 (1994) 

 0.01 eV 
to 50 
keV 

LANSCE CINDA 

  1993 Block, 
Gatlinburg93, p. 
81 (1994) 

 0.01 to 
100 eV 

LINAC CINDA 

  1987 Bao, AND, 36, p. 
411 (1987) 

 30 KeV 
maxwelli
an 

 CINDA 

 Shape ratio to 
10B(n,α) 

 S.Yamamoto, 
INDC(JPN)-
142,59 (1990) 

 0.013 to 
0.89 eV 

Can be 
interpolated to 
thermal point as 
ratio 

X4:  
22196003 

 Shape ratio to 
10B(n,α) from 
0.1 to 8 eV, 
and natSm(n,γ) 
at thermal 

 S.Yamamoto, 
NST, 33, (11), 
815 (1996) 

 0.013 to 
8.03 eV 

Can be 
interpolated to 
thermal point ? 

X4:  
22370 

   A.N. Davletshin, 
YK,,(1),41 (1992) 

4 813 to 
2435 
keV 

Check 
correlations with 
X4: 41183,41190 

X4:  
41121 

 Shape ratio to 
6Li(n,α) below 
100 keV and 
10B(n,α) above 
100 keV 

 L.E. Kazakov, 
YK, 85, (2), p. 44 
(1985) 

 3 to 420 
keV 

Group averaged 
cross sections 

X4:  
40890003 

 Shape ratio to 
235U(n,f) 

 A.N. Davletshin, 
YK,,(1), 13 
(1993) 

5 370 to 
1000 
keV 

Check 
correlations with 
X4: 41121,41190 

X4:  
41183 

 Shape ratio to 
235U(n,f) 

 V.A. Tolstikov, 
YK,,(4), 46 
(1995) 

5 486 to 
692 keV 

Check 
correlations with 
X4: 41183,41121 

X4:  
41190 

   Demekhin, in 
Proc. of 36-th All 
Union Conf, p. 94 
(1996) 

 2.7 MeV  Conf. 
abstracts 

   J. Voignier, NSE, 
93, p.43, (1986) 

5 0.5 to 3.0 
MeV 

Longcounter with 
BF3 counters 

X4:  
22006031 
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238U(n,γγγγ) 

Set # Data type Year Reference # Data 
Values 

Energy 
Range 

Comments Data 
Source 

 Cross section 
shape? 

1991 R.L. Macklin, 
ANE, 18, p. 567 
(19991) 

25 0.3 to 
100 keV 

Given as group 
averaged cross 
sections for 2 
thicknesses.  
Reduction to 0 
thickness is 
needed 

X4:  
13526002, 
003 

   J. Voignier, NSE, 
93, p.43, (1986) 

4 0.5 to 1.1 
MeV 

Longcounter with 
BF3 counters 

X4:  
22006049 

 Shape ratio to 
10B(n,α) 

 K. Kobayashi, 
Juelich91, p.65 
(1991) 

3 24 to 150 
keV 

Neutron filters, 
preliminary data 
shown on Fig. 

CINDA 

   Akiyama, ANE, 
14, p. 543 (1987) 

 14 MeV  CINDA 

 Shape ratio to 
H(n,n) 

 N. Buleeva, AE, 
65, p. 348 (1988) 

 0.34 to 
1.39 
MeV 

 X4:  
40969005 

 Relative 
natPb(n,n) 
elastic 
scattering 

 V. Vertebnyy, 
80Kiev,2, p. 249, 
(1980) 

 24.5 keV Obtained as 
difference tot-
elastic, neutron 
filters 

X4:  
40839022 
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238U(n,f) 

Set # Data type Year Reference # Data 
Values 

Energy 
Range 

Comments Data 
Source 

 Relative 
58Ni(n,p) 

1996 L.W. Meadows et 
al., ANE, 23, 
p.877 (1996) 

1 10. MeV Monitor reaction 
is an outsider 

X4:  
13586011 

 Shape ratios 
238U to 237Np 

1989 J.W. Meadows et 
al., ANE, 16, p. 
471 (1989) 

 1.92 to 
2.55 
MeV 

A search for 
possible structure 
in the 238U(n,f) 
cross section near 
2.3 MeV. 

X4:  
13169 

 Shape ratio to 
H(n,n) 

 Lisowski, 
NEANDC-305, p. 
117 (1991?) 

 0.8 to 
400 MeV

 Data are 
available, 
private 
comm.. to 
A. Carlson 

  1999 Johns, C, 
St.and99, p. 174 

 2 to 180 
MeV  

Preliminary data CINDA 

  1989 Block, C, 
Washington89, p. 
354 

 1.4 eV to 
100 keV 

 CINDA 

 27Al(n,p) 
reaction as a 
monitor 

1968 C. Barrall, 
AFWL-TR-68-
134 (1969) 

 14.6 
MeV 

Registration of 
fission fragments 
in Lexan 

CINDA 

   Pepelink, NIMB, 
40, p. 1205 
(1989) 

 14 MeV  CINDA 

   Akiyama, ANE, 
16, p.307 (1987) 

 14 MeV  CINDA 

   Kovalenko, IP, 
21, p. 344 (1985) 

 15 MeV 2% acc. data CINDA 

 Shape ratio to 
235U(n,f)  

 Kh.D. 
Androsenko et al., 
Kiev83, v. 2, p. 
153 (1983) 

 0.85 to 
3.72 
MeV 

 X4:  
40629002 
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 Shape ratio to 

235U(n,f) 
 Fomichev, 

Juelich91, p. 734 
(1991) 

Fomichev, C, 
Trieste97, p. 1283 
(19997) 

Shcherbakov, C, 
JAERI-C-98-016 
(1998) and ISTC 
609-97 

 0.7 to 
100 MeV

 CINDA, 

Data 
available, 
privat 
comm.. to 
A. Carlson 

   Goverdovskiy, 
JINR-E3-00-192 
(2000) 

 1.1 to 4.0 
MeV 

 CINDA 

   Boykov, ANE, 
21, p. 585 (1994) 

 2.9 to 15 
MeV 

 CINDA 

 Shape ratio to 
235U(n,f)  

 Baba, J. Nucl. 
Sci.&Techn., 26, 
p. 11 (1989) 

 0.5 to 7 
MeV, 14 
MeV 

 No data, 
privare 
comm.. to 
A. Calson 
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235U(n,f) 

Set # Data type Year Reference # Data 
Values 

Energy 
Range 

Comments Data 
Source 

 Shape ratio to 
10B(n,α) 

 Weston&Todd, 
NSE, 111, p. 415 
(1992) 

 0.1 keV to 
2 keV 

High resolution 
(10187 points) 
Linac data.  
Should be 
reduced to 
“poor” 
resolution and 
then interpolated 

X4:  
13488002 

 Absolute, 
detector 
calibration 
with associated 
particle 
method at 2.45 
and 14 MeV 

 R.G. Johnson, W, 
Carlson (1991) 

19 1.066 to 
5.985 
MeV 

Dual thin 
scintillator 

X4:  
12924002 

 Absolute cross 
section 

 V.A. Kalinin et 
al., At. En. 71, 
(2), p. 181 (1991) 

2 1.88 MeV 
2.37 MeV  

 X4:  
41112, 
data in 
X4=40963 
are revised 
(?) 

 Relative to 
black detectorl 

 A. Carlson, 
IAEA-TECDOC-
335, p. 163 
(1985) 

 0.3 to 3.0 
MeV 

 X4:  
10987002 

 Relative 
H(n,n) 

 A. Carlson, 
NEANDC-305, 
p.165 (1991) 

 2 to 30 
MeV 

 Data are 
available, 
A. Carlson 
priv. 
comm..  

 Relative 
H(n,n) 

 T. Iwasaki et al., 
C, Mito88, p.87 
(1988) 

5 13.51 to 
14.9 MeV 

 X4:  
22091002 

 Relative 
H(n,n) 

 Lisowski, 
NEANDC-305, p. 
177 (1991?) 

 3 to 200 
MeV 

 Data are 
available, 
private 
comm. to 
A. Carlson 
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   Rapaport, LA-

11078 (1987) 
 0.6 to 750 

MeV 
 CINDA 

   Duvall, DOE-
NDC-36, -43, -47, 
-49 (1985-1989) 

 2.5 MeV Ass. part. 
method 

CINDA 

 Shape ratio to 
10B(n,α) 

 R.A. Schrack, C, 
Mito88, p. 101 
(1988) 

 15.2 keV 
to 1.4 
MeV 

High resolution 
(7958 points) 
Linac data.  
Should be 
reduced to 
“poor” 
resolution and 
then interpolated 

X4:  
13198002 

   Wasson, RE, 96, 
9 (1986) 

1 14.7 MeV  CINDA 

 Shape ratio to 
10B(n,α) 

 Wagemans, 
INDC(EUR)-19, 
p. 6 (1985) 

 0.025 eV 
to 30 keV 

 CINDA 

 Shape ratio to 
6Li(n,α) 

 Wagemans, C, 
Mito88, p. 91 
(1988) 

 0.02 to 20 
eV eV 

 X4:  
22080003 

   Zhang, IAEA-
336, p.343 (1985) 

 0.02 to 0.3 
eV 

 CINDA 

   Kovalenko, IP, 
21. p. 344 
9(1985) 

 8.7 MeV TUD/KRI 
collaboration, 
data for 2.6 
MeV were 
revised by 
Merla – see 
comments in 
#591 

X4:  
30558002 
– probably 
the data 
should be 
also 
revised as 
done by 
Merla 
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239Pu(n,f) 

Set # Data type Year Reference # Data 
Values 

Energy 
Range 

Comments Data 
Source 

 Shape ratio to 
235U(n,f) 

 P. Staples, K. 
Morley, NSE, 
129, p. 149 
(1988) 

 0.85 to 
61.8 MeV 

Err-S is given as 
no-dim. – wrong 
- probably it is 
given in % 

X4:  
13801002 

 Shape ratio to 
10B(n,α) 

 Weston&Todd, 
NSE, 111, p. 415 
(1992) 

 0.1 keV to 
20 keV 

High resolution 
(22139 points) 
Linac data.  
Should be 
reduced to 
“poor” 
resolution and 
then interpolated 

X4:  
13488003 

 Relative 
235U(n,f) 

 Donets, JINR-E3-
98-212 (1998); 
JINR-E3-00-192 
(2000) 

Shcherbakov, C, 
JAERI-C-98-016 
(1998) and ISTC 
609-97 

 1 to 200 
MeV 

 CINDA, 

Data 
available, 
privat 
comm.. to 
A. Carlson 

 Relative 
H(n,n) (or 
relative 235U) 

 Lisowski, 
NEANDC-305, p. 
177 (1991?) 

 0.8 to 350 
MeV 

 CINDA 
(rel. 235U) 

Data are 
available, 
private 
comm. to 
A. Carlson 

 Shape ratio to 
235U 

 Iwasaki, JAERI-
M-88-065 (1988) 

Hirakawa, C, 
Mito88, p. 119 
(1988) 

12? 0.6 to 7.0 
MeV 

 CINDA, 

To request 
data 

 Shape ratio to 
6Li(n,α) 

 Wagemans, C, 
Mito88, p. 91 
(1988) 

 0.02 to 20 
eV eV 

No use (shape 
ratio in point?) 

X4:  
22080003 
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Status of data for TUD/KRI collaboration 

Reaction Energy, 
MeV 

Preliminary value (b), Source Final value (b), Source 

Data were revised because the 
correction on fission product 
absorption was underestimated 

1.88 1.260, X4=40927002 (1986) 

1.257, X4=40963002 (1988) 

1.280, X4=41112002 (1991) 

2.37 1.251, X4=40963002 (1988) 1.270, X4=41112002 (1991) 

2.56 1.214, X4=40911002 (1983) 

1.215, X4=41013003 (1988) 

1.240, X4=22304006 (1991), GMA 
DB 

1.238, X4=41013004 (1988) 

4.45 1.057, X4=30706002 (1985) 

1.057, X4=40927002 (1986) 

1.057, X4=41013003 (1988) 

1.094, X4=22304002 (1991), GMA 
DB 

1.093, X4=41013004 (1988) 

8.46 1.801, X4=40911002 (1983) 

1.801, X4=41013003 (1988) 

1.855, X4=22304002 (1991), GMA 
DB 

1.853, X4=41013004 (1988) 

8.7 1.801, X4=30558002 (1985)  

14.7 2.086, X4=40911002 (1983) 

2.085, X4=41013003 (1985) 

2.096, X4=22304006 (1991); GMA 
DB 

2.094, X4=41013004 (1988) 

235U(n,f) 

18.8 1.999, X4=30706002 (1985) 
1.999, X4=40927002 (1986) 

1.999, X4=41013003 (1988) 

2.068 X4=22304002 (1991), GMA 
DB 

2.065 X4=41013004 (1988) 

239Pu 1.92 2.010, X4=40927005 (1986)  

 4.9 1.740, X4=40927005 (1986) 

1.740, X4=30706004 (1986) 

1.773, X4=22304005 (1991), GMA 
DB 

 8.65 2.350, X4=40927005 (1986) 

2.350, X4=30706005 (1986) 

2.395, X4=22304005 (1991), GMA 
DB 

 14.7 2.620, X4=40547009 (1977) 

2.309, X4=40911007 (1983) 

2.394, X4=30475005 (1985) 

2.449, X4=22304005 (1991) 

 18.8 2.487, X4=30706006 (1985) 

2.487, X4=40927005 (1986) 

2.473, X4=22304005 (1991), GMA 
DB 



 – 197 – 

 
238U 4.8  0.562, X4=22304003 (1991), GMA 

DB 

 5.1&5.0 0.542, X4=41013002 (1988) 0.554, X4=22304003 (1991), GMA 
DB 

 8.2  1.041, X4=22304003 (1991), GMA 
DB 

 14.7&14.6 1.209, X4=40256002 (1973) 

1.207, X4=40547007 (1977) 

1.166, X4=30475003 (1981) 

1.166, X4=40911005 (1983) 

1.178, X4=40911005 (1983) 

1.228, GMA DB 

 18.8  1.363, X4=22304003 (1991), GMA 
DB 
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Open problems 
1. What do if monitor reaction is an “outsiders” (do not belong to the currently evaluated set of 
reactions)? 

2. For assigning of the values of the cross sections in the nodes, the DAT code interpolates the 
values to the node and averages them with their statistical weights.  This is different for group 
cross section presentation, when data first reduced to the resolution of order the width of the 
energy group, then group-averaged taking into account the error propagation law.  This 
procedure can be used for treatment of high resolution data. 

3. Final Khlopin Radium Institute (KRI) and Technical University of Dresden (TUD) high 
precision results obtained with an associated particle method should be selected through 
consultations with authors. 

4. Some data are given for the resonance region or varying strongly with energy.  This may 
cause different problems related with reduction to zero sample thickness, or self-shielding, 
“Peelle’s puzzle”, non-linearity,… . Should we limit our consideration only by region of 
smoothed cross sections? 

5. High priority should be given to the latest shape, shape ratio and absolute cross section 
measurements with an associated particles method.  It means that uncertainty of the “old” data 
should be increased in cases when we are not sure that either all needed corrections are 
introduced or calculation of corrections was done with approximations (without using of 
Monte Carlo method, especially for closed geometry, …). 

6. Some measurements were done relative H(n,n) cross section.  Primary standard, H(n,n), 
evaluated in R-matrix approach should be included in GMA database.  

7. Recommended characteristics of decay radiation for standard reactions (with that the 
evaluation of cross sections was done) should be given. 

 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nuclear Data Section 
International Atomic Energy Agency 
P.O. Box 100 
A-1400 Vienna 
Austria 

e-mail: services@iaeand.iaea.org
fax: (43-1) 26007

cable: INATOM VIENNA
telex: 1-12645

telephone: (43-1) 2600-21710
 Online:  TELNET or FTP: iaeand.iaea.org 

  username:  IAEANDS for interactive Nuclear Data Information System 
  usernames:  ANONYMOUS for FTP file transfer; 
   FENDL2 for FTP file transfer of FENDL-2.0; 
   RIPL for FTP file transfer of RIPL; 
   NDSONL for FTP access to files saved in �NDIS� Telnet session. 
 Web:  http://www-nds.iaea.org 
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