INTERNATIONAL ATOMIC ENERGY AGENCY

INDC(NDS)-452 Distr. SD/EL

INDC INTERNATIONAL NUCLEAR DATA COMMITTEE

WORKSHOP

ON NUCLEAR STRUCTURE AND DECAY DATA:

THEORY AND EVALUATION

MANUAL – PART 2

Editors: A.L.Nichols and P.K.McLaughlin IAEA Nuclear Data Section Vienna, Austria

November 2004

IAEA NUCLEAR DATA SECTION, WAGRAMER STRASSE 5, A-1400 VIENNA

INDC documents may be downloaded in electronic form from http://www-nds.iaea.or.at/indc_sel.html or sent as an e-mail attachment. Requests for hardcopy or e-mail transmittal should be directed to services@iaeand.iaea.org or to:

> Nuclear Data Section International Atomic Energy Agency PO Box 100 Wagramer Strasse 5 A-1400 Vienna Austria

Produced by the IAEA in Austria December 2004

WORKSHOP

ON NUCLEAR STRUCTURE AND DECAY DATA: THEORY AND EVALUATION Manual – Part 2

ICTP Trieste, Italy 17 – 28 November 2003

Prepared by A.L. Nichols and P.K. McLaughlin IAEA Nuclear Data Section Vienna, Austria

Abstract

A two-week Workshop on Nuclear Structure and Decay Data was organized and administrated by the IAEA Nuclear Data Section, and hosted at the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy from 17 to 28 November 2003. The aims and contents of this workshop are summarized in Part 1 of this manual, along with the agenda, list of participants, comments and recommendations. Workshop materials are also included that are freely available on CD-ROM (all relevant PowerPoint presentations and manuals along with appropriate computer codes):

e-mail: services@iaeand.iaea.org fax: (+43-1)26007 post to: International Atomic Energy Agency Nuclear Data Section P.O. Box 100 Wagramer Strasse 5 A-1400 Vienna Austria

January 2004

TABLE OF CONTENTS

1.	EVALUATED NUCLEAR STRUCTURE DATA BASE	1
2.	ENSDF – EVALUATIONS: Methodology and Worked Examples	13
3.	BIBLIOGRAPHIC DATABASES in support of NSDD Evaluations	77
4.	Evaluated Nuclear Structure Data File: A Manual for Preparation of Data Sets	95
5.	ENSDF Analysis and Utility Codes	197
6.	Guidelines for Evaluators	239
7.	NUCLEAR STRUCTURE AND DECAY DATA: Introduction to relevant web pages	.269

WORKSHOP

ON NUCLEAR STRUCTURE AND DECAY DATA: THEORY AND EVALUATION

Manual – Part 2

ICTP Trieste, Italy 17 – 28 November 2003

Edited by

A.L. Nichols and P.K. McLaughlin IAEA Nuclear Data Section Vienna, Austria

Abstract

A two-week Workshop on Nuclear Structure and Decay Data was organized and administrated by the IAEA Nuclear Data Section, and hosted at the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy from 17 to 28 November 2003. Part 2 of the resulting manual contains the primary documents for instruction in the evaluation of nuclear structure and decay data for ENSDF (Evaluated Nuclear Structure Data File). These and the other workshop materials to be found in Part 1 are also freely available on CD-ROM (all relevant PowerPoint presentations and manuals along with appropriate computer codes):

e-mail: services@iaeand.iaea.org fax: (+43-1)26007 post to: International Atomic Energy Agency Nuclear Data Section P.O. Box 100 Wagramer Strasse 5 A-1400 Vienna Austria

January 2004

Evaluated Nuclear Structure Data Base

J. K. Tuli

NNDC,BNL,USA

E-mail: tuli@bnl.gov

Evaluated Nuclear Structure Data Base

J. K. Tuli National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973 USA

BROOKHAVEN

Record Types				
ID	LEVEL			
History	BETA			
XREF	EC			
Comments	ALPHA			
Q-value	PARTICLE			
Parent	GAMMA			
Normalization	END			
		BROOKHAVEN NATIONAL LABORATORY		

ntification Record
ll data sets-must precede all other
Name
NUCID
DSID
DSREF
PUB
DATE (year/month)
BROOKHAVEN NATIONAL LABORATORY

History Record			
Field (Col.)	Name		
1-5	NUCID		
6	Blank		
7	Blank		
8	Н		
9	Blank		
10-80	History		
		BROOKHAVEN NATIONAL LABORATORY	

Q-v	alue	e Reco	rd
Field (Col.)	Nan	ne	
1-5	NUC	CID	
8	Q	Letter 'Q'	is required
10-19	Q-	20-21	DQ-
22-29	SN	30-31	DSN
32-39	SP	40-41	DSP
42-49	QA	50-55	DQA
56-80	QRE	F	BROOKHAVEN NATIONAL LABORATORY

Cross-Reference Record

Field (Col.)	Name	
1-5	NUCID	
8	Х	Letter 'X' is required
9	DSSYM	Any ASCII character
10-39	DSID	Must exactly match one of
		IDs
		BROOKHAVEN NATIONAL LABORATORY

Co	ommen	t Record
Field (Col.)	Name	
1-5	NUCID	
7	Letter 'C	', 'D', or 'T' is required
8	RTYPE	Blank or record type
9	PSYM	Blank, or symbol
10-80	CTEXT	Text of the comment
		BROOKHAVEN NATIONAL LABORATORY

	Parent	Record	
Field	Name		
1-5	NUCID		
8	P (required)		
9	Blank or integ	ger	
10-19	E Energy	20-21 DE	
22-39	JPI		
40-49	Т	50-55 DT	
65-74	QP	75-76 DQP	
77-80	Ionization Sta	ite	
			BROOKHAVEN

Normalization Record					
Field	Name				
8	N (requir	red)			
10-19	NR	20-21 DNR			
22-29	NT	30-31 DNT			
32-39	BR	40-41 DBR			
42-49	NB	50-55 DNB			
56-62	NP	63-64 DNP			
		BROOKHAVEN			

Production Normalization Record

Field	Name	
8	N (required)	
10-19	NR*BR	20-21 DNR
22-29	NT*BR	30-31 DNT
42-49	NB*BR	50-55 DNB
56-62	NP	63-64 DNP
77	Blank or C	78 Opt (1-7)
		BROOKHAVEN NATIONAL LABORATORY

	Level F	Record	
Field	Name		
1-5	NUCID		
8	L (required)		
10-19	E Energy	20-21 DE	
22-39	JPI		
40-49	Т	50-55 DT	
56-64	L (angular mo	omentum tra	nsfer)
65-74	S (spect at)	75-76 DS	
77	Flag	78-79 MS	80 Q
			BROOKHAVEN NATIONAL LABORATORY

	Beta Reco	ord	
Field	Name		
1-5	NUCID		
8	B (required)		
10-19	E Energy	20-21	DE
22-29	IB Intensity	30-31	DIB
42-49	Logft	50-55	DFT
77	Flag		
78-79	Forbiddenness	80 Q	
			BROOKHAVEN NATIONAL LABORATORY

EC Record			
Field	Name		
1-5	NUCID		
8	E (required)		
10-19	E Energy	20-21 DE	
22-29	IB Intensity	30-31 DIB	
32-39	IE Intensity	40-41 DIE	
42-49	Logft	50-55 DFT	
65-74	TI	75-76 DTI	77 Flag
78-79	Forbiddenness	80 Q	
			BROOKHAVEN NATIONAL LABORATORY

Alpha Record			
Field 1-5 8 10-19 22-29 32-39 77 80	Name NUCID A (required) E Energy IA Intensity HF Flag Q	20-21 DE 30-31 DIA 40-41 DHF	
		BROOKHAVEN NATIONAL LABORATORY	

	Gamma R	ecord		
Field	Name			
8	G (required)			
10-19	E Energy	20-21 DE		
22-29	RI rel Intensity	30-31 DRI		
32-41	M multipolarity			
42-49	MR mix ratio	50-55 DMR		
56-62	CC total CC	63-64 DCC		
65-74	TI	75-76 DTI		
77	Flag	78 COIN	80	Q
			BROG	L LABORATORY

(Delayed-)Particle Record

Field	Name				
8	D (for delayed)	9	particl	le (N	, P,)
10-19	E Energy	20-21	DE		
22-29	IP % Intensity	30-31	DIP		
32-39	El lev en int nuc)			
40-49	T Width	50-55	DT		
56-64	L angular mome	entum f	transfe	r	
77	Flag	78 CC	DIN	80	Q
				BR	OOKHAVEN

ENSDF – Evaluations: Methodology and Worked Examples

E. Browne

and

C. Baglin

LBNL, USA

E-Mail: ebrowne@lbl.gov

E-Mail: cmbaglin@lbl.gov

1. Statistical treatment of data

- Weighted and unweighted averages
- Limits
- Discrepant data
- Limitation of relative statistical weight method

2. Properties of the parent nucleus Energy Spin/parity Half-life Q-value

3. Gamma rays

- Energy (E_{γ})
- Relative intensity (I, (rel))
- Multipolarity and mixing ratio (δ)
- Internal conversion coefficients (α_i)
- Total transition intensity $[I_{\gamma} (1 + \alpha)]$
- Absolute intensity (%I,)

4. Beta particles

- Relative intensity (I_{β})
- Absolute intensity $(\%I_{\beta})$
- Average energy (I_{avg})
- Log ft
- Energy (E_{β})

5. Electron capture

- Relative probability (I_s)
- Absolute probability (%I_s)
- Relative sub-shell probabilities($P_{K}, P_{L}, P_{M}, P_{N}$)
- Log ft

6. Alpha particles

- Energy (E_{α})
- Relative intensity (I_{α})
- Absolute intensity (%I_a)
- Hindrance factor (HF)

7. Level structure and decay scheme

- Level energy (E)
- Level spin/parity (J π), particle configuration (CONF)
- Level half-life (T_{1/2})
- Decay scheme normalization

Averages

Unweighted

x(avg) = 1 / $n \sum x_i$ $\sigma_{x(avg)} = [1 / n (n - 1) \sum (x(avg) - x_i)^2]^{1/2}$ Std. dev.

Weighted

$$\begin{split} & x(avg) = W \sum x_i / \sigma_{xi}{}^2; \quad W = 1 / \sum \sigma_{xi}{}^2 \\ & \chi^2 = \sum \left(x(avg) - x_i \right)^2 / \sigma_{xi}{}^2 \text{ Chi sqr.} \\ & \chi_{\nu}{}^2 = 1 / (n-1) \sum \left(x(avg) - x_i \right)^2 / \sigma_{xi}{}^2 \text{ Red. Chi sqr} \\ & \sigma_{x(avg)} = \text{larger of } W^{1/2} \text{ and } W^{1/2} \chi_{\nu}. \text{ Std. dev.} \end{split}$$

Limits $B_m = measured value$ $\sigma = Standard deviation$ $B_0 = True value$ $Example: -2 \pm 3$ For a Gaussian distribution, the formula to convert measured values to limits are: $B_0 < B_m + 1.28 \sigma$ (90% confidence limit); example: < 1.84 $B_0 < B_m + 1.64 \sigma$ (95% confidence limit); example: < 2.92 $B_0 < B_m + 2.33 \sigma$ (99% confidence limit); example; < 4.99

Limitation of Relative Statistical Weight Method

For discrepant data ($\chi_n^2 > \chi_n^2$ (critical)) with at least three sets of input values, apply the *Limitation of Relative Statistical Weight* method. The program identifies any measurement that has a relative weight > 50% and increases its uncertainty to reduce the weight to 50%. Then it recalculates χ_n^2 and produces a new average and a best value as follows.

If $\chi^2_n \leq \chi^2_n$ (critical), the program chooses the weighted average and associated uncertainty (larger of the internal and external values). If $\chi^2_n > \chi^2_n$ (critical), the program chooses either the weighted or the unweighted average, depending on whether the uncertainties in the average values make them overlap with each other. If that is so, the program chooses the weighted average and (internal or external) uncertainty. Otherwise, the program chooses the unweighted average. In either case, the uncertainty may be expanded to cover the most precise input value

2. Properties of the parent nucleus

- <u>Level energy (keV)</u>: 0.0, 328.0 25, 942 4, 0.0 + X
- <u>Spin/parity</u>: 1/2+, (3/2+), 5-, 6(+), (5/2-,7/2-)
- <u>Half-life</u>: 3.8 d 2, 432.2 y 7, 2 m, 35 ms 10, ~3 s, 1.2×10¹⁵ y
- Units: (sidereal) y (= 365.25636 d), d, h, m, s, ms, ms, ns, ps, fs, …
- <u>Q-value (keV)</u>: 1995Au04 (G. Audi and A.H. Wapstra, Nucl. Phys. **A595**, 409 (1995))
- Theoretical values: 1997Mo25 (P. Möller et al., At. Data Nucl. Data Tables 66, 131 (1997))

	3. Gamma rays
1.	Energy (keV)
•	Weighted average from radioactive decay
•	Very precise measurements (e.g., bent crystal)
•	Recommended standards for energy calibration:
	Helmer and van der Leun (Nucl. Instrum. Meth.
	Phys. Res. A450 , 35 (2000)
•	Not observed, but expected (from level energy difference)
•	Deduced from conversion electron energies (give atomic electron binding energy)
•	Multiplets:
	broader peak in spectrum
	known levels involved

1. <u>Uncertainties: statistical</u> Give (in comments) estimate of systematic errors		
When uncertainties are known to include systematic errors, no result from weighted average should have an uncertainty smaller than the smallest on the input uncertainty.		
No uncertainty should be smaller than the uncertainty in the calibration standard.		
Uncertainties larger than 25 should be rounded.		
<u>ENSDF</u> 351.53 25 351.5 3 83.5E2 3		

2. <u>Relative intensity</u>

- Weighted average from radioactive decay
- Use 100 for the most intense gamma ray.
- Use a limit for an expected (but unobserved) γ ray.
- Use total transition intensity (TI) if this is the only quantity measured, or deduced from transition intensity balance. If α_{T} is known, deduce and give I_a.
- Limits are acceptable (e.g., $I_{\gamma} < A$), but $I_{g} = \frac{1}{2}A + \frac{1}{2}A$ is preferable (for calculating transition intensity balances).
- Intensity from an isomer in the daughter nucleus should not be given if such intensity is time dependent. Include comments that give the percent feeding to the isomer, and explain the reason for not giving I_{γ} .

3. Multipolarity and mixing ratio (δ)

- From conversion electron data. If I_K and I_γ were used to determine α_K, explain normalization between electron and photon intensity scales. Conversion electron sub-shell ratios.
- From γ -ray angular correlations ($\gamma(\theta)$). Notice that $\gamma(\theta)$ determines *only* the L component of the γ -ray character, thus mult.= D, D + Q, etc. T_{1/2}(exp.) may be used to rule out choices, usually Q = M2 and D + Q = E1 + M2.

Multipolarity and mixing ratio (δ) from conversion electron data $\frac{\text{Using experimental conversion coefficients}}{\delta^2 = \text{E2 } \gamma \text{-ray intensity} / \text{M1 } \gamma \text{-ray intensity} = I_{\gamma}(\text{E2})/I_{\gamma}(\text{M1}) \dots (1)$ $I_{\gamma}(\text{M1}) + I_{\gamma}(\text{E2}) = I_{\gamma} \dots (2)$ From equations (1) and (2) we obtain: $I_{\gamma}(\text{M1}) = I_{\gamma} / 1 + \delta^2, \text{ and } I_{\gamma}(\text{E2}) = I_{\gamma} \delta^2 / 1 + \delta^2$ Conversion electron intensity: $I_e = I_e(\text{M1}) + I_e(\text{E2})$ Experimental conversion coefficient $\alpha(\text{exp}) = I_e / I_{\gamma} = 1 / I_{\gamma} [I_{\gamma}(\text{M1}) \times \alpha(\text{M1})^{\text{th}} + I_{\gamma}(\text{E2}) \times \alpha(\text{E2})^{\text{th}}]$ or, $\alpha(\text{exp}) = 1 / I_{\gamma} [I_{\gamma} / 1 + \delta^2 \times \alpha(\text{M1})^{\text{th}} + I_{\gamma} \delta^2 / 1 + \delta^2 \times \alpha(\text{E2})^{\text{th}}]$ $\delta^2 = (\alpha(\text{M1})^{\text{th}} - \alpha(\text{exp})) / (\alpha(\text{exp}) - \alpha(\text{E2})^{\text{th}})$ $\Re \text{M1} = 100/1 + \delta^2, \ \% \text{E2} = 100 \ \delta^2 / 1 + \delta^2$ Using experimental electron sub-shell ratios

$$R(exp) = I_e(L1)/I_e(L3)$$

Then

 $\delta^2 / 1 + \delta^2 = \mathsf{A} / \left[\alpha(\mathsf{E2},\mathsf{L1})^{\mathsf{th}} - \alpha(\mathsf{M1},\mathsf{L1})^{\mathsf{th}} + \mathsf{R}(\mathsf{exp}) \left(\alpha(\mathsf{M1},\mathsf{L3})^{\mathsf{th}} - \alpha(\mathsf{E2},\mathsf{L3})^{\mathsf{th}} \right) \right]$

where

A = R(exp) α (M1,L3)th - α (M1,L1)th

```
\begin{array}{l} \hline Consistency of entries for $\alpha$ and $\delta$:\\ \hline For a single multipolarity the $\delta$ field should be blank.\\ \hline For $\delta < V$:\\ \hline Give $only$ dominant multipolarity and corresponding $\alpha$. Give $\delta < V$ in a comment, or give both multipolarities and $\delta < V$ in the $\delta$ field.\\ \hline Calculate $\alpha$ from $\delta = \frac{1}{2} V + \frac{1}{2} V$.\\ \hline Examples: E2 + M3 with $\delta < 0.5$ should preferably be entered as E2, whereas M1 + E2 with $\delta < 0.5$, as M1 + E2 ($\delta = 0.25 + 0.25$).\\ \hline M1, E2 is not the same as M1 + E2.\\ \hline Assumed multipolarity [M1], [E2], [M1 + E2], [M4], etc.\\ \hline \end{array}
```


4. Internal conversion coefficients
Theoretical values:
From Hager and Seltzer (1968Ha53) for K, L_i,
M_i shells, and
$$Z \ge 30$$

From Dragoun et al. (1971Dr11) for N, O
shells.
From Dragoun et al. (1971Dr09) for N_i shells.
From Band et al. (1976Ba63) for E_y \le 6000 keV,
Z=3, 6, 10, and 14 \le Z \le 30.
From Trusov (1972Tr09) for E_y \ge 2600 keV.
From Hager and Seltzer (1969Ha61), K/L₁, L₁/L₂
for E0 transitions.

4. Decay scheme normalization					
Rel. int.	Norm. factor	Abs. Int.			
Ι _γ	$NR\timesBR$	%I _y			
Ι _Τ	NT imes BR	%I _T			
Ι _β	$NB\timesBR$	%Ι _β			
Ι _ε	$NB\timesBR$	%l _ε			
I_{α}	$NB\timesBR$	%I _α			
BR: factor for <i>branch</i> , t	converting intens o intensity per 10	sity per 100 decays through this decay 0 decays of the parent nucleus			
NR: factor for decay bra	[·] converting relativ anch.	ve ${\bf I}_{\gamma}$ to ${\bf I}_{\gamma}$ per 100 decays through this			
NT: factor for decay bra	converting relativanch.	e TI to TI per 100 decays through this			
NB: factor for 100 deca	converting relative ays of this decay b	ve β^- and ϵ intensities to intensities per pranch.			

6. Electron capture

- Give (I_ε+I_{β+}) feedings deduced from γ-ray transition intensity balance. Program LOGFT calculates ε and β⁺ probabilities from theory.
- Program LOGFT calculates sub-shell (P_K, P_L, P_M ...) probabilities from theory.
- Give (in comments) x-ray intensities. These data are useful for normalizing or testing the decay scheme.

7. Alpha particles

• Energy (keV)

Most measurements are relative to a line from a standard radionuclide. Include this information in a comment.

Use Rytz (At. Data Nucl. Data Tables **47**, 205 (1991)) evaluated E_{α} and I_{α} when no new values are available.

• Intensity

Give intensities preferably "per 100 α decays" (NB = 1), and a branching factor BR to convert them to "per 100 decays of the parent nucleus".

Hindrance factor

HF= experimental $T_{1/2}(\alpha)$ /theoretical $T_{1/2}(\alpha)$. The theoretical value is from 1947Pr17 (M.A. Preston). The assumption is that 0⁺ to 0⁺ α transitions from even-even nuclei are the fastest (HF = 1). These transitions are used to determine the radius parameter r₀ (see 1998Ak04, Y.A. Akovali). Use program ALPHAD.

Radius parameter r_0 (Y. Akovali, Oak Ridge) Odd-N nucleus (Z, A) $r_0(Z, N) = [r_0(Z, N-1) + r_0(Z, N+1)]/2$ Odd-Z nucleus (Z, A) $r_0(Z, N) = [r_0(Z-1, N) + r_0(Z+1, N)]/2$ Odd-Odd nucleus (Z, A) $r_0(Z, N) = [r_0(Z, N-1) + r_0(Z, N+1)]/2 = [r_0(Z-1, N+1) + r_0(Z-1, N-1) + r_0(Z+1, N-1)]/4$

ENSDF – Evaluations: Methodology and Worked Examples

E.Browne

and

C.Baglin

LBNL, USA

E-mail: ebrowne@lbl.gov

<u>E-mail: cmbaglin@lbl.gov</u>

		L (anaa)	l (bal)
			ι _α (pai.)
4809	304	~0.1	
4862	247	0.7 (1)	0.8 (2)
4925	183	11.5 (5)	16 (3)
4940	169	~0.6	0.8 (3)
4997	112	~6	
5008	101	24 (8)	33 (10)
5025	84	53 (8)	51 (12)
5051	58	1.8 (3)	~2
5100	9	0.2	
5108	0	1.5 (2)	

	44Ti Half-li	fe Measurements			
INP. VALUE	INP. UNC.	R. WGHT chi**2/N-3	1 REFERENCE		
.607000E+0	2 .120E+01	.141E+00 .826E-01	99Wi01		
.590000E+0	2 .600E+00 MIN	*.563E+00* .479E+00	98Ah03		
.603000E+0	2 .130E+01	.120E+00 .163E-01	98Go05		
.62000E+0	2 .200E+01	.507E-01 .214E+00	98No06		
.666000E+0	2 .160E+01	.792E-01 .348E+01	90A111		
.542000E+0	2 .210E+01	.460E-01 .149E+01	83Fr27		
WM :.59	4667E+02 .1647 9288E+02 .4503	96E+01 17E+00(INT.) .10805	57E+01(EXT.)		
WM :.59 INP. VALUE .607000E+0	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01	57E+01(EXT.) 1 REFERENCE 99Wi01		
WM :.59 INP. VALUE .607000E+0 .590000E+0	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03		
WM :.59 INP. VALUE .607000E+0 .590000E+0 * Input un	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00 certainty incre	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 *		
WM :.59 INP. VALUE .607000E+0 .590000E+0 * Input un .603000E+0	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times .137E+00 .663E-02	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 98G005		
WM :.59 INP. VALUE .607000E+0 .590000E+0 * Input un .603000E+0 .620000E+0	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01 2 .200E+01	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times .137E+00 .663E-02 .580E-01 .188E+00	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 98Go05 98No06		
WM :.59 INP. VALUE .607000E+0 .590000E+0 * Input un .603000E+0 .666000E+0	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01 2 .200E+01 2 .160E+01	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times .137E+00 .663E-02 .580E-01 .188E+00 .907E-01 .334E+01	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 98Gc05 98Nc06 90All1		
<pre>WM :.30 WM :.59 INP. VALUE .607000E+0 .590000E+0 * Input un .603000E+0 .666000E+0 .542000E+0</pre>	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01 2 .200E+01 2 .160E+01 2 .210E+01	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times .137E+00 .663E-02 .580E-01 .188E+00 .907E-01 .334E+01 .526E-01 .156E+01	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 98Go05 98No06 90A111 83Fr27		
<pre>WM ::50 WM ::59 INP. VALUE .607000E+0 .59000E+0 * Input un .603000E+0 .662000E+0 .666000E+0 .542000E+0</pre>	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01 2 .200E+01 2 .210E+01	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times .137E+00 .663E-02 .580E-01 .188E+00 .907E-01 .334E+01 .526E-01 .156E+01	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 98Go05 98No06 90Al11 83Fr27	2.00	
<pre>WM ::59 INP. VALUE .607000E+0 .59000E+0 * Input un .603000E+0 .662000E+0 .666000E+0 .542000E+0 No. of Inp UWM ::60</pre>	4667E+02 .1647 9288E+02 .4503 INP. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01 2 .200E+01 2 .210E+01 2 .210E+01 ut Values N= 6 4667E+02 .1647	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times .137E+00 .663E-02 .580E-01 .188E+00 .907E-01 .334E+01 .526E-01 .156E+01 CHI**2/N-1= 5.63 96E+01	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 98Bn006 90Al11 83Fr27 CHI**2/N-1(critical)	- 3.00	
WM ::59 INP. VALUE .607000E+0 .590000E+0 .66000E+0 .542000E+0 .542000E+0 No. of Inp UWM ::60	4667E+02 .1647 9288E+02 .4503 INF. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01 2 .200E+01 2 .200E+01 2 .210E+01 ut Values N= 6 4667E+02 .1647 0634E+02 .4818	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-1 .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times .137E+00 .663E-02 .580E-01 .188E+00 .907E-01 .334E+01 .526E-01 .156E+01 CHI**2/N-1= 5.63 96E+01 46E+00(INT.) .11437	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 98Bo05 98Bo06 90Al11 83Fr27 CHI**2/N-1(critical) 78E+01(EXT.)	= 3.00	
WM ::50 WM ::50 INP. VALUE .607000E+0 .590000E+0 .66000E+0 .666000E+0 .542000E+0 No. of Inp UWM ::60 WM ::60	4667E+02 .1647 9288E+02 .4503 INF. UNC. 2 .120E+01 2 .681E+00 certainty incre 2 .130E+01 2 .200E+01 2 .200E+01 2 .160E+01 2 .210E+01 ut Values N= 6 4667E+02 .1647 0634E+02 .1143	96E+01 17E+00(INT.) .10805 R. WGHT chi**2/N-J .161E+00 .563E-01 *.500E+00* .487E+00 ased .114E+01 times 1.37E+00 .663E-02 .580E-01 .188E+00 .907E-01 .334E+01 .526E-01 .156E+01 CHI**2/N-1= 5.63 96E+01 46E+00(INT.) .11437 78E+01 Min. Inp. U	57E+01(EXT.) 1 REFERENCE 99Wi01 98Ah03 * 980c06 90Al11 83Fr27 CHI**2/N-1(critical) 78E+01(EXT.) Unc.=.60000E+00	- 3.00	

	ΨТ		тт		TΤ		NET FEED	ING	
LEVEL	(OUT)		(IN)		(NET)		(CALC)	(USE)	
0.0	0.000		104.8	18	-104.8	18	-1.0 17	0.0	
67.8679 1	4 104.7	18	103.0	12	1.6 2	1	1.6 21	0.6 11	
146.224 22	2 103.1	12 (0.000		103.1	12	99.4 11	99.4 1	
44TI P 0 44SC N 0 44SC L 0 44SC L 6 44SC E 44SC G 6 44SC G K 44SC L 1	.964 1 7.8679 14 7.8679 14 C= 0.0766 46.224 22	0+ 3 2+ 1- 96.5 \$LC= 0-	1.0 16 0.00	0.6 E1 664	60.0 Y 3.97 H 154.2 NS 11 50.4 US	11 4 8 7	267 0.0845	.5 19	
44SC E	o 26 - 2	100 0	11	99.4 M1	. 11		0 0303		
44SCS G K	C= 0.0273	\$LC=	0.00	243			0.0302		
44SC G 1	46.22 3	0.095	3	[M2]			0.0460		
445C5 G K	C= 0 0414	SLC=	0 00	385					

ENSDF – Evaluations: Methodology and Worked Examples

E.Browne

and

C.Baglin

LBNL, USA

<u>E-mail: cmbaglin@lbl.gov</u>

<u>E-mail: ebrowne@lbl.gov</u>

Summary
Principal Categories of Reactions:
 Reactions in which gamma emissions are not detected:
Stripping and Pickup Reactions
Multi-particle Transfer Reactions
Charge-Exchange Reactions
Inelastic Scattering
Coulomb Excitation (particles detected)
Resonance Reactions
 Reactions in which gamma emissions are detected:
Summary of information available from γ -ray measurements
Inelastic Scattering
Nuclear Resonance Fluorescence
(light ion, xnypγ)
(heavy ion, xnypγ)
Particle Capture
Coulomb Excitation (ys detected)

Gamma emissions <u>not</u> detected

Measured Quantities of Interest:

- E(level) from particle spectrum or excitation function.
- L angular momentum transfer
- S, C²S spectroscopic factors
- + $\beta_2,\,\beta_4$ deformation parameters (if model independent)
- Γ , Γ _I total or partial widths for level
- B(E λ), B(M λ) transition probabilities

Stripping and Pickup Examples: <u>Stripping</u>: (d, p), (α , ³He), (pol d, p), (³He, d), etc. <u>Pickup</u>: (p, d), (³He, α), etc. **Quantities to Record:** • E(level) from charged particle spectrum. • L and S or C²S from DWBA analysis $(d\sigma/d\omega(\theta))_{exp} = (d\sigma/d\omega(\theta))_{DWBA} \times C^2S' \times N$ S'=S (pickup) or where $S'=Sx(2J_f+1)/(2J_i+1)$ (stripping) • J from L±1/2 for polarised beam if vector analysing power shows clear preference between L+1/2 and L-1/2. $(d\sigma/d\omega$ is not normally given, but may be useful in absence of angular distribution; give in S field with suitable label.) **Relevant Documentation:** Target J π (unless 0⁺) Spectrum resolution (FWHM, keV) Normalisation factor for DWBA analysis Range of angles measured, lab or c.m. (but say which).

Stripping and Pickup

Deformed Nuclides; α and lighter beams:

• Pattern of cross sections among rotational-band members characteristic of a particular Nilsson configuration (**fingerprint**) enables a set of levels to be assigned as specific J members of that band if:

(i) fingerprint agrees well with that predicted by Nilsson-model wavefunctions, and

(ii) fingerprint is distinct from those for other possible configurations.

• Authors may give 'spectroscopic strength' (S) which can be entered in spectroscopic factor field (with suitable label).

Multi-particle Transfer

Examples:

(p, t), (α, d), (t, p), (α, p), ⁽⁶Li, d) ...

Quantities to Record:

E(level)

L - if angular distribution can be fitted by a unique value

Deduced Quantities:

J π - from J(target) + L (vector sum) and $\pi_i \pi_f = (-1)^{Jf}$, for strong groups only in two-neutron, two-proton or α -particle transfer

pairs of identical particles can be assumed to be transferred in relative s state for strong groups

Charge-Exchange Reactions

Examples:

(p, n), (³He, t)

Quantities of interest:

E(level)

Isobaric analog state information

Inelastic Scattering

Examples:

(e, e'), (p, p '), (d, d '), (α, α ') at projectile energies **above** the Coulomb barrier

Quantities to Record:

E(level)

L - if angular distribution is fitted by unique L value

 β 2, β 4 ... - deformation parameters (if model independent); specify whether 'charge' or 'nuclear', if relevant (typically from (α , α ') or (e, e ')).

 $B(E\lambda)$, $B(M\lambda)$ – transition probabilities (typically from (e, e ')).

Coulomb Excitation - particles detected

Examples:

(p, p'), (d, d'), ($\alpha,\,\alpha')$ with projectile energy below Coulomb barrier

Quantities to Record:

E(level)

Jπ:

- determined if the excitation probability agrees with that calculated by Alder (1960Al23).
- low energy Coulomb excitation is predominantly E2

 $B(E\lambda)$ – for excitation

Resonance Reactions

Examples:

(p, p), (p, X), (γ , n) ... (excitation function data, σ (E), $d\sigma/d\omega(\theta,E)$)

Quantities of interest:

E(level) - can be given as 'S(p) + 976.3', etc., where 976.3 is <math>E(p) for resonance (c.m. or lab. energy, but <u>must</u> specify which).

Is this an isobaric analog state? If so, specify analog state

Partial widths

Is this a giant resonance?

Note:

ENSDF is primarily concerned with <u>bound</u> levels, but includes all isobaric analog states, giant resonances and unbound levels that overlap or give information on bound levels

Reactions with Gamma Emissions -Detected

Measured Quantities of Interest:

- E_{γ} photon energy
- $I\gamma$ relative intensity (or photon branching)
- α, α_K, ... electron conversion coefficients, usually from I(ce)/Iγ, sometimes from intensity balance (note: this gives α_{exp}).
- K/L, L1/ L3 ... ce subshell ratios
- $A_2, A_4 \dots$ Legendre polynomial coefficients characterizing angular distribution ($\gamma(\theta)$) or angular correlation ($\gamma\gamma(\theta)$).
- DCO ratio directional correlation of gammas from oriented nuclei.
- Asymmetry ratio e.g., $I\gamma(\theta_1)/I\gamma(\theta_2)$
- Linear polarization
- Level $T_{1/2}$ from $\gamma(t)$, DSAM, RDM, centroid-shift, delayed coincidence, etc., if measured in that reaction
- g-factor include if measured in that reaction

Reactions with Gamma Emissions -Detected

Deduced Quantities of Interest:

• E(level) – from least-squares adjustment of $E\gamma$ (GTOL), avoiding $E\gamma$ for lines that have uncertain or multiple placements whenever possible. Note serious misfits.

• Band structure – indicate via band flags for levels (note: life will be easier if a given band has the same band-flag character in each dataset in the nuclide!)

• $J\pi$ - default is adopted value; however, much more useful to indicate authors' values in reaction dataset and add parentheses in *Adopted Levels* if insufficient (or no!) supporting arguments are available

• M - transition multipolarity

• δ – mixing ratio ($\sqrt{(L+1)}\mbox{-pole}/(L\mbox{-pole})),$ Krane-Steffen sign convention

Gamma-ray Energies

• Give measured energy and uncertainty (i.e., do not correct for recoil energy loss)

- State source of data (unless obvious, e.g., if only one keynumber)
- Uncertainties: if authors give uncertainty as:

(i) "0.3 keV for strong lines, 1 keV for weak or poorly resolved lines"; assign 0.3 to those which could be reasonably considered 'strong' and 1 to all others, but give authors' statement in general comment on E_{γ} and define I_{γ} that you consider 'strong' (or assign 1 keV to all)

(ii) "do not exceed 0.5 keV"; 0.5 could be assigned for all lines

(iii) if no uncertainty is stated, point out in general comment (for the purpose of deducing E(level) using GTOL, default of 1 keV (adjustable by user via control record at head of dataset)will be used and this should be noted in comments on level energy)

• If measured E_{γ} not available but G record needed in order to give other information, deduce from level energy difference and remove recoil energy loss; give no ΔE_{γ} and state origin of E_{γ}

Gamma-ray Intensities

• Give relative intensities, if available (do not renormalise so strongest is 100).

• Do not mix data from different reactions or data from same reaction at different energies when entering RI on G records (use different datasets instead, or include in comments or tabulation)

• If branching ratios are measured independently (e.g., from $\gamma\gamma$ coincidences), quote these data(e.g., in comments); one set of data may be more precise than the other

• Give uncertainties whenever authors state them; if authors give both statistical and systematic uncertainties, show statistical on G record but state systematic in comments (so uncertainty in I_{γ} ratios is not distorted)

• If both prompt and delayed $I\gamma$ are given, use separate datasets or give one set under comments.

• For multiply-placed lines, specify whether quoted $I\gamma$ has been suitably divided between placements (& or @ in column 77)

Conversion Coefficients

• Give measured $\alpha_{\rm K},\,\alpha_{\rm L},\,etc.,\,and$ subshell ratios (in comments or on continuation of G record); state how photon and ce intensity scales were normalised

• Quote experimental coefficients (usually α) obtained using intensity balance arguments (these are frequently buried in the text of the paper); specify as "from intensity balance at xxxx level" where relevant

- Include $\alpha(\mbox{theory})$ on G record (from HSICC) when needed for calculation or argument

γ Linear Polarisation

 γ linear polarisation data may be available from Compton polarimeter measurements of relative I γ in planes perpendicular and parallel to reaction plane

Such data may distinguish between electric and magnetic radiations

	Angular Distributions						
Ту	Typical values of A ₂ , A ₄ for θ relative to beam direction if σ /J=0.3 (B. Singh, McMaster University)						
ΔJ	Multipolarity	Sign of A ₂	Sign of A ₄	Typical A ₂	Typical A ₄		
2	Q	+	-	+0.3	-0.1		
1	D			-0.2	0.0		
1	Q	+	+	-0.1	+0.2		
1	D+Q	+ or -	+	+0.5 to -0.8	0.0 to +0.2		
0	D	+		+0.35	0.0		
0	Q	-	-	-0.25	-0.25		
0	D+Q	+ or -	-	+0.35 to - 0.25	0.0 to -0.25		

DCO Ratios

Typical DCO values for $\theta_1 = 37^\circ$, $\theta_2 = 79^\circ$, $\sigma/J = 0.3$ (B. Singh, McMaster U.)

ΔJ _γ ^{gate} , Mult	ΔJ_{γ}	Mult	Typical DCO
2, Q	2	Q	1.0
2, Q	1	D	0.56
2, Q	1	D+Q	0.2 to 1.3
2, Q	0	D	1.0
2, Q	0	D+Q	0.6 to 1.0
1, D	2	Q	1/0.56
1, D	1	D	1.0
1, D	0	D	1/0.56

Multipolarity • L and $\Delta \pi$ may be determined from measured subshell ratios or conversion coefficients · L alone can be determined by angular distributions or DCO ratios or γ asymmetry ratios • $\Delta\pi$ may be determined by γ linear polarisation measurements • When transition strengths are calculable ($T_{1/2}$ and branching known), Recommended Upper Limits (RUL) can be used to rule out some multipolarities (e.g., stretched Q transition for which B(M2)_w exceeds 1 can be assigned as E2); similarly, for a D+Q transition with large mixing, RUL may enable the rejection of E1+M2 Assign Multipolarity only when measured information indicates clear preference for that assignment; otherwise, let $\gamma(\theta)$ or DCO data speak for themselves (exception: if no measurement exists but multpolarity is needed use [M1 + E2], etc., type of entry) • Multipolarity determined for a doublet will be not reliable; can be given in comments (with disclaimer), but not on G record

Nuclear Resonance Fluorescence (Integrated) scattering crossection I_s (eV b) is often given: $I_{s} = ((2J+1)/(2J_{0}+1)) (\Gamma \gamma_{0} \Gamma \gamma_{f} / \Gamma \gamma) (\pi \hbar c / E \gamma)^{2} W(\theta) / 4\pi$ where J is g.s. spin, J_0 is spin of excited level, $\Gamma \gamma \cong \Gamma$ is total width and $\Gamma \gamma_0$, $\Gamma \gamma_f$ are decay widths for γ decay to the g.s. and the final state f (for elastic scattering, $\Gamma \gamma_0 = \Gamma \gamma_f$; W(θ) represents the normalised angular distribution. Data are often taken at 127° where W = 1 for D transitions • Give $\Gamma \gamma_0^2 / \Gamma$ values (extract if necessary) on L record (col. 65 (value), 75 (unc.)); relabel field • If $\Gamma \gamma_f / \Gamma \gamma_0$ is measured, include relative branching on G records Γ is calculable from: $(\Gamma \gamma_0^2 / \Gamma) / (\Gamma \gamma_0 / \Gamma)^2$ using known branching, or under assumption $\Gamma = \Gamma \gamma_0 + \Gamma \gamma_f$ (which needs to be stated) • Then: $T_{1/2}$ (fs)= 0.456 / Γ (meV); include on L record Propagate uncertainties with care!

(Light lon, xnypg)

(p, xn γ), (³He, xn γ), (α , p γ), etc.

Separate from (HI, xny) studies

Separate from datasets in which gammas are not measured (e.g., do <u>not</u> combine $(d, p\gamma)$ and (d, p)).

(Heavy Ion, xnypγ)

• Relative intensities differ for different reactions and also for a given reaction measured at different beam energies; in general, simplest to use separate datasets for each study that provides significant $I\gamma$ or branching data

• (HI, $xn\gamma$) reactions tend to populate yrast (lowest energy for given J) levels or near-yrast levels; populated states tend to have spins that increase as the excitation energy increases

• Use band flags to delineate deduced band structure; if authors give configuration for band, include in band description

(Heavy lon, xnypγ)

• Note inconsistencies in γ order, postulated J π , configuration, etc., compared with other studies, and especially with that in *Adopted Levels*, *Gammas*

• Beware of multipolarity and $J\pi$ assignments for which <u>no</u> supporting measurements exist - values are sometimes inserted in order to generate a RADWARE band drawing, and live on in the published table of data; these do <u>not</u> qualify as 'data'!

• Multipolarities determined as D, Q, D+Q, etc, by $\gamma(\theta)$ or DCO are best left this way in the reaction dataset unless definite arguments exist to establish $\Delta\pi$ (otherwise 'D' (strong J π argument) and '(D)' (weak J π argument) become indistinguishable when written as, say (M1))

• Report statements of coincidence resolving time (or equivalent) since they might place a limit on level lifetime, thereby enabling RUL to be used to reject $\Delta \pi$ = yes for a transition multipolarity

• For K = 1/2 rotational bands, the decoupling parameter may give a clear indication of the Nilsson orbital involved in the band configuration
(Heavy Ion, xnypγ)

• For near-spherical nuclei, if a cascade of $\Delta J = 1$ transitions is observed at high spin with regular energy progression, these transitions may be assigned as (M1) transitions within a common band. <u>Exception</u>: in rare cases, nuclei can have alternating parity bands (reflection asymmetry), and $\Delta J = 1$, $\Delta \pi =$ yes cascades occur

• For a well-deformed nucleus, if a cascade of $\Delta J = 2$ transitions is observed at high spin with regular energy progression, these transitions may be assigned as E2 transitions within a common band

• Octupole-deformed nuclei may exhibit an apparent band which is really two ΔJ = 2 rotational sequences of opposite parity, connected by cascading E1 transitions

Special Case:

Superdeformed band data are updated continuously in ENSDF by Balraj Singh (McMaster University). Check ENSDF at the conclusion of a mass chain evaluation to be sure no SD-band data have been added since the chain was downloaded for revision

Capture Reactions

 $(p, \gamma), (n, \gamma) \in =$ thermal, $(n, \gamma) \in =$ res, etc.

- Use separate datasets for thermal and resonance n-capture data
- Primary and secondary transitions usually appear in the same dataset even if their intensities require different normalisations
- J π of the thermal neutron capture state(s) is J π (target) ± 1/2⁺ (i.e., s-wave capture assumed)

• Thermal neutron capture: multipolarity of a primary γ is E1, M1, E2 or M1+E2

• For resonance n capture, ENSDF does <u>not</u> include the resonances and their properties; list the bound states fed, their interconnecting gammas and any conclusions concerning level J π

• Average resonance n capture: inclusion of primary gammas and their reduced intensities (which carry information on final state $J\pi$) is optional; a list of final level E and deduced $J\pi$ would suffice

Coulomb Excitation

• If authors give matrix element values, convert to $B(E\lambda)$ using $B(E\lambda) = |\langle M(E\lambda) \rangle|^2 / (2J_0+1)$ where J_0 is g.s. spin.

- If authors give $B(E\lambda){\downarrow},$ convert to $B(E\lambda){\uparrow}$ and include with level information

• In the strongly deformed region, a cascade of E2 transitions with enhanced transition probabilities (B(E2)_W > 10) provides definitive evidence for a rotational band and for the sequence of J π values, providing J π of one level is independently known

- Calculate level $T_{_{1/2}}$ from B(E $\lambda)$ and adopted $\gamma\text{-ray}$ properties when possible

ENSDF – Adopted Levels and Gammas: Model Exercises

Coral Baglin

Lawrence Berkeley National Laboratory, USA

General Information

Q values:

• Usually rounded values from latest mass table (presently 1995Au04)

- Add new S(p), Q(α) with keynumber, if available; compare with 1995Au04

• Optional: comment on uncertainties in 'SY' values; note newlymeasured masses if very different from Audi prediction

General Comments:

e.g., Production/Identification, keynumber lists for major shell model calculations or isotope shift/hfs references (all optional)

Other Reactions:

Give reaction and keynumber for completeness, even though no data have been used and no reaction dataset has been created e.g., continuum gamma study (optional)

Define XREF Symbols:

Every DSID in nuclide must be listed here, even if not associated with a specific level

Example 1 ?

```
167IR ADOPTED LEVELS
167IR C Production: 92MO(78KR,p2n) E=357, 384 MEV (1997DA07).
167IR C Identification: 1981HO10 unambiguously assign a new |a group to 167IR
167IR2C by relating it to known transitions through a multi-dimensional
167IR3C analysis correlating parent energies, daughter energies, and the
167IR4C timing of events. The production reactions involved 58NI on
167IR5C molybdenum-tin targets and 107AG on vanadium-nickel targets
167IR C For calculation of proton decay widths for 167IR GS and isomer see
167IR2C 2000DA11.
167IR Q
               11760 SY-1070 6 6507 5 1995AU04,1997DA07
167IR CQ
               |DS(n)=300 (1995AU04).
167IR CQ QA$from measured EA=6351 5 (1997DA07) for GS to GS transition; 1995AU04
167IR2CQ give QA=6495 50, reflecting lack of information concerning daughter
167IR3CQ state at that time.
167IR CQ SP
                From measured EP=1064 6 (1997DA07) for GS to GS transition;
167IR2CQ SP=-1110 10 in 1995AU04.
167IR XA171AU A DECAY (1.02 MS)
167IR XB78KR(92MO,2NPG)
167IR L 0
               (1/2+)
                            35.2 MS 20
167IR2 L %A=48 6 (1997DA07)$%P=32 4 (1997DA07)$%EC+%B+=?
167IRX L XREF=B
               comparison of calculated and measured partial lifetimes for
167IR CL J
167IR2CL p decay rule out d{-3/2} and h{-11/2} transitions, so 1997DA07 conclude
167IR3CL that an L=0 p is emitted to the 0+ GS of 166OS.
167IR CL %A,%P
                  From relative intensities of |a and p decay from level,
```


Level Properties

Level Energy:

• Use GTOL to calculate from adopted Eγ in most cases.

Include all discrete levels and giant resonances; identify analog resonances

Adopt minimum number of levels consistent with source datasets

T1/2 (or Γ):

• Specify source, e.g., "from B(E2)↑ in Coulomb excitation", etc.

• Give bare-atom half-lives in comment (e.g., "T_{1/2}(52Fe26+) = ...")

• Remember $\Gamma = \Gamma\gamma + \Gamma p + ...$ for resonance, so note any assumptions such as ' $\Gamma = \Gamma\gamma_0 + \Gamma\gamma_1$ ' or ' $\Gamma = \Gamma p$ '.

Band Flag: (if relevant)

Give rotational band parameters in comment (if meaningful) from: $E_{K}(J) = E_{0} + A(J(J+1)-K^{2}) + B(J(J+1)-K^{2})^{2} + (-)^{(J+K)}(J+K)!/(J-K)!(A_{2K}+B_{2K}(J(J+1)-K^{2}))$ **Isospin:** very important for low A!

Level Decay Branches: for g.s. and $T1/2 \ge 0.1$ s levels, include all modes that might reasonably be expected, even if not yet observed

```
        92RB
        Q
        8100
        7
        5099
        10
        10750
        60

        92RB
        L
        0.0
        0-
        4.49

                                                                 1995AU04
                                            4.492 S 20
 92RB2 L %B-=100 $ $B-N=0.0107 5 $
 92RBX L XREF=AB
_____
192PO Q
                        11.0E3 SY 2.2E3 SY 7320
                                                         7
                                                                 1995AU04
                  |DS(n)| = 360, |DS(p)| = 450 (1995AU04).
192PO CQ
192PO L 0.0
                         0+
                                              33.2 MS
                                                         14
192POX L XREF=AB
192PO2 L %A AP 100$ %EC+%B+=?$
192PO CL
                  %A: only A DECAY observed. %(EC+B+) AP 0.4 can be
192PO2CL estimated from gross B decay theory (partial T AP 8 S)
192PO3CL (1973TA30), or AP 0.54 from partial BETA T of 6.1 \rm S
192PO4CL calculated by 1997MO25.
_____
168RE Q -5800
                                            SY5063
                                                        13 1995AU04

      168RE CQ
      |DQ(|b)=400, |DS(n)=420, |DS(p)=510 (1995Au04).

      168RE L 0.0
      (5+,6+,7+)

                     SY8960
                               SY830
168RE2 L %EC+%B+=100$ %A AP 5E-3 $
168REX L XREF=AB
168RE CL
                     %A: deduced from IA/RI(199.3G in 168W) and EC decay
168RE2CL scheme for 168RE (1992Me10).
                                                     Example 2: decay branches
```

XREF Flags:

Use 'X(*)' if level from dataset X cannot be <u>uniquely</u> identified with level in question
Use 'X(energy)' to resolve any ambiguity due to poor energy match

between adopted level and dataset X level

```
Example 3: XREFs

59NI L 5821 10

59NIX L XREF= BN(*5830)

59NI CL JPI=3/2+ FROM (POL P,D) AND L(P,D)=2 FOR 5821 AND/OR

59NI2CL 5844 LEVEL(S).

59NI L 5844 10 (3/2+,5/2+)

59NIX L XREF=BN(*5830)

59NI CL J L(D,P)=(2). JPI=3/2+ FROM (POL P,D) AND L(P,D)=2 FOR 5821

59NI2CL AND/OR 5844 LEVEL(S).
```

Watch for systematic energy scale deviations between various reaction studies

Example 4 169Tm(d,p)	Target: 1/2[411]p g.s.
	n stripped from d
170Tm states populated:	oopulated must be 1/2[411]p⊗Ω[xxx]n
	1/2[411]p ± 1/2[521]n
	1/2[411]p ± 5/2[512]n
	1/2[411]p ± 7/2[633]n
	1/2[411]p ± 3/2[521]n
Not populated:	
	7/2[404]p ± 7/2[633]n
	1/2[541]p ± 5/2[512]n
	1/2[541]p ± 7/2[633]n

```
Moments (\mu, Q): static, model-independent values

    Summarized in 89Ra17 (evaluation) and 01StZZ (listing); add new

references
· Specify method used

    Mention standards used, corrections applied (e.g., Sternheimer)

· Signs do matter

    Convert g-factor data to μ

Δ<r2> (DAVRSQ): include data in comment on g.s. (or isomer) if available
Example 5: \mu, \Delta<r2>, etc
167LU L 0.0+X 1/2(+)
                              1 M
                                     GE
                                                      CM
167LUX L XREF=B
167LU2 L %EC+%B+=?$%IT=?
167LU3 L MOMM1=-0.0999 13 (1998GE13)$
167LU CL
               DAVRSQ(170LU,167LU)=-0.291 (1998GE13); 10%
167LU2CL systematic uncertainty.
167LU CL
               J,MOMM1: from collinear fast beam laser spectroscopy
167LU2CL (1998GE13). PI based on proximity of MOMM1 to value expected for
167LU3CL 1/2[411] orbital (-0.05) cf. that for the only other nearby J=1/2
167LU4CL orbital (viz. 1/2[541], |m AP +0.7).
167LU CL T
               estimated by 1998GE13; based on known rare-earth diffusion ...
```


Sample Jπ Arguments:

Argument(s)	Jπ
E2 737 γ to 7/2+ g.s.; log <i>ft</i> < 5.9 from $\frac{1}{2}$ +.	3/2+
Primary γ from $\frac{1}{2}$ + in (n, γ) E = thermal; E1 438 γ from 7/2- 832 level.	5/2+
From (pol d, p) and $L(d, p) = 3$ for 0+ target.	5/2+
$Log f^{1u}t < 8.5$ from 2-; M1 558 γ from 4+ 1038 level.	3+
M1+E2 78γ to ½- 132 level.	3/2-
E1 122γ to 2- 244 level; 72γ to 4+ 50 level.	(2,3)+
Probable analog of 3/2- 358 level in ^{AA} ZZ.	(3/2-)
Unhindered α decay from (10-) parent.	(10-)
γ to 2- and γ to 4+.	(2+,3,4-)

Gamma-ray Properties

Energy:

If E derived from level energy difference, say so and recalculate after GTOL has been run (without that E_{γ} included, of course)

Relative Branching:

• Scale Iγ so strongest branch is 100; Exceptions:

- Strongest line is multiply placed (& in col. 77) (give as < $I+\Delta I$) Strongest line is given as a limit
- Transition is within a superdeformed band
- Omit uncertainty if only one branch
- Give TI for E0 or fully converted transitions

Multipolarity:

• [mult] means 'deduced solely from level scheme'; use [E2], etc. only if <u>needed</u> to calculate transition probabilities or CC for line with no measured multipolarity

• Convert 'D' or 'Q' to '(E1)', '(E2)', etc., if preferred or if needed for calculation; specify how $\Delta \pi$ was deduced

• Remember that 'M1, E2' and 'M1+E2' are not equivalent

Mixing Ratio:

- Include sign, if known; absence of sign indicates modulus $\boldsymbol{\delta}$

• If two solutions, give both in comment, none in MR field

• Watch for cases where experiment gives higher limit than RUL allows

Conversion Coefficients (CC):

Give when significant

E0 Transitions:

Quote ρ 2(E0) from 1999Wo07 (or from authors of later papers)

Reduced Transition Probabilities:

- Give whenever calculable
- If δ overlaps 0 or ∞ , calculate for D or Q only
- Calculate for [E1], [E2], [∆J > 2]
- Watch out for data given as a limit

I:	Data given as limit:
δ (/1,E2) < 0.3:
	B(E2) _w : give as upper limit
	$B(M1)_W$: give av. of $B(M1)_W(\delta=0)$ and $B(M1)_W(\delta=0.3)$
ΤI	< i for non-dominant branch:
	Assign $1/2i \pm 1/2i$ to this transition to enable calculation of
-	$B(L\lambda)_{W}$ s for other branches
I _{1/}	$2^{<1}$
т	Sive resulting lower limits on B(LA)WS.
1 /	2~1. Typically, forget it l
	However $B(E2) < 0.005 \text{ or } B(E1) < 2x10^{-10} \text{ might for example}$
	be worth mentioning
	<u> </u>
II:	When $T_{1/2}$ was calculated directly from B(L λ):
	Calculate $B(L\lambda)_W \downarrow$ from measured $B(L\lambda)\uparrow$ and single-particle
	value (available from RULER)

Checking Your File

• Run FMTCHK and make necessary corrections

• Read through file (ENSDAT/ENSWIN output may be helpful); amazing what the eye can catch this way

- Check band drawings – typographical error in $J\pi$ or incorrect band flag may be extremely easy to detect in these drawings

- Run PANDORA.
 - Use FILE.ERR output to identify physics errors.
 - Use FILE.GLE to check for:

(i) inconsistencies in J $\pi,$ MULT, δ between adopted and decay datasets

(ii) adopted photon branching that has not been renormalised so the strongest branch is $100\,$

(iii) levels or transitions in decay or reaction datasets which were accidentally omitted from *Adopted Levels, Gammas* (or conversely)

Bibliographic Databases in support of NSDD Evaluations

T. Burrows

NNDC, BNL, USA

E-mail: burrows@bnl.gov

1. Introduction

Bibliographic databases useful to nuclear structure and decay data (NSDD) evaluators are briefly described, along with examples of their usage. Authors' reference listings are also discussed. Nuclear Science References is recognized as the major bibliographic resource, and therefore most of the presentation is devoted to this database.

2. Nuclear Science References

Nuclear Science References (NSR) is the primary bibliographic resource for NSDD evaluators. Originally known as Nuclear Structure References, the name was changed in 1995 to reflect the extended coverage. The primary scanning effort is concentrated at the National Nuclear Data Center (NNDC), with some contributions from Russian groups that cover various conferences and laboratory reports.

About 75 to 80 journals are regularly scanned, particularly journals devoted completely to nuclear physics (*e.g.*, European Journal of Physics A, Nuclear Physics A, and Physical Review C) that are comprehensively indexed in NSR. Relevant information from laboratory reports, conference proceedings, theses, *etc.* is also indexed. NSR is a reference-oriented bibliography; i.e., each entry represents one article. There are approximately 174000 entries with about 4500 added yearly. The database is considered "complete" for primary nuclear structure references (articles published in reference journals) since 1967, and has references dating back to 1910.

HTML-formatted retrievals have links to other sources:

- Journal link managers (American Physical Society, EDP Sciences, and Nuclear Physics Electronic 43561 as of 9 October 2003
- Evaluated Nuclear Structure Data File (ENSDF) 229 as of 9 October 2003
- 3. Experimental Unevaluated Nuclear Data Library (XUNDL) 960 as of 8 October 2003
- 4. Digital Object Identifiers (doi) for several journals

Use of the journal link managers is being phased out in favor of *doi*. At present, links to XUNDL are only available at the NNDC.

One issue of *Nuclear Data Sheets* is devoted to Recent References each year, reflecting the entries added to Nuclear Science References during the year. The following access *via* the Internet is available:

- 1. TELNET IAEA-NDS and IAEA-NDS IPEN mirror,
- 2. Web NNDC, IAEA-NDS, and IAEA-NDS IPEN mirror, (CODASYL database, and PERL)
- 3. Web NNDC, IAEA-NDS and IAEA-NDS IPEN mirror (relational database, SQL, and Java Server Pages).

The older Web interface will be discarded by NNDC, probably before the end of 2004.

The master NSR database is updated as entries are added or modified, and the NNDC Web site is updated approximately weekly. Monthly updates are sent to the IAEA Nuclear Data Section. NSDD evaluation centers receive mass-chain-specific updates, and monthly updates in the exchange format are also sent to groups such as the Isotopes Project at LBNL and Sarov.

There are many ways to use NSR (*e.g.*, text searches of titles and keyword abstracts in the SQL version). The following five examples are relevant to ENSDF evaluators (all examples use SQL NSR, although similar capabilities are generally present in theolder interfaces).

Example 1: Starting a New Mass Chain Evaluation

When starting a new mass chain evaluation, one should check NSR for entries added since the cut-off date of the previous evaluation, using the Indexed search option.

🕸 NSR Indexed Search - Netscape
_ Eile Edit ⊻iew Go Bookmarks Tools Window Help
🔺 🖾 Mail 🚴 AIM 🐔 Home 🞧 Radio 🔤 Netscape 🔍 Search 🗄 Bookmarks
NSR Indexed Search
NSR Indexed Search
[<u>NSR Home</u>] [Indexed Search] [<u>Text Search</u>] [<u>Keynumber Search</u>] [<u>Help</u>]
Initialization Parameters:
Publication year range: 1910 to 2004 Primary only: Require measured quantity: Output year order: Descending V Output format: Normal V Search all entries Search entries added since 6 V / 19 V / 1995 V (month/day/year)
Search parameters
Search Reset
Nuclide V A=45 browse
AND
(none) 💽 browse
Search Reset
<i>Instructions:</i> Choose a category from the drop-down boxes on the left, and type in a value to search for on the right. The "Browse" buttons can be used to list allowed values. For more information, see the <u>help page</u> .
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Help]

- 1. Uncheck primary only.
- 2. Selection of descending Output year order will list published references before earlier related preliminary results.
- Select Search entries added since, and use the ENSDF cut-off date for the mass chain as the criteria.
 Select Nuclide and specify the mass as A = mmm to obtain all entries for nuclides with mass mmm.

The resultant retrieval will look like:

One should probably not check **Require measured quantity** in this initial survey, since you will want to check for relevant compilations and evaluations.

The retrieval should also be repeated by selecting A [range] instead of Nuclide and specifying the mass of interest. Such an approach is necessary to obtain NSR entries where the number of nuclides is too numerous to list, and again is useful to check for relevant compilations and evaluations. The two retrievals may be combined using a Boolean OR.

🕸 View and Combine NSR Retrievals - Netscape						
_ Eile Edit View Go Bookmarks Tools Window Help						
C C C C C C C C C C C C C C C C C C C	nb_form.js 🖸 🔍 Search 🛛 💐 🔊					
🔊 🗇 🖼 Mail 🙏 AIM 🐔 Home 🞧 Radio 🔤 Netscape 🔍 Searc	h 🗇 Bookmarks					
🕙 🛇 View and Combine NSR Retrievals						
View and Combine Previous Retrievals						
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Combine/View Lists] [Help]						
Combine lists:						
2 🗸 OR 💉 3 🗸 Combine						
Output format: Normal 💌 Output year order: Descending 💌						
Current lists:						
List # Search/Initialization strings	Number found					
1 Indexed quantity search: Nuclide=A=45 YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:None	860 View					
2 Indexed quantity search: Nuclide=A=45 YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:6/19/1995	133 View					
3 Indexed quantity search: A(range)=45 YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:6/19/1995	201 View					
Clear Lists						
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Combine/View Lists] [Help]						
🔊 🖂 🏂 🖭 Done						

Example 2: Starting an Evaluation of a Nuclide

The first step in starting an evaluation of a nuclide is similar to that for a mass chain. Instead of specifying A = mmm for the nuclide, define the nuclide. Also, the ENSDF cut-off date for the nuclide should be used.

🕸 NSR Indexed Search - Netscape
<u>File Edit View Go Bookmarks Tools Window H</u> elp
Search Search
🔺 🗇 🖂 Mail 🙏 AIM 🐔 Home 🞧 Radio 🔤 Netscape 🔍 Search 🛛 Bookmarks
Image: Search Image: Search
NSR Indexed Search
[<u>NSR Home</u>] [Indexed Search] [<u>Text Search</u>] [<u>Keynumber Search</u>] [<u>He</u> lp]
Initialization Parameters:
Publication year range: 1910 to 2004 Primary only: Require measured quantity: Output year order: Descending V Output format: Normal V Search all entries I Search entries added since 6 V / 19 V / 1995 V (month/day/year)
Search parameters
Search Reset
Nuclide 45Sc browse AND (none) browse AND browse
Search Reset
<i>Instructions:</i> Choose a category from the drop-down boxes on the left, and type in a value to search for on the right. The "Browse" buttons can be used to list allowed values. For more information, see the <u>help page</u> .
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Help]

1 May also be useful to undertake retrievals for A [range] and Z [range] and use a Boolean OR. Note that the Z number (not chemical symbol) is required for the option.

🕸 View and Combine NSR Retrievals - Netscape					
_ Eile Edit View Go Bookmarks Tools <u>W</u> indow Help					
C C C C C C C C C C C C C C C C C C C	form. js 🔽 🔍 Sea	arch 🦉 🔊			
🚬 🗇 🗔 Mail 🙏 AIM 🐔 Home 🞧 Radio 🔤 Netscape 🔍 Search	Bookmarks				
🕙 🛇 View and Combine NSR Retrievals		\mathbf{X}			
View and Combine Previous Retrievals		<u> </u>			
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Combine/View Lists] [Help]					
Combine lists:					
4 OR 5 Combine					
Output format: Normal 💌 Output year order: Descending 💌					
Current lists:					
List # Search/Initialization strings	Number found	=			
 Indexed quantity search: Nuclide=45Sc YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:6/19/1995 	38	View			
2 Indexed quantity search: Z(range)=Sc YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:6/19/1995	0	View			
3 Indexed quantity search: Z(range)=21 YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:6/19/1995	128	View			
4 Indexed quantity search: A(range)=45 YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:6/19/1995	201	View			
5 List combine: 1 OR 3	166	View			
Clear Lists Hide Empty Lists					
[NCD Howe] [Indexed Second) [Text Second) [Kennumber Second] [Combine (View Liste) [Hele]					

Example 3: As an Aid in Reviewing an ENSDF Evaluation

NSR may also aid the referee in checking for the completeness of an evaluation under review. Using the new cut-off date and the cut-off date of the previous evaluation, a Boolean NOT operation can be adopted to achieve this objective.

🕸 View and Combine NSR Retrievals - Netscape						
д Eile Edit View Go Bookmarks Tools Window Help						
C C C C C C C C C C C C C C C C C C C	nb_form.js🔽 🔍 Se	arch 💐 🔊				
🚽 🗇 🗔 Mail 🙏 AIM 🐔 Home 🎧 Radio 🔤 Netscape 🔍 Searc	h 🖹 Bookmarks					
🕙 🛇 View and Combine NSR Retrievals		×				
View and Combine Previous Retrievals						
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Combine/View Lists]	[<u>He</u> þ]				
Combine lists:						
1 💌 AND NOT 💌 2 💌 Combine						
Output format: Normal 💌 Output year order: Descending 💌						
Current lists:						
List # Search/Initialization strings	Number found	1				
1 Indexed quantity search: Nuclide=A=45 YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:6/19/1995	133	View				
2 Indexed quantity search: Nuclide=A=45 YLO:1910; YHI:2004; PRIM:no; EXPR:no; Cutoff:1/1/2004	10	View				
3 List combine: 1 AND NOT 2	123	View				
Clear Lists						
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Combine/View Lists] [Help]						
		-11: •2 6 /				

Again, one should check for relevant compilations and evaluations.

Example 4: Searches by Publication Year and First Author

There may be instances when an evaluator finds a reference that does not seem to appear in NSR. This observation may occur if there is an error in NSR or if Selectors could not be generated for the NSR entry, and can be checked by means of the **Indexed search** option.

🕸 NSR Indexed Search - Netscape
_ Eile Edit View Go Bookmarks Tools Window Help
Search Search
A Canada AIM 🖆 Home 🞧 Radio 🔤 Netscape 🔍 Search 🗄 Bookmarks
VI NSR Indexed Search
NSR Indexed Search
[<u>NSR Home</u>] [Indexed Search] [<u>Text Search</u>] [<u>Keynumber Search</u>] [<u>Help</u>]
Initialization Parameters:
Publication year range: 2003 to 2003 Primary only: Require measured quantity: Output year order: Ascending v Output format: Normal v © Search all entries O Search entries added since 5 v / 7 v / 2004 v (month/day/year)
Search parameters
Search Reset
FirstAuthor 🗸 Audi browse
Inonej V Drowse
(none) v browse
Search Reset
<i>Instructions:</i> Choose a category from the drop-down boxes on the left, and type in a value to search for on the right. The "Browse" buttons can be used to list allowed values. For more information, see the <u>help page</u> .
[NSR Home] [Indexed Search] [Text Search] [Keynumber Search] [Help]

- 1. Specify the publication year range.
- 2. Deselect primary only.
- 3. Select **FirstAuthor**, and specify the last name of the first author.

Example 5: Checking Keynumber Lists

Useful to check the keynumbers in an ENSDF evaluation prior to submission to theNNDC for typographical errors. Use the keynumber list generated by the ENSDAT program (Evaluated Nuclear Structure Drawings and Tables) and theKeynumbersearch option of NSR.

🕸 NSR - Search by Keynumber - Netscape
Eile Edit View Go Bookmarks Tools Window Help
🔺 🗇 🗔 Mail 🔏 AIM 🐔 Home 🞧 Radio 🔤 Netscape 🔍 Search 🖹 Bookmarks
Search by Keynumber
Retrieve Using Keynumber or Keynumber List
[<u>NSR Home</u>] [<u>Indexed Search</u>] [<u>Text Search</u>] [Keynumber Search] [<u>Help</u>]
Keynumber : Output format: Normal 💌 Retrieve
Keynumber list: 1950R026 1953FL10 1959FR04 1959FR05 1959FR06 1950YA06 1960co10 Output format: Note: NSR keynumbers have the format YYYYAANN, where YYYY is the publication year, AA is usually (but not always) the first two letters of the first author's last name, and NN is a two-digit or two-letter code assigned to the reference. Since about 1973, digits have been used for primary references and letters for secondary references. [NSR Home] [Indexed Search] [NSR Home] [Indexed Search] [NSR Home] [Indexed Search] [NSR Home] [Indexed Search]

- 1. Copy the keynumber file generated by ENSDAT to the clipboard.
- 2. Paste into the Keynumber list.
- 3. Check the results for missing entries or entries that have no relationship to your evaluation.

When using NSR as an NSDD evaluator, there are three points worth noting:

1. If you encounter a possible error in an NSR entry, please check the entry using the exchange format option which allows one to see the Selectors that have been generated from the keyword abstract. If you confirm the problem, report your findings to Dave Winchell at Winchell@bnl.gov or nsr@bnl.gov.

2. All references cited in an ENSDF evaluation should have a keynumber assignment. If you

encounter a reference which does not appear to be indexed in NSR, please note the following: Check NSR using first author and publication year.

a. If a relatively recent secondary reference (*e.g.*, a private communication or preprint),

may be useful to wait.

b. Except for major journals and conference proceedings, a copy of the reference is required for a keynumber assignment. For theses, this would be complete bibliographic information and the pages of text relevant to your evaluation. Conferences require complete bibliographic information and the article.

Authors'names, file creation/modification and download dates, and hard copy or the files are required for data downloaded from the Internet.

c. Send the information to Jag Tuli (NNDC, BNL) with your submittal or update of

an

ENSDF evaluation.

3. If you have access to obscure laboratory reports, limited distribution conference proceedings, *etc.*, send a copy to the NNDC for inclusion in the library and scanning into

NSR.

3. Computer Index to Neutron Data

The Computer Index to Neutron Data (CINDA) is the result of scanning efforts by four centers in the Nuclear Reaction Data network (National Nuclear Data Center - US and Canada, Nuclear Energy Agency Data Bank - OECD members, Russian Nuclear Data Center - former Soviet Union, and IAEA Nuclear Data Section - other countries). Coverage includes journals, conference proceedings, laboratory reports, theses, *etc.* Data compiled in the Exchange Format (EXFOR) and evaluations in various national or international nuclear reaction data libraries are also indexed.

CINDA is a data-oriented bibliography in which information is blocked in terms of experimental quantity and laboratory: consists of about 265000 entries and is considered "complete" from the discovery of the neutron onwards.

HTML retrievals have links to other sources of data including the journal link managers listed above, EXFOR entries, and various evaluated nuclear reaction data libraries. The following access *via* the Internet is available:

1. TELNET — IAEA-NDS and IAEA-NDS IPEN mirror,

- 2. Web NNDC, IAEA-NDS, and IAEA-NDS IPEN mirror (CODASYL database and PERL),
- 3. Web NNDC, IAEA-NDS and IAEA-NDS IPEN mirror (relational database, SQL and

Java Servlets).

Historically, CINDA has proved useful for checking the completeness of reference coverage for NSDD evaluations. At present, the primary usefulness involves links to the data compiled in the EXFOR format. An example of such links for 235 U(n, γ)spectral data is shown in the following figure.

🕲 CINDA Retrie	eval - Nets	cape						
_ File Edit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>W</u> indow <u>H</u> elp								
	6 8	htt	p://www	-original.	nndc.bnl.	gov/nndcscr/t🔽 🔍	Search	2, 🔊
🔪 🗇 🗔 Mail 🖉	🔏 AIM 🟦 H	lome 🞧 R	adio My	Netscap	e 🔍 Se	arch 🗇 Bookmarks		
🖗 🛇 CINDA Retri	eval							
	6 4+0	3 9+1	GEL	Evnt	Data	FXF0P20135	7303	27275
Spec n.gamma	1.1+0	6.4+0	BNL	Expt	Jour	PRL 25 953	7010	Kane.HIGH-E
	4.8+0		BNL	Expt	Conf	69studsv 105	6908	Kane+ TB CO
	NDG		BNL	Expt	Abst	BAP 16 551	7104	Kane.RESON
	+0	+1	BNL	Expt	Abst	BAP 15 807	7006	Kane.HIGH+L
Spec n,qamma	Maxw		KFK	Expt	Rept	KFK-1214	7007	Matussek+ G
	2.5-2		KFK	Expt	Prog	кғк-1980 24	7410	Matussek+ GI
	Maxw		KFK	Expt	Conf	74PETTEN 658	7409	Ottmar+ DECi
	Maxw		KFK	Expt	Conf	74PETTEN 749	7409	Weitkamp+ N
	Maxw		KFK	Expt	Prog	EANDC(E)157U I	7303	Matussek+ Fl
	Maxw		KFK	Expt	Conf	72BUD 84	7208	Matussek+ II
	Maxw		KFK	Expt	Conf	69studsv 51	6908	Michaelis+ 📕
	Maxw		KFK	Expt	Rept	KFK-1095	6908	Michaelis+ 1
	Maxw	2.0+3	KFK	Expt	Prog	NEANDC(E)-161U	7408	Matussek+AB
	Maxw		KFK	Expt	Priv	WIETKAMP	7300	Weitkamp. Sl
	Maxw		KFK	Expt	Prog	EANDC (E) 127U	7004	Fanger+
	Maxw		KFK	Expt	Data	EXFOR20956.006	7906	OPTS.DA
	Maxw		KFK	Expt	Data	EXFOR20372.002	7409	26PTS.
Spec n,gamma	NDG		COL	Expt	Prog	NCSAC-38 60	7105	Felvinci+. (
	NDG		COL	Expt	Prog	NCSAC-31 56	7005	Felvinci+,T
Spec n,gamma	+0	+1	COL	Expt	Prog	NCSAC-38 59	7105	Derengowski
	NDG		COL	Expt	Prog	NCSAC-31 51	7005	Derengowski
	+0	+4	COL	Expt	Prog	WASH-1124 31	6811	Camarda+ MO
Spec n,gamma	Maxw		UPP	Expt	Conf	72BUD 6	7208	Fogelberg+
	Maxw		UPP	Expt	Rept	INIS-MF-427	7206	Fogelberg+
	Maxw		UPP	Expt	Prog	EANDC (OR) 99 19	7008	Baecklin+.
	Maxw		UPP	Expt	Cont	69STUDSV 141	6908	Baecklin+ G
C	Maxw	2 211	DPP	Expt	Prog	EANDC (OR) -83	5901	Baecklin+
spec n,gamma	1.1+0	3.2+1	DNL	Expt	Jour	PR/C 8 781	7308	Gravest. RE: Graves RDI
	1 1+0	74 2 7±1	DNT	Expt	Conf	DA/D 32 4793 717NOV 702	7402	GLAVES. EFI.
	1 1+0	3 2+1	BML	Expt	Conf	70HELSIN 1 277	7006	SUDEDSEDED
	1 1+0	3 2+1	BML	Expt	Prog	NCS3C-47 49	7111	SUPERSEDED
	1.1+0	3.2+1	BML	Expt	Ahst	BAP 16 1181	7110	SUPERSEDED
	1.1+0	3.2+1	BNL	Exnt	Abst	BAP 16 496	7104	SUPERSEDED
	1.1+0	3.2+1	BNL	Expt	Prog	NCSAC-33 24	7012	.SUPERSEDED
					9			
🔊 🖂 🙏 🞯 🔲	Done							

Future plans for CINDA include expanding the coverage to include charged-particle and photon-induced reactions (limiting indexing to experimental and evaluated data only), and closer linkages between CINDA and NSR that may allow links from NSR to EXFOR.

4. Authors' Reference Lists

The bibliography of an article should always be checked for relevant references that are not in NSR. These include private communications, preprints, obscure journal articles, conferences, laboratory reports, theses and URLs. Care should be taken when using some of these sources, particularly Web-based information and data. Any discrepancies between the supporting data on a Web site and the published article should be resolved with the authors. Also, since the Web is somewhat ephemeral in nature, the data should be saved locally along with sufficient information to identify such material (authors and file creation, modification, and download dates).

Evaluated Nuclear Structure Data File

A Manual for Preparation of Data Sets

J.K.Tuli

NNDC, BNL, USA

E-mail: tuli@bnl.gov

BNL-NCS-51655-01/02-Rev Formal Report

Evaluated Nuclear Structure Data File

A Manual for Preparation of Data Sets

Jagdish K. Tuli

National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 USA

February, 2001

Abstract

The structure and format for the Evaluated Nuclear Structure Data File (ENSDF) are described. ENSDF is used to store nuclear structure properties of nuclides and the results of various experiments to derive those properties.

Contents

I INTRODUCTION	99
II GENERAL ORGANIZATION AND STRUCTURE OF THE DATA FILE	100
A General Organization	100
B Data Set Structure	102
C File Storage and Transmittal	102
III STANDARD ONE-CARD RECORD FORMATS	104
A Introduction	104
B The Standard One-Card Record Formats	104
1 The Identication Record	104
2 The History Record	105
2 The History Record	105
A The Cross-Reference Record	100
5 The Comment Record	107
6 The Parent Record	112
7 The Normalization Record	112
8 The Production Normalization Record	115 115
9 The Level Record	115
10 The Beta (B ⁻) Record	117
10 The EC (or EC + β^+) Record	110 119
12 The Alpha Record	120
13 The (Delayed-) Particle Record	121
14 The Gamma Record	122
15 The Reference Record	123
16 The End Record	123
	125
C Summary	124
IV RECORDS CONTAINING MORE THAN ONE CARD	126
A Card Enumeration	126
B Format for Continuation Cards	126
C Allowed Data Types on Continuation Records	127
1 The Level Record	128
2 The Gamma Record	129
3 The Beta (β) Record	130
4 The EC Record	130
V DETAILED FIELD DESCRIPTIONS	131
1 NUCID	131
2 DSID	131
3 DSREF, KEYNUM, OREF	- 133
4 PUB	133
5 DATE	133

6 RTYPE	133
7 CTEXT	134
8 SYM(FLAG)	
9 BR,CC,HF,LOGFT,NB,NP,NR,NT,QP	135
10 MR,O-,OA,SN,SP	135
11 DBR,DCC,DE,DHF,DIA,DIB,DIE,DIP,DNB	135
12 DFT,DMR,DT,DNB,DQA	136
13 IA, IB, IE, IP, RI, TI	136
14 T	136
15 COIN	137
16 UN	137
17 MS	137
18 E	137
19 M	137
20 J	138
21 S	139
22 L	139
23 ION	139
24 Cross Reference	140
25 History record	141
	1.40
A Character Set	143
B Format For Comments Data Set	145
C Example of an adopted data set	148
D Example of a decay data set	152
E ENSDF coding for Ionized Atom decay	156
F ENSDF Dictionary - Translation into true-type character set	159
G ENSDF Dictionary - ordered by output	172
H ENSDF Policies	184
GENERAL POLICIES – Presentation of Data	185
References	192
Symbols and Abbreviations	193

Chapter I

I. INTRODUCTION

The organization and structure of the Evaluated Nuclear Structure Data File (ENSDF) are described in this manual.¹ This computer-based file is maintained by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory for the international Nuclear Structure and Decay Data Network.²

For every mass number (presently $A \le 293$), the Evaluated Nuclear Structure Data File (ENSDF) contains evaluated structure information. For masses $A \ge 44$, this information is published in the *Nuclear Data Sheets*; for A < 44, ENSDF is based on compilations published in the journal *Nuclear Physics*. The information in ENSDF is updated by mass chain or by nuclide with a varying cycle time dependent on the availability of new information.

The author gratefully acknowledges many suggestions and comments received during the revision of this manual. Special thanks are due to the following colleagues at NNDC: M. Blennau, T. Burrows, P. Dixon, C. Dunford, R. Kinsey, P. Oblozinsky, A. Sonzogni, and D. Winchell. This research was supported by the Office of Basic Energy Sciences, U. S. Department of Energy.

¹ The format for ENSDF was first designed by W. B. Ewbank and M. R. Schmorak at the Nuclear Data Project, Oak Ridge National Laboratory, and was described in the ORNL-5054/R1 (February 1978). The present report describes the current format and supersedes both the ORNL report and BNL-NCS 51655 (March 1983) and BNL-NCS-51655-Rev.87 (April 1987).

² Coordinated by the International Atomic Energy Agency, Vienna - see any issue of the *Nuclear Data Sheets* for list of evaluation data centers.

Chapter II

II. GENERAL ORGANIZATION AND STRUCTURE OF THE DATA FILE

A. General Organization

The Evaluated Nuclear Structure Data File (ENSDF) is made up of a collection of 'data sets' which present one of the following kinds of information:

1. The summary information for a mass chain giving information, *e.g.*, evaluators' names and affiliations, cutoff date, evaluators' remarks, and publication details, *etc*.

2. The references used in all the data sets for the given mass number. This data set is based upon reference codes (key numbers) used in various data sets for a given mass number and is added to the file by the NNDC.

3. The adopted level and gamma-ray properties for each nuclide.

4. The evaluated results of a single type of experiment, e.g., a radioactive decay or a nuclear reaction for a given nuclide.

5. The combined evaluated results of a number of experiments of the same kind, e.g., (heavy ion, $xn\gamma$), Coulomb excitation, etc. for a given nuclide.

The data sets in ENSDF are organized by their mass number. Within a mass number the data sets are of two kinds:

- Data sets which contain information pertaining to the complete mass chain. These data sets contain information of the type (1) and (2) given above.
- Data sets belonging to a given nuclide (Z-value).

Latter data sets, i.e., for a given nuclide (Z-value), consist of the following:

- A Comments data set which gives abstract information for the nuclide. This data set contains summary information as described in (1) above. This data set exists only if the nuclide was evaluated or updated beyond the whole mass chain was evaluated.
- Adopted data set (only one per Z-value) giving adopted properties
- of the levels and gamma rays seen in that nuclide.
- Data sets giving information of the type (4) or (5) above.

If there is more than one data set of type (4) or (5) for a given nuclide, then an adopted data set is *required* for that nuclide. If there is only one data set for a given nuclide and no gamma-rays have been seen, then that data set is assumed also to present the adopted properties for that nuclide. However, if there is gamma information known for the nuclide, a separate Adopted Levels, Gammas data set must be given even though all the information may come from only one experiment (data set).

The general organization of ENSDF is shown in Fig. II.1.
EVALUATED NUCLEAR STRUCTURE DATA FILE

Figure II.1: ENSDF Organization Chart

B. Data Set Structure

A data set is composed of 80-character records. A data set has at least two records, the beginning (DSID) and the endrecord. Data set structure is shown in Fig. II.2, and is described below:

A data set *must* begin with an IDENTIFICATION record and *must* end with an END record (a blank record). Between these two records, there can be as many additional records as are needed to describe fully the experimental or the evaluated information.

Immediately following the IDENTIFICATION record is a group of records which contain information about the entire data set (#1 and #2 in Fig. II.2). The History (H), general COMMENT (C), NORMALIZATION (N), Q-VALUE (Q), PARENT (P), and CROSS-REFERENCE (X) records are of this type. Not all of these records are included in every data set. For example, Q-VALUE (Q) and CROSS-REFERENCE (X) records normally appear only in adopted data sets while the PARENT (P) record is given only in radioactive decay data sets.

The body of a data set (#3 and #4 in Fig. II.2) is composed of numeric data records which describe the measured or deduced properties of levels, γ rays, α particles, etc. These records are associated with the level which decays (for GAMMA, records) or the level which is populated (for BETA, EC, ALPHA, PARTICLE, or DELAYED-PARTICLE records). Thus, each LEVEL record is followed by a group of records describing β , ε , or (delayed-) particle decay into the level and |-ray out of the level (#4 in Fig. II.2). The LEVEL records, and the corresponding radiation records, are placed in the data set in the order of increasing energy.

If a GAMMA, ALPHA, EC, BETA, or (DELAYED-)PARTICLE record properly belongs in a data set but cannot be associated with any particular level, the record should be placed in the data set *before* any LEVEL records (#3 in Fig. II.2).

The placement of COMMENT records is described in Section III.B.5.

C. File Storage and Transmittal

The data sets sent to NNDC for inclusion in ENSDF can be in any order, as the file is currently maintained using a data base management system which rearranges various data sets in their predetermined order. Copies of the file are transmitted in the form of a sequential file via various mass media. Unless requested otherwise the data sets in the sequential file are arranged by mass numbers in increasing numerical order. For a given mass number the data sets are organized as given in Fig. II.1, ordering them from left to right. Decay data sets are placed under the daughter nuclide and are ordered by A, Z and then the excitation energy of the parent nuclide. The reaction data sets are given under the residual nuclide and ordered by the A, Z of the incident particle and then by the energy of the incident particle. These are followed by other data sets, e.g., Coulomb Excitation, (HI, XNG), etc.

Data Set Structure

Identification Record

H, X Records, General/Flagged Comments

Q record, Q comments

P record, P comments

N record, N comments

Unplaced Radiations, G, B, A, E

Level Record, Corresponding Radiations

. . .

Level Record, Corresponding Radiations

4

1

2

3

End Record

Fig. II.2

Chapter III

III. STANDARD ONE-CARD RECORD FORMATS

A. Introduction

In most cases, all information for a record can be placed on a single 80-column (byte) card (record)³. A 'standard' format has been defined for each one-card record, such that the most commonly used quantities can be placed on a single card. The standard formats are described in this section for each record. If a needed quantity is not included in the standard format or if a value will not fit within the field defined for the value by the standard format, or if a record cannot be contained on a single card, then additional cards can be prepared as described in Chapter IV (for examples, see Appendices C and D). Note that many of the analysis programs may not process standard fields when placed on the continuation records.

B. The Standard One-Card Record Formats

Record formats are given below in the same order in which they would normally be encountered in a data set. Conditions under which each record may appear or be required are given in parentheses. The format descriptions give the fields (in inclusive card-column numbers), the field names (the formal 'name' of the quantity that goes into the field), and a brief field description. Card columns not explicitly included in the fields are expected to be blank. A detailed description of each field can be found in the reference section noted. Any numerical field left blank usually implies that the numerical information is lacking. Numbers will usually be assumed to be positive unless stated otherwise. Numbers can be entered anywhere in the appropriate field (i.e., there is no need to left-adjust or right-adjust, unless stated otherwise.)

³ Throughput this manual an 80-byte record is referred to as a card of 80 columns. Column number refers to the byte number on the record, starting from the left.

1. Identification Record

Required for all data sets. Must precede all other records.

Field (Col.)	Name	Description	Reference
1-5	NUCID	Nuclide Identification	V.1
6-9		Must be blank	
10-39	DSID	Data set identification	V.2
40-65	DSREF	References to main supporting publications and analyses	V.3
66-74	PUB	Publication Information	V.4
75-80	DATE	Date (year/month) when the data set was placed	
		in ENSDF (entered automatically by computer)	V.5

Note: In the rare case when DSID field is insufficient for dataset identification it may be continued on a second identification record with columns 1-39 defined as above except that col. 6 will contain an alphanumeric character and columns 40-80 will be blank. If there is a continuation record, the DSID field on the first IDENTIFICATION record *must* end with a comma ','.

2. History Record

The history records follow the Identification record and should appear in reverse-chronological order, most recent being the first

Field (Col.)	Name	Description	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
		Any alphanumeric character other than '1'	
		for continuation records	
7		Must be blank	
8	Н	Letter 'H' is required	
9		Must be blank	
10-80	History	Dataset history consisting of various	V.25
		field descriptors and their values in cols	
		10-80 continued on any number of continuation	
		records. Field descriptor is followed by an '='	
		(without spaces before or after '=') and the value	
		and a terminator '\$' ('\$' is not needed for the	
		last field descriptor)	

3. Q-value Record

Required for adopted data sets. If there is only one data set for the nuclide, the Q-value record shouldbe given in that data set. Must precede L, G, B, E, A, DP records. If signs are not given, they will be assumed to be +.

Field (Col.)	Name	Description	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
7		Must be blank	
8	Q	Letter 'Q' is required	
9		Must be blank	
10-19	Q	Total energy (keV) available for β^{-} decay	V.10
	-	of the ground state. $(Q^2 > 0 \text{ if } \beta^2)$	
		decay is energetically possible.	
		$Q^2 < 0$ represents the Q_{ϵ} energy of	
		the Z+1 (Z = proton number) isobar.)	
20-21	DQ	Standard uncertainty in Q	V.11
22-29	SN	Neutron separation energy in keV	V.10
30-31	DSN	Standard uncertainty in SN	V.11
32-39	SP	Proton separation energy in keV	V.10
40-41	DSP	Standard uncertainty in SP	V.11
42-49	QA	Total energy (keV) available for α decay	V.10
		of the ground state	
50-55	DQA	Standard uncertainty in QA	V.12
56-80	QREF	Reference citation(s) for the Q-values	V.3

4. Cross-Reference Record

Given only in adopted data sets. Must precede L, G, B, E, A, DP records.

Field (Col.) Name	Description	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
7		Must be blank	
8	Х	Letter 'X' is required	
9	DSSYM	Any ASCII character that uniquely	
		identifies the data set whose DSID is	
		given in col. 10-39.	
10-39	DSID	<i>Must</i> exactly match one of the DSID's used	V.2
40-80		Blank	

NOTES:

1. In *Nuclear Data Sheets* the DSID on the first 'X' record in the data set will be identified with character 'A' and second DSID with 'B' and so on, irrespective of DSSYM on the X card. Only the first 14 DSIDs on 'X' records are given different symbols. All the rest are given the symbol 'O' (for others). By merely reshuffling the X-records, evaluators can ascertain the DSIDs that will be identified individually. This has no effect on the file and affects only the published output.

2. If the DSID for the data set is continued on to a second card, the DSID on XREF record must match the DSID on the first card, including the terminating ',' which will be translated into ellipses in the cross-reference table in the output.

3. There must be a data set corresponding every given X-record.

5. Comment Record

General Comments *Must precede all* **L**, **G**, **B**, **E**, **A**, **DP** *records*.

Field (Col.)	Name	Description	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
		Any alphanumeric character other	
		than '1' for continuation records	
7	С	Letter 'C', 'D', or 'T' is required	
		See notes 3 - 5 below	
8	RTYPE	Blank or record type of records to	V.6
		which the comment pertains	
9	PSYM	Blank, or symbol for a (delayed-)particle,	
		e.g., N, P, etc.	
10-80	CTEXT	Text of the comment.	V.7
		[See ENSDF Translation Dictionary	
		(Appendix F)]	

NOTES:

- 1. The comment refers only to records of specified RTYPE given in that data set. The comment will normally appear only in the table for that RTYPE in the output. For example, if the comment is on levels ('L' in col. 8) it will appear only in the level properties table.
- 2. If col. 8 and 9 are blank then the comment refers to the whole data set. These general comments precede formatted level or the radiation records. See Appendix B for use of comment records in COMMENTS data set.
- 3. Letter 'T' in place of 'C' in col. 7 of a comment record indicates to the output programs that this record should be reproduced 'as is' and the blanks in the record should not be squeezed out.
- 4. Letter 'D' in place of 'C' in col. 7 of a comment record indicates to the output programs that this is a documentation record and can be ignored. This record will also be ignored by the various analysis programs.
- 5. Lower case letters 'c' and 't' in col. 7 of a comment record indicate to the output programs that CTEXT in these records should not be translated. These will appear as written in the *Nuclear Data Sheets*. In this mode one must write special characters directly, for example, '|g' for γ , '{+238}Pu' for ²³⁸Pu. See Appendix A for list of special characters.

Record Comments

Must follow the record to which the comment pertains.

Field (Col.)	Name	Description	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
		Any alphanumeric character other	
		than '1' for continuation records	
7	С	Letter 'C' or 'D' is required	
		See notes 4 and 5 on General Comments	
8	RTYPE	Record type being commented upon	V.6
		It can be blank for Particle records	
9	PSYM	Blank, or symbol for a particle,	
		e.g., N, P, etc.	
10-80	SYM\$ or	SYM = type of data being commented upon	V.8
	SYM, SYM\$	Specified SYMs must be followed by a '\$'	
		except as in note 1 below.	
10-80	CTEXT	Text of comment follows the '\$'	V.7
		On continuation comment records,	
		CTEXT may start in col. 10, and	
		SYM or SYMs are <i>not</i> repeated.	
		[See ENSDF Translation Dictionary,	
		Appendix F]	

NOTES:

- 1. The old format, where SYM were specified in col. 10-19, will be accepted without the '\$' delimiter as long as col. 19 is a blank, and comment text begins in col. 20.
- 2. Record comments placed following a record of the same **RTYPE** refer only to that one record (for example, a comment record with 'CL' in cols. 7-8 and 'T\$' in col. 10-11 placed following the level record for the second-excited state refers to the half-life of *only* the second-excited state).

Field (Col.)	Name	Description	Reference
10-80	SYM\$ or	same as in it (Record Comments)	V.8
	SYM, SYM\$or	SYM = see note 1 below	
	SYM(FLAG)\$ or	FLAG = any ASCII alphanumeric char-	
	SYM(FLAG),	acter or string of alphanumeric characters	3
	SYM(FLAG)\$	Field must end with a '\$'	
		See note 1 on Record comments	
		for exception	
10-80	CTEXT	Text of comment follows '\$'	V.7
		On continuation comment records	
		SYM or SYM (FLAG) are not repeated.	
		[See ENSDF Translation Dictionary	
		(Appendix F)]	

Footnote Comments *Must precede* L, G, B, E, A, DP *records*

NOTES:

- 1. SYM can only be one of the following:
 - The fields defined in formatted L, G, B, E, A, DP records.
 - BAND. This SYM *must* be accompanied with a FLAG. Note also that text following '\$' delimiter, or in col. 20-80 in old format, will appear as the band label in some of the drawings. Therefore any other information on that band should be given on continuation records.
- 2. Footnote without FLAG
 - This refers to all records of the specified RTYPE in the data set.
 - The footnote will normally appear only in the table for that RTYPE in the output. For example, if the footnote is on levels ('L' in col. 8) it will appear only in the level properties table.
 - Footnote with FLAG
 Only those records are footnoted for which footnote flags are given, see note 4 below.
 Only those data values of data types specified by SYM which is associated with

Only those data values of data types specified by SYM which is associated with a given FLAG are footnoted.

3. Footnote FLAG must be either a single character placed in col. 77 of the formatted record or a string of characters assigned to a special data type called FLAG on the following continuation record.

Examples of flags on a continuation record:

152EU2 G FLAG=ABCD\$ 156GD2 L FLAG=KMP\$

4. No footnotes are allowed for records of RTYPE: N, P, or Q.

5. To change the standard label heading of a formatted field, e.g., S to C^2S for L records, CTEXT should have the form LABEL=name, where 'name' is the new label desired. The new label should be kept as short as possible. Note that FLAG can not be specified with relabeling; also any other comment on the relabeled field must appear on a different record.

Examples of field relabel:

156GD CL S\$LABEL=C2S 156GD CL S\$LABEL=DSIGMA/DOMEGA (45 DEG)

6. Parent Record

Required for all decay data sets. Must precede L, G, B, E, A, DP records.

Field (Col.)	Name	Description	Reference
1-5	NUCID	Parent Nuclide identification	V.1
6		Must be blank	
7		Must be blank	
8	Р	Letter 'P' is required	
9		Blank or an integer in case of multiple	
		P records in the data set	
10-19	Е	Energy of the decaying level in keV	V.18
		(0.0 for g.s.)	
20-21	DE	Standard uncertainty in E	V.11
22-39	J	Spin and parity	V.20
40-49	Т	Half-life; units <i>must</i> be given	V.14
50-55	DT	Standard uncertainty in T	V.12
56-64		Must be blank	
65-74	QP	Ground-state Q-value in keV (total energy	V.9
		available for g.s. \rightarrow g.s. transition); it will	
		always be a positive number.	
		Not needed for IT and SF decay.	
75-76	DQP	Standard uncertainty in QP	V.11
77-80	ION	Ionization State (for Ionized Atom decay),	
		blank otherwise	

NOTES:

- 1. More than one parent card is allowed in a data set. If the decay scheme is due to more than one parent, separate P records should be given for each parent level.
- 2. Currently, publication program allows maximum of two parent cards.
- 3. Parent information, *namely*, E, J, T, QP must be identical to their values given in the Adopted Levels data set.

7. Normalization Record

Must precede L, G, B, E, A, DP records. Required if an absolute normalization is possible; used mainly with decay and (n, γ) reaction data sets.

Field (Col.)	Name	Description	Reference
1-5	NUCID	Nuclide (Daughter/Product) identification	V.1
6		Must be blank	
7	N T	Must be blank	
8	Ν	Letter 'N' is required	
9		Blank or an integer in case of multiple	
		P records in the data set.	
		It should correspond to the designator on the P record	
10-19	NR	Multiplier for converting relative <i>photon</i>	VQ
10-17		intensity (RI in the GAMMA record) to	V.)
		<i>photons</i> per 100 decays of the parent	
		through the decay branch or to <i>photons</i> per	
		100 neutron captures in an (n, γ) reaction.	
		<i>Required</i> if the absolute photon intensity	
		can be calculated.	
20-21	DNR	Standard uncertainty in NR	V.11
22-29	NT	Multiplier for converting relative transition	V.9
		intensity (including conversion electrons)	
		[TI in the GAMMA record] to transitions	
		per 100 decays of the parent through this	
		decay branch or per 100 neutron captures in	
		an (η, γ) reaction.	
		<i>Required</i> if TI are given in the GAMMA	
		record and the normalization is known.	
30-31	DNT	standard uncertainty in NT	V.11
32-39	BR	Branching ratio multiplier for converting	V.9
		intensity per 100 decays through this decay	
		branch to intensity per 100 decays of the	
		parent nuclide.	
		Required if known.	
40-41	DBR	Standard uncertainty in BR	V.11
42-49	NB	Multiplier for converting relative β^{-} and ϵ	V.9
		intensities (IB in the β^2 record; IB, IE,	
		TI in the EC record) to intensities per	
		100 decays through this decay branch.	
		Required if known.	

Field (Col.)	Name	Description	Reference
50-55	DNB	Standard uncertainty in NB	V.11
56-62	NP	Multiplier for converting per hundred delayed- transition intensities to per hundred decays of	V.9
63-64	DNP	precursor standard uncertainty in NP	V 11
65-80	DIM	Must be blank	۷.11

Note: Normally β^{-} and ϵ intensities are given as per 100 parent decays. One should remember that the multiplier for conversion to per 100 decays is NB x BR, and therefore NB = 1/BR. Also, the uncertainties in I(β^{-}) will be calculated from addition of three quantities $\Delta(I(\beta^{-}))$, DBR and DNB in quadrature. Unless the uncertainties are precisely known it is recommended that NB be given without uncertainty. See PN record.

If more than one P records exist in the data set then there should be corresponding N records giving the respective branching ratios.

8. Production Normalization Record

Must follow N record, if N record present. Should be given when G records with intensities are present.

Field	Name	Description
1-5	NUCID	Nuclide (Daughter/Product) identification
6		Blank
7	Р	Letter 'P' (for production) is required
8	Ν	Letter 'N' is required
9		Must be blank
10-19	NRxBR	Multiplier for converting relative photon
		intensity (RI in the GAMMA record) to
		photons per 100 decays of the parent
		(normally NRxBR).
		If left blank, (NR DNR)x(BR DBR) from N record will
		be used for normalization.
20-21	UNC^4	Standard uncertainty in NRxBR
22-29	NTxBR	Multiplier for converting relative <i>transition</i>
		intensity (including conversion electrons)
		[TI in the GAMMA record] to <i>transitions</i>
		per 100 decays of the parent (normally NTxBR).
		If left blank, (NT DNT)x(BR DBR) from N record will
		be used for normalization.
30-31	UNC^1	standard uncertainty in NTxBR
42-49	NBxBR	Multiplier for converting relative β^{-} and ϵ
		intensities (IB in the B- record; IB, IE,
		TI in the EC record) to intensities per
		100 decays.
		If left blank, (NB DNB)x(BR DBR) from N record will be
		used for normalization.
50-55	UNC^1	Standard uncertainty in (NB DNT)x(BR DBR)
56-62	NP	Same as in 'N' record
63-64	UNC^1	standard uncertainty in NP
77	COM	Blank or 'C' (for comment)
		If blank, comment associated with the intensity
		option will appear in the drawing of <i>Nuclear Data Sheets</i> .
		If letter 'C' is given, the desired comment to appear in the
		drawing should be given on the continuation ('nPN')
		record(s), col. 10-80.
78	OPT	Intensity Option. Option as to what intensity to
		display in the drawings of Nuclear Data Sheets. The
		available options are given below (default option 3).

⁴ If left blank no uncertainty will appear in the publication.

Option	Intensity displayed	Comment in drawing
1	TI or RI(1+ α)	Relative I(γ +ce)
2	TIxNT or RIxNRx(1+ α)	$I(\gamma+ce)$ per 100 (mode) decays
3	TIxNTxBR or	
	RIxBRxNRx(1+ α)	$I(\gamma+ce)$ per 100 parent decays
4	RIxNTxBR	$I(\gamma)$ per 100 parent decays
5	RI	Relative $I(\gamma)$
6	RI	Relative photon branching from each level
7	RI	photon branching from each level

9. Level Record

Optional, although a data set usually has at least one.

Field (Col.) 1-5 6	Name NUCID	Description Nuclide identification Blank	Reference V.1
		Any alphanumeric character other than `1'	
7		for continuation records	
0	T	Must be blank	
0	L	Must be blook	
9	Б	Must be blank	V 10
10-19		Level energy in key - must not be blank	V.18 V.11
20-21	DE	Standard uncertainty in E	V.11 V.20
22-39	J T	Spin and parity	V.20 V.14
40-49	1	Hair-life of the level; units <i>must</i> be given	V.14
		Mean-life expressed as the width of a level,	
50.55	DT	in units of energy, may also be used	14.10
50-55	DI	Standard uncertainty in 1	V.12
56-64	L	Angular momentum transfer in the reaction determining the data set (whether	V.22
		L_n , L_p , ΔL , etc., is determined from	
		the DSID field of the IDENTIFICATION	
		record).	
65-74	S	Spectroscopic strength for this level as determine	ed V.21
		from the reaction in the IDENTIFICATION reco	rd
		(spectroscopic factor for particle-exchange	
		reactions; β for inelastic scattering).	
		Note: If a quantity other than spectroscopic facto	r
		is given in this field, a footnote relabelling the	
		field is required.	
75-76	DS	Standard uncertainty in S	V.11
77	С	Comment FLAG used	V.8
		to refer to a particular comment record	
78-79	MS	Metastable state is denoted by 'M' or	V.17
		'M1' for the first (lowest energy) isomer;	
		'M2', for the second isomer, etc.	
		For Ionized Atom Decay, field gives the atomic	
		electron shell or subshell in which β	
		particle is captured	
80	0	Character '?' denotes an uncertain or	
~ ~	×	questionable level	
		Letter 'S' denotes neutron proton alpha	
		senaration energy or a level expected	
		but not observed	

10. Beta (^β) Record

Field (Col.)Name		Description	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
		Any alphanumeric character other than '1'	
		for continuation records	
7		Must be blank	
8	В	Letter 'B' is required	
9		Must be blank	
10-19	Е	Endpoint energy of the β^{-} in keV	V.18
		Given only if measured	
20-21	DE	Standard uncertainty in E	V.11
22-29	IB	Intensity of the β -decay branch ⁵	V.13
30-31	DIB	Standard uncertainty in IB	V.11
42-49	LOGFT	$\log ft$ for the β^{-} transition	V.9
		for uniqueness given in col. 78-79	
50-55	DFT	Standard uncertainty in LOGFT	V.12
56-76		Must be blank	
77	С	Comment FLAG (Letter 'C' denotes	V.8
		coincidence with a following radiation.	
	А	"?' denotes probable coincidence with a	
		following radiation.)	
78-79	UN	Forbiddenness classification for the β^{-} decay,	V.16
		e.g., '1U', '2U' for first-, second-unique forbidder	n
		(a blank field signifies an allowed	
		transition; non-unique forbiddenness can be	
		indicated in col 78, with col 79 blank)	
80 Q		Character '?' denotes an uncertain or	
		questionable β^{-} decay	
		Letter 'S' denotes an expected or predicted	
		transition	

Must follow the LEVEL record for the level which is fed by the β .

⁵ Intensity units are defined by the NORMALIZATION record.

11. EC (or EC + β^+) Record

Must follow the LEVEL record for the level being populated in the decay.

Field (Col.)Name		Description R			
1-5	NUCID	Nuclide identification	V.1		
6		Blank			
		Any alphanumeric character other than '1'			
		for continuation records			
7		Must be blank			
8	E	Letter 'E' is required			
9		Must be blank			
10-19	Е	Energy for <i>electron capture</i> to the level	V.18		
		Given only if measured or deduced from measured β^+			
		end-point energy			
20-21	DE	Standard uncertainty in E	V.11		
22-29	IB	Intensity of β^+ -decay branch ⁶	V.13		
30-31	DIB	Standard uncertainty in IB	V.11		
32-39	IE	Intensity of electron capture branch ⁶	V.13		
40-41	DIE	Standard uncertainty in IE	V.11		
42-49	LOGFT	Log ft for $(\varepsilon + \beta^+)$ transition	V.9		
		for uniqueness given in col. 78-79			
50-55	DFT	Standard uncertainty in LOGFT	V.12		
65-74	TI	Total ($\varepsilon + \beta^+$) decay intensity ⁶	V.13		
75-76	DTI	Standard uncertainty in TI	V.11		
77	С	Comment FLAG (letter 'C' denotes	V.8		
		coincidence with a following radiation.			
	А	"?" denotes probable coincidence with a			
		following radiation).			
78-79	UN	Forbiddenness classification for ε , β^+ decay	V.16		
		e.g., '1U', '2U' for first, second unique forbidden			
		(a blank signifies an allowed or a non-unique forbidde	en		
		transition. Non-unique forbiddenness can be			
		indicated in col 78, with col 79 blank)			
80	Q	Character '?' denotes an uncertain or			
		questionable ε , $+\beta^+$ branch			
		Letter 'S' denotes an expected or predicted			
		transition			

12. Alpha Record

Field (Col	l.)Name	Description	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
7		Must be blank	
8	А	Letter `A' is required	
9		Must be blank	
10-19	E	Alpha energy in keV	V.18
20-21	DE	Standard uncertainty in E	V.11
22-29	IA	Intensity of \$\alpha\$-decay branch in <i>percent</i> of	V.13
		the total α -decay	
30-31	DIA	Standard uncertainty in IA	V.11
32-39	HF	Hindrance factor for α decay	V.9
40-41	DHF	Standard uncertainty in HF	V.11
42-76		Must be blank	
77	С	Comment FLAG (letter 'C' denotes	V.8
		coincidence with a following radiation.	
		A '?' denotes probable coincidence with a	
		following radiation).	
78-79		Must be blank	
80	Q	Character '?' denotes uncertain or	
		questionable α branch	
		Letter 'S' denotes an expected or pre-	
		dicted α branch	

Must follow the LEVEL record for the level being populated in the decay.

13. (Delayed-) Particle Record

Must follow the LEVEL record for the level which is fed by the particle. Records for particles which are unassigned in a level scheme should precede the first level of the data set.

Field (Col.) 1-5 6	Name NUCID	Description Nuclide identification Blank	Reference V.1
		Any alphanumeric character other than '1' for continuation records	
7		Must be blank	
8	D	Blank for prompt-, letter 'D' for delayed- particle emission	
9	Particle	The symbol for the (delayed) particle (N = neutron, P = proton, A = alpha particle) is	
		required)	
10-19	Е	Energy of the particle in keV	V.18
20-21	DE	Standard uncertainty in E	V.11
22-29	IP	Intensity of (delayed) particles in <i>percent</i> of the total (delayed-)particle emissions	V.13
30-31	DIP	Standard uncertainty in IP	V.11
32-39	EI	Energy of the level in the	V.13
		'intermediate' (mass = A+1 for n, p; A+4 for α) nuclide in case of delayed particle	
40-49	Т	Width of the transition in keV	V.14
50-55	DT	Uncertainty in T	V.12
56-64	L	Angular-momentum transfer of the emitted particle	V.22
65-76		Blank	
77	С	Comment FLAG used to refer to a particular comment record.	V.8
78	COIN	Letter 'C' denotes placement confirmed by coincidence. Symbol '?' denotes probable coincidence.	V.15
79	Blank		
80	Q	Character '?' denotes an uncertain placement of the transition in the level scheme Letter 'S' denotes an expected, but as yet unobserved, transition	
NOTES			

- NOTES:
 - The delayed-particle record will appear in a delayed-particle data set (e.g., B-N DECAY, ECP DECAY, etc.) which should be given under the A-chain for the final nuclide. For example, '95RB B-N DECAY' should be given as data set for ⁹⁴Sr.
 - 2. The intensity units are defined by the NORMALIZATION record.

14. Gamma Record

Must follow the LEVEL record for the level from which the / ray decays. Records for / rays which are unassigned in a level scheme should precede the first level of the data set.

Field (Col.)	Name	Description F	Reference
1-5	NUCID	Nuclide identification	V.1
6		Blank	
		Any alphanumeric character other than 'l'	
7		for continuation records	
/	0	Must be blank	
8	G	Letter 'G' is required	
9	Б	Must be blank	1110
10-19	E	Energy of the γ -ray in keV	V.18
20.21	DE	Must not be blank	X 7 1 1
20-21	DE	Standard uncertainty in E	V.11
22-29	RI	Relative photon intensity	V.13
30-31	DRI	Standard uncertainty in RI	V.11
32-41	M	Multipolarity of transition	V.19
42-49	MR	Mixing ratio δ . (sign must be shown	V.10
		explicitly if known; if no sign is given,	
		assumed to be unknown).	
50-55	DMR	Standard uncertainty in MR	V.12
56-62	CC	Total conversion coefficient	V.9
63-64	DCC	Standard uncertainty in CC	V.11
65-74	TI	Relative total transition intensity ^o	V.13
75-76	DTI	Standard uncertainty in TI	V.11
77	С	Comment FLAG used to refer to	V.8
		a particular comment record. Symbol '*'	
		denotes a multiply-placed γ ray. Symbol '&'	
		denotes a multiply-placed transition with intensity not	t
		divided. Symbol '@' denotes a multiply-placed	
		transition with intensity suitably divided.	
		Symbol '%' denotes that the intensity given as	
		RI is the branching in the Super Deformed Band.	
78	COIN	Letter 'C' denotes placement confirmed by	V.15
		coincidence. Symbol '?' denotes questionable	
		coincidence.	
79		Blank	
80	Q	Character '?' denotes an uncertain placement of	
	-	the transition in the level scheme. Letter `S' denotes a	an
		expected, but as yet unobserved, transition	
20-21 22-29 30-31 32-41 42-49 50-55 56-62 63-64 65-74 75-76 77 78 78	DE RI DRI M MR DMR CC DCC TI DTI C	Standard uncertainty in E Relative <i>photon</i> intensity ¹ Standard uncertainty in RI Multipolarity of transition Mixing ratio δ . (sign must be shown explicitly if known; if no sign is given, assumed to be unknown). Standard uncertainty in MR Total conversion coefficient Standard uncertainty in CC Relative total transition intensity ⁶ Standard uncertainty in TI Comment FLAG used to refer to a particular comment record. Symbol '*' denotes a multiply-placed γ ray. Symbol '&' denotes a multiply-placed transition with intensity <u>not</u> divided. Symbol '@' denotes a multiply-placed transition with intensity suitably divided. Symbol '%' denotes that the intensity given as RI is the branching in the Super Deformed Band. Letter 'C' denotes placement confirmed by coincidence. Symbol '?' denotes questionable coincidence. Blank Character '?' denotes an uncertain placement of the transition in the level scheme. Letter 'S' denotes a expected, but as yet unobserved, transition	V.11 V.13 V.11 V.19 V.10 V.12 V.9 V.11 V.13 V.11 V.8 t V.15

⁷ Intensity units are defined by the NORMALIZATION record.

15. Reference Record

Record can occur only in Reference data set. NNDC provides the Reference data set.

Field (Col.)	Name	Description	Reference
1-3	MASS	Mass Number	
4-7		Must be blank	
8	R	Letter 'R' is required	
9		Must be blank	
10-17	KEYNUM	Reference key number	V.3
18-80	REFERENCE	Abbreviated reference	
		(from NSR file)	

16. End Record

Required for <u>all</u> data sets. Must be the last record in a data set.

Field (Col.)	Description
1-80	All columns are blank

C. Summary

The following two pages summarize the standard one-card formats for all allowed record types.

SUMMARY OF STANDARD ONE-CARD RECORD FORMAT

Col						Recor	d TYPE	2					
No.	R	Ι	Х	C/D	Q	N	Р	L	G	В	Е	А	Particle
1-3	←.						Mass-						>
4-5	←					B	Element	symbol					→
6		#		#	#	#	#	, #	#	#	#	#	#
7				C/D									
8	R	ш		@	Q	Ν	Р	L	G	В	Е	А	D(delayed)
9		# ID	ID										$\mathbf{P}/\mathbf{N}/\mathbf{A}$
10-39	out	4	SV	м	\cap	ND	~			Б			د
20-21	Суп	-	51	111	Q- DQ-	DNR	<			DE-			→
20-80R	Ref		Co	m									
22-39						J	J						
22-29				SN	NT			RI	IB	IB	IA	IP	
30-31				DSN	DNT			DRI	DIB	DIB	DIB	DIP	
32-41									Μ				
32-39				SP	BR					IE	HF	ED	
40-41				DSP	DBR					DIE	DHF		
40-49	_						Т	Т					Т
40-65	Re	f		.						~			
42-49				QA	NB	5.5	5.5	MR	<-LO(3FT->			
50-55				DQA	DNB	DT	DT	DMR	←DF	l→			
56-62								CC					т
56-64				Onef				L					L
50-80 62 64				Qrei				DCC					
65 74						OD	ç	DUU		ΤI			
66 74 1	π	2				Qr	3	11		11			
75_76	r UI	נ					DS	DTI		DTI			
75-801	Dat	_				DQI	05	DII		DII			
75-001	Dat	C						C	я	C	C	C	C
78-79							MS	C/?	UN	UN	C	C	C
80							1410	O	0	0	0	0	0
00								X	X	X	X	×	$\boldsymbol{\mathbf{x}}$

Any ASCII Character

(*a*, L,G,B,A,E,N,Q,P for record comments following the respective record * denotes multiply placed.

(a) denotes multiply placed, intensity sitably divided.

& denotes multiply placed, undivided intensity given.

% denotes that the intensity given is % branching in SD band.

	3				1	2		3		4		5	6			7				8
1	Record	1 5	67	89	0 9	0 1	2 9	0 1	2 9	0 1	2 9	0 5	6 0 2	3 4	5	0	4	56	78	90
1	DENT	NUCID	80 B	lank	<	_	DSID	_	>			DSREF		_	<	-PUB-	~	c	DAT	E
	XREF	NUCID	blani	X!	<	-	DSID	<u> </u>	>				blank		•					
	REF	AAA B	ank	R b	KEYNUMBER			-		-	REF	ERENCE		-	<u> </u>				-	
	THEFT	NUMBER			-		1	I	I		IFTENT		I	1						1
	list	NUCID	30 D	ны	a						HIEAI									
	Q-VALUE	NUCID	blani	QЬ	Q-	DQE	SN	DSN	SP	DSI	QA	DQA		_	Q	REF		_	_	
	G COMM	NUCID	&†	₽ bl		_					CTEXT			<u> </u>						
1	ER COMM	NUCID	& †	H 1	SYM(FLAG)		· · · · · ·	-	1	-	C	TEXT		-	-					
	PARENT	NUCID	blan	Ρž	F	DE		_				DT	blank	_		OP		DOR	< 10	0N->
	T LALLANT		I	1.1		100		É			× -		orante			14.1		2	T	1
1	NORM	NUCID	blani	Νŝ	NR	DNE	NT	DNI	BR	DBI	NB	DNB	NP	DNP		11	blank	_	_	_
60	P NORM	NUCID	Æ P	Νŝ	NR*BR	UNC	NT*BR	UNC	blank		NB ⁺ BR	UNC	NP	DNP			blank		_	
-	LEVEL	NUCID	& b	LЫ	Е	DE				e	>	DT	L	-	<	s	~	DS	F N	IS Q
1	BETA	NUCID	& b	вы	E	DE	IB	DIB	blank		LOGFT	DFT		-	blank				F U	NQ
		NUCCID	2.5	1.1.1	12	THE	170	TMD	15	DATE	LOCKT	INCT		-	blank					20
	a	NOCID	00	E B	D.	DE	10	Dib	10	Diff	LOOFI	DEL	-	T	OSAGK					NV
-	ALPHA	NUCID	&b	АЫ	E	DE	LA	DIA	HF	DH			blank	_					F	ЫQ
	PART	NUCID	æЬ	1	Е	DE	IP	DIP	ED	<	>	DT	L	-		blank.			FC	ЫQ
,	GAMMA	NUCID	S: D	GЫ	E	DE	RI	DRI	<m< td=""><td>-</td><td>MR</td><td>DMR</td><td>CC</td><td>DCC</td><td></td><td>TI</td><td></td><td>DTI</td><td>F C</td><td>NQ</td></m<>	-	MR	DMR	CC	DCC		TI		DTI	F C	NQ
		1 5	67	89	0 9	0 1	2 9	0 1	2 9	0 1	2 9	0 5	6 0 2	3 4	5	0	4	5 6	78	90
	1				1	2		3		4		5	6			7				8

ENSDF Standard 80-character Formated Records

Notes: blank

ŝ. 1

125

These fields must be blank.

Primary record must have a blank or *1* in this field. Continuation records should have any printable ASCII character except for blank or "1" (one).

Unique alphanumeric character identifying the source data set.

÷

Allowed characters for this field are C, c, D, d, T, and t. Character identifying the record being commented on. Allowed characters for this field are N, P, Q, L, G, B, E, A, D, and blank. H

Must be blank except for: 1) Particle code for a (delayed-)particle record. 2) Sequence number for normalization and parent records.

4 Must be blank except when there are multiple parent records then this field should contain an integer relating the parent record to the related normalization record.

• Byte 8 must either be blank for a prompt particle radiation or D for a delayed particle radiation. Byte 9 identifies the particle (N, P, D, or T).

Chapter IV

IV. RECORDS CONTAINING MORE THAN ONE CARD

A. Card Enumeration

Certain record types, namely, the Identification, History, Parent, and Normalization records can have multiple occurrence of records with qualifications as indicated in the descriptions of these record types. For other record types if all the information cannot be contained on a single card, additional cards can be used to describe the record fully. The first card of a record will have a blank in col. 6 and subsequent cards will have an ASCII character different from blank or 1 (usually running numbers: 2 to 9 or letters A to Z).

B. Format for Continuation Cards

CONTINUATION RECORD

Must follow the record of the same RTYPE.

Field	Name	Description
1-5	NUCID	Nuclide identification
6		Any alphanumeric character other than 1.
		Note: 'S' is reserved for computer-produced records which
		will usually be suppressed in Nuclear Data Sheets
7		Must be blank
8	RTYPE	Letter corresponding to the record type L, B, E, G or H
9		Must be blank
10-80	Data	< quant >< op >< value >[< op >< value >][< ref >]\$

The following abbreviations have been used in the description of the data above:

< quant >: Standard symbol for a quantity as defined in IV.C below.

- Notes: 1. Ratios of more than two quantities should be indicated by colons and not by slashes (e.g., K:L1:L2:L3 and <u>not</u> K/L1/L2/L3).
 - 2. See Section V.24 for description of < value > when < quant >=XREF
 - 3. See Section V.25 for description of items for H record

< op >: =, <, >, <=,>=, EQ, AP, LT, LE, GT, GE

Note: for the last 6 operators, blanks before and after them are required.

- < value>: Numeric value with units as needed and optional uncertainty.
 - Uncertainty is as defined in Sections V.11 and V.12.
 - Note: For ranges, uncertainties should not be included. To specify a bounded range of values a second operator (note that =, EQ, AP are not valid) and value are required. See examples below.

[]:	Optional.
< ref >:	8 character key numbers, KEYNUM (see Section V.3), separated by commas
	and enclosed within parentheses, e.g., (1976TU01,1981BO01).
\$:	Delimiter (end of record is also a delimiter; thus '\$' is not needed
	for the last item on a record)

Examples:

```
      126TE 2
      G
      BE2W=25.3 7(1970LAZM)

      126I 2 L
      %EC+%B+=56.3 20 (1977JA04)$%B- EQ 43.7 20 (1977JA04)

      126SN S
      B
      EAV=2030 60

      126TE 2
      L
      G LE 0.19 GT 0.1 (1981SH15)$MOME2 AP -0.20$BE2=0.478 12
```

C. Allowed Data Types on Continuation Records

Each record type is permitted to contain only a limited (but extendable) set of data types. For example, a GAMMA record is not allowed to contain information of data type DTYPE = J (nuclear spin), similarly a LEVEL record is not allowed to contain LOGFT information.

For A and DP records only FLAG in addition to the quantities on the formatted records, can be given on a continuation record. The allowed data types for LEVEL, GAMMA, B-, and EC records are described below.

1. Level Record

Allowed data types E, DE, J, T, DT, L, S, DS, C, MS, Q are described with the standard formats in Section III.B.9. Additional allowed data types are:

<u>TYPE</u>	Description
%EC,%B+,%EC+%B+,	Percent decay of the level by ε , β^+ , $\varepsilon + \beta^+$,
%B-,%IT,%SF	β^{-} , isomeric transition, spontaneous fission,
%A,%P,%N	α , proton, or neutron decay,
%B-N; %B-XN	Percent delayed decay through n, xn emission,
	Similarly, for other particle emissions, e.g.,
	p, xp, α , x α , etc., following β^- , β^+ , or ε decays.
	Note: Decay modes must be given on '2 L'
	card in adopted set and on an 'S L'
	card in decay and (n, γ) data sets
ION	Ionization State (used in Ionized Atom Decay)
CONF	Nuclear configuration of the level
BE1, BE2	Reduced electric transition probability (upward)
	given in units $e^2 x$ (barns) ^L , where L = 1, 2,
	for the transition from the ground state to this level
B2, B3	2^{L} - pole (L=2,3,) nuclear deformation
	parameter
FLAG	Additional footnote symbols
G	g-factor of the level
ISPIN	Isobaric spin
ISPINZ	Z-component of Isobaric Spin
MOMEI, MOME2	Electric moments: dipole, quadrupole,
MOMM1, MOMM2	Magnetic moments: dipole, quadrupole,
WIDTH, WIDTHG,	Level width, Γ , Partial- γ , - γ 0, -n, -p, - α widths,
WIDTHG0,WIDTHN,	$\Gamma(\gamma), \Gamma(\gamma 0), \Gamma(n),$
WIDTHP, WIDTHA	Γ (p), $\Gamma(\alpha)$, respectively
XREF	Cross-reference to other data sets for that nuclide; this is
	generally given only in the adopted set.

2. Gamma Record

Allowed data types, E, DE, RI, DRI, M, MR, DMR, CC, DCC, TI, DTI, C, COIN, Q are described with the standard formats in Section III.B.14. Additional allowed data types are:

DTYPE	Description
BE1, BE2	Reduced electric transition probability (downward)
	given in units of $e^2 x$ (barns) ^L , where L = 1, 2,
BE1W, BE2W	Reduced electric transition probability
	(downward) given in single-particle (Weisskopf)
	units
BM1,BM2	Reduced magnetic transition probability (downward)
	given in units of $\mu^2_N x$ (barns) ^{L-1} , where L = 1, 2
BM1W,BM2W	Reduced magnetic transition probability
	(downward) given in single-particle (Weisskopf) units
CE	Total conversion electron intensity
CEK,CEL	Conversion-electron (ce) intensity for K, L,
CEL1	$L_1 \dots$ conversion
ECC	Measured total conversion coefficient
EKC, ELC, EL1C	Measured K-, L-, L1 conversion coefficient
 FL	Final level energy; must be either identical to a level
	energy in the data set optionally followed by a '?' (latter
	expresses uncertain placement) or a '?' (if the final level
	is not known)
FLAG	Additional footnote symbols
KC,LC,L1C	Theoretical K-, L-, L ₁ conversion coefficient
K:L,M:L,L1:L2	Conversion-electron intensity ratios
K:T,L:T	Ratio of K, L ce-intensity to total (γ + ce)
	intensity

3. Beta (β⁻) Record

Allowed data types E, DE, IB, DIB, LOGFT, DFT, C, UN, Q are described with the standard formats in Section III.B.10. Additional allowed data types are:

DTYPE	Description
EAV	Average energy of the β^{-} spectrum
FLAG	Additional footnote symbols
	Note: 'C' and '?' may not be used - see Section III.B.10 for their special meaning

4. EC Record

Allowed data types, E, DE, IB, DIB, IE, DIE, LOGFT, DFT, TI, DTI, C, UN, Q are described with the standard formats in Section III.B.11. Additional allowed data types are:

DTYPE	Description
EAV	Average energy of the β^+ spectrum
CK,CL,CM	Calculated fraction of decay by electron capture
CL+	from the K, L, M, L+M+shells
ECK,ECL,ECM	Measured fraction of decay by electron capture
ECL+	from the K, L, M, L+M+ shells
CK/T,CL/T	Ratio of K, L ε-intensity to total ε
	intensity
FLAG	Additional footnote symbols
	Note: 'C' and '?' may not be used - see Section III.B.11 for
	their special meaning

Chapter V

V. DETAILED FIELD DESCRIPTIONS

1. NUCID

The standard nuclide identification consists of two parts - mass number in cols. (1-3), right justified and element name (or Z - 100 for Z 109) in (col. 4-5), left justified. The nuclide identification must be contained within the field defined for it (cols. 1-5). The nuclide identification must be included on every card of a data set except the END record. Comments and reference data sets pertaining to the whole A-(mass) chain evaluation contain only the A-value in the NUCID field.

2. DSID

Data Set ID for an ENSDF data set serves as a unique, computer recognizable identification for the data set. There can not be two data sets with identical DSID and NUCID. In the rare circumstance two data sets with same DSID for a given NUCID can be accommodated by ending DSID with a colon (:) and following it with a unique identifier which will then be different for the various data sets with that DSID.

The following rules for DSID should be strictly observed for ENSDF entries. Single blanks have meaning and should be used according to the formats below. In the description below the optional fields are given in italics. General categories are given in upper and lower cases and further defined. DSID \underline must be confined to the 30 spaces allowed. The field may, however, be continued on to the DSID field on the second ID record as explained in Chapter III in which case the DSID on the first record \underline must end with a, comma ','.

GENERAL IDs REFERENCES COMMENTS (see Appendix B for format for this data set) ADOPTED LEVELS ADOPTED LEVELS, GAMMAS DECAY DATA SET IDs Parent Mode Decay (Half-life) Parent should be the parent nuclide symbol, e.g., 52CR For SF decay more than one parent can be given separated by commas For Ionized Atom Decay parent nuclide symbol is followed by ionization state in square brackets, e.g., 187RE[+75] Mode may be one of B+, B-, EC, IT, A, P, B-N, ECP, SF ... List of decay modes may be expanded. Half-life can be of the form T defined in Section V.14.1 MUONIC ATOM **REACTION DATA SET IDs** Target(Reaction), (Reaction), Target(Reaction) E=Energy Qualifier COULOMB EXCITATION (HI,XNG) Target should be the target (nuclide or element) symbol Reaction should be given as (in,out), e.g., (N,P) in is the incident particle, out are the outgoing particles Energy may be one of the following NUM, NUM Units (for definition of NUM see Section V.9.) NUM-NUM Units TH (for thermal) **RES** (for resonance) Qualifier may be one of the following RES IAR IAS **EXAMPLES: 187RE B- DECAY** 1870S IT DECAY (231 US) 187RE[+75] B- DECAY 187AU P DECAY:? 190PT A DECAY (6E11 Y) 95RB B-N DECAY 186W(N,G) E=TH: SECONDARY 186OS(N,G) E=THERMAL RE(N,N'):TOF 238U(N,FG) E=TH 186W(N,G) E=RES: AVG 189OS(P,T) E=19 MEV 185RE(A,2NG) E=23-42.8 MEV 187OS(D,D') E=12, 17 MEV 187RE(D,2NG), 187RE(P,NG) 44CA(P,G) E=856, 906 KEV IAR PB(238U,FXG) PB(238U,XG)

3. DSREF, KEYNUM, QREF

The DSREF and QREF fields may include up to three key numbers (KEYNUM) each of which refers to a particular publication. Additional key numbers may be placed in COMMENT records. Key numbers must be left-justified and separated by commas with no blanks between the comma and the reference. A reference key number must be of the form YYYYAABB where YYYY is a four digit integer, AA are two alphabetic characters and BB is either a two digit integer or consists of two alphabetic characters. Examples: 1981TU01, 1981TUXY, etc.

4. PUB

Publication information generally consists of the year of the A-chain publication denoted by two digit year indicator followed by three-character code NDS for Nuclear Data Sheets and two-letter code NP for Nuclear Physics-A. This may optionally be followed by a comma and other updating information, e.g., the initials of the person modifying the data set after its publication. Example: 78NDS,TWB or 81NDS.

5. DATE

This field is of the form YYYYMM where YYYY and MM are four and two digit integers, respectively, within the following ranges: $YY \ge 1900$ and $01 \le MM \le 12$.

6. RTYPE

RTYPE is a two-letter code in col. 8-9 that gives a name to the RECORD type. Note that col. 9 is blank for most of the RTYPE tabbing

RTYPE Description

blank	May be IDENTIFICATION, general COMMENT, or END record
Н	HISTORY record
N	NORMALIZATION record
	Production Normalization record has 'P' in col 7.
Р	PARENT record
Q	Q-VALUE record
L	LEVEL record
G	GAMMA record
В	BETA (β) record
E	EC (for ε , β^+ or $\varepsilon + \beta^+$) record
А	ALPHA record
R	REFERENCE record
Х	CROSS-REFERENCE record
DP	DELAYED PARTICLE record, or
	PARTICLE (col.8=blank) record
	Particle symbol (e.g., 'P' for proton) is given in col. 9.

7. CTEXT

This field consists of free text. The various expressions used in CTEXT can be translated via dictionary lookup. The translation dictionary is given in Appendix F. The unit expression used in translation is the string of characters between adjacent 'delimiters'. The characters presently used as 'delimiters' are:

b(blank),(comma).b(period followed by a blank); : () = + <> / and \$

In some cases the dictionary lookup programs look beyond the next delimiter for proper translation.

8. SYM(FLAG)

The SYM(FLAG) field (with FLAG given) is valid only for records with RTYPE: L, G, B, E, A, DP. However, SYM (without FLAG) may additionally be used for record types N, P, and Q.

FLAG can be a string of characters optionally separated by commas. Any character other than a comma and parentheses can be used as a FLAG symbol. For B and E records 'C' can not be used for a FLAG as 'C' in column 77 of B, E, and A records denotes coincidence. Similarly '*', '@', '%', and '&' for G records are reserved with special meaning (Section III.B.14). See notes on SYM and FLAG under description of COMMENT record. FLAG can be used only with SYMs which are valid data types on a formatted card or with BAND. In fact, for BAND FLAG must be given.

Allowed symbols to be used as SYM for various RTYPE are currently limited to the fields allowed on the formatted records.

9. BR, CC, HF, LOGFT, NB, NP, NR, NT, QP

These fields consist of either a blank or a <u>single unsigned</u> number (NUM) in one of the following forms:

- 1. An integer (e.g., 345)
- 2. A real number (e.g., 345.23)
- 3. An integer followed by an integer exponent (e.g., 345E-4, 4E+5)
- 4. A real number followed by an integer exponent (e.g., 345.E-4)

Note: desirable to write a number as '0.345' rather than '.345'.

10. MR, Q-, QA, SN, SP

These fields have the same form as the quantities in Section V.9. above, with the difference that they are allowed to have signature (positive or negative).

11. DBR, DCC, DE, DHF, DIA, DIB, DIE, DIP, DNB

Includes DNR, DNP, DNT, DQP, DQ-, DS, DSP, DTI

These two character fields, represent uncertainty in the 'standard' form in the given quantity. The 'standard' numeric uncertainty denotes an uncertainty in the last significant figure(s), for example, NR=0.873, DNR=11 represent a normalization factor of 0.873 ± 0.011 , similarly QP=2.3E6, DQP=10 stand for a Q-value of $(2.3 \pm 1.0) \times 10^6$ (see also General Policies given in Appendix H). The non-numeric uncertainty, e.g., <, >, or \geq , etc. is denoted by expressions LT, GT and GE, etc. The allowed forms for these fields are summarized below:

- 1. Blank
- 2. An integer <99, preferably <25, (left or right justified)
- One of the following expressions: LT, GT, LE, GE, AP, CA, SY for <, >, ≤, ≥, ≈, calculated, and from systematics, respectively.

12. DFT, DMR, DT, DNB, DQA

These fields allow for the specification of 'standard' asymmetric uncertainty. For example, T=4.2 S, DT=+8-10, represent a half-life= $4.2^{+0.8}$ -1 s, similarly MR=-3, DMR=+1-4 represent mixing ratio= -3^{+1} -4 meaning a range from -7 to -2 (note: asymmetric uncertainties add algebraically). When the +/- construction is missing from this field, the digits or the expressions given in this field represent either the numeric 'standard' symmetric or the non-numeric uncertainty as described in Section V.11 above.

Summarizing this field, there are two cases:

- 1. <u>Symmetric uncertainty</u> the field consists of an integer number or an expression of the type described in Section V.11 above.
- 2. <u>Asymmetric uncertainty</u> the field is of the form +x-y, where x and y are integers.

13. IA, IB, IE, IP, RI, TI

The following numbers/expressions are valid for these fields:

- 1. NUM (number as defined in Section V.9 above)
- 2. (NUM)

Note: Parentheses denote that the number given has been deduced (not directly measured) or taken from other experiment(s).

14. T

The field for half-life T must have one of the following forms:

1. NUM-Blank-Units (i.e., number as defined in Section V.9 above followed by a blank and units). Valid symbols for units are: Y, D, H, M, S, MS, US, NS, PS, FS, AS, EV, KEV, and MEV, for year, day, hour, minute, second(s), 10^{-3} s, 10^{-6} s, 10^{-9} s, 10^{-12} s, 10^{-15} s, 10^{-18} s, eV, 10^3 eV, and 10^6 eV, respectively.

2. Word `STABLE'

Note: A question mark following half-life denotes that the assignment to that level is not certain. A comment should be given to explain the exact meaning intended.
15. COIN

This one character field can either be blank or have character 'C' or '?'. The character 'C' denotes coincidence, while '?' denotes questionable coincidence.

16. UN

This two character field can either be blank for allowed transitions, or have an integer between 1 and 9 indicating order of forbiddeness followed by a blank for 'non-unique' or a 'U' for unique transition.

17. MS

This two character field can either be blank or have character 'M' followed by a blank or a digit between 1 and 9.

18. E

An energy field (E) can have only one of the following forms:

- 1. NUM (as defined in Section V.9 above)
- 2. NUM+A or A+NUM, where A=X, Y, Z, U, V, W, A, B,... used in this order; i.e., for the first occurrence an 'X' is used, for its second occurrence a 'Y' is used, and so on.
- 3. SN+NUM, SP+NUM. Resonance energies should be given in center-of-mass system, as far as possible.
- 4. A (as defined in 2. above)

Note: Parentheses are allowed for this field. They denote that the number given has been deduced (not directly measured) or taken from other experiment(s). Explanation as to what is intended should be given.

19. M

The multipolarity field can be one of the following:

- 1. Mult
- 2. Mult + Mult
- 3. Mult, Mult
- 4. NOT Mult

MULT

where Mult = E_L or M_L' (where L, L' are single digits - $L \ge 0$, L' ≥ 1) $M_L' + E_L \text{ or } E_L + M_L' \text{ or } D \text{ or } Q$

Note: Parentheses in the multipolarity field denote that the assignment is probable and not definite. Square brackets indicate assumed or derived assignment.

20. J

The spin-parity field can have only one of the following forms:

- 1. JPI (can be J, π , or J π)
- 2. PI OR JPI (',' (comma) can be used in place of 'OR')
- 3. JPI AND JPI ('&' (ampersand) can be used in place of 'AND')

4. OP JPI (where OP is AP, LE, or GE) Note: This will be interpreted as $\pi = PI$ and J is OP J Example: $\leq 5 + \text{means } \pi = + \text{ and } J \leq 5$

5. NOT JPI

6. JPI TO JPI (':' (colon) can be used in place of 'TO') Note: If parity is given in the range it will be interpreted as follows:

- a) J to J'PI means $J \leq J \leq J'$ and $\pi = PI$
- b) JPI to J'PI' means JPI, J = J+1 PI = $\pm,...,J = J'-1$ PI = $\pm,J'PI'$
- c) JPI to J' means JPI, J = J+1 PI = $\pm,...,J = J-1$ PI = $\pm, J'PI = \pm$

Examples:

- a) 3 to 6- means $J\pi = 3-, 4-, 5-, 6-$
- b) 3+ to 6- means $J\pi = 3+, 4\pm, 5\pm, 6-$
- c) 3+ to 6 means $J\pi = 3+, 4\pm, 5\pm, 6\pm$
- 7. NATURAL/UNNATURAL
- 8. A or A+JPI (where A is one of the characters, J, K, L, M, N, O, P...)

In the above J = N or N/2 (N is a positive integer or zero) PI(π) = + or -JPI = J or PI or J followed by PI

Note:

1. Parentheses in the J^{π} field indicate that the parenthesized value(s) is (are) based upon weak arguments. See 'Bases for Spin and Parity Assignments' in Appendix H. Note that JPI = (3,4)- is interpreted as J = (3) or (4) and π =-.

- 2. As far as possible do not give more than three JPI values.
- 3. The ranges such as 3- to 5+ are better written as 3-, 4, 5+.
- 4. Square brackets around J^{π} value indicate assumed value.

21. S

This field may contain no more than three S-values, in the form of NUM defined in Section V.9, separated by a '+' or a comma, for corresponding L-values given in the L-field (col. 65-74). Parentheses are allowed and will be interpreted to mean probable values.

22. L

This field may contain no more than three integer numbers optionally preceded by LE or GE and separated by a '+' or a comma. Parentheses are allowed and will be interpreted to mean probable values. Square brackets indicate assumed or derived values.

For certain reactions the L value may be accompanied by its electric or magnetic character in the form similar to multipolarity (see Section V.19).

23. ION

This field is either blank or a signed integer, left justified, denoting order of ionization of the atom, e.g., +75. It is used in Ionized Atom Decay data sets.

24. Cross Reference

The cross referencing of a record (currently allowed only for the 'L' record in an ADOPTED data set) is done through specification on the continuation record and takes the following forms:

1. NUCID 2 L XREF=ABC\$

Above record indicates that the adopted level (specified by preceding 'L' record) has been seen in data sets 'A', 'B' and 'C' and that the corresponding levels are unambiguous.

2. NUCID 2 L XREF=A(E1)B(E2)C(E3)\$

This record indicates that the adopted level is the same as the E1 level in data set 'A', the E2 level in data set 'B', etc.

3. NUCID 2 L XREF=A(E1,E2)B(E3)\$

This record indicates that the adopted level is either the E1 or the E2 level in data set 'A', the E3 level in data set 'B'.

4. NUCID 2 L XREF=A(*E1)B(E2)\$

This record indicates that a level with energy E1 in data set 'A' is associated with more than one adopted level. An '*' must appear on all occurrences of a multiply assigned level. Alternatively, the notation A(*) may be used if the energy is apparent.

5. NUCID 2 L XREF=+\$ This record indicates that the adopted level has been seen in all data sets.

6. NUCID 2 L XREF=-(AB)\$

This record indicates that the adopted level has been seen in all data sets except the data sets 'A' and 'B'.

Note: The symbols A, B, C relating to specific data sets must be defined through Cross-Reference records (see Section III.B.4).

25. History record

1. In all individual ENSDF data sets (excepting the REFERENCE and COMMENTS data sets), the following information will be presented (the information is required, unless indicated optional) on an H record every time changes are made to the data set (see Section III.B.2 for description of H record):

TYP Type of change/evaluation (required)

AUT Author's name (the person who makes or is responsible for the change not necessarily the evaluator of the data set) (required)

DAT Date of change (optional, if cutoff date given)

CUT Literature cutoff date (optional when changes do not involve fresh evaluation)

CIT Citation (optional, if not published)

COM Comments (optional)

- 2. Current list of evaluation types (can be expanded) are
 - FUL Complete revision of the nuclide based on all information to the cutoff date indicated. Cutoff date required
 - FMT Some format changes done
 - ERR Errata (fix error(s) in the dataset, should be accompanied with COM)
 - MOD Modified dataset for partial update of nuclide. Kind of modification done should be indicated as comment. Cutoff date is optional.
 - UPD Update due to scan of new literature. Cutoff date is required.
 - EXP Experimental (not evaluated) data set.

There can be only one type specification per history record given.

- 3. Date and Cutoff date must be given as DD-MMM-YYYY (e.g., 31-MAY-1996)
- 4. Citation (optional) gives the reference where the evaluation is published. CIT=ENSDF means included in ENSDF but not published.
- 5. Comments (optional) may give general remarks about evaluation/update.
- 6. The fields can be in any order on an 'H' record.

Note that history records indicate various revisions. These are wiped out at the next FULL evaluation.

For FULL evaluation NNDC will introduce 'H' records based on the COMMENTS data set.

Examples:

156DY H TYP=MOD\$AUT=B. Singh\$DAT=31-DEC-1995\$
156DY2H COM=Updated SDB data only\$
156DY H TYP=UPD\$AUT=R. Helmer\$CUT=15-DEC-1994\$
156DY2H COM=Updated data set since last full evaluation\$
156DY H TYP=FMT\$AUT=J. Tuli\$DAT=1-DEC-1994\$COM=FIXED T1/2\$
156DY H TYP=FUL\$AUT=R. Helmer\$CUT=01-May-1991\$
156DY2H CIT=NDS 65, 65 (1992)\$

Appendix A

Character Set

The base character set is the standard 7-bit ASCII character set up to octal 173. Characters with octal values of 173 and greater are used as control characters. An alternate character set consists primarily of the Greek alphabet and some special symbols. The backslash character (octal 134) is interpreted as a backspace command. An alternate character in the input file consists of two characters, a control character and the standard character equivalent of the alternate character. All available alternate characters and their standard equivalents are given in the table on the following page.

There are four control characters, | (octal 176), \sim (octal 176), $\{$ (octal 173), and $\}$ (octal 175). The vertical bar and the tilda are used to shift the next character into the first and second alternate character sets, respectively. The entire string of characters may also be modified from their standard form. In this case the string to be modified is enclosed by the open and close brace control characters. The character immediately following the open brace is interpreted as a control character. The available control character values and their meanings are given below. The modified character strings may be nested. The control characters may be in either upper or lower case.

Examples

|g will be displayed as γ {B{+238}Puwill be displayed as ²³⁸Pu

String Control Characters

- first alternate character
- \sim second alternate character
- + superscript
- subscript (+ and are mutually exclusive)
- I italic
- B bold
- U underline

Note: Symbol ^ (caret) may be used before a word to preserve case, e.g., ^A for A (and not a).

Alternate Character Sets

Standard	1 st alt.	2^{nd} alt.	Standard	1 st alt.	2^{nd} alt.
!	©	!	N	N	N
"	-	"	0	0	Ö
#	Ş	\otimes	Р	П	Р
\$	e	\$	Q	⊇	Õ
%	\checkmark	%	R	Р	R
&	≡	&	S	Σ	S
'	0	Å	Т	Т	Т
(\leftarrow	(U	Ŷ	Ü
)	\rightarrow)	V	∇	V
*	Х		W	Ω	W
+	<u>+</u>	+	Х	Ξ	X
,	1/2	,	Y	∇	Y
-	Ŧ	-	Z	Z	Z
	×		[{	[
/	÷	/]	}]
0	(0	^	1	^
1)	1	-	\downarrow	-
2	[2	•	,	,
3]	3	a	α	ä
4	<	4	b	β	b
5	>	5	с	η	с
6	\checkmark	6	d	δ	d
7	ſ	7	e	3	é
8	Π	8	f	φ	f
9	Σ	9	g	γ	g
•	†	:	h	©	h
	*	;	i		i
<	<	<	i	e	i
=	 ≠	=	k	к	k
>	>	>	1	λ	λ
?	~	?	m	μ	m
a	x	•	n	ν	n
А	Α	Ä	0	0	Ö
В	В	В	р	π	р
C	Н	C	q	Θ	õ
D	Δ	D	r	ρ	r
E	Е	É	S	σ	S
F	Φ	F	t		t
G	Γ	G	u		ü
Н	X	Н	v	?	V
Ι	Ι	Ι	W	ω	W
J	~	J	X	بخ	X
K	K	K	У	Ψ	у
L	Λ	L	Z	ζ	Z
М	М	М			

Appendix B

Format for Comments Data Set

This data set consists only of general comment records (defined in III.B(4)). The format of the comment records is similar to general comments in other data sets except that the NUCID field will contain only the mass number, AAA, and that a SYM field is required as in a flagged comment. As in the flagged comments, the SYM field will either occupy columns 10 to 19 with column 19 being blank or the SYM will be followed by a '\$'. Continuation records for a given comment are allowed with the additional feature that a new line will be started if the continuation character in column 6 is a '#' and that a new paragraph will be started if the character is a '@'. This feature is intended to facilitate the entry of information into the COMM comments.

SYM	Meaning
TITLE	Title of evaluation. Required if the evaluation spans several masses.
AUTH	Authors, a list of authors from the institution given in
	the following INST comment. A letter or number in parenthesis following an authors last name will signal a permanent address which is different from the institution (See PERM)
INIST	Institution name and address of the authors' institution
INST	comment must follow the appropriate Δ UTH comment. The $\#$
11101	continuation character is used so the address does not run
	together into one line. More than one set of AUTH and INST
	comments can be given if more than one institution is involved
ABST	Abstract should be terse and to the point Additional
	details should be given under COMM comments
CUT	Cutoff data and associated comments
COMM	General comments on techniques used in the evaluation
Comm	or on other information common to many of the isotones
ACKN	Acknowledgments
PERM(a)	Permanent address of an author The letter or number
121111(4)	'a' within the parenthesis corresponds to the letter
	or number within the parenthesis which follows the authors
	last name in the AUTH comment.
FUND	Funding, an acknowledgment of funding which will result
	in a footnote being added to the title.
CIT	Citation. To be added by the NDS production staff so that
	the publication can be correctly cited by persons using
	a retrieval of the A chain. The authors may leave it out.

EXAMPLE of a COMMENTS data set

- 156 COMMENTS
- 156 C TITL\$ Nuclear Data Sheets for A=156
- 156 C AUTH\$R. G. Helmer
- 156 C INST\$Idaho National Engineering Laboratory
- 156 #C EG&G Idaho, Inc.
- 156 #C Idaho Falls, Idaho 83415 USA
- 156 C ABST\$The experimental results from the various reaction and decay
- 156 2C studies leading to nuclides in the A=156 mass chain, and ALPHA decays
- 156 3C from it, have been reviewed. These data are summarized and presented,
- 156 4C together with adopted levels schemes and properties.
- 156 C CUT\$Data available prior to May 1991 have been evaluated.
- 156 C ACKN\$The evaluator wishes to thank C. W. Reich, the reviewer, and the
- 156 2C editors for many helpful discussions.
- 156 C FUND\$Research sponsored by the U. S. Department of Energy.
- 156 C CIT\$R. G. Helmer, NDS 65, 65 (1992)
- 156 C COMM\$General Comments: In this evaluation, the following expression
- 156 2C was used to define the rotational-band parameters a and B:
- 156 C $E(J)=E\{-0\} + a[J(J+1)-K\{+2\}] + B[J(J+1)-K\{+2\}]\{+2\}.$
- 156 C with the following terms sometimes added for K=1 and 2 bands
- 156 C $+(-1)\{+J+1\}a\{-2\}J(J+1)$ for K=1
- 156 C and
- 156 C $+(-1)\{+J\}a\{-4\}(J-1)J(J+1)(J+2)$ for K=2.
- 156 C In the determination of the values of these parameters, the energy
- 156 2C spacings of only the lowest levels, and minimum number of levels, were
- 156 3C used.
- 156 C The ENSDF file (the computer data base from which these Data Sheets
- 156 3C are produced), contains some information that is not printed in these
- 156 4C Data Sheets. This includes the theoretical internal-conversion
- 156 6C coefficients for each shell, where the values are significant, for
- 156 8C each |g for which a multipolarity is given in the Data Sheets. Also, a
- 156 9C short comment is made about the experimental methods for each
- 156 BC reference. This information would be available if a copy of the ENSDF
- 156 DC file were obtained.

Output for above COMMENTS data set is shown on the following page

Nuclear Data Sheets for A = 156*

Nuclear Data Sheets 65, 65 (1992)

R. G. Helmer

Idaho National Engineering Laboratory EG&G Idaho, Inc. 1.Idaho Falls, Idaho 83415 USA (Received June 24, 1991; Revised August 20, 1991)

Abstract: The experimental results from the various reaction and decay studies leading to nuclides in the A=156 mass chain, and α decays from it, have been reviewed. These data are summarized and presented, together with adopted levels schemes and properties.

Cutoff Date: Data available prior to May 1991 have been evaluated.

General Policies and Organization of Material: See the January issue of Nuclear Data Sheets.

Acknowledgments: The evaluator wishes to thank C. W. Reich, the reviewer, and the editors for many helpful discussions.

General Comments: In this evaluation ,the following expression was used to Define the rotational–band parameters A and B:

 $E(J)=E_0 + A[J(J+1)-K^2] + B[J(J+1)-K^2]^2$.

with the following terms sometimes added for K=1 and 2 bands

$$+ (-1)^{J+1}A_2J(J+1)$$
 for K=1

and

 $+ (-1)^{J}A_{4}(J-1)J(J+1)(J+2)$ for K=2.

In the determination of the values of these parameters ,the energy spacings of only the lowest levels ,and minimum number of levels, were used.

The ENSDF file (the computer data base from which these Data Sheets are produced), contains some information that is not printed in these Data Sheets. This includes the theoretical internal–conversion coefficients for each shell, where the values are significant, for each γ for which a multipolarity is given in the Data Sheets. Also, a short comment is made about the experimental methods for each reference. This information would be available if a copy of the ENSDF file were obtained.

* Research sponsored by the U. S. Department of Energy.

Appendix C

Example of an Adopted Data Set

162TB ADOPTED LEVELS, GAMMAS 99NDS 199909 162TB H TYP=FUL\$AUT=R. G. Helmer and C. W. Reich\$CIT=NDS 87, 317 (1999)\$ 162TB2 H CUT=1-Jan-1999\$ 36 6284 36 7457 36 -895 85 1995AU04 162TB O 2506 162TB C Data are from 162GD B- decay (1982Ge07,1970Ch02) and 163DY(T,A) 162TB2C reaction (1989BuZW, 1988BuZP). Other levels up to 1600 keV are indicated by the 163DY(T,A) 162TB CL E 162TB2CL spectrum in 1988BuZP. For the levels reported from the 163DY(T,A) reaction, the 162TB CL J 162TB2CL JPI values are based on L=2 transfers and intensity patterns 162TB3CL within bands that indicate pickup of a 3/2[411] proton. 162TB CL BAND(A) KPI = 1-band. 162TB2CL CONF=((P,3/2(411))(N,5/2(523))). 162TB@CL ^A=9.78 162TB DL Levels: 1- (0), 2- (39), 3- (97), 4- (176), 5- (267). 162TB CL BAND(B) KPI = 4- band. 162TB2CL CONF = ((P, 3/2(411))(N, 5/2(523))).162TB@CL ^A AP 10 162TB CL BAND(C) Bandhead of KPI = 1 + band. 162TB2CL CONF=((P,7/2(523))(N,5/2(523))) 162TB XY162GD B- DECAY 162TB XZ163DY(T,A) 162TB PN 6 7.60 M 15 162TB L 0 1-А 162TB2 L %B-=100 \$ XREF=+ Unweighted average of 7.43 MIN 4 (1965Sc24) and 7.76 MIN 10 162TB CL T 162TB2CL (1977Ka08). Others: 7.48 M 3 (1965Sc24), 8.0 M 5 (1966Fu08), 162TB3CL 7.75 M 31 (1966Sc24), 7.5 M 10 (1967Gu03), and 7.6 M 2 (1968Ka10). 162TB4CL See 1951Bu25, 1960Wi10, and 1962Ta12 for half-life measurements 162TB5CL related to nuclide identification. Configuration is assigned as 162TB CL J 162TB2CL CONF=((P,3/2(411))(N,5/2(523))) based on the ground-state 162TB3CL assignments of CONF=(P,3/2(411)) for 161TB and 162TB4CL CONF=(N,5/2(523)) for 161GD and 163DY. LOGFT=4.95 of the B- transition to the 2- level at 1148 keV 162TB CL J 162TB2CL in 162DY indicates an allowed-unhindered B transition, which 162TB3CL must be CONF=(N,5/2(523)) to CONF=(P,7/2(523)). This confirms 162TB4CL the configuration assignment to this ground state as well as 162TB5CL helping establish the configuration assignment to the 1148-keV 162TB6CL level in 162DY as CONF=((P,3/2(411))(P,7/2(523))). See 162DY 162TB6CL Adopted Levels and 1995Be02 for further discussion. 162TB L 39.10 9 2-А

162TB2 L XREF=+ 162TB CL J From M1 component in G to 1- ground state, expected energy 162TB2CL spacing in rotational band, and (T,A) reaction results. 162TB G 39.0 2 100 M1+(E2) From intensity balance at 39 level in 162GD B- decay, 162TB CG M 162TB2CG transition is primarily M1 (1970Ch02); x/G intensity ratio and 162TB3CG ^L x-ray energy are consistent with this. 1 3-162TB L 97 А 162TB2 L XREF=Z 162TB L 176 1 4-А 162TB2 L XREF=Z 1 4-B 162TB L 216 162TB2 L XREF=Z 162TB CL J Configuration is assigned as that of the ground state, 162TB2CL namely, (PI 3/2[411])(NU 5/2[523]) recoupled. The systematics 162TB3CL of 1998Ja07 suggest a "theoretical" Gallagher-Moszkowski splitting 162TB4CL of 82 keV compared to the observed 216 keV, if this assignment 162TB5CL is correct. 162TB L 267 2 5-А 162TB2 L XREF=Z В 162TB L 310 1 5-162TB2 L XREF=Z 162TB L 341.41 9 (0-,1) 162TB2 L XREF=Y 162TB CL J From LOGFT=5.9 in B- decay from 0+ 162GD. 162TB G 302.30 15 58 9 162TB G 341.42 10 100 9 С 8 1+ 162TB L 442.11 162TB2 L XREF=Y From allowed-unhindered (LOGFT=4.4) B- transition from the 162TB CL J 162TB2CL 162GD ground state (0+). This also uniquely establishes the 162TB3CL configuration of this level as CONF=((N, 5/2(523))(P, 7/2(523))). 162TB G 403.00 8 85 4 162TB G 442.12 8 100

Output for above data set is shown in the following pages

 $^{162}_{65}$ Tb $_{97}$ -1

 $^{162}_{65}$ Tb $_{97}$ -1

Adopted Levels, Gammas

 $\begin{array}{l} Q(\beta^{*})=2506\ 36;\ S(n)=6284\ 36;\ S(p)=7457\ 36;\ Q(\alpha)=-895\ 85\ 1995Au04.\\ Data\ are\ from\ ^{162}Cd\ \beta^{*}\ decay\ (1982Ge07,1970Ch02)\ and\ ^{163}Dy(t,\alpha)\ reaction\ (1989BuZW,1988BuZP). \end{array}$

¹⁶²Tb Levels

Cross Reference (XREF) Flags

A ¹⁸²Gd β⁻ Decay

$B^{-163}Dy(t,a)$					
E (level) †	$J\pi^{\ddagger}$	XREF	T _{1/2}	Comments	
0.0 [§]	1-	AB	7.69 min <i>15</i>	$\%p^{-}$ 100. $T_{1/2}$: Unweighted average of 7.42 min <i>d</i> (1965Sc24) and 7.76 min <i>10</i> (1977Ka08). Others: 7.48 min <i>3</i> (1965Sc24), 8.0 min <i>5</i> (1966Fu08), 7.75 min <i>31</i> (1966Sc24), 7.5 min <i>10</i> (1967Gu03), and 7.6 min <i>2</i> (1968Ka10). See 1951Bu25, 1960Wi10, and 1962Ta12 for half-life measurements related to nuclide identification. Jz: Configuration is assigned as configuration-(π 3/2[411])(π 5/2[523])) based on the ground-state assignments of configuration-(π 3/2[411]) for ¹⁶¹ Tb and configuration-(π 5/2[523]) for ¹⁶¹ Cd and ¹⁶¹ Dy. Jz: log <i>R</i> -4.95 of the p^{-1} transition to the 2- level at 1148 keV in ¹⁶² Dy indicates an allowed-unbindered p transition, which must be	
				configuration – (v 5/2[523]) to configuration – (π 7/2[523]). This confirms the configuration assignment to this ground state as well as helping establish the configuration assignment to the 1148-keV level in ¹⁶² Dy as configuration – ((π 3/2[411])(π 7/2[523])). See ¹⁶² Dy Adopted Levels and 1995Be02 for further discussion.	
39.10% g	2	AB		J π : From M1 component in γ to 1– ground state, expected energy spacing in rotational band, and (t, α) reaction results.	
978 1	3 -	в			
1769 1	4 -	в			
216# 1	4	В		Jz: Configuration is assigned as that of the ground state, namely, (n 3/2[411])(v 5/2[523]) recoupled. The systematics of 1998Ja07 suggest a "theoretical" Gallagher-Meszkewski splitting of 82 keV compared to the observed 216 keV, if this assignment is correct.	
267§ 2	5 -	в		-	
310# 1	5	в			
341.41 9	(0 - , 1)	A		$J\pi$: From log R=5.9 in β^- decay from 0+ ¹⁶² Gd.	
442.11 [®] 8	1+	A		Jπ: From allowed-unhindered (log ft=4.4) β ⁻ transition from the ¹⁶² Gd ground state (0+). This also uniquely establishes the configuration of this level as configuration-((v 5/2[523])(π 7/2[523])).	

[†] Other levels up to 1600 keV are indicated by the ¹⁶³Dy(t, α) spectrum in 1988BuZP.
 [†] For the levels reported from the ¹⁶³Dy(t, α) reaction, the Jz values are based on L-2 transfers and intensity patterns within bands that indicate pickup of a 3/2[411] proton.
 [§] (A): Kπ-4- band. Configuration-(fa 3/2[411])(v 5/2[523])). A=9.78.
 [§] (B): Kπ-4- band. Configuration-(fa 3/2[411])(v 5/2[523])). A=10.
 [@] (C): Bandhead of Kπ-1+ band. Configuration-(fa 7/2[523])(v 5/2[523])).

 $\gamma(^{162}\text{Tb})$

E (level)	Eγ	Iγ	Mult.	Comments
39.10	39.0 2	108	M1+(E2)	Mult.: From intensity balance at 39 level in 162 Gd β - decay, transition is numerically M1 (1970Ch82), via tenentity ratio and L x, ray operating are consistent.
				with this.
341.41	302.30 15	58 9		
	341.42 10	100 9		
442.11	403.00 8	85 <i>d</i>		
	442.12 8	100		

 $^{162}_{65}$ Tb $_{97}$ -2

Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level

Appendix D

Example of a Decay Data Set

162TB 162GD B- DECAY 1982GE07,1970CH02 99NDS 199909 162TB H TYP=FUL\$AUT=R. G. Helmer and C. W. Reich\$CIT=NDS 87, 317 (1999)\$ 162TB2 H CUT=1-Jan-1999\$ 162TB C 162GD has been produced by double-neutron capture in enriched 160GD 162TB2C with radiochemistry (1967Wa05,1970Ch02) and from spontaneous fission 162TB3C of 252CF with radiochemistry (1982Ge07). Measurements include 162TB4C G singles and GG, GX, and GB coincidences. Decay scheme is from 1982Ge07, and is similar to those of 162TB CL 162TB2CL 1970Ch02 and 1967Wa05. The consistency of the scheme is supported 162TB CL 162TB2CL by the fact that the sum of the energies of the radiations is 162TB3CL 1395 keV 56 which agrees with the Q value of 1400 100. From least-squares fit to G energies. 162TB CL E 162TB CL J From 162TB Adopted Levels. Rotational band and Nilsson Data are from 1982Ge07, unless otherwise noted. Others: 162TB CG 162TB2CG 1970Ch02, 1967Wa05. 162TB CB E From 1970Ch02. From evaluators' assumption that 100% of the decays 162TB CB IB 162TB2CB depopulate the levels at 341 and 442 keV (that is, no B-162TB3CB feeding of the ground state and 39 level) and no G feeding of 162TB4CB the 341-keV level. From LOGFT GE 5.9 for 0+ to 1- ground state 162TB5CB (1973Ra10), IB-(0) LE 13% and from LOGF1T GE 8.5 for 0+ to 2- at 162TB6CB 39 keV (1973Ra10), IB-(39) LE 0.15%. 162TB2CL configuration assignments are given there. 162TB D Experimental methods: 162TB D 1967Wa05: 162GD from double-neutron capture in enriched (94%) 160GD with radiochemistry. G's measured with NAI(TL) detectors. 162TB2D 162TB D 1970Ch02: 162GD from double-neutron capture in enriched (94.8%) 160GD with radiochemistry. G's measured with Ge and Si(Li) detectors 162TB2D 162TB3D and B's with Si(Li) detector. GX and GB coincidences measured. 162TB D 1982Ge07: 162GD from 252CF spontaneous fission with radiochemistry. 162TB2D G's measured with Ge detector. 162GD P 0 0 +8.4 M 2 14E2 1 162TB N 0.51 2 1.0 1.0 162TB CN NR Based on evaluators' assumption that 100% of the decays 162TB2CN depopulate the levels at 341 and 442 keV. 162TB PN 3 162TB L 0 1-7.60 M 15 162TB CL T From 162TB Adopted Levels and based on 7.43 M 4 (1965Sc24) 162TB2CL and 7.76 M 10 (1977Ka08). 162TB L 39.10 9 2-162TB G 39.0 2 10 2 M1+(E2) 8 2 С 162TBS G LC=6 2\$ MC=1.4 3 Average of 39.1 2 (1982Ge07) and 38.8 2 (1970Ch02). 162TB CG E

162TB CG RI Average of 9 2 (1982Ge07) and 14 3 (1970Ch02). CC value deduced by evaluators from intensity balance at 39 162TB CG M,CC 162TB2CG level for current decay scheme; added G's feeding 39 level will 162TB3CG increase CC value. From CC(M1)=5.58 and CC(E2)=135, G is 162TB4CG primarily M1 with some E2 probable. Measured x/G intensity 162TB5CG ratio and L x-ray energy are consistent with this (1970Ch02). 162TB L 341.41 9 (0-,1) 4.5 5 5.9 2 162TB B 162TBS B EAV=362 14 162TB G 302.30 15 3.1 5 162TB G 341.42 10 5.3 5 162TB L 442.11 8 1+ 4.4 2 С 162TB B 10E2 1 95.5 5 162TBS B EAV=322 40 162TB G 403.00 8 85 4 [E1] С 0.008 162TBS G KC=0.0069\$ LC=0.0010\$ MC=0.0002 С 162TB G 442.12 8 100 [E1] 0.007 162TBS G KC=0.0056\$ LC=0.00076\$ MC=0.0002

Output for above data set is shown in the following pages

¹⁶²Gd β⁻ Decay 1982Ge07,1970Ch02

Parent ¹⁶²Cd: E-0; Jz-8+; T_{1/2}-8.4 min 2; Q(g.s.)-14×10² 1; %β⁻ decay=100.
¹⁶²Cd has been produced by double-neutron capture in enriched ¹⁶⁰Cd with radiochemistry (1967Wa05,1970Ch02) and from spontaneous fission of ²⁵²Cf with radiochemistry (1982Ge07). Measurements include γ singles and γγ, γX, and γβ

¹⁶²Tb Levels

Decay scheme is from 1982Ge07, and is similar to those of 1970Ch02 and 1967Wa05. The consistency of the scheme is supported by the fact that the sum of the energies of the radiations is 1395 keV 56 which agrees with the Q value of 1400-100.

E (level) †	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0	1 –	7.60 min 15	T _{1/2} : From ¹⁶² Tb Adopted Levels and based on 7.43 min ∉ (1965Sc24) and 7.76 min 10 (1977Ka08).
39.10 9	2 -		
341.41 9	(0 - , 1)		
442.11 8	1 +		
† From 1e: ‡ From ¹⁶	ast–square ² Tb Adopte	s fit to 7 energies. d Levels. Rotational	band and Nilsson.

B⁻ radiations

$E\beta^{-\dagger}$	E (level)	Iß-‡§	Log R	Comments
1000 100	442.11	95.5 <i>5</i>	4.4 2	av Eβ=322 40.
(1060 100)	341.41	4.5 <i>5</i>	5.9 2	av Eβ=362 14.

coincidences.

From 1970Ch02.
 From evaluators' assumption that 100% of the decays depopulate the levels at 341 and 442 keV (that is, no β-feeding of the ground state and 39 level) and no γ feeding of the 341-keV level. From log R25.9 for 0+ to 1- ground state (1973Ra10), 1β⁻(0)≤13% and from log P²c28.5 for 0+ to 2- at 39 keV (1973Ra10), 1β⁻(39)≤0.15%. configuration assignments are given there.
 For β⁻ intensity per 100 decays, multiply by 1.0.

$\gamma(^{162}Tb)$

Data are from 1982Ce07, unless otherwise noted. Others: 1970Ch02, 1967Wa05. Ty normalization: Based on evaluators' assumption that 100% of the decays depopulate the levels at 341 and 442 keV.

Eγ	E(level)	Iγ [†]	Mult.	<u>10</u>	Comments
39.0 <i>2</i> 302.30 <i>15</i>	29.10 341.41	10 <i>2</i> 3.1 <i>5</i>	MI+(E2)	82	$\label{eq:alpha} \begin{split} \alpha(L) = 6~2; ~\alpha(M) = 1.4~3. \\ E_7: ~Average of 39.1~2~(1982Ge07) and 38.8~2~(1970Ch02). \\ I_7: ~Average of 9~2~(1982Ge07) and 14~3~(1970Ch02). \\ Mult., e:~e~value~deduced~by~evaluators from intensity balance at 39 \\ level for current decay scheme: added 7's foeding 39 level will \\ increase e~value. From $\alpha(M1) = 5.58$ and $\alpha(E2) = 135$, 7 is primarily M1 with some E2 probable. Measured x'r intensity ratio and L x-ray energy are consistent with this (1970Ch02). \\ \end{split}$
341.42 10	341.41	5.3 5			
403.00 8	442.11	85 4	[E1]	0.008	$\alpha(K) = 0.0069; \alpha(L) = 0.0010; \alpha(M) = 0.0002.$
442.12 8	442.11	108	[E1]	0.007	$\alpha(K) = 0.0056; \ \alpha(L) = 0.00076; \ \alpha(M) = 0.0002.$

[†] For absolute intensity per 100 decays, multiply by 0.51 2.

 $^{162}_{65}$ Tb $_{97}$

 $^{1}_{65}^{62}\mathrm{Tb}_{97}$

155

Appendix E

ENSDF Coding for Ionized Atom decay

Decay Data Set

1. ID record

The ionization state of the atom would be in square brackets following the nuclide symbol in the DSID field.

2. Parent record

- Energy field: level energy of the parent nucleus
- Half-life field: half-life for the decay of the ionized itom
- Q-value field: nuclear ground-state to ground-state value
- New field (77-80): ionization state
- 3. Level records
 - •Energy field: level energy of the daughter nucleus
 - •MS field: atomic electron shell or subshell in which the emitted beta- particle is captured.
 - •A new quantity, "ION", giving the ionization state would be required on an "S L" record following the level record.

4. Daughter Adopted Levels, Gammas

The adopted levels would be cross-referenced to the observed states in the ionized atom decay dataset.

5. Parent Adopted Levels, Gammas

The half-life and decay branching of the ionized atom decay would be given as comments (analagous to the current practice for half-lives which differ due to chemical effects). This should be regarded as an interim solution; after more experience is gained, methods of giving these data on level continuation records should be derived.

Examples:

187Re

187OS 187RE[+75] B- DECAY 96BO37 187OS C BOUND STATE B- DECAY OF BARE 187RE (75+ CHARGE STATE) 187OS C 96BO37 (ALSO 97NO07,97KL06,97WE08): DECAY OF FULLY IONIZED 187RE 1870S2C NUCLEI CIRCULATING IN A STORAGE RING. 187OS C T1/2 OF 187RE ION (75+ CHARGE STATE)=32.9 Y 20 187RE P 0 5/2+32.9 Y 20 2.663 19 + 751870S N 1.0 1870S L 0 1/2-Κ 1870SS L ION=+75 11 AP 1870S B WEAK 1U? 1870S L 9.75 Κ 3/2-1870SS L ION=+75 1870S B 100 7.87 3 S 1870S G 9.75 L1 1870S L 0 1/2-1870SS L ION=+75 1870S B ? 187RE ADOPTED LEVELS, GAMMAS 187RE CL BAND(A)\$5/2[402]? 187RE L 0.0 5/2+ 4.35E10 Y 13 А 187RE2 L %B-=100\$%A LT 0.0001 187RE CL \$%B-({+187}Re{++75})=100; T1/2({+187}Re{++75})=32.9 20 Y 1870S ADOPTED LEVELS, GAMMAS 1870S CL BAND(A)\$1/2[501] BAND 1870S CL BAND(B)\$3/2[512] BAND 187OS XA187RE B- DECAY 1870S XB187IR EC DECAY 187OS XC186OS(N,G) E=THERMAL 187OS XD187RE(D,2NG), 187RE(P,NG) **1870S XECOULOMB EXCITATION** 187OS XF189OS(P,T) 187OS XG186OS(D,P) 187OS XH187OS(D,D') 187OS XI188OS(D,T),(T,A) 187OS XJ187RE[+75] B- DECAY 1870S L 0.0 1/2-**STABLE** А 187OSX L XREF=ABCDEFGHIJ 187OS L 9.746 24 3/2-2.38 NS 18 В 187OSX L XREF=BCDFJ

163Dy

163HO C BOUND STATE B- DECAY OF {+163}Dy{+66+} ION 163HO C 92JU01: T1/2 MEASURED BY STORING BARE 163DY 66+ IONS IN A **HEAVY-ION** 163HO2C STORAGE RING. 163HO C T1/2({+163}Dy{+66+})=47+5-4 D 163DY P 0+Y 5/2-47 D +5-4 -2.565 14+66 163HO N 1.0 163HO L 0 7/2-Κ 163HOS L ION=+66 163HO B 100 163DY ADOPTED LEVELS, GAMMAS 163DY L 0.0 5/2-**STABLE** 163DY CL \$%B-({+163}Dy{+66+})=100; T1/2({+163}Dy{+66+})=47+5-4 D 163HO XA163HO IT DECAY (1.09 S) 163HO XB163ER EC DECAY 163HO XC162DY(P,P) IAR 163HO XD162DY(3HE,D),(A,T) 163HO XE163DY(D,2NG),(P,NG) 163HO XG164ER(POL T,A) 163HO XI165HO(P,T) 163HO XJ163DY[+66] B- DECAY 163HO CL BAND(A) 7/2(523). A=11.12, B=-0.313 EV 163HO L 0.0 7/2-4570 Y 25 163HO2 L %EC=100 163HO3 L FLAG=A\$XREF=-(C)

Appendix F.

ENSDF Dictionary – Translation into True-type Character Set

ENSDF	Translation	ENSDF	<u>Translation</u>
"A"	"A"	(IT)	(IT)
%12C	%{+12}C	(T)	(t)
%14C	%{+14}C	(THETA,H)	(q,H)
%2B-	%2 b{+-}	(THETA,H,T,T)	(q,H,t,T)
%A	%a	(THETA,T,H)	(q,T,H)
%B+A	$\frac{1}{2} \frac{1}{2} \frac{1}$	(UP)	$(^{)}$
%B+N	$\frac{1}{2} \frac{1}{2} \frac{1}$	*	\ *\
%B+P	% b{++}n	**(J+1/2)	$\{+(J+ ,)\}$
%B+	% b{++}	**-1	{+-1}
%B-2N	$\frac{1}{2} \frac{1}{2} \frac{1}$	**-3	{+-3}
%B-N	% b{+-}n	**-4	{+-4}
%B-P	% b{+-}p	**1/2	$\{+1/2\}$
%B-	% b{+-}	**1/3	$\{+1/3\}$
%BEC	% b{++} e	**2	{+2}
%E0	%E0	**3	{+3}
%E2	%E2	**L	$\{+L\}$
%EC	% e	*A**(1/3)	* A{+1/3}
%ECA	%lela	*DS/DW	d s/d W
%ECF	%leF	*E	*E
%ECK	%lek	*EG	Elg
%ECP	%ep	*EKC	a(K)exp
%EWSR	%EWSR	*G*WIDTHG0**2	$g G\{+2\}\setminus\{- g0\}$
%G	%g	*G2	g{-2}
%I	%I	*IB-	*I b{+-}
%IB	%Ilb	*IE	*I e
%IG	%Ilg	*Q	*Q
%IT	%IT	*R	R
%M1	%M1	*RI	I g
%N	%n	*SIGMA	* S
%P	%р	*SUMOF	S
%RI	%Ig	*T1/2	*T{-1/2}
%SF	%SF	*TAU	t
(A)	(a)	*WIDTH	G
(B)	(b)	*WIDTHP	G{-p}
(COUL.)	(Coul.)	2B-	2 b{+-}
(CV)	(CV)		2J
(DOWN)	(_)	2N*SIGMA	2N s
(H,T)	(H,T)	4PI	4 p

ENSDF	Translation	ENSDF	<u>Translation</u>
4PIB	4 p b	AVRSQ	$\{ < r\{+2\} > \}$
4PIBG	4 p b g	AXK	(a)(K x ray)
4PIG	4 p g	AY	Ау
A DECAY	a decay	В	b
A DECAYS	a decays	B(E0	B(E0
A SYST	a syst	B(E1	B(E1
A'	a'	B(E2	B(E2
A(THETA)	A(a)	B(E3	B(E3
A**1/3	$A_{+1/3}$	B(E4	B(E4
A**2/3	$A\{+2/3\}$	B(IS	b(IS
A-DECAY	a-decav	B(J	B(J
A-N	A-N	B*R	bR
A-SYST	a-syst	B*RHO	B * r
A0	$A \{-0\}$	B+	b{++}
Al	$A \{-1\}$	B-2N	b_{+-}^{2n}
A11	A {-11}	B-N	$ b\{+-\}n$
A2	A{-?}	B-VIBRATIONAL	b-vibrational
$\Delta 2/\Delta 0$	$A \{-2\}/A \{-0\}$	В-	$b\{+-\}$
Δ22	$\Delta \{-22\}$	B/Ā	B/A
Λ2Ρ2	$A \left\{ -22 \right\}$	BO	$ b\{-0\}$
A212 A3	$\frac{1}{\sqrt{2}}$	B00	b{-00}
	$\frac{A_{1}-J_{1}}{A_{1}-A_{1}}$	B02	$ b\{-02\}$
A4 A44	$A_{1}-4_{1}$	B03	b{-03}
A44 A5	$A \left(5 \right)$	B04	b{-04}
AS A6	$A_{\{-5\}}$	B1	b {-1 }
A0	$\begin{array}{c} A \left\{ -0 \right\} \\ A \left\{ -7 \right\} \end{array}$	B12	h_{-12}
A/	A {-/ }	B12 B2	$ b\{-2\}$
A-	A-	B2*R	b{-2}R
	a a	B20	$ b\{-20\}$
		B20 B22	b{-22}
AAS	AAS	B22 B24	$ b \{ 22\}$ $ b \{ -24\}$
AD	AD	B24 B3	b{-3}
ACE		B3*R	0{-3} b{-3}R
AG		B30	$ b_{-30} $
AJ	AJ	B30 B4	$ 0_{1}-30_{5} $
ALAGA	Alaga	D4 D/*D	$ U_{1}^{++}\rangle$ $ b_{1}^{+}\rangle$
ALPHA		$\mathbf{D}4$ R $\mathbf{D}42$	$ 0\{-4\}$ K
ALPHA0	a{-0}	B42	$\frac{ 0 -42}{ 0 }$
ALPHAI	a{-1}	D4C D5	$D_{1}=4$
ALPHA2	a{-2}	D5 D5*D	$ 0\{-3\}$
ALPHA3	a{-3}	D5 K D6	$ 0\{-3\}K$
ALPHAS		D0 D6*D	U{-U} b{6}D
AP	?		U{-U}K b(7)
APKIL	April	D/ D-	U{-/} D—
AUGER	Auger	D- DA	D-
AUGUST	August	DA	U a

<u>ENSDF</u>	<u>Translation</u>	ENSDF	Translation
BAVRSQ	$\{ < b\{+2\} > \{+1/2\} \}$	BGT	b(GT)
BB	b b	BIEDENHARN	Biedenharn
BC	bc	BJ**2	$BJ\{+2\}$
BCE	bce	BL	b{-L}
BCS	BCS	BL**2	$ b\{-L\}\{+2\}$
BE(L)	BE(L)	BL*R	$b{-L}R$
BE-	be{+-}	BL*R*A**(1/3)	$ b\{-L\}RA\{+1/3\}$
BE0	B(E0)	BLAIR	Blair
BE0W	B(E0)(W.u.)	BM(L)	BM(L)
BE1	B(E1)	BM1	B(M1)
BE1UP	$B(E1) ^{\wedge}$	BM1UP	$B(M1) ^{\wedge}$
BE1W	B(E1)(W.u.)	BM1W	B(M1)(W.u.)
BE2	B(E2)	BM2	B(M2)
BE2DWN	B(E2)	BM2UP	B(M2) ^
BE2UP	$B(E2) ^{\overline{A}}$	BM2W	B(M2)(W.u.)
BE2W	B(E2)(W.u.)	BM3	B(M3)
BE3	B(E3)	BM3W	B(M3)(W.u.)
BE3UP	$B(E3) ^{\wedge}$	BM4	B(M4)
BE3W	B(E3)(W.u.)	BM4W	B(M4)(W.u.)
BE3WUP	$B(E3)(W.u.) ^{2}$	BM5W	B(M5)(W.u.)
BE4	B(E4)	BM8UP	B(M8) ^
BE4UP	$B(E4)^{1}$	BML	B(ML)
BE4W	B(E4)(W.u.)	BMLW	B(ML)(W.u.)
BE5	B(E5)	BN	lbn
BE5W	B(E5)(W.u.)	BOHR	Bohr
BE6	B(E6)	BORN	Born
BE6UP	$B(E6) ^{\wedge}$	BP	bp
BE6W	B(E6)(W.u.)	BR	Branching
BE7	B(E7)	BREIT	Breit
BE7W	B(E7)(W.u.)	BRINK	Brink
BE8	B(E8)	Be	Be
BEC DECAY	$ b\{++\} e \text{ Decay}$	C	С
BEL	B(EL)	Č M	c m
BELW	B(EL)(W u)	C12G	$\{+12\}C g$
BERKELEY	Berkeley	C2S	$C{+2}S$
BESSEL	Bessel	CA(OH)	$C_{2}(OH)$
BETA	h		a
BETA*R	bR	CCBA	CCBA
BETAS	b's		CCC
BETHE	Bethe	CE	Ce
BE3	BE {-3}	CEB	celh
BG	blo	CEG	cela
BGG	blala	CEK	ce(K)
BCN	UISIS Iblan		$co(\mathbf{I})$
PCO			cc(L)
DUU	DUU	· UELI	

CEL12ce(L12)CURIECurieCEL2ce(L2)CmCmCEL23ce(L23)D)D)	
CEL2ce(L2)CmCmCEL23ce(L23)D)D)	
CEL23 ce(L23) D) D)	
CEL3 $ce(L3)$ $D+(Q)$ $D+(Q)$	
CEM ce(M) D+O D+O	
CEM1 $ce(M1)$ D3HE $d\{+3\}$ He	
CEM2 ce(M2) DA DA	
CEM23 $ce(M23)$ DA2 $DA{-2}$	
CEM3 $ce(M3)$ DA4 $DA{-4}$	
CEM4 $ce(M4)$ DAVRSO { $ D\}$	
CEM45 $ce(M45)$ DAVRSO4 { $ D$ }	
CEM5 $ce(M5)$ DAVRSO6 { $ D\}$	
CEN ce(N) DAVYDOV Davydov	
CEN1 ce(N1) DBR branching unce	tainty
$\begin{array}{ccc} CEN2 & CE(N2) \\ \hline \\ DCC & DCC \\ \hline \\ Da \\ \hline \\ Da \\ \hline \\ DC $, will be
$\begin{array}{cccc} CEN3 & CC(N2) \\ CEN3 & Ce(N3) \\ \end{array}$	
$\begin{array}{ccc} CEN4 & CC(N4) \\ \hline DCOO & DCOO \\ \hline DCOO & DCOO \\ \hline \end{array}$	
$\begin{array}{ccc} CEN45 \\ CEN45 \\ CEN45 \\ \end{array} \qquad \qquad DE \\ $	
$\begin{array}{ccc} CEN5 \\ CEN5 \\ ce(N5) \\ \end{array} \qquad \begin{array}{ccc} DE/DX \\ DE/DX \\ dE/dx \\ \end{array}$	
CEO ce(O) DECEMBER December	
$CEO+CEP \qquad ce(O)+ce(P) \qquad DEG \qquad \forall'$	
$\begin{array}{ccc} CEO1 & CE(O) \\ CEO1 & CE(O1) \\ \end{array}$	
CERENKOV Cerenkov DFT D(log ft)	
CERN CERN DG dlg	
CHI Ih DHF ID(HF)	
CHI**2 $ h\{+2\}$ DIA $ D a$	
CK leK DIB IDIb	
CL eL DE DI e	
CLEBSCH Clebsch DISPIN IDT	
CM leM DJ DJ	
$CM2$ $cm\{+2\}$ $DJPI$ $ DJ p$	
$CM3$ $cm\{+3\}$ DK DK	
CN leN DL DL	
CO CO DMR IDId	
COMPTON Compton DN DN	
CONF configuration DNB D(b-normaliza	tion)
CONF= configuration= DNR D(g-normaliza	tion)
CORIOLIS Coriolis DNT D(g+ce-norma	lization)
$COS2TH COS{+2} q DOMEGA d W$)
COSTER Coster DOPPLER Doppler	
COUL Coul DPAC DPAC	
COULOMB Coulomb DPAD DPAD	
CP CP DPI DI	
CRC CRC $DO+$ $DO(e)$	
$\begin{array}{c c} CSI \\ CSI$	

ENSDF	Translation	I	ENSDF	Translation
DQA	DQ(a)	-	EAV	av Elb
DRI	DIg		EB	Elb
DS	DS		EB-	$E b\{+-\}$
DS/DW	dls/dlW		EBE2UP	$ eB(E2) ^{-1}$
DSA	DSA		EBE3UP	$ eB(E3) ^{-1}$
DSAM	DSAM		EB	Elb
DSIGMA	dls		ED_ FC	
DSIGNIA	DS(n)		EC2P	le?n
	DS(n)		ECA	
	DS(p)		ECA	c a
	$ DI\{-1/2\}$			a(exp)
DTI/2	$ D1\{-1/2\}$		ECE	E(ce)
	DI(g+ce)		ECK	lek(exp)
DUBNA	Dubna		ECL	eL(exp)
DWBA	DWBA		ECLI	eLI(exp)
DWIA	DWIA		ECL2	eL2(exp)
DWUCK	DWUCK		ECL3	eL3(exp)
E	E		ECM	[jM(exp)
E'(THETA)	e'(q)		ECN	jN(exp)
E(A)	E(a)		ECP	ep
E(D)	E(d)		ED	E(d)
E(E)	E(e)		EDE	EDE
E(N)	E(n)		EE	Ee
E(P)	E(p)		EEC	Ele
E(P1)	$E(p\{-1\})$		EG	Eg
E(P2)	$E(p\{-2\})$		EG**3	$E g\{+3\}$
E(T)	E(t)		EG**5	$E g\{+5\}$
E**1/2	$E\{+1/2\}$		EKC	a(K)exp
E**2	E{+2}		EL	EL
E+	e{++}		EL12C	a(L12)exp
E+-	e{+ +}		EL1C	a(L1)exp
E-E	E-E		EL23C	a(L23)exp
E.G.	{Ie.g.}		EL2C	a(L2)exp
E/DE	E/ DE		EL3C	a(L3)exp
E0	EO		ELC	a(L)exp
E1	E1		EM1C	a(M1)exp
E10	E10		EM2C	a(M2)exp
E2	E2		EM3C	a(M3)exp
E3	E3		EM4C	a(M4)exp
E4	E4		EM5C	a(M5)exp
E5	E5		EMC	a(M)exn
F6	E6		EN	F(n)
E7	E7		EN1C	a(N1)exn
E8	E8		EN23C	a(N23)exp
F9	F9		FN2C	a(N2)evn
Ελ	E) Fla		EN3C	a(N3)avn
	Da		ENJU	alingerh

ENSDF	<u>Translation</u>	ENSDF	<u>Translation</u>
EN4C	a(N4)exp	G-M	G-M
ENC	a(N)exp	G/A	g/ a
ENDF/B-V	ENDF/B-V	G0	$ g\{-0\}$
ENDF/B	ENDF/B	G1	g{-1}
ENDOR	ENDOR	G1*WIDTH	g{-1}G
ENGE	Enge	G2	$g\{-2\}$
EP	E(n)	G2*WIDTH	$g\{-2\} G$
FPR	E(P)	G=	g(2) 0
EPSIL ON		GA	5 ?>
EDSILOND			$\pi(\Lambda)(\pm 2)$
EFSILUND			g(-A) (+2)
ESK ET	ESK E(4)	GALLAGHER	Ganagner
	E(t)	GAMMA	lg
EV	ev	GAMOW	Gamow
EVEN-A	even-A	GARVEY	Garvey
EWSR	EWSR	GAUSSIAN	Gaussian
EX.	ex.	GB	g b
E{	E{	GB-	$ g b\{+-\}$
F+B	F+B	GCE	gce
F-K	F-K	GDR	GDR
F/B	F/B	GE	>
FEBRUARY	February	GE(LI)	Ge(Li)
FERMI	Fermi	GE-	$ ge\{+-\}$
FESHBACH	Feshbach	GEIGER	Geiger
FG	(fragment) g	GEIGER-MULLER	Geiger-Muller
FM	fm	GELI	Ge(Li)
FM**-1	$fm\{+-1\}$	GEV	GeV
FM**2	$fm\{+2\}$	GG	σσ
FM**4	$\operatorname{fm}(+2)$	GGG	1818 a a a
FM_{-1}	$\operatorname{fm}\{+1\}$	GGN	151515 a an
FOCK	Fock	GGT	
FOCK	Fourier	GM	GM
EWHM	EWIIM	CMP	CMP
GFACIOR	glactor	GN	lgn
GFACIORS	g factors	GP	lgp
G(2+	g(2+	GP'	gp'
G*I	gT	GP(T)	gp(t)
G*W*WIDTHG0	$gw G\{- g0\}$	GQR	GQR
G*W*WIDTHG0**	$2gW G\{-0\}\setminus\{+2\}$	GS	g.s.
G*WIDTH	g G	GSI	GSI
G*WIDTHG0	$g G\{- g0\}$	GT	>
G*WIDTHG0**2	$g G\{+2\}\setminus\{- g0\}$	GT1/2	$gT\{-1/2\}$
G*WIDTHN	$g G\{-n\}$	GTOL	GTOL
G+-	$ g\{+ +\}$	GWIDTH0WIDTHG g	$G{-0} G g$
G-FACTOR	g-factor	GX	gX
G-FACTORS	g-factors	G	g
	-	_	

ENSDF	Translation	ENSDF	Translation
H(H(IT-	IT-
H**2	$h\{+2\}$	IT=	IT=
H,	Н,	IX	I(x ray)
H=	H=	J	J
HAGER	Hager	J**2	$J\{+2\}$
HARTREE	Hartree	JO	J{-0}
HAUSER	Hauser	J1	$J{-1}$
HERA	HERA	J2	$J{-2}$
HF	HF	JANUARY	January
HI	HI	JF	$J{-f}$
HOMEGA	$h \geq w$	Л	$J{-i}$
HP	HP	JKP	JK p
HPGE	HPGE	JMAX	Jmax
Ι	Ι	JMIN	Jmin
I.E.	{Ii.e.}	JOSEF	JOSEF
IA	Ila	JPI	J p
IAR	IAR	ЛЛІЕ	JULIE
IAS	IAS	JULY	Julv
IB	Ilb	JUNE	June
IB+	$I b\{++\}$	K	K
IB-	$I b\{+-\}$	K/L+M	K/L+M
IBA	IBA	K/LM	K/LM
IBM	IBM	K/T	ce(K)/(g+ce)
IBS	IBS	КАРРА	k
ICC		KC	a(K)
ICE	Ice	KELSON	Kelson
ICE(K)	Ice(K)	KEV	keV
ICE(N)	Ice(N)	KEVIN	Kelvin
IE	Ile	KG	kG
IEC	Ile	KL1L1	KU KU{-1}U{-1}
IG	Ισ	KL1L2	$KL\{-1\}L\{-2\}$
IG*EG	IloElo	KL1L3	$KL\{-1\}L\{-3\}$
IGISOL	IGISOL	KL1M1	$KL\{-1\}M\{-1\}$
IMPAC	IMPAC	KL 1M2	$KL\{-1\}M\{-2\}$
INI AC	Inf	KL 1M2	$KL\{-1\}M\{-3\}$
INFNT		KLIND KLID	$KL\left\{-2\right\}L\left\{-2\right\}$
IPAC		KL2L2 KL2L3	$KL\{-2\}L\{-2\}$ $KL\{-2\}L\{-3\}$
ISD	is D	KL2L5 KL2M1	$KL\{2\}M\{1\}$
ISOL DE	ISOL DE	KL2M1 KL2M3	KL(2)M(1) KL(-2)M(-3)
ISPIN	T	KL2M5 KL2M4	KL(2)M(3) KL(-2)M(-4)
ISPIN7	T{-7}	KI 3I 3	$KI \{-3\}I \{-3\}$
IT BRANCHING	IT branching	KI 3I M1	$KI \{-3\}I M\{-1\}$
IT DECAV	IT decay	KI 3M2	$KI \{-3\} M\{-3\}$
IT DECAYS	IT decays	KI 3M3	$KI \{-3\} M\{-3\}$
IT TRANSITION	IT transition	KI 3N	$KI \{-3\}_{MI} \{-2\}$
			тт (-Э ₁ тм

ENSDF	<u>Translation</u>	ENSDF	<u>Translation</u>
KLL	KLL	LOHENGRIN	LOHENGRIN
KLM	KLM	LORENTZIAN	Lorentzian
KM2M3	$KM{-2}M{-3}$	LP	L(p)
KM2N2	$KM\{-2\}N\{-2\}$	LT	<
KM3M3	$KM{-3}M{-3}$	М	М
KNIGHT	Knight	M+/T	ce(M+)/(g+ce)
KOE	kOe	M+=	M+=
KPI	K p	M-SHELL	M-shell
KRANE	Krane	M-SUBSHELL	M-subshell
KRONIG	Kronig	M/CE	M/total ce
KUO-BROWN	Kuo-Brown	M/T	ce(M)/(g+ce)
KURIE	Kurie	M1	M1
KXY	KXY	M12	M12
L	L	M1C	a(M1)
L+/T	ce(L+)/(g+ce)	M2	M2
L/T	ce(L)/(g+ce)	M23	M23
L1	L1	M2C	a(M2)
L12	L12	M3	M3
L12C	a(L12)	M3C	a(M3)
L1C	a(L1)	M4	M4
L2	L2	M45	M45
L23	L23	M4C	a(M4)
L23C	a(L23)	M5	M5
L2C	a(L2)	M5C	a(M5)
L3	L3	M6	M6
L3C	a(L3)	M8	M8
LA	?<	MARCH	March
LAMBDA	1	MB	mb
LAMPF	LAMPF	MB/SR	mb/sr
LARMOR	Larmor	MC	a(M)
LASER	LASER	MC+	a(M+)
LBL	LBL	MEDLIST	MEDLIST
LC	a(L)	MEV	MeV
LE	<	MEV**-4	MeV{E4-4}
LEGENDRE	Legendre	MG/CM2	$mg/cm\{+2\}$
LI	Li	MHZ	MHZ
LITHERLAND	Litherland	MILLI-EV	meV
LM	LM	MIT	MIT
LMN	LMN	ML	M+L
LN	L(n)	MNO	M+N+O
LOGF1T	$\log \{If\{+1\}t\}$	MOME2	Q
LOGF1UT	$\log \{If\{+1u\}t\}$	MOME3	Octupole mom(el)
LOGF2UT	$\log \{If\{+2u\}t\}$	MOMM1	m
LOGF3UT	$\log \{If\{+3u\}t\}$	MOMM3	Octupole mom(mag)
LOGFT	log {Ift}	MOMM5	2{+5} mom(mag)

ENSDF	Translation	ENSDF	Translation
MOMM7	2{+7} mom(mag)	NOTE:	Note:
MOSSBAUER	Mossbauer	NOVEMBER	November
MOSZKOWSKI	Moszkowski	NP	Particle normalization
MR	d	NQR	NQR
MR**2	$ d\{+2\}$	NR	I g normalization
MS	ms	NS*SIGMA	NSIs
MU	m	NT	I(g+ce) normalization
MU-	m{+-}	NU	n n
N*SIGMA	NI*Is	NX	NX
N+/T	ce(N+)/(g+ce)	Ne	Ne
N-SHELL	N-shell	0	0
N-SUBSHELL	N-subshell	O/O	0/0
N-Z	N-Z	O/T	ce(O)/(g+ce)
N/T	ce(N)/(g+ce)	01	01
N1	N1	0123	0123
N12	N12	010	a(01)
N123	N123	02	Ω^2
NIC	$ a(N1)\rangle$	020	a(02)
N2	N2	03	03
N23	N23	03C	a(O3)
N2C	$ a(N^2) $	04C	a(O4)
N3	N3	OCTOBER	October
N3C	a(N3)	ODD-A	odd-A
N4	N4	OMEGA	w
N45	N45	OMEGA**2*TAU	$ w ^{+2} t$
N4C	a(N4)	OMEGA*T	wit
N5	N5	ORNL	ORNL
N5C	a(N5)	OSIRIS	OSIRIS
NGC	a(N6)	PDECAY	n decay
N<	N<	$P(THFT\Delta)$	p decay
N=	N=	P+/T	P(q) $ce(P+)/(\sigma+ce)$
NAI	NaI	P-WIDTH	n-width
NB	Ilb normalization	P0	$\mathbf{P}(0)$
NB/SP	nb/sr	P1	D1
NBS	NBS	P1/2	n1/2
NC		P1C	$p_{1/2}$
NC+	a(1N)	P2NG	a(1 1)
NC 1	$ a(1N +) $ $N(C(\pm 2) S$	PAC	
NDS	NC {+2}5 Nuclear Do Shoota		
NE			
NE NE212	- NE212	PALFIA DC	pla pla
NE215 NG		PGG	PIB plala
NGC			IE NRIR
NUL SCON	nisison		$ \mathbf{\Gamma} = \mathbf{F}(\mathbf{n}(-1)) $
NILSSUN		$\Gamma\PiI(\Gamma1)$	$ \Gamma(p\{-1\}) $
INIVIK	INIVIK	rпі(P2)	r(p{-2})

ENSDF	Translation	ENSDF	Translation
PI	p	RUTHERFORD	Rutherford
PI-	p {+-}	RYTZ	Rytz
PIB	p b	S VALUE	S value
PIBG	pbg	S VALUES	S values
PIG	pg	S'	S'
PN	$P\{-n\}$	S(2N)	S(2n)
PNG	pn g	S(2P)	S(2p)
PRI	DI g(%)	S(CE)	s(ce)
PSI	Y	S-1	s{+-1}
PWBA	PWBA	S-FACTOR	S-factor
PWIA	PWIA	S-FACTORS	S-factors
Q	Q	S-VALUE	S-value
Õ(Õ(S-VALUES	S-values
0+0	Õ+O	S-WAVE	s-wave
Õ+	$\tilde{O}(e)$	S/	S/
\hat{O}	$O(b\{+-\})$	S=	S=
Õ/D	O/D	ŠA	$\overline{S}(a)$
022	$O_{\{-22\}}$	SAXON	Saxon
Q2D	O2D	SCHMIDT	Schmidt
Q2DM	O2DM	SD	SD
O3D	O3D	SDB	SDB
Q3D QA	O(a)	SE(LI)	Se(Li)
ODD	ODD	SELTZER	Seltzer
ODDM	ODDM	SEPTEMBER	September
ODMDO	ODMDO	SE	SEptember
OMG	OMG	SILD	Si(Li)
OP	O(g s)	SIGMA	s
OOSP	OOSP	SIGMA(0)	s s{-0}}
	$O\{-s\}$	SIGMA*DE	s(v) s * DE
QSD OSD	OSD	SIGMAG	5 DL ς{- σ}
R	B	SIGMAN	s(B)
R(DCO)	R(DCO)	SIGMANU	s (II) s n
R(DCC) R**7	$r\{+2\}$	SIGNA	s(n a)
R**4	$r\{+2\}$	SIGNG	$ s(n \alpha) $
R**6	$r \{+4\}$	SILI	$S_i(L_i)$
R 0 R0	r(0)	SIO	Si(LI)
RDDS	RDDS	SI IV-BAND	Sliv-Band
RDD3 PDM	RDD3 PDM	SLIV-DAIND	S(n)
		SOREO	SOPEO
	1	SUREQ	SUREQ
KHU ⁺⁺ 2	f {+2}	5P STEEEEN	S(p) Staffar
KI DIT7		SIEFFEN	Sterren
KIIZ	KITZ	STUCKHULM	Stockholm
KUSE	Kose	SUMOF	5\
КРА	KPA	SY	syst
RUL	RUL	Sn	Sn

ENSDF	Translation	ENSDF	Translation
Т	T{-1/2}	W	W
T)	t)	W(THETA)*G*WIDTH	$w(q)g G\{- g0\}$
T,	t,	W.U.	W.u.
Τ/	Τ/	WEISSKOPF	Weisskopf
T1/2	T{-1/2}	WIDTH	G
T20	T20	WIDTH**2	$G\{+2\}$
T21	T21	WIDTHA	G a
T22	T22	WIDTHA0	$ G\{- a0\}$
TAU	t	WIDTHA1	$ G\{- a1\}$
TDPAD	TDPAD	WIDTHA2	$ G\{- a2\}$
TELLER	Teller	WIDTHA3	$ G\{- a3\}$
TEMP	Т	WIDTHA4	$ G\{- a4\}$
TG	tlg	WIDTHG	$ G\{- g\}$
TH	th	WIDTHG0	$ G\{- g0\}$
THETA	q	WIDTHG0**2	$ G\{+2\}\setminus\{- g0\}$
THETA**2	q{+2}	WIDTHG1	$ G\{- g1\}$
THETA1	q{-1}	WIDTHN	$ G\{-n\}$
THETA2	a{-2}	WIDTHN0	$ G\{-n0\}$
THETAA	lala	WIDTHP	G{-p}
THETAA**2	$ q a\{+2\}$	WIDTHP'	G{-p'}
THETAG		WIDTHP0	$ G\{-p0\}$
THETAP1**2	$ a - p1 \} \{+2\}$	WIDTHP1	$ G{-p1}$
THETAP2**2	$ a\{-p2\}\{+2\}$	WIDTHP2	$ G\{-p2\}$
TI	I(g+ce)	WIGNER	Wigner
TOF	tof	WINTHER	Winther
TPAD	TPAD	X(X(
TRISTAN	TRISTAN	X-RAY	x-rav
TRIUMPH	TRIUMPH	X-RAYS	x-rays
Ti	Ti	XG	Xlo
II	II II	XK	K x ray
	$U_{-2} A_{-2}$	XKA	K a x rav
UB	lmb	XKA1	$K a\{-1\} x rav$
UB*MEV	mb *MeV	XKA2	$K a\{-2\} x ray$
UB/SR	lmb/sr	XKB	K a 2j X ay K b x ray
UG	Img	XKB1	$K b _{-1}$ v rav
UG/CM	lmg/cm	XKB13	K b =13 v rav
	IIK	XKB19	$K b\{-1\}' x ray$
UNISOR	UNISOR	XKB2	$K b\{-2\} \times ray$
UNIV	Univ	XKB2P	$K b\{-2\}' $ x ray
UNIVERSITY	University	XKB3	$K b\{-3\}$ v rav
	Ims	XKB4	$K b\{-4\}$ x ray
USA	USA	XKB5	$K b\{-5\}$ x ray
USSR	USSR	XKB5I	$K h\{-5\}\setminus\{+I\} \times ray$
V	V	XKB5II	$K h\{-5\}\setminus\{+\Pi\} \times ray$
VAP	, VAP	XKG	$(K x ray) \sigma$
, / 11	· · · · ·	211EU	(1x) / 1wy //8

ENSDF	<u>Translation</u>	ENSDF	Translation
XKO2	K-O $\{-2\}$ x ray	XLB9	$L b\{-9\} x ray$
XKO23	K-O{-23} x ray	XLC	$L\{- c\} x ray$
XKO3	K-O $\{-3\}$ x ray	XLG	$L\{- g\} x ray$
XL	L x ray	XLG1	$L g\{-1\} x ray$
XL1	$L\{-1\}$ x ray	XLG2	$L g\{-2\} x ray$
XL2	L{-2} x ray	XLG3	$L g\{-3\} x ray$
XL3	L{-3} x ray	XLG4	$L g\{-4\} x ray$
XLA	$L\{- a\} x ray$	XLG5	$L g\{-5\} x ray$
XLA1	$L a\{-1\} x ray$	XLG6	$L g\{-6\} x ray$
XLA2	$L a\{-2\} x ray$	XLL	$L{-{Sl}} x ray$
XLB	$L\{- b\} x ray$	XM	M x ray
XLB1	$L b\{-1\} x ray$	XPYNG	xpyn g
XLB10	$L b\{-10\} x ray$	XX	XX
XLB15	$L b\{-15\} x ray$	YTTRIUM	Y
XLB2	$L b\{-2\} x ray$	Z	Z
XLB215	$L b\{-215\} x ray$	Z>N	Z>N
XLB3	$L b\{-3\} x ray$	[E2]	[E2]
XLB4	$L b\{-4\} x ray$	[RI	[I g
XLB5	$L b\{-5\} x ray$	a0	a{-0}
XLB6	$L b\{-6\} x ray$	D	D

Appendix G

ENSDF Dictionary Ordered by Output
Translation	ENSDF	Translation	ENSDF
$(\alpha)(ce)$	ACE	B(E0	B(E0
(β)	(B)	B (E0)	BE0
(θ, H, t, T)	(THETA,H,T,T)	B(E0)(W.u.)	BE0W
(θ,H)	(THETA,H)	B(E1	B (E1
(θ, T, H)	(THETA,T,H)	B(E1)(W.u.)	BE1W
2J	2J	B(E1)↑	BE1UP
2Νσ	2N*SIGMA	B(E1)	BE1
2^5 mom(mag)	MOMM5	B(E2	B(E2
2^7 mom(mag)	MOMM7	B(E2)	BE2
26	2B-	B(E2)↑	BE2UP
4π	4PI	B(E2)	BE2DWN
4πβγ	4PIBG	B(E2)(W u)	BE2W
$4\pi\beta$	4PIB	B(E3	B(E3
4πγ	4PIG	B(E3)↑	BE3UP
<	LT	$B(E3)(W \parallel)^{\uparrow}$	BE3WUP
>	GT	B(E3)	BE3
Α(θ)	A(THETA)	$B(E3)(W \parallel)$	BE3W
A-N	A-N	B(E4)	BES (F4
A=	A=	B(E4)↑	BE4UP
AAS	AAS	$B(E4)(W \parallel)$	BE4W
AR	AR	B(F4)	BE4
AI	AI	B(E5)	BE5
Aao	AAO	$B(E5)(W_{11})$	BE5W
Alaga	ALAGA	$B(E6)(W \mu)$	BE6W
Anril	APRIL	B(E6)↑	BE6UP
Auger	AUGER	B(E6)	BE6
August	AUGUST	$B(E7)(W_{11})$	BE7W
Av	AV	B(F7)	BE7
$\Delta^{1/3}$	A**1/3	$B(E^{\gamma})$ B(F8)	BE8
$\Delta^{2/3}$	Δ**2/3	B(EU)	BEI W
A	A0	B(EL)(W.u.)	BEL
A 11	A11	B(LL) B(I	B(I
Δ.	Al	B(M1)	BM1
Δ_{22}	Δ22	B(M1)	BM111P
Λ_{22}	$\Delta 2/\Delta 0$	B(M1)	BM101 BM1W
A_2/A_0	$\Lambda 2$	B(M2)	BM2
$\Delta_{2}P_{2}$	Δ2Ρ2	B(M2)	BM2UP
Λ_2	Λ212	$B(M2)(W \parallel)$	BM2W
	AJ	B(M3)(Wu)	BM3W
Λ44	A44 A4	B(M3)(W.u.) B(M3)	BM3
Λ.	Λ+	$\frac{D(WI3)}{R(MA)}$	BM1
	A5 A6	$\frac{D(W14)}{B(MA)(Wyy)}$	BM4W
Λ.	A0 A7	B(M5)(W,u)	
11/	111		

Translation	ENSDF	Translation	ENSDF
B(M8)↑	BM8UP	D+Q	D+Q
B(ML)	BML	DCO	DCO
B(ML)(W.u.)	BMLW	DCOO	DCOO
B/A	B/A	DPAC	DPAC
B=	B=	DPAD	DPAD
BCS	BCS	DSA	DSA
BE(L)	BE(L)	DSAM	DSAM
BF ₂	BF3	DWBA	DWBA
BGO	BGO	DWIA	DWIA
BI^2	BI**2	DWUCK	DWUCK
BM(L)	BM(L)	Davydoy	DAVYDOV
Be	Be	December	DECEMBER
Berkeley	BERKELEY	Doppler	DOPPLER
Bessel	BESSEI	Dubna	DURNA
Bethe	BETHE	F	F
Biedenharn	BIEDENHARN	E F(ce)	ECE
Blair	BLAIR	E(d)	FD
Bohr	BOHR	E(d)	ED F(D)
Born	BORN	$E(\mathbf{q})$	E(D)
Dom	DD	E(c)	
Drait	DR DDEIT	E(n)	L(IN)
Dicit		$E(\mathbf{II})$	
	DAINK DAC	E(p)	
D4C		E(p)	E(P)
Вхр	B*KHU	$E(p_2)$	E(P2)
		$E(\mathbf{p}_1)$	E(PI)
CCBA	CCBA	E(t)	
CERNI		E(t)	E(1)
CERN	CERN	$E(\alpha)$	E(A)
CP	CP	E-E	E-E
CRC	CRC	E/ΔE	E/DE
Ca(OH)	CA(OH)	EO	EO
Cerenkov	CERENKOV	El	EI
Clebsch	CLEBSCH	E10	E10
Cm	Cm	E2	E2
Co	CO	E3	E3
Compton	COMPTON	E4	E4
Coriolis	CORIOLIS	E5	E5
Coster	COSTER	E6	E6
Coul	COUL	E7	E7
Coulomb	COULOMB	E8	E8
CsI	CSI	E9	E9
Curie	CURIE	EL	EL
C^2S	C2S	ENDF/B-V	ENDF/B-V
D)	D)	ENDF/B	ENDF/B_
D+(Q)	D+(Q)	ENDOR	ENDOR

Translation	ENSDF	Translation		ENSDF
EPR	EPR	H=		H=
ESR	ESR	HERA		HERA
EWSR	EWSR	HF		HF
Ee	EE	HI		HI
Enge	ENGE	HP		HP
Е	E	HPGE		HPGE
E ^{1/2}	E**1/2	Hager		HAGER
E^2	E**2	Hartree		HARTREE
ΕΔΕ	EDE	Hauser		HAUSER
Εα	EA	Ι		Ι
Εβ	EB	I(xray)		IX
Εβ	EB	$I(\gamma + ce)$		TI
Εβ	EB	$I(\gamma + ce)$ norm	alization	NT
Εε	EEC	IÄR		IAR
Εγ	*EG	IAS		IAS
Ėγ	EG	IBA		IBA
$E\gamma^3$	EG**3	IBM		IBM
$E\gamma^5$	EG**5	IBS		IBS
F+B	F+B	IGISOL		IGISOL
F-K	F-K	IMPAC		IMPAC
F/B	F/B	IPAC		IPAC
FWHM	FWHM	ISOLDE		ISOLDE
February	FEBRUARY	IT branching		IT BRANCHING
Fermi	FERMI	IT decay		IT DECAY
Feshbach	FESHBACH	IT decays		IT DECAYS
Fock	FOCK	IT=		IT=
Fourier	FOURIER	Ice		ICE
G-M	G-M	Ice(K)		ICE(K)
GDR	GDR	Ice(N)		ICE(N)
GM	GM	In(IN(
GMR	GMR	Ια		IA
GQR	GQR	Ιβ		IB
GSI	GSI	Iβ normaliza	tion	NB
GTOL	GTOL	Ιβ		IB-
Gallagher	GALLAGHER	$I\beta^+$		IB+
Gamow	GAMOW	Ιε		IE
Garvey	GARVEY	Iε		IEC
Gaussian	GAUSSIAN	Ιγ		IG
Ge(Li)	GE(LI)	Ιγ		*RI
Ge(Li)	GELI	Ιγ		RI
GeV	GEV	Iγ normalizat	tion	NR
Geiger-Muller	GEIGER-MULLER	ΙγΕγ		IG*EG
Geiger	GEIGER	J		J
H(H(JKπ		JKP
Н,	Н,	JOSEF		JOSEF

Translation	ENSDF	Translation	ENSDF
JULIE	JULIE	Kronig	KRONIG
January	JANUARY	Kuo-Brown	KUO-BROWN
Jmax	JMAX	Kurie	KURIE
Jmin	JMIN	K xray	XK
July	JULY	$K\alpha_2$ xray	XKA2
June	JUNE	$K\alpha_1$ xray	XKA1
J^2	J**2	Kα xray	XKA
J_0	JO	$K\beta_2 xray$	XKB2
J_1	J1	$K\beta_2'$ xray	XKB2P
J_2	J2	Kβ ₄ xray	XKB4
J_{f}	JF	Kβ ₃ xray	XKB3
J _i	Л	$K\beta_1 xray$	XKB1
Jπ	JPI	$K\beta_1$ ' xray	XKB1P
Κ	K	$K\beta_{5}^{I}x$	XKB5I
$K-O_2$ xray	XKO2	$K\beta^{II}_{5}x$	XKB5II
K-O ₃ xray	ХКОЗ	$K\beta_{13}$ xray	XKB13
K-O ₂₃ xray	XKO23	Kβ ₅ xray	XKB5
K/L+M	K/L+M	Kβ xray	XKB
K/LM	K/LM	Κπ	KPI
KLL	KLL	L	L
KLM	KLM	L(n)	LN
KL_1L_1	KL1L1	L(p)	LP
KL_1M_2	KL1M2	LĨ	L1
KL_1L_3	KL1L3	L12	L12
KL_1M_3	KL1M3	L2	L2
KL_1M_1	KL1M1	L23	L23
KL_1L_2	KL1L2	L3	L3
KL_2M_1	KL2M1	LAMPF	LAMPF
KL ₂ L ₂	KL2L2	LASER	LASER
KL ₂ L ₃	KL2L3	LBL	LBL
KL_2M_3	KL2M3	LM	LM
KL_2M_4	KL2M4	LMN	LMN
KL ₃ L ₃	KL3L3	LOHENGRIN	LOHENGRIN
KL ₃ LM ₁	KL3LM1	Larmor	LARMOR
KL ₃ N	KL3N	Legendre	LEGENDRE
KL ₃ M ₃	KL3M3	Li	LI
KL_3M_2	KL3M2	Litherland	LITHERLAND
KM_2M_3	KM2M3	Lorentzian	LORENTZIAN
KM_2N_2	KM2N2	L ₁ xray	XL1
KM ₃ M ₃	KM3M3	L ₂ xray	XL2
KXY	KXY	L ₃ xray	XL3
Kelson	KELSON	L_1 xray	XLL
Kelvin	KEVIN	L _α xray	XLA
Knight	KNIGHT	$L_{\beta}xray$	XLB
Krane	KRANE	L _η xray	XLC

Translation	ENSDF	Translation	ENSDF
$\overline{L_{\gamma}xray}$	XLG	Moszkowski	MOSZKOWSKI
L xray	XL	N-Z	N-Z
$L\alpha_1 xray$	XLA1	N-shell	N-SHELL
$L\alpha_2$ xray	XLA2	N-subshell	N-SUBSHELL
$L\beta_3$ xray	XLB3	N1	N1
$L\beta_4$ xray	XLB4	N12	N12
$L\beta_1$ xray	XLB1	N123	N123
$L\beta_5$ xray	XLB5	N2	N2
$L\beta_2$ xray	XLB2	N23	N23
$L\beta_{215}$ xra	XLB215	N3	N3
$L\beta_9$ xray	XLB9	N4	N4
$L\beta_{15}$ xray	XLB15	N45	N45
$L\beta_6$ xray	XLB6	N5	N5
$L\beta_{10}$ xray	XLB10	N<	N<
$L\gamma_3$ xray	XLG3	N=	N=
$L\gamma_4$ xray	XLG4	NBS	NBS
$L\gamma_6$ xray	XLG6	$NC^{2}S$	NC2S
$L\gamma_5 xray$	XLG5	NE213	NE213
$L\gamma_2$ xray	XLG2	NMR	NMR
$L\gamma_1$ xray	XLG1	NQR	NQR
M	М	NSσ	NS*SIGMA
M x ray	XM	NX	NX
M+=	M+=	NaI	NAI
M+L	ML	Ne	Ne
M+N+O	MNO	Nilsson	NILSSON
M-shell	M-SHELL	Note:	NOTE:
M-subshell	M-SUBSHELL	November	NOVEMBER
M/total ce	M/CE	NuclearDataSheets	NDS
M1	M1	Νχσ	N*SIGMA
M12	M12	0	0
M2	M2	O/Q	O/Q
M23	M23	01	01
M3	M3	O123	O123
M4	M4	O2	O2
M45	M45	O3	03
M5	M5	ORNL	ORNL
M6	M6	OSIRIS	OSIRIS
M8	M8	October	OCTOBER
MEDLIST	MEDLIST	Octupole mom(mag)	MOMM3
MHZ	MHZ	Octupole mom(el)	MOME3
MIT	MIT	P1	P1
March	MARCH	PAC	PAC
MeV	MEV	PAD	PAD
MeV{E4-4}	MEV**-4	PWBA	PWBA
Mossbauer	MOSSBAUER	PWIA	PWIA

<u>Translation</u>	ENSDF	Translation	ENSDF
Particle normalization	NP	S-values	S-VALUES
P ₀	PO	S/	S/
P _n	PN	S=	S=
Q	MOME2	SD	SD
Q	Q	SDB	SDB
Q(Q(SF	SF
Q(g.s.)	QP	SOREQ	SOREQ
$Q(\alpha)$	QA	Saxon	SAXON
$\hat{Q}(\beta)$	Q-	Schmidt	SCHMIDT
$O(\varepsilon)$	Õ+	Se(Li)	SE(LI)
0+0	Õ+Ō	Seltzer	SELTZER
Õ/D	Õ/D	September	SEPTEMBER
Ô2D	Õ2D	Si(Li)	SI(LI)
02DM	Ô2DM	Si(Li)	SILI
03D	03D	SiO	SIO
ODD	ODD	Sliv-Band	SLIV-BAND
ODDM	ODDM	Sn Sn	Sn Sn
ODMDO	ODMDO	Steffen	STEFFEN
OMG	OMG	Stockholm	STOCKHOI M
QNIO		T	TEMD
QQSF	QQSF		ICDIN
QSD	QSD		ISPIN T/
Q ₂₂	Q22		
Qs	QS	120 T21	120 T21
K	*K	121	121
K R(DCO)	R R(DGO)	122	122
R(DCO)	R(DCO)	TDPAD	TDPAD
RDDS	RDDS	TPAD	TPAD
RDM	RDM	TRISTAN	TRISTAN
RPA	RPA	TRIUMPH	TRIUMPH
RUL	RUL	Teller	TELLER
Ritz	RITZ	Ti	Ti
Rose	ROSE	T _{1/2}	T1/2
Rutherford	RUTHERFORD	T _{1/2}	Т
Rytz	RYTZ	Tz	ISPINZ
S values	S VALUES	U	U
S value	S VALUE	UK	UK
S'	S'	UNISOR	UNISOR
S(2n)	S(2N)	USA	USA
S(2p)	S(2P)	USSR	USSR
S(n)	SN	Univ	UNIV
S(n)	SP	University	UNIVERSITY
$S(\alpha)$	ŠĂ	U ₂ A ₂	U2A2
S-factors	S-FACTORS	V	V
S-factor	S-FACTOR	VAP	VAP
S-value	S-VALUE	W	W
	O TILUL	1 77	* *

Translation	ENSDF	Translation	ENSDF
W.u.	W.U.	ce(N45)	CEN45
Weisskopf	WEISSKOPF	ce(N4)	CEN4
Wigner	WIGNER	ce(N5)	CEN5
Winther	WINTHER	ce(O)	CEO
X(X($ce(O)/(\gamma+ce)$	O/T
XX	XX	ce(O)+ce(P)	CEO+CEP
Χγ	XG	ce(O1)	CEO1
Y	YTTRIUM	$ce(P+)/(\gamma+ce)$	P+/T
Z	Z	ceβ	CEB
Z>N	Z>N	сеу	CEG
[E2]	[E2]	cm ²	CM2
Īγ	[RI	cm ³	CM3
0	DEG	configuration=	CONF=
Х	*	configuration	CONF
avEβ	EAV	$\cos^2\theta$	COS2TH
a_0	a0	dE/dx	DE/DX
branching uncertainty	DBR	d ³ He	D3HE
c.m.	C.M.	dΩ	DOMEGA
ce	CE	dγ	DG
$ce(K)/(\gamma+ce)$	K/T	do	DSIGMA
ce(K)	CEK	$d\sigma/d\Omega$	DS/DW
$ce(L)/(\gamma+ce)$	L/T	$d\sigma/d\Omega$	*DS/DW
ce(L)	CEL	e'(θ)	E'(THETA)
$ce(L+)/(\gamma+ce)$	L+/T	eV	EV
ce(L1)	CEL1	even-A	EVEN-A
ce(L12)	CEL12	ex.	EX.
ce(L23)	CEL23	e+	E+
ce(L2)	CEL2	e±	E+-
ce(L3)	CEL3	fm	FM
$ce(M)/(\gamma+ce)$	M/T	fm ⁻¹	FM-1
ce(M)	CEM	fm ⁻¹	FM**-1
$ce(M+)/(\gamma+ce)$	M+/T	fm ²	FM**2
ce(M1)	CEM1	fm^4	FM**4
ce(M2)	CEM2	g factor	G FACTOR
ce(M23)	CEM23	g factors	G FACTORS
ce(M3)	CEM3	g(2+	G(2+
ce(M45)	CEM45	g-factors	G-FACTORS
ce(M4)	CEM4	g-factor	G-FACTOR
ce(M5)	CEM5	g.s.	GS
$ce(N)/(\gamma+ce)$	N/T	g=	G=
ce(N)	CEN	gT	G*T
$ce(N+)/(\gamma+ce)$	N+/T	$\tilde{g}T_{1/2}$	GT1/2
ce(N1)	CEN1	$gW\Gamma_0^2$	G*W*WIDTHG0**2
ce(N2)	CEN2	$gw\Gamma_{\gamma 0}$	G*W*WIDTHG0
ce(N3)	CEN3	$g_1\Gamma$	G1*WIDTH

<u>Translation</u>	ENSDF	<u>Translation</u>	<u>ENSDF</u>
$\overline{g_1}$	G1	s-wave	S-WAVE
$g_2\Gamma$	G2*WIDTH	syst	SY
g ₂	*G2	s ⁻¹	S-1
g ₂	G2	t)	T)
g _A	GA2	ť,	Ť,
gΓ	G*WIDTH	th	TH
$g\Gamma^{2}_{\gamma 0}$	*G*WIDTHG0**2	tof	TOF
$g\Gamma^{2}_{\gamma 0}$	G*WIDTHG0**2	ty	TG
$g\Gamma_n$	G*WIDTHN	$w(\theta)g\Gamma_{\nu0}$	W(THETA)*G*WID
$g\Gamma_{\gamma 0}$	G*WIDTHG0	x-ray	X-RAY
$g\Gamma_0\Gamma\gamma$	GWIDTH0WIDTHG	x-rays	X-RAYS
h'ω	HOMEGA	χργηγ	XPYNG
h^2	H**2	<r<sup>2></r<sup>	AVRSO
is D	ISD	$<\beta^{2}>^{1/2}$	BAVRSO
kG	KG	$\Delta \leq r^4 >$	DAVRSO4
kOe	KOE	$\Delta < r^2 >$	DAVRSO
keV	KEV	$\Delta < r^6 >$	DAVRSO6
log f ^{lu} t	LOGF1UT	$(J^{+1/2})$	**(J+1/2)
$\log f^{3u}t$	LOGF3UT	-1	**-1
$\log f^{2u}t$	LOGF2UT	-3	**-3
$\log f^{l}t$	LOGF1T	-4	**-4
log ft	LOGFT	1/2	**1/2
mb	MB	1/3	**1/3
mb/sr	MB/SR	¹² Cγ	C12G
meV	MILLI-EV	2	**2
mg/cm ²	MG/CM2	3	**3
ms	MS	L	**[
nb/sr	NB/SR	eg	EG
ηγ	NG	i e	IE
nyy	NGG	xE	*E
odd-A	ODD-A	xIß	*IB-
n decav	PDECAY	xIe	*IE
$p(\theta)$	P(THETA)	xO	*0
p-width	P-WIDTH	xT1/2	*T1/2
$p_1/2$	P1/2	$x\alpha^{1/2}$	*A**(1/3)
p2ny	P2NG	Xσ	*SIGMA
	PNG	<	LE
	PALPHA		NE
py	PG	>	GE
P1 pvv	PGG		AP
r^2	R**2	≈<	LA
r^4	R**4	$\approx>$	GA
r ⁶	R**6	∞	INFNT
ro	R0	Δ	Λ
s(ce)	S(CE)	$ \Lambda(\text{HF})$	_ DHF
- ()	- ()	()	

Translation	ENSDF	Translation	ENSDF
$\Delta(\log ft)$	DFT	Γ_{p2}	WIDTHP2
$\Delta(\beta$ -normalization)	DNB	$\Gamma_{\rm p}^{\rm r}$	WIDTHP
$\Delta(\gamma$ -normalization)	DNR	$\Gamma_{\alpha 4}$	WIDTHA4
$\Delta(\gamma + \text{ce-normalization})$	DNT	$\Gamma_{\alpha 1}$	WIDTHA1
ΔĂ	DA	Γ_{γ}	WIDTHG
ΔA_2	DA2	$\Gamma'_{\nu 1}$	WIDTHG1
ΔA_4	DA4	$\Gamma_{\alpha 2}$	WIDTHA2
ΔΕ	DE	$\Gamma_{\alpha 0}$	WIDTHA0
$\Delta I(\gamma + ce)$	DTI	$\Gamma_{\gamma 0}$	WIDTHG0
ΔΙα	DIA	$\Gamma_{\alpha 3}$	WIDTHA3
ΔΙβ	DIB	Γα	WIDTHA
ΔΙε	DIE	Σ	*SUMOF
ΔΙγ	DRI	Σ	SUMOF
$\Delta I\gamma(\%)$	PRI	Ψ	PSI
Δ	DJ	α	ICC
$\Delta J\pi$	DJPI	α	ALPHA
ΔΚ	DK	α	CC
ΔL	DL	α decav	ADECAY
ΔΝ	DN	α decays	ADECAYS
$\Delta O(\epsilon)$	DO+	a syst	ASYST
$\Delta O(\beta^{-})$	DO-	α'	A'
$\Delta O(\alpha)$	DOA	α's	ALPHAS
AS	DS	$\alpha(K)$ exp	*EKC
$\Delta S(n)$	DSN	$\alpha(K) \exp$	EKC
$\Delta S(p)$	DSP	$\alpha(K)$	KC
ΔT	DISPIN	$\alpha(L)$ exp	ELC
$\Delta T_{1/2}$	DT	$\alpha(L)$	LC
$\Delta T_{1/2}$	DT1/2	$\alpha(L12)$ exp	EL12C
Λ	DELTA	$\alpha(L12)$	L12C
$\overline{\Delta \alpha}$	DCC	$\alpha(L1)$ exp	EL1C
Λ TM	DMR	$\alpha(L1)$	L1C
$\Delta \pi$	DPI	$\alpha(L2)$	L2C
Φ	PHI	$\alpha(L_{23})$ exp	EL23C
$\Phi(\mathbf{n}_2)$	PHI(P2)	$\alpha(L23)$	L23C
$\Phi(\mathbf{p}_1)$	PHI(P1)	$\alpha(L2)$ exp	EL2C
Γ	*WIDTH	$\alpha(L3) exp$	EL3C
Γ	WIDTH	$\alpha(L3)$	L3C
$\Gamma^2_{\gamma 0}$	WIDTHG0**2	$\alpha(M) exp$	EMC
Γ^{2}	WIDTH**2	$\alpha(M)$	MC
Γ _n	WIDTHN	$\alpha(M+)$	MC+
Γ_{n0}	WIDTHN0	$\alpha(M1)$	M1C
	WIDTHP0	$\alpha(M1) \exp(\alpha(M1))$	EM1C
Γ_{n1}	WIDTHP1	$\alpha(M2)$	M2C
$\Gamma_{\rm p}$	*WIDTHP	$\alpha(M2)exp$	EM2C
Γ_{n}^{ν}	WIDTHP'	$\alpha(M3)$	M3C
- h			

Translation	ENSDF	Translation	ENSDF
a(M3)exp	EM3C	βp	BP
$\alpha(M4)$	M4C	β^+	B+
$\alpha(M4)exp$	EM4C	$\beta^+ \epsilon$ Decay	BECDECAY
α(M5)	M5C	$\beta^2 2n$	B-2N
$\alpha(M5) exp$	EM5C	β_	B-
$\alpha(N) \exp$	ENC	β n	B-N
$\alpha(N)$	NC	β ₀	B0
α(N+)	NC+	β_{04}	B04
$\alpha(N1)exp$	EN1C	β ₀₃	B03
$\alpha(N1)$	N1C	β_{02}	B02
$\alpha(N2)exp$	EN2C	β	B00
$\alpha(N2)$	N2C	β ₁₂	B12
$\alpha(N23)$ exp	EN23C	β1	B1
$\alpha(N3)$	N3C	β20	B20
$\alpha(N3)$ exp	EN3C	B24	B24
$\alpha(N4) \exp(-\alpha(N4)) \exp(-\alpha(N4))$	EN4C	B24	B22
$\alpha(N4)$	N4C	B2Z B2R	B22 B2*R
$\alpha(N5)$	N5C	B2	B2 R
$\alpha(N6)$	N6C	B2	B3
$\alpha(\Omega 1)$	01C	β ₂ R	B3*R
$\alpha(O2)$	010 02C	Baa	B30
$\alpha(02)$	02C 03C	P30 B4	B30 B4
$\alpha(O4)$	0.000	β	B42
$\alpha(D_{1})$	P1C	β ₄₂ β ₄ β	D42 B/1*P
$\alpha(exp)$	FCC	B ₂	B5
a-decay		μs βz R	B5*R
a-syst	A-SVST	B	B6
u-syst		P6 B2 B	B6*P
а. а.		β ₆ ις	B7
al a		μ ₇ β-	
u ₂	ALFIIAZ	μ β μ λ ^{1/3}	DL DI $*D*A**(1/2)$
u ₃		$\rho_L \mathbf{K} \mathbf{A}$	$DL^{*}K^{*}A^{**}(1/3)$
aa	AA AC	βD	
αγ		ргк	BL ⁺ R
β	BEIA	βα	BA
β	B	ββ	BB
β's	BETAS	βγ	BG
β(GT)	BGT	βγn	BGN
β(IS	B(IS	βγγ	BGG
β-vibrational	B-VIBRATIONAL	δ	MR
βR	B*R	δ^2	MR**2
βR	BETA*R	3	EPSILON
βc	BC	3	EC
βce	BCE	ε2p	EC2P
βe ⁻	BE-	εB	EPSILONB
βn	BN	εB(E2)↑	EBE2UP

MU MU	μ MU μb UB $\mu b/sr$ UB/SR $\mu bxMeV$ UB*MEV μg UG $\mu g/cm$ UG/CM μs US $\mu -$ MU	κKAPPAλLAMBDAμMOMM1μMU	γe^- GE- σ SIGMA γn GN $\sigma(n\gamma)$ SIGNG γn GP $\sigma(nq)$ SIGNA	$\frac{\text{Translation}}{\epsilon B(E3)\uparrow}$ ϵK $\epsilon K(exp)$ ϵL $\epsilon L(exp)$ $\epsilon L1(exp)$ $\epsilon L2(exp)$ $\epsilon L3(exp)$ ϵM ϵN ϵp $\epsilon \alpha$ γ γ γ' $\gamma' \gamma' \gamma$	ENSDE EBE3UP CK ECK CL ECL ECL ECL ECL ECL ECL ECL ECL ECL	$ \frac{\text{Translation}}{\nu} \\ \pi \\ \pi^{-} \\ \pi^{\beta} \\ \pi^{\beta} \\ \pi^{\beta} \\ \pi^{\beta} \\ \pi^{\beta} \\ \pi^{\gamma} \\ \theta \\ \theta^{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{2} \\ \theta_{2} \\ \theta_{1} \\ \theta_{2} \\ \theta_{2} \\ \theta_{1} \\ \theta_{$	NU PI PI- PIB PIBG PIG THETA THETA THETA**2 THETA1 THETA2 THETAP1**2 THETAP2**2 THETAA THETAA THETAA RHO RHO**2 SIGMA SIGMA SIGMA(0) SIGMAN SIGMAG SIGMA*DE SIGMANU *TAU TAU OMEGA OMEGA**2*TA OMEGA*T
κ KAPPA λ LAMBDA μ MOMM1 μ MU μb UB $\mu b/sr$ UB/SR $\mu bxMeV$ UB*MEV μg UG $\mu g/cm$ UG/CM μs US	κKAPPAλLAMBDAμMOMM1		$\gamma p'$ GI $G(IU)$ $SIGNA$ $\gamma p'$ GP' σ_0 $SIGMA(0)$ $\gamma p(t)$ $GP(T)$ σ_n $SIGMAN$ $\gamma \pm$ $G^+ \sigma_\gamma$ $SIGMAG$ γ_0 $G0$ $\sigma x \Delta E$ $SIGMA^*DE$ $\gamma \beta$ GB σv $SIGMANU$ $\gamma \beta^ GB$ - Γ $*TAU$ $\gamma \gamma$ GG Γ TAU $\gamma \gamma n$ GGN ω $OMEGA$ $\gamma \gamma \gamma'^{\Gamma}$ GGG $\omega^2 \Gamma$ $OMEGA^{*2} T$ $\gamma \gamma \gamma$ GGG $\omega \Gamma$ $OMEGA^{*1} T$ $\gamma \gamma \gamma$ CHI $\omega \Gamma$ $OMEGA^{*1} T$	χ^{2} $\epsilon M(exp)$ $\epsilon N(exp)$	CHI**2 ECM ECN		
χ^{2} χ^{2	χ^2 CHI**2 $\epsilon M(exp)$ ECM $\epsilon N(exp)$ ECN κ KAPPA λ LAMBDA μ MOMM1	$\begin{array}{c} \chi^2 & CHI^{**2} \\ \epsilon M(exp) & ECM \\ \epsilon N(exp) & ECN \end{array}$	$\gamma p'$ GI $G(nu)$ $SIGNA$ $\gamma p'$ GP' σ_0 $SIGMA(0)$ $\gamma p(t)$ $GP(T)$ σ_n $SIGMAN$ $\gamma \pm$ $G^+ \sigma_\gamma$ $SIGMAG$ γ_0 $G0$ $\sigma x \Delta E$ $SIGMAF$ $\gamma \beta$ GB σv $SIGMANU$ $\gamma \beta^ GB \Gamma$ $*TAU$ $\gamma \gamma$ GG Γ TAU	γγη γγ ^Γ γγγ χ	GGT GGG CHI	ω ω²Γ ωΓ	OMEGA**2*T OMEGA*T
$\gamma \eta n$ OGN ω OMEGA $\gamma \gamma^{\Gamma}$ GGT $\omega^{2}\Gamma$ OMEGA**2*T $\gamma \gamma \gamma$ GGG $\omega \Gamma$ OMEGA**2*T $\chi \gamma \gamma$ CHI $\omega \Gamma$ OMEGA*T χ^{2} CHI**2 $\omega \Gamma$ OMEGA*T $\epsilon M(exp)$ ECM $\epsilon N(exp)$ ECN κ KAPPA λ LAMBDA μ MOMM1 μ MU μb UB $\mu b/sr$ UB/SR $\mu bxMeV$ UB*MEV μg UG $\mu g/cm$ UG/CM μs US	$\gamma\gamma^{\Pi}$ GGN ω OMEGA $\gamma\gamma^{\Gamma}$ GGT $\omega^{2}\Gamma$ OMEGA**2*T. $\gamma\gamma\gamma$ GGG $\omega\Gamma$ OMEGA*T χ CHI $\omega\Gamma$ OMEGA*T χ^{2} CHI**2 $\omega\Gamma$ OMEGA*T $\epsilon N(exp)$ ECM $\epsilon N(exp)$ ECN κ KAPPA λ LAMBDA μ MOMM1 $MOMM1$	$\gamma\gamma^{\Gamma}$ GGT $\omega^{2}\Gamma$ C $\gamma\gamma^{\Gamma}$ GGG $\omega^{2}\Gamma$ C $\gamma\gamma\gamma$ GGG $\omega\Gamma$ C χ^{2} CHI $\omega\Gamma$ C χ^{2} $CHI**2$ $\epsilon M(exp)$ ECM $\epsilon N(exp)$ ECN $\epsilon N(exp)$ ECN	$\gamma p'$ GP' σ_0 $SIGMA$ $\gamma p(t)$ $GP(T)$ σ_n $SIGMA(0)$ $\gamma \pm$ G^+ - σ_γ $SIGMAG$ γ_0 $G0$ $\sigma x \Delta E$ $SIGMA*DE$ $\gamma \beta$ GB $\sigma \gamma$ $SIGMANII$	γβ_ γβ γγ	GB- GG GGN	Г Г	*TAU TAU OMEGA
$\gamma\beta$ GBGVSTONATC $\gamma\beta$ GB- Γ *TAU $\gamma\gamma$ GG Γ TAU $\gamma\gamma n$ GGN ω OMEGA $\gamma\gamma^{\Gamma}$ GGT $\omega^{2}\Gamma$ OMEGA**2*T. $\gamma\gamma\gamma$ GGG $\omega\Gamma$ OMEGA**2*T. $\gamma\gamma\gamma$ GGG $\omega\Gamma$ OMEGA*T χ^{2} CHI**2 ϵ M(exp)ECM $\epsilon N(exp)$ ECN κ KAPPA λ LAMBDA μ μ MOM11 μ MU μb UB $\mu b/sr$ UB/SR $\mu b/sr$ UB/SR μg UG μg UG μg US	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma p'$ GP' σ_0 $SIGMA(0)$ $\gamma p(t)$ $GP(T)$ σ_n $SIGMA(0)$	γ± γο γβ	G+- G0 GB	σ _γ σχΔΕ	SIGMAG SIGMA*DE SIGMANU
γ^{\pm} G+- σ_{γ} SIGMAG γ_0 G0 $\sigma x \Delta E$ SIGMA*DE $\gamma\beta$ GB σv SIGMANU $\gamma\beta^-$ GB- Γ *TAU $\gamma\gamma$ GG Γ TAU $\gamma\gamma^{\Gamma}$ GGT $\omega^2 \Gamma$ OMEGA**2*TA $\gamma\gamma\gamma$ GGG $\omega\Gamma$ OMEGA**7*TA $\gamma\gamma\gamma$ GGG $\omega\Gamma$ OMEGA**7*TA $\gamma\gamma\gamma$ CGG $\omega\Gamma$ OMEGA**7*TA $\gamma\gamma\gamma$ CGG $\omega\Gamma$ OMEGA**T χ^2 CHI**2 $\omega\Gamma$ OMEGA*T $\epsilon N(exp)$ ECM $\epsilon N(exp)$ ECN κ KAPPA λ LAMBDA μ MOMM1 μ μ UB μ $\mu b/sr$ UB/SR μ $\mu b/sr$ UB/SR μ \mug/cm UG/CM u us US u	$\gamma \pm$ $G + \sigma_{\gamma}$ SIGMAG γ_0 $G0$ $\sigma x \Delta E$ $SIGMA*DE$ $\gamma\beta$ GB σv $SIGMANU$ $\gamma\beta^{-}$ GB - Γ $*TAU$ $\gamma\gamma$ GG Γ TAU $\gamma\gamma^{r}$ GGT $\omega^{2}\Gamma$ $OMEGA$ $\gamma\gamma^{r}$ GGG $\omega^{2}\Gamma$ $OMEGA*2*TA$ $\gamma\gamma\gamma$ GGG $\omega^{-}\Gamma$ $OMEGA**2*TA$ $\gamma\gamma\gamma$ GGG $\omega^{-}\Gamma$ $OMEGA**T$ χ^{2} CHI χ^{2} $CHI*22$ $\epsilon M(exp)$ ECM $\epsilon N(exp)$ ECN κ $KAPPA$ λ $LAMBDA$ μ $MOMM1$ H	$\gamma \pm$ $G+ \sigma_{\gamma}$ S γ_0 $G0$ $\sigma x \Delta E$ S $\gamma \beta$ GB σv S $\gamma \beta^ GB$ - Γ $*'$ $\gamma \gamma$ GG Γ T $\gamma \gamma n$ GGN ω C $\gamma \gamma^{\Gamma}$ GGT $\omega^2 \Gamma$ C $\gamma \gamma \gamma^{\Gamma}$ GGG $\omega \Gamma$ C $\gamma \gamma \gamma \gamma$ CHI $\omega^2 \Gamma$ C χ^2 CHI χ^2 CHI χ^2 $CHI * 22$ $\epsilon M(exp)$ ECM $\epsilon N(exp)$ ECN ECN V		γp γp' γp(t)	GP GP' GP(T)	σ_0 σ_n	SIGNA SIGMA(0) SIGMAN
γe GE - σ $SIGMA$ γn GN $\sigma(n\gamma)$ $SIGNG$ γp GP $\sigma(n\alpha)$ $SIGNA$ $\gamma p'$ GP' σ_0 $SIGMA(0)$ $\gamma p'$ GP' σ_0 $SIGMA(0)$ $\gamma p'$ GP' σ_0 $SIGMAN$ $\gamma \pm$ G^+ - σ_γ $SIGMAG$ $\gamma \phi$ $G0$ $\sigma_X \Delta E$ $SIGMAND$ $\gamma \beta$ GB σv $SIGMANU$ $\gamma \beta^ GB$ σv $SIGMANU$ $\gamma \gamma^{\Gamma}$ GG Γ TAU $\gamma \gamma^r$ GGG $\sigma^2\Gamma$ $OMEGA^{**2*TI}$ $\gamma \gamma r'$ GGG $\omega^2\Gamma$ $OMEGA^{**2*TI}$ $\gamma \gamma r'$ GGG ω^{Γ} $OMEGA^{**2*TI}$ $\gamma \gamma r'$ GGG ω^{Γ} $OMEGA^{**2}$ χ^2 CHI^{**2} $\epsilon M(exp)$ ECM $\epsilon N(exp)$ ECN ϵ ϵ κ $AABDA$ μ $MOMM1$ μ MU μ^{μ} MU μb UB μ μb $UB'RRV$ μ μg UG μ μg UG $\mu g' GCM$ US	γe GE - σ SIGMA γn GN $\sigma(n\gamma)$ SIGNG γp GP $\sigma(n\alpha)$ SIGNA $\gamma p'$ GP' σ_0 SIGMA(0) $\gamma p(t)$ $GP(T)$ σ_n SIGMAN γ^{\pm} G^{\pm} - σ_{γ} SIGMAG γo $G0$ $\sigma x \Delta E$ SIGMAN $\gamma \phi$ GB σv SIGMANU $\gamma \beta^{-}$ GB σv SIGMANU $\gamma \gamma^{r}$ GG Γ TAU $\gamma \gamma n$ GGG Γ TAU $\gamma \gamma^{r}$ GGG $\omega^{2}\Gamma$ $OMEGA^{**2*TA}$ $\gamma \gamma \gamma$ GGG $\omega \Gamma$ $OMEGA^{**2*TA}$ $\gamma \gamma \gamma$ GGG $\omega \Gamma$ $OMEGA^{**2*TA}$ $\gamma \gamma \gamma$ GGG $\omega \Gamma$ $OMEGA^{**2}$ χ^{2} CHI^{**2} $EM(exp)$ ECM $\epsilon N(exp)$ ECN κ $AAPPA$ λ $LAMBDA$ μ $MOMM1$	γe GE - σ S γn GN $\sigma(n\gamma)$ S γp GP $\sigma(n\alpha)$ S $\gamma p'$ GP' σ_0 S $\gamma p'$ $GP(T)$ σ_n S $\gamma \pm$ G^+ - σ_γ S γ_0 $G0$ $\sigma x \Delta E$ S $\gamma \beta$ GB σv S $\gamma \beta^ GB$ σv S $\gamma \gamma^{\Gamma}$ GG Γ T $\gamma \gamma r^{\Gamma}$ GGT $\omega^2 \Gamma$ C $\gamma \gamma \gamma^r$ GGG $\omega \Gamma$ C $\chi \chi$ CHI χ^2 CHI^*2 $\epsilon M(exp)$ ECM $\epsilon N(exp)$ ECN	—	γX γce	GX GCE	ρ^{2}	RHO RHO**2
γX $G X$ ρ RHO γce GCE ρ^2 RHO^{**2} $\gamma e^ GE \sigma$ $SIGMA$ γn GN $\sigma(n\gamma)$ $SIGMA$ γp GP $\sigma(n\alpha)$ $SIGMA$ $\gamma p'$ GP' σ_0 $SIGMA(0)$ $\gamma p'$ GP' σ_0 $SIGMA(0)$ $\gamma p'$ $GP(T)$ σ_n $SIGMA(0)$ γp^{\pm} $G^+ \sigma_{\gamma}$ $SIGMAG$ γ_0 $G0$ $\sigma x \Delta E$ $SIGMAN$ $\gamma \beta^{\pm}$ GB σv $SIGMANU$ $\gamma \beta^{-}$ GG Γ TAU $\gamma \gamma$ GG G Γ $\gamma \gamma^r$ GGG G G $\gamma \gamma^r$ GGG G G $\gamma \gamma^r$ GGG $\omega^2 \Gamma$ $OMEGA^{**2}T_{2}T_{2}T_{2}T_{2}T_{2}T_{2}T_{2}T_{$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} \gamma X & & & GX & & \rho & & RHO \\ \gamma ce & & GCE & & \rho^2 & & RHO^{**2} \end{array}$	γ γ γ/α	GAMMA G_ G/A	θα θα ² θγ	THETAA THETAA**2 THETAG
γGAMMA $θa$ THETAAγG_A $θa^2$ THETAA**2γ/aG/A $θ\gamma$ THETAGγXGX ρ RHOγceGCE ρ^2 RHO**2γe^-GE- σ SIGMAγnGN $\sigma(n\gamma)$ SIGNGγp'GP' σ_0 SIGMA(0)γp'GP' σ_0 SIGMA(0)γp'GP(T) σ_n SIGMA(0)γp'GP(T) σ_n SIGMANUγp'GG σv SIGMANUγβ^-GB σv SIGMANUγβ^-GGGB σv SIGMANUγγ'GG Γ TAUγγ'GGG $o\Gamma$ OMEGAγγ'GGG $o\Gamma$ OMEGA**2*TAγγ'GGG $o\Gamma$ OMEGA*TχCHI**2εM(exp)ECMεN(exp)ECNκKAPPA λ LAMBDAμμMUμbUBμb/srUB/SRUSμg/cmUG/CMUS	γ GAMMA $\theta \alpha$ THETAA γ G_{-} $\theta \alpha^2$ THETAA**2 γ / α G / A $\theta \gamma$ THETAG γX $G X$ ρ RHO γce GCE ρ^2 RHO**2 $\gamma e^ GE \sigma$ SIGMA γn GN $\sigma(n\gamma)$ SIGNG γp GP $\sigma(n\alpha)$ SIGMA $\gamma p'$ GP $\sigma(n\alpha)$ SIGMA(0) $\gamma p'$ GP' σ_0 SIGMA(0) $\gamma p(t)$ $GP(T)$ σ_n SIGMAG $\gamma \phi$ $G0$ $\sigma x \Delta E$ SIGMANU γf^{-} GB σv SIGMANU $\gamma \beta^{-}$ GB σv SIGMANU $\gamma \gamma^r$ GG Γ TAU $\gamma \gamma''$ GGG G Γ $\gamma \gamma''$ GGG $\omega^2 \Gamma$ $OMEGA^{*2} TA$ $\gamma \gamma \gamma''$ GGG $\omega^2 \Gamma$ $OMEGA^{*2} TA$ $\gamma \gamma''$ GGG $\omega^2 \Gamma$ $OMEGA^{*1} TA$ χ^2 CHI^{*2} ECN κ κ $\kappa APPA$ λ $LAMBDA$ μ $MOMM1$ $MOMM1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γ GAMMA $\theta \alpha$ THETAA γ G_{-} $\theta \alpha^2$ THETAA**2 γ / α G / A $\theta \gamma$ THETAG γX $G X$ ρ RHO γce GCE ρ^2 RHO**2	εn εp εα	ECP ECA	$ \begin{array}{c} \theta_2 \\ \theta_{p1}^2 \\ \theta_{p2}^2 \end{array} $	THETA2 THETAP1**2 THETAP2**2
εNCN $θ_2$ IHE IA2εpECP $θ_{p1}^2$ THETAP1**2εαECA $θ_{p2}^2$ THETAP1**2γGAMMA $θa$ THETAA**2γ/aG/A $θ\gamma$ THETAA**2γ/aG/A $θ\gamma$ THETAAγG_ $θa^2$ THETAA**2γ/aG/A $θ\gamma$ RHOγxGX ρ RHOγccGCE ρ^2 RHO**2γe ⁻ GE- $σ$ SIGMAγpGP $σ_0$ SIGMAγp'GP' $σ_0$ SIGMA(0)γp(t)GP(T) σ_n SIGMANγ±G+- $σ_{\gamma}$ SIGMAGγ0G0 $σxAE$ SIGMANUγβGB-Γ*TAUγγGGΓTAUγγGGG $ω^{\Gamma}$ OMEGA**2*TAγγ'GGG $ω^{\Gamma}$ OMEGA**2*TAγγ'GGG $ω^{\Gamma}$ OMEGA**2*TAγγ'GGG $ω^{\Gamma}$ OMEGA**2*TAγγ'GGG $ω^{\Gamma}$ OMEGA**2*TAγγKKAPPA λ λ LAMBDA μ μ MOM11 μ μMOM11 μ μb/srUB/SR $\mu/smulticleµg/cmUG/CMUSusUS$	εΝCN $θ_2$ $1HE1A2$ ερECP $θ_{p1}^2$ $THETAP1**2$ εαECA $θ_{p2}^2$ $THETAP2**2$ γGAMMA $θa$ $THETAA$ γG_ $θa^2$ $THETAA$ γ/aG/A $θ\gamma$ $THETAA$ γ/aG/A $θ\gamma$ $THETAA$ γ/aG/A $φ\gamma$ $SIGMA$ γ/aGP $σ_0$ $SIGMA$ γ/bGP $σ_0$ $SIGMA$ γ/bGP $σ_0$ $SIGMA$ γ/bGB $σ_V$ $SIGMA$ γ/bGB $σ_V$ $SIGMA$ γ/bGG F^{-} $σ_V$ $SIGMA$ $φ^{-}$ TAU $\gamma\gamma$ GG $φ^{-}$ $OMEGA$ $\gamma\gamma$ GGG $φ^{-}$ $OMEGA$ $\gamma\gamma''$ GGG $φ^{-}$ $OMEGA$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ϵN CN θ_2 $THETA2$ ϵp ECP θ_{p1}^2 $THETAP1**2$ $\epsilon \alpha$ ECA θ_{p2}^2 $THETAP2**2$ γ $GAMMA$ $\theta \alpha$ $THETAA$ γ G $\theta \alpha^2$ $THETAA$ γ G $\theta \alpha^2$ $THETAA$ $\gamma \alpha$ G/A $\theta \gamma$ $THETAG$ γX GX ρ RHO γce GCE ρ^2 $RHO**2$	εL2(exp) εL3(exp) εM	ECL2 ECL3 CM	$\begin{array}{c} \theta \\ \theta^2 \\ \theta_1 \end{array}$	THETA THETA**2 THETA1
$\epsilon L2(exp)$ $ECL2$ θ THETA $\epsilon L3(exp)$ $ECL3$ θ^2 THETA**2 ϵM CM θ_1 THETA1 ϵN CN θ_2 THETA2 ϵp ECP θ_{p1}^2 THETA2**2 ϵa ECA θ_{p2}^2 THETAP2**2 γ $GAMMA$ θa THETAA γ G_{-} θa^2 THETAA**2 γA GX ρ RHO γX GX ρ RHO γx GX ρ^2 RHO**2 $\gamma e^ GE \sigma$ SIGMA γn GN $\sigma(n\gamma)$ SIGNG $\gamma p'$ GP σ_0 SIGMA(0) $\gamma p'$ GP σ_0 SIGMA(0) $\gamma p'$ GP σ_0 SIGMAN $\gamma p'$ GP σ_0 SIGMAN $\gamma p'$ GP σ_0 SIGMAN $\gamma p'$ GG Γ TAU $\gamma p'$ GG Γ TAU $\gamma p'$ GG Γ TAU $\gamma p'$ GG Γ $OMEGA$ γq GG GT $OMEGA$ $\gamma q''$ GGG $\omega \Gamma$ $OMEGA$ $\gamma q''$ $MOMMI$ μ μ $\mu d'$ $MOMI$	$\epsilon L2(exp)$ $ECL2$ θ $THETA$ $\epsilon L3(exp)$ $ECL3$ θ^2 $THETA^*$ ϵM CM θ_1 $THETA1$ ϵN CN θ_2 $THETA2$ ϵp ECP θ_{p1}^2 $THETA1^{2**2}$ $\epsilon \alpha$ ECA θ_{p2}^2 $THETA2^{2**2}$ γ $GAMMA$ $\theta \alpha$ $THETAA^{2**2}$ γ' $GAMMA$ $\theta \alpha^2$ $THETAA^{**2}$ $\gamma'\alpha$ G/A $\theta \gamma$ $THETAG$ $\gamma \chi$ GX ρ RHO γce GCE ρ^2 RHO^{*2} γe^{-} $GE \sigma$ $SIGMA$ γp GP $\sigma(nq)$ $SIGNA$ $\gamma p'$ GP $\sigma(nq)$ $SIGMA$ $\gamma p'$ GP' σ_0 $SIGMAN$ $\gamma p'$ GP' σ_0 $SIGMAN$ $\gamma p'$ GB σv $SIGMAN$ $\gamma p'$ GGG Γ TAU $\gamma \gamma'$ GGG Γ TAU $\gamma \gamma''$ GGG G^{-} $OMEGA^{**2*TA}$ $\gamma \gamma''$ GGG G^{-} $OMEGA^{**2*TA}$ $\gamma \gamma''$ GGG G^{-} $OMEGA^{**2*TA}$ $\gamma \gamma''$ GGG G^{-} GA^{*} $\gamma \gamma''$ GGG G^{-} $OMEGA^{**2*TA}$ $\gamma \gamma''$ GBA G^{-} GA^{*} $\gamma \gamma''$ GBA G^{-} GA^{*} $\gamma \gamma''$ GGG G^{-} GA^{*} $\gamma \gamma''$ GGG G^{-} GA^{*} $\gamma \gamma''$ <t< td=""><td>$\epsilon L2(exp)$$ECL2$$\theta$$T$$\epsilon L3(exp)$$ECL3$$\theta^2$$T$$\epsilon M$$CM$$\theta_1$$T$$\epsilon N$$CN$$\theta_2$$T$$\epsilon p$$ECP$$\theta_{p2}^2$$T$$\epsilon \alpha$$ECA$$\theta_{p2}^2$$T$$\gamma$$GAMMA$$\theta \alpha$$T$$\gamma$$G_{-}$$\theta \alpha^2$$T$$\gamma'\alpha$$G/A$$\theta \gamma$$T$$\gamma'\alpha$$G/A$$\theta \gamma$$T$$\gamma'a$$G/A$$\theta \gamma$$T$$\gamma'a$$G/A$$\sigma \gamma$$S$$\gamma p'$$GP$$\sigma(n\alpha)$$S$$\gamma p'$$GP(T)$$\sigma_n$$S$$\gamma p'$$GB$$\sigma v$$S$$\gamma p'$$GG$$\Gamma$$T$$\gamma' p'$$GGG$$\sigma' \Gamma$$T$$\gamma' \gamma'$$GGG$$\sigma' \Gamma$$T$$\gamma' \gamma''$$GGG$$\sigma' \Gamma$$T$$\gamma' \gamma''$$GGG$$\omega' \Gamma$$C$$\gamma' \gamma''$$GGG$$\omega' \Gamma$</td><td>$\epsilon L2(exp)$$ECL2$$\theta$$THETA$$\epsilon L3(exp)$$ECL3$$\theta^2$$THETA^{**2}$$\epsilon M$$CM$$\theta_1$$THETA1$$\epsilon N$$CN$$\theta_2$$THETA2$$\epsilon p$$ECP$$\theta_{p1}^2$$THETAP1^{**2}$$\epsilon \alpha$$ECA$$\theta_{p2}^2$$THETAP2^{**2}$$\gamma$$GAMMA$$\theta \alpha$$THETAA$$\gamma$$G$$\theta \alpha^2$$THETAA$$\gamma$$G$$\theta \alpha^2$$THETAA$$\gamma$$G$$\theta \alpha^2$$THETAA$$\gamma$$G$$\theta \alpha^2$$THETAA$$\gamma$$G$$\theta \alpha^2$$THETAA$$\gamma \chi$$GX$$\rho$$RHO$$\gamma ce$$GCE$$\rho^2$$RHO^{*2}$</td><td>εL εL(exp) εL1(exp)</td><td>CL ECL ECL1</td><td>πβ πβγ πγ</td><td>PIB PIBG PIG</td></t<>	$\epsilon L2(exp)$ $ECL2$ θ T $\epsilon L3(exp)$ $ECL3$ θ^2 T ϵM CM θ_1 T ϵN CN θ_2 T ϵp ECP θ_{p2}^2 T $\epsilon \alpha$ ECA θ_{p2}^2 T γ $GAMMA$ $\theta \alpha$ T γ G_{-} $\theta \alpha^2$ T $\gamma'\alpha$ G/A $\theta \gamma$ T $\gamma'\alpha$ G/A $\theta \gamma$ T $\gamma'a$ G/A $\sigma \gamma$ S $\gamma p'$ GP $\sigma(n\alpha)$ S $\gamma p'$ $GP(T)$ σ_n S $\gamma p'$ GB σv S $\gamma p'$ GG Γ T $\gamma' p'$ GGG $\sigma' \Gamma$ T $\gamma' \gamma'$ GGG $\sigma' \Gamma$ T $\gamma' \gamma''$ GGG $\sigma' \Gamma$ T $\gamma' \gamma''$ GGG $\omega' \Gamma$ C $\gamma' \gamma''$ GGG $\omega' \Gamma$	$\epsilon L2(exp)$ $ECL2$ θ $THETA$ $\epsilon L3(exp)$ $ECL3$ θ^2 $THETA^{**2}$ ϵM CM θ_1 $THETA1$ ϵN CN θ_2 $THETA2$ ϵp ECP θ_{p1}^2 $THETAP1^{**2}$ $\epsilon \alpha$ ECA θ_{p2}^2 $THETAP2^{**2}$ γ $GAMMA$ $\theta \alpha$ $THETAA$ γ G $\theta \alpha^2$ $THETAA$ $\gamma \chi$ GX ρ RHO γce GCE ρ^2 RHO^{*2}	εL εL(exp) εL1(exp)	CL ECL ECL1	πβ πβγ πγ	PIB PIBG PIG
allCL $\pi\beta$ PIBel.CL $\pi\beta\gamma$ PIBGel.(exp)ECL $\pi\beta\gamma$ PIGel.(exp)ECL1 $\pi\gamma$ PIGel.2(exp)ECL2 θ THETA*el.3(exp)ECL3 θ^2 THETA*endCN θ_1 THETA1endCN θ_2 THETA2endCN θ_{p2}^2 THETAP1**2endECP θ_{p1}^2 THETAP1**2endECA θ_{p2}^2 THETAP1**2endGAMMA θa THETAA γ' GAMMA θq THETAA γ' GCE p^2 RHO**2 γ'' GCE p^2 RHO**2 γ'' GP $\sigma(n\alpha)$ SIGMA $\gamma p''$ GP $\sigma(n\alpha)$ SIGMA $\gamma p''$ GP σ_0 SIGMAN γ'' GG Γ τAU γ''' GG G'' σ'' γ''' GGG σ'' SIGMANU γ''' GGG σ'' OMEGA*T χ''_C CHI**2 σ'' OMEGA*T χ''_C CHI**2 σ'' OMEGA*T χ''_C CHI**2 σ''_C OMEGA*T $\chi''_$	a.t.a.t.a.t. eL CL $\pi\beta$ PIB $eL(exp)$ ECL $\pi\beta\gamma$ PIBG $eL1(exp)$ ECL1 $\pi\gamma$ PIG $eL2(exp)$ ECL2 θ THETA $eL3(exp)$ ECL3 θ^2 THETA**2 eM CN θ_2 THETA1 eN CN θ_2 THETA2 ep ECP θ_{p1}^2 THETA1**2 $e\alpha$ ECA θ_{p2}^2 THETA2**2 γ GAMMA $\theta\alpha$ THETAA γ G $\theta\alpha^2$ THETAA**2 $\gamma'a$ G/A $\theta\gamma$ RHO γ^{X} GX ρ RHO γ^{er} GE- σ SIGMA γ^{n} GN $\sigma(n\gamma)$ SIGNG $\gamma^{p'}$ GP σ_0 SIGMA(0) $\gamma p''$ GP σ_0 SIGMAN $\gamma p''$ GP σ_0 SIGMANN $\gamma p''$ GB σv SIGMANN $\gamma p''$ GG Γ TAU $\gamma p''$ GG Γ TAU $\gamma p''$ GG Γ TAU $\gamma p''$ GGG $\sigma^2 \Gamma$ OMEGA**2*TA γf^{r} GGG $\sigma^2 \Gamma$ OMEGA**2*TA γf^{r} GGG $\sigma^2 \Gamma$ OMEGA**2*TA $\gamma f''$ GGG $\sigma^2 \Gamma$ OMEGA**2*TA $\gamma f''$ GGG $\sigma^2 \Gamma$ OMEGA*T χ'_{χ} CHI χ' CHI+*2eM(exp)ECN κ KAPPA λ LAMBDA μ MOMMI	att $\pi\beta$ P eL CL $\pi\beta$ P eL eCL $\pi\gamma$ P eL eCL θ T eM CM θ_1 T eM CM θ_2 T eM CN θ_2 T eM CN θ_2 T eX eCA θ_{p2}^2 T eX eCA θ_{p2}^2 T eX $GAMMA$ θa T eX GCA $\theta\gamma$ T eX GCA $\varphi\gamma$ T eX GCA $\varphi\gamma$ T eX GP $\sigma(n\alpha)$ S eX GP $\sigma(n\alpha)$ S eX GP $\sigma(n\alpha)$ S eX GP GO $\sigmax\Delta E$ S eX GP GB σv S eX GB σv S eX $eM(exp)$ GGG GC eCM eCM eX	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\epsilon B(E3)\uparrow$ $\epsilon K(exp)$	EBE3UP CK ECK	$\frac{1121151211011}{v}$ $\pi_{$	NU PI PI-

Appendix H

ENSDF Policies

NUCLEAR DATA SHEETS

GENERAL POLICIES - Presentation of Data

The Nuclear Data Sheets are prepared from the Evaluated Nuclear Structure Data File (ENSDF), a computer file maintained by the National Nuclear Data Center on behalf of the International Network for Nuclear Structure and Decay Data Evaluations. See page iii for a list of the members of this network and their evaluation responsibilities. The presentation of material in the Nuclear Data Sheets reflects the organization of ENSDF, which is a collection of "data sets". For each nuclear species, these data sets present the following types of information:

The adopted properties of the nucleus.

The evaluated results of a single type of experiment, such as a radioactive decay, a single nuclear reaction, or the combined results of a number of similar types of experiments, such as (HI,xn γ) reactions. The data given in ENSDF are primarily derived from experimental information.

The general policies and conventions followed in the preparation of these data sets and in the presentation of material in the Nuclear Data Sheets (NDS) are discussed below.

General

The following policies apply to the adoption or presentation of data. Deviations from these policies will be noted by the evaluator.

1. The excitation energies of levels connected by γ transitions are from a least-squares fit to the adopted γ energies.

2. Dominant decay branches (*i.e.*, for the decay of ground states and isomeric states) are rounded off to 100 when the competing branches total less than approximately 0.001%. When only one branch has been observed and no estimate can be made for expected competing branches, the observed branch is given as ≤ 100 and the competing branch(es) as "%branching=?".

3. Total internal-conversion coefficients (α) for each transition are theoretical values corresponding to the listed radiation character (*i.e.*, multipolarity) and mixing ratio (δ). For a transition of mixed character (two or more multipolarities) and unknown mixing ratio, α is the average of the possible extremes and the uncertainty overlaps the full range of values.

In all calculations by the evaluator involving internal-conversion coefficients, a 3% uncertainty is assumed for the theoretical coefficients.

4 The cross reference flags (XREF), defined in the Adopted Levels table are given for each adopted level. When a level in an individual reaction or decay data set may correspond to more than one adopted level, the flag for that data set is given in lower case. In case of ambiguity, the energy from a particular data set is given as a comment.

Adopted Levels, Gammas data set

The Adopted Levels and γ radiations tables in the NDS are generated from an Adopted Levels, Gammas data set in ENSDF. This data set represents the best values for the level and γ properties as determined by the evaluator on the basis of all the available information.

The following information is included in an Adopted Levels, Gammas data set.

For the nuclide:

- 1. **Q** (β '): β ' decay energy [always presented as Q(β)=M(A,Z)–M(A,Z+1)] and α decay energy [Q(α)] for the ground state.
- 2. S(n) and S(p): Neutron and proton separation energies.
- 3. **XREF**: Cross-reference symbol assignments for the various experimental data sets.

For each level:

- 1. E(lev): Excitation energy (relative to the ground state).
- 2. J^{Π} : Spin and parity with arguments supporting the assignment.
- 3. $T_{1/2}$ or Γ : Half-life or total width in center of mass.
- 4. **Decay branching** for the ground state and isomers (an isomer is defined as a nuclear level with $T_{1/2}$ 0.1 s or one for which a separate decay data set is given in ENSDF).
- 5. \mathbf{Q}, μ : Static electric and magnetic moments.
- 6. **XREF Flags** to indicate in which reaction and/or decay data sets the level is seen.
- 7. **Configuration assignments** (*e.g.*, Nilsson orbitals in deformed nuclei, shell-model assignments in spherical nuclei).
- 8. **Band assignments** and possibly band parameters (*e.g.*, rotational bands in deformed regions).
- 9. Isomer and isotope shifts (usually only a literature reference is given).
- 10. Charge distribution of ground states (usually only a literature reference is given).
- 11. Deformation parameters.
- 12. **B(E2)**,**B(M1)**,..: Electric or magnetic excitation probabilities when the level half-life or the ground-state branching is not known.

For γ-ray and E0 transitions:

- 1. Placement in level scheme.
- 2. **E** γ : Measured γ -ray or E0 transition energy.
- 3. Iy: Relative photon intensity from each level.
- 4. **Mult**,δ: Electric or magnetic multipole character, the mixing ratio, and nuclear penetration parameter.
- 5. CC: Total internal-conversion coefficient (when significant).
- 6 (EL)(W.u.),B(M1)(W.u.),..: Reduced transition probabilities in Weisskopf units.

GENERAL POLICIES - Presentation of Data (cont.)

Reaction and decay data sets

These data sets include information about different types of experiments and may include data sets for β decay, α decay, isomeric transition (IT) decay, Coulomb excitation, charged-particle reactions [such as (d,p) and (t,p)], heavy-ion reactions [such as ⁴⁰Ar,xn γ)], (γ , γ'), and mesonic atoms.

The following policies apply to the presentation of data in reaction and decay data sets. Any deviation from these policies will be noted by the evaluator.

- 1. The J^{II} values in the decay data sets and reaction data sets with gammas are taken from the associated Adopted Levels, Gammas data set. For other reaction data sets the J^{II} values are from the reaction data. The J^{II} value to the capture state in thermal-neutron capture is assigned assuming s-wave capture.
- 2. The character of a γ ray and its mixing ratio are from the associated Adopted γ radiation table.
- 3. The term "absolute intensity" has the same meaning as the term "emission probability", and the term "relative intensity" is equivalent to "relative emission probability" or "relative emission rate." The former are given as intensities per 100 decays.
- 4. Beta and electron-capture intensities are per 100 decays of the parent and are usually deduced from γ intensity imbalance for the levels fed. The separation of I(ε+β⁺) into I(ε) and I(β⁺) is based on theoretical ε/β⁺ ratios. The log *ft* values for nonunique transitions are calculated as for allowed transitions.
- 5. Particle transition intensities (other than β 's) are per 100 particle decays. The total particle branching is given both in the drawings and in the tables.
- 6. Tabular γ -ray intensities are relative values. The normalization factor to convert them to absolute intensities [photons per 100 decays of the parent for decay data sets, or photons per 100 neutron captures for (n, γ) data sets, *etc.*] is given in a footnote.
- Radiations from the decay of neutron or proton resonances are not presented. The energies and other level properties for bound levels deduced from resonance experiments are included. Primary as well as secondary γ's following thermalneutron capture are generally included.
- 8. BE λ , BM λ for the excitation of levels are generally given.
- Up to three references that make major contributions to the information in a specific data set are given in the data set heading. These major references also appear in the drawings.

Organization of material

Within each A chain, information is presented by nuclides which are arranged in order of increasing Z. There is an index for each evaluation which is followed by an isobaric diagram. A table of properties for the ground state and isomeric levels for all nuclides of the A chain is given following or with the isobaric diagram.

For each nuclide, ${}^{A}Z$, the arrangement of material and conventions for inclusion in tables are described below.

- 1. Adopted levels in ^{A}Z All adopted level properties are shown for each level, together with explanatory comments.
- 2. Adopted γ radiations in ^AZ.
- 3. Band structure is shown where known.
- 4. Levels and radiations in ^AZ from radioactive decays Decays are ordered by increasing A, Z, and excitation energy of the parent.
 - a. Table of levels deduced from the decay.
 - b. Tables of radiations observed in the decay.
 - c. Decay Scheme
- 5. Levels and γ rays in ^AZ from nuclear reactions Reactions are ordered by increasing A, Z of the target, then by increasing A, Z of the incident nucleus. A heading is given for each reaction.
 - a. Table of levels deduced from the reaction.
 - b. Table of $\boldsymbol{\gamma}$ rays observed in the reaction, if any.
 - c. Level Scheme, if γ rays were observed and placed.

GENERAL POLICIES – "THEORY"

A reference "Theory 1967Xy01" indicates theoretical predictions computed by the authors of 1967Xy01. A reference "Theory" alone indicates a determination by the evaluator of theoretical predictions described below.

Internal Conversion Coefficients

Theoretical conversion coefficients are obtained by spline interpolation (1968Ha53) from tables of Hager and Seltzer (1968Ha53) for the K–, $L_{1...3}$ –, $M_{1...5}$ –shells and of Dragoun, Plajner, and Schmutzler (1971Dr11) for the (N+O+...) –shells. For the N_{1...5}–subshells, values are obtained by graphical interpolation from tables of Dragoun, Pauli, and Schmutzler (1969Dr09). For K–, $L_{1...3}$ shells, conversion coefficients for transitions outside the E_{γ} , A, or Z ranges of Hager and Seltzer are obtained as follows: for E_{γ} ≤6000 keV and for Z=3,6,10 and 14≤Z≤30 interpolation from tables of Band, *et al.* (1976Ba63); for E_{γ} >2600 keV, by graphical interpolation from tables of Trusov (1972Tr09). For E0 transitions, K/L₁ and L₁/L₂ ratios are obtained by graphical interpolation from tables of Hager and Seltzer (1969Ha61).

Angular Distribution and Correlation Coefficients

The coefficients required for analysis of directional correlation, polarization correlation, directional distribution, and polarization distribution data are obtained as described by Steffen (1971St47, 1971St48). In particular, we adopt the phase convention for the mixing ratio, δ , defined by Krane and Steffen (1970Kr03). Particle parameters required for the analysis of correlation and distribution data involving conversion electrons are obtained by graphical interpolation from tables of Hager and Seltzer (1968Ha54). The expression for the deorientation coefficient required to account for intermediate unobserved mixed radiations is given by Anicin (1972An20).*

A tabulation of gamma-gamma directional-correlation coefficients is given by Taylor, *et al.* (1971Ta32). These authors use the Steffen phase convention.

Penetration Parameters

Penetration parameters required for the analysis of internal conversion data and angular correlation or distribution data involving electrons are obtained by graphical interpolation from tables of Hager and Seltzer (1969Ha61).

Internal Pair Conversion Coefficients

Theoretical internal pair conversion coefficients for Λ =E1, M1, E2 are obtained by graphical interpolation in Z, E from tables of Lombard, *et al.* (1968Lo16).

* As pointed out by these authors, most earlier references which discuss this coefficient define it incorrectly.

β-Decay Rate Probabilities

Log ft values, capture-to-positron ratios, and electron-capture ratios for allowed, first-forbidden unique, and second-forbidden unique transitions are obtained as described by Gove and Martin (1971Go40). This reference also contains a tabulation of log ft values and total capture-to-positron ratios for allowed and first-forbidden unique transitions.

Atomic Processes

X-ray fluorescence yields are obtained from Bambynek, *et al.* (1972Bb16) for Z \leq 92 and from Ahmad (1979Ah01) for Z>92. Electron binding energies for Z<84 are taken from Bearden and Burr (1967Be73) and from Porter and Freedman (1978Po08) for Z>84.

α-Decay Hindrance Factors

The α -hindrance factors (the ratio of the measured partial half-life for α -emission to the theoretical half-life) are obtained from the spinindependent equations of Preston (1947Pr17). The nuclear radius for each even-even nucleus is determined by defining, for the g.s. to g.s. α transition, the hindrance factor (HF) 1. For odd-A and odd-odd nuclei, the radius parameters are chosen to be the average of the radii for the adjacent even-even nuclei (1998Ak04). In cases where only one adjacent even-even radius is known, the extrapolated/interpolated value for the unknown radius is used in the calculation. A survey of the dependence of α -hindrance factors within rotational bands is given for A 229 in 1972El21.

Electromagnetic Transition Rates

The Weisskopf single-particle estimates for the half-lives of electric and magnetic multipole radiation of energy E_{γ} are (1952Bl97)

$$T_{1/2W}(EL) = 0.190 \ \left(\frac{L}{L+1}\right) \left(\frac{3+L}{3}\right)^2 \frac{\left[(2L+1)!!\right]^2}{A^{2L/3}} \left(\frac{164.44}{E\gamma \ (MeV)}\right)^{2L+1} x10^{-21} s$$

for a nuclear radius of $1.2 \text{ A}^{1/3} \text{x} 10^{-13} \text{ cm}$.

Unweighted and Weighted Averages

If $x_1 \pm \Delta x_1$, $x_2 \pm \Delta x_2$, ... $x_n \pm \Delta x_n$ are n independent measurements of a given quantity, Δx_i being the uncertainty in x_i , then the weighted average of these measurements is $\overline{x} \pm \Delta \overline{x}$, where

$$\overline{\mathbf{x}} = \mathbf{W} \Sigma \mathbf{x}_i / (\Delta \mathbf{x}_i)^2,$$
$$= 1 / \Sigma (\Delta \mathbf{x}_i)^{-2},$$

and $\Delta \overline{x}$ is the larger of $(W)^{1/2}$ and $[W\Sigma(\Delta x_i)^{-2}(x-x_i)^2/(n-1)]^{1/2}$.

W

The unweighted average of these same measurements is given by $\overline{x} \pm \Delta \, \overline{x}$, where

$$\begin{split} \overline{\mathbf{x}} &= \Sigma \mathbf{x}_i / \mathbf{n}, \\ \Delta \ \overline{\mathbf{x}} &= \left[\Sigma \ (\ \overline{\mathbf{x}} - \mathbf{x}_i)^2 / \mathbf{n} (\mathbf{n} - 1) \right]^{1/2}. \end{split}$$

SUMMARY OF BASES FOR SPIN AND PARITY ASSIGNMENTS

PROPOSITIONS ON WHICH STRONG ARGUMENTS ARE BASED

Ground States

1. The ground state of an even-even nucleus has $J_{\pi} = 0^+$.

2. Spin determinations by such techniques as atomic-beam resonance, paramagnetic resonance, electron-spin resonance, and optical spectroscopy give correct values.

Gamma Transitions

3. The agreement of the measured value of a single conversion coefficient with the theoretical value for a multipolarity which is well separated from the value for any other multipolarity determines the transition multipolarity.

4. In all other cases if there is no other evidence for multipolarity, agreement of two or more measured conversion coefficients or ratios with theoretical values is necessary in order to establish the multipolarities of a transition and its mixing ratio.

5. Since an E0 transition can proceed only by conversion or pair production, pure E0 is ruled out if photons are observed.

6. Recommended upper limits for γ -ray strengths (Γ_{γ}/Γ_w , Γ_w -Weisskopf stimate) for various A values are given below.

	$\Gamma_{\gamma}/\Gamma_{W}$ (Upper Limit)				
Character*	<u>A=6-4</u>	$4^{\frac{a_{\delta}}{A}} - A = 45 - 1$	<u>50^{b.c}A>150^d</u>		
E1 (IV)	0.3#	0.01	0.01		
E2 (IS) ^e	100	300	1000		
E3	100	100	100		
E4	100	100^{+}			
M1 (IV)	10	3	2		
M2 (IV)	3	1	1		
M3 (IV)	10	10	10		
M4		30	10		

* 'IV' and 'IS' stand for isovector and isoscalar

- T_{γ}/Γ_{w} (Upper Limit)=30 for A=90–150
- # $\Gamma_{\gamma}/\Gamma_{w}$ (Upper Limit)=0.1 for A=21-44
- $\Gamma_{\gamma}/\Gamma_{w}$ (Upper Limit)=0.003 for E1 (IS),
- 10 for E2 (IV), 0.03 for M1 (IS), 0.1 for M2 (IS)
- ^a From 1979En05
- ^b From 1979En04

^c From 1981En06

- ^d Deduced from **ENSDF** by M. J. Martin
- ^e In super-deformed bands the E2 transitions can have Γ_{ν}/Γ_{w} >1000.

Beta Transitions§

7. If $\log ft < 5.9$, the transition is allowed: $\Delta J=0$ or 1, $\Delta \pi=n0$ (no change in parity). Superallowed ($\Delta T=0$) 0⁺ 0⁺ transitions have log *ft* in the range 3.48 to 3.50. Isospin forbidden ($\Delta T=1$) 0⁺ 0⁺ transitions have log *ft*>6.4. If 3.6<log *ft*<6.4, the transition is not 0⁺ 0⁺. 8. If $\log f^{tu}t<8.5$ ($\log ft < 7.4$), $\Delta J=0,1$; $\Delta \pi=$ yes or no. 9. If $\log ft<11.0$, $\Delta J=0,1$; $\Delta \pi=$ yes or no or $\Delta J=2$, $\Delta \pi=$ yes. 10. If $\log ft<12.8$, $\Delta J=0,1,2$; $\Delta \pi=$ yes or no. 11. If $\log f^{tu}t\geq 8.5$ ($\log ft \ge 7.4$) and if the Fermi plot has the curvature corresponding to a shape factor (p^2+q^2), then the transition is first-forbidden unique ($\Delta J=2$, $\Delta \pi=$ yes). See " β -Decay Rate Probabilities" on page vii. Note that $\log f^{tu}t=\log ft+1.079$.

Note: For nuclei at, or very near to, closed shells values may be smaller. For example, in the mass region around Z=82, the upper limit of 5.9 given in #7 above could be 5.1.

§ See 1973Ra10

γγ Directional Correlation

$$W(\theta) = \sum_{k-\text{even}} A_k P_k (\cos \theta)$$

12. If a gamma-gamma directional-correlation experiment yields $A_2 \approx +0.36$ and $A_4 \approx +1.1$, then the spin sequence is $0 \quad 2 \quad 0$. 13. Results of $\gamma\gamma(\theta)$ are strong evidence for excluding spin sequences for which the theoretical A_2 or A_4 falls well outside the experimental range.

βγ Directional Correlation

 $W(\theta) = \sum A_k(\beta)A_k(\gamma)P_k(\cos\theta)$ k-even

14. If $|A_2(\beta)|{\geq}0.1(A_4{=}0),$ the transition is not allowed. The converse is not true.

15. If $A_4(\beta)\neq 0$, the transition is neither allowed nor first forbidden. 16. If $A_4(\beta)=0$, the transition is allowed or first forbidden.

βγ Polarization Correlation

$$P\left(\theta\right) = \frac{\sum\limits_{k - odd} A_{k}\left(\beta\right) A_{k}\left(\gamma\right) P_{k}\left(\cos \, \theta\right)}{W(\theta)}$$

17. In allowed transitions,

$_{\beta^{+}}^{\beta^{-}}$	$\begin{array}{l} A_{l}(\beta) < 0 \text{ if } J_{i} = J_{f} \\ A_{l}(\beta) > 0 \text{ if } J_{i} = J_{f} \end{array}$
β^-	$A_1(\beta) \ge 0 \text{ if } J_i = J_f + 1$ $A_1(\beta) \le 0 \text{ if } J_i = J_f - 1$
$\beta^{\scriptscriptstyle +}$	$\begin{array}{l} A_1(\beta) \leq 0 \text{ if } J_i = J_f + 1 \\ A_1(\beta) > 0 \text{ if } J_i = J_f - 1 \end{array}$

18. If $A_3(\beta)\neq 0$, the β -transition is not allowed. The converse is not always true.

γ Angular Distribution

19. In the angular distribution of gamma rays from deexcitation of states populated in high-spin reactions (for a typical value of σ /J=0.3, where σ is the magnetic substate population parameter):

- a. If A₂≈+0.3 and A₄≈-0.1, the transition is generally ΔJ=2 (stretched quadrupole). (The same A₂ and A₄ values are possible for ΔJ=0, D+Q transitions also, but such transitions are N less common. A₄=0 for ΔJ=0, dipole transition).
 b. If A₂≈-0.2 and A₄≈0, the transition is generally ΔJ=1
- b. If $A_2 \approx -0.2$ and $A_4 \approx 0$, the transition is generally $\Delta J = 1$ (stretched dipole).
- c. If $A_4 \ge 0$ ($A_2 \approx +0.5$ to -0.8), the transition is $\Delta J=1$, D+Q.

y DCO Ratio

In the angular correlation (DCO) of gamma rays from deexcitation of states populated in high-spin reactions (for a typical value of σ /J=0.3, where σ is the magnetic substate population parmeter): 20. For Δ J=2, stretched quadrupole as a gating transition:

- - a. R(DCO) \approx 1.0, the transition is generally $\Delta J=2$ (stretched quadrupole). (The same value is possible for $\Delta J=0$, dipole but such transitions are less common).
 - b . If R(DCO)=0.5, the transition is generally $\Delta J{=}1$ (stretched dipole).
 - c . If R(DCO) differs significantly from ≈ 0.5 or ≈ 1.0 , the transition is $\Delta J=1$ (or 0), D+Q

SUMMARY OF BASES FOR SPIN AND PARITY ASSIGNMENTS - continued

PROPOSITIONS ON WHICH STRONG ARGUMENTS ARE BASED continued

γ DCO Ratio continued

21. For $\Delta J=1$, stretched dipole as a gating transition:

a. If R(DCO) \approx 2.0, the transition is generally $\Delta J=2$ (stretched quadrupole). (The same value is possible for $\Delta J=0$, dipole transitions, but such transitions are less common).

b. If R(DCO) \approx 1.0, the transition is generally $\Delta J=1$ (stretched dipole). c. If R(DCO) differs significantly from \approx 2.0 or \approx 1.0, the transition is $\Delta J=1$ (or 0), D+Q.

Reactions

22. Low-energy Coulomb excitation is predominantly E2 excitation.

23. Coulomb excitation determines J^{π} if the excitation probability agrees with the calculated values of Alder (1960Al23).

24. The spin of the compound nuclear state resulting from thermal-neutron capture is equal to the spin of the target nucleus plus or minus 1/2.

25. Primary γ 's from neutron capture are E1, M1, E2, or M1+E2. 26. If the angular distribution in a single-nucleon transfer reaction can be fitted with a unique L value, the spin of the final state J_f is related to the spin of the initial state J_i by

$$\vec{J}_{f} = \vec{J}_{i} + \vec{L} + 1/2$$

with parity change if L is odd.

27. If the vector analyzing power for a single-nucleon transfer reaction shows a clear preference between J=L+1/2 and J=L-1/2 and if the L value is known, then the J value is determined.

28. Generally for the states populated in high-spin reactions, spins increase with increasing excitation energy. This is a result of the fact that these reactions tend to populate yrast or near yrast states.

29. If the angular distribution can be fitted with a unique L-value the J^{π} of

the final state is related to the J^{π} of the initial state by $\vec{J}_{f} = \vec{J}_{i} + \vec{L}$, $\pi_{f}\pi_{i} = (-1)^{L}$, for the following cases

a. A strong group observed in (p,t), (t,p), and (³He,n) reactions (strong groups are assumed to result from two identical nucleons

transferred

in a relative s state)

b. A strong group observed in the α-particle transfer reaction (⁶Li,d).
 c. (e,e') and (α,α') inelastic scattering.

30. In reactions with $J^{\pi} = 0^+$ target, projectile, and ejectile, if the yield of a group at 0° or 180° is

- a. non-zero, the parity of the final state is $(-1)_{\rm f}^{\rm J}$
- b. zero at several uncorrelated energies, the parity of the final state is $(-1)_{f^{-1}}^{J_{f^{-1}}}$

31. In reactions with a polarized $J^{\pi} = 1$ projectile in the m=0 substate, with $J^{\pi} = 0^{+}$ ejectile and target, if the yield of a group at 0° or 180° is

- a. non-zero, the parity of the final state is $(-1)_{f}^{J+1}$
- b. zero at several uncorrelated energies, the parity of the final state is $(-1)^{J}_{f}$

Regions of Strong Nuclear Deformation

The systematic occurrence of rotational-band structure in the strongly deformed nuclides can be a considerable help in making $J\pi$ assignments, since one can also use the level energy as one of the considerations. This frequently makes it possible to assign a $J\pi$ value to a level with confidence from data which, absent such structure, might yield an ambiguous assignment.

32. <u>Level-energy considerations</u>. If the couplings among the states are not too strong, the energies of the lower members of a band can be expressed by the relatively simple relation (see, *e.g.*, 1971Bu16 and references therein):

The **inertial parameter**, A, exhibits a systematic behavior in the various regions of strongly deformed nuclei, which can be helpful in assigning levels to rotational bands. In some instances (*e.g.*, strong Coriolis coupling) where the A values depart significantly from systematic trends, this observation can itself be useful, since it can help establish the presence of such effects and, hence, provide evidence for the relevant nucleonic configurations.

For the case of K=1/2 bands, the **decoupling parameter**, a, which is characteristic for each such band, is given by the ratio A_1/A in (1). Establishing a value for the decoupling parameter of a proposed band can be useful in assigning a nucleonic configuration to it - and *vice-versa*. 33. <u>Allowed-unhindered beta transitions</u>. In this region, beta transitions having log *ft* values <5.0 are classified as "allowed unhindered" (*au*). Such transitions take place between one-quasiparticle orbitals having the same asymptotic quantum numbers. In the "rare-earth" region (90 \le N \le 112, 60 \le Z < 76), four such orbital pairs are known: [532], near the beginning of this

region; [523], near the middle of this region; [514], above the middle of this region; and, at the high end, [505]. Observation of an *au* transition is definitive evidence for the presence of the particular pair of orbitals. 34. <u>Coulomb excitation</u>. If a sequence of levels having "rotational-like" energy spacings is found to be excited with enhanced probabilities, this is evidence that this sequence (at least below the first "backbend") forms the ground-state rotational band for the nuclide involved. If the E2 transition probabilities involved are large (tens of Weisskopf units or larger) and comparable to each other, then this is definitive evidence for both a band structure and the sequence of J π values, assuming one of the spins Nis known.

35. <u>Alpha decay</u>. Observation of a "favored" α transition (HF<4) indicates that the two states involved have the same nucleonic configuration. If a sequence of levels having "rotational-like" energy spacings is associated with the level fed by this favored transition and these levels have HF's that vary according to the established trend within rotational bands (1972El21), then this sequence can be considered to form a rotational band whose nucleonic configuration is the same as that of the alpha-decaying state. If the J π value of this latter state and its configuration are known, then the corresponding quantities can be considered to be known for the band in the daughter nuclei or *vice versa*.

36. <u>Single-nucleon-transfer reactions (light-ion-induced)</u>. For a singlenucleon transfer reaction induced by light ions (⁴He and lighter), the characteristic pattern of cross sections among rotational-band members ("fingerprint") can be used to assign a set of levels as specific $J\pi$ members of a band based on a particular Nilsson configuration, if the fingerprint agrees well with that predicted by the Nilsson-model wavefunctions and is distinct from those expected for other configurations in the mass region. (This method is even stronger if angular distributions giving unique L values, or vector analyzing powers, support the assignments for one or more of the levels.)

SUMMARY OF BASES FOR SPIN AND PARITY ASSIGNMENTS - continued

PROPOSITIONS ON WHICH STRONG ARGUMENTS ARE BASED continued

High-spin states

In the decay of high-spin states, commonly produced in heavy-ion induced compound nuclear reactions or in highly excited nuclides created as products of nuclear fission or in Coulomb excitation, the multipolarities of the deexciting γ transitions and the relative spins and parities of the levels are generally determined from angular distributions, angular correlations (DCO ratios), linear polarizations and internal-conversion coefficients. In addition, relative energy-level spacings and the increase of γ intensity with decreasing excitation energy are important clues.

37. For a well-deformed nucleus when a regular sequence of $\Delta J=2$ (stretched quadrupole) transitions is observed at high spins as a cascade, the sequence may be assigned to a common band with E2 multipolarity for all the transitions in the cascade. A similar but somewhat weaker argument holds for less deformed nuclei where a common sequence of levels is connected by a regular sequence of $\Delta J=2$ (stretched quadrupole) transitions in a cascade.

38. For near-spherical nuclei, when a regular sequence of $\Delta J=1$ (stretched dipole) transitions is observed at high spins as a cascade, then the sequence may be assigned to a common band with (M1) multipolarity for all the transitions in the cascade. (Cascades of $\Delta J=1$, E1 transitions occur in rare cases of nuclides which show alternating-parity bands or reflection asymmetry.)

39. In the absence of angular distribution/correlation data, a regular sequence of transitions in a cascade may be assigned to a common structure or a band if (a) the low-lying levels of this structure have well established spin and parity assignments and (b) there is good evidence that, at higher energies and spins, the band has not changed in its internal structure due to band crossings or other perturbations.

Alpha Decay

40. The hindrance factor for an α transition from the ground state of an even-even nucleus to the ground state of the daughter nucleus is 1.0 by definition. For odd-A and odd-odd nuclei, hindrance factors \leq 4 identify favored α transitions, and these connect states having the same spin, parity and configuration.

41. For α -decay between two states, one of which has J=0, the parity change is given by $\Delta \pi = (-1)^{\Delta J}$.

PROPOSITIONS ON WHICH WEAK ARGUMENTS ARE BASED

1. In cases where gammas of one multipolarity "cluster" in one time region in the half-life vs. energy plot, as is true for M4's, other γ 's whose half-lives fall in this cluster may be assigned the corresponding multipolarity.

2. In cases where a cluster of two multipolarities, *e.g.* M1 and E2 occupies one time region, a new gamma of which the half-life falls in this region may be assigned one of the two multipolarities or a mixture of the two.

3. Whenever $\Delta J \ge 2$, an appreciable part of the gamma transition proceeds by the lowest possible multipole order.

This statement is based on the scarcity of counter-examples and the observation that few E2 γ 's are as slow as M3's, few E2's as slow as E3's, *etc.*

4. The spin and parity of a parent state may be inferred from the measured properties of its assumed isobaric analog resonance, and vice versa.

5. Low-lying states of odd-A nuclei have shell-model spins and parities, except in the regions where deformations appear. This argument is much stronger when supported by expected cross-section strengths (C^2S) in single-nucleon transfer reactions.

It is recognized that some shell-model predictions are stronger than others. For example, the shell model would mildly deny that the ground-state J^{π} of the 39th proton be $3/2^{-}$, but emphatically deny its being $3/2^{+}$. However, we have not included this distinction here and consider all shell-model arguments to be weak.

6a. For low-lying states of odd-odd spherical nuclei, the Nordheim Nrules (1950No10):

$$\begin{split} J &= j_p + j_n, \, \text{if} \, j_p \!\!=\!\! l_p + -1/2 \, \, \text{and} \, \, j_n \!\!=\!\! l_n + -1/2; \\ J &= |j_p \!\!-\! j_n|, \, \text{if} \, j_p \!\!=\!\! l_p + -1/2 \, \, \text{and} \, \, j_n \!\!=\!\! l_n - \!\!+ 1/2. \end{split}$$

may be helpful in obtaining the ground-state spins and parities, if there is supporting evidence.

6b. For excited states of strongly deformed odd-odd nuclei, the Gallagher-Moszkowski rules (1958Ga27) may be helpful in deducing the relative positions of the two two-quasiparticle states formed by the two different couplings of the quasiparticle constituents, if there is supporting evidence. Here, the state corresponding to the parallel alignment (Σ =1) of the projections (=1/2) of the intrinsic spins of the two odd particles is expected to lie lower than that produced by the antiparallel (Σ =0) alignment. This can be particularly useful in establishing the ground state J π values and nucleonic configurations form odd-odd nuclei.

(In the strongly deformed even-even nuclei, the opposite is expected to obtain, i.e., the Σ =0 coupling should lie lower than that with Σ =1. In these nuclei, however, the experimental situation is less clear since the two-quasiparticle excitations occur at or above the pairing gap, where the level densities are high and couplings to vibrational excitations can affect the two-quasiparticle states differently.)

7. Statements similar to 5 and 6 based on other models.

8. Statements based on interpolation or extrapolation of regional trends, such as shown in 1971Bu16, 1972El21, 1977Ch27, 1990Ja11 and 1998Ja07 for the rare-earth and heavy-mass regions.

9. All statements connected with the nonobservation of expected transitions.

10. Rules extracted in the survey by 1972El21 for unfavored α transitions can be used to deduce the configuration of the parent or the daughter level, if the configuration of the other is known.

11. For magnetic moments, the extreme rarity of pure single-particle states and observation of large deviations from free-nucleon g-factors in nuclei means that comparison between the experiment and the 'Schmidt Limit' estimates (based on such pure states) is not a sound basis for spin or parity assignment. The magnetic moments or g-factors, however, can give supporting, and in some cases decisive, evidence for assignments where predictions for possible alternatives, using g-factors based on local systematics of measured moments, differ widely.

For excited states, the 'collective' aspects of the state frequently make substantial contribution to the magnetic moment. The correct g-factor for this contribution, however, is a matter of detailed theory and any potential assignment based on assumed g(collective)=Z/A must be viewed with caution.

NUCLEAR DATA SHEETS

CONVENTIONS USED IN NUCLEAR DATA SHEETS

Uncertainties ("Errors") The uncertainty in any number is given one space after the number itself: 4.623 3 means 4.623 ± 0.003 4.6 h *12* means 4.6 ± 1.2 h 5.4x10³ 2 means 5400 ± 200 4.2 $\pm 8-10$ means 4.2 ± 0.8 -1.0

-4.2 + 8 - 10 means $-(4.2 + 10 - 8) = -4.2 + 0.8 - 10^{-10}$

? Question Mark given after a quantity often indicates doubt as to the existence or the value of the quantity. For example, a "?" given after the $T_{1/2}$ value indicates that the assignment of that half-life to the associated level is not certain.

() Parentheses have the following interpretation for different quantities in the tabular data:

L transfer Possible value but not definitely or Mult. established experimentally.

Other Value deduced (*i.e.*, is not directly measured) or taken from other sources.

Examples:

 J^{π} =(1/2,3/2) $\bar{}$ Weak arguments limit the spin to 1/2 or 3/2. Strong arguments indicate negative parity.

 $J^{\pi}\!\!=\!\!4^{(+)}$ Strong arguments show the spin is 4; weak arguments suggest positive parity.

L=(3) L value tentatively established as 3.

Mult.=(M1) Radiation character tentatively established as M1.

Mult.=M1(+E2) Radiation character includes E2 with a mixing ratio, $|\delta|$, that may be >0.

[] Brackets

7/2⁻[2514] Nilsson asymptotic quantum numbers, K^{π} [N n_z Λ]

Assumed quantity, e.g., [M1+

NUCLEAR DATA SHEETS

References

References	
1947Pr17	M. A. Preston - Phys. Rev. 71, 865 (1947); The Theory of Alpha-Radioactivity
1950No10	L. W. Nordheim, Phys. Rev. 78, 294 (1950); Beta- Decay and the Nuclear Shell Model
1952Bl97	J. M. Blatt, V. F. Weisskopf - Theoretical Nuclear Physics, John Wiley and Sons, Inc., New York, p. 627 (1952)
1958Ga27	C. J. Gallagher and S.A. Moszkowski, Phys. Rev. 111, 1282; Coupling of Angular Momenta in Odd-Odd Nuclei
1958Ro60	M. E. Rose - Internal Conversion Coefficients, North- Holland Publishing Co., Amsterdam (1958)
1960Al23	K. Alder, A. Winther, Kgl. Danske Videnskab, Selskab, MatFys. Medd. 32, No. 8 (1960); On the Theory of Multiple Coulomb Excitation with Heavy Ions
1967Be73	J. A. Bearden, A.F. Burr - Rev. Mod. Phys. 39, 125; Reevaluation of X-Ray Atomic Energy Levels
1968Ha53	R. S. Hager, E. C. Seltzer - Nucl. Data A4, 1 (1968); Internal Conversion Tables. Part I: K-, L-, M-Shell Conversion Coefficients for Z=30 to Z=103
1968Ha54	R. S. Hager, E. C. Seltzer - Nucl. Data A4, 397 (1968); Internal Conversion Tables. Part II: Directional and Polarization Particle Parameters for Z=30 to Z=103
1968Lo16	R. J. Lombard, C. F. Perdrisat, J. H. Brunner - Nucl. Phys. A110, 41 (1968); Internal Pair Formation and Multipolarity of Nuclear Transitions
1969Dr09	O. Dragoun, H. C. Pauli, F Schmutzler - Nucl. Data Tables A6, 235 (1969); Tables of Internal Conversion Coefficients for N-Subshell Electrons
1969Ha61	R. S. Hager, E. C. Seltzer - Nucl. Data Tables A6, 1 Internal Conversion Tables. Part III: Coefficients for the Analysis of Penetration Effects in Internal Conversion and E0 Internal Conversion
1970Kr03	K. S. Krane, R. M. Steffen - Phys. Rev. C2, 724 (1970); Determination of the E2/M1 Multipole Mixing Ratios of the Gamma Transitions in ¹¹⁰ Cd
1971Bu16	M.E. Bunker and C. W. Reich, Revs. Mod. Phys. 43, 348 (1971); A Survey of Nonrotational States of Odd-A Nuclei (150 <a<190)< td=""></a<190)<>
1971Dr11	O. Dragoun, Z. Plajner, F. Schmutzler, Nucl. Data Tables A9, 119 (1971); Contribution of Outer Atomic Shells to Total Internal Conversion Coefficients
1971Go40	N. B. Gove, M. J. Martin - Nucl. Data Tables A10, 205 (1971): Log-f Tables for Beta Decay
1971St47	R. M. Steffen - Report LA-4565-MS, Los Alamos Scientific Laboratory (1971); Angular Distributions and Correlations of Radiation Emitted from Oriented Nuclei
1971St48	R. M. Steffen - Proc. Int. Conf. Angular Correlations in Nuclear Disintegration, Delft, Netherlands (1970), H. yan Krusten B. yan Nooien Eds. Wolters-Noordhoff
	Publ., Groningen, p. 1 (1971); Angular Distributions and Correlations of Nuclear Radiations in Nuclear
1971Ta32	H. W. Taylor, B. Singh, F. S. Prato, R. McPherson - Nucl. Data Tables A9, No. 1, 1 (1971); A Tabulation of Gamma-Gamma Directional-Correlation Coefficients
1972An20	I. V. Anicin, R. B. Vukanovic, A. H. Kukoc - Nucl. Instrum. Methods 103, 395 (1972); The New Feature of 1-3 Directional Correlations with Mixed Unobserved Transitions

1972Bb16	W. Bambynek, B. Crasemann, R. W. Fink, HU. Freund, H. Mark, C. D. Swift, R. E. Price, P. Venugopala Rao - Rev. Mod. Phys. 44, 716 (1972); X-Ray Fluorescence Yields, Auger, and Coster- Kronig Transition Probabilities
1972El21	Y. A. Ellis, M. R. Schmorak - Nucl. Data Sheets B8, 345 (1972); Survey of Nuclear Structure Systematics
1972Tr09	V. F. Trusov - Nucl. Data Tables 10, 477 (1972); Internal Conversion Coefficients for High-Energy Transitions
1973Ra10	S. Raman, N. B. Gove - Phys. Rev. C7, 1995 (1973); Rules for Spin and Parity Assignments Based on log
1976Ba63 I. I	M. Band, M. B. Trzhaskovskaya, M. A. Listengarten At. Nucl. Data Tables 18, 433 (1976); Internal
1977Ch27	Conversion Coefficients for Atomic Numbers $Z \le 50$ R. R. Chasman, I. Ahmad, A. M. Friedman and J. R. Erskine, Revs. Modern Phys. 49, 833 (1977); Survey of Single Particle States in Macs Paging $\Delta > 228$
1978Po08	F. T. Porter and M. S. Freedman - J. Phys. Chem. Ref. Data 7, 1267 (1978); Recommended Atomic Electron Binding Energies, 1s to 6p _{3/2} , for Heavy
1979Ah01	Elements, Z=84 to 103 I. Ahmad - Z. Phys. A290, 1 (1979); Precision Measurement of K-Shell Fluorescence Yields in Actinide Elements
1979En04	P. M. Endt, At.Data Nucl.Data Tables 23, 547 (1979); Strengths of Gamma-Ray Transitions in A=45-90 Nuclei
1979En05	P. M. Endt, At.Data Nucl.Data Tables 23, 3 (1979); Strengths of Gamma-Ray Transitions in A=6-44 Nuclei (III)
1981En06	P. M. Endt, At.Data Nucl.Data Tables 26, 47 (1981); Strenghts of Gamma-Ray Transitions in A=91-150 Nuclei
1990Ja11	A. K. Jain, R. K. Sheline, P. C. Sood and K. Jain, Revs. Modern Phys. 62, 393 (1990); Intrinsic States of Deformed Odd-A Nuclei in Mass Regions (151 <a<193) a="" and="">221</a<193)>
1998Ak04	Y. A. Akovali - Nucl. Data Sheets 84, 1 (1998); Review of Alpha-Decay Data from Double-Even Nuclei
1998Ja07	A. K. Jain, R. K. Sheline, D. M. Headly, P.C. Sood, D.G. Burke, I. Hrivnacova, J. Kvasil, D. Nosek, R. W. Hoff; Revs. Modern Phys. 70, 843 (1998) Nuclear Structure in Odd-Odd Nuclei, 144≤A≤194

Nuclear Data Sheets Symbols and Abbreviations

А	mass number*, A=Z+N		
A_2, A_4	coefficients of Legendre polynomials in	PAC	perturbed angular correlation
	angular- correlation or angular-distribution	pc	proportional counter
	measurement	p,γ(θ)	angular distribution of γ -rays with respect to a
av D(EL) D(ML)	average	proton beam	
B(EL), B(ML)	reduced EL, ML transition probability in	$p,\gamma(t)$	time distribution of photons
	$e^{2}x(barn)^{2}, \ \mu_{N}^{2}x(barn)^{2}$	nol	with respect to a pulsed proton beam
calc, CA	calculated, calculation	poi priv comm	private communication
CCBA	coupled-channel Born approximation	PWBA	plane-wave Born approximation
ce	conversion electron	Q	(1)reaction energy*, (2)disintegration energy*,
chem.	chemical separation		(3)quadrupole moment*, inunits of barns,
c m	center of mass		(4)quadrupole
coef	coefficient	$Q(\epsilon)$	total disintegration energy in ε decay
coin	coincidence	Q(β-)	total disintegration energy in β - decay
Coul. ex .	Coulomb excitation	$Q(\alpha)$	total disintegration energy in α decay, $E(\alpha) + E(recoil)$
CP	circular polarization	K RDM	$r_0 A^{-1}$, nuclear radius ²
cryst	crystal-diffraction spectrometer	RUI	recommended upper limit for y-ray strength
0-8, 0-8	for nickup, stripping reactions	rel	relative
d	day	res	resonance
D	dipole	S	second
DSA	Doppler shift attenuation	S	spectroscopic factor
DWBA	distorted-wave Born approximation	S'	$[(2J_f+1)/(2J_i+1)]S$
DWIA	distorted-wave impulse approximation	$S(n) \text{ or } S_n$,	energy necessary to separate a
E	energy	S(p) or S	scattering
E(ɛ)	energy of electron-capture transition(endpoint	scin	scintillation counter
	of γ -continuum + K-electron eparation	semi	semiconductor detector
E1 E2 EI	electric dipole guadrupole 2 ^L pole	SF	spontaneous fission
excit	excitation function	Spall	spallation
expt	experiment, experimental	Sr	steradian
F	fission	syst, SY	systematics
F-K	Fermi-Kurie (plot)	t T	triton
FWHM	energy resolution, full width at half maximum	I Tz	(1) isobaric spin, (2) temperature Z Component of isobaric spin, (N Z)/2
g	gyromagnetic ratio*	TL2	half-life*
GDR	giant dipole resonance	th	thermal
GQK	ground state	thresh	threshold
g.s. h	hour	tof	time-of-flight measurement
H	magnetic field	vib	vibrational
HF	hindrance factor	W.u.	Weisskopf single-particle transition speed
hfs	hyperfine structure	Y Z	year atomia number* 7-4 N
HI	heavy ion	2 Q	total v-ray internal conversion coefficient
	intensity	ŭ	N(ce)/N(v)*
IAR	isobaric analog state	$\alpha(K), \alpha(L)$	γ ray internal conversion coefficient for
IBS	internal bremsstrahlung spectrum		electrons ejected from the K-, L-shell
IMPAC	ion implantation perturbed angular correlation	αγ,βγ,γγ,	coincidences of α 's and γ 's, β 's and γ 's, γ 's and γ 's
	technique	$\alpha\gamma(\theta,H,t)$	$\alpha\gamma$ -, $\beta\gamma$ -, $\gamma\gamma$ -coincidences as
inel	inelastic	$\beta\gamma(\theta,H,t),$	function of angle, magnetic $\gamma\gamma(\theta,H,t)$ field, time
ion chem.	chemical separation by ion exchange	$\beta_2, \beta_3, \beta L$	quadrupole, octupole, 2 ^L -pole nuclear
II I	isomeric transition	0 (1)	deformation parameter
J K	projection of nuclear angular momentum	βγ(pol),	polarization correlation of γ s
	J on nuclear symmetry axis	$\gamma\gamma(\text{pol})$	In come idence with $\beta s, \gamma s$ level width* partial width for γ , n emission
K, L, M	K-, L-, M-shell internal conversion	$\gamma(A H T)$	$\gamma_{\rm intensity}$ as function of angle magnetic field
K/L	K-, L-conversion electron ratio	/(0,11,1)	temperature
L	(1)orbital angular momentum quantum	γ±	annihilation radiation
$\mathbf{I}(\mathbf{A}, \mathbf{I}(\mathbf{A}))$	number*, (2)multipolarity	δ	ratio of reduced matrix elements of (L+1)- to L-
L(n), L(p)	L-transfer in neutron, proton transfer reaction		pole radiation with sign convention of Krane
M+	M+N+O+		and Steffen, Phys.Rev. C2, 724 (1970)
M1, M2, ML	magnetic dipole, quadrupole, 2 ^L -pole	3	electron capture
mag spect	magnetic spectrometer	εΚ, εL, εΜ	electron capture from K-, L-, M-shell
max	maximum	$\varepsilon(\gamma)B(E2)$,	partial B(E2) for photon,
Moss	Mossbauer effect	$\epsilon(ce)B(E2)$	conversion electron detection
ms	(1)mass spectrometer, (2)millisecond	9 A	(1) projection of partials angular momentum
mult	multipolarity/character	λ	nuclear symmetry axis (2) radiation type e a
NMR NOR	nuclear magnetic, m=A-Z		M1, M2
norm	normalization		, ···

Nuclear Data Sheets Symbols and Abbreviations - continued

μ ν σ Σ(γγ) ω(K),	ω(L)	 magnetic moment of particle*, given in nuclear magnetons (μ_n) neutron shell-model configuration parity, proton shell-model configuration cross section* coincidence summing of γ-rays K, average-L fluorescence yield 	$%\alpha$ percent α branching from level $\%\beta$ -percent β - branching from level $\%\beta$ +percent β + branching from level $\%\varepsilon$ percent ε branching from level $\%IT$ percent $(\gamma+ce)$ branching from level $\%SF$ percent spontaneous fission from level $$ root-mean-square of nuclear radius
		Prefixes*	Symbols for Particles and Quanta*
T G M k c m	tera giga mega kilo centi milli	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Nneutron π pionpproton μ muonddeuteroneelectronttriton ν neutrino α α -particle γ photon

* Recommended by Commission on Symbols, Units, and Nomenclature of International Union of Pure and Applied Physics

ENSDF Analysis and Utility Codes

T. W. Burrows

NNDC, BNL, USA

E-mail: burrows@bnl.gov

ENSDF Analysis and Utility Codes

Their Descriptions and Uses

Thomas W. Burrows

National Nuclear Data Center Brookhaven National Laboratory, USA

E-mail: <u>burrows@bnl.gov</u>

Summary

The ENSDF analysis and checking codes are briefly described, along with their uses with various types of ENSDF datasets. For more information on the programs see "Read Me" entries and other documentation associated with each code (H<u>http://www.nndc.bnl.gov/nndc/ensdfpgm/</u>H). The current status and platform

availability may be obtained at

Hhttp://www.nndc.bnl.gov/nndcscr/ensdf_pgm/code_status.htmlH.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor, or subcontractor thereof.

Contents

ł	Iow to use the Programs	. 200
	FMTCHK	. 200
	ENSDST and TREND	. 200
	Adopted Levels, Gammas Datasets	. 201
	Decay Datasets	203
	Reaction Datasets	205
	ADDGAM	207
	ALPHAD	208
	COMTRANS (COMment TRANSlation)	210
	DELTA	. 212
	ENSDAT (Evaluated Nuclear Structure Drawings and Tables)	215
	FMTCHK	.217
	GABS	218
	GTOL	219
	HSICC Program Package	. 223
	HSICC Program PackageHSICC	224
	HSICC Program PackageHSMRG	. 226
	HSICC Program PackageBLDST	. 227
	HSICC Program PackageSEQHST	. 228
	LOGFT	. 229
	NSDFLIB	230
	PANDORA	231
	RadList	233
	RULER	. 236
	TREND	. 237

How to Use the Programs

FMTCHK

FMTCHK should be run every time the ENSDF formatted file has been manually changed before executing any of the other programs. All fatal errors (indicated by "<F>") should be corrected. If possible, all errors (indicated by "<E>") should be corrected. Warning messages (indicated by "<W>") should be checked to see if there are problems that may need correction. For small input files, use of the default options is recommended. For larger files, the user may wish to make several iterations, starting with fatal errors only. This program should also be run on the final version before submittal to the NNDC.

Notes:

- 1. It is sometimes difficult to judge whether a message should be flagged as an error or warning. If you disagree with an error message, please indicate this along with your reasons on submittal or before. In some instances, error messages are given because of the possible effects on other programs. Two examples are:
 - a. It is considered an error when a mixing ratio is given and there is no associated mixed multipolarity. This is a problem since programs such as RULER or HSICC will be unable to perform the proper calculations. Note that the converse (*i.e.*, a mixed multipolarity given with no mixing ratios) may be addressed by assuming a 50%/50% admixture of the two multipolarities.
 - b. It is considered an error when an "FL=" is not given and there are no final levels with a certain limit or there are more than one level which may be considered the final level based on $E_{level}-E_{\gamma}$. This is a problem, particularly for complex level schemes such as in the adopted dataset, for level scheme programs such as ENSDAT or Isotope Explorer and programs such as GTOL, which do a least-squares adjustment of the level energies, or programs such as PANDORA.

ENSDAT and TREND

ENSDAT produces level schemes, bands, and tables in a format similar to that of the *Nuclear Data Sheets* and may be used to visual expect the results. TREND provides a simpler ASCII presentation of the tabular data that does not require a PostScript printer or viewer. One should also be able to copy the list of keynumbers generated by ENSDAT into the clipboard and paste this into the keynumber form of the NNDC Web NSR to obtain the NSR entries corresponding to these keynumbers.

Adopted Levels, Gammas Datasets

As well as ENSDAT, FMTCHK, and TREND, applicable programs for these datasets are ADDGAM, GTOL, HSICC, PANDORA, and RULER. ADDGAM and PANDORA are useful in constructing the dataset. In addition, PANDOR may be used iteratively to aid in physics decisions, checking assignments, and updating source datasets based on changes in the adopted data. GTOL is useful only in obtaining the least-squares adjustment of the level energies; for complex datasets, the matrix to be inverted may be singular (see Additional notes under GTOL for methods of handling this problem). RULER may be used in the comparison mode to provide additional information in obtaining γ -multipolarity assignments. HSICC and RULER should also be run to provide the internal conversion coefficients and BEAWs and BMAWs, respectively; note that HSICC should be executed before RULER. HSICC should also be run to provide the internal conversion coefficients is no need to delete the "S G" records generated by HSICC; the publication program automatically suppresses these when the evaluation is prepared for submission to Academic Press. Figure 1 shows the approximate order in which the programs are run. Note that this is an iterative process and, as changes are made, various programs will need to be rerun (in particular, FMTCHK).

Figure 1: Flowchart of programs for Adopted Levels, Gammas datasets

Decay Datasets

Along with ENSDAT, FMTCHK, and TREND, applicable programs for these datasets are ALPHAD (for α decay), GABS, GTOL, HSICC, LOGFT (for β^{\pm}/ϵ decay), RadList, and RULER. Figure 2 shows the approximate order in which the programs are run. Note that this is an iterative process and, as changes are made, various programs will need to be rerun (in particular, FMTCHK).

- 1. ALPHAD should be used to obtain the hindrance factors and, for even-even ground-state nuclei, r_0 . For other nuclei, an r_0 must be supplied.
- 2. GABS may be used to combine the data from up to three sources to obtain I_{γ} -normalization (NR), the branching ratios (BR), and absolute $I_{\gamma}s$. HSICC should run on the input data or the internal conversion coefficients from the adopted dataset should be used.
- 3. GTOL may be used to provide a least-squares adjustment of the level energies. It should be used to check the uncertainties and placement of the γ s. If there are a large number of γ s and few whose energies deviate from the calculated energies, the experimental uncertainties may be overestimated; on the other hand, if there are a large number of deviations, the uncertainties may be underestimated. Also, for any deviation of over $\approx 3\sigma$, the placement of the transition should be carefully checked. GTOL should also be used to obtain the intensities of particles feeding the levels; this should be done before ALPHAD and LOGFT are employed and may be useful in deriving I_y-normalization (NR).
- 4. HSICC may be used to check experimentally measured internal conversion coefficients against theory. If the adopted internal conversion coefficients are not used, HSICC should be executed to produce this information for the data set. This should be done before GABS, GTOL, or RadList are used.
- 5. LOGFT is required to obtain the log *fts*, $I_{\beta+}$ and I_{ϵ} , and partial electron-capture fractions. This should be done before using RadList. If one is not using measured intensities, GTOL should be used to obtain $I_{\beta-}$ and $I_{\epsilon+\beta+}$.
- 6. RadList should be used to check the calculated energy deposited with that predicted by the Q-value and branching ratios. If X-ray intensities are measured, these should be compared to those calculated by the program. If discrepancies cannot be resolved, these should be noted in the dataset. ALPHAD, HSICC, and LOGFT should have been used before doing these checks.
- 7. If $T_{\frac{1}{2}s}$ have been measured, RULER may be used to check or further limit multipolarities based on other methods (*e.g.*, from experimental conversion coefficients).

Figure 2: Flowchart of programs for decay datasets

Reaction Datasets

Along with ENSDAT, FMTCHK, and TREND, applicable programs for these datasets are GTOL, HSICC, and RULER. For (thermal n, γ) datasets, RadList may also prove of use. Figure 3 shows the approximate order in which the programs are run. Note that this is an iterative process and, as changes are made, various programs will need to be rerun (in particular, FMTCHK).

- 1. GTOL's primary use is to do a least-squares adjustment of the level energies and to check the uncertainties and placement of the γ s as described above. Note that it is now common for authors to omit the $\Delta\gamma$ s; if the evaluator cannot obtain a good estimate of these, it may be better to use the author's level energy values. It is also useful for checking for intensity imbalance problems if relative intensities are given.
- 2. HSICC may be used to check experimentally measured internal conversion coefficients against theory. While it is generally not required to include the conversion and partial conversion coefficients for reaction datasets, it is very useful to do this for (thermal n, γ) datasets.
- 3. If half-lives $(T_{\frac{1}{2}})$ have been measured, RULER may be used to check or further limit multipolarities based on other methods (*e.g.*, from experimental conversion coefficients).
- 4. RadList may be used to check the energy balance of (thermal n, γ) datasets by tricking it into believing the dataset is an IT decay dataset. This is done by changing the DSID on the ID record, adding an appropriate Parent record (level energy equal to the neutron separation energy) and a BR of 1.0 on the Normalization record.

Figure 3: Flowchart of programs for reaction datasets

ADDGAM

Version 1.4 [Feb. 7, 2001]

Author: J.K.Tuli National Nuclear Data Center Building 197D Brookhaven National Laboratory Upton, NY 11973 Phone: 631-344-5080 FAX: 631-344-2806 Email: "NNDCJT@BNL"

This program adds γ s to the Adopted Levels when all γ s come from one data set. If γ s come from more than one data set but are non-overlapping, the program may be run successively with different γ data sets as input.

Input files (ENSDF format):

- 1) Data set containing the adopted levels. Sample input file: ADDGAML.DAT
- 2) Data set containing the gammas to be added. Sample input file: ADDGAMG.DAT

<u>Output file:</u> Merged set containing the information in (1) and the γ s from (2). Sample output file: ADDGAM.NEW

<u>Terminal dialog</u>: The user will be asked to provide the file names for the data set containing the adopted levels, the file for the gammas to be added, and the file for the new data set.

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional documentation: None

ALPHAD

Version 1.6 [Feb. 7, 2001]

Author:Thomas W. Burrows National Nuclear Data Center Energy Sciences and Technology Department Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-5084 FAX: 631-344-2806 NNDCTB@BNL.GOV

(Original Authors: H.V. Michels, Y. Sanborn, R.C. Ward)

This program calculates the α hindrance factors and theoretical T_{1/2} and, for even-even ground state to ground state transitions, r₀ using Preston's spin-independent equations (M.A. Preston. Phys. Rev. 71, 865 (1947)).

The program reads an ENSDF-formatted file and produces a report of the hindrance factors, theoretical $T_{\frac{1}{2}}s$, and $r_{0}s$ calculated by the program. This report will also summarize any problems encountered or assumptions made. There is also an option to produce a new file using containing the HFs calculated. $r_{0}s$ may be specified on an ALPHA comment record by "HF" in columns 10 and 11 and a dollar sign ("\$") in column 12 or blanks in columns 12 through 19. The first value and uncertainty in columns 20 through 80 preceded by an R ("R") and an equal sign ("=") or approximate sign ("AP") will be taken as r_{0} .

Sample input file: ALPHAD.DAT

Sample output files:

- 1. ALPHAD.RPT Report of calculations
- 2. ALPHAD.NEW New ENSDF file containing the hindrance factors (HFs) calculated by the program.

Terminal dialog:

- 1. Input data file (Default: ALPHAD.DAT):
- Output report to file (Y/N): The default is "Y". If NO is answered, the report will be displayed on the terminal. If YES is answered, the following query will appear: Output report file (Default: ALPHAD.RPT):
- 3. Echo input (Y/N): The default is "Y". In this case the input file will be copied to the report file.

4. **Rewrite input with hinderance factor (Y/N):** The default is "Y". If YES is answered, the following query will appear: **Output data set file (Default: ALPHAD.NEW):**

If the report output is to a file, the terminal output will note the progress in the calculations and report warning messages.
<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional notes:

- 1. Calculation of Δr_0 : Five values are calculated: $r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha})$, $r_0(T_{\frac{1}{2}}(\alpha) + \Delta T_{\frac{1}{2}}(\alpha), E_{\alpha})$, $r_0(T_{\frac{1}{2}}(\alpha) - \Delta T_{\frac{1}{2}}(\alpha), E_{\alpha})$, $r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} + \Delta E_{\alpha})$, and $r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} - \Delta E_{\alpha})$. $\Delta r_0 = \sqrt{(((|r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} - \Delta E_{\alpha}) - r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} - \Delta E_{\alpha})|)/2)^{**}2 + ((|(r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} + \Delta E_{\alpha}) - r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} - \Delta E_{\alpha})|)/2)^{**}2)$. r_0 and Δr_0 as calculated are output in the report file and so are $r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} - \Delta E_{\alpha})|)/2$, $r_0(T_{\frac{1}{2}}(\alpha), E_{\alpha} - \Delta T_{\frac{1}{2}}(\alpha), E_{\alpha} - \Delta T$
- 2. If either the value or the uncertainty for E_{parent} , Q_{α} , or E_{level} is non-numeric and E_{α} and ΔE_{α} are numeric, E_{α} and ΔE_{α} are used in the calculations. NOTE: For systematic uncertainties in Q_{α} from the Audi-Wapstra Mass Tables, the input data should be modified to use the estimated uncertainty and the new output edited to change DQP back to "SY".
- 3. If there is more than one non-numeric uncertainty involved, the order of precedence is limits (*e.g.*, GT or LT) and then "AP", "CA", and "SY" for the new output.

Additional documentation: None.

<u>Acknowledgements:</u> I thank Y. Akovali and M.J. Martin for many useful discussions on the physics involved, for their many suggestions on improving the output, and for testing various versions of this code.

COMTRANS (COMment TRANSlation)

Version 7.0 [August 8, 2003]

Author: Charles L. Dunford

National Nuclear Data Center, Bldg. 197-D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2804 FAX: 631-344-2806 E-mail: Dunford@bnl.gov

The program COMTRANS is a nuclear structure evaluator tool for translating comments in the Evaluated Nuclear Structures Data File (ENSDF) from the all upper case form to the upper/lower case form. In addition, translations of code words found in the NSD dictionary are made into a rich text type of format (*e.g.*, |a replaces ALPHA and {+56}Fe replaces 56FE). These comments no longer need to be used with the NSD dictionary. However, evaluators should note that adding a code word to such a translated comment means they must change the lower case comment flag (c or t) in column 7 to an upper case comment flag (C or T) or rerun the file using COMTRANS. Otherwise, ENSDAT (and the publication code), which do not translate lower case comment (c or t) cards), will output the code word unchanged. Finally, the input file is converted into an Y2K compliant form if it is not in that form. All keynumbers are changed from the old six-character keynumber (85AU01) into the new eight-character Keynumber (1985AU01). The keynumbers fields of the ID and Q cards are also changed to comply with the Y2K formats.

The program asks for an input file name, an output file name and options. The ENSDF translation dictionary file must be in the same directory from which the program is executed. The input and output files may include a disk and directory path.

Program files:

- 1. comtrans_sl.exe
- 2. ensdf_dic.exe dictionary creation program.

Text files:

1. ensdf_dic.dat - sequential text file of the dictionaries used to create ra_ensdf_dic.dat.

Input files:

- 1. An ENSDF formatted file. Sample input file: comtrans.tst
- 2. ra_ensdf_dic.dat (direct access binary file) contains the ENSDF translation dictionaries used by ENSDAT and COMTRANS; must be in the execution directory.

Sample output file: comtrans.out (Y2K compliant)

<u>Terminal dialog:</u> The program will request the following information:

- 1. Input
- 2. Output

Compilation and loading instructions: Only the executable is supplied.

Additional notes:

1). Should <u>not</u> be run on ENSDF or XUNDL files submitted to the NNDC.

 $^{\wedge}A4 \rightarrow A4 \rightarrow A\{\text{-}4\} \rightarrow a\{\text{-}4\}$

A4 A₄ a₄

- 2). Useful to run before using Isotope Explorer 2 or ENSDAT.
 - a. Isotope Explorer 2 assumes that the comments have been translated into a "rich text" format and does not carry out a dictionary lookup.
 - b. ENSDAT may be faster since it will not have to do a dictionary lookup for the comments.

DELTA

Version 1.01 [April 15, 1993]

Author:Dr. Peter Ekstrom Department of Physics University of Lund Solvegatan 14 S-223 62 Lund SWEDEN Phone: +46-46-107647 FAX: +46-46-104709 INTERNET: PETER.EKSTROM@NUCLEAT.LR.LU.SE

This program analyses angular correlation and conversion coefficient data, and calculates the best values of mixing ratios. the sign convention is that of Krane and Steffen, Phys. Rev. C2, 724 (1970).

The gamma-gamma cascade studied is: ----- J(1) DELTA(1) (TRANSITION NUMBER 1) V ----- J(2) DU(1) V ----- J(3) . UNOBSERVED TRANSITIONS ----- J(NLEV-2) . (MAXIMUM 3) DU(NLEV-3) V ----- J(NLEV-1) DELTA(2) (TRANSITION NUMBER 2) V ----- J(NLEV)

DELTA(1) and DELTA(2) can be varied. The mixing ratios of the unobserved transitions are fixed. Possible data items are:

- 1. A_2 and A_4 for $\gamma\gamma$ -correlation (corrected for solid angle effects).
- 2. δ values from other independent measurements (tan⁻¹(δ) is used internally).
- 3. Conversion coefficient or conversion ratio data.

All data items are treated as independent, and uncertainties as statistical. Note that a measured A_2 only gives very little information if both mixing ratios are unknown. A measured internal conversion coefficient helps a lot! Note that δ values may be suspect when minimum is not approximately parabolic. The default step size in tan⁻¹(δ) is 2 degrees. This is normally small enough, but for very accurate data a smaller step size (set with option ST) may be necessary.

Limitations:

- 1. No triple correlations.
- 2. Spins up to 20 are allowed, except when unobserved transitions are involved. For unobserved transitions the maximum spin is 10. These limitations are valid if the computer can handle double precision reals of up to 10^{76} .
- 3. Effects of internal conversion on the deorientation coefficients for mixed transitions are neglected. See Anicin *et al.*, Nucl. Instrum.Meth. 103, 395 (1972) for this usually very small effect.

NOTE: Except for the changes made in input and output units and to conform to ANSI-77 standard, this code is as provided by the author.

Input file: All records have the following format:

COL. 1-2 Symbol that determines type of card.

COL. 3-72 Free format reals or integers. Separator: any character different from '0-9', '.' and '-'. Everything following a '\$' is ignored. This can be used for comments on the data cards. Only DATA and GO cards are necessary. Uncert. = 0 for δ means that δ is kept fixed. new data with same name as existing data replace the latter.

Options (parameters in () are optional):

CL	Clear data	
DU	Dump common blocks (for debugging)	
OU A	A = 0 short output (default)	
	A > 0 FULL OUTPUT	
ST ST1(,ST2)	Step size (in degrees) for $\tan^{-1}(\delta_1)$ and $\tan^{-1}(\delta_2)$,	
	respectively	
EN	End of run	
GO RJ1,RJ2(,RJ3)	Read spins and go. RJ's are reals or integers	
	(e.g., 5/2 - = -2.5, 2 + = 2,	
	0 - = -0)	
	Maximum 6 spins.	
HE ANY TEXT	Header	
LI A,B,C,D	Limits $\tan^{-1}(\delta_1)$ to A to B and	
	$\tan^{-1}(\delta_2)$ to c to d	
UN (DU(1), DU(2), DU(3))	Unobserved transitions, δs . Defaults = 0.0	
Correlation and DELTA data		
A2 A2,DA2	$A_2, \Delta A_2$	
A4 A4,DA4	$A_4, \Delta A_4$	
D NTR (,DELTA,DDELTA)	Transition number, δ , $\Delta\delta$. Defaults: none, 0, 0	
Conversion coefficient data (maximum 5 items)		

** NTR, EXP, DEXP, L1,	where ** is any unique combination of symbols
H1(,L2,H2)	(e.g., CC, AK)
	NTR The number of the transition (1 or 2)
	EXP Experimental value
	DEXP Uncertainty
	L1 Theoretical value for the lower multipole
	(SHELL1)
	H1 Theoretical value for the higher multipole
	(SHELL1)
	For ratios SHELL1/SHELL2:
	L2 Theoretical value for the lower multipole
	(SHELL1)
	H2 Theoretical value for the higher multipole
	(SHELL2)

Sample input data set: DELTA.DAT

Output file (Short output marked with an asterisk (*)):

For each spin combination (each GO card): * Option and data cards read * Header * Data Header χ^2 and best theoretical values of data (step in δ_1) * Best δ_1 Header * Plot of χ^2 versus tan⁻¹(δ_1) Header χ^2 and best theoretical values of data (step in δ_2) * Best δ_2 * Plot of χ^2 versus tan⁻¹(δ_2) * 'END OF ANALYSIS FOR THIS SPIN COMBINATION'

Optionally a dump of common block variables can be obtained.

Sample output: DELTA.RPT

<u>Terminal dialog</u>: The user will be requested to supply the input file name and the output file name.

Compilation and loading instructions: No special instructions

<u>Additional documentation:</u> DELTA - A computer program to analyze gamma-gamma correlations from unaligned states. L.P. Ekstrom. Nuclear Physics LUNFD6/(NFFR-3048) 1-27,(Lund University. 1983).

ENSDAT (Evaluated Nuclear Structure Drawings and Tables)

Version 9.7 [Sep. 11, 2000]

Authors: Charles L. Dunford, Robert R. Kinsey National Nuclear Data Center, Bldg. 197-D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2804 FAX: 631-344-2806 E-mail: Dunford@bnl.gov

The program ENSDAT (Evaluated Nuclear Structure Drawings And Tables) is similar to the production program for the Nuclear Data Sheets but more limited in its application. Only ENSDF data files can be used as input and a PostScript file, list of keynumbers in NSR, and a report file are output. As the default, all possible tables, band drawings, and gamma drawings are done for each dataset encountered in the input file. However, it is possible to choose one or more of these groups of output (see below). In addition, it is possible to modify the default tables and drawings by adding commands to the input file using control cards. (see the file enscomds.txt.) A final page is output to the PostScript file, which gives a listing of all the keynumbers, encountered in the input file.

Program files:

- 1. ensdat.exe
- 2. ensdf_dic.exe dictionary creation program.

Text files:

- 1. enscomds.txt instructions for using commands in the input file.
- 2. ensdf_dic.dat sequential text file of the dictionaries used to create ra_ensdf_dic.dat.

Input files:

- 1. An ENSDF formatted file. Sample input file: adopted.186.
- 2. ra_ensdf_dic.dat contains translation dictionaries. ensdf_dic.exe must be run to create the ISAM files used by ENSDAT and COMTRANS.

Outputs:

- 1. PostScript file of tables and drawings in a form similar to the Nuclear Data Sheets.
- 2. Report file summarizing work done and any errors noted.
- 3. File listing the keynumbers (NSR) found in the input file.

Sample output files: ad_186.log and ad_186.ps.

<u>Terminal dialog:</u> The program will request the following information:

- 1. Input input file specification
- 2. Output output file name
- 3. Options one or more of the following options can be entered, separated by a blank:

TABLE Level, gamma, and radiation information will be output in tabular format.BAND Band drawings will be output. Radplot type drawings are also output.DRAW Gamma drawings will be output.

NOAUTO No drawings or tables will be generated except those that are specified by the user on control cards, added to the input file. If none of these options are used, all tables, band drawings (if any), and gamma drawings (if any) will be output to the PostScript file.

4. View output - Yes or No (optional - see installation instructions for details)

<u>Command Line dialog:</u> ENSDAT *input output [option]* <u>Compilation and loading instructions:</u> Only the executable is supplied.

<u>Additional documentation</u>: Following the output file name, several options are available to the user. The output file name must be followed by a blank and then, if desired, one or more of the following options:

TABLE	Level, gamma, and radiation information will be output in tabular format.		
BAND	Band drawings will be output.		
DRAW	Gamma drawings will be output.		
NOAUTO	No drawings or tables will be generated except those, which are specified by the		
	user on control cards added to the input file.		

As before, if none of these options are used, all tables, band drawings (if any), and gamma drawings (if any) will be output to the PostScript file.

FMTCHK

Version 9.0g [August 4, 2003]

Author:Energy Sciences and Technology Department National Nuclear Data Center Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2901 FAX: 631-344-2806 Email: NNDC@BNL.GOV (Original author: Bruce J. Barton)

This program analyzes the format of an ENSDF formatted file to verify that it conforms to "Evaluated Nuclear Structure Data File. A Manual for Preparation of Data Sets" by J.K. Tuli, Brookhaven National Laboratory Report BNL-NCS-63155-01/02 (2001) and subsequent memos.

Input file (ENSDF format): Sample input file is DATA.TST

<u>Output file:</u> A report file indicating possible errors or warnings is generated. Sample output file: FMTCHK.RPT. Brief explanations of the fatal error (prefix $\langle F \rangle$), error (prefix $\langle E \rangle$), warning (prefix $\langle W \rangle$), and informational (prefix $\langle I \rangle$) messages are given in READFMTC.ME or READFMTC.HTML.

<u>Terminal dialog:</u> The user will be asked to supply the input and output file names, if errors only should be reported or the complete file reported (default: errors only), if continuation records should be checked (default: check continuation records), if only fatal errors should be reported (default: no), if warning messages should be suppressed (default: no suppression). This query will be suppressed if only fatal errors are to be reported), and if the checking of the XREF *versus* DSID should be suppressed.

As the data sets in the input file are processed, this will be indicated on the terminal. After each data set is processed, the total number of fatal error, error, and warning messages will be reported. If both adopted data sets and "source" data sets are in the file, the X records and IDENTICATION records will be compared and any discrepancies listed.

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional documentation: None.

Additional notes:

1. For level energies of the form X, Y, Z, *etc.* or E + X, E + Y, E + Z, *etc.*, an arbitrary energy is assigned to the first occurrence of the character based on the energy of the previous level energy. This is reported as an informational message in the report file and is used to see if the levels are in the proper energy order.

GABS

Version 9.2 [Feb. 7, 2001]

Authors: Edgardo Browne Div. of Nuclear Science Bldg. 50-A, MS 6102 Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 Phone: 510-486-7647 FAX: 510-486-5657 Email: EBROWNE@LBL.GOV

> (Adapted for IBM PC by Coral M. Baglin) Dr. Coral M. Baglin 17995 Barnard Rd. Morgan Hill, CA 95037 Phone: 408-779-4796 FAX: 408-779-4796 Email: BAGLIN@LBL.GOV CMBaglin@sseos.lbl.gov

GABS calculates absolute gamma-ray intensities and a decay-scheme normalizing factor (NR) for converting relative intensities to absolute values per 100 decays of the parent nucleus. The program calculates the decay mode branching ratios (BR) for radionuclides that decay through several decay modes. It also calculates the uncertainties in all these quantities.

<u>Input file:</u> GABSPC reads up to three data sets (ENSDF format). See the documentation for modifications to the standard ENSDF format for use by this program. Sample input: GABS.IN.

Output files:

- 1. Report file summarizing the results of the calculations (default: GABSPC.RPT).
- 2. New ENSDF formatted file containing the results of the calculations (may not already exist). Sample output: GABS.OUT

<u>Terminal dialog</u>: The program will ask for an input file name, a report file name, if a new file should be created ("Y"; default is no, case insensitive), and, optionally, the name of the output file.

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

<u>Additional documentation:</u> PROGRAM GABSPC (Version 9, May 2000). Edgardo Browne, Lawrence Berkeley National Laboratory. Adapted for IBM PC by Coral M. Baglin (September 1991).

GTOL

Version 6.4a [July 11, 2001]

Author: Thomas W. Burrows

Dept. of Energy Sciences and Technology National Nuclear Data Center Bldg. 197-D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-5084 FAX: 631-344-2806 Email: NNDCTB@BNL.GOV

(Original authors: W.B. Ewbank, Nuclear Data Project, Oak Ridge National Laboratory; B.J. Barton, National Nuclear Data Center, Brookhaven National Laboratory; and L.P. Ekstrom and P. Andersson, Department of Nuclear Physics, Lund University)

In this program, gamma-ray energies are used to derive a set of least-squares adjusted level energies. The net feeding at each level is calculated from the input γ intensities and conversion coefficients. Unplaced or questionable γ s, or γ s whose final level is ambiguous or unknown are ignored.

The program parses the DSID of each data set and, if there is no indication of possible gamma records within the data set, skips it. In addition, the program will not calculate the intensity balancing for adopted data sets.

Input file: An ENSDF formatted file with the following optional information:

An option record with 'OPTION' in col. 1-6 may precede any data set and contain any of the following options in free format:

Option	Meaning			
NOREC	No recoil correction, <i>i.e.</i> , recoil correction has already been applied to E_{γ}			
RECOIL	Perform recoil correction (DEFAULT)			
MARKED	Process onlydata sets preceded by a card with '*GTOL' in col. 1-5			
ALL	Process all data sets (DEFAULT)			
DEG=	For the current data set, override default assumption of 1 keV where no			
	uncertainty on the gamma energy is given. Following the equal sign may be			
	either a number or a number followed by a percent sign. A number alone			
	indicates the uncertainty on E_{γ} in keV while a number followed by a percent			
	sign indicates the fractional percent uncertainty to be assigned.			
DRI=	For the current data set, assume a default uncertainty for the relative I_{γ} when			
	none given. A number alone indicates the uncertainty on I_{γ} in the current			
	relative units while a number followed by a percent sign indicates the fractional			
	percent uncertainty to be assigned.			
DTI=	For the current data set, assume a default uncertainty for when none given. A			
	number alone indicates the uncertainty on $I_{\gamma+ce}$ in the current relative units			
	while a number followed by a percent sign indicates the fractional percent			
	uncertainty to be assigned.			

Note that an option card resets the defaults.

A level energy can be held fixed by adding the letter 'F' somewhere in the energy field (columns 10 - 21). If the output option to create a new file containing the adjusted level energies is chosen, 'F' will be removed and a level documentation record will be added (LEVEL ENERGY HELD FIXED IN LEAST-SQUARES ADJUSTMENT).

If DRI= or DTI= are specified on an OPTION record, the assumed uncertainty may be overridden for an individual intensity, by adding an "E" separated from the intensity in either the RI or TI fields.

If DEG=, DRI=, or DTI= are specified on an OPTION record and a new file is created, FOOTNOTE COMMENTS will be generated and inserted as necessary.

Sample input file: DATA.TST

Output files:

- 1. Report file. The report file will contain a summary of the data input and actions taken by the program (*e.g.*, unplaced or questionable γ s ignored) and the following optional outputs for each data set:
 - a. Comparison of input gamma energies to those calculated based on the adjusted level energies.
 - b. Comparison of calculated net feedings to each level with values input on B, E, or A records

Note: if the calculated net feeding overlaps zero within three standard deviations, the program will calculate estimated upper limits (90% confidence level) using two methods suggested by Louis Lyons in Statistics for Nuclear and Particle Physicists (Cambridge University Press) and report these estimates if they differ by more than 0.01. The two methods are:

i. (Integral of gdB from 0 to Bl)/(Integral of gdB from 0 to infinity)=0.9 where g is the normal (Gaussian) distribution.

- ii. $Bl < Bm + 1.28\sigma$.
- c. If a new file is generated a comparison of the old and new records will also be generated.

Sample output file: GTOL.RPT

2. New file containing the adjusted level energies (optional). Sample output file: None

<u>Terminal dialog</u>: The program will request the input and report (default: GTOL.RPT) file names and ask if you wish a new file created (default: no new file) and for the new file name, to suppress the gamma-energy comparison (default: no suppression), and to suppress the intensity comparison (default: no suppress of the program will be noted on the terminal as well as possible problems.

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional documentation:

B.J. Barton and J.K. Tuli. Physics analysis programs for nuclear structure evaluation. Brookhaven National Laboratory Informal Report BNL-NCS-23375/R (1977).

L.P. Ekstrom and P. Andersson. FORTRAN 77 versions of string handling subprograms and the programs GTOL and MEDLIST. Nuclear Physics Report LUNFD/(NFFR-3049)/1-27, (Lund University, Sweden. 1983).

Additional notes:

- 1. If the level energies are of the form X, Y, Z, *etc.* or E + X, E + Y, *etc.*, the least-squares fit is done separately for each group of states and merged back into the final results. Similar to FMTCHK, an arbitrary energy is assigned to the level based on the energy of the previous energy. This is used to sort the levels in the energy comparison but <u>is not</u> used when creating the new output file.
- 2. FMTCHK should be rerun if a new file is created since the order of the level energies may have changed as a result of the least-squares adjustment. This may occur when there are two closely lying levels or if there is a series of levels with unknown energies (e.g., E + X) interspersed with levels of known energy.
- 3. If the connecting information is too sparse, the matrix created may be singular and cannot be inverted (this generally occurs for adopted datasets and other datasets where there are levels with no de-exciting γ s). In such instances, check the report file for levels that do not de-excite and fix these levels.
- 4. As noted above, uncertainly placed γ s are ignored in the least-squares fit and the intensity balance calculations. This means possible additional iterations to obtain an estimate of the excitation energies and their possible contributions to the uncertainties of the intensity balances:
 - a. To obtain an estimate of the excitation energies of levels only connected by such transitions, modify the input by removing the "?" in column 80 of the relevant gamma records and adding "F" in the energy fields of any connected level records which also are fed or de-excited by other γ s. Factor the results of the new least-squares fit into the original file.

b. To obtain an idea of the effect of uncertainly placed γ s on the intensities, modify the input file by removing all "?" in column 80 of the gamma records. By comparing the original intensity balance calculations with the new one, you will be able to estimate the effect of these transitions on the balance uncertainties.

HSICC Program Package

The HSICC program package consists of the programs HSICC (calculates internal conversion coefficients), HSMRG (merges new gamma records created by HSICC with the original input data), BLDSHST (builds a direct access file of the internal conversion coefficient table), and SEQHST (recreates a sequential file of the internal conversion table from the direct access file). These are described separately on the following pages.

<u>Compilation and loading instructions:</u> HSICC requires subroutines from the NSDFLIB package; the others do not.

HSICC Program Package — HSICC

Version 11.13f [Oct. 9, 2001]

Author: Energy Sciences and Technology Department National Nuclear Data Center Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2901 FAX: 631-344-2806 Email: NNDC@BNL.GOV

> (Original authors: R.S. Hager and E.C. Seltzer, California Institute of Technology; W.B. Ewbank and J.B. Bell, Nuclear Data Project, Oak Ridge National Laboratory; B.J. Barton, National Nuclear Data Center, Brookhaven National Laboratory; and G. De Smet and M. Verboven, Nuclear Physics Lab., Belgium)

This program calculates internal conversion coefficients by spline (cubic) interpolation tabulated values from Hager and Seltzer for the K, L, and M shells and from Dragoun, Plajner, and Schmetzler for the N + O + ... shells.

Input files:

- 1. ENSDF formatted file. Sample input file: DATA.TST. NOTE: The input data should not be modified before running the code HSMRG.
- 2. ICC index file (created by the program BLDHST).
- 3. Binary file of ICCs (created by the program BLDHST).

Output files:

- 1. Complete report of calculations. Sample output file: HSCALC.LST.
- 2. New G/2G records generated by the program. This is used as input to the program HSMRG. Sample output file: CARDS.NEW.
- 3. Comparison of new and old G/2G records. Sample output file: COMPAR.LST.

Terminal dialog: The program will ask for the following information:

- 1. Input files
 - a. Name of input ENSDF file (default: DATA.TST)
 - b. Name of ICC index file (default: ICCNDX.DAT)
 - c. Name of ICC binary table file (default: ICCTBL.DAT)
- 2. Output files
 - a. Name of file from complete report (default: HSCALC.LST)
 - b. Name of file containing new G/2G records (default: CARDS.NEW)
 - c. Name of comparison file (default: COMPAR.LST)

Additional documentation:

R.S. Hager and E.C. Seltzer. Internal Conversion Tables. Part 1: K-, L-, M-Shell Conversion Coefficients for Z = 30 to Z = 103. Nucl. Data A4, 1 (1968).

O. Dragoun, Z. Plajner, and F. Schmutzler. Contribution of Outer Atomic Shells to Total Internal Conversion Coefficients. Nucl. Data Tables A9, 119 (1971).

B.J. Barton and J.K. Tuli. Physics analysis programs for nuclear structure evaluation. Brookhaven National Laboratory Informal Report BNL-NCS-23375/R (1977).

<u>Additional notes:</u> If E_{γ} is near the threshold for internal conversion, new records are not created.

HSICC Program Package — HSMRG

Version 7.1a [Sept. 17, 2001]

Author: Energy Sciences and Technology Department National Nuclear Data Center Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2901 FAX: 631-344-2806 Email: NNDC@BNL.GOV

(Original author: Bruce J. Barton)

This program merges the new (corrected) G-records created by HSICC with the input dataset file to create an updated dataset file.

Input files:

- 1. Input data file (ENSDF format). This must be the same input file used by HSICC. Sample input file: DATA.TST
- 2. Correction file of G-records created by HSICC. Sample input file: CARDS.NEW

Output file: Updated file (ENSDF format). Sample output file: CARDS.MRG

<u>Terminal dialog</u>: The program will ask for the names of the input file used by HSICC (default: DATA.TST), the correction file created by HSICC (default: CARDS.NEW), and the merged data file (default: CARDS.MRG).

Additional documentation: none

HSICC Program Package — BLDHST

Version 3.6 [Feb. 9, 2001]

Author: Energy Sciences and Technology Department National Nuclear Data Center Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2901 FAX: 631-344-2806 Email: NNDC@BNL.GOV

(Original author: Bruce J. Barton)

This program builds the Hager-Seltzer direct access table plus index from a sequential file.

<u>Input file:</u> A sequential access symbolic file of 80 character records (Z, SHELL, EG, E1, E2, E3, E4, M1, M2, M3, M4) = (I3, A2, F7.2, 8E8.2). Data file included: ICCSEQ.DAT. For MS-DOS, four additional files, H1.DAT through H4.DAT, are included covering Z = 3 - 34, Z = 35 - 59, Z = 60 - 82, and Z = 83 - 103, respectively.

Output files:

- 1. Direct access table consisting of a binary file of 11 word (44 bytes) records. 13004 records in the file if ICCSEQ.DAT is used as input.
- 2. An index consisting of a direct access binary file of one word (4 bytes) records. The Zth record is the integer record number pointer to the direct access table.

<u>Terminal dialog</u>: The program will first ask for the sequential input file name (default: ICCSEQ.DAT) and then the output table and index file names (defaults: ICCTBL.DAT and ICCNDX.DAT).

Additional documentation: none

HSICC Program Package — SEQHST

Version 3.4 [Feb. 9, 2001]

Author: Energy Sciences and Technology Department National Nuclear Data Center Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2901 FAX: 631-344-2806 Email: NNDC@BNL.GOV

(Original author: Bruce J. Barton)

This program converts the Hager-Seltzer direct access table to a sequential text file format.

Input file: The direct access table is a binary file of 11 word records. 13004 records in the file.

<u>Output file:</u> The text file is a sequential access symbolic file of 80 character records (Z, SHELL, EG, E1, E2, E3, E4, M1, M2, M3, M4) = (I3, A2, F7.2, 8E8.2). Data file included: ICCSEQ.DAT.

<u>Terminal dialog:</u> The program will first ask for the binary table file name (default: ICCTBL.DAT) and then the sequential output file name (default: ICCSEQ.DAT).

Additional documentation: none

LOGFT

Version 7.2a [Mar. 20, 2001]

Author: National Nuclear Data Center Building 197D Brookhaven National Laboratory Upton, NY 11973 Phone: 631-344-2901 FAX: 631-344-2806 Email: NNDC@BNL.GOV

(Original authors: N.B. Gove and M.J. Martin, Nuclear Data Project, Oak Ridge National Laboratory, and B.J. Barton, National Nuclear Data Center, Brookhaven National Laboratory)

This program calculates $\log ft$ for beta decay. It also calculates the partial capture fractions for electron capture, the electron capture to positron ratio for positron decay, and the average beta energies. It will do special calculations for first and second forbidden unique; all other categories are treated as allowed.

Input files:

- 1. ENSDF formatted file. Sample input included: DATA.TST
- 2. Radial wave function data. Data file included: LOGFT.DAT

Output files:

- 1. Report file. Sample output included: LOGFT.RPT
- 2. New ENSDF formatted file with appropriate values for B and E cards updated. Sample output included: LOGFT.NEW

<u>Terminal dialog</u>: The program will ask for the names of the input data file (default: DATA.TST), the report file (default: LOGFT.RPT), the file containing the wave function data (default: LOGFT.DAT), and the file to be created (default: LOGFT.NEW).

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional documentation: N.B. Gove and M.J. Martin. Log-f tables for beta decay. Nuclear Data Tables A10, 206 (1971).

Additional notes:

- 1. New records will not be created if there are non-numeric parent or level energies, Q-values, or associated uncertainties.
- 2. If Lyon's method 1 has been used to estimate the intensity, LOGFT should also be run using the original values.

NSDFLIB

Version 1.5d [June 28, 1999]

Author: National Nuclear Data Center Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-2901 FAX: 631-344-2806 INTERNET: NNDC@BNL.GOV

This subroutine package consists of three subroutine packages F77STR (Fortran 77 String Processing Library), NSDCNV (Fortran 77 Conversion Routines), and NSDMTH (Fortran 77 Mathematical Routines). All elements of the package have been written to conform to the ANSI standard for Fortran 77, and are therefore machine independent. The version number and date given in this "read me" is for F77STR.

Input file: none

Output file: none

Terminal dialog: none

<u>Compilation and loading instructions:</u> This subroutine package is required by most of the ENSDF analysis and utility codes and should be compiled and linked as necessary with them.

Additional documentation: Internal National Nuclear Data Center memo NSDFLIB.MEM

PANDORA

Version 6.6a [Mar. 28, 2001]

Author: J.K.Tuli

Energy Sciences and Technology Department National Nuclear Data Center Building 197D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-5080 FAX: 631-344-2806 Email: NNDCJT@BNL.GOV

This program provides the following physics checks for an ENSDF file.

- 1. Decay data sets have a P-card
- 2. An L-CARD with T1/2 > 0.1 S should have MS FLAG.
- 3. Check consistency of spin/parity of levels with multipolarity connecting transitions.
- 4. For a transfer reaction with even-even target J = L+-1/2.
- 5. For 3.6 < log ft < 5.9, $J^{i-1} \le J^{f} \le J^{i+1}$, no parity change. For 1U in cols. 78-79 and log $ft \ge 8.5 J^{f} = J^{i\pm 2}$, parity change.
- 6. For alpha decay, if the mass is odd and HF < 4, $J^{f}=J^{i}$, no parity change. If J^{f} or $J^{i} = 0$, parity change = $(-1)^{(Jf-Ji)}$
- 7. Levels out of order.

Input files: ENSDF formatted file. Sample input file: PANDIN.DAT.

Output files:

- 1. FILE.ERR. Errors and warnings about the input data. Sample output file: FILE.ERR.
- 2. FILE.GAM. Report of the γ s in the input file arranged by A, Z, E_{γ}, and DSID. Sample output file: FILE.GAM.
- 3. FILE.GLE. Report of the γ s in the input file arranged by A, Z, E_(parent level), E_{γ}, and DSID. I_{γ} given are branching ratios (I_(strongest γ) = 100). Sample output file: FILE.GLE.
- 4. FILE.LEV. Report of the levels in the input file arranged by A, Z, E_{level}, and DSID. Sample output file: FILE.LEV.
- 5. FILE.RAD. Report of β/ϵ in input file arranged by A, Z, $E_{\beta/\epsilon}$, and DSID. Sample output file: FILE.RAD.
- 6. FILE.REP. Reports ignored records, levels that have no match in adopted levels, frequency of XREF symbols, new XREF symbols, *etc.* Sample output file: FILE.REP.
- 7. FILE.XRF. Reports the cross-reference records. The cross-reference symbols are also given in FILE.LEV. Sample output file: FILE.XRF.
- 8. New ENSDF formatted file with XREFs added or modified. Sample output file: PANDOR.OUT.

Generation of the files reporting on the gammas, levels, and radiations and the new ENSDF formatted file is optional. There is no option to specify file names for the FILE.* outputs.

<u>Terminal dialog</u>: The program will ask for the input file name and then if the user wishes the level, gammas, and radiation reports (default: 0 for no) and a new file generated (default: 0 for

no). If new output is specified, the user will be queried for the output file name. As generation of the various output files is completed, this will be noted on the terminal.

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional documentation: Internal document (PANDOR.PSC).

RadList

Version 5.5 [October 5, 1988]

Author: Thomas W. Burrows Dept. of Nuclear Energy National Nuclear Data Center Bldg. 197-D Brookhaven National Laboratory Upton, NY 11973 Phone: 631-344-5084 FAX: 631-344-2806 INTERNET: NNDCTB@BNL.GOV

> (Original authors: W.B. Ewbank and M.J. Kowalski, Nuclear Data Project, Oak Ridge National Laboratory; B.J. Barton, National Nuclear Data Center, Brookhaven National Laboratory; and L.P. Ekstrom and P. Andersson, Department of Nuclear Physics, Lund University)

This program is designed to calculate the nuclear and atomic radiations associated with the radioactive decay of nuclei. It uses as its primary input nuclear decay data in the ENSDF format. Listings or computer files containing the energies, intensities, and dose rates for various nuclear radiations are produced. These outputs also contain the energies, intensities, and dose rates of the associated atomic radiations. Optionally the continua spectra for β^{\pm} decay and for internal bremsstrahlung associated with β^{\pm} and electron-capture decay may be calculated.

Input files:

- 1. ENSDF formatted file. The following optional records as defined in cols. 1-9 of the record are allowed:
 - a. MERGE/ENDMERGE Specifies that the radiations from the data sets contained between them will be merged on output (ignored if the data-base option is selected)
 - b. PAGE Causes the radiation listing output to begin on a new page for the following data set.
 - c. PARAMETER Various parameters affecting the calculations or output of the program may be given in cols. 10 80 of this record which immediately precedes a data set and only affects that data set. The parameters are:
 - i. ALLGAM Overrides the minimum intensity cutoff for radiations and outputs all gammas. No value should be given for this parameter.
 - ii. MAXEC Specifies the number of electron-capture branches to be listed in the radiation listing (default = 0).
 - iii. MAT Specifies a material number for ENDF-6 output (default is based on the Z and A of the parent).
 - iv. RIMIN Specifies the minimum intensity cutoff (in percent) for radiations (default = 0.001% except for the data-base option $[10^{-12}\%]$).
 - v. WEIGHT Specifies an arbitrary weighting fraction. Not allowed with database and ENDF-6 options.

Sample input file: RADLST.INP. See the report for an explanation of what is tested within this sample input.

- 2. Atomic electron binding energies, fluorescence and Auger-electron yields: One of the following two data files must be present:
 - a. Direct access binary file (ATOMIC.DAT). The program will generate this file if it does not exist and the following file is available.
 - b. Sequential file (default name: MEDNEW.DAT). Data file provided with distribution.
- 3. Atomic mass data: If neither of the two following files is present, the program will calculate atomic masses based on the Garvey-Kelson formalism.
 - a. Direct access binary file (WAPSTB.DAT). The program will generate this file if it does no exist and the following file is available.
 - b. Sequential file (default name: RADMAS.DAT). Data file provided with distribution.

Output files: With the exception of the report file, these files are options.

1. Report file: The input data are listed in cols 2-81 and messages reporting possible problems or assumptions made are given in cols 82-133. Possible severe errors are noted on a line following the record in question.

After all relevant radiation data have been analyzed, there will be a summary of the energy deposited by the radiations and recoiling nuclei and a comparison between the sum of these deposited energies and the energy expected from the branching ratios and Q values.

- 2. Radiations listing: Fortran-formatted file containing the nuclear and atomic radiations obtained by the program. See the report for additional details.
- 3. Database file: Presents the data generated by the program in a fixed computer-readable format. See the report for additional details.
- 4. ENDF-6 format file: MT = 1, MF = 451 (comments) and MT = 8, MF = 457 (decay data) sections are generated.

Either the ENSDF-6 file or the database file may be generated but not both.

Terminal dialog:

- 1. The program will ask which output files should be generated (defaults: radiation listing; no ENDF-like file or database file).
- 2. Unless the database option is chosen, the user will be asked if the continua should be calculated (default: no).
- 3. The names of the input and report files will be requested (defaults: RADLST.INP and RADLST.RPT).
- 4. If the binary data files are not present, the user will be asked for the names of the sequential files.
- 5. The user will be asked the names of the various output files to be generated (defaults: ENSDF.RPT, NUDAT.OUT, and ENDF.RAW).
- 6. The source of the atomic data and the mass data will be noted.
- 7. As each data set or group of data sets are processed, a summary of the results will be displayed on the terminal.

<u>Sample terminal dialogs and outputs</u>: Following are descriptions of the sample files included in the distribution. NOTE: This supersedes Appendix B of the report. The various outputs in these files are separated by "%%%%" followed by the type of output and in some cases only show those outputs where there are major differences.

- 1. RADLST1.OUT: Normal options
- 2. RADLST2.OUT: ENDF option

- 3. RADLST3.OUT: Database file option
- 4. RADLST4.OUT: Continua with bremsstrahlung chosen
- 5. RADLST5.OUT: ENDF with continua with bremsstrahlung chosen

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

<u>Additional documentation:</u> T.W. Burrows. The program RADLST. Brookhaven National Laboratory Report BNL-NCS-52142 (1988).

RULER

Version 1.31a [July 15, 2002]

Author: Thomas W. Burrows Dept. of Advanced Technology National Nuclear Data Center Bldg. 197-D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-5084 FAX: 631-344-2806 Email: NNDCTB@BNL.GOV

This program either calculates the reduced electromagnetic transition strengths and compares these to the Recommended Upper Limits (RUL) or calculates BELW and BMLW for inclusion in ENSDF data sets. Primarily designed to work on ADOPTED LEVELS, GAMMAS datasets but will process any dataset whose DSID indicates the presence of gammas.

Input file: ENSDF formatted file. Sample input file: RULER.IN

Output files:

- 1. The report file will list the datasets and note any problems or assumptions by the program. Comparison mode: will show the calculations and compare the results to the RULs noting possible violations; calculation mode: will show the calculations and compare the old and new values for BELWs and BMLWs. Sample output files: RULER1.RPT (comparison) and RULER2.RPT (calculation).
- 2. Optionally a new file will be created containing the calculated BEλWs and BMλWs. Sample output file: RULER.OUT.

<u>Terminal dialog</u>: The program will request the input and report file specifications, the mode of operation (answer is case sensitive), and, optionally, the new file specifications.

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional documentation: Distribution memo (RULER.PSC)

TREND

Version 8.3 [Feb. 7, 2001]

Author: Robert R. Kinsey Dept. of Advanced Technology National Nuclear Data Center Bldg. 197-D Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 Phone: 631-344-5096 FAX: 631-344-2806 Email: KINSEY@BNL.GOV

(Other author: Bruce J. Barton)

This program generates ENSDF data tables report and allows the user to view and control the output file on the screen.

Input file: An ENSDF formatted file. Sample input file: DATA.TST.

Outputs:Tabular representations of the ENSDF data similar in organization to the Nuclear DataSheets are generated either as a report file or as a file capable of being viewed interactively on
anorVT52VT52terminal.

Sample output file: TREND.RPT (132 columns; 66 lines per page)

<u>Terminal dialog:</u> The program will request the following information:

- 1. Input file name
- 2. Output file name
- 3. If the output file exists, does the user wish to view it?
- 4. 80 or 132 column display (no defaults)

5. Lines per page (defaults: 60 if 80 column display; 66 if 132 column display). The user should specify 24 for screen display.

If the user has specified "TT:" or "TTY:" (case insensitive) as the output file name, answered yes to viewing an existing file, or 24 lines per page, the tables will be displayed on the screen with a prompt line at the bottom. The user may scroll up and down through the tables.

<u>Compilation and loading instructions:</u> This program requires subroutines from the NSDFLIB package.

Additional documentation: None

GUIDELINES FOR EVALUATORS

M. J. Martin¹ J. K. Tuli²

April, 1988

1 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

2 NNDC, Brookhaven National Laboratory, Upton, New York, USA

E-mail: tuli@bnl.gov

CONTENTS

GUIDELINES FOR DECAY AND REACTION DATA SETS

- A. Extraction of Data
- B. Manipulation and Presentation of Data
- C. Systematics
- D. Uncertainties
- E. Resonances
- F. L Transfers
- G. Spectroscopic Factors
- Η. Jπ
- Ι. Ιγ, ΤΙ
- J. Mult, δ , α
- K. g Factors, μ , Q

GUIDELINES FOR ADOPTED LEVELS, GAMMAS DATA SETS

- A. General
- B. E(Level)
- С. Jπ
- D. Other Level Properties
- Ε. Εγ, Ιγ, ΤΙ
- F. Mult. δ , α
- G. Reduced Transition Probabilities

GUIDELINES FOR DECAY AND REACTION DATA SETS

A. Extraction of Data

1. In any experiment, the author's basic measured quantities should be quoted, unless these data can be converted to more usual or convenient forms by applying <u>known</u> numerical factors (for example, mean-life to half-life, BE2(sp) to BE2).

Quote what was actually measured in an experiment and not necessarily what the authors quote, in cases where these are different.

<u>Note</u>: A measurement of $I\gamma/\Sigma I\beta$ might be quoted by an author as $I\beta(gs)$, which, for the author's decay scheme should be equivalent to the absolute $I\gamma$ determination, but is not as fundamental a quantity. If the decay scheme is changed, the $I\beta(gs)$ could change, whereas the absolute $I\gamma$ measurement should still be valid. Failure to make such an important distinction is a particularly common source of confusion when normalization conditions are being stated.

A measurement of $I\gamma^+/I\gamma$ might be quoted by an author as $I\beta^+/I\gamma$. The ratio should be expressed in terms of the annihilation radiation, since $I\beta^+/I\gamma$ could imply that the positron spectrum was measured.

2. Document any and all changes made in data quoted from an author. When correcting an author's value for a quantity, for example an error due to a misprint, give the corrected value in the appropriate field, and mention the uncorrected value in a comment. Do not give the uncorrected value in the field, and rely on the comment to define and explain the correct value.

3. When extracting data from an author's paper, note any assumptions, standards, or constants that enter into a derived value, and correct the data for any changes in these assumed values. For example, an ϵ/α ratio for one nucleus might depend on the value assumed for another nucleus, or a conversion coefficient might be normalized to a standard value. Such data should be presented in such a way that the effect of changes in any of the assumed values is clearly displayed; thus, " $\alpha_k = 0.0324 \ 12 \ \text{if } \alpha_k = 0.0324 \ 12 \ \text{if } \alpha_k (^{137}\text{Cs}) \dots$ ". Better values for the assumed quantities might be available at the time the mass chain is being revised.

4. Check the bibliography in each article against the reference list provided by BNL. This action is a valuable cross-check to help ensure that references have not been overlooked. Also, authors will sometimes quote data received as private communications; these data should be tracked down if possible if they seem important.

5. Do not rely on an author to extract older data correctly. Even if an author collects such data in a table, the original article should be checked. This checking procedure is especially important in view of 3, above.

6. Be sure to distinguish between values <u>measured</u> by an author and those <u>deduced</u> by the same author. For example, in a transfer reaction, an author might adopt L values for some transitions based on known $J\pi$ in order to extract values for other levels. Such a distinction should be made clear.

B. Manipulation and Presentation of Data

1. Comments

(a) For data sets in which the data appear in two or more separate sections in the data sheets output, namely decay data sets and reaction data sets involving gammas, the comments should always be written in such a way that they are clearly separated into general comments, comments on levels, comments on gammas etc. This "separation" of comments avoids the problem of having comments appear where they are not appropriate (of course these comments can be edited out where they are not appropriate, but this is a step that should be avoided).

<u>Note 1</u>: A single comment such as "the level scheme is that of . . . based on. . . The E γ and I γ are from ..., with I γ normalized so that... The I β are from the I(γ +ce) imbalance at each level" should be rewritten as separate general comments on levels, gammas and betas, or as specific data-type comments on E γ , I γ , I β , as appropriate.

<u>Note 2</u>: Comments on $\gamma\gamma(\theta)$, $\gamma\gamma(t)$, $\gamma(\theta,H,T)$ etc. in a given data set should normally be given with levels rather than with gammas since it is usually under the levels listing that one wants to see comments on the values of J, T¹/₂, or μ etc., deduced in that data set from measurements of these types. If the $\gamma\gamma(\theta)$ data also yield δ values, the comment on δ in the gamma listing can simply state that the relevant $\gamma\gamma(\theta)$ data are discussed in the levels listing.

(b) General comments of a descriptive nature at the head of individual data sets should be kept to a minimum. In particular, comments for each keynumber that describe what was measured (such as $E\gamma$, $I\gamma$), or what detection method was used (such as semi, Ge(Li)) are not required, but can be given at the evaluator's discretion. The only required comments are the specification of bombarding energy and energy resolution for reaction data sets. Projectile energy and experimental resolution should be given for <u>each</u> reference from which data are quoted, even if not a major source. Such information may also be useful for other references. For grouped reactions, such as (HI, xn γ) or Coulomb excitation, the bombarding particle would of course also need to be specified for each keynumber. In addition, for Coulomb excitation, the distinction between particle detection, (x, x'), and gamma detection, (x, x' γ) should be made. Examples are given in (e) below.

<u>Note 1</u>: The bombarding energy and resolution for reference "A" are of interest in a case where, although most of the excitations energies are from some other source, reference "A", whose data are not otherwise included, reports a level not seen by the other sources, and the evaluator chooses to include this level. In many cases, evaluators refer to reference "A" only in a comment on the specific level in question; however, <u>reference "A" should be included explicitly with the other references in the heading.</u>

<u>Note 2</u>: The specification of "s" for spectrometer is an example of the additional type of information that is probably not worth giving, since such an entry conveys only partial information on the experimental setup while giving the analyzer the fact that photographic plates and aluminum absorbers, for example, were used may be of equal importance. In most cases it would be very difficult to write exhaustive comments such that the reader would not have to look at the paper to obtain the necessary experimental details, so there is no strong reason for giving just part of the picture. The specification of "semi" or "Ge(Li)" is also not really needed. Few modern papers contain "scin" data. Probably useful to specify "cryst", since such measurements can be very precise, and the calibration uncertainties are then known to be proportional to $E\gamma$.

<u>Note 3</u>: Specific comments such as "E γ are weighted averages from 77Sc02 and 79Fell. Others: 72Go04, 78Hi23" specify the important references for E γ , and are more informative than a set of keywords presented uncritically.

<u>Note 4</u>: The specification of the angular range might be useful in a case such as the assigning of L = 0 as opposed to L = 2 in (α, α') for a giant resonance. This assignment requires knowledge of the angular yield variation at angles near zero. An indication that this range was measured lends credence to an author's conclusion that L = 0. However the same information could be given instead in a comment discussing the author's conclusion.

c) Do not put E = ... on the ID record, except when needed to distinguish otherwise identical data sets, for example, $(n, \gamma) E = th$ and $(n, \gamma) E = res$. The bombarding energy should be put in a comment; see examples in (e) below.

d) Except for even-even targets, $J\pi$ (target) should be given for particle transfer reactions in which L values were determined. A general comment such as " $J\pi$ (¹³⁹La) = 7/2⁺" is recommended; see examples in (e) below.

e) For readability of the comments referred to above, each keynumber followed by the appropriate comments should be given on a separate line with the keynumber first. The following are some examples.

²⁰⁸Pb Levels from ²⁰⁸Pb(d, d'), (pol d, d')

71Un0l E = 13 MeV, FWHM = 3-10 keV, θ = 125°-150° 80Mo18 E = 86 MeV, FWHM = 1 x 10⁻³ 80Wi12 E = 108 MeV, θ = 4°-14° (partial data also reported in 80Dj02) Others: 62Jo05, 68Hi09

²⁰⁸Pb Levels from Coulomb Excitation

69Ba51 (x, x') X = α, E = 17-19 MeV; x = 16 0, E = 69.1 MeV 71Gr31 (x, x'γ) x-α, E = 15,18 MeV

 $\frac{208}{\text{Bi Levels from}}$ $\frac{207}{\text{Pb}}(\frac{3}{\text{He}}, d), (\alpha, t)$ 71Al05

E(³He) = 30 MeV, FWHM AP 20 keV, $θ = 10^{\circ}-70^{\circ}$ E(α) = 30 MeV, $θ = 20^{\circ}$, 50° Jπ(²⁰⁷Pb) = 1/2⁻

²⁰⁸Bi Levels from ²⁰⁸Pb(p, n), (p, np') IAS

74Fi14	E - 25.8	MeV
80Ho21	E = 120	MeV, FWHM AP 670 keV; 160 MeV, FWHM AP 1200 keV
	Others:	72Wo23, 71Wo04
	73Wo04	E = 30.5 MeV
	77Bh02	E = 25 MeV, n-p' coin
	Others:	79LiZU, 71Wo04
	74Fi14 80Ho21	$\begin{array}{ccc} 74Fi14 & E-25.8\\ 80Ho21 & E=120\\ Others:\\ 73Wo04\\ 77Bh02\\ Others: \end{array}$

2. Combining data sets

Do not combine reactions that are of fundamentally different character, for example (p, p') and (n, n'), or one-and two-particle transfer reactions.

Except for Coulomb excitation, separate data sets should be created for particle and gamma reactions, for example (d, p) and (d, p γ), or (p, p') and (p, p' γ). Attempting to combine the different types of information usually presented in the two reactions leads to confusion in the presentation. Typically, one wants to present the L (and/or J) and S information from the particle work, and adopted J π for the gamma drawings.

The reaction (X, X') is intended to include (X, X); there is no need to include explicitly the special case of elastic scattering.

<u>Note</u>: In general, we do not include in the data sheets the type of information extracted from elastic scattering, so it is rare that the reaction (X, X) would appear alone. One exception is the case of resonance work, where information on resonances in the compound nucleus can be obtained and may be of importance (see Section F, below). Information on nuclear shapes and charge densities, etc., deduced from elastic scattering can be given, or referred to, in adopted levels without the need for the (X, X) source data set.

3. Sources of data

Sources of data for all headings, for example E(level), $I\gamma$, δ , L, S, should be given unless "obvious". The final decision as to whether a source is obvious or not will reside with the editors. Keep in mind that each evaluator has the responsibility to ensure that the data presented are traceable to their source.

When more than one keynumber is included on an ID record, the keynumber from which the individual pieces of data are taken should be stated. If a reader wants to check an E, I γ , or S, for example, that reader should be able to go directly to the relevant reference or references.

Note: A comment on $I\gamma$, stating "from X" or "weighted average of data from X and Y" is preferable to requiring the reader to deduce the sources of data based on the keywords in the general comments described in (1) above.

4. Placement of gamma records

Gammas should be placed in order of increasing energy following each level for consistency in presenting drawings (and for convenience in reading data bank listings). This same order should be followed in the unplaced gammas listing.

5. Significant digits

When converting values from one set of "units" to another (for example, half-life to mean-life, or renormalizing I γ values), enough digits should be retained so that the inverse operation will reproduce the original values. Note that in some cases this exercise will result in more digits being quoted in the converted value than in the original value. This procedure is especially important when dealing with quantities determined with fairly high precision. For example, from BE2 = 0.384 4, one should report T1/2 = 7.27 ps 8, not 7.3 ps 1, and from a mean-life of 32 ps 1, one should report T1/2 = 22.2 ps 7, not 22 ps 1. Another way of stating this principle is that the fractional uncertainty in the original value should be preserved (to the same number of significant digits) in the converted value.
When taking a weighted or unweighted average, quote a sufficient number of digits to correspond to our round-off procedure; that is, whenever possible, quote two digits for uncertainties up to 25. For example, a weighted average of 6.0 1 and 6.1 1 should be quoted as 6.05 7.

6. Multiplets

(a) Unless a complex peak in a reaction spectrum is resolved in a given experiment, a single "level" entry should be made. For example, in the case of a peak suspected of being made up of two levels with $J\pi = a$ and $J\pi = b$, respectively, on the basis of work from other experiments, a single level with " $J\pi = a$ and b" in the $J\pi$ field should be introduced. Inclusion in this data set of two levels involves making an explicit assumption that is not necessary. The probable level association can be adequately explained in a comment; this same approach should be used with gammas. A multiply-placed transition seen as a single peak in the spectrum should appear in the output as one transition with multiple placements. Do not introduce additional transitions (with artificially altered energies, or energies taken from the level scheme).

<u>Note</u>: If the intensity of a gamma multiplet is not divided among the several placements, the full intensity, with uncertainty, should be given for each placement, along with "&" in column 77. Do not enter the intensities as limits in source data sets; converse is true in adopted gammas, where multiply-placed I γ should be entered as upper limits; see Note under Section E. 2. in GUIDELINES FOR ADOPTED LEVELS. If the intensities are divided, for example on the basis of $\gamma\gamma$, "@" should be entered in column 77. These entries will automatically generate footnotes explaining that the transitions are multiply placed and that the intensities are not divided (for "&"), or are suitably divided (for "@").

(b) If a gamma transition or a peak in a reaction spectrum is claimed to be a multiplet, the basis for this claim should be given. For example, the gamma peak might be broad, or coincidence data might suggest that a peak is a multiplet. In the case of a peak in a reaction spectrum, experimental arguments such as "peak is broad" should be distinguished from theoretical arguments such as "C2S is too large for a single level on the basis of shell model expectations".

(c) Consider gamma-ray multiplets where I γ (peak) in a specific data set cannot be decomposed on the basis of data available in that data set, but branchings involving one or more of the members of the multiplet are available from other data sets; I γ for members of the multiplet should be deduced where possible using such branchings. Appropriate comments, such as "I γ : From I γ (326 γ)/I γ (432 γ) in Adopted Gammas", are of course required, and "@" should be entered in column 77.

d) A multipolarity determined for a multiplet will not necessarily be correct for each, or perhaps even any, member of the multiplet. For example, depending on the relative strengths of the components, $I(\gamma)$ and I(cek) for a doublet consisting of an El and Ml component could yield mult = E2. The multipolarity for the doublet should be given in a comment, but should not be entered in the multipolarity field of the individual components, unless additional information is available that justifies the assignments.

<u>Note</u>: When $I(\gamma)$ but not I(cek) (or vice-versa) is resolved, and the multipolarity of one component of a doublet is known from other sources, the multipolarity for the other component may possibly be deduced.

7. Cross sections and analyzing-power should not be given explicitly - sufficient simply to mention that such measurements were made, in the context of justifying any conclusions based on such data. The conclusions themselves should be given.

<u>Note</u>: If an evaluator feels that the angular distribution coefficients do need to be given, they should be defined in the form A2, A4, not A2/Ao, A4/Ao; i.e., we define the angular distribution function as $W(\theta) = 1 + A2P2(\cos \theta) + ...$, not as Ao + A2P2(cos $\theta) + ...$

8. (γ, γ') experiments

Some confusion and a lack of consistency in the presentation of data exists in experiments on resonant fluorescence. Scattering experiments are the most common type of measurement that, for the case of photons scattered elastically from a thin target, yields the quantity $gW(\theta)\Gamma(\gamma 0)^2/\Gamma$, where g = (2J + 1)/(2Jo + 1), with J-resonance level spin, Jo = gs spin, and W is the usual angular correlation function. For inelastic scattering, the term $\Gamma(\gamma 0)^2$ in the numerator should be replaced by $\Gamma(\gamma 0)\Gamma(\gamma i)$ where $\Gamma(\gamma i)$ refers to the de-exciting transition to an excited level with J = Ji. The quantity $gW\Gamma(\gamma 0)^2/\Gamma$, or just $\Gamma(\gamma 0)^2/\Gamma$, should be given in this type of experiment. When J and W are known, the adopted value for $\Gamma(\gamma 0)/\Gamma$ (= $I(\gamma 0)/\Sigma I(\gamma)$ in the case of bound states) should be used where available to deduce the level width (or T1/2). For the inelastic case, the corresponding intensity ratio $I(\gamma i)/\Sigma I(\gamma)$ would be needed.

Note 1: Measurements are usually undertaken at 127° where W = 1 for all dipole transitions, independent of Jo, J, or Ji (P2(cos $\theta)$ = 0 at this angle). For mixed transitions, W depends on the mixing ratio and on the J values.

Note 2: Occasionally, self-absorption experiments are performed to yield $gW\Gamma(\gamma 0)/\Gamma$.

The quantity $\Gamma(\gamma 0)^2/\Gamma$ can be given in the "S" field, with the field suitably relabelled (see Section G. 1. below). This procedure eliminates considerable typing at the input stage. The quantity $\Gamma(\gamma 0)/\Gamma$ can be given in the RI field for the relevant γ or as a comment on the corresponding level.

9. BE λ and $\beta\lambda$

Consider Coulomb excitation and (e, e'), where electromagnetic excitation probabilities can be determined, in which the quantities BE2, BE3, etc., should be quoted on continuation level records. Data quoted as matrix elements should be converted to BE2 etc. A matrix element has been determined and this fact could be added as a comment. Note that $BE\lambda = (2Jo + I)^{-1} |\langle ME\lambda \rangle|^2$, where $\langle ME\lambda \rangle$ is the matrix element, and Jo is the target spin.

Note: Do not give BE λ data with the gammas. BE λ (down) data, given by an author for gammas, should be converted to BE λ (up) and given with the corresponding level. The appropriate place for BE λ (down) data is in adopted gammas where we give such values in single-particle units based on adopted T1/2, branching, etc., data.

For inelastic reactions other than those governed by the electromagnetic interaction, the appropriate interaction strengths to quote are the deformation parameters, $\beta\lambda$ or $\beta\lambda R$. Authors sometimes convert the deformation parameters to BE λ , but this is a model-dependent procedure and unless the authors quote only BE λ the deformation parameters should be entered into ENSDF.

10. Delayed gammas

For an in-beam reaction in which both prompt and delayed $I\gamma$ from level X are available, there are two methods of accounting for the data.

(a) If only one reaction (or more than one but grouped together such as in (HI, $xn\gamma$) contains data on the delayed transitions from level X, two data sets can be created: one labelled with the modifier "prompt gammas" and the other with the modifier "delayed gammas".

(b) Preferred method is to create an IT decay data set for level x.

This alternative is especially recommended if there is more than one source of data. A single IT data set which combines the results from all the relevant reactions is preferable to creating several delayed-gamma data sets from the several reactions for the same level X.

<u>Note</u>: The prompt data should always be presented; however, the separation into prompt and delayed data sets can be particularly useful when the delayed-gamma intensities are used to obtain multipolarities based on intensity balance arguments.

If the delayed data are rather sparse, and the results from the data, such as multipolarity information or T1/2, can be conveniently quoted in the prompt data set, (for example "Mult: from α deduced from intensity balance in the delayed spectrum"), the evaluator may choose to combine all the data in a single data set.

11. Data sets without level information

Separate data sets for reactions studied, but for which no specific level information is given, can be included at the evaluator's discretion if the experiment yielded some useful information. Such a data set would consist only of comments. The following are examples.

²⁰⁸Po from ²⁰⁴Pb(¹⁶O, ¹²C) 76Da18

E = 93 MeV

The authors deduce $\Gamma(\alpha)$ for the ²⁰⁸Po ground state and compare with the corresponding α -decay value via R-matrix theory using the same target-plus- α nuclear potential.

²⁰⁸Pb from ²⁰⁸Pb(p, n) 74Sc01,74Sc31

E = 25.8 MeV

Authors deduce rms neutron/proton radius ratio = 1.073

<u>Note</u>: The information contained in such data sets in many cases could also be included as comments in adopted levels. This is especially true for the second example; however, unless a data set is created for a reaction, there is no convenient way to search and retrieve that reaction and thus to indicate to the reader that such a reaction was studied. If a reaction was studied but no "useful" information is available, the best approach would be to simply list the reaction under "Other reactions" in a comment on adopted levels.

12. β - and $\varepsilon + \beta$ + feedings, and logft

Logft values should be made consistent with the deduced β^{-} or $\epsilon + \beta^{+}$ feedings. In particular,

when I $\pm \Delta I$ is consistent with zero (for example 3% 3), the corresponding logft should be expressed as a lower limit corresponding to a feeding of I + $\Delta I(6\%$ in this case). Branches that overlap zero (for example, - 3% 6), should be shown with the feeding given as an upper limit (<3%), with the corresponding logft given as a lower limit.

<u>Note</u> 1: The above holds for cases where the feeding can be expected to be non-negligible, i.e., where the transition is $\Delta J = l$, $\Delta \pi = yes$ or no, or $\Delta J = 2$, $\Delta \pi = yes$. Where $J\pi$ change implies negligible feeding, feeding should be set to zero. Any deduced feeding not consistent with zero should be commented on and an explanation for the inconsistency given if possible. An exception to this policy of omitting "unphysical" branches occurs when the initial or final $J\pi$ is in question; there is no clear evidence whether $J\pi$ or the feeding is in error. Under such circumstances, the β^- or $\epsilon + \beta^+$ branch should be shown, perhaps with "?", and the problem should be pointed out in a comment.

<u>Note</u> 2: Summed feeding to two levels connected by a transition whose TI is not known, or is known only as a limit, can sometimes be determined even though the feeding cannot be divided between the two levels. Such combined feedings should be given in a comment.

13. Normalization

The normalization condition should always be given. Be sure to account for both NR and BR.

<u>Note</u> 1: If the normalization condition involves a measured quantity for which no uncertainty is quoted by the authors (for example, $I(\beta^- gs) = 30\%$), try to assign an uncertainty. If you can not do so, or choose not to do so, the resulting NR (or NR x BR) should be given as approximate. If NR is given with no uncertainty, GTOL will generate level feedings, and MEDLIST will generate absolute intensities that reflectonly the uncertainty can be explicitly added to $I(\beta^-)$ is assigned in the given example, the uncertainty can be explicitly added to $I(\beta^-)$ in the listing, with an appropriate comment, or simply referred to in the normalization statement, for example, "NR:...the evaluator hasassigned an uncertainty of x% to the intensity of the gs β^- branch in order to get an overall uncertainty for NR". The former approach is recommended. Note that when the gs branch has a small intensity (say a few percent), even a large assigned uncertainty can result in a rather precise NR as calculated from $\Sigma TI(gs) = 100 - I\beta^-(gs)$.

<u>Note</u> 2: When I γ in the RI field already include all the uncertainty appropriate for absolute intensities, such as when an author determines and quotes absolute values (including absolute uncertainties), NR and BR should introduce no additional uncertainty and should be given on the "N" record with no uncertainty (there is no requirement that the uncertainty in BR, as given in adopted levels, be carried over to the "N" record in a decay data set, although the value must be the same).

14. Parent records

Fields where data are known should be completed in the parent record, and the data should be the same as in the adopted data set. Comments on the "P" record should not be given unless necessary. The appropriate place for comments on any of the quantities appearing on the "P" record is in the adopted data set for the parent nuclide.

15. Miscellaneous

(a) The symbol "/" should not be used when proportionality of more than two values is defined The expression K/L/M is mathematically equivalent to KM/L, even though few readers would interpret the term in this way. Use ":" instead: to give K:L:M.

(b) Do not replace numerical values with large uncertainties by approximate values.

<u>Note</u>: An "isomer" energy of 230 300 keVallows for the possibility that the isomer may lie below the "ground state" by 70 keV. If the energy is replaced by \sim 230 Kev, this possibility (while not ruled out) will not be conveyed to most readers.

(c) Try to resolve discrepancies - if they cannot be resolved, state this lack of resolution.

<u>Note</u>: If $\delta = +0.38$ is adopted for a certain transition, the value $\delta = +2$ appears in one of the source data sets, and the reason for the discrepancy cannot be determined, the evaluator should comment on the discrepancy. These comments can be logged in the source data set by pointing out that the value differs from the adopted value, or in adopted γ s where the discrepant value can be mentioned in a comment. If something of this nature is not done, the reader might think that the discrepant value had been overlooked and may question the adopted value. If there are several such "discrepant" δ values in a certain data set, a general comment rather than a comment on each case could be given.

(d) Use the word "uncertainty" rather than "error" to refer to what we call the standard deviation in a measured quantity. The word "error" should be reserved for mistakes, such as in the sentence "The authors apparently made an error when they ...".

(e) Note that TI is translated as $I(\gamma+ce)$, not $I(\epsilon+\beta^+)$, even though the fields have the same name in ENSDF. When $I(\epsilon+\beta^+)$ is meant, this definition must be spelt out.

(f) A level designated as an isomer in one data set should be treated as an isomer in all data sets (that is, columns 78 and/or 79 should be completed).

(g) Do not comment on correction factors for a quantity when such correction factors are negligible relative to the uncertainty quoted for the quantity. For example, $\mu = +3.85$ does not require a comment stating "diamagnetic correction has not been applied".

(h) Avoid the use of "CA" in the uncertainty field when a numeric uncertainty can be calculated.

Note: If I γ is calculated from TI and α , the uncertainty in I γ (from the uncertainty in TI and α), rather than "CA", should be placed in the uncertainty field.

(i) When calculating or correcting quantities that depend on other properties (for example, calculating conversion coefficients which depend on E γ , calculating T1/2 from BE2 which depends on E γ , branching, δ , and α , or correcting g factors for their dependence on T1/2), adopted values of all other relevant quantities should be used.

(j) When working with an author's proposed decay scheme, the evaluator should make a search for possible alternative gamma placements between known levels.

(k) Enter data in $E(\varepsilon)$ or $E(\beta)$ fields only when they are of sufficient accuracy that in the evaluator's judgement they should be considered as input to the mass adjustment. Values that are of somewhat lesser accuracy but still "significant" could be mentioned in comments. Very imprecise values are probably not worth recording. All the network analysis programs that require these energies obtain them from the appropriate Q-value and level energy.

<u>Note</u>: A measurement of β^+ endpoint must be entered as $E(\varepsilon) = E(\beta^+) + 2mc^2$. For example, a comment such as "E(ε): From E(β^+)=...(keynumber)" would be appropriate.

(l) Alpha-decay data sets: if the energies of the daughter levels being fed are not known, E(level) = 0 + X style should be used rather than listing the alphas as unplaced. With this procedure, relative level energies can be presented in the daughter-nucleus mass chain. Alternatively, a level energy from systematics can be given (see Section C. c), below). Note that there is no such thing as an unplaced alpha, unless one is referring to an alpha with uncertain parent assignment.

(m) Measurements of $P_k \omega_k$ (= I(K-x ray)) should be given. Adopted values can be entered on a continuation "E" record. These quantities are of direct interest to some researchers, and provide a direct measurement of the K-x rays, either for ε branches to individual levels, or an average for the

whole decay scheme. When possible, $P_k \omega_k$ should be compared with I(K-x ray) as calculated by RADLIST.

(n) If numerical data are quoted in comments, the uncertainty should be included unless the value is only being used as a label; thus, "T1/2: From BE2 = 0.240 6", or " μ : From g = 1.62 3 in (α , 2n γ)". Even though the actual numerical value is not needed in all cross references, the uncertainty should be included.

(o) When changing the sign of a mixing ratio which has an asymmetric uncertainty, note that $\delta = A + a$ -b becomes $\delta = -A + b$ -a (not -A + a-b).

(p) The ground state should be included in all data sets of the type (X, X'), i.e., inelastic scattering.

C. Systematics

Use should be made of systematics whenever possible, the extent to which they can be applied in any given case being determined by their reliability. The evaluator is usually in a better position to know how and when to apply systematics of a given quantity than the typical reader who is generally looking at just one or perhaps a few mass chains at a time.

<u>Note</u>: Network evaluators make extensive use of systematics. Strong arguments for $J\pi$ assignments which rely on logft values, strong arguments for multipolarities that rely on RUL, and extrapolations from the measured data in the mass adjustment (which are called systematics values) are prime examples.

One area in which systematics are particularly valuable is the estimation of ground and isomeric state branching ratios.

(a) Plots of Log T1/2(α) vs log E(α) for nuclides with the same Z are usually linear. For a nuclide whose alpha branching has not been experimentally determined, use of T1/2(α) vs E(α) systematics can sometimes yield a reliable estimate of T1/2(α) which, along with the measured total T1/2, yields the alpha branching. On more than one occasion, such an estimate has been invoked to show that an experimental value must be incorrect; see also (c), below.

(b) Gross beta decay T1/2(β^{-}) and T1/2($\epsilon + \beta^{+}$) estimates from (for example) Takahashi et al., Beta-Decay Half-lives Calculated on the Gross Theory, At. Data Nucl. Data Tables 12 (1973) 101, can be used to estimate β^{-} or $\epsilon + \beta^{+}$ branching fractions. These estimates are considered to be reliable to better than a factor of approximately 3; thus, while an estimate of % $\beta^{-} \approx 50$ and branching for the alternate modes of $\approx 50\%$ should be considered as very approximate, an estimate of % $\beta^{-} \approx 0.1$ can be used to assign the alternate mode(s) as essentially 100% with a high degree of reliability.

Additional areas where systematics arguments should at least be explored include the following.

(c) Systematics of alpha-decay hindrance factors can be used to deduce a variety of quantities (depending on what is known about the decay branch). These include $J\pi$ and configurations, total alpha branching and branchings of individual groups, and the excitation energy of the level fed in the daughter nucleus. Each evaluator (or centre) responsible for a mass region in which alpha decay occurs is encouraged to build up such a set of systematics. See Schmorak, Systematics of Nuclear Level Properties in the Lead Region, Nucl. Data Sheets 31 (1980) 283; and Schmorak, α -Decay Hindrance Factors in the ENSDF procedures manual for further discussion of these and other types of systematics.

(d) When a certain pair of shell- or Nilsson-model orbitals gives rise to the appearance of an

isomeric transition over a reasonably large mass range, the reduced transition probabilities for the isomeric transition usually fall within a narrow range of values. Such data can be used to estimate properties for the "same" transition where one piece of information is missing, such as T1/2, IT branching, or $E\gamma$.

(e) When a ground-state β^{-} branch is not known and there is no other way to determine the gamma normalization, logft values for similar transitions may exhibit local systematics. Even if the evaluator decides not to give an explicit normalization factor, a comment would be of value to the reader that points out what this factor would be if the transition had a logft value similar to other such transitions in the same region.

<u>Note</u>: From logf^{lu}t > 8.5 one might derive $I\beta^{-}(gs) < 10\%$. While this estimate might be the best one can do, systematics of logf^{lU}t values for other transitions of similar type (i.e., transitions between similar configurations) might suggest that the probable intensity is < 5%, or even close to zero. In such cases, the evaluator can adopt the systematics value for the limit on the β^{-} feeding in order to obtain the normalization. Justification for the chosen value must be stated. The systematics value could also be entered directly in the I β field, with an explanation for the source of that parameter instead of (or in addition to) the value derived from the normalization factor.

D. Uncertainties

1. Estimation of uncertainties.

When an experimental value is quoted by an author without an uncertainty, the evaluator should attempt to estimate and assign an uncertainty to that quantity if that quantity is required in further calculations, or if that value is a quantity that needs to be adopted and no other value is available.

<u>Note</u> 1: The normalization of a decay scheme may sometimes involve a measurement quoted with no uncertainty; see Note 1 in Section B. 13, above for a discussion of a ground-state beta transition with no quoted uncertainty that is needed for the normalization of the decay scheme.

<u>Note</u> 2: When one or more excitation energies in a reaction data set (quoted with no uncertainty) need to be included in the adopted levels, the evaluator should attempt to estimate the uncertainty for these excitation energies. Uncertainties can sometimes be estimated by comparing the author's values with adopted energies in regions where there is overlap. Occasionally, comparison with data for other nuclei included in the paper can also be helpful.

2. Adoption of uncertainties

Weighted average program GTOL and all other analysis programs that calculate uncertainties when individual values with uncertainties are combined, treat the individual uncertainties as statistical in nature. When the uncertainties are known to have a significant systematic component, the output from the above programs should be modified as necessary, particularly in cases where the quoted uncertainty is mainly and clearly systematic (due to a calibration uncertainty) so that the adopted uncertainty should be no smaller than the smallest of the input uncertainties. No result obtained from a weighted or unweighted average program or by any other method can have an uncertainty smaller than the uncertainties) in the calibration standard(s) used to determine the input values.

3. All uncertainties in extracted data (for example, $E\gamma$, $I\gamma$, E(level) and T1/2) should be accounted for, either explicitly or in comments. Authors occasionally quote peak-fitting uncertainties and then

state that an additional x% should be included to account for other sources of uncertainty, or they quote the value for some quantity relative to a standard value.

<u>Note</u> I: Consider I γ in which these additional uncertainties, if independent of E γ or I γ , can either be included in NR, or explicitly combined for each transition with the partial uncertainties given by the authors. Since the intensity ratios of transitions close in energy may be nearly independent of the additional uncertainties, there may be an advantage in accounting for these through their inclusion in NR, although additional uncertainties that have been folded in can always be folded out if necessary.

<u>Note</u> 2:, Additional uncertainties should be included explicitly in the case of data describing other quantities, at least for quantities that are used in adopted levels and gammas. Neither network analysis nor listing programs are capable of making use of a comment such as "an additional uncertainty of x eV should be added in quadrature to the $E\gamma$ to account for uncertainties in the calibration". If an author quotes a value of T1/2 or a g factor relative to a standard, the uncertainty in the standard should be included when the value is adopted or combined with other measurements.

4. When undertaking calculations, the evaluator should attach an uncertainty to all theoretical α values (3% is recommended). For example, calculations of TI = I γ (l+ α) (or I γ = TI/(l+ α) or T1/2 from BE2) should include this uncertainty. The contribution of this uncertainty to the total uncertainty is negligible in many cases, but in normalizing 100% IT decay to I γ (l+ α) = 100, or normalizing a decay scheme in which only a single transition feeds the ground state and I γ for this transition is given by the authors with no uncertainty, the uncertainty in α will be the only uncertainty in the normalized I γ (assuming that the decay scheme is known with confidence). A comment should be included to explain what was done, and this uncertainty should not be entered in the $\Delta \alpha$ field. Our analysis programs already assign 3% uncertainty to α when performing calculations involving this quantity.

5. Numerical uncertainties larger than 25 should, normally be rounded off.

<u>Note</u>: Data should be quoted in units such that this round-off convention can be applied. For example, T1/2 = 250 ps 50 should be quoted as 0.25 ns 5, and a set of I γ data given by an author normalized to $I_{\gamma I} = 1000$ 70 should be renormalized to $I_{\gamma i} = 100$ 7. Energies: since the standard energy unit is keV, values such as $Q^2 = 2000$ 150, or $E(\beta^2) = 2450$ 80 do not have to be converted to 2.00 15 MeV, or 2.458 MeV.

E. Resonances

Although the data coverage in ENSDF is limited to the bound-state region, any properties of the bound levels deduced from resonance work should be included. E γ and 1γ data from (p, γ) and (n, γ) reactions do not need to be included in ENSDF except as noted below.

<u>Note</u>: A typical case of interest involves the study of average resonance neutron capture in which $J\pi$ values have been deduced on the basis of reduced transition intensities. The resulting data set needs to contain only the bound levels fed from the resonances, along with the deduced $J\pi$ values; I γ presented typically as $I\gamma/E\gamma$ are not required. In fact, they should not be given since they are just average quantities, and are only significant from the point of view of ENSDF for their use in deducing $J\pi$ (in this sense, they are analogous to angular distribution coefficients).

Resonance data should be included in the following cases.

a) Isobaric analog resonance data should be included; they should also be included in adopted levels.

b) Giant resonance data should be included, although data of this type are available for only a few nuclides.

c) Ey, Iy (and other relevant data) from thermal neutron capture should be included.

<u>Note</u>: Excitation data for isobaric analog resonances should appear with the nucleus in which the resonances occur. Branchings to daughter levels (for example, in (p, np')), should also be given. Comments that include the deduced energies of the parent states (energies relative to E = 0 for the analog of the ground state), or comments labelling the resonance with the appropriate parent level are useful.

Other situations may arise where the inclusion of resonance data is important (for example, near closed shells where the resonances occur at excitation energies low enough that they may "overlap" adjacent bound states that have been studied). The inclusion of data in this and other special cases is at the evaluator's discretion.

<u>Note</u>: Energies for resonance data can be entered in the form SN+X, SP+X, where X is the neutron- or proton-resonance energy, usually given in laboratory units (lab, or c.m. coordinates should be specified in either case). These resonances should be converted to excitation energies in the adopted levels.

F. L Transfers

1. A brief comment is required on the method used for obtaining L values; for example, L values "from DWBA analysis" should be distinguished from L values obtained "from comparison of $\sigma(\theta)$ with shapes for levels with known J π ".

2. Parentheses are used to denote questionable or uncertain values. As described in the introductory section, square brackets can be used to indicate an assumed value, i.e., a value adopted by an experimenter (or by an evaluator) on the basis of known $J\pi$. This procedure might be adopted for the purpose of extracting S, or for determining empirical angular distribution shapes so that L values for other levels can be determined.

<u>Note</u>: When quoting L values, the evaluator has the option of quoting the author's values and then applying his/her own judgement as to their reliability when incorporating them into $J\pi$ assignments, or of quoting the author's values as modified by the evaluator. For example, an author's L = 2 which in the evaluator's judgement should be L = (2), could appear as L = 2 in the source data set, but as L = (2) if used as a J1I' argument. Alternatively, a value of L = (2) could be entered in the source data set. In either case, a comment is required explaining that the evaluator feels that the L assignment is tentative.

G. Spectroscopic Factors

1. The exact label for the given quantity should be defined by using the "LABEL=name" format described in the manual; thus, "LABEL = C2S".

2. An explicit definition of S should be given if there is any ambiguity about what is meant; thus, "S is defined by " $d\sigma/d\Omega(exp) = Nsd\sigma/d\Omega(DWBA)$ with N=..."

3. The method for obtaining the scale of S should be given, and it is important to distinguish between absolute and relative values. Thus, a comment such as "from DWBA", which implies that the values are "absolute", or "from DWBA normalized to X for the y level" for relative S values, should be given.

4. The shell-model (or other) orbital involved in the transfer should be specified if needed for the extraction of S.

<u>Note</u>: This orbital can usually be specified in terms of a general comment such as "L-l, 2, and 3 are assumed to be p3/2, d5/2, and f5/2 except where noted otherwise". An alternative method is to give $J\pi$ for the relevant levels along with a comment such as " $J\pi$: value assumed by the authors for the extraction of S"; the former approach is preferred when practical.

5. When $J\pi$ adopted by an author differs from the evaluator's value, the S value (which will be incorrect) should not be entered in the S field, but given only in a comment. The reason for recommending that the incorrect value be given at all is that a knowledgeable reader can often estimate the value for the correct orbital from the value calculated for the incorrect orbital.

Η. Jπ

1. J π values from adopted levels should be included where known; the introductory section states that this is our standard policy. For reaction data sets with no gammas, J π values should not be given unless they are determined in the reaction in question, or unless they are important in explaining some other aspect of the experiment. J π values should be given in reaction data sets with gammas. Note that the introductory section states that J π values appearing in the γ reaction data set are adopted values unless noted otherwise.

Note 1: Reactions that do not involve gammas - $J\pi$ values, such as from L values and analyzing powers in (d, p) reaction, should be given in the $J\pi$ field along with a comment stating how they were determined. $J\pi$ values that come directly from the L values, such as $J = L \pm 1/2$ for single-particle transfer on an even-even nucleus, or L = J in (p, t) on an even-even target, are redundant, and should not routinely be given. Exceptions occur, for example, where the evaluator wishes to indicate the $J\pi$ value used to extract the spectroscopic factor, or to show explicitly the band structure.

<u>Note</u> 2: Reactions involving gammas, e.g., average resonance neutron capture - deduced $J\pi$ values can be given in the $J\pi$ field, or in comments. The latter procedure is recommended since adopted $J\pi$ can then be placed in the $J\pi$ field, in line with the accepted policy of including adopted $J\pi$ values for any reaction data set involving gammas.

2. Arguments used in the $J\pi$ assignments in adopted levels must be documented in the source data sets. The following represent a few examples.

	<u>Jπ</u>	argument
a)	3/2-	$L(d, p) = l$, 392 γ to 5/2- is Ml
b)	1-	Average Resonance (n, γ), γ to 0+
c)	3+	El γ to 2-, $\gamma\gamma(\theta)$
d)	(5/2)+	L = 2, C2S in (d, p)

(a) (d, p) data set should contain the relevant L value, with any explanation deemed necessary to justify or explain the adoption. Recommended γ data set should contain the justification for the Ml assignment to the 392 γ .

(b) Average Resonance (n, γ) data set should contain the value deduced in that data set $(J\pi = 0, 1)$ in the present case), given in either the $J\pi$ field, or as a comment; see also Note 2 under 1, above.

(c) enough detail of the $\gamma\gamma(\theta)$ experiment should be given in the source data set to justify the conclusions. Briefly, this section should mention the assumptions (i.e., what J values for other levels and what δ values for relevant gammas in the cascade were adopted, and should clearly state which values of J are allowed and which are ruled out. For the above example: only necessary to state that $\gamma\gamma(\theta)$ is consistent with J = 3, and rules out J = 1 and 2.

(d) (d, p) data set should contain L and C2S values for the level in question, and a comment justifying the basis for the C2S argument. For example: "d3/2 strength exhausted by known 3/2+ levels. C2S for the L = 2, E=...level suggests d5/2".

Ι. Ιγ, ΤΙ

1. Relative TI data (or absolute, for example, for (n, γ) in preference to branching ratio data) should be given when available.

Note: If both relative I γ and branching ratios are available, and if the branching ratios are more accurately known than the relative TI, both sets of data should be given. Relative I γ should be given in the RI field, and the branching ratios can be given as comments on the relevant levels.

2. Reaction γ s: projectile energy and angle at which the quoted I γ were measured should be specified unless obvious from the keywords given in the general comments. Relative I γ values measured under different experimental conditions, such as at a different bombarding energy or angle, should not be combined in the RI field, except where an I γ from level "X" is deduced from branchings relative to other transitions from level "X".

3. Gamma intensities reported as upper limits are important data measurements; and should be included (a comment to the effect that the transition was not seen could be included). I γ given as "weak" by an author should be noted as such in a comment; also important to distinguish between cases where a missing I γ is weak, and where such an emission is obscured by an impurity (and therefore could be strong).

<u>Note</u>: One could distinguish between observed and unobserved transitions expressed as limits by the use of " \leq " for the former, and "<" for the latter; however, the distinction between these two non-numeric uncertainties is not universally agreed upon, and is probably too subtle a distinction.

4. The TI field should be used only if TI, rather than I γ , is the quantity measured or deduced. Two common cases where this occurs are when TI is deduced from intensity-balance arguments, or TI is given by summing I(ce). When TI is given and α is known, the corresponding I γ should be calculated and entered into the I γ field, unless the value is negligibly small. The uncertainty given for I γ should include the uncertainties in both TI and α ; a comment should be given stating that I γ comes from TI and α .

<u>Note</u> 1: I γ deduced from TI and α may be given in the RI field even when a direct measurement of I γ is available, if the evaluator concludes that the deduced value is more reliable than the measured value.

<u>Note</u> 2: When TI rather than $I\gamma$ is the basic measured or deduced quantity, $K/T(=\alpha k/(l+\alpha))$ =... etc., rather than αk -... etc. format on the continuation record should be used. For example, K/T operates directly on TI to generate the cek intensity (via MEDLIST) and the resulting x-ray intensities. This format avoids including some uncertainties twice, since $I\gamma$ (if calculated from TI and α) will already have an uncertainty combined from these two quantities.

5. Do not put TI values in the RI field, even if a comment is included to explain what is being done, and even if all the entries are TI values. RI and TI must not be mixed in the same field.

6. RI (or TI) field should be left blank for a transition which de-excites a daughter nucleus isomer whose T1/2 value is such that the intensity is time-dependent. A computer-retrievable comment should be included that defines % feeding of the isomer, and a comment is also required to explain why the intensity is missing.

7. I(x ray) and I($\gamma \pm$) data of good quality should be given as comments in the form I(x ray)/I γ (γ i), where γ i is the transition to which the γ s are normalized. This procedure avoids the necessity of changing the comments if the I γ are renormalized. The program MEDLIST should be run to compare the measured x ray and $\gamma \pm$ intensities with those calculated on the basis of the adopted decay scheme. If the I(x ray))/I γ or I($\gamma \pm$)/I γ measurements are needed to obtain decay scheme normalization, note that MEDLIST can be used in an iterative fashion to deduce NR.

8. Internal conversion intensities are not needed, and they should not be given except in the following cases.

a) I(ce) ratios measured to a precision of better than about 3% should be included. At this level of precision, it is useful to compare such values to the theoretical data.

b) Where no I γ is given, or where I(ce) are more precise, the I(ce) values should be quoted.

c) I(ce) are needed for E0 transitions, and should also be given for anomalously converted transitions.

9. A limit on a transition intensity (I < A) should be converted to I = $1/2A \pm 1/2A$ for the purpose of calculating quantities that require the intensity of this transition, such as normalization factors, β^{-} and $\epsilon + \beta^{+}$ feedings, or branchings (for branchings, see Note 4 under G. in GUIDELINES FOR ADOPTED LEVELS).

<u>Note</u> 1 : Where I β (gs) is determined to be < 6% and the evaluator has no further information to suggest that this value should be closer to 0 than to 6, the intensity should be expressed as 3% 3 for the purpose of obtaining the gamma intensity normalization; one should set sum TI(gs) = 97 3 and explain what is being done. This procedure is preferable to any of the alternatives, namely setting Σ TI(gs) = 100, or Σ TI(gs) > 97. There is no justification for adopting the first alternative, and adopting the second alternative leads to lower limits being given for all the intensities. The usefulness of the procedure depends on the value of the limit - if I(β) is known only to be < 50%, perhaps normalizing the decay scheme is not worthwhile, although setting sum TI(gs) - 75% 25 is still better than doing nothing (if no normalization is adopted, a comment could be given stating what the normalization factor would be for the extreme cases, namely for $I\beta^- = 0$, and $I\beta^- = 50$). Note that the intensity of the gs β^- group should still be given as a limit in the β^- listing.

<u>Note</u> 2: I γ values given as limits should be converted to $1/2I\gamma \pm 1/2I\gamma$ for the purpose of obtaining β and/or ϵ feedings from intensity imbalances. This procedure may lead to some feedings with rather large uncertainties, but this approach reflects correctly the state of knowledge of the decay scheme. The procedure is analogous to setting mult = [MI+E2] for a highly converted transition in order to estimate the total intensity. Again, there is no implied suggestion that the intensities themselves should be changed from their limit form in the I γ field. GTOL program has been modified to treat limits automatically in this manner.

If the evaluator feels that the limit in a given case should not be treated in this fashion, a comment should be given justifying whatever approach is taken.

10. For the purpose of obtaining β and/or ε feedings, gamma transitions whose placements are uncertain (that is, transitions that have a "?" in column 80) should be handled in the same manner as for transitions given as limits discussed in Note 2 under 9, above. One should take $I\gamma = \Delta I\gamma = 1/2(A + \Delta A)$, where $I\gamma = A \pm \Delta A$ is the measured value. GTOL has been modified to treat uncertain transitions in this manner, but the evaluator will also be responsible for ensuring that the input to GTOL is modified as discussed here.

J. Mult, δ , α

1. As stated in the introductory section, the multipolarity and δ entries (and thus α) for decay data sets should be adopted values. The inclusion of such data is mandatory, while for reaction gamma data sets such information should be included as needed or if measured.

<u>Note</u>: TI values are not needed in many reaction data sets, nor δ and α . However, the multipolarity should be defined. If TI values are required, adopted values for multipolarity and δ should also be used.

2. When multipolarity and/or δ values are determined, the basis for such determinations should be stated. Sources for the multipolarity data used by the evaluator (such as $\gamma(\theta)$, αk), along with the normalization required in αk data determined from relative I γ and I(cek), should be given whether or not the experimental data (e.g., A2 and A4, αk , etc.) are explicitly given. Multipolarity assignments from ce data should originate from the evaluator based on the output from HSICC. Multipolarities deduced by the authors (or by the evaluator) on the basis of "stretched" $\gamma(\theta)$ should be noted as a comment in the style of " $\Delta J = 1$, or $\Delta J = 2$ ".

<u>Note</u> I: $\gamma(\theta)$ data determine only the L component of the gamma character (i.e., mult = D, D + Q, etc). Further assumptions are needed to establish the change in π , and should be stated when D is converted to M1, or D + Q to M1 + E2, etc. In particular, Q = E2 should not be considered an "obvious" conclusion. If T1/2 is known, RUL can sometimes be invoked to eliminate specific possibilities, particularly Q = M2, and D + Q = E1 + M2 when δ is known. If known values of J π are used to establish any part of the character of a gamma, that part should be placed in parentheses. Remember that one of the implied uses of a non-parenthesized multipolarity is as a strong argument to assign J π values, so one must avoid circularity.

<u>Note</u> 2: If any multipolarity = D, D + Q, etc. can be assigned as M1, M1 + E2, etc., only by the use of level scheme arguments, the designation mult = D should be retained in the source data set unless the complete designation (mult = (MI)) is needed to determine α . The

mult = (M1) assignment can be adopted when choosing the multipolarity for the adopted γ s section. The main advantage in following this procedure (other than the such assumptions should be made <u>onlv when necessary</u>) is that a transition known to have mult = D (strong assignment) may be more useful in defining a J π value than having only the parenthesized mult = (M1) (weak assignment). When such an argument is used, the reference for the multipolarity should be to the source data set, and not to adopted γ s if the adopted value is mult = (M1).

3. Entries in the multipolarity, δ and α fields should be mutually consistent, and the following guidelines should be followed.

(a) If a single multipolarity is adopted, the δ field should be blank.

(b) If only a limit on δ is available and this limit is significant and worth giving, there are two options.

(i) Give the dominant multipolarity with corresponding α , and give the δ limit in a comment.

(ii) Give both multipolarities and the δ limit in the δ field. The value of α should correspond to $1/2\delta(max)$, with an uncertainty chosen to overlap the 0 to $\delta(max)$ range.

<u>Note</u>: Option (i) is recommended when (in the evaluator's judgement) the admixed component is likely to be smaller than the experimental limit; thus, E2 + M3 with δ <0.5 should probably be entered as E2, while M1 + E2 with δ < 0.5 should probably be retained as a mixed multipolarity entry.

(c) If two multipolarities are given but no δ is known, the corresponding α value should be the value calculated as described in 7(a), below.

(d) If the multipolarity field contains more than two multipolarities (e.g. E0 + M1 + E2), the E2/M1 or E2/E0 etc., mixing ratios should be given if known on a continuation record rather than in the δ field.

(e) If δ overlaps zero or infinity, the corresponding multipolarity component should be in parentheses. For δ values with experimental limits that do not overlap zero or infinity, the evaluator may still choose to adopt the corresponding component in parentheses if they feel that the difference from zero or infinity is not significant (equivalent to interpreting the author's uncertainty as being somewhat larger than quoted).

4. The mixing ratio notation (M1 + x%E2) used occasionally by authors should be converted to δ .

5. Mult = M1, E2 is not equivalent to mult = M1 + E2. The first designation refers to the case where the experimental data overlap the theoretical values for both multipolarities. The second designation refers to the situation where the experimental data lie between the theoretical values for the two multipolarities. The designation M1 (+E2) is an intermediate case where the experimental data overlap M1 but not E2 values.

6. If αk , etc. data or conclusions from such data are included, the bases for the adopted values should be given. Thus, the basis for the normalization of the relative scales should be stated for relative I(ce) and 1 γ , and the multipolarity for any transition used in this scale normalization should be independently established.

7. When internal conversion is significant but the multipolarity is unknown (apart from level scheme considerations) and TI is otherwise unobtainable and required, the following procedures can be followed.

(a) If ΔJ , $\Delta \pi$ are known, one can enter mult = [M1], [E1 + M2], etc., in the multipolarity field and choose α accordingly. For example if mult = [M1 + E2], one should enter $\alpha = 1/2[\alpha(M1) + \alpha(E2)]$ and $\Delta \alpha = |\alpha - \alpha(M1)| - |\alpha - \alpha(E2)|$.

(b) If ΔJ and/or $\Delta \pi$ are not known, one can still follow the procedure described in (a) and set mult = [D, E2] (or mult = [E1, M1, E2]). Mult = M2 or higher are assumed to be less probable, but can be included.

The usefulness of either (a) or (b) depends on the range of α values for the possible multipolarities.

<u>Note</u> 1: If $\Delta J = I$, $\Delta \pi = no$, mult = [M1 + E2] should be adopted rather than mult = [M1] or mult = (E2], unless there are good arguments for believing that one of the two possible multipole components dominates. Thus, α from M1 + E2 is always "correct" even with a large uncertainty, whereas α (M1) may lead to misleading conclusions. The possible large uncertainty in α for M1 + E2 when δ is not known reflects the correct state of knowledge concerning the total intensities.

<u>Note</u> 2: The use of the mult = [] convention should be restricted to cases in which the internal conversion is significant. Do not assign mult = [] simply because the mult can be deduced from the level scheme; see also F. 5. in GUIDELINES FOR ADOPTED LEVELS, below.

8. Experimental αk , etc., and ce ratios that are used to determine multipolarities can be given at the evaluator's discretion; however, values measured with a precision of better than approximately 3% should be given, as well as values for transitions within 2 keV of the binding energy (and thus outside the range of values given by Hager and Seltzer). Except in these cases, the evaluator should state that "Mult and δ are from $\alpha k(exp)$ calculated from relative I γ , and I(ce) normalized so that ..."; also important to point out when conversion electron intensity ratios rather than just αk have been used, since αk data alone do not always uniquely define a single multipolarity or combination of multipolarities. The references used as sources for the I(ce) data must be given, either in the footnote explaining the source for the multipolarity and δ , or in the general comments.

9. Note the distinction between () and [] for multipolarities. These are discussed in the introductory section. Parentheses are used when there are some experimental data, but the data are not conclusive. The square brackets are used to denote a value deduced solely from level scheme considerations. Note that for the case where $\gamma(\theta)$ determines mult = D + Q and the level scheme is used to assign M1 + E2 rather than E1 + M2, the multipolarity should be in parentheses, mult = (M1 + E2), with a comment stating that "mult: D + Q from $\gamma(\theta)$ in ... $\Delta \pi$ = no from the level scheme". Square brackets are not appropriate for this case, since the level scheme argument forms only part of the assignment.

10. Do not define α with a lower limit; $I\gamma(I + \alpha)$ could then appear incorrectly as a lower limit whereas there must be an upper bound. The situation arises almost exclusively in connection with transitions that have an E0 component in their multipolarity. Basic data are usually measured I(cek) and an upper limit on I γ which leads to TI = I(ce) + < I γ , where I(ce) = Σ_i (cei), i.e., TI has an upper bound. This situation is best addressed by giving I(cek) in a comment, along with the I γ limit in the RI field. TI should be also be defined, and α k can be given in a comment. Only TI = I(ce) will be given for a transition adopted as pure E0.

Note: Recommended procedure for obtaining TI will depend on the relative magnitude of I(ce) and the limit of I γ . The most useful quantity to quote for I(ce) >> I γ is TI = I(ce) ± 1/2I γ , with an uncertainty calculated in the usual way from ΔI (ce) and $\Delta I\gamma = 1/2I\gamma$; TI < [I γ + I(ce)] is an appropriate choice for I1 >> I(ce); the first alternative is recommended for the intermediate case,.

K. g Factors, µ, Q

Values of μ should be taken from 78LeZA/2001StZZ where possible and entered directly into adopted levels. The μ values, or the corresponding values of the g factor, do not need to be repeated in the source data set. However, when the value of T1/2 used in 78LeZA is different from your adopted value, the value of μ should be corrected for this difference if possible. A comment should be included if not readily corrected, giving the T1/2 value to which μ in 78LeZA corresponds.

More recent g-factor data should be given in the appropriate source data sets with the corresponding value of μ given in adopted levels (based on the adopted g factor). These values should be corrected for the adopted T1/2 where necessary. When corrected, adopt a comment such as "g: For T1/2=... The authors report g=... for T1/2=... ". A comment is also required stating whether or not the diamagnetic and Knight-shift corrections have been applied (if the data are accurate enough to be affected by these corrections); this comment should be given both in the source data sets and in adopted levels.

Similarly, Q values should be taken from 78LeZA/200StZZ where possible, and quoted in adopted levels. More recent values should be given in the appropriate source data sets, with the adopted value also given in adopted levels. A comment should be given stating whether or not the Sternheimer correction (or some other polarization correction) has been applied, if the accuracy of the measured value warrants such a correction.

GUIDELINES FOR ADOPTED LEVELS, GAMMAS DATA SETS

A. General

1. All distinct levels that are observed in any of the individual data sets and the evaluator feels are firmly established should be included in adopted levels. Uncertain levels (shown with "?" in one or more of the individual data sets) can be included or not included at the evaluators discretion. Isobaric analog states (resonances) should be included; neutron and proton separation energies should not be included.

<u>Note</u> 1: The calibration and general trend of energies compared with adopted values should be checked for each data set to avoid the introduction of "extraneous" levels,. Corrections should be made for systematic shifts of energies in one or more data sets when the energies from such data sets are used to obtain the adopted value:

(a)to avoid the assignment of level "a" in one reaction as corresponding to level "b" in another reaction based only on the energy difference, and,

(b) to ensure that the energy adopted for level "a", if seen in only one reaction, is as correct as possible.

Note 2: When levels from two (or more) reactions lie close in energy (values agree within the uncertainties) and the evaluator chooses to adopt both (or all) levels, the justification for

assuming that the levels are distinct should be given, unless obvious from XREF or other adopted level properties.

Consider the following cases:

 $E = 5000 \ 10$, $J\pi = 3/2+$ and $E = 5010 \ 10$, $J\pi = 5/2+$ are known from reactions, and $E = 5005.3 \ 2$ is known from a gamma reaction; however, there is considerable uncertainties as to which of the two reaction levels this level corresponds, and there is no evidence to suggest that the gamma-reaction level is a separate and distinct level. The reaction levels should be adopted, with a comment on each stating that probably the more accurate value of 5005.3 corresponds to one of the two adopted levels. Note that there is no unambiguous way to include the accurate energy as an adopted energy. The evaluator should not adopt three levels, unless there is definite evidence that the gamma-deduced level is distinct from the others.

E-596.7 5 with $J\pi = 0+$, 1, 2 and E-597.1 3 with $J\pi = 1+$, 2, 3 are known to be different levels, and l(p, d) = 2, leading to $J\pi = 1-$, 2-, 3- with E = 598 2 is also known. Unless there is evidence to suggest that the (p, d) level is distinct, just two levels should be adopted, with a comment on each stating that l(p, d) = 2, $J\pi = 1-$, 2-, 3- for one or both of the levels.

2. Do not unnecessarily adopt values different from those that appear in the literature when the differences are small relative to the quoted uncertainty, and if the literature value has been widely quoted in other sources.

<u>Note</u>: Consider a situation in which an author recommends T1/2 = 6.54 s 22 as an average from several determinations, and this value has subsequently been used by other researchers. The evaluator determines that the value should be 6.56 s 20. Such a small difference does not merit the introduction of a different recommended value into the literature. The slight error in the recommended value should be noted - this warning would be useful in case someone recomputes a recommended value on the basis of some new values, and relies on the earlier quoted recommendation as a single input value representing the old data.

3. Make use of the XREF entries so that unnecessary comments can be avoided. For example, a comment such as "seen only in (d, p)" is not needed since XREF should already convey that information. However, an exception could arise if the evaluator wishes to emphasize some doubt about the level. XREF can also convey "one level corresponds to many levels", so that comments that convey only this information are not needed. However, comments such as "L(d, p) = 1 for E = 3450" can be given for two or more adopted levels to which the (d, p) level could correspond, and are still needed.

4. Important comments on level properties which appear in source data sets should be repeated in the adopted levels data sets - "doublet", "possible contaminant", "not resolved from X" are usually just as important in adopted levels.

5. If the evaluator adopts a Q value, (Q^{-}) that is different from the value given in the most recent mass adjustment, the mass adjustment value should be given in a comment for comparison. Furthermore, when the mass links are not too complicated, the other entries on the Q record could be adjusted to reflect the change in Q⁻ value. Under such circumstances, and if the change in Q⁻ is significant (considerably outside the limits given by the mass adjustment), listings of the adjusted S(n), S(p), and Q(α) values would represent a valuable contribution. However, the inclusion of these data is left to the discretion of the evaluator.

<u>Note</u>: When a re-adjustment is not feasible, a comparison between the mass adjustment value and the adopted value allows the reader to judge qualitatively what the effect on the other Q values might be.

6. All available first-card data should be included for gamma-records; however, continuation-record data generated from the HSICC program are not required.

7. Since the data in adopted levels, gammas are the evaluator's recommended values, discrepant data should not be adopted.

Note 1: If a gamma multipolarity disagrees with the adopted $J\pi$, and $J\pi$ are considered to be well established, the discrepant multipolarity should not be adopted. The discrepancy should be noted in a comment, and a flagged comment should be used so that a footnote symbol appears in the multipolarity field.

Note 2: Since BE2 and T1/2 are equivalent data (if all quantities needed to convert from one to the other are known) and T1/2 is more basic, adopted values for both quantities should not be shown for the same level. The adopted T1/2 will normally be based on all of the available data, including any reliable BE2 measurements. By definition, the best BE2 value will be that deduced from this adopted T1/2 value and the adopted branchings, Q etc. If T1/2 comes from BE2, quoting both values is a redundant exercise; if T1/2 does not come solely from BE2, quoting both T1/2 and BE2 is essentially adopting two different values for the same quantity. A BE2 or BE3, etc. value is best adopted if T1/2 is not known, and cannot be calculated from these same BE2 or BE3 etc. values.

B. E(level)

The introductory section to Nuclear Data Sheets includes the statement "The excitation energies for levels connected by gamma transitions are taken from a least-squares fit to the adopted gamma energies. Other excitation energies are based on best values from all available reactions". No further comment is needed for any adopted levels section for which this statement is appropriate. When this statement may not be appropriate, the evaluator should add a comment explaining the source for the excitation energies.

Uncertainties should be included where available, and should be estimated if the authors do not provide them (see D. 1. under GUIDELINES FOR DECAY AND REACTION DATA SETS).

C. $J\pi$

1. Assignments should be based on the fewest and best arguments. There are two main advantages to this "fewest and best" approach:

(a) $J\pi$ arguments are easier to read and follow when redundancy is eliminated,

(b) alternate arguments can be used to build up systematics.

For example, consider the assignment of 1+ to a level based on the arguments "MI γ to 0+. Logft = 4.4 from 0+". Either argument alone is sufficient: if the multipolarity argument is used, the logft value can be combined with the values from which the logft arguments are derived, thus helping to build up confidence in the application of such systematics to cases where other strong arguments are not available.

<u>Note</u>: The above approach refers to strong arguments. When only weak arguments are available, the more arguments that can be marshalled, the more valid the assignment. However, no combination of weak arguments constitutes a strong argument.

2. "Direct" measurements of J (e.g., atomic beam) should be referenced as 76Fu06. More recent values should be referenced directly. The method should be stated in either case, thus "atomic beam", "NMR". Note that these methods give J only; a separate argument is required for π .

3. Arguments should be detailed enough to convince the reader that the assignments are reliable, and allow judgement to be made as what the consequences would be if new data were to become available.

(a) The argument "From $(\alpha, xn\gamma)$ " is not much use, especially if the $(\alpha, xn\gamma)$ data set contains no details. Statements such as "Excit. in $((\alpha, xn\gamma)$ ", " $\gamma(\theta)$ in $(\alpha, xn\gamma)$ " are needed. If such arguments appear frequently, they can be included in a flagged comment on J π such as "From $(\alpha, xn\gamma)$ based on...", or "Member of band X based on energy fit and inertial parameter". An alternative method is to write a J π footnote which states "Assignments from $(\alpha, xn\gamma)$ are based on excit. and 1(0). Assignments from (d, p) are based on L values and analyzing powers. etc". The J π argument can then be simply "From $(\alpha, xn\gamma)$ ", "From (d, p)", etc. for the relevant levels. This approach is particularly useful when the arguments are somewhat lengthy.

(b) Gamma-decay arguments should be specific: thus "MI γ to 2+", " γ s to 3/2+, 5/2+", while the gamma energy is optional: thus "326 γ to 2+ is MI". A vague statement such as "JP is based on ' γ -decay modes" is not much use to the reader.

An argument for $J\pi = 2$ -, 3- could be expressed as "L(d, p) = 1 gives 0- to 3-. γ to 4-". If the γ transition were to be subsequently determined as MI, the reader can quickly determine that $J\pi$ would be 3-. If the argument had only been given as a general statement such as "From L values in (d, p) and γ feedings", the consequences of the new piece of evidence would not be so transparent.

Note that $J\pi$ values and γ -ray multipolarities referred to in these comments should be adopted values: "Ml γ to (3/2+)", "(E2) γ to (4)-".

Give $J\pi$ (parent, target) in the specific $J\pi$ arguments when the target is not even-even; for example, "logft = 5.4 from 1/2+", or "L(p, t) = 2 from 9/2+".

4. J π arguments for two or more levels can be linked if they are interconnected in such a way that giving separate arguments for each level can be awkward, or can give the appearance of circularity. As an example, consider the sequence 7-(β -)A(Ml)B(El)C(E2)2+: the argument "Logft = 5.1 from 7- and the Ml-El-E2 cascade to 2+ uniquely establishes J π (A) = 6-, J π (B) = 5- and J π (C) = 4+" can be given for one of the relevant levels (say C), and then one can say "J π : See C level" for the others.

5. Consider an L = 0 component in a particle-transfer reaction in which S = 0 can be assumed: leads to ΔJ -0, $\Delta \pi$ = no, even if other L components are present, and the same is true of an E0 component in a gamma transition. A level connected via an M1 + E2 γ to a level with J = 1/2 must have J = 3/2.

6. J π arguments for the ground state of an even-even nucleus are not needed. For example L(p, t) = 0 gives only $\Delta J = 0$ and relies on the assumption of J = 0 for the even-even target nucleus. The absence of hyperfine structure is also not conclusive, since a small μ or Q value can lead to the same result.

7. Maintain consistency between the source data and the conclusions. For example, L(p, t) = 2 (S = 0 assumed) from an even-even target gives $J\pi = 2+$, not (2)+ or 2(+); if the L value is considered to

be a strong argument for J, this same argument applies to π . Similarly, if the argument is not considered to be strong for J, such an argument should not be considered strong for π ; thus, L(p, t) = (2) gives $J\pi = (2+)$.

<u>Note</u>: A reaction such as (Q, d) with a measured L value can be used as a strong argument for π , namely, $\pi = (-)^{L}$, even though J is determined only as J = L-l, L, or L+l.

8. Expressions such as "preferred" or "consistent with" are not strong arguments. Avoid these expressions since they leave open the question of whether other alternative $J\pi$ values have been ruled out; however, such expressions are valid for weak arguments.

9. Configurations

"Conf = 3/2[521]" is not a valid argument for J π ; this argument only shifts the burden of proof from establishing J π = 3/2- to establishing conf = 3/2[521]. The configuration is normally deduced from J π , not vice-versa, although sometimes the reverse is true and the same argument for J π can be used to assign the configuration (sometimes a measured μ will also determine a specific configuration).

Knowledge of L and the analyzing power in a transfer reaction may give $J\pi = 1/2$ - (and assign this level as a pl/2 orbital), but the $J\pi$ argument should be "From L and analyzing power in (d, p)", not "From conf = pl/2". The configuration should be treated as a separate data type from $J\pi$, and be placed on a continuation record. Comments on "Conf" should normally be treated as distinct from comments on $J\pi$.

Usually in the deformed regions, the cross sections and cross section ratios (e.g., (d, p) and (d, t) reactions) determine directly the combination $J\pi K[$], rather than $J\pi$ (such as 5/2-3/2[521]) or just $J\pi = 5/2$ - alone. Under such circumstances, the configuration <u>must</u> be included in the $J\pi$ argument.

10. Do not use multiply placed transitions in $J\pi$ arguments unless the connection with the level in question is definite.

<u>Note</u>: A multipolarity determined for a multiplet will not necessarily be the correct multipolarity for each member of the multiplet (see B. 6. (d)) under GUIDELINES FOR DECAY AND REACTION DATA SETS). If part of the multiplet is definitely established as being connected with the level in question, $J\pi$ of the connected level can be used as a $J\pi$ argument in the usual way, (e.g., " γ to 3/2+").

11. When choices of $J\pi$ are limited to three or fewer, they should be clearly specified rather than given as a range; thus $J\pi = 5/2$ -, 7/2-, 9/2- rather than $J\pi = 5/2$ - to 7/2-. There is less chance of values being misinterpreted when they are written out completely, and the extra space required is not significant (which is the only good argument for quoting $J\pi$ values as a range).

12. RUL is an argument for multipolarity, not for $J\pi$.

13. Note the difference between " $J\pi = 5/2+$ and 7/2-" (or 5/2+&7/2-) and " $J\pi = 5/2+$, 7/2-". The first notation indicates the presence of two unresolved levels with $J\pi = 5/2+$ and 7/2-, respectively; while the second notation indicates two alternate $J\pi$ values for a single level.

D. Other Level Properties

1. Cross referencing of data should give the data set, and not just the keynumber, because the data sources are much easier to locate with this information. The method and keynumber are optional except in the following cases where this information is needed.

(a) μ , Q etc., values for stable or long-lived states should be taken from 78LeZA where possible. The method should be given since these data will normally not appear anywhere else in the mass chain. More recent data can be quoted directly, along with the method and keynumber. For values of μ not taken from 78LeZA and when warranted by the accuracy, a comment stating whether or not the diamagnetic and Knight-shift corrections have been applied should be included. Similarly for Q values, a comment should be given stating whether or not the Sternheimer correction (or other polarization correction) has been applied.

b) If T1/2 is obtained from BE2, this fact should be stated: "T1/2: From BE2 in Coul. ex.".

2. "g factor" quoted in a source data set should be converted to " μ " in adopted levels if J is known.

3. When branching modes are given (e.g., "%IT="), the bases for the values can be given here or in the source data sets. There is no need to repeat the arguments, but they must appear in one place or the other. Also, all possible modes of decay should be accounted for, unless the reason for omitting a mode is obvious.

<u>Note</u>: Where " $\%\epsilon + \%\beta + = 99.0 \ 1$; %IT = 1.0 l" exists but β^- is also energetically allowed, there should be a comment explaining why the β^- branch is considered negligible; for example, " $\%\beta^-$ is negligible since the only available decay branch has $\Delta J = 2$, $\Delta \pi =$ yes, for which, from logflut>8.5, one derives $\%\beta$ -<lxl0⁻⁴". An <u>experimentally</u> determined limit of this magnitude should be included explicitly in the branching statement. One can state simply " $\Delta J = 4$ for possible β^- branch so $\%\beta^-$ is negligible" for more obviously negligible branches such as where the only available branch has $\Delta J = 4$.

4. BE λ values should be included in adopted levels where T1/2 is not independently known and cannot be calculated from BE λ .

Ε. Εγ, Ιγ, ΤΙ

1. Sources of data should be stated unless obvious (i.e., if there is only one or possibly two sources (small mass chain)). General comments are usually sufficient; thus, "From X unless noted otherwise" or "Weighted average of values from A, B, and C".

2. The introductory section to Nuclear Data Sheets includes the explanation that I_{γ} are "photon branchings (normalized to 100 for the most intense transition from each level)". Note that an uncertainty should be included in the value "l00" if there is an uncertainty given for the original intensity; however, when there is only one transition de-exciting the level, the uncertainty has no meaning and should not be given. Any major deviation from this policy should be stated, such as quoting branching ratios in %. There are some situations in which this policy should not be followed (i.e., where a transition other than the strongest should be chosen and for which no explanation is needed):

(a)strongest transition is an unresolved multiplet;

(b)strongest transition is given as an upper limit.

<u>Note</u>: I γ for multiply-placed transitions where the intensity has not been divided should be given as limits (I $\gamma < A + \Delta A$ if I $\gamma = A \pm \Delta A$), with "&" in column 77.

3. Where possible, TI should be given for transitions that have no measured I γ , or for which only a limit on I γ is available. The most common cases would be for E0 transitions or low-energy transitions when I(ce) but no I γ (or α) are available; see Note under J. 10. in GUIDELINES FOR DECAY AND REACTION DATA SETS.

<u>Note</u>: When TI is the "measured" quantity from an intensity balance and α is known so that I γ can be determined, TI as well as I γ should be given if known more accurately than TI calculated from I $\gamma(1+\alpha)$. This approach allows the most accurate branching ratios to be obtained for the transitions from the level in question.

F. Mult, δ , α

1. Data sources should be stated unless obvious. Note that the introductory section states that the α values are theoretically determined on the basis of the given multipolarity and δ . The origins of any α value which is not based on this procedure should be explained in a comment. Sources for multipolarity and δ can usually be quite general: "Mult are based on α k and subshell measurements in and $\gamma\gamma(\theta)$ data in ...". When multipolarities are based on measurements that yield only L, such as $\gamma(\theta)$ or $\gamma\gamma(\theta)$, and M1 + E2 is adopted rather than El + M2, the basis for this choice must be stated.

2. See J. 3. in GUIDELINES FOR DECAY AND REACTION DATA SETS for requirements on consistency among the multipolarity, δ and α entries. α is not needed for transitions with mixed multipolarity and unknown δ , even though such values may have been used in a data source.

3. The relationship between BE2 and T1/2 allows δ (and/or α) to be deduced in cases where BE2 and T1/2 are independently known, and the ground-state branch is known (the ground-state branch could be deduced if all other quantities are known).

4. $\gamma(\theta)$ and $\gamma\gamma(\theta)$ normally lead to two solutions for δ , and both should be noted. In particular, both should be placed in a comment if the correct one is not known; do not adopt one value in the δ field and the alternate value in a comment.

5. As well as using [] to indicate multipolarities deduced solely on the basis of the level scheme for transitions for which you want to list α , this convention may also be adopted in cases where α is negligible, but you wish to show the multipolarity because you are recommending a reduced transition probability. However, as noted earlier, <u>do not assign mult=[] simply because the multipolarity can be deduced from the level scheme.</u>

G. Reduced Transition Probabilities

Reduced transition probabilities are required whenever calculable, i.e., when T1/2, branching, multipolarity and δ are known. Note that for mixed transitions, values for both multipole components should be given.

<u>Note</u> 1: When δ is consistent with zero or infinity, the reduced transition probability for only the dominant component is required. The limit for the other component is optional and can be given in certain cases: BE2(W.u.) < 1000 is not of interest, but BE2(W.u.) < 10⁻³ might be significant.

<u>Note</u> 2: Values should be given for transitions that have not been experimentally characterized, but can be determined from the level scheme as $\Delta J = 1$, $\Delta \pi = \text{yes}$; $\Delta J = 2$, $\Delta \pi = \text{no}$, or $\Delta J \ge 3$ (i.e., cases where significant mixing is not expected).

<u>Note</u> 3: When one or more of the relevant pieces of information required to calculate reduced transition probabilities is/are missing, the calculation should be carried out if reasonable assumptions can be made that fill the gaps. For example, a branch with a small gamma fraction of known multipolarity should be estimated (if the multipolarity would lead to a relatively small total branching) so that reduced transition probabilities for the other branches can be calculated.

Note 4: When only limits are available for some of the relevant data, special care must be taken.

(a) Transition with mult = Ml + E2 and $\delta < 0.1$: while BE2(W.u.) can only be given only as an upper limit, assigning BM1(W.u.) as a lower limit would be incorrect since an upper bound occurs for $\delta = 0$. BM1(W.u.) should be given as an average of the values corresponding to $\delta = 0$ and $\delta = 0.1$, with an uncertainty chosen to overlap the two values.

(b) Consider a transition with a total intensity known only as an upper limit: provided that this intensity limit is not the dominant branching mode, the branching for this transition should be treated as $1/2\text{TI} \pm 1/2\text{TI}$ for the purpose of calculating the reduced transition probabilities for the other transitions.

(c) When T1/2 is only available as an upper limit, the resulting lower limits on the reduced transition probabilities should be given. When T1/2 is a lower limit, the resulting upper limits on the reduced transition probabilities are not of much interest, except perhaps as noted in Note 1, above.

<u>Note</u> 5: Consider the reduced transition probability of a transition for which the corresponding Coulomb excitation probability has been determined (BE2 being the most common case): this parameter can be deduced directly from the measurement and the appropriate single particle value. This procedure should be followed when the level T1/2 has been adopted from a measured BE2 (to avoid including the uncertainty in BE2 twice), or where BE2 is known but branches and/or mixing ratios are not known so that T1/2 for the corresponding level cannot be calculated.

<u>Note</u> 6: When $E\gamma$ is poorly known, the factor $E\gamma^{2L+l}x(l + \alpha)$ appearing in the formula for the reduced transition probabilities may exhibit a smaller range of values than the factors $E\gamma^{2L+l}$ and $(l + \alpha)$ taken separately. The correlation in $E\gamma$ and α should always be taken into account when calculating uncertainties for $BE\lambda(W.u.)$ and $BM\lambda(W.u.)$.

<u>Note</u> 7: BE λ (W.u.) and BM λ (W.u.) are not needed for mixed multipolarities when δ is not known. However, if an evaluator chooses, these parameters can be given as upper limits.

DRAFT

15 March 2005

NUCLEAR STRUCTURE AND DECAY DATA: INTRODUCTION TO RELEVANT WEB PAGES

T. W. Burrows¹, P. K. McLaughlin² and A. L. Nichols²

¹National Nuclear Data Center Brookhaven National Laboratory Upton, New York 11973-5000 USA ²International Atomic Energy Agency Nuclear Data Section Department of Nuclear Sciences and Applications Wagramerstrasse 5, PO Box 100 A-1400 Vienna Austria

Presented to ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Theory and Evaluation, 4 April 2005

Summary

A brief description is given of the nuclear data centres around the world able to provide access to those databases and programs of highest relevance to nuclear structure and decay data specialists. A number of Web-page addresses are also provided for the reader to inspect and investigate these data and codes for study, evaluation and calculation. These instructions are not meant to be comprehensive, but should provide the reader with a reasonable means of electronic access to the most important data sets and programs.

1. Introduction

A network of international/national nuclear data centres constitutes the infrastructure for the provision of a wide range of atomic and nuclear data services to scientists worldwide (Table 1). More than 100 data libraries are readily available cost-free from these centres through the Internet, CD-ROM and other media.

Two nuclear data centres of particular note are the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and the Nuclear Data Section at the International Atomic Energy Agency (IAEA-NDS) in Vienna, Austria. Access to the most relevant databases and associated codes through their web addresses are described below (both main directional web pages are shown in the Annex):

National Nuclear Data Center, Brookhaven - <u>http://www.nndc.bnl.gov/</u>

IAEA Nuclear Data Section: <u>http://www-nds.iaea.org</u>/ (also <u>http://www-nds.iaea.or.at</u>),

and IAEA-NDS mirror sites at IPEN, Brazil, <u>http://www-nds.ipen.br/</u> and BARC, Mumbai, India, <u>http://www-nds.indcentre.org.in/</u> that are maintained by NDS staff.

All libraries and related documentation held by the Nuclear Data Section are available free of charge to scientists in IAEA Member States. Overviews are given by Schwerer and Obložinský (2001) and in the document *Index of Nuclear Data Libraries Available from the* IAEA *Nuclear Data Section* (Schwerer and Lemmel, 2002) – also available on:

<u>http://www-nds.iaea.org/indg_intro.html</u> <u>http://www-nds.iaea.org/reports/nds-7.pdf</u> to download as PDF file.

Brief descriptions of the contents and format of most libraries are published in the IAEA-NDS-report series (Lemmel and Schwerer, 2002), while an introduction to NDS database projects and services can be found at <u>http://www-naweb.iaea.org/napc/nd/index.asp</u>

2. Nuclear Structure and Decay Data Evaluators' Network

A network of centres has been established that specialize in nuclear structure and decay data (Pronyaev *et al.*, 2004); see also Table 2 for a list and access addresses through the Web and email contacts. These laboratories and institutes are involved in all facets of compilation and production of recommended nuclear structure and decay data (*i.e.*, review, evaluation and processing), sharing the evaluation work by mass chain, and meeting biennially to discuss their common problems and interests under the auspices of the IAEA Nuclear Data Section.

3. Worldwide Web (WWW)

The web page of the IAEA Nuclear Data Services can be found at the web addresses <u>http://www-nds.iaea.org</u>/ (IAEA, Vienna, Austria), <u>http://www-nds.ipen.br</u>/ (IPEN, Brazil), and <u>http://www-nds.indcentre.org.in</u>/ at BARC, India; the equivalent web page for NNDC is <u>http://www.nndc.bnl.gov/</u>. These pages contain interactive access to the major databases, as well as overviews of all nuclear data libraries and databases available from the IAEA (IAEA Nuclear Data Guide) and NNDC, and access to various reports, manuals, nuclear data utility programs, Nuclear Data Newsletters and other informative documentation.

The web addresses specified above provide links with the following highly relevant databases (see also Section 4):

- <u>ENSDF</u> evaluated nuclear structure and decay data
- <u>MIRD</u> medical internal radiation dose tables
- <u>Wallet cards</u> Ground and metastable state properties
- NUDAT selected evaluated nuclear data
- <u>NSR</u> (Nuclear Science References)
- <u>Masses</u> (Atomic Mass Evaluation Data File)

For example, NSR bibliographic information can be explored through:

Known author name,

Keynumber (e.g., 1970Ya02 consists of the first two letters of the lead author (Ya (of Yamazaki)), year (1970), and number designation (02)); also to be found in *Recent References, Nuclear Data Sheets* (Tuli, 2005)), and

Nuclide,

as well as through other criteria.

The reader is encouraged to access all of these databases, codes and information manuals through an explorative process, and assess their user-friendliness and usefulness. Your feedback is also welcome, and would help us to improve our web services.

4. Access to Relevant Databases and Programs

The data in some of the nuclear structure databases have been evaluated and assembled through the combined efforts of specialists within the international nuclear structure and decay-data evaluators' network (Section 2), while others are effectively more user-friendly derivatives and subsets of these same data files (*e.g.*, Nuclear Wallet Cards and NuDat).

4.1 Primary databases

NSR: <u>N</u>uclear <u>S</u>cience <u>R</u>eferences is a bibliographic database for low and intermediate energy nuclear physics; published in *Nuclear Data Sheets* (Tuli, 2005) and available on-line (see both <u>http://www-nds.iaea.org/nsr/</u> and <u>http://www.nndc.bnl.gov/nsr/</u>).

ENSDF: Evaluated Nuclear Structure Data File is the 'master' library for nuclear structure and decay data maintained through the evaluators' network co-ordinated by the IAEA (see Section 2), and containing evaluated experimental data for most known nuclides in the mass range from 1 to 293; published in *Nuclear Data Sheets* (Tuli, 2005) and *Nuclear Physics A* (Bakker, 2005) and

available on-line (see both <u>http://www-nds.iaea.org/ensdf/</u> and <u>http://www.nndc.bnl.gov/ensdf/</u>). The full library is also available as zipped files from the NDS open area.

4.2 Other specialised and derived databases

Atomic masses 2003 (Wapstra *et al.*, 2003): mass evaluations for over 2900 nuclides; available on-line (see both <u>http://www-nds.iaea.org/masses/</u> and <u>http://www.nndc.bnl.gov/masses/</u>).

Nuclear Wallet Cards (Tuli, 2000): basic properties of ground and metastable states; available as pocket book and on-line (see both <u>http://www-nds.iaea.org:8080/wallet/</u> and <u>http://www.nndc.bnl.gov/wallet/</u>). The NNDC site also contains Nuclear Wallet Cards for Radioactive Nuclides (Tuli, 2004), available as a pocket book and online, and Palm Pilot versions of both books.

NuDat: <u>Nu</u>clear <u>Data</u> contains user-friendly extracts of applications data from ENSDF and the Nuclear Wallet Cards, plus thermal neutron data; available on-line (see both <u>http://www-nds.iaea.org/nudat/</u> and <u>http://www.nndc.bnl.gov/nudat/</u>).

MIRD: <u>Medical Internal Radiation Dose is based on ENSDF and data processed by RADLST to generate, for example, tables of energies and intensities for X-rays and Auger electrons (Burrows, 1988); available on-line (see both <u>http://www-nds.iaea.org/mird/</u> and <u>http://www.nndc.bnl.gov/mird/</u>).</u>

XUNDL: <u>experimental Unevaluated Nuclear Data Library is a compilation of experimental</u> nuclear structure and decay data in ENSDF format – oriented primarily to high-spin data, but also contains some reaction and decay data (see both <u>http://www-nds.iaea.org/ensdf/</u> and <u>http://www.nndc.bnl.gov/ensdf/</u>).

4.3 Programs

Useful computer codes for the calculation of specific nuclear structure and decay-data parameters include the following:

GABS: calculates absolute γ-ray intensities;

GTOL: undertakes least-squares fits to γ -ray energies, and calculates net feeding to nuclear levels;

HSICC: calculates internal conversion coefficients based on the theoretical values of Hager and Seltzer (1968), and Dragoun *et al* (1969 and 1971);

LOGFT: calculates *log ft* values for β and electron-capture decay, average β^{\pm} energies and capture fractions;

PANDORA: checks "correctness" of the physics in ENSDF;

and others are available through the NNDC web page <u>http://www.nndc.bnl.gov/nndcscr/ensdf_pgm/</u>.

4.4 Interactive calculational tools

Users can perform calculations interactively over the web by means of two processing tools:

Nuclear Structure Calculational Tools: calculates internal conversion coefficients based on the theoretical values of Hager and Seltzer (1968), and Dragoun *et al.* (1969 and 1971), and *log ft* values for β and electron-capture decay, average β^{\pm} energies and capture fractions (see <u>http://www.nndc.bnl.gov/nndc/physco/</u>).

Atomic Masses, Q-values and Threshold Energies: calculates reaction Q-values, threshold energies and decay Q-values based on the 1995 Update to the Atomic Mass Evaluation (Wapstra *et al.*, 2003), and retrieves other quantities contained in this evaluation (see <u>http://www.nndc.bnl.gov/qcalc2/</u>).

4.5 Other network web sites

Web sites of other members of the Nuclear Structure and Decay-data Network (Table 2) contain much useful information, for example:

Energy Levels of Light Nuclei, A = 3 - 20: evaluations, preprints, lists of recent references, reprints for A = 3 - 20 nuclides, and Palm Pilot applications and databases (see <u>http://www.tunl.duke.edu/NuclData/</u>);

jvNubase: ground and metastable state properties, based primarily on ENSDF with some additions derived from more recent data (see <u>http://www.nndc.bnl.gov/amdc/jvnubase/</u>);

RadWare: software package for interactive graphical analysis of gamma-ray coincidence data library of level scheme files in the RadWare ASCII-gls format that have been derived from ENSDF, XUNDL and contributed level schemes (see <u>http://radware.phy.ornl.gov/</u>).

4.6 Nuclear structure and decay-data evaluator's corner

<u>http://www.nndc.bnl.gov/nndc/evalcorner/</u> is primarily designed for ENSDF evaluators and currently contains:

- an interface to ENSDF which allows evaluators to retrieve ENSDF mass chains and nuclides in a basic format (*i.e.*, comments have not been translated into a "rich text" format),
- simplified NSR retrieval system designed for ENSDF evaluators,
- new ENSDF analysis and utility codes in β testing, and
- links to materials from previous ENSDF or NSDD workshops.

5. Concluding Remarks

The contents of this report represent a brief introduction to the means of accessing a powerful set of compiled and evaluated nuclear structure and decay-data libraries, as well as codes for the analysis and development of such data. Useful applications of these data and tools are wide ranging, and the reader is encouraged to explore their potential through the various routes outlined above, and so develop a much greater understanding of their capabilities.

References

Bakker, J., 2005. Nuclear Physics A: Nuclear and Hadronic Physics. Elsevier Science, Amsterdam, the Netherlands, ISSN 0375-9474.

Burrows, T.W., 1988. The Program RADLST. Brookhaven National Laboratory Report BNL-NCS-52142, February 29, 1988; see also <u>http://www.nndc.bnl.gov/nndcscr/ensdf_pgm/analysis/radlst/radlstdoc.pdf</u>.

Dragoun, O., Pauli, H.C., Schmutzler, F., 1969. Tables of internal conversion coefficients for N-subshell electrons. Nucl. Data Tables A6, 235-351.

Dragoun, O., Plajner, Z., Schmutzler, F., 1971. Contribution of outer atomic shells to total internal conversion coefficients. Nucl. Data Tables **A9**, 119-135.

Hager, R.S., Seltzer, E.C., 1968. Internal conversion tables: Part I: K-, L-, M-shell conversion coefficients for Z = 30 to Z = 103. Nucl. Data Tables A4, 1-235.

Lemmel, H.D., Schwerer, O., 2002. Index to the IAEA-NDS documentation series. IAEA report IAEA-NDS-0, July 2002, IAEA Vienna, Austria; see also *http://www-nds.iaea.or.at/nds-0.html*.

Pronyaev, V.G., Nichols, A.L., Tuli, J., 2004. Nuclear Structure and Decay Data (NSDD) Evaluators' Network. IAEA report INDC(NDS)-421, Rev. 1, March 2004, IAEA Vienna, Austria; see also <u>http://www-nds.iaea.org/reports/indc-nds-421-r1.pdf</u>.

Schwerer, O., Lemmel, H.D., 2002. Index of nuclear data libraries available from the IAEA Nuclear Data Section. IAEA report IAEA-NDS-7, July 2002, IAEA Vienna, Austria; see also <u>http://www-nds.iaea.or.at/reports/nds-7.pdf</u>.

Schwerer, O., Obložinský, P., 2001. Overview of nuclear data libraries and online services. Radiochim. Acta **89**, 197-200.

Tuli, J.K., 2000. Nuclear Wallet Cards. 6th Edition, January 2000, National Nuclear Data Center, Brookhaven, USA; see also <u>http://www.nndc.bnl.gov/wallet/</u>.

Tuli, J.K., 2004. Nuclear Wallet Cards for Radioactive Nuclides. March 2004, National Nuclear Data Center, Brookhaven, USA; see also <u>http://www.nndc.bnl.gov/wallet/</u>.

Tuli, J.K., Editor, 2005. Nuclear Data Sheets. Academic Press, Elsevier Science, Amsterdam, the Netherlands, ISSN 0090-3752.

Wapstra, A.H., Audi, G., Thibault, C., 2003. The AME2003 atomic mass evaluation (I). Evaluation of input data, adjustment procedures. Nucl. Phys. **A729**, 129–336; Audi, G., Wapstra, A.H., Thibault, C., 2003. The AME2003 atomic mass evaluation (II). Tables, graphs and references. Nucl. Phys. **A729**, 337-676.

IAEA Nuclear Data Section, Vienna, Austria		
http://www-nds.iaea.org/		
US National Nuclear Data Center, Brookhaven, USA		
http://www.nndc.bnl.gov/		
OECD, NEA Data Bank, Paris, France		
http://www.nea.fr/		
Russian Federation Nuclear Data Centre,		
Obninsk, Russian Federation		
http://www.ippe.obninsk.ru/podr/cjd/		
9 co-operating specialised centres:		
PR China, Hungary, Japan, Republic of Korea, Russian Federation and Ukraine		

Table 1. International/National Nuclear Data Centres.

Table 2. Nuclear Structure and Decay Data Evaluators' Network.

http://www.nnlc.bnl.gov/ Contact: J. K. Juli (network co-ordinator) e-mail: 'Lulif&hull gov/ Nucker Data Project, Oak Ridge National Laboratory, USA http://www.nhlv.conl.gov/dnl/ Contact: J. K. S. Smith e-mail: 'Mstinkformal phy Conl.gov/ Isotope Project, Lawrence Berkeley National Laboratory, Berkeley, USA http://dc.bl.gov/ Contact: C. M. Bagin e-mail: 'Bgini/Gabl gov Idaho National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: 'Bgini/Gabl gov Imp://www.nnl/dkk.edu/Nuclear Laboratory, Duke University, USA Imp://www.ind.dkk.edu/Nuclear Laboratory, Argonne, U.S.A. Intp://www.ind.adk.edu/Nuclear Isotoratory, Argonne, U.S.A. Intp://www.ind.adk.edu/Nuclear Physics Institute, Russian Federation Contact: F. G. Kondev e-mail: Collex/Gabl gov/NDP. Contact: F. G. Mondev e-mail: Indiv/Gabl gov/NDP. Contact: F. G. Mondev e-mail: Indiv/Gabl gov/NDP. Contact: F. G. Monde e-mail: Indiv/Gabl gov/NDP. Contact: F. G. Bagin Contact: F. G. Maley e-mail: Indiv/Gabl gov/NDP.	US National Nuclear Data Center, Brookhaven, USA (maintenance of master ENSDF database)
Contact : J. K. Tult (network co-ordinator) e-mail: Juli@hillon law Nuclear Data Project, Oak Ridge National Laboratory, USA http://www.fork.ordin.edu/fork. Contact: C. M. Smith e-mail: Minifalmail.phy.ORNL.gov Estope Project, Lawrence Berkeley National Laboratory, Berkeley, USA http://www.fork.ordin.edu/fork. Contact: C. W. Reich e-mail: CW. Reich e-mail: A. Reiley: CW. Reich e-mail: A. Reiley: CW. Reich e-mail: A. Mitopolsky e-mail: Minifalew. Reiffy Structure e-mail: genz@iths since ncen Hill: University. Physics Department, Changchun, PR. China Contact: E. C. Sondev e-mail: genz@iths since ncen Hill: University. Physics Department, Changchun, PR. China Contact: J. Blachot e-mail: genz@iths since ncen Hill: University. Physics Department, Changchun, PR. China Contact: J. Blachot e-mail: genz@iths since ncen Hill: University. Physics Department, Changchun, PR. China Contact: J. Rakhot e-mail: A. Reinchotoliki partic genz Contact: J. Rakhot e-mail: A. Defotoliki partic genz Contact: J. Rakhot e-mail: A. Reinchotoliki partic genz Contact: J. Ruchot e-mail: Genz Contact: J. Contact, C. D. Freme e-mail: Genz Contact: J. Contact, C. D. Freme e-mail: CW. Contact: C. Waddington e-mail: CW. Contact: C. Waddington e-mail: CW. Contact: C. Waddington e-mail: CW. Contact:	http://www.nndc.bnl.gov/
e-mail: Individual gov Nuclear Data Project, Oak Ridge National Laboratory, USA http://www.ghv.cml.eav/ndp/ Contact: M. S. Smith e-mail: MSmith@mail.phv.ORNL.gov Isoope Project, Lawrence Berkeley National Laboratory, Berkeley, USA http://www.ghv.cml.eav/ Contact: C. M. Baglin e-mail: Jenil/Gible.gov Idabo National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: Jenil/Gible.gov Idabo National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: Jenil/Gible.gov Idabo National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: Geventual.duke.edu/NuclData/ Contact: J. H. Kelley e-mail: Science: Induct.edu/NuclData/ Contact: F. G. Kondev e-mail: Mathewestify Nuclear Laboratory, Argonne, U.S.A. http://www.tdn.laboratory, Argonne, U.S.A. http://www.tdn.laboratory, Argonne, U.S.A. http://www.tdn.laboratory, Argonne, U.S.A. http://www.tdn.laboratory, Argonne, U.S.A. http://www.tdn.laboratory Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: F.G. Kondev e-mail: Induce/Ganle.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: H. Mitropolsky e-mail: gate/Gibins.citae.ac.cn Jillin University, Physics Department, Changchun, PR China Contact: Hou Junde e-mail: jean.blachof@wandoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://www.ndt.tkai.jeaci.go.jp Nuclear Data Centre, Tokai-Mura, Japan http://www.ndt.tkai.jeaci.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Katakura e-mail: Ameenah@kcoll.kuniv.edu.kw Laboratorium woor KertAysica, Gent, Belgium Contact: D. De Frenne e-mail: Gibin Kolai.jeaci.go.jp Nuclear Data Centre, Physics Adstronomy, McMaster University, Hamilton, Canada http://www.nduckai.gov.ch.go.jf.gc Contact: D. De Frenne e-mail: Jenkobai.gov.cov.ch.go.jf.gc Contact: D. Waddington e-mail: Jenkobai.gov.cov.ch.go.jf.gc Contact: D. Waddington e-mail: Jenkobai.gov.cov.ch.go.jf.gc Laborator	Contact: J. K. Tuli (network co-ordinator)
Nuclear Data Project, Oak Ridge National Laboratory, USA Intr://www.nork.exolute/ Contact: M. S. Smith Contact: C. M. Baglin e-mail: MSmith@mail.phy.ORNL.gov Exotope Project, Lawrence Berkeley National Laboratory, Berkeley, USA Intr://www.file.bli.gov/ Contact: C. M. Baglin e-mail: C. Magling e-mail: C. W. Reich Contact: J. H. Kelley e-mail: Kelley/dutul duke edu Argronen National Laboratory, Argonne, U.S.A. http://www.id.anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: G. K. Gondev e-mail: grant/dignoil.gov Nuclear Data Centre, Detersburg Nuclear Physics Institute, Russian Federation Contact: G. Zhigang e-mail: grant/dignoil.gov Nuclear Data Centre, Neijing, PR China Contact: G. Zhigang e-mail: grant/discing ac.en <td>e-mail: <u>Tuli@bnl.gov</u></td>	e-mail: <u>Tuli@bnl.gov</u>
http://www.ph/second.gov/ndv/ Contact: M. S. Smith e-mail: Msmith@mail.phy.ORNL.gov Isotope Project. Lawrence Berkeley National Laboratory, Berkeley, USA http://ie.bl.cov/ Contact: C. M. Baglin e-mail: biglinglineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Beich e-mail: Contact: C. W. Reich Contact: C. W. Reich e-mail: CwReich@interplus.net Triangle University Nuclear Laboratory, Duke University, USA http://www.tml.duke.edu/NuclDatu/ Contact: T. H. Kelley e-mail: kelley@inul.duke.edu Argome National Laboratory, Argonne, U.S.A. http://www.tml.duke.edu/Nuclear Physics Institute, Russian Federation Contact: F.G. Kondev e-mail: kelley@inul.duke.edu Argome National Laboratory, Argonne, U.S.A. http://www.tml.duke.edu/Nuclear Physics Institute, Russian Federation Contact: F.G. Kondev e-mail: Matter Petersburg Nuclear Physics Institute, Russian Federation Contact: G. A. Mitropolsky e-mail: Imatt@appi.spb.ry Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: Iger@inin citae ac.en Jilin University, Physics Department, Changchun, PR China Contact: Hou Junde e-mail: igen@inin citae ac.en Jilin University, Physics Department, Changchun, PR China Contact: J. Ralachat e-mail: igen.blachof@wanadoo.fr JAREH Nuclear Data Centre, Tokai-Mura, Japan http://www.ndc.tokai.jacri.go.jp/ Contact: J. Ralachat e-mail: igen.blachof@wanadoo.fr JAREH Nuclear Data Centre, Tokai-Mura, Japan http://www.ndc.tokai.jacri.go.jp/ Contact: J. Ralachat e-mail: Ameenah@ikkool.Luniv.edu.kw Laboratorium woro KerrdYsiea, Genel, Belgium Contact: D. De Frenne e-mail: Matteria.go.jp/ Contact: D. De Frenne e-mail: JCW@interia.go.ip/ Contact: D. De Frenne e-mail: JCW@interia.go.ip/ Contact: D. De Frenne e-mail: JCW@interia.go.ip/ Contact: D. Chedii.gen.go.ip. Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.physics.gov.gov.gov.gov.gov.gov.gov.gov.gov.gov	Nuclear Data Project, Oak Ridge National Laboratory, USA
Contact: M. S. Smith e-mail: MsmithGranil.phy.ORML gov Isotope Project, Lawrence Berkeley National Laboratory, Berkeley, USA http://chi.dbi.ecu/ Contact: C. M. Baglin e-mail: CwiteLibeContenting and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: CwiteLibeContenting and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: CwiteLibeContenting and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: CwiteLibeContenting and Environmental Laboratory, Idaho Falls, USA Contact: J. H. Kelley e-mail: CwiteLibeContenting and Environmental Laboratory, Idaho Falls, USA Contact: J. H. Kelley e-mail: CwiteLibeContenting and Environmental Laboratory, USA http://www.tdanl.adw.edu/MicData/ Contact: J. H. Kelley e-mail: KelleyCatual Idabe.edu Argonne National Laboratory, Argonne, U.S.A. http://www.tdanl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: G. Kondey e-mail: Exactional Laboratory, Argonne, U.S.A. http://www.td.anl.gov/NIDP/ Contact: G. Kondey e-mail: GwiteLibeContention Contact: I. A Mitropolsky e-mail: mart@ipung aph.nl Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: geiZhifus cate accn Jlin University, Physics Department, Changehun, PR China Contact: Ge Zhigang e-mail: geiZhifus cate accn Jlin University, Physics Department, Changehun, PR China Contact: J. Blachot e-mail: Jabachot@wnadoo.fr JAERN Nuclear Data Centre, Tokai-Mura, Japan http://www.du.tokai.geri.go.jp/ Contact: A talkura e-mail: Antecnator Data Centre, Tokai-Mura, Japan http://www.du.tokai.geri.go.jp/ Contact: C. Katakura e-mail: Contact: D. De Frenne e-mail: Antecnator Control, Bejtum Contact: J. Chada e-mail: Contact: C. Taban e-mail: Antecnator Control, Bejtum Contact: J. Chada e-mail: Eankura@bisha.tokai.geri.go.jp/ Contact: J. Chada e-mail:	http://www.phy.ornl.gov/ndp/
e-mail: Minihaliana Indu China Device Construction of the second	Contact: M. S. Smith
Isotope Project, Lawrence Berkeley National Laboratory, Berkeley, USA http://dc.lbl.com/ Contact: C. M. Baglin e-mail: Datin@Ibl.gov Idaho National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: Curversity Nuclear Laboratory, Duke University, USA http://www.tuni.duke.edu/Nucl/Data Contact: J. H. Kelley e-mail: Curversity Nuclear Laboratory, Argonne, U.S.A. http://www.tuni.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.tuni.duke.edu Ontact: J. G. Kondev e-mail: Rondev@anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: G. Kondev e-mail: matt@appi.jspb.n! Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: gezg@inis.cina.a.cn Illin Duiversity, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: gezg@inis.cina.a.cn Illin Duiversity, Physics Department, Changchun, PR China Contact: J. Blachot@mail.jlu.edu.cn e-mail: Gezg@inis.cina.a.cn Illin Duiversity, Physics Department, Changchun, Projece <	e-mail: <u>MSmith@mail.phy.ORNL.gov</u>
http://tecl/bl.gov/ Contact: C. M. Bagin c-mail: bagin/@ibl.gov Idaho National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: CWReich/anterplus.net Triangle University Nuclear Laboratory, Duke University, USA http://www.tml.duke.edu/NuclData/ Contact: J. H. Kelley e-mail: kelley/@run1.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.tml.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.tml.duke.edu Contact: J. H. Kelley c-mail: matiCappi.spb.ru c-mail: matiCappi.spb.ru c-mail: matiCappi.spb.ru c-mail: matiCappi.spb.ru c-mail: gozgó/itis.cia.a.co Thili University, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: jdhuo/@mail.ilu.edu.en Centre d'Endes Nucleaires, Grenoble, France Contact: J. Blachot e-mail: Katakura(bisha tokai.jaeri.go.jp Nuclear Data Centre, Tokai-Mura, Japan http://www.maket.cok/al.igeri.go.jn Nuclear Data Centre, Physics Department, Kuwait University, Kuwait <td< td=""><td>Isotope Project, Lawrence Berkeley National Laboratory, Berkeley, USA</td></td<>	Isotope Project, Lawrence Berkeley National Laboratory, Berkeley, USA
Contact: C. M. Baglin e-mail: Baglin (Edb) gov Idaho National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: C. W. Reich e-mail: C. Wickich/Zinterplus.net Triangle University Nuclear Laboratory, Duke University, USA http://www.td.anl.gov/NDP/ Contact: J. H. Kelley e-mail: kelley/Zintel.duke.edu Argonno National Laboratory, Argonne, U.S.A. http://www.td.anl.gov/NDP/ Contact: G. Kondev e-mail: kelley/Zintel.duke.edu Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: G. Kondev e-mail: matticppus pob u Institute of Atomic Energy, Beijing, PR China Contact: G. Atomic Energy, Beijing, PR China Contact: G. Zhigang e-mail: gerg/Zinis.cine.go.cn Jilii University, Physics Department, Changchun, PR China Contact: Ho Junde e-mail: jean blachot@wanadoo.ff JAEN Nuclear Data Centre, Tokai-Mura, Japan http://www.tdia.igov/go.cn Jakadot e-mail: jean blachot@wanadoo.ff JAEN Nuclear Data Centre, Tokai-Mura, Japan http://www.tdia/go.go.fm Nuclear Data Centre, Tokai-Mura, Japan http://www.tdia/go.go.fm Nuclear Data Centre, Tokai-Mura, Japan http://www.tdia/go.fen.go.fm Nuclear Data Centre, Tokai-Mura, Japan http://www.tdia/go.fen.go.fm Nuclear Data Centre, Tokai-Mura, Japan http://www.tdia/go.fen.go.fm Contact: J. Katakura e-mail: gens/diraku/Zibish aclear jerg/gi/ Contact: J. Katakura e-mail: definer/grug acbe Department of Physics and Astronomy, McMaster University, Kuwait Contact: J. Corkadington e-mail: definer/grug acbe Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.nds.ida/go.fm Contact: J. C. Waddington e-mail: Thor Kibedi Genue.du.au Atomic Mass Data Center, Centre de Spectrométrie Muselaire et de Spectrométrie Masse, Orsay, France http://www.nds.idau.edu.au Atomic Mass Data Center, Centre de Spectrométrie Muselaire et de Spectrométrie Masse, Orsay, France http://www.nds.idau.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spe	http://ie.lbl.gov/
e-mail: badin@lbig.ov Idaho National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich e-mail: CWReich@interplus.net TriangleUniversity Nuclear Laboratory, Duke University, USA http://www.thal.duke.edu/Nucl/Data/ Contact: J. H. Kelley e-mail: kelley@intul.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.thal.gov/NDP/ Contact: F.G. Kondev e-mail: kondev/danl.gov/ Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: J. A. Mitropolsky e-mail: ingtri2ppl.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: G. Kingang e-mail: ingtri2ppl.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: G. Zhigang e-mail: ingtri2ppl.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: G. Jingang e-mail: ingtri2ppl.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: G. Jingang e-mail: igen@dins.cine.ac.cn Illin University, Physics Department, Changchun, PR China Contact: J. B. Jundeáires, Grenoble, France Contact: J. Blachot e-mail: igen.blachot@avanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://www.dc.tokai.igeri.go.jp/ Contact: J. Katakura e-mail: Katakura e-mail: Katakura e-mail: Katakura e-mail: Anteenah/Givanadoo fr JAERI Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Blachot e-mail: Atakura e-mail: Anteenah/Givanadoo fr JAERI Nuclear Data Centre, Physics Agent Belgium Contact: J. C. Vaddington e-mail: Anteenah/Givana dastoronomy, McMaster University, Kuwait Contact: J. C. Waddington e-mail: Anteenah/Givana dastoronomy, McMaster University, Canberra, Australia http://www.physics.mcmaster.ca/-belrat/ contact: J. C. Waddington e-mail: Intor.Kubedi/econs.diz/J.fr IAEAN Nuclear Data Section, Vienna, Australia Nutional University, Canberra, Australia http://www.nds.itc.mcmaster.ca/-belrat/ Contact: G. Waddington e-mail: mollocoud/@ comm.in.p.J.fr IAEAN Nuclear Data Section, Vienna, Austria (co-ordination of network meet	Contact: C. M. Baglin
Idaho National Engineering and Environmental Laboratory, Idaho Falls, USA Contact: C. W. Reich. e-mail: <u>CWReich@interplus.net</u> Triangle University Nuclear Laboratory, Duke University, USA <i>Intg://www.tutl.duke.edu/Nucl.Dtau/</i> Contact: J. H. Kelley e-mail: kelley?etunl.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.td.anl.gov/NDP/ Contact: F. G. Kondey e-mail: kelley?etunl.duke.edu Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: mat/@inpul.spb.ru Institute of Atomic Energy. Beijing, PR China Contact: G. Kondey e-mail: genergy: Beijing, PR China Contact: G. Zhigang e-mail: genergy: Beijing, PR China Contact: G. Zhigang e-mail: genergy: Beijing, PR China Contact: G. Zhigang e-mail: genergy: Beijing, PR China Contact: Hou Junde e-mail: genergy: Beijing, PR China Contact: Hou Junde e-mail: jean blachot@wanadoo.fr JHin University, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: jean blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan <i>Intp://www.ndc.tokai.jaeri.go.jp</i> Nuclear Data Centre, Tokai-Mura, Japan <i>Intp://www.ndc.tokai.jaeri.go.jp</i> Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Katakura e-mail: Ataura(acbina tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: D. De Frenn e-mail: Ataura(acbina tokai.jaeri.go.jp Nuclear Data Centre, Physics Australian National University, Hamilton, Canada <i>Intp://www.ndc.tokai.genet.ge.destater.g</i>	e-mail: <u>baglin@lbl.gov</u>
Contact: C. W. Reich e-mail: CWReich/Anterplus.net Triangle University Nuclear Laboratory, Duke University, USA http://www.thal.duke.edu/NuclDatu/ Contact: J. H. Kelley e-mail: kellev/atun1.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.td.anl.gov/NDP/ Contact: F. G. Kondev e-mail: nutri2@npi.spb.rd Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: J. A. Mitropolsky e-mail: matri2@npi.spb.rd Institute of Atomic Energy, Beijing, PR China Contact: G. Kondev e-mail: matri2@npi.spb.rd Institute of Atomic Energy, Beijing, PR China Contact: G. Kondev e-mail: matri2@npi.spb.rd Institute of Atomic Energy, Beijing, PR China Contact: G. Zhigang e-mail: gezg/ditis.ciae.ac.en Jilin University, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: jdhua/mail.jtu.edu.en Centre d*Eudes Nucleares, Gernoble, France Contact: J. Blachot e-mail: katakura e-mail: Contact: D. Blachot e-mail: jean.blachot(awandoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://www.ndc.tokai.jaeri.go.jp/ Nuclear Data Centre, Tokai-Mura, Japan http://www.ndc.tokai.jaeri.go.jp/ Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Ratakura e-mail: Katakura e-mail: Contact: D. Beapartment, Kuwait University, Kuwait Contact: D. Curden Suckaire, Gene, Belgium Contact: D. Curdend Grue.ac.be Department of Physics and Astronomy, McMaster University, Canberra, Australia http://www.ndvice.mail.go.jp Cont	Idaho National Engineering and Environmental Laboratory, Idaho Falls, USA
e-mail: CWReich@interplus.net Triangle University Nuclear Laboratory, Duke University, USA http://www.ttml.duke.edu/NuclData/ Contact: J. H. Kelley e-mail: kelley@itterfudke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.tdu.lagov/NDP/ Contact: F.G. Kondey e-mail: kondev@itterfudge.edu/Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: matt@appi.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: G. Zhigang e-mail: gezg@itts.ciae.ac.en Institute of Atomic Energy, Beijing, PR China Contact: G. Zhigang e-mail: gezg@itts.ciae.ac.en Institute of Atomic Energy, Beijing, PR China Contact: J. Bachot e-mail: gezg@itts.ciae.ac.en Institute of Atomic Energy, Beijing, PR China Contact: J. Bachot e-mail: gezg@itts.ciae.ac.en Institute of Atomic Energy, Beijing, PR China Contact: J. Bachot e-mail: gezg@itts.ciae.ac.en Institute of Atomic Energy, Beijing, PR China Contact: J. Bachot e-mail: gezg@itts.ciae.cen Institute of Atomic Energy, Beijing, PR China Contact: J. Bachot e-mail: gezg@itts.ciae.cen Institute of Atomic Energy, Brysics Department, Changchun, PR China Contact: J. Blachot e-mail: gezg@itts.ciae.cen Institute of Atomic Energy, Brysics Department, Changchun, PR China Contact: J. Blachot e-mail: gezg@itts.ciae.con Institute of Atomic Energy, Brysics Department, Changchun, Japan http://www.ndc.tokai.ideri.go.jp Contact: J. Katakara e-mail: Atomicatoki.jaeri.go.jp Contact: J. Katakara e-mail: Atactara@itsisha tokai.jaeri.go.jp Contact: D. De Frenn e-mail: Atomicatoki.jaeri.go.jp Contact: D. De Frenn e-mail: Atomicatory Contact: D. De Frenn e-mail: Atomicatory Contact: D. De Frenn e-mail: Atomicatory Contact: C. Waddington e-mail: JCW@ammaster.ca Department of Physics Angent University, Kuwait Contact: D. Contact: D. Contact: D. Contact: D. Contact: Atomicatory Contact: C. Waddington e-mail: JCW@ammaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.nds.iaea.cng/ Contact: T. Kibédi e-mail: multicourde contact: C. W	Contact: C. W. Reich
Triangle University Nuclear Laboratory, Duke University, USA http://www.tut.duke.edu/NuclData/ Contact: J. H. Kelley e-mail: kelley(attund duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.td.anl.gov/NDP/ Contact: F.G. Kondev e-mail: kondev(attant) e-mail: matt@enoiseDoru Contact: I. A. Mitropolsky e-mail: matt@noiseDoru Institute of Atomic Energy, Beijing, PR China Contact: G. Zhigang e-mail: gezg@iris.cine.ac.en Jilin University, Physics Department, Changchun, PR China Contact: G. Zhigang e-mail: jebuskofu/(awandoo) fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://www.ndt.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Blachot e-mail: jebushof@wandoo_fr JAERI Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Katakura e-mail: denis.deferenc@inv.ac.be Department of Physics and Astronomy, McMaster University, Kuwait Contact: J. C. Waddington e-mail: denis.deferenc@inv.ac.be Department of Nuclear Physics, Australian National University, Canberra, Austr	e-mail: <u>CWReich@interplus.net</u>
http://www.tuni/duke.edu/NuclData/ Contact: J. H. Kelley e-mail: kelley@ituni/duke.edu Argome National Laboratory, Argonne, U.S.A. http://www.tdail.gov/NDP/ Contact: J. A. Mitropolsky e-mail: kondev@anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: J. A. Mitropolsky e-mail: mart@pupi.spb.tu Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: egr@diris.ciae.ac.cn Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: jean.blachot@wanadoo fr JAERN Nuclear Data Centre, Tokai-Mura, Japan http://www.tok.tokia.iaeri.go.jp/ Contact: J. Blachot e-mail: jean.blachot@wanadoo fr JAERN Nuclear Data Centre, Tokai-Mura, Japan http://www.tok.tokia.iaeri.go.jp/ Contact: J. Fatakura e-mail: iai. Aneenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: J. Fatakura e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: i. Menenah@kuc01.kuniv.edu.kw <td>Triangle University Nuclear Laboratory, Duke University, USA</td>	Triangle University Nuclear Laboratory, Duke University, USA
Contact: J. H. Kelley e-mail: kelley@unl.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.id.anl.gov/NDP/ Contact: F.G. Kondev e-mail: kondev@anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: mart@pnpi.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: I. A. Mitropolsky e-mail: gezg@itris.ciae.ac.en Jilin University, Physics Department, Changchun, PR China Contact: I. Blachot e-mail: igenz@ditris.ciae.ac.en Jilin University, Physics Department, Changchun, PR China Contact: I. Blachot e-mail: igenz@ditris.ciae.ac.en Jilin University, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: igenz@ditris.ciae.ac.en Jilin University, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: igenz@ditris.ciae.ac.en Ittp://www.ndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: igenz@ditris.ciae.ac.en Ittp://www.ndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: igenz@ditris.ciae.ac.en Ittp://www.ndc.tokai.jaeri.go.jp Nuclear Data Centre, Tokai-Mura, Japan http://www.ndc.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Farhan e-mail: Anneenah@kuc01 kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: J. C. Waddington e-mail: idensis.defreme@rug.ac.be Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.physics.master.ca/-balraj/ Contact: J. C. Waddington e-mail: idensis.defreme@rug.ac.be Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.physics.ac.et.in.pla.fr Http://www.physics.ac.et.in.pla.fr Http://www.ndc.in.gov/andc/ Contact: T. Kibédi e-mail: mailtoraud@@consmintp3.fr Http://www.nds.inee.in.gov/ Contact: J. C. Waddington e-mail: mailtoraud@@consmintp3.fr Http://www.nds.inee.in.gov/ Contact: Georges Audi e-mail: mailtoraud@@consmintp3.fr Http://www.nds.inee.org/ Contact: A. L. Nichols e-mail: mailtoraud@@consmintp3.fr Http://www.nds.inee.org/ Contact:	http://www.tunl.duke.edu/NuclData/
e-mail: kelley@tunl.duke.edu Argonne National Laboratory, Argonne, U.S.A. http://www.id.ail.gov/NDP/ Contact: F.G. Kondev e-mail: kondev@anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: mar@pipi.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: egreg@tifis.ciae.ac.cn Jillin University, Physics Department, Changchun, PR China Contact: I. Blachot e-mail: egreg@tifis.ciae.ac.cn Jillin University, Physics Department, Changchun, PR China Contact: I. Blachot e-mail: egreg.gtifis.ciae.ac.cn Jillin University, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: egreg.gtifis.ciae.ac.cn Jillin University, Physics Department, Changchun, PR China Contact: J. Blachot e-mail: egreg.gtifis.ciae.gtific	Contact: J. H. Kelley
Argome National Laboratory, Argonne, U.S.A. http://www.td.anl.gov/NDP/ Contact: F.G. Kondev e-mail: kondev/@anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: mart@pnpi.spb.tu Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: gez@airis.ciae.ac.en Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: jean blachot@airas, Grenoble, France Contact: J. Blachot e-mail: jean blachot@airas, Grenoble, France Contact: J. Blachot e-mail: jean blachot@airas, Grenoble, France Contact: J. Blachot e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Tokai-Mura, Japan http://wwwnde.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. De Frenne e-mail: Ameenah@kue01 kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: J. De Frenne e-mail: denis definen@fung.ac.be Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.physics.manaster.cd	e-mail: <u>kelley@tunl.duke.edu</u>
http://www.td.anl.gov/NDP/ Contact: F.G. Kondev e-mail: Kondev(@anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: mart@papti.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: gez@@iris.ciae.ac.on Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: ighuo@mail ilu-cdu.cn Centre d'Etudes Nucléaires, Grenoble, France Contact: J. Blachot e-mail: ighuo@mail ilu-cdu.cn Contact: J. Katakura Ocntact: J. Katakura e-mail: igan.blachot@wanadoo fr JAER Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura Contact: J. Katakura e-mail: denid Centre, Physics Department, Kuwait University, Kuwait Contact: J. Katakura e-mail: denid sdefreme@rug ac be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.monaster.ca/-balraj/ Contact: J. C. Waddington e-mail: denid sdefreme@rug ac be Department of Nuclear Physics, Austr	Argonne National Laboratory, Argonne, U.S.A.
Contact: F.G. Kondev e-mail: kondev(@anl.gov Muclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: mart@apni.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: gez@diris.cine.ac.on Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: idhuo@amail.ith.edu.cn Centre of Fetudes Nuclearies, Grenoble, France Contact: J. Blachot e-mail: jean.blachot@avanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Automic Energe, Deartment, Kuwait University, Kuwait Contact: A. Farhan e-mail: Automic@avanadoo.fr IAERI Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Automic@avanadoo.fr Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwew.physics.memaster.ca/-balraj/ Contact: J. C. Waddington e-mail: ICW@armentster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.ndc.inde.gov.aud.edu.au Atomic Mass Data Centre, Centre de Spectrométrie Nucleaire et de Spectrométrie Masse, Orsay, France http://www.nds.inde.gov.aud.edu.au Atomic Mass Data Centre, Centre de Spectrométrie Nucleaire et de Spectrométrie Masse, Orsay, France http://www.nds.inde.gov.aud.edu.au Atomic Mass Data Centre, Centre de Spectrométrie Nucleaire et de Spectrométrie Masse, Orsay, France http://www.nds.inde.gov.aud.edu.au Atomic Mass Data Centre, Centre de Spectrométrie Nucleaire et de Spectrométrie Masse, Orsay, France http://www.nds.inde.gov.aud.edu.au Atomic Mass Data Centre, Centre de Spectrométrie Nucleaire et de Spectrométrie Masse, Orsay, France http://www.nds.inde.gov.aud.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucleaire et de Spectrométrie Masse, Orsay, France http://www.nds.inde.gov.aud.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucleaire et de Spectrométrie Masse, Orsay, France http://www.nds.inde.gov.aud.edu.au Atomic	http://www.td.anl.gov/NDP/
e-mail: kondev@anl.gov Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: 1. A. Mitropolsky e-mail: mart@pnpi.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: Calhgang e-mail: gerg@iths.ciae.ac.cn Jilin University, Physics Department, Changehun, PR China Contact: Ho Junde e-mail: jehuo@mail.jlu.edu.en Contact: J. Uo Junde e-mail: jean.blachot@wanadoo.fr JAER Nuclear Data Centre, Tokai-Mura, Japan http://www.dc.tokai.jaceri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha tokai.jacri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Katakura e-mail: Meenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrome@uru.ac.be Department of Physics Australian National University, Hamilton, Canada http://physics.auncatser.ca/-balraj/ Contact: J. C. Waddington e-mail: Tibor.Kibedi@anu.edu.au Atomatorine ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://physics.auncdu.au/nuclear//	Contact: F.G. Kondev
Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation Contact: I. A. Mitropolsky e-mail: marit@pnpi.spb.ru Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: gaz@diris.ciae.ac.cn Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: gidbuo@mail.lu.edu.en Centre d'Études Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jean blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: daneenah@kuc01 kuniv edu kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frene e-mail: defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://www.mks.sc.memaster.ca/~balral/ Contact: D. C. Waddington e-mail: ICW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.mdc.toki.dou.au/nuclear/ Contact: T. Kibédi	e-mail: <u>kondev@anl.gov</u>
Contact: I. A. Mitropolsky e-mail: mart@enpi spb.ru Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: gez@diris.ciae.ac.cn Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: jdhuo@mail.jlu.edu.en Centre d'Etudes Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jean.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://www.dc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha tokai.jaeri.go.jp Nuclear Data Centre, Tokai-Mura, Japan http://www.dc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: D. Be Frenne e-mail: defisenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://www.physics.memaster.ca/~balraj/ Contact: J. C. Waddington e-mail: J. CW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.ndc.inde.au/intuclear/ Contact: J. C. Waddington e-mail: Tibor Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/andc/ Contact: T. Kibédi e-mail: mailtoraudi@cosm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www.ndc.indea.org/ Contact: A. I. Nichols e-mail: mailtoraudi@cosm.in2p3.fr	Nuclear Data Centre, Petersburg Nuclear Physics Institute, Russian Federation
e-mail: mart@pupi.spb.ri Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: gezg@iris ciae.ac.cn Jilin University, Physics Department, Changchun, PR China Contact: Ge Zhigang e-mail: jdhu@amail.jlu.edu.cn Centre d'Etudes Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jean.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Katakura e-mail: Mmeenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: Jenis defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physww.physics.memaster.ca/-balraj/ Contact: J. C. Waddington e-mail: JCW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.ndc.bnl.gov/andc/ Contact: T. Kibédi e-mail: Thor Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométri	Contact: I. A. Mitropolsky
Institute of Atomic Energy, Beijing, PR China Contact: Ge Zhigang e-mail: geog@iris.ciae.ac.on Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: jdhuo@mail.jlu.edu.on Centre d'Etudes Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jcan.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://www.dc.tokai.i.aeri.go.jp Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah/@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ae.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://hyswww.physics.nucmaster.ca/-balraj/ Contact: J. C. Waddington e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndx.itee.org/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse	e-mail: mart@pnpi.spb.ru
Contact: Ge Zhigang e-mail: gezg@iris.ciae.ac.on Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: jdhuo@mail.jlu.edu.en Centre d'Études Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jcan.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.iaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp/ Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp/ Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.memaster.ca/-balraj/ Contact: J. C. Waddington e-mail: J.C. Wichola: e-mail: J.C. Wi	Institute of Atomic Energy, Beijing, PR China
e-mail: gezg@iris ciae.ac.m Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: jdhuo@mail.jlu.edu.cn Center d'Études Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jeni.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura contact: J. Katakura e-mail: Eaktura@ibisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/-balrai/ Contact: J. C. Waddington e-mail: JCW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.mdc.bnl.gov/amdc/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/amdc/	Contact: Ge Zhigang
Jilin University, Physics Department, Changchun, PR China Contact: Huo Junde e-mail: jehuo@mail.jlu.edu.cn Centre d'Études Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jean.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://wwwr.physics.munaster.ca/~balraj/ Contact: J. C. Waddington e-mail: [CW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.rndc.bnl.gov/andc/ Contact: T. Kibédi e-mail: [Thor. Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailtoc.audi@e.csnsm.in2p3.fr <td>e-mail: <u>gezg@iris.ciae.ac.cn</u></td>	e-mail: <u>gezg@iris.ciae.ac.cn</u>
Contact: Huo Junde e-mail: jdhuo@mail.jhu.edu.en Centre d'Études Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jean.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://www.ndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: defisenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.rgh.vsse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: mailto.audi@csnsm.in2p3.fr	Jilin University, Physics Department, Changchun, PR China
e-mail: jduu@mail.jlu.edu.en Centre d'Études Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jean.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.measter.ca/~balraj/ Contact: J. C. Waddington e-mail: Tibor.Kibedi@anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bal.gov/ande/ Contact: Gorges Audi e-mail: milto:audi@c.sns.nin2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols	Contact: Huo Junde
Centre d'Études Nucléaires, Grenoble, France Contact: J. Blachot e-mail: jean blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: ICW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.sphysics.au.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailtoraudi@csmsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact:	e-mail: jdhuo@mail.jlu.edu.cn
Contact: J. Blachot e-mail: jean.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01 kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physww.physics.mcnaster.ca/-balraj/ Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.rphyses.auedu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: anichols@iaea.org	Centre d'Études Nucléaires, Grenoble, France
e-mail: jean.blachot@wanadoo.fr JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01 kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/-balraj/ Contact: J. C. Waldington e-mail: J. C. Waldington e-mail: J. C. Waldington e-mail: Tibor Kibedi@anu.edu.au Atomic Mass Data Centre, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols	Contact: J. Blachot
JAERI Nuclear Data Centre, Tokai-Mura, Japan http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.memaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.rsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: <u>Tibor.Kibédi@anu.edu.au</u> Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsn.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www.nds.iaea.org/ Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	e-mail: jean.blachot@wanadoo.fr
http://wwwndc.tokai.jaeri.go.jp/ Contact: J. Katakura e-mail: Katakura@bisha.tokai.jaeri.go.jp Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: Ameenah@kuc01 kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.rsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.ndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	JAERI Nuclear Data Centre, Tokai-Mura, Japan
Contact: J. Katakura e-mail: <u>Katakura@bisha.tokai.jaeri.go.jp</u> Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: <u>Ameenah@kuc01.kuniv.edu.kw</u> Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: <u>denis.defrenne@rug.ac.be</u> Department of Physics and Astronomy, McMaster University, Hamilton, Canada <u>http://physwww.physics.mcmaster.ca/~balraj/</u> Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia <u>http://www.rsphysse.anu.edu.au/nuclear/</u> Contact: T. Kibédi e-mail: <u>Tibor.Kibedi@anu.edu.au</u> Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France <u>http://www.nndc.bnl.gov/amdc/</u> Contact: Georges Audi e-mail: <u>mailto:audi@csnsm.in2p3.fr</u> IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www.nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	http://www.ndc.tokai.jaeri.go.jp/
e-mail: <u>Katakura@bisha.tokai.jaeri.go.jp</u> Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: <u>Ameenah@kuc01.kuniv.edu.kw</u> Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: <u>denis.defrenne@rug.ac.be</u> Department of Physics and Astronomy, McMaster University, Hamilton, Canada <u>http://physwww.physics.memaster.ca/~balraj/</u> Contact: J. C. Waddington e-mail: JCW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia <u>http://wwwrsphysse.anu.edu.au/nuclear/</u> Contact: T. Kibédi e-mail: <u>Tibor Kibedi@anu.edu.au</u> Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France <u>http://www.nndc.bnl.gov/amdc/</u> Contact: Georges Audi e-mail: <u>mailto.caudi@csnsm.in2p3.fr</u> IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www.nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	Contact: J. Katakura
Nuclear Data Centre, Physics Department, Kuwait University, Kuwait Contact: A. Farhan e-mail: <u>Ameenah@kuc01.kuniv.edu.kw</u> Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/-balraj/ Contact: J. C. Waddington e-mail: JCW@memaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.sphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	e-mail: <u>Katakura@bisha.tokai.jaeri.go.jp</u>
Contact: A. Farhan e-mail: <u>Ameenah@kuc01.kuniv.edu.kw</u> Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: <u>denis.defrenne@rug.ac.be</u> Department of Physics and Astronomy, McMaster University, Hamilton, Canada <u>http://physwww.physics.mcmaster.ca/~balrai/</u> Contact: J. C. Waddington e-mail: <u>JCW@mcmaster.ca</u> Department of Nuclear Physics, Australian National University, Canberra, Australia <u>http://www.sphysse.anu.edu.au/nuclear/</u> Contact: T. Kibédi e-mail: <u>Tibor.Kibedi@anu.edu.au</u> Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France <u>http://www.ndc.bnl.gov/amdc/</u> Contact: Georges Audi e-mail: <u>mailto:audi@csnsm.in2p3.fr</u> IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www.nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	Nuclear Data Centre, Physics Department, Kuwait University, Kuwait
e-mail: Ameenah@kuc01.kuniv.edu.kw Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://www.sphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	Contact: A. Farhan
Laboratorium voor Kernfysica, Gent, Belgium Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://phvswww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	e-mail: <u>Ameenah@kuc01.kuniv.edu.kw</u>
Contact: D. De Frenne e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	Laboratorium voor Kernfysica, Gent, Belgium
e-mail: denis.defrenne@rug.ac.be Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	Contact: D. De Frenne
Department of Physics and Astronomy, McMaster University, Hamilton, Canada http://physwww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	e-mail: denis.defrenne@rug.ac.be
http://physwww.physics.mcmaster.ca/~balraj/ Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/andc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	Department of Physics and Astronomy, McMaster University, Hamilton, Canada
Contact: J. C. Waddington e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	http://physwww.physics.mcmaster.ca/~balraj/
e-mail: JCW@mcmaster.ca Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	Contact: J. C. Waddington
Department of Nuclear Physics, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	e-mail: JCW@mcmaster.ca
http://wwwrsphysse.anu.edu.au/nuclear/ Contact: T. Kibédi e-mail: Tibor.Kibedi@anu.edu.au Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	Department of Nuclear Physics, Australian National University, Canberra, Australia
Contact: T. Kibédi e-mail: <u>Tibor.Kibedi@anu.edu.au</u> Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France <u>http://www.nndc.bnl.gov/amdc/</u> Contact: Georges Audi e-mail: <u>mailto:audi@csnsm.in2p3.fr</u> IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www-nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	http://www.rsphysse.anu.edu.au/nuclear/
e-mail: <u>Tibor.Kibedi@anu.edu.au</u> Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France <u>http://www.ndc.bnl.gov/amdc/</u> Contact: Georges Audi e-mail: <u>mailto:audi@csnsm.in2p3.fr</u> IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www-nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	Contact: T. Kibédi
Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	e-mail: <u>Tibor.Kibedi@anu.edu.au</u>
http://www.nndc.bnl.gov/amdc/ Contact: Georges Audi e-mail: mailto:audi@csnsm.in2p3.fr IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: a.nichols@iaea.org	Atomic Mass Data Center, Centre de Spectrométrie Nucléaire et de Spectrométrie Masse, Orsay, France
Contact: Georges Audi e-mail: <u>mailto:audi@csnsm.in2p3.fr</u> IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www-nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	http://www.nndc.bnl.gov/amdc/
e-mail: <u>mailto:audi@csnsm.in2p3.fr</u> IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www-nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	Contact: Georges Audi
IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings) <u>http://www-nds.iaea.org/</u> Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	e-mail: mailto:audi@csnsm.in2p3.fr
http://www-nds.iaea.org/ Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	IAEA Nuclear Data Section, Vienna, Austria (co-ordination of network meetings)
Contact: A. L. Nichols e-mail: <u>a.nichols@iaea.org</u>	http://www-nds.iaea.org/
e-mail: <u>a.nichols@iaea.org</u>	Contact: A. L. Nichols
	e-mail: a nichols@iaea ora

ANNEX

Directional Web pages for NDS and NNDC
	A.org tomic Energy Agency	
Mirror Sites India Brazil Navigation Content Browser Quick Links CINDA DROSG-2000 ENDF ENSDF EXFOR FENDL-2.1 IBANDL IRDF-2002 NEW Masses 2003 Medical Radioisotopes Production	Welcome to the IAEA Nuclear Data Centre Nuclear Data Services Major Databases CINDA - neutron reaction data bibliography ENDF - evaluated nuclear reaction cross section libraries ENSDF - evaluated nuclear reaction data (with graphics) NSR - Nuclear Science References NuDet 2.0 - selected evaluated nuclear data Nuclear Databases and Files General Masses 2003 - atomic masse evaluation data file Q-values, Thresholds - atomic masses, Q-values and threshold energies Thermal neutron capture gamma rays - by target and by energy Wallet cards - ground and metastable state properties Other evaluated data libraries in ENDF format FENDL-2.1 - Fusion Evaluated Nuclear Data Library, Version 2.1 IAEA Photonouclear Data Library - cross sections and spectra up to 140MeV IRDF-2002 - Intermational Reactor Dosimetry File Masse Library - evaluated nuclear Data Library - torss and spectra up to 140MeV	 NDS Events ICTP, Miramare, Trieste, Italy, 7 to 18 March 2005 ICTP-IAEA Workshop on Nuclear Data for Activation Analysis ICTP, Miramare, Trieste, Italy, 4 to 15 April 2005 ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Theory and Evaluation Meetings
Minsk Actinides [Mod] NGATLAS	NMF-90 - Neutron Metrology File POINT2004 - Pointwise data of ENDF/B-VI Release 8 at 8 temperatures RNAL - Reference Neutron Activation Library	Meetings and Workshops 2004-05 PNDS Services
NMF-90 NuDat 2.0 NSR PGAA-IAEA Photonuclear Photonuclear	Evaluated libraries in different formats Charged-particle cross section database for medical radioisotope production IAEA-NDS-0 - index to IAEA NDS documentation series IBANDL - Ion Beam Analysis Nuclear Data Library (last updated 03.06.2004) MIRD - medical internal radiation dose tables Nuclear Data for Safeguards - IAEA handbook (1997) PGAA-IAEA - database of prompt gamma rays from slow neutron capture	Nuclear Data and Codes on CD-ROMs News Letters
Interaction POINT2004	Photon and Electron Interaction Data - EPDL, EADL, EEDL, EXDL and ASF RIPL-2 - library of parameters for nuclear model calculations WIMSD-IAEA Library - multigroup data library for the WIMS-D code	Register with NDS

POINT2004 Q-values, Thresholds RIPL-2 RNAL Safeguards data Thermal Neutron Capture Gamma Ravs Wallet cards WIMS-D Library

>Documents

ENDF Manual ENDF/B-6 Summary ENSDE, NSR Manuals INDC Reports

Computer codes

EMPIRE-II ENDF Utils NEW ENDVER ENSDF Utilities PREPRO NEW SIGACE ZVVIEW

WIMSD-IAEA Library - multigroup data library for the WIMS-D code

Electronic Documents

Citation Guidelines - online data service manual and citation guidelines ENDE Format Manual - April 2001 version ENSDE and NSR Manuals - ENSDE Feb. 2001 version & NSR Aug. '96 version Selected INDC Reports - selected INDC reports, INDC(AUL) to INDC(VN)

Computer codes

EMPIRE-II - system of codes for nuclear reaction calculations (Version 2.18) ENDF_Utility_Codes - Release 7.0 [New] ENSDF_programs - ENSDF Analysis and Utility programs (ALPHAD, LOGFT, etc.) ENDVER - ENDF File Verification Support Package

PREPRO - ENDF Preprocessing Codes. Version - November 2004 NEW $\frac{\text{SIGACE}}{\text{ZWIEW}} - \text{package for generating high temperature ACE files}$

General information NDS information

Co-ordinated Research Projects (CRPs) - recently completed and ongoing CRPs IAEA Nuclear Data Guide - catalogue of all nuclear data available from IAEA NDS Index of nuclear data libraries - comprehensive index of NDS libraries Nuclear Data Section - introduction, programme description, activities and staff Nuclear data information brochure - the IAEA nuclear and atomic data programme Nuclear data newsletters - from 1995 to now Subscribe to our mailing list - get the latest newsletter and other information Datalinks

Atomic and molecular data - AMBDAS, ALADDIN, GENIE, etc. List of available CD-ROMs - nuclear data and utility codes on CD-ROM Nuclear data links for medical applications - relevant sites at the IAEA and worldwide

Other useful links

IAEA home page IAEA - Department of Nuclear Sciences and Applications International network of Nuclear Structure and Decay Data evaluators - the NSDD network Nuclear Reaction Data Centre network - the NRDC network, contacts, webpages, etc. Other information resources - collection of links to other nuclear information resources

Read our Disclaimer

Copyright 2003-2004, International Atomic Energy Agency - Nuclear Data Section P.O. Box 100, Wagramer Strasse 5, A-1400 Vienna, Austria Telephone (+431) 2600-0; Facsimilie (+431) 2600-7; E-mail: Online@iaeand.iaea.org

NDS

National Nuclear Data Center, Brookhaven, USA

OECD Nuclear Energy Agency, Nuclear Data Services, France

🗐 ІРРЕ Institute of Physics and Power Engineering,

Obninsk, Russia

N S R XUNDL ENSDF MDat Databases MIRD CINDA CSISRS ENDF Networks CSEWG USNDP	Nuclear Wallet Cards Nuclear Data Sheets	Nuclear Structure and Nuclear Structure and Nuclear Reaction Dat Nuclear Reaction Too Bibliography Databas Networks and Links About the Center Publications Meetings	d Decay Databases d Decay Tools abases bls es
	New: Article about	NNDC Web services	e NNDC: go
CapGam Thermal Neutron Capture Gamma-rays	CINDA Computer Index of Neutron Data	CSEWG Cross Section Evaluation Working Group	CSISRS alias EXFOR Nuclear reaction experimental data
Empire Nuclear reaction model code	ENDF Evaluated Nuclear (reaction) Data File	ENSDF Evaluated Nuclear Structure Data File	For NMMSS and DoE NMIRDC Standards for decay data
IRDF International Reactor Dosimetry File	MIRD Medical Internal Radiation Dose	NSR Nuclear Science References	Nuclear Data Sheets Nuclear structure and decay data journal
Nuclear Wallet Cards Ground and isomeric states properties	Nuclear Wallet Cards for Homeland Security	NuDat Nuclear structure and decay data	RIPL Reference Input Parameter Library
USNDP U.S. Nuclear Data Program	XUNDL Experimental Unevaluated Nuclear Data List	Coming soon: Atlas of Neutron Resonances	Coming soon: Empire 2.19

Nuclear Data Section International Atomic Energy Agency P.O. Box 100 A-1400 Vienna Austria e-mail: services@iaeand.iaea.org fax: (43-1) 26007 cable: INATOM VIENNA telex: 1-12645 telephone: (43-1) 2600-21710 Web: http://www-nds.iaea.org