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Preface
This is a new hard copy and electronic version of the old report PTB-FMRB-84 (June
1981). The original report has been written with a conventional typewriter and the manu-
script is meanwhile lost. The proposal to produce a new edition of the report came
from Dr. Naohiko Otsuka (IAEA, Vienna) and his support in setting the manuscript with
LATEX was essential and is highly appreciated. The text is mainly the same as in the origi-
nal. A fewmistakes have been corrected and minor modifications were applied to improve
the readability and the understanding. In addition, the famous textbook of Don Smith [9],
published in 1991, was added to the list of references.

Braunschweig, May 2011

From numerous discussions about data covariances I have learned that there is an general
readiness to apply this method. However, as often happens with ideas beyond the familiar,
here going further than the familiar methods for the treatment of uncertainties, difficulties
arise particularly in understanding how to do it correctly. It is my wish that the present
report may contribute in solving some of the basic difficulties. This report is written in
a certain sense as a cookery book and it aims to explain the essential rules by means of
relatively simple numerical examples which should make it relatively easy to apply the
method to more complex and realistic problems. Most of the examples given are based
on real experiments. However, these examples are also in some sense “synthetic” since
they have been simplified to avoid any unnecessary complexity which may obstruct easy
understanding.
This report has mainly been written for experimenters, and so a complete and math-

ematically rigorous description of the theory was not attempted. In the first chapter the
most important rules of statistics are reviewed. The second chapter contains some essen-
tial concepts about experimental uncertainties, but it is written rather tentatively. The third
chapter demonstrates by way of examples the procedure of generating the covariance ma-
trices of experimental data. The last chapter, concerned with data evaluation procedures,
is of more importance to evaluators than to experimenters. Nevertheless it might also be
of some interest for experimenters as it explains the importance of quoting an experiment
with a complete covariance matrix. Up to this last chapter consistent matrix notation in
the examples has been avoided, even when some of them given previously can be most
conveniently written in matrix notation, as shown in the Appendix 1. The reason is that all
those readers not familiar enough with matrix calculation should not be discouraged too
early in the game. In the last chapter a modest transition from non-matrix to matrix no-
tation is made. The well-known least squares equations written in conventional notation
compared with the matrix notation should ease the understanding of this chapter.
This work has been strongly influenced by the pioneering work of Francis Perey (Oak
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Ridge National Laboratory) who introduced the covariance concept into the evaluation of
nuclear data. I am also indebted to Dr. K. Kobayashi (KURRI, Japan) whose questions
motivated me to understand and formulate some points more clearly. Much of this work
is based on material prepared for an invited seminar talk given at the “Institut für Radium-
forschung und Kernphysik” in Vienna in April 1980. And so, the director of this institute,
Prof. H. Vonach, was the final motivator and stimulator for writing this report.

Braunschweig, June 1981
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A Introduction
The continuously increasing amount of nuclear data requires more and more consistent
and objective methods of data combination. Two facts have prevented this in the past:
firstly, evaluators did not always use those evaluation tools which gave sufficiently objec-
tive results. A typical example of this is that the same data set given to different evaluators
resulted in different evaluated data. Secondly, and this point influenced the first of course,
experimenters failed to express the uncertainties of their results in a sufficiently complete
way.
Recently methods have been developed and applied [1, 2] which circumvent these dif-

ficulties. The application of these methods permits a consistent treatment of data uncer-
tainties in complex data systems; on the other hand it also defines obligatory requirements
for the documentation of experimental results. In contrast to the procedure in the past,
apart from the data uncertainties, the correlations of the data too have to be documented.
Neglect of the latter is mainly the reason for the above mentioned inconsistencies. Up
to now, only few examples exist in the literature [1, 2, 3] which demonstrate complete
uncertainty listing of experimental results. The need for sufficiently complete data docu-
mentation and the subsequent data combination procedure are the two main topics of this
paper.
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B Some Definitions
If the “true value” of a physical quantity were known then it would be absurd to carry out
an experiment to confirm this value. This automatically implies that the value we know
cannot be a true one. I. e., a “true value” is and remains a hypothetical quantity. A “true
value” can never be quantified, all experimental physics can do is to determine quantities
which approach the “true values” as closely as possible. Each experimental result must
be regarded as an estimate of the “true value” and must therefore be accompanied by
an uncertainty quotation which expresses the accuracy of the experimental result. The
definition of uncertainty is well established in the formalism of mathematical statistics
which we shall use in this chapter.

B.1 Single Random Variable
The expectation value of a single random variable, x, associated with a probability density
φ(x), is defined by:

〈x〉 = μ =
∫ +∞

−∞
x φ(x) dx (B-1)

The symbol, 〈〉, is used here to indicate expected values. Eq. (B-1) gives the so-called
first moment. Together with the second moment

〈x2〉 =
∫ +∞

−∞
x2φ(x) dx (B-2)

we are able to define the variance of x. By introducing an auxiliary quantity, dx, which
describes the deviation between x and the expectation value

dx= x− μ (B-3)

the variance is given as the expected value of the square of Eq. (B-3), as

Var(x) = 〈dxdx〉 = 〈x2〉−〈x〉2 (B-4)

The square root of Eq. (B-4) is the well-known standard deviation. The first and second
moments of a distribution are sufficient to describe the expectation value of the quantity
x itself as well as the variance or standard deviation respectively. It should be mentioned
that here and in the following no particular assumption about the shape of the probability
density is used. Specifically it is not postulated that x is normally distributed (Gaussian
shape). The given equations are valid if the integrals exist. i.e. if the values of the integrals
are finite.
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B.2 Multivariate Probability Density Function
If there are several variables which are statistically not independent then a joint multivari-
ate density must exist. The formalism will be demonstrated for a bivariate case, i.e. with
the variables x and y which are not independent. Their joint probability density is given
by φ(x,y). The first and higher moments are defined in an analogous way as above:

〈x〉 =
∫ +∞

−∞

∫ +∞

−∞
x φ(x,y) dxdy (B-5)

and
〈y〉 =

∫ +∞

−∞

∫ +∞

−∞
y φ(x,y) dxdy (B-6)

Besides the variances of x and y

Var(x) = 〈dxdx〉and Var(y) = 〈dydy〉 (B-7)

there now exists an additional term describing the covariance of x and y:

Cov(x,y) = 〈dxdy〉 = 〈xy〉−〈x〉〈y〉 (B-8)

The variances as well as the covariances are terms of quadratic dimension. In a similar
way as one reduces variances to standard deviations, it is convenient to define the corre-
lation coefficient:

Corr(x,y) =
Cov(x,y)√
Var(x)

√
Var(y)

=
〈dxdy〉√〈dxdx〉√〈dydy〉 (B-9)

The denominator of Eq. (B-9) is the product of the corresponding standard deviations.
The numerical value of the correlation coefficient must be between -1 and +1. The co-
variance term of Eq. (B-8) must vanish if x and y are independent. In that case the joint
probability function becomes

φ(x,y) = φ1(x)φ2(y) (B-10)

Then one obtains

〈xy〉 =
∫ +∞

−∞
x φ1(x) dx

∫ +∞

−∞
y φ2(y) dy= 〈x〉〈y〉 (B-11)

Inserting Eq. (B-11) in Eq. (B-8) shows that the covariance becomes zero and vanishes.
For completeness it should be mentioned that the converse is not true; a zero covariance
does not automatically imply statistical independence, except for a multivariate normal
distribution. In all cases where the variables are not independent the variance alone is an
incomplete information. The information is complete when variances as well as covari-
ances are regarded.
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B.3 Function of Variables
The result of most experiments is not a single variable but a function of several variables:

f (xi) = f (x1,x2, . . . ,xn) (B-12)

In general, the expectation value of such a function

〈 f 〉 =
∫ +∞

−∞
· · ·

∫ +∞

−∞
f (xi) φ(xi) dx1 · · ·dxn (B-13)

can only be determined if the multivariate probability density function, φ(xi), is known. A
special class of functions is given by linear functions for which the mentioned restriction
is not valid. Moreover, in the case of non-linear functions this restriction can be circum-
vented if the function can be approximated by a linear one. The distinction between both
types of functions will be shown in the following.

B.3.1 Linear Function

For a linear function
f = ∑

i
aixi (B-14)

the expectation value is given by the linear sum of the expectation values of the different
variables:

〈 f 〉 = ∑
i
ai〈xi〉 (B-15)

The variance of the function is then

Var( f ) = 〈d fd f 〉 = ∑
i

∑
j
aia j〈dxidx j〉 (B-16)

Eq. (B-16) can also be written as

〈d fd f 〉 = ∑
i
a2i 〈dxidxi〉+∑

i
∑
j
aia j〈dxidx j〉 (B-17)

= ∑
i
a2i Var(xi)+∑

i
∑
j

(i� j)

aia j Cov(xi,x j)

Due to the symmetry of
〈dxidx j〉 = 〈dx jdxi〉 (B-18)

we can also write

Var( f ) = ∑
i
a2i Var(xi)+2∑

i
∑
j

(i< j)

aia j Cov(xi,x j) (B-19)
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The first term of Eq. (B-17, B-19) represents the well-known “error propagation” rule for
independent linear variables. The second term takes into account that the variables are
interdependent.

B.3.2 Non-linear Function

In the case of a non-linear function, the interconnection of the expectation value of the
function, 〈 f 〉, and of the expectation values of the various variables, 〈xi〉, normally re-
quires the knowledge of the joint probability density function. Under certain conditions
there is a way if the function can be expanded around the expectation values μi of the
respective variables:

〈xi〉 = μi (B-20)

In these cases a Taylor expansion (up to the 1st order) is used as an approximation and
the function is represented as:

f (xi) � f (μi)+ ∑
i

∂ f
∂xi

∣∣∣∣∣
μ

(xi− μi) (B-21)

By using the abbreviation

ai =
∂ f
∂xi

∣∣∣∣
μ

(B-22)

one obtains
f (xi) � f (μi)+∑

i
ai(xi− μi) (B-23)

Under these conditions we can evaluate the expectation value and obtain

〈 f (xi)〉 � f (μi) = f̄ (B-24)

With
dxi = xi− μi (B-25)

and
d f = f − f̄ � ∑

i
aidxi (B-26)

the variance of the function is given by

Var( f ) = 〈d fd f 〉 � ∑
i
a2i 〈dxidxi〉+∑

i
∑
j

(i� j)

aia j〈dxidx j〉 (B-27)
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This means the problem has been linearized with coefficients, ai, given by Eq. (B-22).
Often a non-linear function is represented by a series of products (or quotients):

f (xi) = ∏
i
xi or

(
f (xi) = 1/∏

i
xi

)
(B-28)

Then the coefficients of Eq. (B-22) become

ai = (±)
f̄

μi
(B-29)

In these cases it is conveniently to introduce relative variances (indicated by the symbol
δ instead of d)

Rel.Var( f ) = 〈δ fδ f 〉 =
〈
d f
f̄
d f
f̄

〉
(B-30)

and Eq. (B-27) can be transformed into

〈δ fδ f 〉 = ∑
i
〈δxiδxi〉+∑

i
∑
j

(i� j)

bib j〈δxiδx j〉 (B-31)

with
bi =

{
+1 for a product
−1 for a quotient (B-32)

It must be kept in mind that Eq. (B-27) and (B-31) are approximations and are only
adequate if the Taylor expansion of the 1st order of Eq. (B-21) is valid. This means,
independent of the form of the probability density function, the criterion of 〈dxidxi〉 � μ2i
must always be fulfilled.
In addition the following point should be mentioned. The first terms of Eq. (B-17)

as well as of Eq. (B-27) always have a positive sign (quadratic “error propagation”), the
sign of the second terms depends on the sign of ai or bi, respectively. It is positive only
if the corresponding coefficients in the formula show the same sign, otherwise the sign
becomes negative.

9



10



C Estimate of the Parameters of Probability Density
Functions

If there is some quantity we want to know extremely well, we often measure it several
times, using different methods, with different instruments, for example. Then one can
imagine a set of all the possible outcomes of an experiment. This set, called sample space
or population, is associated with a probability density. Two parameters of this probability
density function are of main interest: the expected value of the quantity itself (see Eq. B-
1) and the variance (see Eq. B-4) which defines an interval which embraces the quantity.
To obtain estimates for both these parameters one normally draws a sample of limited
size, n, from the total population. In the case of a pure random variable, x, the sample
mean

x̄=
1
n

n

∑
i=1
xi (C-1)

and the sample variance

s2 =
1
n−1

n

∑
i=1

(xi− x̄)2 (C-2)

can be regarded as best estimates of the population parameters μ and Var(x), respectively.
Often one tries to distinguish between “statistical” and “systematic” uncertainties.

The only real difference between both is that the former can readily be estimated from
the laws of probability, Eq. (C-1) and (C- 2), while the latter usually arise from the lack
of information to exactly correct results for the inability of experimental equipment to
measure the desired quantity directly.
Particularly in nuclear experiments, where the statistical components of the uncer-

tainty (”counting” uncertainties) can often be kept small, the second type of “systematic”
uncertainty dominates. However, these uncertainties should not be regarded as a dif-
ferent type compared with statistical uncertainties. In an analogous way as for random
variables, the probability density represents a real ensemble of possible outcomes; in the
case of non-random variables their probability density function can be regarded as hypo-
thetical ensemble of results that could have occurred based on equivalent (but different)
experimental efforts. It is from such an ensemble that one can imagine the result to be
drawn. I.e., experimental results are considered as drawn from hypothetical populations
of potential experiments. Under this aspect, the probability density function represents in-
formation from real or hypothetical populations, as well as any other available knowledge
of the experimenter.
For the “systematic” uncertainties, the experimental result is usually taken as the esti-

mate of the first momentum of the probability function. The estimate of the correspond-
ing variance (or second central moment) depends strongly on the available supplementary
knowledge. Here one can distinguish between two cases. The first case has been discussed
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by S. Wagner [4] as follows: If the upper and lower limit of a quantity can be estimated
and no additional information exists, then the “principle of equal ignorance” (Bayes and
Laplace) requires the assumption of a constant probability density within these limits
(“rectangular probability density function”). However, Wagner also states: “If there is
any additional information, this should be applied to derive a more specific kind of proba-
bility density function”. And this brings us to the second case: Very often an experimenter
can state it is more likely that a quantity lies within a certain interval than outside it. This
is additional information, irrespective of its quantification, and so the “principle of equal
ignorance” should not be applied. Here some knowledge of the shape of a probability
density function is implied. In practice the principal difference between both methods is
of minor importance. No really meaningful reason can be given as to why it should be
easier to estimate limits than variances. Moreover, if the problem of the determination
of overall uncertainties (including both “statistical’” and “systematic” components”) is
of some complexity, there is no justification for concentrating the attention on a certain
source of uncertainties and ignoring the others. The procedure using variances is of some
advantage as these can simply be added independent of the shape of probability density
function associated with each component. I.e., the combination of variances does not
require specific knowledge of the shape of probability density functions.
The situation becomes rather more complex when one wants to determine confidence

intervals for overall uncertainties. That requires a knowledge of the probability density
function. In this context it is very useful to remember the Central Limit Theorem which
states that, almost regardless of the shape of the component probability density functions,
with increasing number of components the combined distribution asymptotically approx-
imates to the Normal distribution. This theorem has, however, some limitations and is not
valid if one of the components is dominant. The Central Limit Theorem is restricted to
the case of independent components. One may suspect, without proof, that with certain
restrictions a modification of this theorem can also be applied to correlated components.
An estimate of confidence intervals can only be made for a specific probability density

function. However, in cases where the shape of the density function is not so well-known,
a lower limit can be estimated. The so-called “Chebychev Inequality” states that for a
random variable x with expectation value μ and variance s2, independent of the shape of
the probability density function, the following is true:

P(|x− μ | ≥ δ ) ≤ s2

δ 2
(C-3)

P is the probability of x being outside the interval (-δ , +δ ). Eq. (C-3) is valid as long as the
variance exists and is finite. From Eq. (C-3) it can easily be estimated that for the worst
possible type of probability density function the confidence level corresponding to three
standard deviations is 88.9%. For a normal distribution it would be 99.7%. If no detailed
information about the probability density function is available, the confidence level must

12



have a value lying between these two values. With the exception of a few relatively simple
cases, practically no information on the detailed shapes of probability density functions is
available. In such cases one ought to be led by a “principle of economics” which I would
formulate as: one should never try to extract more information from a system than this
latter contains.
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D Covariances of Experimental Data

D.1 Linear Function of Data
The first example is taken from length measuring technique. An experimenter, a “Mr.A.”,
has to determine two markings on a length scale of distances from a fixed zero point, x1
= 35 mm and x2 = 60 mm (see Fig. 1). For this experiment he uses three gauge blocks of

Figure 1:

defined length and with well known variances:

Gauge block Length Std.Dev. Variance
[mm] [ μm] [ μm2]

l1 = 50 0.05 Var(l1)=0.0025
l2 = 15 0.03 Var(l2)=0.0009
l3 = 10 0.02 Var(l3)=0.0004

(D-1)

The first marking is obtained by using the gauge block l1 and subtracting the length l2,
while the second marking is reached by adding to l1 the length of l3, I.e.:

x1 = l1− l2
x2 = l1+ l3

(D-2)

By using the uncertainty propagation rules:

Var(x1) = Var(l1)+Var(l2) = 0.0034
Var(x2) = Var(l1)+Var(l3) = 0.0029 (D-3)

“Mr.A.” states his final result as:

Std.Dev.
x1 = 35 mm 0.058 μm
x2 = 60 mm 0.054 μm

(D-4)
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Figure 2:

What he has be done appears correct. We will however come back to this point later.
Some time after this experiment one is interested in an additional quantity, x3, which

defines the distance between both markings set by “Mr.A.” (see Fig. 2). Two colleagues
of “Mr.A.”, “Mr.B.” and “Mr.C.”, are engaged to establishing this new quantity. They
proceed using different methods.
“Mr.B.” uses the same set of gauge blocks as “Mr.A.” and can establish that the dis-

tance x3 can be reproduced by addition of the length of the gauge blocks l2 and l3. He
obtains

x3 = l2+ l3 = 25 mm
and

Var(x3) = Var(l2)+Var(l3) = 0.0013 μm2
(D-5)

At the same time, “Mr.C.” uses the information given by “Mr.A.” in Eq. (D-2) and
(D-3) and calculates:

x3 = x2− x1 = 25 mm
and

Var(x3) = Var(x2)+Var(x1) = 0.0063 μm2
(D-6)

At first glance the situation looks frustrating. The two experimenters “Mr.B.” and
“Mr.C.” have both done correct work and obtained the different results of Eq. (D-5) and
Eq. (D-6), respectively. What happened? To understand that we have to go back to the
first experiment of “Mr.A.”. Looking at Eq. (D-2) we recognize that “Mr.A.” used in both
the determination of x1 as well as x2 the length of the gauge block l1. Further, looking
at Eq. (D-3) and (D-4), we find that the information of l1 being common to both x1 and
x2 was not communicated in the final results, The whole information is only given if we
replace Eq. (D-3) by:

Var(x1) = Var(l1)+Var(l2)
Var(x2) = Var(l1)+Var(l3)

Cov(x1,x2) = Var(l1)
(D-7)
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The complete covariance matrix (in μm2) is then:(
0.0034 0.0025
0.0025 0.0029

)
(D-8)

With this information the final result of Eq. (D-4) should be written:

Std.Dev.
x1 = 35 mm 0.058 μm
x2 = 60 mm 0.054 μm

Correlation Matrix(
1.00 0.80
0.80 1.00

)
(D-9)

From Eq. (D-9) we recognize that x1 and x2 are not independent since their correlation
coefficient is 0.80. Due to the symmetry of the correlation matrix it is in most cases
sufficient to state only the upper or lower half of this matrix.
Using this complete information the procedure of “Mr.C.” shown in Eq. (D-6) changes

and “Mr.C.” would obtain:

x3 = x2− x1 = 25 mm
and

Var(x3) = Var(x2)+Var(x1)−2 Cov(x1,x2)
= 0.0029+0.0034−2×0.0025= 0.0013 μm2

(D-10)

What we can learn from the above example is: the complete information about a measur-
ing process is contained in the covariance matrix. To perform correct uncertainty prop-
agation one needs this complete information. With incomplete information (i.e. without
a covariance matrix) the risk of incorrect uncertainty propagation arises, as it occurred
in Mr.C.’s case in Eq. (D-6). Particularly with increasing complexity of experiments,
the statement of a covariance matrix becomes more and more essential to allow further
processing of the data. The information required for the covariance matrix is at every
experimenter’s disposal when estimating the data uncertainties. However, in the past it
was usually suppressed and not communicated to others.

D.2 Non-linear Function of Data
D.2.1 Direct (Absolute) Measurement of Neutron Cross Section

Very often the quantities which we can most conveniently measure are not the quantities
of basic interest. This is also true for the case of neutron cross section measurement. One
of the methods for cross section determination is the activation of defined materials in
well-known neutron fields and the subsequent deduction of a cross section σ from the
induced radioactivity. The relationship is:

σi =
Ai
εi
1
Ni
1
φi

(D-11)
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with i being an index indicating a specific material and type of reaction. Ai is the measured
counting rate, Ni is the number of contributing atoms and φi is the neutron flux density
at the position of the probe during the irradiation process. We assume a mono-energetic
neutron field of the energy, En, so that σi = σi(En). The efficiency of the detector, εi, used
in measuring the radioactivity depends on the energy of the gamma rays produced in a
specific neutron reaction. I.e. εi = ε(Eγ i). The functional form of εi is discussed in more
detail in section E.4.2.
In our example we assume that, for example, three different reaction cross sections

were measured in the same mono-energetic neutron field. i.e., φ1 = φ2 = φ3. A complete
list of the various components contributing to the uncertainty of Eq. (D-11) of all three
experiments is as follows:

Table 1:

Rel.Std.Dev.(in %)

i= 1 2 3

Ai 0.5 1.0 0.3

εi 1.6a 2.2a 1.3a

φi 2.0b 2.0b 2.0b

aCorrelation coefficients: Corr(ε1,ε2)=0.8

Corr(ε1,ε3)=0.5

Corr(ε2,ε3)=0.9
bFully correlated (same neutron field !)

The uncertainty contribution from Ni is usually very small and can therefore be ne-
glected. In most cases the various components contributing to the uncertainty of a single
experiment (fixed i) can be defined in such a way that there are no correlations between
components belonging to the same measurement. We see from Table 1 that no vertical
correlations exist only horizontal ones, namely between components belonging to differ-
ent experiments.
Regarding the quoted correlations in more detail, we observe no correlation between

the measured counting rates. This indicates that the uncertainty due to counting statistics
dominates all other uncertainty components which may contribute to the total uncertainty
of the radioactivity measurement. The particular correlations between the various efficien-
cies are attributed to the relationship describing the efficiency. The neutron flux density
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is the same for all three experiments, and so must be taken into account by a correlation
coefficient of 1.
Using the definitions of Eq. (B-25) and (B-30) we can formally write the relative

deviations from the expected values of Eq. (D-11) as

δσi = δAi−δεi−δφi (D-12)

The estimates of the variances and covariances are given by forming the expected values
〈δσi δσi〉 and 〈δσi δσ j〉 respectively, with due regard to the signs of Eq. (D-12).
In our example we have no vertical correlations which means that terms of the form

of 〈δAi δεi〉 and 〈δAi δφi〉 and 〈δεi δφi〉 do not exist.
With 〈δAi δAj〉 = 0, i.e. no correlation between the measured count rates we can

immediately write:

Rel.Var.(σi) = 〈δσi δσi〉 = 〈δAi δAi〉+ 〈δεi δεi〉+ 〈δφi δφi〉
Rel.Cov.(σi,σ j) = 〈δσi δσ j〉 = 〈δεi δε j〉+ 〈δφi δφ j〉 (D-13)

The relative covariance matrix (in %2) is then

i= 1
i= 2
i= 3

⎛
⎝ 0.52+1.62+2.02
0.8×1.6×2.2+2.02 1.02+2.22+2.02
0.5×1.6×1.3+2.02 0.9×2.2×1.3+2.02 0.32+1.32+2.02

⎞
⎠
(D-14)

=

⎛
⎝ 6.81
6.82 9.84
5.04 6.57 5.78

⎞
⎠

The final result can also be stated as:

Measured Rel.Std.Dev.
quantity %

σ1 2.61
σ2 3.14
σ3 2.40

Correlation
Matrix⎛

⎝ 1.00
0.83 1.00
0.80 0.87 1.00

⎞
⎠ (D-15)

In forming the ratio σ2/σ1, for example, we recognize the importance of quoting a
covariance matrix. Without taking the covariances into account we obtain an uncertainty
of 4.08% for the given ratio, whereas incorporation of covariances results in an uncertainty
of 1.75% for the same ratio. This difference is easily understandable. In forming such
a ratio, those terms of Eq. (D-11) which are common to both measurements tend to
compensate one another. The covariance or correlation matrix describes the degree to
which terms are common to different measurements.
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From Table 1 we can learn what sort of information is necessary for the generation of
a covariance matrix. First a comprehensive list of all the uncertainty components and their
values is required. Secondly, the degree of correlation between the various components
due to the measuring procedure has to be stated. The first step has usually been satisfied in
most advanced measurements in the past. The same is not true for the second step. Since
the second step requires a full understanding of the measuring process, it is advantageous
when correlations are quoted directly by the experimenter, rather than being estimated by
an evaluator who may find it difficult to confirm all the experimental details later.
Often one needs to know how to state a correlation taking any value between zero

and unity. For the case of a functional relationship between the uncertainty components,
this relationship automatically defines the exact degree of correlation. In other cases it
may be somewhat more complex. Let us assume the following covariance matrix for two
experimental uncertainty components(

4.0
3.0 9.0

)

indicating a correlation coefficient of 50%. In most practical applications one should
normally be able to partition the uncertainty components in a sum or product of subcom-
ponents, which are either fully correlated or uncorrelated. The above matrix, for example,
may be the sum of two matrices of subcomponents:(

3.0
3.0 3.0

)
+

(
1.0
0.0 6.0

)

where the first subcomponent is 100% correlated and the second subcomponent shows
zero correlation. It is therefore strongly recommended to proceed not with ready com-
bined uncertainty components, but to divide such components into a sufficient number of
subcomponents whose correlation can be easily defined.

D.2.2 Relative Measurement of Neutron Cross Sections

Many, if not most, cross section measurements are performed as relative ratio measure-
ments. The reason for doing this is the difficulty in determining an exact absolute neutron
flux density. This problem can be evaded by measuring a cross section relative to another
which is believed more or less well-known. In the literature such ratio measurements are
often normalized and it is not always clearly stated that the measurement was in principle
a relative one. Because the normalization of a ratio measurement is in a certain sense ar-
bitrary, it is important that the quoted covariance matrix which describes the experimental
procedure is the matrix of the actually performed ratio measurement without normaliza-
tion. Only such a matrix can be propagated correctly. As will be shown in section E, the

20



normalization is part of the final evaluation procedure and should therefore not be per-
formed at too early a stage. Of course, such ratio measurements can be normalized by the
experimenter, yet it is strongly recommended that the stated covariance matrix does not
include this normalization as it is information not based on experimental facts.
The example presented here is based on an experiment of Cf-252 spectrum averaged

cross sections published by Kobayashi and Kimura [5]. The uncertainty analysis has
been re-done based on information from the original experimental protocol [6]. Our ex-
ample contains a small subset of the complete analysis: the ratio measurement of the
27Al(n,p) cross section relative to the 27Al(n,α) cross section and a ratio measurement of
the 24Mg(n,p) cross section relative to the 115In(n,n’) cross section. The symbol σi stands
for the spectrum averaged cross section.
The results were:

σ2
[27Al(n,p)] / σ1

[27Al(n,α)] = 4.797
σ4

[24Mg(n,p)] / σ3
[115In(n,n’)] = 0.009651 (D-16)

Using the definition of Eq. (D-11) one can write such ratios as with

σi/σ j = Pi/Pj (D-17)

with
Pi =

Ai
εi
1
Ni ∏l

kli (D-18)

The product of the kli-terms stands for corrective terms necessary to reduce the measured
quantities to the simple form of Eq. (D-11). The complete list of all uncertainty contri-
butions and their correlations is given in Table 2. The principle of such measurements
is the parallel irradiation of two different foils in the same neutron field and subsequent
counting of the induced radioactivities. The experimentally determined quantities Pi of
Eq. (D-18) are terms of the form σi φi. The unknown neutron flux density is eliminated
by forming the ratio.
In Table 2 the uncertainties of the Ai are regarded as being independent. I.e., uncer-

tainties due to effects such as the determination of photo-peak area or background sub-
traction, which would establish correlations, were neglected compared with the counting
statistics. The efficiency correlations (a) come from the interpolation procedure used to
determine the efficiency (more details on that are given in subsection E.4.2). The correc-
tion of the geometrical factor is the same for all measurements, and so the corresponding
uncertainties show full correlation (b). The uncertainties of the back-scattering correction
are different but, as the source of the back-scattering (room walls) is the same, the quan-
tities must be assumed to be fully correlated (e). The measurements no. 1 and no. 2 are
based on the mass determination of a common aluminium foil, therefore the correlation
is 100% (d).
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Table 2: List of the Uncertainty Components (from Ref. [6])

Uncertainties (in %) due to Symbol Run - 1 Run - 2
27Al(n,α) 27Al(n,p) 115In(n,n’) 24Mg(n,p)

No. 1 2 3 4

Counting statistics Ai 1.6 2.0 1.0 3.2

Efficiency εi 1.1a 1.4a 2.2a 1.1a

Geometrical factor kGi 2.0b 2.0b 2.0b 2.0b

Half life kTi 0.2c - - 0.2c

Mass determination Ni 0.1d 0.1d 0.1 0.2

Back scattering kBi 0.7e 1.0e 1.0e 0.7e

Irradiation and colling time kHi 0.1 1.8 0.1 0.1

Gamma ray attenuation kSi 0.5 f 0.5 1.0 0.5 f

Gamma ray intensity kJi 0.1g 1.0 1.0 0.1g

Others kRi 1.0 1.0 1.0 1.0

a Corr(ε1,ε4) = 1.00

Corr(ε1,ε3) = Corr(ε3,ε4) = 0.80

Corr(ε1,ε2) = Corr(ε2,ε4) = 0.94

Corr(ε2,ε3) = 0.95

b,e Fully correlated

c, f ,g Fully correlated (same product nucleus)

d Fully correlated (same foil)
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The product nucleus, 24Na, is the same for both reactions 27Al(n,α) and 24Mg(n,p),
therefore all uncertainty components depending on the common radioactive decay, half
life and mass attenuation must be fully correlated (c, f-g). Finally one should comment
that uncertainty sources should normally be specified better than under the title ”Others”,
as given in Table 2.
Formally we can write

δPi = δAi−δεi−δNi+∑
l

δkli (D-19)

As Table 2 shows no vertical correlations, the relative covariance of the measured Pi is

〈δPi δPj〉 = 〈δAi δAj〉+ 〈δεi δε j〉+ 〈δNi δNj〉+∑
l
〈δkli δklj〉 (D-20)

i.e. we have no mixed terms between the components of Eq. (D-19).
What we want to determine is the covariance matrix of the ratios

R12 = P2/P1
R34 = P4/P3

(D-21)

With
δR12 = δP2−δP1
δR34 = δP4−δP3

(D-22)

we obtain
〈δR12 δR12〉 = 〈δP2 δP2〉+ 〈δP1 δP1〉− 2〈δP1 δP2〉
〈δR34 δR34〉 = 〈δP4 δP4〉+ 〈δP3 δP3〉− 2〈δP3 δP4〉
〈δR12 δR34〉 = 〈δP1 δP3〉+ 〈δP2 δP4〉− 〈δP1 δP4〉 −〈δP2 δP3〉

(D-23)

We recognize from Eq. (D-23) that we need the complete relative covariance matrix of the
Pi to be able to deduce the relative covariance matrix of the ratios. Since Table 2 contains
the complete information about the uncertainty components and correlations of the Pi,
the generation of this relative covariance matrix is straightforward, as shown in Table 3.
With the result of Table 3 we can determine the relative covariance matrix (in %2) of the
measured ratios shown in Eq. (D-23) as( 〈δR12 δR12〉 〈δR12 δR34〉

〈δR34 δR12〉 〈δR34 δR34〉
)

=
(
13.72 −1.14
−1.14 17.87

)
(D-24)

The final result is then given by:

Ratio Rel.Std.
Dev. %

σ2
[27Al(n,p)] / σ1

[27Al(n,α)] = 4.797 3.70
σ4

[24Mg(n,p)] / σ3
[115In(n,n’)] = 0.009651 4.23

Correlation
Matrix(× 100)(
100
−7 100

)
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Table 3: Combination of the Various Uncertainty Components

〈δAi δAj〉
i= 1
2
3
4

⎛
⎜⎜⎝
1.62
0 2.02
0 0 1.02
0 0 0 3.22

⎞
⎟⎟⎠

j = 1 2 3 4

+

〈δεi δε j〉⎛
⎜⎜⎝

1.12
0.94×1.1×1.4 1.42
0.80×1.1×2.2 0.95×1.4×2.2 2.22
1.00×1.1×1.1 0.94×1.4×1.1 0.80×2.2×1.1 1.12

⎞
⎟⎟⎠

+

〈δkGi δkGj 〉⎛
⎜⎜⎝
2.02
2.02 2.02
2.02 2.02 2.02
2.02 2.02 2.02 2.02

⎞
⎟⎟⎠ +

〈δkTi δkTj 〉⎛
⎜⎜⎝
0.22
0 0
0 0 0
0.22 0 0 0.22

⎞
⎟⎟⎠ +

〈δNi δNj〉⎛
⎜⎜⎝
0.12
0.12 0.12
0 0 0.12
0 0 0 0.22

⎞
⎟⎟⎠

+

〈δkBi δkBj 〉⎛
⎜⎜⎝

0.72
0.7×1.0 1.02
0.7×1.0 1.0×1.0 1.02
0.7×0.7 1.0×0.7 1.0×0.7 0.72

⎞
⎟⎟⎠ +

〈δkHi δkHj 〉⎛
⎜⎜⎝
0.12
0 1.82
0 0 0.12
0 0 0 0.12

⎞
⎟⎟⎠

+

〈δkSi δkSj 〉⎛
⎜⎜⎝
0.52
0 0.52
0 0 1.02
0.52 0 0 0.52

⎞
⎟⎟⎠ +

〈δkJi δkJj〉⎛
⎜⎜⎝
0.12
0 1.02
0 0 1.02
0.12 0 0 0.12

⎞
⎟⎟⎠ +

〈δkRi δkRj 〉⎛
⎜⎜⎝
1.02
0 1.02
0 0 1.02
0 0 0 1.02

⎞
⎟⎟⎠

=

〈δPi δPj〉⎛
⎜⎜⎝
9.58
6.16 16.46
6.64 7.93 13.86
6.00 6.15 6.64 17.29

⎞
⎟⎟⎠
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E Data Evaluation Methods
Data evaluation methods must involve objective procedures of data combination. This
requirement can be fulfilled by the least squares method, which is not confined to simple
curve-fitting problems. In particular it is not true that the least squares procedure depends
on a normal distribution of the uncertainty components. This erroneous assumption, often
believed, is probably due to the fact that, if normally distributed uncertainties are given, it
can be shown that the principle of Maximum Likelihood leads to the same solution as does
the principle of least squares. The least square procedure can be generalized. Based on
off-diagonal weights, it allows the inclusion of available prior information. The consistent
application of these principles results in a kind of mechanization of the evaluation process.
Notably it is easy to add a new set of data to a prior evaluation without repeating the
whole evaluation. Starting from the for two centuries well-known least squares equations
the generalization of the procedure is shown and demonstrated by numerical examples.

E.1 Conventional Least Squares
Starting with n independent experimental observations (data points)

yi (i= 1, . . . ,n) (E-1)

and attributing to each data point a corresponding variance

σ2i (i= 1, . . . ,n) (E-2)

which can also be interpreted as a weight for each data point of

wi = 1/σ2i (E-3)

one wishes to determine a set of m parameters

p j ( j = 1, . . . ,m) m< n (E-4)

which gives a most consistent description of the data. Very often the fitting function de-
scribed by the parameter set, p j, is a nonlinear one and one needs some prior information
about the set of parameters given by parameter estimates of

p0 = (p0j) ( j = 1, . . . ,m) (E-5)

Also, if the fit is a linear one it may be of advantage to proceed with so-called reduced
parameters

x= p1− p01, y= p2− p02, . . . ,z= pm− p0m (E-6)
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which are imperative in the nonlinear case. The fitting function is then given by a Taylor
expansion of first order around the parameter estimates (see Eq. (B-21) to (B-23)) as:

fi = fi(p) = fi(p0)+aix+biy+ · · ·+ ciz (E-7)

fi(p0) = f 0i is the fitting function calculated at the point of the parameter estimates. The
coefficients of the above expansion are given by the partial derivatives taken at the point
of the parameter estimates:

ai =
∂ fi
∂ p1

(p0), bi =
∂ fi
∂ p2

(p0), . . . ,ci =
∂ fi
∂ pm

(p0), (E-8)

With the definition of the deviations between the data points and the fitting function

vi = yi− fi = ri− (aix+biy+ · · ·+ ciz) (E-9)

and
ri = yi− f 0i

one can express the minimum condition as

χ2 = Q= ∑
i
wi(vi)2 =Min (E-10)

This condition is equivalent to

1
2

∂Q
∂x

=
1
2

∂Q
∂y

= · · · = 1
2

∂Q
∂ z

= 0 (E-11)

and is, in the case of the reduced parameter x, given by:

∑
i
wivi

∂vi
∂x

= ∑
i
wi [ri− (aix+biy+ · · ·+ ciz)]ai = 0

With the notation
∑
i
aibi = [ab] (E-12)

one obtains from Eq. (E-11) the complete set of the so-called normal equations:

[waa]x+[wab]y+ · · ·+[wac]z = [war]
[wab]x+[wbb]y+ · · ·+[wbc]z = [wbr]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
[wac]x+[wbc]y+ · · ·+[wcc]z = [wcr]

(E-13)
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The solution of the linear system of normal equations results in the final values of the
reduced parameters:

x= p1− p01
y= p2− p02
· · · · · · · · · · · ·
z= pm− p0m

(E-14)

(In the present notation the reduced parameters, x, y and z, are only used as formal quan-
tities and should not be mistaken for the data yi of Eq. (E-1), for example).
The uncertainties of the final result are given automatically by the least squares pro-

cedure as shown below. As in the conventional least squares procedure the parameter
estimates are regarded as quantities free of any uncertainty, the uncertainties of Eq. (E-
14) are equivalent to the uncertainties of the parameters p j. Also in the case where the
data points yi are regarded as independent, i.e. not correlated, the same is no longer true
for the parameters of the fit. The least squares procedure automatically generates correla-
tions between the resulting final parameters. And therefore it is incorrect, as occasionally
seen in the literature, to quote only the parameter uncertainties without their correlation.
In summary: the least squares procedure when applied to independent data points also
gives parameter results which are interdependent.

E.2 Matrix Notation
The above equations can be most conveniently written in a matrix notation which allows
easier understanding of the variances and covariances of the result. Before generalizing
the least squares method, we will show the same equations as above written in matrix no-
tation. This comparison is also summarized in Table 4. The data points can be expressed
by a column vector

D0 =

⎛
⎜⎜⎜⎝
y1
y2
...
yn

⎞
⎟⎟⎟⎠ (E-15)

and their covariances by a matrix V

V =

⎛
⎜⎜⎜⎝

σ21 0 · · · 0
0 σ22 · · · 0
...

...
...

0 0 · · · σ2n

⎞
⎟⎟⎟⎠ (E-16)

which in the conventional least squares method only contains elements arranged on the
diagonal. In our notation capital letters denote vectors or matrices. In a similar way the
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Table 4: Conventional Least Squares

Quantities Normal Notation −→ Matrix Notation

Data yi (i= 1, . . . ,n)
”independent” D0 =

⎛
⎜⎜⎜⎝
y1
y2
.
..
yn

⎞
⎟⎟⎟⎠ D0

Covariances σ2i
”variances only” V =

⎛
⎜⎜⎜⎝

σ21 0 · · · 0
0 σ22 · · · 0
.
..

.

..
0 0 · · · σ2n

⎞
⎟⎟⎟⎠ V

Weights wi = 1/σ2i V−1

Parameter p j ( j = 1, . . . ,m) P′ =

⎛
⎜⎜⎜⎝

p1
p2
.
..
pm

⎞
⎟⎟⎟⎠ P′

Parameter
Estimates p0j P=

⎛
⎜⎜⎜⎝

p01
p02
.
..
p0m

⎞
⎟⎟⎟⎠ P

Covariances ”not defined” -
Reduced
Parameter

x= p1− p01, y= p2− p02
· · · z= pm− p0m (P′ −P)

Fit Function

fi(p) = fi(p0)+aix+biy
+ · · ·+ ciz

ai = ∂ fi
∂ p1

(p0), bi = ∂ fi
∂ p2

(p0),
· · · ,ci = ∂ fi

∂ pm (p0)

D′ =

⎛
⎜⎜⎜⎝

f1
f2
.
..
fn

⎞
⎟⎟⎟⎠ , D=

⎛
⎜⎜⎜⎝

f 01
f 02
...
f 0n

⎞
⎟⎟⎟⎠

G=

⎛
⎜⎜⎜⎝
a1 b1 · · · c1
a2 b2 · · · c2
..
.
an bn · · · cn

⎞
⎟⎟⎟⎠

D′ = D+G (P′ −P)

Deviations vi = yi− fi = ri− (aix+biy+ · · ·+ ciz)
ri = yi− f 0i

(D0−D′)
(D0−D)

Minimum
Condition

χ2 = Q= ∑i wi(vi)2 =min

1
2

∂Q
∂x = 1

2
∂Q
∂y = · · · 12 ∂Q

∂ z = 0

Q= (D0−D′)TV−1(D0−D′)
∂Q

∂ (P′−P) = 0

Normal
Equations

[waa]x+[wab]y+ · · ·+[wac]z = [war]
[wab]x+[wbb]y+ · · ·+[wbc]z = [wbr]
· · ·
[wac]x+[wbc]y+ · · ·+[wcc]z = [wcr]

[ab] = ∑i aibi
GTV−1G(P′ −P)
= GTV−1(D0−D)

Solution x= p1− p01, y= p2− p02
· · · , z= pm− p0m (P′ −P) = A−1GTV−1(D0−D)

Covariance
Matrix

”correlated solution parameters”
(see right hand side)

M′ = A−1
A = GTV−1G
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parameters and their estimates are given by the vectors:

P′ =

⎛
⎜⎜⎜⎝
p1
p2
...
pm

⎞
⎟⎟⎟⎠ and P=

⎛
⎜⎜⎜⎝
p01
p02
...
p0m

⎞
⎟⎟⎟⎠ (E-17)

If the fit function belonging to each data point and the function calculated with the pa-
rameter estimates are denoted by

D′ =

⎛
⎜⎜⎜⎝
f1
f2
...
fn

⎞
⎟⎟⎟⎠ and D=

⎛
⎜⎜⎜⎝
f 01
f 02
...
f 0n

⎞
⎟⎟⎟⎠

and the derivatives of Eq. (E-8) are written as

G=

⎛
⎜⎝
a1 b1 · · · c1
...

...
...

an bn · · · cn

⎞
⎟⎠ (E-18)

then the fit function can be written as:

D′ = D+G(P′ −P) (E-19)

The minimum condition is then

χ2 = Q= (D0−D′)TV−1(D0−D′)

with
∂Q

∂ (P′ −P)
= 0 (E-20)

where V−1 indicates the inverse of the matrix V and the superscript, (T ), denotes a trans-
pose. The normal equations derived from Eq. (E-20) are:

GTV−1G(P′ −P) = GTV−1(D0−D) (E-21)

By using the abbreviation
A= GTV−1G

the solution of the least squares procedure is given by:

(P′ −P) = A−1GTV−1(D0−D) (E-22)
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and the covariance matrix of the result is

M′ = A−1 (E-23)

namely the inverse of the matrix given in the normal equations (Eq. E-21) on the left hand
side. Here we have implicitly assumed that the elements of the matrix V (Eq. E-16) are
realistic variances and not just relative weights. Therefore it is not justifiable to multiply
the matrix elements of Eq. (E-23) by the factor χ2/(n−m), as is often done when one
regards the elements of V only as elements with an arbitrary scale factor.

E.3 Generalized Least Squares (see also Table 5)
It is obvious from Eq. (E-16) that the least squares method can also be applied to data
with off-diagonal elements in the matrix V . This means it is not imperative for the data
to be independent. One also recognizes that the vector P of the parameter estimates in
the conventional least squares procedure is given without a covariance matrix quoting
the uncertainties of these estimated parameters. In the data evaluation process one often
has prior information (from an earlier evaluation, for example) which can be used for
the parameter estimates. This prior information is connected with a covariance matrix,
M, which specifies the uncertainties of the parameter vector P. The Bayesian Rule (see
Ref. [7], for example) states how to combine a prior information given by the vector P
and the corresponding covariance matrix M with the data vector D0 and its covariance
matrix V to obtain a result P′ which is most consistent with P and the data D0.
Applying Bayes’ Rule we have to rewrite the minimum condition as:

χ2 = (D0−D′)TV−1(D0−D′)+(P−P′)TM−1(P−P′) (E-24)

Eq. (E-24) in the given form is only valid as long as there are no correlations between the
data P and D0. The normal equations now become:[

M−1+GTV−1G
]
(P′ −P) = GTV−1(D0−D) (E-25)

The matrix G, sometimes called sensitivity matrix, defines how a change in the data is
transformed into a corresponding change of the parameters. The elements of this matrix,
Gi j, are given by the partial derivatives

Gi j =
∂Di
∂Pj

(E-26)

After applying some mathematical transformations on Eq. (E-25), (see ref. [8], for exam-
ple), we can state the final result as:

(P′ −P) =M GT [N+V ]−1 (D0−D)
M−M′ =M GT [N+V ]−1G M

with N = G M GT
(E-27)

30



Table 5: Least Squares Method

Quantities Conventional Generalized Dimension

Data D0 D0 n

Covariances V (diagonal) V (off-diagonal) n×n

Weights V−1

Parameter P′ P′ m

Estimates P P m

Covariances (not defined) M (off-diagonal) m×m

Fit
Function D′ = D+G(P′ −P) D′ = D+G(P′ −P) n

Gi j = ∂Di
∂Pj n×m

Minimum
Condition Q= (D0−D′)TV−1(D0−D′) Q= (D0−D′)TV−1(D0−D′)

+(P−P′)TM−1(P−P′) 1
∂Q

∂ (P′−P) = 0

Normal
Equations

GTV−1G(P′ −P)
= GTV−1(D0−D)

[
M−1+GTV−1G

]
(P′ −P)

= GTV−1(D0−D)

A= GTV−1G N = GMGT

Solution (P′ −P) =
A−1GTV−1(D0−D)

(P′ −P) =
MGT [N+V ]−1 (D0−D)

m

Covariance
Matrix M′ = A−1 M−M′ =MGT [N+V ]−1GM m×m
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E.4 Numerical Examples
E.4.1 Evaluation of Spectrum-Averaged Cross Sections

In this example we assume that two independent experiments exist (performed by differ-
ent experimenters) of cross sections averaged over a Cf-252 neutron spectrum. Our aim is
to combine both these data sets to obtain the most consistent “best” set of data. The first
experiment comprises the data of two reactions:

Table 6: Experiment No. 1

Neutron Spectrum-Averaged Rel.Std.Dev. Correlation
Reaction Cross Section % Matrix (× 100)
235U(n,f) 1215 mb 1.79 100
239Pu(n,f) 1790 mb 2.26 59 100

In the second experiment the cross section of the reaction 235U(n,f) is measured twice
(using a slightly different method in the second case), and, instead of the absolute cross
section of 239Pu(n,f) a ratio measurement relative to 235U(n,f) was performed. A first

Table 7: Experiment No. 2

Neutron Reaction Spectrum-Averaged Rel.Std.Dev. Correlation
(Ratio) Cross Section (Ratio) % Matrix (× 100)
235U(n,f) 1205 mb 2.25 100
235U(n,f) 1203 mb 3.02 80 100
239Pu(n,f)/235U(n,f) 1.500 1.33 −19 −5 100

glance at Table 7, makes one astonished why an average value of the first and second
measurement was not taken. In principle it is not difficult to calculate such an average
(also with regard to existing covariances), as is shown in Appendix 2. However, an av-
erage can only be formed if no further correlations to any other data exist of the data
contributing to the average. If we look at Table 7 we recognize correlations between the
first as well as the second data and the third data. In such a case the average would ignore
the existing correlation to the third data. This means that an average, which is (as will be
shown later) equivalent with the least squares procedure, cannot be calculated for a subset
of the total data contributing to the least squares.
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Thus the given example demonstrates two important aspects of the data evaluation
process:
a) the combination of data of the same type which have been determined more than
once

b) the connection between absolute and relative cross section data.
In our example we regard the data of the first experiment (Table 6) as estimates of the
final data (parameters), i,e.:

P=
(

σ1 = 1215
σ2 = 1790

)
and M =

(
473.0
519.1 1636.5

)
(E-28)

and the data of the second experiment (Table 7) as the quantities we call (in section E.2)
“data”:

D0=

⎛
⎝ 1205
1203
1.500

⎞
⎠ with V =

⎛
⎝ 7.351E+2

7.880E+2 1.320E+3
−1.028E−1 −3.624E−2 3.980E−4

⎞
⎠ (E-29)

The vector D which represents the fit function at the parameter estimates is then:

D=

⎛
⎝ σ1 = 1215

σ1 = 1215
σ2/σ1 = 1.473

⎞
⎠ (E-30)

and the G matrix is given by:

G=

⎛
⎝ 1 0

1 0
−σ2/σ21 1/σ1

⎞
⎠ (E-31)

The first column of Eq. (E-31) corresponds to the first parameter, σ1, and the second
column to the second parameter, σ2, while the rows correspond to the data 1 to 3. The
data no. 1 and no. 2 are identical (within their uncertainties) with the first parameter, so
we have unity as both first elements of the first column and a corresponding zero in the
second column. Data no. 3 (the ratio measurement) depends on both parameters which is
expressed in the corresponding derivatives in row 3, columns 1 and 2.
Inserting the results of Eq. (E-28) - (E-31) in the least squares formalism shown in

section E.3 (or Table 5), we obtain as a final result:

P′ =
(
1210
1805

)
and M′ =

(
285.0
349.0 789.9

)
(E-32)

The resulting χ2 of 0.65 has to be compared with the number of degrees of freedom of
f = n−m= 3−2= 1 which indicates that the data of Table 6 and Table 7 were sufficiently
consistent. We can therefore quote the result of Eq. (E-32) as an “best” set of evaluated
data:
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Table 8: Evaluated Data

Neutron Spectrum-Averaged Rel.Std.Dev. Correlation Matrix
Reaction Cross Section % (× 100)
235U(n,f) 1210 mb 1.40 100
239Pu(n,f) 1805 mb 1.56 74 100

E.4.2 Interpolation of the Efficiency of a Ge(Li)-Detector

This example illustrates a typical curve fitting problem and the subsequent uncertainty
propagation to estimate the uncertainty of any interpolated value on this curve. The usual
procedure of establishing the efficiency of a detector is to measure this efficiency with a
limited set of well-known radionuclide sources. This procedure yields a few points in an
efficiency versus gamma ray energy diagram. On a log-log scale the slope of the efficiency
curve of a germanium detector is approximately given by a straight line. The efficiency
εx of any radionuclide, whose gamma ray energy Ex does not coincide with that of the
radionuclide used in the calibration procedure, can be determined as soon the functional
relationship is established (see Fig. 3). The result of a typical efficiency calibration proce-

Figure 3: Efficiency Curve

dure is given in Table 9. Looking at Table 9 we recognize that the efficiencies of the two
radionuclide, 57Co and 60Co, which emit more than one gamma line are correlated. This
correlation is easy to understand if one looks at the principle of the efficiency calibration
represented by:

εi = Ai/(N12hi) i= 1,2 (E-33)
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Table 9: Experimentally Determined Points of the Efficiency Curve

No. Radio- E εi(E) Rel.Std.Dev. Correlation Matrix
nuclide [MeV] % (× 100)

i= 1 Co-57 0.122 2.616E-1 2.0 100
2 Co-57 0.1365 2.331E-1 2.0 56 100
3 Ba-133 0.356 8.683E-2 3.0 0 0 100
4 Cs-137 0.662 4.383E-2 2.0 0 0 0 100
5 Mn-54 0.835 3.385E-2 2.0 0 0 0 0 100
6 Co-60 1.173 2.359E-2 2.5 0 0 0 0 0 100
7 Co-60 1.332 2.032E-2 2.5 0 0 0 0 0 64 100

The efficiency is given by the ratio of the measured count rate Ai of the photo-peak area,
corresponding to the gamma ray energy Ei, relative to the total decay rate N12 of the
radionuclide, multiplied by the probability, hi, of emitting this gamma ray energy. In the
case of, for example, 57Co, we have the following relative variances and covariances:

〈δε1 δε1〉 = (2.0)2
〈δε2 δε2〉 = (2.0)2
〈δε1 δε2〉 = 〈δN12 δN12〉 = (1.5)2

(E-34)

The covariance term of Eq. (E-34) indicates that the variance of the total decay rate of
(1.5%)2 is common to both efficiencies of the 122 keV and 136.5 keV gamma lines. We
have further assumed that the uncertainty contribution due to the peak area determination
is negligible compared to the counting statistics i.e. no correlations in the Ai. It should
also be mentioned that the gamma ray emission probabilities hi were regarded free of any
norm (as h1+h2 = 1, for example). Otherwise the covariance term of Eq. (E-34) has to
be modified. Thus the relative covariance matrix of both efficiencies of 57Co is given by:

ε1
ε2

%2(
4.00 2.25
2.25 4.00

)
(E-35)

which corresponds to the following standard deviations and correlations:

ε1
ε2

Rel.Std.Dev.
%
2.0
2.0

(
100
56 100

) (E-36)

The information given in Table 9 established our data vector D0 and its covariance matrix
V . As fit function we assume a straight line on a log-log scale. i.e.:

εi = a Ebi (E-37)
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Table 10: Prior Information of the Fit

Parameters Rel.Std.Dev. Correlation Matrix
%

a0 = 2.761E−2 50.0 100
b0 = −1.069E+0 50.0 0 100

The information of the vector P is given by

P=
(
a0
b0

)
(E-38)

and may, for example, come from a preliminary rough fit. The numerical values of the
vector of the parameter estimates P and of the matrix M are summarized in Table 10.
As we have no precise information about the covariance matrix of P, it is sufficient to
assume large variances and no correlations, as shown in Table 10. The effect of these
large variances or standard deviations is to keep the influence of the parameter estimates
on the final result as small as possible. In the first stage of a data evaluation this procedure
may often be necessary. However, as soon as more precise information is available it has
to be used as prior information. The matrix G in our least squares procedure has the
dimension: 7 (data points) × 2 (parameters) and is given by:

G=

⎛
⎜⎜⎜⎜⎜⎜⎝

Eb01
(
a0Eb01 lnE1

)
Eb02

(
a0Eb02 lnE2

)
...

...

Eb07
(
a0Eb07 lnE7

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(E-39)

The final result is now:

a= 2.803E−2
b= −1.0659E+0

Rel.Std.Dev.
%
1.26
1.02

(
100
67 100

) (E-40)

The resulting χ2 is 1.92 compared with the degrees of freedom of 5. This indicates
that our fitting model, Eq. (E-37), adequately describes the data. People more familiar
with such efficiency curves may be rather astonished about this, since they know that
normally there deviations exist from the straight line model over the given gamma energy
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range. The reason why one cannot see such deviations here is probably the relatively large
variances of the single calibration points which may cover the deviations. So long as no
more detailed information is available it is sufficient to define the fitting model as simply
as possible. It would be obscure to insert a more complex expression in Eq. (E-37) while
the given form is satisfactory. Of course the correlations shown in Eq. (E-40) would
change with a change of the model of Eq. (E-37). However, if one uses Eq. (E-37) in
the given form for interpolation then the given correlations are obligatory and cannot be
replaced by others belonging to another model.
The purpose of fitting a curve to the calibration points is to enable the efficiency to be

obtained at points between the calibration points. The efficiency at an arbitrary gamma
ray energy Ex is given by

εx = a Ebx (E-41)

where a and b are the parameters of Eq. (E-40). Introducing deviations, in analogy to Eq.
(B-3), we can write

dεx = Ebx da+a Ebx lnEx db (E-42)

or, by changing to relative deviations:

δεx = δa+b lnEx δb (E-43)

The expectation value of Eq. (E-43) defines the relative variances or covariances, respec-
tively, of

〈δεx δεy〉 = 〈δa δa〉 + b2 (lnEx)(lnEy)〈δb δb〉
+ b (lnEx+ lnEy)〈δa δb〉 (E-44)

and defines the uncertainty propagation rules in our example. Applying the Eq. (E-41)
and (E-44) to a few new radionuclide we obtain the result given in Table 11. The table

Table 11: Propagated Uncertainties of Interpolated Values

No. Radio- E εi(E) Rel.Std.Dev. Correlation Matrix
i= nuclide [MeV] %
1’ 115Inm 0.336 8.964E−2 2.2 100
2’ 27Mg 0.8438 3.359E−2 1.4 95 100
3’ 24Na 1.3680 2.006E−2 1.1 80 94 100

shows that the log-log interpolation used establishes very strong correlations between
the energy-dependent efficiencies. If necessary, Table 11 can be extended to cover other
efficiency values.
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E.4.3 Evaluation of Energy-Dependent Cross Sections

The shape of a σ(E)-curve is more or less complex. It can be established when a variety
of experimental data measured at various, but nearly mono-energetic, neutron energies is
given. The neutron energies chosen in an experiment depend on the experimental equip-
ment as well as on the convenience of their production. Thus, between reaction threshold
and an upper limit of 20 MeV, for example, one can have some hundred points all taken
at different energies. Covariance matrices of these dimensions can hardly be handled.
Therefore it is advantageous to reduce the data system by collapsing the data onto an
intelligently chosen energy grid, which on the one hand is fine enough to reproduce the
essential structure of the excitation function and on the other hand avoids unnecessary
details, i.e. transforming the system into a manageable form. With these rules most ex-
citation functions of neutron threshold reactions can be represented by 20 to 40 points
of the energy grid and interpolation rules between these points can be established with
sufficient accuracy.
The present example demonstrates the principle of such data reduction. The more

important aspects of this example, however, is to show how cross section ratio measure-
ments establish correlations between the absolute cross section data of different reactions.
As the number of ratio measurements often surpasses the absolute measurements, it is of
special importance to regard these correlations in future evaluations. We start with an
experiment which measured the 65Cu(n,2n) cross section relative to the 27Al(n,α) cross
section at eight different neutron energies given in Table 12. The relatively low valued

Table 12: Experiment No.1 - Ratio Measurement of 65Cu(n,2n) to 27Al(n,α)

Data Neutron Measured Rel.Std.Dev. Correlation Matrix
No. Energy Ratio %

[MeV] σCu/σAl
1 13.55 6.62 2.9 100
2 13.62 6.68 2.9 19 100
3 13.69 6.98 2.5 23 32 100
4 13.92 7.18 2.4 20 25 21 100
5 14.05 7.58 2.4 23 23 26 22 100
6 14.53 8.12 2.8 28 30 26 31 30 100
7 14.61 8.44 2.5 20 18 24 27 22 26 100
8 14.68 8.67 2.0 27 23 24 29 25 30 32 100

elements of the correlation matrix describing the experimental procedure show that the
formation of a ratio at least partly eliminates some of the uncertainty components. From
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an inspection of the shape of the excitation function, as well as of the reaction 27Al(n,α)
and also of 65Cu(n,2n), we can establish an energy grid (given in Table 13) which is ad-
equate for both reactions and so also for the ratio. The preliminary shape of the curve of
the ratio constructed from the data of Table 12, and additional data not given in Table 12,
allows us to establish the slope of this curve and the interpolation rules within this energy
grid. This information is summarized in Table 13.

Table 13: Energy Grid and Interpolation Rules

Group Energy Range Emesh Slope of the Ratio Interpolation Rules
No. [MeV] [MeV] [MeV−1]
1 13.5-13.7 13.6 1.67 linear-linear
2 13.9-14.1 14.0 1.60 linear-linear
3 14.5-14.7 14.6 1.78 linear-linear

With the aid of the data of Table 13 we can transform the data of Table 12 to the
chosen energy grid. The result is shown in Table 14.

Table 14: Experimental Data in the New Energy Grid

Data Emesh Ratio
No. [MeV] σCu/σAl
1 13.6 6.70
2 13.6 6.65
3 13.6 6.83
4 14.0 7.31
5 14.0 7.50
6 14.6 8.24
7 14.6 8.42
8 14.6 8.53

It is obvious that the relative covariance matrix of Table 12 is not influenced by this
transformation. Therefore the matrix given in Table 12 is also valid for Table 14.
In the evaluation process we now need prior information, namely the absolute cross

section of 27Al(n,α) as well as 65Cu(n,2n) in the same energy grid as above. This infor-
mation may come from other experiments or from prior evaluations. The data used here
are summarized in Tables 15 and 16. The data of Table 15 and Table 16 define the vector
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Table 15: Experiment (or Evaluation) No.2 - Cross Section of 27Al(n,α)

En Symbol σ(En) Rel.Std.Dev. Correlation Matrix
[MeV] [mb] %
13.6 σA1 123.3 4.2 100
14.0 σA2 120.6 5.0 83 100
14.6 σA3 114.0 4.8 90 73 100

Table 16: Experiment (or Evaluation) No.3 - Cross Section of 65Cu(n,2n)

En Symbol σ(En) Rel.Std.Dev. Correlation Matrix
[MeV] [mb] %
13.6 σC1 832.0 5.5 100
14.0 σC2 891.9 6.3 72 100
14.6 σC3 959.6 5.8 85 88 100

of the parameter estimates

P=
(
P1
P2

)
(E-45)

where the sub-vector P1, for example, is given by

P1 =

⎛
⎝ σA1

σA2
σA3

⎞
⎠ (E-46)

and in an analogous way the second sub-vector by the data of Table 16. The covariance
matrix of the parameter estimates can also be partitioned into sub-matrices

M =
(
M11 M12
M21 M22

)
(E-47)

whereM11 is the absolute covariance matrix calculated from the data of Table 15 andM22
the absolute covariance matrix of the 65Cu(n,2n) cross section. We assume that the data of
Table 15 and Table 16 are either independent experiments or, in the case of an evaluation,
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do not comprise ratio measurements. Then we have:

M12 =M21 =

⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠ (E-48)

The data vector D0 is given by Table 14 and the corresponding absolute covariance ma-
trix V is obtained from the data of Table 14 and the relative matrix from Table 12. For
completeness the transformation matrix is listed again (where the vertical lines indicate
identical values):

Row= 1
2
3
4
5
6
7
8

Column=

G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σC1 /(σA1 )2 0 0 1/σA1 0 0

0 −σC2 /(σA2 )2 0 1/σA2

0 −σC3 /(σA3 )2 0 1/σA3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 2 3 4 5 6

The result of combining a ratio measurement with two absolute measurements gives a χ2
of 2.87 and is shown in Table 17 and Table 18.

Table 17: Final Result of the Evaluation

27Al(n,α) 65Cu(n,2n)
En σ(En) Rel.Std.Dev. σ(En) Rel.Std.Dev.
[MeV] [mb] % [mb] %
13.6 123.2 3.4 832.3 3.5
14.0 120.5 3.9 894.4 4.0
14.6 113.9 3.7 961.6 3.8

If we compare the uncertainties of Table 17 with the values given in Table 15 and
Table 16 we recognize that the addition of further information, here in form of additional
ratio measurements, reduces the uncertainty of the system. The correlation matrix of the
final evaluation is given in Table 18.
It is not in the nature of neutron cross sections to be correlated. Correlations are

only established due to the measuring process of such data. While the measurement of
absolute cross sections introduces correlations between the data belonging to the same
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Table 18: Correlation Matrix of the Final Evaluation

Reaction En [MeV]
13.6 100

27Al(n,α) 14.0 82 100
14.6 89 79 100
13.6 87 72 80 100

65Cu(n,2n) 14.0 76 90 75 76 100
14.6 83 76 90 86 82 100

En [MeV] 13.6 14.0 14.6 13.6 14.0 14.6
Reaction 27Al(n,α) 65Cu(n,2n)

cross section, ratio measurements additionally generate correlations between the data of
different cross sections. Before the evaluation process we had zero correlation between
both reactions 27Al(n,α) and 65Cu(n,2n). The addition of ratio measurements to the prior
system establishes large correlations between both reactions, as we can see in Table 18.
The resulting χ2 of the least squares procedure defines the consistency of the data

included in the evaluation process. The probability density of χ2 has an expectation value
which is given by the number of degrees of freedom f and a variance of 2 f . The χ2
distribution is not symmetrical but as soon as the number of degrees of freedom increases
beyond a few, the median of the density function approaches f . As the concept of gener-
alized least squares bases on realistic estimates of the variances, a value of χ2/ f of less
than unity never justifies a reduction of the final uncertainties. What happens, however,
if a value of χ2/ f greater than unity indicates inconsistencies in the data? The first step
must be to check the input data of the least squares procedure again, to correct recog-
nized erroneous data and to eliminate obviously wrong data. This step cannot always be
done perfectly because of the lack of sufficient information, In such cases it may become
necessary to scale up all covariance elements of the output by a factor of χ2/ f with the
implicit assumption that the shape of the evaluated matrix is in principle correct. This
procedure should never be done without informing the users of the data. In the example
here given we obtained a χ2 of 2.87 compared to a number of degrees of freedom of 2.
Taking this into account would increase the standard deviations given in Table 17 by a
factor of

√
1.435� 1.2.
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F Summary
A complete description of the uncertainties of an experiment can only be realized by a
detailed list of all the uncertainty components, their value and a specification of existing
correlations between the data. Based on such information the covariance matrix can be
generated, which is necessary for any further proceeding with the experimental data. It
is not necessary, and not recommended, that an experimenter evaluates this covariance
matrix. The reason for this is that a incorrectly evaluated final covariance matrix can
never be corrected if the details are not given. (Such obviously wrong covariance matrices
have recently occasionally been found in the literature). Hence quotation of a covariance
matrix is an additional step which should not occur without quoting a detailed list of
the various uncertainty components and their correlations as well. It must be hoped that
editors of journals will understand these necessary requirements.
The generalized least squares procedure shown in section E.3 and Table 5 permits an

easy way of interchanging data D0 with parameter estimates P. This means new data can
easily be combined with an earlier evaluation. However, it must be mentioned that this is
only valid as long as the new data have no correlation with any of the older data of the
prior evaluation. Otherwise the old data which show correlation with new data have to be
extracted from the evaluation and then, together with the new data and taking account of
the correlation, have again to be added to the reduced evaluation. In most cases this step
cannot be performed and the evaluation has to be completely redone. A partial way out
is given if the evaluation is performed step by step and the results of each step are stored.
Then the evaluation need only be repeated from the step which contains correlated data
for the first time while all earlier steps remain unchanged.
Finally it should be noted that the addition of a small set of new data to a prior evalu-

ation consisting of a large number of data does not require an inversion of a matrix of the
dimensions of the large set. As can be seen from Eq. (E-27), the dimension of the matrix
which has to be inverted is given by the dimension of the new data set.
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Appendix 1: Propagation of Correlated Uncertainties
An linear function of data can be represented by a vector

F = S X (1)

where F is the vector of the values of the function and X the vector of the data. The ele-
ments of the matrix S, often called sensitivity matrix, are given by the partial derivatives:

Si j =
∂Fi
∂Xj

(2)

The connection between the covariance matrix of the function MF and the covariance
matrix of the dataMX , is given by:

MF = S MX ST (3)

Eq. (3) establishes the propagation rules for uncertainties.

Applying the equations (1) - (3) to the example given in section D.1 we obtain:

F =
(
x1
x2

)
X =

⎛
⎝ l1
l2
l3

⎞
⎠ S=

(
1 −1 0
1 0 1

)

with

MX =

⎛
⎝ Var(l1) 0 0

0 Var(l2) 0
0 0 Var(l3)

⎞
⎠

The final covariance matrix is given by:

MF =
(
1 −1 0
1 0 1

)⎛
⎝ Var(l1) 0 0

0 Var(l2) 0
0 0 Var(l3)

⎞
⎠

⎛
⎝ 1 1

−1 0
0 1

⎞
⎠

=
(
Var(l1)+Var(l2) Var(l1)

Var(l1) Var(l1)+Var(l3)

)

For the case of a non-linear function we have shown in Eq. (B-27) and (B-31) how
the uncertainty propagation can be linearized. Instead of a linear function of the data we
now have a linear function of the deviations between the data and their expectation values.
Following the notation of section B we obtain for the relative deviations:

(δF) = S (δX) (4)
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(δF) is now the vector of the relative deviations of the function and (δX) the vector of the
relative deviations of the data. The matrix S changes from a sensitivity matrix to a relative
sensitivity matrix with elements of:

Si j =
Xj
Fi

∂Fi
∂Xj

(5)

In the case of a functional relationship with product or quotient terms, these elements
have the simple values +1 or -1. The propagation of the uncertainties is now given by:

〈(δF) (δF)T 〉 = S〈(δX)(δX)T 〉ST (6)

The notation of Eq. (6) is an alternative one compared to that of Eq. (3). The product of
the vectors (δF) (δF)T corresponds to the relative covariance matrix of the function with
elements of the form 〈δFi δFj〉.

Application of the Eq. (4) to (6) to the example of section D.2.2 results in:

(δF) =
(

δR12
δR34

)
(δX) =

⎛
⎜⎜⎝

δP1
δP2
δP3
δP4

⎞
⎟⎟⎠ S=

( −1 +1 0 0
0 0 −1 +1

)

The final covariance matrix is given by:

〈(δF) (δF)T 〉 =
( 〈δR12 δR12〉 〈δR12 δR34〉

〈δR34 δR12〉 〈δR34 δR34〉
)

=
( −1 1 0 0

0 0 −1 1

)⎛
⎜⎜⎝
9.58 6.16 6.64 6.00
6.16 16.46 7.93 6.15
6.64 7.93 13.86 6.64
6.00 6.15 6.64 17.29

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−1 0
1 0
0 −1
0 1

⎞
⎟⎟⎠

=
(
13.72 −1.14
−1.14 17.87

)

A further application of the Eq. (4) to (6) can be demonstrated for the example given
in section E.4.2 with Eq. (E-41) to (E-44). Here we have:

(δF) =

⎛
⎝ δε1′

δε2′
δε3′

⎞
⎠ (δX) =

(
δa
δb

)
S=

⎛
⎝ 1 b lnE1′
1 b lnE2′
1 b lnE3′

⎞
⎠

It can easily be proved, by inserting the corresponding numerical values, that Eq. (6)
produces the relative covariance matrix given in Table 11.
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Appendix 2: Off-Diagonal Weighted Averages
The combination of various correlated data of the same quantity can be done in a similar
way as for uncorrelated data. While for uncorrelated data the weights in evaluating an
average value are given by the diagonal elements of the covariance matrix, for correlated
data the off-diagonal matrix elements must also be considered. The rules of the data
combination are given by the least squares equations (Eq. (E-21) of section E.2) when we
neglect the vector of the parameter estimates P on the left hand side of Eq. (E-21) and
correspondingly also the vector D on the right hand side, i.e.:

GTV−1G P′ = GTV−1D0 (7)

Now P′ represents the average value of the data given by the vector D0. The solution of
Eq. (7) can be written as

ȳ= ∑
i
wi yi (8)

with ȳ being the average value of the various yi. The weights are given by

wi =
∑
j
V−1
ji

∑
k

∑
l
V−1
kl

(9)

with V−1
i j being the elements of the inverse of the absolute covariance matrix of the data

yi. The definition of the wi includes that ∑i wi = 1 holds. The variance of Eq. (8) is given
by:

Var(ȳ) = ∑
i j
wiVi jw j (10)

As already mentioned, the Eq. (8) - (10) can only be applied if the data yi show no
correlation to any other data. For the simple case of two correlated data given by the
vector

D0 =
(
y1
y2

)
(11)

and its covariance matrix
V =

(
V11 V21
V21 V22

)
(12)

Eq. (8) is now:

ȳ=
(V−1
11 +V−1

21 ) y1+(V−1
22 +V−1

21 ) y2
V−1
11 +V−1

22 +2V−1
21

(13)
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As the analytical inversion of a matrix of the dimension 2 can easily be done, we can also
rewrite Eq. (13) as

ȳ=
(V22−V21) y1+(V11−V21) y2

(V11+V22−2 V21) (14)

and also
Var(ȳ) =

V11V22− (V21)2

V11+V22−2V21 (15)

Eq. (14) and (15) are very useful in illustrating some aspects of the data evaluation pro-
cess:

Case A: V21 =V11
Inserting V21 =V11 in Eq. (14) and (15) we obtain:

ȳ= y1 and Var(ȳ) =V11 (16)

regardless of the value of V22. At first glance this result is surprising. But it can easily
be understood if one recognizes that V21 = V11 means that the second data y2 contains
no new information compared to the first. It must therefore consistently be neglected
in the evaluation process. A special case of the given example is for V11 = V21 = V22:
here the matrix V becomes singular, indicating that y1 and y2 are two not independent
measurements.

Case B: V11 <V21 <V22
In this case we find out that ȳ of Eq. (14) is outside the interval (y1,y2). If one is not used
to work with non-diagonal covariance matrices this result is unfamiliar. It is, however,
consistent in view of a complete covariance matrix which describes all correlations.

Case C: V11 =V22 (Data of equal variance)
The combination of two data of equal variance demonstrates the influence of correlations
on the reduction of the uncertainties. We obtain from Eq. (14) and (15):

ȳ=
y1+ y2
2

and Var(ȳ) =
V11+V21

2
(17)

This result should be compared with that of uncorrelated data (V21 = 0):

ȳ=
y1+ y2
2

and Var(ȳ) =
V11
2

(18)

In comparing both these results one recognizes that the average value is the same for
correlated and uncorrelated data. For uncorrelated data (Eq. (18)) the variance of the
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average is given by half of the common variance of both data. For correlated data the
variance of the average remains above this value for a positive value of V21. This means a
positive correlation of data lessens the uncertainty reduction of an evaluated result. In the
past this effect was sometimes responsible for inconsistencies in evaluated data, since the
neglect of covariances gave too strong a reduction of the evaluated final uncertainties.
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