

INDC(NDS)-0646 Distr. AD,AL,BN,J,SD

INDC International Nuclear Data Committee

THE ABSOLUTE TOTAL DELAYED NEUTRON YIELDS, RELATIVE ABUNDANCES AND HALF-LIVES OF DELAYED NEUTRON GROUPS FROM NEUTRON INDUCED FISSION OF ²³²Th, ²³³U, ²³⁶U, ²³⁹Pu AND ²⁴¹Am

V.M. Piksaikin, A.S. Egorov, K.V. Mitrofanov

State Scientific Center of Russian Federation Institute of Physics and Power Engineering 249033 Obninsk, Russia

October 2013

IAEA Nuclear Data Section Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria

Selected INDC documents may be downloaded in electronic form from <u>http://www-nds.iaea.org/publications</u> or sent as an e-mail attachment. Requests for hardcopy or e-mail transmittal should be directed to <u>NDS.Contact-Point@iaea.org</u> or to: Nuclear Data Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna Austria

Printed by the IAEA in Austria

October 2013

THE ABSOLUTE TOTAL DELAYED NEUTRON YIELDS, RELATIVE ABUNDANCES AND HALF-LIVES OF DELAYED NEUTRON GROUPS FROM NEUTRON INDUCED FISSION OF ²³²Th, ²³³U, ²³⁶U, ²³⁹Pu AND ²⁴¹Am

V.M. Piksaikin, A.S. Egorov, K.V. Mitrofanov

State Scientific Center of Russian Federation Institute of Physics and Power Engineering 249033 Obninsk, Russia

ABSTRACT

The absolute total yield, relative yields and half-lives of individual delayed neutron groups produced from fast neutron-induced fission of ²³²Th, ²³³U, ²³⁶U, ²³⁹Pu and ²⁴¹Am are measured by performing cyclic irradiations of the sample and subsequently measuring the time dependence of the delayed neutron activity decay. The data are analysed using an iterative least-squares fitting procedure to estimate the temporary delayed neutron parameters both for the 6- and 8-group models at each incident neutron energy. The improved data contribute to the continuing effort to meet the data requirements emerging from the current trends in reactor technologies, including the growing interest in fuel recycling strategies and new concepts of actinide burners.

October 2013

TABLE OF CONTENTS

1.	Intro	oduction	7
2.	Met	hod and experimental techniques	7
2	.1	Background condition of experiments	0
2	.2	Experimental results	2
	2.2.1 fissi	Experimental results on the relative abundances and periods of delayed neutrons from on of ²³² Th, ²³³ U, ²³⁶ U, ²³⁹ Pu, and ²⁴¹ Am	1 2
	2.2.2 ²³² Tl	2 Results on the energy dependence of the total delayed neutron yield from fission of h, ²³³ U, ²³⁶ U, ²³⁹ Pu, ²⁴¹ Am	23
Ref	erence	es	51

The absolute total delayed neutron yields, relative abundances and half-lives of delayed neutron groups in 6- and 8-group model format from neutron induced fission of ²³²Th, ²³³U, ²³⁶U, ²³⁶U, ²³⁹Pu, and ²⁴¹Am in the energy range from 0.35 MeV (or threshold energy) to 5 MeV

Piksaikin V.M., Egorov A.S., Mitrofanov K.V.

State Scientific Center of Russian Federation Institute of Physics and Power Engineering, 249033, Obninsk, Russia, piksa@ippe.ru

1. Introduction

The latest evaluation of delayed neutron constants was made for main fuel nuclides (²³⁵U, ²³⁸U, ²³⁹Pu) within an working group under the auspices of the Nuclear Energy Agency's (NEA) Working Party on International Evaluation Cooperation (WPEC), Subgroup 6 (SG6) in 1999 [1]. As a result of this work the total delayed yields for the above nuclides were essentially corrected as compared with Tuttle's recommended data set [2]. For the total delayed yields from ²³⁸U correction is +5.6%, for thermal induced fission of ²³⁹Pu - +3.4%, and for fast neutron induced fission of ²³⁹Pu - +3.2%. This is a direct indication that there is a need for a continuing effort on delayed neutron data improving. From now, this will be mainly directed at satisfying new requirements emerging from the current trends in reactor technology, such as: the use of high burn-up fuel, the burning of plutonium stocks and the general growing interest in fuel recycling strategies, and new concept of actinide burners.

The main objective of the present work is the measurements of absolute total yield, relative yields and half-lives of individual delayed neutron groups at fast neutrons fission of ²³²Th, ²³³U, ²³⁶U, ²³⁹Pu, and ²⁴¹Am. The measurements were carried out by a method based on the cyclic irradiation of the sample under study followed by the measurement of the time dependence of delayed neutron activity decay. The neutron detector represents a assembly of 30 counters SNM-11 distributed in the polyethylene moderator block possessing an external shield from the neutron background in the experimental room of accelerator. The sample is transferred from the irradiation position to the neutron detector through a pneumatic system. The time of sample transfer is about 150 ms that allows obtaining information on the most short-lived delayed neutron groups. Neutron flux was measured by ²³⁷Np and ²³⁹Pu fission ionization chambers. Analysis of delayed neutron decay curves for each isotope were performed using an iterative least-squares fitting procedure to estimate the temporary delayed neutron parameters both for the 6- and 8-group models at each incident-neutron energy. Measurements were performed on the proton and deuteron beam of CG-2.5 cascade generator (SSC RF–IPPE). Flux of mono-energetic neutrons was obtained from T(p,n) and D(d,n) reactions.

2. Method and experimental techniques

Experimental set-up employed in the present work was installed on the beam line of electrostatic accelerators CG-2.5 of the IPPE [3]. The main components of the set-up are shown in Fig. 1.

FIG. 1. Block diagram of the experimental setup: (PAD) preamplifier, amplifier, and discriminator; (S) summator; (PA) preamplifier and amplifier; (V) electromagnetic valve; (SPS) sample position sensor; (CM) controlled unit; (CFC) current-to-frequency converter; (ADC) analog-to-digital converter; (PSc) preset-scaler; (MCC) multichannel counter; (G) quartz generator of pulses; (PS) power source; (Ch) chopper; (ChD) magnetic chopper drive; (A) ion guide aperture; (T) accelerator target; (FCh) fission chamber; (BC) boron counter of neutrons; (C1) counter with a preset exposure time; (C2) counter of total counts from the CFC and BC; and (C3) counter of the CFC and BC counts within present time intervals.

The boron counter of SNM-11 type at the operational potential of 650 V in the proportional mode of operation was chosen as the main detector counting unit. The manufactured detector is an assembly of 30 boron counters distributed in polyethylene moderator along three concentric circles with diameters of 106, 160 and 220 mm. The outer diameter of moderator is 400 mm, its length is 300 mm. In the centre of the detector there is a through hole with diameter of 36 mm to install the sample flight tube. The detector is shielded against the neutron background by borated polyethylene, boron carbide powder and cadmium sheets. The construction details of the delayed neutron detector used in the present experiment are shown in Fig. 2.

The output signals from amplifiers and pulse discriminators are fed to a mixing module. The test of the neutron detector showed that the detector is insensitive to gamma rays from ²³⁷Np sample of 2 grams. The neutron detector dead time measured with a ²⁵²Cf spontaneous fission neutron source is $2.3\pm0.2 \ \mu$ s. The neutron detector has a smooth efficiency response function for the energy range which is typical for the delayed neutrons. The above mentioned parameters of the detector meet the requirements in measuring the delayed neutron yields and half-lives of their precursors. Stability of neutron detector parameters and appropriate electronic modules was controlled with the help of isotopic neutron sources - Am(Li) and Pu(Li).

FIG. 2. 4π - neutron detector. (1- cadmium sheet, 2- boron carbide powder, 3- polyethylene contained boron carbide powder, 4- boron counters (SNM-11-type), 5- polyethylene, 6- Pb shield, 7- hole for the sample transporting system, 8- fissionable sample.)

The pneumatic transfer system is capable to transport the sample for the time short enough to measure the delayed neutron yields with the shortest half-lives. Two electromagnetic valves are responsible for the sample transportation route. The stainless steel tube with diameter of 10 mm and wall thickness of 0.3 mm serves as a pneumatic flight guide. The final position of the sample in the neutron detector is fixed by the plug with adjustable central hole which provides the excessive pressure in front of the moving sample and smooths the contact between the sample and the plug. The information on the sample location is obtained from two photodiodes and light sources installed on a flight tube at the sample irradiation position and the central point of the neutron detector. The times of sample transportation from the irradiation position to the neutron detector were from 150 to 200 ms depending on gas pressure and the weight of the samples under investigation.

The basic experimental method employed in these experiments is based on periodic irradiations of the fissionable samples in a well-defined neutron flux followed by the measurement of the time dependence of delayed neutron activity. For this purpose a tube of sample transfer system with samples under investigation was placed between two fission chambers close to tritium or deuterium accelerator targets on the beam line of the CG-2.5 accelerator (see Fig. 3).

FIG. 3. The scheme of layout of an investigated sample and fissionable layers of fission chambers relatively to accelerator target. $1 - {}^{237}$ Np or 239 Pu fissionable layers of fission chambers, 2- fissionable sample, accelerator target on the beam line of the CG-2.5 accelerator.

The measurements included two different types of experiments. The first one consists of the measurements of the delayed neutron abundances and periods. In this type of experiments the measurements with different irradiation and delayed neutron counting time intervals were foreseen to enhance the contribution of certain delayed neutron groups in the composite delayed neutron decay curve. In the second type of experiments intended for measurements of the total delayed neutron yields the irradiation time of fissionable samples was several times longer as compared with the longest half-life of delayed neutron precursors. In both types of experiments the measurements of delayed neutron activity of a fissionable sample were made by the neutron detector placed at 3 m aside from accelerator target. The irradiation time intervals were 15, 180 and 300 s. Depending on background conditions the delayed neutron counting intervals were 424.5 and 724.5 s with the time channel sequence after the end of sample irradiation: 0.01 s (150 channels), 0.02 s (150 channels), 0.1 s (200 channels) and 10 s (30 or 50 channels).

The PC computer serves as a central processor controlling the irradiation and counting time, the number and width of the time channels for the delayed neutron activity measurements. The system makes it possible to measure the following parameters: pulse height distributions from two fission chambers located in front of and behind the sample at the irradiation position, time dependence of the neutron flux from the target, time dependence of the ion current on the target, the time dependence of the delayed neutron activity from the irradiated sample, pulse height distribution from ³He-spectrometer, number of counts from each row of neutron detector, time delay of the sample on the irradiation position, transportation time of the sample. The personal computer controls also the operation of the pneumatic transport system and the accelerator mode switches.

2.1 Background condition of experiments

In Fig. 4 one can see the delayed neutron decay curves for all investigated nuclides accumulated in one cycle run of appropriate experiments. It can be seen from the Fig. 4 that background condition of experiments are considerably different. It worth to note that the ²⁴¹Am experiment was extremely difficult due to very high neutron background ~130 counts/s (three orders value higher than in common case) caused by the (α ,n) reaction on oxygen which was present in the americium sample. Special experimental and computational arrangements were done to overcome these difficulties.

FIG. 4. Delayed neutron activity measured after the end of one cycle of irradiation of ^{233}U , ^{239}Pu , ^{232}Th and ^{241}Am samples by fast neutrons.

Experimental arrangements included the choice of optimal time intervals for irradiation and delayed neutron counting. Special attention was paid to make precise measurements of neutron background associated with neutrons from (α,n) reaction occurring in the americium sample. An example of the decay curve measured in a ²⁴¹Am experiment is shown in Fig. 5 and 6. In the first one the data are presented in counts per channel units. In the second one the data are transformed in counts per time units.

FIG. 5. Delayed neutron activity measured after irradiation of samples of ²⁴¹Am presented in the counts per time channel.

FIG. 6. Delayed neutron activity measured after irradiation of 241 Am samples presented in the counts per time unit. The dotted line represents the neutron background, and solid line represents the result of estimation of delayed neutron parameters.

The values of neutron background during delayed neutron counting after irradiation by neutrons from the $D(d,n)^{3}He$ and $T(p,n)^{3}He$ neutron sources are presented in Table I. Table shows that the magnitude of neutron background was different depending on the samples under investigation and parameters of specific experiment.

	²³² Th		²³³ U		²³⁹ Pu		²⁴¹ Am		
t, s	724.5	224.5	724.5	224.5	724.5	224.5	229.5	224.5	100
$\Sigma(b) / \Sigma(N_d),$ %	1.10 - 1.84	0.35 - 0.58	5.95	2.69	30	12	95.2	95.1	41.5
b, 1 / s	0.16		0.73		11.58		129.9		

TABLE I. BACKGROUND CONDITIONS OF EXPERIMENTS.

t – delayed neutron counting interval (s), b – intensity of neutron background (neutron / s), $\Sigma(N_d)$ – number of counts in appropriate time interval (724.5, 224.5 or 100 s).

2.2 Experimental results

2.2.1 Experimental results on the relative abundances and periods of delayed neutrons from fission of ²³²Th, ²³³U, ²³⁶U, ²³⁹Pu, and ²⁴¹Am

The general equation for the determination of the total delayed neutron yields and temporary delayed neutron characteristics (a_i, λ_i) on the basis of measured values can be represented by the following expression

$$\begin{split} N(t_k) &= A \cdot \sum_{i=1}^m T_i \cdot \frac{a_i}{\lambda_i} \cdot (1 - e^{-\lambda_i \cdot \Delta t_k}) \cdot e^{-\lambda_i \cdot t_k} + B \cdot \Delta t_k ,\\ T_i &= (1 - e^{-\lambda_i \cdot t_{irr}}) \cdot \left(\frac{n}{1 - e^{-\lambda_i \cdot T}} - e^{-\lambda_i \cdot T} \cdot \left(\frac{1 - e^{-n \cdot \lambda_i \cdot T}}{((1 - e^{-\lambda_i \cdot T})^2} \right) \right),\\ A &= \mathcal{E}_n \ \sigma_f \varphi \ N_f \ V_d , \end{split}$$

where $N(t_k)$ - the number of counts registered by the neutron detector in the time-channel t_k with timechannel width Δt_k , v_d - the total delayed neutron yield per one fission, *B*- the intensity of neutron background, λ_i and a_i - the decay constant and relative abundance of *i* -th group of DN, *n* - the number of cycles, *m*- the number of delayed neutron groups, *T* - the duration of one cycle of measurements, which includes the irradiation and the delayed neutron counting time, t_{irr} - irradiation time, ε_n - efficiency of neutron detector, φ - the neutron flux, σ_f - fission cross section, N_f - the number of atoms in fissionable nuclide under investigation.

After introduction of some corrections the decay curves were analysed in a 6-group approximation with the help of the iterative least-squares method [4]. Group periods and relative abundances were obtained on the basis of experimental data which were measured with different irradiation times. In the analysis of the delayed neutron time-dependence the data with long irradiation time were used to obtain the group constants for the first and second group of delayed neutrons. These data were analysed with help of the iterative least squares program for the time interval 3.0 - 721 s after the end of irradiation. Group constants for the third to the sixth groups have been obtained from the data measured in the experiment with the short irradiation time. The group constants obtained from the long-time irradiation data were fixed in the analysis of short time irradiation data.

The numerical data on the energy dependence of the relative abundances and half-lives of their precursors from fission of ²³²Th, ²³³U, ²³⁶U, ²³⁹Pu and ²⁴¹Am are presented in the 6-groups and 8-groups models presentation. The 6-groups data are listed in the tables below. The 8-groups model data are presented in Appendix. Data obtained in separate runs and related to definite energy of primary

neutrons were averaged taking into account the matrix of correlation coefficients available for each run.

Comparison of the obtained data with corresponding data of other authors was made in terms of the average half-life of delayed neutron precursors. The average half-life of delayed neutron precursors was obtained on the basis of relative abundances and half-lives of their precursors according to formula

$$< T > = \sum_{j=1}^{6} T_j \cdot a_j$$

Dispersion of the average half-life of delayed neutron precursors was calculated taking into account the correlation properties of the group parameters as follows

$$D(\langle T \rangle) = \sum_{i=1}^{6} \left[T_i^2 \cdot D(a_i) + a_i^2 \cdot D(T_i) \right] + 2 \cdot \sum_{i=1}^{5} \sum_{j=i+1}^{6} \operatorname{cov}(a_i, a_j) \cdot T_i \cdot T_j + 2 \cdot \sum_{i=1}^{5} \sum_{j=i+1}^{6} \operatorname{cov}(T_i, T_j) \cdot a_i \cdot a_j + 2 \cdot \sum_{i=1}^{6} \sum_{j=1}^{6} \operatorname{cov}(a_i, T_j) \cdot T_i \cdot a_j$$

where T_j – half-life value of delayed neutron precursors of *j*-th DN group averaged over separate experimental runs, a_j – relative abundance of *j*-th DN group averaged over separate experimental runs, $D(T_j)$, $D(a_j)$ - dispersion of DN parameters of *j*-th DN group related to the averaged set of the data, cov(x, y)- covariation of *x* and *y* DN parameters.

The 8-group data for ²³³U, ²³⁸U and ²³⁹Pu were obtained by the method described in [5]. The 8-group data for ²³²Th, ²³⁶U and ²⁴¹Am were obtained as estimation parameters in analyses of experimental decay curves by iteration least squares method [4]. Appropriate the 6-group data measured by other authors can be taken from compilation [6].

The energy dependence of the relative abundances of delayed neutrons and periods of delayed neutrons from fission of ²³²Th by neutrons in the energy range 3.2-5.1 MeV

The energy dependence of the relative abundances and periods of delayed neutrons from fission of ²³²Th has been obtained for the first time. Numerical data on the relative abundances and periods of delayed neutrons from fission of ²³²Th in the energy range 3.2–5.1 MeV are presented in Table II. Relative abundances of delayed neutrons and periods of their precursors from fission of ²³²Th analysed in terms of the average half-life of delayed neutron precursors in Fig. 7. Appropriate data in 8-group model are presented in Appendix.

TABLE II. THE ENERGY DEPENDENCE OF THE RELATIVE ABUNDANCES AND PERIODS OF DELAYED NEUTRONS FROM FISSION OF 232 TH IN 6-GROUPS MODEL PRESENTATION.

E MoV				Group num	ıber			<u>ح</u> ت م	
E_n , where	i	1	2	3	4	5	6	<1>, 8	
	~	0.0309	0.145	0.147	0.459	0.178	0.0399		
22.02	a_i	± 0.0011	± 0.005	± 0.007	± 0.011	± 0.009	± 0.0020	6.66 ± 0.12	
5.2 ± 0.2	т	55.24	21.05	5.51	2.161	0.547	0.2155	0.00 ± 0.12	
	<i>I</i> _{<i>i</i>}	± 0.64	± 0.34	± 0.16	± 0.053	± 0.027	± 0.0108		
	~	0.0310	0.149	0.151	0.456	0.174	0.0393		
2.9 ± 0.1	a_i	± 0.0005	± 0.002	± 0.003	± 0.005	± 0.003	± 0.0008	(79 + 0.06)	
3.8 ± 0.1	T	55.19	20.63	5.81	2.211	0.592	0.2143	0.78 ± 0.00	
	<i>I i</i>	± 0.27	± 0.14	± 0.07	± 0.022	± 0.011	± 0.0043		
	a	0.0307	0.145	0.153	0.457	0.175	0.0399		
12.02	a_i	± 0.0005	± 0.002	± 0.003	± 0.005	± 0.003	± 0.0008	6.72 ± 0.06	
4.2 ± 0.2	Т	54.22	20.86	5.952	2.218	0.598	0.215	0.75 ± 0.00	
	<i>I i</i>	± 0.27	± 0.15	± 0.068	± 0.022	± 0.011	± 0.004		
	a	0.0323	0.144	0.149	0.466	0.167	0.0409		
45.02	a_i	± 0.0006	± 0.003	± 0.003	± 0.006	± 0.004	± 0.0010	6 57 + 0.09	
4.3 ± 0.2	T	53.77	20.29	5.539	2.085	0.582	0.213	0.37 ± 0.08	
	Ii	± 0.34	± 0.19	± 0.093	± 0.030	± 0.014	± 0.005		
	a	0.0318	0.145	0.157	0.460	0.163	0.0418		
47.02	a_i	± 0.0005	± 0.003	± 0.003	± 0.005	± 0.004	± 0.0009	6.62 ± 0.07	
4.7 ± 0.2	Т	54.29	20.46	5.53	2.07	.58308	0.213	0.03 ± 0.07	
	1 _i	± 0.30	± 0.16	± 0.07	± 0.02	.01231	± 0.005		
	a	0.0327	0.149	0.147	0.471	0.158	0.0411		
10 ± 02	u_i	± 0.0007	± 0.003	± 0.004	± 0.007	± 0.005	± 0.0012	6.65 ± 0.09	
4.9 ± 0.2	т	54.07	19.95	5.49	2.09	0.566	0.213	0.05 ± 0.09	
	1 _i	± 0.38	± 0.19	± 0.09	± 0.03	± 0.016	± 0.006		
	a	0.0319	0.141	0.159	0.446	0.181	0.0413		
51 ± 0.2	u_i	± 0.0011	± 0.005	± 0.007	± 0.009	± 0.008	± 0.0021	6.51 ± 0.11	
5.1 ± 0.2	T	53.86	20.26	5.62	2.10	0.559	0.214	6.51 ± 0.11	
	T_i	± 0.53	± 0.31	± 0.13	± 0.05	± 0.027	± 0.011		

FIG. 7. The energy dependence of the average half-life of delayed neutron precursors from fission of ²³²Th.

The analysis of the data shows that the general trend in the behaviour of the average half-life of delayed neutron precursors for ²³²Th is similar to other studied nuclides. Namely, the average half-life of delayed neutron precursors in general decreases as the energy of primary neutrons increases.

The energy dependence of the relative abundances and periods of delayed neutrons from fission of ^{233}U by neutrons in the energy range from thermal to 4.72 MeV

Numerical data on the relative abundances and periods of delayed neutrons in 6-group model presentation from fission of ²³³U in the energy range from thermal to 4.72 MeV are presented in Table II. Appropriate data in 8-group model are presented in Appendix. Comparison of the present data with data available from literature is made in terms of the average half-life of delayed neutron precursors in Fig. 8.

TABLE II. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES AND PERIODS OF DELAYED NEUTRONS FROM FISSION OF $^{233}\mathrm{U}$ BY NEUTRONS IN 6-GROUPS MODEL PRESENTATION.

<i>E_n</i> , MeV		Group number <									
	i	1	2	3	4	5	6				
	a_i	0.085	0.291	0.254	0.285	0.051	0.034				
2.05.10-6		±0.001	± 0.004	± 0.004	±0.003	±0.001	±0.001	12.69			
2.85.10	T_i	54.64	20.77	5.25	2.143	0.611	0.276	±0.11			
		±0.20	±0.13	±0.05	±0.025	±0.013	±0.006				
	a_i	0.085	0.280	0.230	0.310	0.072	0.023				
0.34		±0.002	±0.005	±0.005	±0.006	±0.002	±0.001	12.64			
±0.07	T_i	54.62	21.09	5.58	2.397	0.543	0.221	±0.16			
		±0.32	±0.19	±0.09	± 0.050	±0.016	±0.006				
	a_i	0.086	0.275	0.233	0.310	0.073	0.023				
0.59		±0.002	±0.006	±0.006	± 0.007	±0.003	±0.001	12.50			
±0.08	T_i	54.55	20.92	5.66	2.308	0.539	0.221	±0.20			
		±0.39	±0.23	±0.10	± 0.058	±0.019	± 0.008				
	a_i	0.086	0.272	0.234	0.311	0.074	0.023				
0.81		± 0.002	±0.005	±0.005	± 0.006	±0.002	±0.001	12.50			
±0.09	T_i	54.84	21.10	5.62	2.266	0.542	0.222	±0.20			
		±0.34	±0.19	±0.09	± 0.048	±0.016	±0.006				
	a_i	0.086	0.270	0.231	0.318	0.072	0.023				
1.01		±0.002	± 0.006	±0.006	± 0.008	±0.003	±0.001	12.34			
±0.10	T_i	54.70	20.88	5.44	2.253	0.543	0.222	±0.19			
		±0.38	±0.23	±0.10	± 0.057	±0.019	± 0.008				
	a_i	0.086	0.265	0.233	0.320	0.073	0.023				
3.23		± 0.002	± 0.007	±0.006	± 0.008	± 0.002	±0.001	12.48			
±0.15	T_i	56.50	21.02	5.33	2.378	0.546	0.221	±0.22			
		±0.83	±0.29	±0.12	± 0.060	±0.016	± 0.006				
	a_i	0.087	0.235	0.246	0.335	0.074	0.023				
3.75		±0.002	±0.006	±0.006	±0.007	±0.003	±0.001	11.95			
±0.14	T_i	55.31	21.15	5.79	2.181	0.559	0.222	±0.19			
		±0.46	±0.25	±0.09	± 0.050	±0.029	± 0.008				
	a_i	0.087	0.256	0.234	0.329	0.072	0.022				
4.20		± 0.001	± 0.005	±0.006	± 0.008	±0.003	±0.001	12.24			
±0.17	T_i	57.36	20.25	5.16	2.478	0.550	0.220	±0.17			
		±0.87	±0.29	±0.10	±0.063	±0.019	± 0.008				
	a_i	0.087	0.255	0.236	0.327	0.073	0.022				
4.72		±0.003	± 0.007	±0.007	±0.009	±0.003	±0.001	12.33			
±0.21	T_i	56.68	21.05	5.13	2.470	0.546	0.221	±0.25			
		±0.90	±0.33	±0.14	±0.073	±0.019	±0.008				

FIG. 8. The energy dependence of the average half-life of delayed neutron precursors from fission of ²³³U.

Fig. 8 shows that the present data at thermal and fast neutrons agree within uncertainties with corresponding data by Keepin, *et al.* [7] clearly showing the general trend that the average half-life of delayed neutron precursors decreases as the excitation energy of compound nucleus increases. The decrease of the average half-life of delayed neutron precursors for 233 U in the energy range from 2.53·10⁻⁸ to 4.72 M₃B is 4.5% per MeV.

The energy dependence of the relative abundances and periods of delayed neutrons from fission of ^{236}U by neutrons in the energy range 1–4.72 MeV

The energy dependence of temporary characteristics of DN from fission of ²³⁶U has been obtained for the first time. Numerical data on the relative abundances and periods of delayed neutrons from fission of ²³⁶U in the energy range 1-4.72 MeV in 6-group model format are presented in Table III. Comparison of the present data with data available from literature is made in terms of the average half-life of delayed neutron precursors in Fig. 9. Appropriate data in 8-group model are presented in Appendix.

TABLE III. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES AND PERIODS OF DELAYED NEUTRONS FROM FISSION OF $^{236}\rm{U}$ BY NEUTRONS IN 6-GROUPS MODEL PRESENTATION.

E_n ,				Group nur	nber			<u>ح</u> ت م
MeV	i	1	2	3	4	5	6	<1>, \$
	a_i	0.0249	0.214	0.337	0.314	0.098	0.0121	
1.01		± 0.0005	± 0.004	±0.006	±0.007	±0.003	± 0.0004	7.93
±0.10	T_i	54.58	21.68	4.29	1.425	0.479	0.214	±0.10
		±0.37	±0.13	±0.05	±0.033	±0.014	± 0.006	
	a_i	0.0246	0.195	0.353	0.317	0.098	0.0124	
3.23		± 0.0006	± 0.005	± 0.008	±0.009	±0.003	± 0.0004	7.76
±0.15	T_i	55.43	22.33	4.29	1.477	0.477	0.214	±0.13
		±0.55	±0.22	±0.07	±0.045	±0.017	± 0.008	
	a_i	0.0255	0.195	0.322	0.347	0.098	0.0125	
3.75		± 0.0006	± 0.004	± 0.006	± 0.008	±0.003	± 0.0005	7.72
±0.14	T_i	55.81	21.92	4.50	1.495	0.484	0.214	±0.11
		±0.38	±0.14	± 0.05	±0.036	±0.017	± 0.008	
	a_i	0.025	0.197	0.329	0.337	0.099	0.0130	
4.20		±0.001	± 0.007	±0.010	±0.013	± 0.005	± 0.0006	7.58
±0.17*)	T_i	56.68	21.68	4.22	1.352	0.484	0.214	±0.39
		±0.70	±0.29	±0.10	± 0.056	±0.024	±0.011	
	a_i	0.0260	0.191	0.332	0.332	0.106	0.0130	
4.72		± 0.0006	± 0.004	± 0.006	± 0.008	± 0.004	± 0.0005	7.51
±0.21	T_i	55.38	21.60	4.32	1.404	0.456	0.215	± 0.11
		±0.42	±0.15	±0.05	±0.036	±0.016	± 0.008	

FIG. 9. The energy dependence of the average half-life of delayed neutron precursors from fission of ²³⁶U.

The present $\langle T \rangle$ value agrees with appropriate data obtained by Gudkov, *et al.* (1989) [8] within quoted uncertainties. It is seen from Fig. 9 that the average half-life of delayed neutron precursors from fission ²³⁶U decreases as the excitation energy of compound nucleus increases.

The energy dependence of the relative abundances and periods of delayed neutrons from fission of ²³⁹Pu by neutrons in the energy range from thermal to 5 MeV

Numerical data on the relative abundances and periods of delayed neutrons in 6-groups model presentation from fission of ²³⁹Pu in the energy range from thermal to 4.97 MeV are presented in Table IV. Comparison of the present data with data available from literature is made in terms of the average half-life of delayed neutron precursors in Fig. 10. Appropriate data in 8-group model format are presented in Appendix.

TABLE IV. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES AND PERIODS OF DELAYED NEUTRONS FROM FISSION OF $^{239}\rm{PU}$ BY NEUTRONS IN 6-GROUPS MODEL PRESENTATION.

E MaX			G	roup numbe	er			
$E_{n,}$ wiev	i	1	2	3	4	5	6	<1>, S
	a_i	0.035	0.302	0.204	0.332	0.084	0.043	
2 95 10-6		± 0.001	± 0.007	± 0.005	0.006	±0.003	± 0.002	10.50+0.17
2.85.10	T_i	53.19	22.61	5.59	2.17	0.621	0.256	10.39±0.17
		±0.46	±0.11	±0.08	±0.04	±0.022	±0.009	
	a_i	0.037	0.295	0.212	0.319	0.103	0.034	
0.27 0.00		± 0.001	± 0.006	±0.005	± 0.005	±0.003	±0.001	10.26 ± 0.15
0.37 ± 0.06	T_i	52.09	22.34	5.26	2.06	0.543	0.218	10.30 ± 0.15
		±0.41	±0.11	±0.07	± 0.04	±0.015	± 0.006	
	a_i	0.037	0.295	0.217	0.321	0.096	0.034	
0.62+0.06		±0.001	± 0.007	±0.006	± 0.007	±0.003	±0.001	10 47 + 0 17
0.02 ± 0.00	T_i	53.19	22.44	5.30	2.09	0.568	0.214	10.47 ± 0.17
		±0.49	±0.12	± 0.08	±0.04	±0.019	± 0.008	
	a_i	0.037	0.289	0.216	0.322	0.102	0.034	
		±0.001	±0.005	±0.005	± 0.005	±0.003	±0.001	10.27 + 0.12
0.80 ± 0.00	T_i	53.81	22.19	5.25	2.06	0.547	0.217	10.27 ± 0.13
		±0.41	±0.10	±0.07	±0.03	±0.016	±0.006	
	a_i	0.038	0.292	0.214	0.320	0.101	0.035	
1.00.000		±0.001	± 0.004	±0.004	± 0.004	± 0.002	± 0.001	10.27 + 0.11
1.06 ± 0.06	T_i	53.51	22.23	5.11	2.15	0.555	0.215	10.37 ± 0.11
		±0.33	±0.09	±0.05	±0.03	±0.012	±0.005	
	a_i	0.038	0.271	0.220	0.332	0.104	0.035	
2 27 0 14		±0.001	± 0.007	±0.006	± 0.008	±0.003	± 0.001	10.06 ± 0.10
3.27 ± 0.14	T_i	55.29	22.23	5.11	2.16	0.547	0.216	10.06 ± 0.19
		±1.45	±0.29	±0.13	±0.06	±0.016	±0.006	
	a_i	0.038	0.247	0.227	0.348	0.105	0.035	
2.01.0.11		±0.001	± 0.004	±0.004	± 0.005	± 0.002	± 0.001	0.69 ± 0.11
3.81±0.11	T_i	56.19	22.51	5.22	2.09	0.552	0.217	9.08 ± 0.11
		±0.53	±0.14	±0.07	±0.03	±0.012	± 0.005	
	a_i	0.038	0.243	0.230	0.348	0.106	0.035	
4 27 0 11		±0.001	±0.005	±0.005	±0.006	±0.003	±0.001	0.65 ± 0.14
4.27 ± 0.11	T_i	56.68	22.49	5.31	2.10	0.554	0.217	9.65 ± 0.14
		±0.65	±0.18	± 0.08	±0.04	±0.016	±0.006	
	a_i	0.039	0.238	0.228	0.355	0.105	0.035	
4.01.0.12		±0.001	± 0.004	±0.004	± 0.005	±0.003	± 0.001	0.62 + 0.11
4.81±0.13	T_i	57.49	22.54	5.32	2.10	0.554	0.217	9.62 ± 0.11
	ŀ	±0.49	±0.14	±0.07	±0.03	±0.014	±0.005	
	a_i	0.039	0.243	0.232	0.341	0.109	0.036	
4.07.0.12	·	±0.001	±0.006	±0.006	± 0.008	±0.004	±0.001	0.50 0.14
4.97±0.13	T_i	58.17	22.04	4.92	2.17	0.553	0.217	9.59 ± 0.16
	·	±0.65	±0.19	±0.09	±0.05	±0.019	± 0.008	

the energy range from thermal to 4.97 MeV.

Fig. 10 shows that the present low energy results on temporary DN characteristics of ²³⁹Pu agree with the experimental data by Keepin, et al. [7]. However it should be noted that present data have the smaller uncertainties than that given in [7]. In the neutron energy higher than 3 MeV there is large disagreement between the present data and the data by Maksyutenko, et al. [9] (the only available data in this energy range). The overall decrease of the average half-life of delayed neutron precursors for 239 Pu in the energy range 2.53·10⁻⁸–4.97 M₃B is 10.6 %. As an example in the Table V a correlation matrix is shown for the neutron energy 0.37 MeV.

	a_l	T_1	a_2	T_2	a_3	T_3	a_4	T_4	a_5	T_5	a	T_6
a_l	1,0											
T_1	0,0	1,0										
a_2	0,0	0,77	1,0									
T_2	0,0	-0,18	0,09	1,0								
a_3	0,0	0,26	0,41	0,33	1,0							
T_3	0,0	-0,13	-0,16	0,65	-0,22	1,0						
a_4	0,0	0,43	0,6	0,45	-0,07	0,51	1,0					
T_4	0,0	0,08	0,14	0,01	-0,46	0,0	0,12	1,0				
a_5	0,0	0,08	0,11	0,06	0,02	0,03	-0,05	0,19	1,0			
T_5	0,0	0,04	0,06	0,05	0,01	0,05	-0,07	0,09	0,0	1,0		
a_6	0,0	0,01	0,02	0,01	0,0	0,0	0,0	0,03	-0,01	0,0	1,0	
T_6	0,0	0,01	0,02	0,01	0,0	0,0	0,0	0,04	-0,01	0,0	0,0	1,0

TABLE V. CORRELATIONS MATRIX OF DELAYED NEUTRON GROUP PARAMETERS RELATED TO 0.37 MEV NEUTRON INDUCED FISSION OF ²³⁹PU.

The energy dependence of the relative abundances and periods of delayed neutrons from fission of ²⁴¹Am by neutrons in the energy range 0.62–4.97 MeV

The energy dependence of DN relative abundances and periods of their precursors from fission of ²⁴¹Am has been obtained for the first time. Numerical data on the relative abundances and periods of delayed neutrons from fission of ²⁴¹Am are presented in Table VI. Comparison of the present data with data available from literature is made in terms of the average half-life of delayed neutron precursors in Fig. 11.

E_n ,				Group nur	nber			
MeV	i	1	2	3	4	5	6	<1>, 8
	a_i	0.0424+0.001	0.264	0.201	0.317	0.152	0.0229	
0.62 + 0.06		0.0434±0.001	±0.008	±0.006	±0.009	±0.005	± 0.0007	10.2 ± 0.6
0.02 ± 0.00	T_i	54216	21.94	6.08	2.24	0.496	0.179	10.2 ± 0.0
		J4.J±1.0	±0.66	±0.18	±0.07	±0.015	± 0.005	
0.86 + 0.06	a_i	0.0432 ± 0.0005	0.271±0.003	0.199 ± 0.002	0.314 ± 0.004	0.151±0.002	0.0228±0.0003	10.4 ± 0.1
0.80 ± 0.00	T_i	53.97±0.61	22.61±0.25	6.08±0.07	2.24±0.03	0.498±0.006	0.179±0.002	10.4 ± 0.1
0.06 + 0.06	a_i	0.0436 ± 0.0007	0.284±0.005	0.199±0.003	0.302 ± 0.005	0.148±0.003	0.0229 ± 0.0004	11.1 ± 0.2
0.90 ± 0.00	T_i	53.99±0.93	23.51±0.39	6.27±0.11	2.279±0.039	0.494 ± 0.009	0.179±0.003	11.1 ± 0.2
1.06 ± 0.06	a_i	0.0436 ± 0.0009	0.276±0.006	0.202±0.004	0.308 ± 0.006	0.148±0.003	0.0228±0.0005	10.0 ± 0.2
1.00 ± 0.00	T_i	54.0±1.1	23.92±0.45	6.13±0.12	2.31±0.05	0.49±0.01	0.179±0.004	10.9 ± 0.2
2.27 ± 0.14	a_i	0.0434 ± 0.0009	0.272±0.006	0.199 ± 0.004	0.312±0.007	0.150±0.003	0.0229 ± 0.0005	10.8 ± 0.2
5.27 ± 0.14	T_i	54.5±1.1	23.47±0.49	6.10±0.13	2.26±0.05	0.496±0.011	0.179±0.004	10.8 ± 0.2
2.91 ± 0.11	a_i	0.0433 ± 0.0007	0.251±0.004	0.201±0.003	0.329 ± 0.005	0.153±0.003	0.0228±0.0004	0.7 ± 0.1
5.81 ± 0.11	T_i	54.47±0.93	21.28±0.31	5.85±0.09	2.23±0.04	0.503±0.009	0.179±0.003	9.7 ± 0.1
4.27 + 0.11	a_i	0.0433 ± 0.0009	0.266±0.006	0.202±0.004	0.317±0.006	0.149±0.003	0.0228±0.0005	10.2 + 0.2
4.27 ± 0.11	T_i	54.4±1.2	21.75±0.41	5.99±0.12	2.30±0.05	0.49±0.01	0.179±0.004	10.2 ± 0.2
4.07 + 0.12	a_i	0.043 ± 0.001	0.237±0.007	0.202±0.006	0.336 ± 0.008	0.159±0.005	0.0229±0.0007	07.05
$4.9/\pm0.13$	T_i	56.5±1.7	22.19±0.39	5.69±0.15	2.18±0.05	0.502±0.015	0.180±0.005	9.7 ± 0.3

TABLE VI. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES AND PERIODS OF DELAYED NEUTRONS FROM FISSION OF ²⁴¹AM IN 6-GROUPS MODEL PRESENTATION.

FIG. 11. The energy dependence of the average half-life of delayed neutron precursors from fission of ²⁴¹Am.

Comparison of delayed neutron parameters (a_i, T_i) obtained in this work with the relevant data from other authors was carried out in terms of the average half-life of delayed neutron precursors. Fig. 11 shows that the behavior of the average half-life of delayed neutron precursors in fission ²⁴¹Am in the range of 1-5 MeV is similar to the behavior of this quantity in fission of other nuclei (²³⁸U, ²³⁹Pu, ²³³U, etc.) – the average half-life <T> decreases with increasing excitation energy of fissioning nucleus. A specific feature of the energy dependence of the temporal parameters of delayed neutrons in fission ²⁴¹Am is a sharp increase in the average half-life of delayed neutron precursors near the threshold of fission reaction (0.5-1 MeV) up to a maximum value at the first plateau of fission cross-section. The effect of increasing <T> at the threshold of fission cross section found in fission ²⁴¹Am is not observed in case of other threshold nuclides. Moreover, in case of ²³⁷Np one can observe the opposite effect - the increase of the average half-life of delayed neutron precursors with decreasing excitation energy of compound nucleus [10].

2.2.2 Results on the energy dependence of the total delayed neutron yield from fission of ²³²Th, ²³³U, ²³⁶U, ²³⁹Pu, ²⁴¹Am

In the present work two methods for calculation of the total delayed yields were used both based on the main expression used for modelling the time dependent intensity of delayed neutrons from a sample after its irradiation in a well-defined flux of mono-energetic neutrons. In the first method the sum of delayed neutron counts registered in the time interval $(t_1 - t_2)$ and temporary parameters (a_i, T_i) of delayed neutrons obtained during the analysis of delayed neutron curves were used

$$\begin{split} \mathcal{V}_{d} &= \frac{\left\lfloor \sum_{i_{1}}^{t_{2}} N(t_{k}) - B(t_{2} - t_{1}) \right\rfloor}{< \mathcal{E}_{n} > \cdot R_{s} \cdot \sum_{i=1}^{6} \left[T_{i} \cdot \frac{a_{i}}{\lambda_{i}} \cdot \left(e^{-\lambda_{i} \cdot t_{1}} - e^{-\lambda_{i} \cdot t_{2}} \right) \right]}, \\ T_{i} &= (1 - e^{-\lambda_{i} \cdot t_{ir}}) \cdot \left(\frac{n}{1 - e^{-\lambda_{i} \cdot T}} - e^{-\lambda_{i} \cdot T} \cdot \left(\frac{1 - e^{-n \cdot \lambda_{i} \cdot T}}{((1 - e^{-\lambda_{i} \cdot T})^{2}} \right) \right) \end{split}$$

where $N(t_k)$ - the number of counts registered by the neutron detector in the time-channel t_k with timechannel width Δt_k , v_d - the total delayed neutron yield per one fission, $B(t_k)$ - the intensity of neutron background in the time channel t_k , λ_i and a_i - the decay constant and relative abundance of i -th group of delayed neutron, n - the number of cycles, T - the duration of one cycle of measurements, which includes the irradiation and delayed neutron counting time, t_{ir} - irradiation time, $\langle \varepsilon_n \rangle$ - efficiency of neutron detector, φ - the neutron flux, σ_f - fission cross section, N_s - the number of atoms in fissionable nuclide under investigation, N_{ch} - the number of atoms in fissile layer of the fission chamber, N_c - number of counts per channel of the pulse height distribution registered by fission chamber monitor.

In the second method (known as "extrapolation to zero") the information on the saturation activity A of delayed neutrons obtained during analysis of the appropriate delayed neutron curves is used

$$V_d = \frac{A}{\langle \varepsilon_n \rangle \cdot R_s},$$

It was expected that the concurrent utilization of the two methods for obtaining the total delayed yields will serve as a test for consistency of experimental data that in one's turn should improve reliability of the final data on delayed neutron yields. Uncertainties of the relative total delayed neutron yields include the uncertainties of delayed neutron abundance and period values, error of the sample under investigation and fission chamber positions relatively to the neutron target in the run to run measurements, uncertainties of fission rate calculations, and statistical uncertainties. It was assumed that there was no energy dependent systematic error in the calculation of fission rate ratio value for the sample and fission layer. Main contribution to the total uncertainties is from the uncertainties of abundances and periods of delayed neutrons (1.8-2%).

As can be seen from the above expression in both methods one needs to have information on the efficiency of neutron detector $\langle \varepsilon_n \rangle$ and fission rates $R_s(E_n) = N_s \langle \sigma \varphi \rangle_s$ in the sample under investigation. The $\langle \varepsilon_n \rangle$ value has been measured in a special experiment and it is the characteristic of the neutron detector only, whereas the value $R_s(E_n)$ characterizes experiment as a whole and depends on many factors (geometry of experiment, mass of a sample and its sizes and configuration, features of a neutron source etc.). Therefore from the methodical point of view the most complicated task is to determine the value of $R_s(E_n)$ at different energies of incident neutrons.

The fission rate in the sample R_s can be represented in simplified form by the following expression

 $R_s = N_s \iint \varphi_s(E_n, \theta, \phi) \cdot \sigma_s(E_n) dE_n dV_s ,$

where N_s - number of atoms in the fissionable sample, $\varphi_s(E_w, \theta, \phi)$ - absolute neutron flux from the target, dV_s - elemental volume of the sample, E_n - energy of neutrons emitted in direction of radius vector $\mathbf{r}(\theta, \phi)$.

Information about absolute value of the neutron flux $\varphi_s(E_n, \theta, \phi)$ was obtained on the basis of the number of counts in the fission chamber monitors ΣN_c registered during irradiation time interval t_{irr} in all cycles of measurement

$$\frac{\sum N_c}{t_{irr}} = N_{ch} \int \int \varphi_{ch}(E_n, \theta, \phi) \cdot \sigma(E_n) dE_n dV_{ch},$$

where N_{ch} - the number of ²³⁷Np or ²³⁹Pu atoms in the fission chamber deposits, dV_{ch} - an elemental volume of the fission chamber deposit. The final expression for the fission rate in the sample can be written in the following simplified form

$$R_{s} = \frac{N_{s} \cdot \sum N_{c} \iint \varphi_{s}(E_{n}, \theta, \phi) \sigma(E_{n}) dE_{n} dV_{s}}{N_{ch} \cdot t_{irr} \iint \varphi_{r}(E_{n}, \theta, \phi) \sigma(E_{n}) dE_{n} dV_{ch}} = \frac{\sum N_{c} \cdot N_{s} \cdot \langle \sigma \varphi \rangle_{s}}{N_{ch} \cdot t_{irr} \cdot \langle \sigma \varphi \rangle_{ch}}$$

Fission rate ratio $\langle \sigma \varphi \rangle_{s/} \langle \sigma \varphi \rangle_{ch}$ calculated per one nuclide has been obtained with the help of the Monte Carlo method. Detailed approach used in the determination of fission rates in the fissionable samples is described in [11].

The energy dependence of the total delayed neutron yield from fission of 232 Th by neutrons in the energy range 3.2–5.1 MeV

The energy dependence of the total delayed neutron yields from fission of ²³²Th by neutrons in the energy range 3.2–5.1 MeV was obtained for the first time. Obtained results in numerical form are presented in Table VII. In Fig. 12 these data are compared with appropriate data which are available from literature. In addition in Fig. 12 there is the energy dependence of the total delayed neutron yield obtained on the basis of the systematic relation $\ln[v_d(E_n)] = a + b(\ln \langle T(E_n) \rangle)$ [12]. It is seen from Fig. 12 that v_d in the energy range 3.2–5.1 MeV has no energy dependence within quoted uncertainties.

E_n , MeV	Total DN yields v _d , neutron/fission	References
1,45	$0.054 \pm 0,0041$	Cox (1970) –experiment (Averaged value)
2,4	$0,\!0571\pm0,\!0051^{2)}$	Maksyutenko (1959)
3,0	$0,\!0568\pm0,\!0145^{2)}$	Brunson et al(1955)
3,0	$0,\!0375\pm0,\!0090^{2)}$	Rose (1957)
3,1	$0,\!0566\pm0,\!0042^{2)}$	Masters (1969)
3,2	$0,0579 \pm 0,0023$	Present work
3,3	$0,0534 \pm 0,0048$	Maksyutenko (1959)
3,5	$\begin{array}{c} 0,0505\pm 0,0052^{2)}\\ 0,0496\pm 0,0020^{1)}\end{array}$	Keepin (1957)
3,8	$0,0572 \pm 0,0024$	Present work
4,2	$0,0550 \pm 0,0042$	Present work
4,5	$0,0557 \pm 0,0063$	Present work
4,7	$0,0543 \pm 0,0031$	Present work
4,9	$0,0568 \pm 0,0032$	Present work
Fast neutrons	$0,0527 \pm 0,004$	Waldo (1981)
3,1	$0,0531 \pm 0,0023$	Tuttle (1979)-evaluation
Fast neutrons	$0,0564 \pm 0,0041$	Brady (1989)-summation
Fast neutrons	$0,0607 \pm 0,0035$	Blashot (1997)-summation
Fast neutrons	0,06321	Wilson (2002)-summation
Fast neutrons	0,0561	Mills (1991)-summation
Fast neutrons	0.0515±0.0031	Manevich (1988)-summation
0-4	0,0547	ENDF/B-VII
0-4	0,0527	JEFF-3.1
0-3	0,0531	JENDL3.3

TABLE VII. THE TOTAL DELAYED NEUTRON YIELD FROM FISSION OF $^{232}\rm{TH}$ BY NEUTRONS IN THE ENERGY RANGE 3.2–5.1 MEV.

1)- original value v_d ; 2) – adjusted value (recalibration).

Fig. 12. The energy dependence of the total delayed neutron yield from fission of 232 Th by neutrons in the energy range 3.2–5.1 MeV. Dash line –systematics $ln[v_d(E_n)] = a + b(ln < T(E_n) >)$ [12].

According to the present data in the energy range 3.2–5.1 MeV there is no evidence for the energy dependence of the total delayed neutron yields within the data uncertainties.

The energy dependence of the total delayed neutron yield from fission of ^{233}U by neutrons in the energy range 0.34–4.90 MeV

Numerical data on the total delayed neutron yield from fission of ²³³U by neutrons in the energy range 0.34–4.9 MeV are presented in Table VIII. The energy dependence of the total delayed neutron yield from fission of ²³³U is presented in Fig. 13 together with appropriate data available from literature and systematic $\ln[v_d(E_n)] = a + b(\ln < T(E_n) >)$.

E_n , MeV	Total DN yields, neutron/100 fissions.
0.34 ± 0.07	0.746 ± 0.037
0.59 ± 0.08	0.748 ± 0.037
0.81 ± 0.09	0.746 ± 0.035
1.01 ± 0.10	0.744 ± 0.037
3.23 ± 0.15	0.794 ± 0.039
3.75 ± 0.14	0.804 ± 0.040
4.20 ± 0.17	0.760 ± 0.038
4.72 ± 0.21	0.69 ± 0.03
4.90 ± 0.21	0.668 ± 0.033

TABLE VIII. THE TOTAL DELAYED NEUTRON YIELDS FROM FISSION OF $^{233}\mathrm{U}$ BY NEUTRONS IN THE ENERGY RANGE 0.34–4.9 MEV.

Fig. 13. The energy dependence of the total delayed neutron yield from fission of ²³³U.

Fig. 13 shows that the obtained data on the energy dependence of the total delayed neutron yields are in agreement with corresponding data by Krick (1972) [13], measured by an independent method. In the energy range 0.34–1.01 MeV v_d is constant within uncertainties. In the energy range 1.01–3.75 MeV there is an increase of 8% (dv_d/v_d) in v_d . Above 3.75 MeV there is a decrease in v_d . Thus the obtained results clearly confirm that the decrease of the total delayed neutron yield from fission ²³³U starts at the neutron energy below the threshold of the (n, n'f) reaction.

The energy dependence of the total delayed neutron yield from fission of ^{236}U by neutrons in the energy range 1.01–4.72 MeV

The energy dependence of the total delayed neutron yield from fission of 236 U by neutrons has been measured for the first time. Numerical data are presented in Table VIII. The energy dependence of the total delayed neutron yield from fission of 236 U is presented in Fig. 14 together with appropriate data available from literature and systematic.

TABLE IX. THE TOTAL DELAYED NEUTRON YIELDS FROM FISSION OF $^{236}\mathrm{U}$ BY NEUTRONS IN THE ENERGY RANGE 1.01–4.72 MEV.

E_n , MeV	Total DN yields, neutron/100 fissions.
1.01 ± 0.10	2.18 ± 0.22
3.23 ± 0.15	2.33 ± 0.12
3.75 ± 0.14	2.32 ± 0.12
4.20 ± 0.17	2.18 ± 0.11
4.72 ± 0.21	2.20 ± 0.11

Fig. 14. The energy dependence of the total delayed neutron yield from fission of ^{236}U (dotted line - the fission cross section of ^{236}U , dash line – systematics $ln[v_d(E_n)] = a + b(ln < T(E_n) > [12])$.

The energy dependence of the total delayed neutron yield from fission of 239 Pu by neutrons in the energy range 0.34–4.9 MeV

The energy dependence of the total delayed neutron yield from fission of ²³⁹Pu by neutrons is presented in Table IX and Fig. 15 together with appropriate data available from literature and systematic results.

TABLE IX	. THE	TOTAL	DELAYED	NEUTRON	YIELDS	FROM	FISSION	OF	239 PU	ΒY
NEUTRONS	S IN TH	IE ENER	GY RANGE	0.34-4.72 ME	EV.					

E_n , MeV	Total DN yields, neutron/100 fissions.
0.34 ± 0.07	0.651 ± 0.020
0.59 ± 0.08	0.645 ± 0.009
0.81 ± 0.09	0.643 ± 0.001
1.01 ± 0.10	0.656 ± 0.014
3.23 ± 0.15	0.712 ± 0.033
3.75 ± 0.14	0.704 ± 0.017
4.20 ± 0.17	0.689 ± 0.017
4.72 ± 0.21	0.668 ± 0.019
4.90 ± 0.21	0.608 ± 0.009

Fig. 15. The energy dependence of the total delayed neutron yield from fission of 239 Pu. Dash line –systematics $ln[v_d(E_n)] = a + b(ln < T(E_n) >)$ [12].

According to the present data in the energy range 0.34–1.01 MeV there is no evidence for the energy dependence of the total delayed neutron yields within the data uncertainties. This observation can be considered as a confirmation of the latest evaluation results. In the energy range 1.1–3.2 MeV the total delayed neutron yield increases as neutron energy of primary neutrons increases. Above 3.5 MeV point the total delayed neutron yield steadily decreases. The rate of increase of v_d in the energy range from 1 up to 3.2 MeV is 2.43 x 10^{-4} neutrons/MeV (dv_d/v_d ~8%).

*The energy dependence of the total delayed neutron yield from fission of*²⁴¹*Am in the energy range* 0.86–4.85 *MeV*

The energy dependence of the total delayed neutron yield from fission of ²⁴¹Am by neutrons has been measured for the first time. Preliminary numerical data are presented in Table X. The energy dependence of the total delayed neutron yield from fission of ²⁴¹Am is presented in Fig. 16 together with appropriate data available from literature and systematics.

E_n , MeV	Total DN yields, neutron/100 fissions.
0.86	0.330 ± 0.050
0.96	0.360 ± 0.054
1.01	0.460 ± 0.069
3.85	0.490 ± 0.074
4.85	0.540 ± 0.082

TABLE X. THE TOTAL DELAYED NEUTRON YIELDS FROM FISSION OF ²⁴¹AM BY NEUTRONS IN THE ENERGY RANGE 0.86– 4.85 MEV.

Fig. 16. The energy dependence of the total delayed neutron yield from fission of ²⁴¹Am. Dash line –systematics $ln[v_d(E_n)] = a + b(ln < T(E_n) >)$ [12].

From analysis of the data made in terms of average half-life of delayed precursors it should be noted that the behaviour of the average half-life of delayed neutron precursors have irregularities in the vicinity of the fission reaction threshold. In contrast to other nuclide studied the average half-life of delayed neutron precursors of 241 Am (n,f) reaction is increases as the energy of primary neutrons increases at the threshold of the reaction and then, above the threshold, one can see a common behaviour of the <T> value - decrease of the average half-life up to 5 MeV energy point.

Conclusion

As a result of the work made on the processing of the experimental information gathered in the above experiments the following characteristics of delayed neutron have been obtained:

- the energy dependence of the relative abundances and periods of delayed neutrons in 6groups model presentation from fission of ²³²Th in the energy range 3.2-5.1 MeV;
- the energy dependences of the relative abundances and periods of delayed neutrons in 6- and 8- groups model presentation from fission of ²³³U in the energy range from thermal to 4.72 MeV;
- the energy dependence of the relative abundances and periods of delayed neutrons in 6and 8- groups model presentation from fission of ²³⁶U in the energy range 1.01-4.72 MeV;
- the energy dependences of the relative abundances and periods of delayed neutrons in 6- and 8- group model presentation from fission of ²³⁹Pu in the energy range from thermal to 4.97 MeV;
- the energy dependence of the relative abundances and periods of delayed neutrons in 6-model presentation from fission of ²⁴¹Am in the energy range 0.62-4.97 MeV;
- the energy dependence of the total delayed neutron yields from fission of ²³²Th in the energy range 3.2–5.1 MeV;
- the energy dependence of the total delayed neutron yields from fission of 233 U in the energy range 0.34–4.90 MeV.

- the energy dependence of the total delayed neutron yields from fission of ²³⁶U in the energy range 1.01–4.72 MeV;
- the energy dependence of the total delayed neutron yields from fission of ²³⁹Pu in the energy range 0.34-4.90 MeV;
- preliminary data on the energy dependence of the total delayed neutron yields from fission of ²⁴¹Am in the energy range 0.86–4.85 MeV.

References

- [1] D'Angelo A., Rowlands J.L., Conclusions concerning the delayed neutron data for the major actinides, Progress in Nuclear Energy 41 (2002) p. 391–412.
- Tuttle R.J., Delayed Neutron Yield in Nuclear Fission, Proceedings of the Consultants' [2] Meeting on Delayed Neutron Properties, Report INDC(NDS)-107/G, IAEA, Vienna, 1979, p. 29-67.
- [3] Piksaikin V.M., Semenova N.N., Mil'shin V.I., Roshchenko V.A., Korolev G.G., Method and setup for studying the energy dependence of delayed neutron characteristics in nuclear fission induced by neutrons from the T(p, n), D(d, n), and T(d, n) reactions, Nuclear Experimental Technique, 2006, v.49, No.6, p. 765-777. http://dx.doi.org/10.1134/S0020441206060030.
- Piksaikin V.M., Kazakov L.E., Isaev S.G., Tarasko M.Z., Roshchenko V.A., Tertytchnyi [4] R.G., Spriggs G.D., Campbell J.M., Energy dependence of relative abundances and periods of delayed neutrons from neutron-induced fission of ²³⁵U, ²³⁸U, ²³⁹Pu in 6– and 8–group model representation, Progress in Nuclear Energy, 2002, v.41, No.1-4, p. 203-222.
- [5] Spriggs G.D., Campbell J.M., Piksaikin V.M., Report LA-UR-98-1619, Rev.1, LANL, March 28, 1999.
- Spriggs G.D., Campbell J.M., A Summary of Measured Delayed Neutron Group Parameters, [6] LANL Report LA-UR-98-918, 1999, Rev. 3.
- Keepin G.R., Wimett T.F., Zeigler R.K., Delayed Neutrons from Fissionable Isotopes of [7] Uranium, Plutonium and Thorium, Phys. Rev. 107 (1957) p. 1044.
- Gudkov A.N., et al., Measurements of total delayed neutron yields from fission of ²³³U, ²³⁶U, [8] ²³⁷Np, ²⁴⁰Pu and ²⁴¹Pu induced by fast neutrons. Atom. En. **66** (1989) p. 100. Maksyutenko B.P., *Delayed Neutrons from* ²³⁹Pu, Yad. Fiz. **15** (1963) p. 848.
- [9]
- [10] Pronyaev V.G., Piksaikin V.M., Factors Determining the Energy Dependence of Delayed Neutron Yields in Neutron Induced Fission. VANT. Seriya: Yad. Konst. No.1-2 (1997) p. 32-37.
- Piksaikin V., Shorin V., Tertytchnyi R., Fission rate determination in delayed neutron [11] emission measurements with T(p,n) and D(d,n) neutrons, Report INDC(CCP)-422, IAEA, Vienna, August 1999.
- Piksaikin V.M., Isaev S.G., Goverdovski A.A., Characteristics of Delayed Neutrons: [12] Systematics and Correlation Properties, Progress in Nuclear Energy 41 (2002) p. 361 – 384.
- Krick M.S., Evans A.E., Nucl. Sci. Eng. 47 91972) p. 3-11. [13]
- [14] Brunson G.S., Petit E.N. Measurement of Delayed Neutron Yields in Plutonium, Uranium-233, Uranium-238, and Thorium Relative to Yield in Uranium-235. Argonne National Laboratory Report ANL-5480 Argonne, IL. (1955).
- Masters C.F., Torpe M.M., Smith D.B., The measurement of absolute delayed-neutron yields [15] from 3.1- and 14.9 MeV fission. Nucl. Sci. Eng. 36 (1969) p. 202-208.
- Rose H. and Smith R., Delayed Neutron Investigations with the ZEPHYR Fast Reactor, Part [16] II — the Delayed Neutrons Arising from Fast Fission in ²³⁵U, ²³³U, ²³⁸U, ²³⁹Pu and ²³²Th. Nuclear Energy 4 (1957) p. 133–142.
- Waldo R.W., Karam R.A., Meyer R.A., Delayed neutron yields: Time dependent [17] measurements and a predictive model, Phys. Rev. C. 23 (1981) p. 1113–1127.
- Brady M., England T., Delayed neutron data and group parameters for 43 fissioning systems [18] Nucl. Sci. Eng. 103 (1989) p. 129-149.

- [19] Wilson W.B., England T.R., *Delayed neutron study using ENDF/B-VI basic nuclear data*, Progress in Nuclear Energy **41** (2002) p. 71–107.
- [20] Saleh H.H., Parish T.A., Raman S., and Shinohara N., Measurements of Delayed-Neutron Decay Constants and Fission Yields from ²³⁵U, ²³⁷Np, ²⁴¹Am and ²⁴³Am. Nucl. Sci. Eng. 125 (1995) p.51.
- [21] Manevich V., *Delayed neutron database*, Report INDC(CCP)-294/G, 1989, IAEA, Vienna, Austria, p. 1–10.
- [22] Wilson R.R., Phys.Rev. **71** (1947) p. 560.
- [23] Blachot J., Chung C., Storrer F. *JEF-2 Delayed Neutron Yields for 39 Fissioning Systems*, Ann. Nucl. Energy **24** (1997) p. 489–504.
- [24] Maksyutenko B.P, et al., At. Energy 7 (1959) p. 474.
- [25] Manevich L.G., et al., Calculation of integral characteristics of delayed neutrons, VANT, Seriya: Yad. Konst. 2 (1988) p. 3-12.
- [26] Benedetti G., Cesana A., Sangiust V., Terrani M. Delayed Neutron Yields from Fission of Uranium-233, Neptunium-237, Plutonium-238, -240, -241, and Americium-241, Nucl. Sci. Eng. 80 (1982) p. 379.
- [27] De Hoffmann F., Feld B.T., Phys. Rev. 72 (1947) p. 567.
- [28] Notea A., Research Laboratories Annual Report January-December 1968, LA-1190 (1969) Israel Atomic Energy Commission.
- [29] Cox S.A., Whiting E.E.D., Report ANL-7610 (1970) p. 45.
- [30] Conant J.F. and Palmedo P.F., Nucl. Sci. Eng. 44 (1971) p. 173.
- [31] Besant C.B., Challen P.J., et al., J. Br. Nucl. Energy Soc. 16 (1977) p. 161.
- [32] Girshfeld S.V., *The Study of Delayed Neutrons Emitted by ²³³U as a Result of Irradiation by Thermal Neutrons*. Proc. of 1st Int. Conf. on the Peaceful Uses of Atomic Energy, United Nations, NY, T.IV, P/648 (1955) p. 171.
- [33] Onega R.J., Rambo G.E., Huizinga M., Robeson A., *Delayed-Neutron Half-Lives for*²³³U, ²³⁵U, and ²³⁹Pu, Trans. Am. Nucl. Soc. **12** (1969) p. 289.
- [34] Benedetti G., Cesana A., Sangiust V., Terrani M. Delayed Neutron Yields from Fission of Uranium-233, Neptunium-237, Plutonium-238, -240, -241, and Americium-241. Nucl. Sci. Eng. 80 (1982) p. 379.
- [35] Rambo G.E., Delayed Neutron Groups from ^{235}U and ^{233}U and Short-Lived Delayed Photoneutrons Groups from ^{235}U and ^{233}U in D_2O , Dissertation, Virginia Polytechnic Institute, Blacksburg, USA (1969).
- [36] Cahn A., Dabbs J.W.T., Hughes D.J., *Delayed Neutrons from Fission of* ²³³U, Argonne Laboratory report CP-3147, Univ. of Chicago (October 1945).
- [37] Maksyutenko B.P., et al., Relative Yields of Delayed Neutrons in Fission of ²³⁸U, ²³⁵U and ²³²Th by Fast Neutrons, J. Exptl. Theoret. Phys. **35** (1958) p. 815.
- [38] Huizinga M., Short-Lived Delayed Neutron and Photoneutron Groups from Fission Fragments of ²³⁹Pu in Light and Heavy Water, Dissertation, Virginia Polytechnic Institute, Blacksburg, USA (1968).
- [39] Redman W.C., Saxon D., *Delayed Neutrons in Plutonium and Uranium Fission*, Phys. Rev. 72 (1947) p.570.

	Half-life,s									
$\langle E_n \rangle$, M \ni B	55.6	24.3	16.3	5.21	2.37	1.04	0.424	0.195		
	Group number									
	1	2	3	4	5	6	7	8		
$2.85 - 10^{-6}$	0.029	0.240	0.083	0.188	0.289	0.089	0.059	0.023	10.63	
2.03 - 10	± 0.001	± 0.008	± 0.004	± 0.007	± 0.010	± 0.004	± 0.003	± 0.001	± 0.22	
0.27 ± 0.06	0.028	0.236	0.078	0.182	0.284	0.097	0.071	0.024	10.37	
0.37 ± 0.00	± 0.001	± 0.008	± 0.003	± 0.007	± 0.010	± 0.005	± 0.004	± 0.001	± 0.21	
0.62 ± 0.06	0.030	0.231	0.083	0.184	0.294	0.088	0.068	0.022	10.46	
0.02 ± 0.00	± 0.001	± 0.008	± 0.004	± 0.007	± 0.010	± 0.004	± 0.003	± 0.001	± 0.22	
0.96 1 0.06	0.032	0.212	0.097	0.173	0.300	0.088	0.076	0.022	10.29	
0.80 ± 0.00	± 0.001	± 0.007	± 0.004	± 0.007	± 0.010	± 0.004	± 0.004	± 0.001	± 0.20	
1.06 ± 0.06	0.032	0.220	0.089	0.172	0.322	0.061	0.084	0.020	10.38	
1.00 ± 0.00	± 0.001	± 0.008	± 0.004	± 0.007	± 0.010	± 0.003	± 0.004	± 0.001	± 0.22	
2.27 ± 0.14	0.036	0.190	0.099	0.167	0.346	0.051	0.093	0.018	10.06	
3.27 ± 0.14	± 0.001	± 0.007	± 0.004	± 0.007	± 0.011	± 0.003	± 0.005	± 0.001	± 0.20	
2.91 ± 0.11	0.038	0.173	0.090	0.175	0.339	0.082	0.078	0.025	9.66	
5.81 ± 0.11	± 0.001	± 0.006	± 0.004	± 0.007	± 0.010	± 0.004	± 0.004	± 0.001	± 0.18	
4 27 ± 0.11	0.039	0.164	0.097	0.179	0.336	0.080	0.082	0.023	9.62	
4.27 ± 0.11	± 0.001	± 0.006	± 0.004	± 0.007	± 0.010	± 0.004	± 0.004	± 0.001	± 0.18	
4.91 + 0.12	0.042	0.154	0.102	0.172	0.348	0.078	0.083	0.021	9.61	
4.81 ± 0.15	± 0.002	± 0.006	± 0.004	± 0.007	± 0.011	± 0.004	± 0.004	± 0.001	± 0.20	
4.07 + 0.12	0.043	0.138	0.122	0.146	0.399	0.030	0.110	0.012	9.55	
4.97 ± 0.13	± 0.002	± 0.005	± 0.004	± 0.006	± 0.011	± 0.002	± 0.005	± 0.001	± 0.18	

TABLE I. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES AND PERIODS OF DELAYED NEUTRONS FROM FISSION OF ²³⁹PU IN 8-GROUPS MODEL PRESENTATION.

TABLE II. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES OF DELAYED NEUTRONS FROM FISSION OF ²³⁶U IN 8-GROUPS MODEL PRESENTATION.

				Hal	f-life, s				
$\langle E_n \rangle$, MeV	55.6	24.3	16.3	5.21	2.37	1.04	0.424	0.195	$\langle T \rangle = 0$
	Group number								
	1	2	3	4	5	6	7	8	
1.01 ± 0.10	0.0218	0.143	0.079	0.196	0.287	0.200	0.049	0.023	7.94
1.01 ± 0.10	± 0.0009	± 0.006	± 0.003	± 0.007	± 0.009	± 0.009	± 0.002	± 0.001	± 0.16
2.22 ± 0.15	0.0229	0.144	0.055	0.209	0.309	0.185	0.049	0.024	7.75
5.25 ± 0.15	± 0.0009	± 0.005	± 0.003	± 0.007	± 0.010	± 0.008	± 0.002	± 0.001	± 0.15
2.75 ± 0.14	0.0244	0.12872	0.075	0.201	0.291	0.215	0.042	0.023	7.72
5.75 ± 0.14	± 0.0009	± 0.005	± 0.003	± 0.007	± 0.009	± 0.009	± 0.002	± 0.001	± 0.15
4 20 + 0 17	0.0249	0.120	0.083	0.175	0.291	0.223	0.058	0.025	7.56
4.20 ± 0.17	± 0.0009	± 0.005	± 0.003	± 0.007	± 0.009	± 0.009	± 0.003	± 0.001	± 0.15
4.72 ± 0.21	0.0242	0.122	0.077	0.191	0.295	0.195	0.080	0.0173	7.50
	± 0.0009	± 0.005	± 0.003	± 0.007	± 0.009	± 0.009	± 0.004	± 0.0009	± 0.15

	Half-life, s									
$\langle E_n \rangle$, MeV	55.6	24.3	16.3	5.21	2.37	1.04	0.424	0.195		
	Group number									
	1	2	3	4	5	6	7	8		
2.85x10 ⁻⁶	0.078	0.164	0.150	0.209	0.287	0.046	0.048	0.0173	12.65	
	± 0.003	± 0.006	± 0.005	± 0.008	± 0.009	± 0.002	± 0.002	± 0.0009	± 0.23	
0.34 ± 0.07	0.078	0.169	0.135	0.224	0.296	0.0176	0.070	0.0101	12.62	
	± 0.003	± 0.006	± 0.005	± 0.008	± 0.009	± 0.0009	±0.003	± 0.0005	± 0.23	
0.59 ± 0.08	0.079	0.159	0.143	0.219	0.291	0.026	0.073	0.0092	12.52	
	± 0.003	± 0.006	± 0.005	± 0.008	± 0.009	± 0.001	± 0.004	± 0.0005	± 0.23	
0.01 + 0.00	0.081	0.159	0.139	0.214	0.293	0.034	0.071	0.0089	12.52	
0.81 ± 0.09	± 0.003	± 0.006	± 0.005	± 0.008	± 0.009	± 0.002	± 0.004	± 0.0005	± 0.23	
1.01 + 0.10	0.079	0.155	0.139	0.205	0.310	0.035	0.068	0.0088	12.37	
1.01 ± 0.10	± 0.003	± 0.006	± 0.005	± 0.007	± 0.009	± 0.002	± 0.003	± 0.0004	± 0.23	
2.22 ± 0.15	0.088	0.127	0.158	0.199	0.330	0.019	0.064	0.0104	12.48	
5.25 ± 0.15	± 0.003	± 0.005	± 0.005	± 0.007	± 0.010	± 0.001	± 0.003	± 0.0005	± 0.25	
2.75 ± 0.14	0.084	0.128	0.135	0.223	0.298	0.057	0.066	0.0085	11.98	
5.75 ± 0.14	± 0.003	± 0.005	± 0.005	± 0.008	± 0.009	± 0.003	± 0.003	± 0.0004	± 0.23	
4.00 + 0.17	0.093	0.085	0.188	0.196	0.357	0.0125	$0.05\pm$	0.0118	12.24	
4.20 ± 0.17	± 0.004	± 0.004	± 0.005	± 0.007	± 0.010	± 0.0006	0.003	± 0.0006	± 0.27	
472 + 0.21	0.090	0.122	0.149	0.202	0.356	0.0117	0.056	0.0116	12.39	
4.72 ± 0.21	± 0.004	± 0.005	± 0.005	± 0.008	± 0.010	± 0.0006	± 0.003	± 0.0006	± 0.25	

TABLE III. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES OF DELAYED NEUTRONS FROM FISSION OF ²³³U IN 8-GROUPS MODEL PRESENTATION.

F		Average	half-life,s							
$E_n,$ $M_{e}V$	1	2	3	4	5	6	7	8	8 group	6 group
IVIE V	55.6	24.5	16.3	5.21	2.37	1.04	0.424	0.195	8 group	0 group
3.2	0.029	0.078	0.081	0.121	0.406	0.133	0.115	0.036	6.65	6.66
±0.2	±0.001	±0.003	± 0.003	± 0.005	±0.010	± 0.006	± 0.005	±0.002	±0.12	±0.12
3.8	0.029	0.713	0.095	0.136	0.394	0.142	0.099	0.033	6.77	6.78
± 0.1	±0.001	±0.003	±0.003	±0.006	±0.010	± 0.007	±0.005	±0.001	±0.12	±0.06
4.2 ±0.2	0.027 ±0.001	0.079 ±0.003	0.085 ±0.003	0.148 ±0.006	0.382 ±0.010	0.150 ±0.007	0.097 ±0.004	0.032 ±0.001	6.72 ±0.12	6.73 ±0.06
4.5 ±0.2	0.028 ±0.001	0.073 ±0.003	0.087 ±0.003	0.123 ±0.005	0.390 ±0.010	0.177 ±0.008	0.090 ±0.004	0.031 ±0.001	6.58 ±0.12	6.57 ±0.08
4.7 ±0.2	0.029 ±0.001	0.073 ±0.003	0.089 ±0.003	0.128 ±0.005	0.384 ±0.010	0.178 ±0.008	0.087 ±0.004	0.031 ±0.001	6.64 ±0.12	6.63 ±0.07
4.9 ±0.2	0.029 ±0.001	0.068 ±0.003	0.098 ±0.003	0.118 ±0.005	0.404 ±0.010	0.161 ±0.007	0.089 ±0.004	0.033 ±0.001	6.66 ±0.12	6.65 ±0.11

TABLE IV. THE ENERGY DEPENDENCE OF RELATIVE ABUNDANCES OF DELAYED NEUTRONS FROM FISSION OF ²³² TH IN 8-GROUPS MODEL PRESENTATION.

Nuclear Data Section International Atomic Energy Agency Vienna International Centre, P.O. Box 100 A-1400 Vienna, Austria E-mail: nds.contact-point@iaea.org Fax: (43-1) 26007 Telephone: (43-1) 2600 21725 Web: http://www-nds.iaea.org