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Abstract: The authors have undertaken an investigation of techniques for evaluating prompt 
fission-neutron spectra (PFNS) and their covariances that began during a visit by two of them 
(Smith and Neudecker) to the IAEA-NDS, Vienna, Austria, in July 2013. This collaboration 
has continued to the present time, with on-going evolution in our understanding of various 
technical issues associated with PFNS data evaluation. This paper does not attempt to provide 
a comprehensive review of other recent studies in this field, including those having to do with 
neutron spectrum evaluation methods or with evaluations for specific actinides such as 235U, 
239Pu, or 252Cf. This investigation has focused on several aspects of the evaluation of PFNS 
shape data and corresponding covariances directly in PFNS space, with an emphasis on the 
issue of PFNS data scaling. Considerable attention has been given in the present work to 
examining techniques for preparing diverse normalized and non-normalized data from 
nuclear modeling and experiments, as required for their combined inclusion by either simple 
linear least-squares (SLS) or generalized linear least-squares (GLS) evaluation procedures. 
Technical issues associated with normalizing non-normalized PFNS evaluated spectrum 
shapes and corresponding covariances to satisfy constraints on spectral shapes as well as their 
covariance matrices that are dictated by normalization have been examined in this 
investigation. Methods for computing PFNS average neutron energy and its uncertainty from 
evaluated PFNS shape data and corresponding covariances are also discussed in this paper. 
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1. Introduction 
 

Nuclear data evaluation is a pragmatic undertaking that is guided by three basic 
considerations: 1) what is sought by the evaluation, i.e., the physical quantities to be 
evaluated; 2) the nature and availability of data to be used in the evaluation (both 
experimental and model-calculated); and 3) the chosen evaluation methodology. Nuclear data 
evaluation is as much art as science so there is no unique way of approaching this task. 
Various potential methods present both opportunities and disadvantages. Simplifying 
assumptions and approximations are generally involved. Evaluations are always hampered by 
shortcomings in the scope and accuracy of available experimental data as well as by 
limitations of the nuclear modeling algorithms used to supplement the experimental results. 
Furthermore, the outcomes from various evaluation schemes that utilize the same input data 
inevitably differ quantitatively to some extent. Nevertheless, some confidence in these 
evaluations can be gained if differences in the outcomes due solely to different choices of 
evaluation methodologies are comparable to or less than the uncertainties in the underlying 
data that are being evaluated.  

 
The evaluation of neutron-emission spectra from 252Cf spontaneous fission, or of the 

prompt neutrons from neutron-induced fission of actinides such as 235U, 239Pu, etc. (PFNS), 
entails technical aspects that in some respects resemble the evaluation of neutron cross-
section data. However, there are significant differences that result in the evaluation of PFNS 
data being a somewhat more arbitrary undertaking in many instances. Cross-section data used 
in evaluations are assumed to be properly normalized, with various data sets then treated as 
comparable in the evaluation process. However, in contemporary evaluated nuclear data 
libraries, such as ENDF/B, quantitative specification of neutrons emitted by fissionable 
actinide nuclei is split into two multiplicative components: total neutron yield and a 
normalize energy distribution “shape” function [1]. They are assumed to be independent. 

 
The shapes of neutron-emission spectra as a function of neutron energy are given in 

nuclear data libraries in tabular form, with iteration schemes specified such that the numerical 
spectrum representation, when it is integrated with respect to neutron energy, yields unity. 
Furthermore, all rows and columns of the corresponding covariance matrix should sum to 
zero [1]. Actually, the ENDF-6 format does make an allowance for limitations of numerical 
precision, e.g., it requires that the covariance-matrix row and column sums must not exceed 
10-5 [1].  In this paper, when we specify that a PFNS is “normalized”, it is meant that the 
above stated conditions apply to both the spectrum representation and its covariance matrix. 
We shall see that there is an important distinction between “normalized” spectra and “scaled 
spectra”. 

 
The average total number of prompt neutrons emitted at all energies by fissionable 

actinide nuclei is referred to as prompt nu-bar, or often just nu-bar, although technically that 
is not exactly correct as is indicated in the discussion below. Nu-bar can be measured quite 
accurately with 4-pi detectors without regard to the emitted-neutron energies. Therefore, nu-
bar uncertainties in the corresponding evaluated values, at least for the major actinides, tend 
to be quite small in comparison with those for the PFNS shapes. As mentioned above, 
evaluated values of nu-bar, along with their uncertainties, are specified in data libraries 
separately from shape information [1]. 

 
The total number of neutrons, i.e., nu-bar, is multiplied times the PFNS shape to 

provide a representation of the effective evaluated neutron yield for application purposes. The 
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uncertainties from these two components are also combined. Accurate knowledge of nu-bar is 
essential in calculating important integral quantities for multiplicative physical systems such 
as fission reactors (e.g., keff), since the total number of neutrons present in any multiplicative 
system at a particular instant is directly related to nu-bar. 

 
Delayed neutrons are also emitted following fission from the decay, by neutron 

emission, of highly excited fission-product nuclei. Delayed nu-bar refers to these neutrons, 
and its value is always very small compared to prompt nu-bar [2,3]. The spectrum of emitted 
delayed neutrons for a fissionable actinide nucleus depends on isotopic yields and details of 
the nuclear structure of the various radioactive fission-product isotopes that emit these 
neutrons. Consequently, the delayed-neutron energy-spectrum shapes differ greatly from 
those for prompt fission neutrons. Total nu-bar is the sum of prompt nu-bar and delayed nu-
bar. Delayed nu-bar is also provided for several actinides in evaluated data libraries [1] since 
delayed neutrons play a very important role in controlling nuclear reactors [4]. However, for 
present purposes we shall be concerned only with prompt-neutron spectra, i.e., with PFNS, 
since these neutrons dominate the neutron spectra encountered in most applications.  

 
The spectral shapes of the PFNS neutrons can have a significant effect on the 

reactivity for certain critical assemblies. In general, the softer the spectrum (lower average 
energy) the greater the reactivity in thermal assemblies [5,6]. Knowledge of the fission-
neutron energy-spectrum shape is also essential for interpreting spectrum-average neutron-
dosimetry data. For this purpose, the neutron spectrum shape is folded with the differential 
cross-section data for these reaction processes [7]. In both applications it is also required to 
know the corresponding uncertainties. 

 
Prompt fission-neutron spectral shapes as a function of emitted-neutron energy are 

rather difficult to measure [8,9,10]. The yields of neutrons at high energies are very low (e.g., 
by several orders of magnitude) compared to the yields near the spectral maxima, which 
typically occur around 0.7 to 0.8 MeV depending on the fissionable isotope. At low energies, 
secondary neutrons from scattering interfere with measuring the direct fission neutrons. 
Furthermore, calibration of neutron detectors is quite challenging. It must be possible 
experimentally to span a broad range of detectable energies from as low as a few tens of keV 
to as high as 12 MeV, above which the yields are generally too low to measure by 
contemporary means. Techniques for performing these difficult measurements have been 
described in the literature [8,9,10]. PFNS for various actinides are often measured as ratios to 
the well-known spectrum of spontaneous-fission neutrons from 252Cf in order to avoid having 
to calibrate the detector efficiencies directly, and to minimize the uncertainties and applied 
corrections (e.g., multiple scattering). The difficulties associated with these experiments 
result in relatively large uncertainties at the low- and high-energy regions of the measured 
spectra. Statistical uncertainties clearly dominate at the high energies while systematic 
uncertainties play an important role at low energies. Experimental results generally need to be 
supplemented by calculated values based on nuclear theory since evaluated data libraries 
require that numerical values be provided from zero to 20 MeV. Theoretical work on the 
nuclear fission process has a long history (e.g., [11,12]), and the quest to develop reliable 
quantitative characterizations of PFNS, based on a more sophisticated understanding of the 
physics of fission, continues to be an active area of both theoretical and experimental nuclear 
research and development [13,14,15,16,17].  

 
There are two conceptually distinct approaches to evaluating PFNS data, as described 

in the following two paragraphs. 
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The first approach to evaluating PFNS data involves adjusting the parameters of a 

nuclear model of PFNS by least-squares to yield the best possible agreement of the calculated 
results with available experimental data. The adjusted model parameters and their 
uncertainties are then used exclusively to derive evaluated PFNS values over the entire 
energy range of the evaluation, along with their uncertainties. PFNS results can be generated 
in this manner from zero up to 20 MeV on as fine an energy mesh as desired. Therefore, it is 
a very convenient approach. Another advantage provided by the exclusive use of models in 
PFNS evaluations is that they offer the desired “smoothness” in the calculated shapes and 
corresponding covariances as a function of energy. This feature is generally lacking in 
experimentally derived evaluated results. Reliance on model calculations to generate PFNS, 
when the model parameters are adjusted to “fit” experimental data, can be justified in 
situations where the model used is known, based on extensive experience, to be capable of 
providing an adequate representation of the physical processes involved. However, there are 
two significant sources of uncertainty to consider regarding such model-calculated PFNS 
values. One source of uncertainty stems from the fact that knowledge of the parameters in 
these models is uncertain [18,19]. This source of uncertainty can be addressed through the 
least-squares adjustment process described above or through straightforward deterministic or 
Monte Carlo uncertainty propagation techniques [20]. The second source of uncertainty in 
model-calculated PFNS results is attributable to the perceived inability of the nuclear models 
to reproduce the “true” spectral shapes, i.e., the so-called “model-defects” uncertainty 
[21,22]. Discrepancies between the models and “reality” are mainly traceable to imperfect 
understanding of the underlying physics. Model-defect uncertainties are difficult to quantify 
since differences between the results from a utilized model and the “true” spectrum 
representation cannot be ascertained. In short, there is no way of knowing the “true” values. 
However, some practical attempts have been made recently to quantify these modeling 
defects in an approximate way by performing selected comparisons between model-predicted 
and independent good-quality experimental results [21,22,23,24]. Also, effort is being 
devoted to eliminating some inherent deficiencies in contemporary modeling of PFNS spectra 
by acquiring a better understanding of the underlying physics of the nuclear fission process, 
as mentioned above.  

 
The second conceptual approach to evaluating PFNS data involves weighted 

averaging of model and experimental data in such a way that an evaluated representation of 
the spectrum is produced that presumably incorporates information from both sources in a 
reasonable manner, thereby achieving coverage of the whole energy range of emitted 
neutrons, including regions where no experimental data exist. In this hybrid approach, greater 
weight is given to the experimental information in energy regions where they are plentiful, 
accurate, and consistent. In energy regions where the data are sparse or lacking, the 
evaluations must rely primarily on nuclear modeling. This hybrid evaluation approach usually 
leads to structure in the evaluated spectral results as a function of neutron energy. Such 
“spurious” structure is usually considered to be non-physical, and it is generally viewed as a 
consequence of statistical effects rather than physical ones. Numerical PFNS evaluated 
results obtained this way are frequently smoothed artificially to produce continuous 
representations of the spectra that are devoid of significant structure at all energies where the 
neutron yield is significant. This process of smoothing would appear to be motivated solely 
by a desire to cosmetically eliminate what evaluators consider to be inconsequential artifacts 
of the evaluation process. However, it can also serve the practical goal of making it possible 
to more conveniently represent the evaluated data in a tabular form, along with a prescribed 
interpolation procedure, that is amenable to inclusion in an evaluated data library. 
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Both of these evaluation concepts generally entail applications of linear least-squares 
methods, either simple least-squares (SLS) or generalized least-squares (GLS) algorithms, to 
generated evaluated central values as well as covariance matrices that specify their 
uncertainties and correlations. Least-squares procedures are approximate by nature since they 
involve linearization of physical quantities whose values as a function of energy (or various 
other parameters) can be rather non-linear. Fortunately, evaluators are able in most practical 
situations to rely on the linear approximation, with benefits that accrue from simplification, to 
yield results of sufficient accuracy. However, there are instances when they do need to be 
concerned about non-linear effects, especially when dealing with highly discrepant data and 
large uncertainties. 

 
For evaluation purposes, it is important to understand clearly the distinction between 

“normalized” PFNS data, as described earlier in this section, and merely “scaled” PFNS data. 
There are no inherent numerical differences between a PFNS spectrum shape that is 
normalized to unity and one that is scaled to unity. The distinction between “normalized” and 
“scaled” PFNS appears ONLY in the distinct properties of their corresponding covariance 
matrices. For normalized PFNS the rows and columns of the covariance matrix must sum to 
zero. This need not be the case for scaled PFNS covariance matrices. In subsequent sections 
of this paper the origins of this distinction are discussed in more specific terms. The question 
naturally arises as to whether normalized and scaled PFNS can be “mixed” in a least-squares 
evaluation procedure. As a general rule, it appears to be preferable that evaluations be 
performed either with only scaled PFNS (and their covariance matrices), but not necessarily 
scaled to unity, with the normalization condition then imposed a posteriori on the solution, or 
with only normalized PFNS data (and their corresponding normalized covariance matrices), 
rather than with mixtures of these two categories of spectral data. This supposition is based 
on the philosophical notion that, when possible, it is preferable to work with quantities having 
similar properties rather than those with mixed properties. However, for reasons that are 
discussed at some length in this paper, it is usually not possible to perform an evaluation with 
only normalized or only non-normalized, but scaled, PFNS, since experimental PFNS are 
difficult to normalize while most model-calculated PFNS are inherently normalized. 
Nevertheless, it has been suggested that if the shape uncertainties of the model-calculated 
PFNS are larger than those of the experimental PFNS data, then reasonable evaluated results 
should still be obtainable regardless of whether both normalized and merely scaled data are 
utilized in the evaluation process, i.e., if “mixtures” are involved [5,25]. This is especially 
true in practice if the linear approximation is deemed to be adequate. This point is explored 
briefly in this paper through an example given in Appendix B. Thorough investigation of this 
point is needed at some point, but this is beyond the scope of the present work. However, it is 
certainly true that model-calculated PFNS with limited numbers of parameters tend to be 
“stiff”, i.e., to have strong uncertainty correlations, resulting in a tendency toward low shape 
uncertainties for normalized model PFNS. Thus, the conditions for use of “mixed” PFNS data 
in evaluations involving models should be verified in each case.  

 
 This paper is structured as follows: First, the steps needed to prepare the available 

PFNS data (including model-calculated results), so that they can be used properly in a least-
squares evaluation procedure, are discussed. An important part of this process involves 
scaling the various data sets so that they can be treated as “comparable” in an evaluation. It 
will be seen that there is no unique procedure for scaling PFNS shape data. Eleven options 
that have been considered in the course of this investigation are described in Appendix A. 
Next, the least-squares algorithms that are widely used in PFNS evaluations are described. 
The mathematical procedure for normalizing a non-normalized evaluated PFNS and its 
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covariance matrix is described, as well as the procedure for calculating PFNS average 
energies and their uncertainties from the evaluated PFNS results. Numerical comparisons of 
evaluated results obtained using the same hypothetical input data collection but various data 
scaling and least-squares data evaluation options are discussed in Appendix B. Appendix C 
contains tables that summarize the results from the exercises presented in Appendix B. 

 
 
2. Preparation of PFNS Data 
 

As indicated in Section 1, data used in PFNS evaluations are generally acquired from 
both nuclear modeling and experiments. Before an evaluation can be performed it is 
necessary to prepare this information in a manner that is compatible with SLS or GLS 
evaluation procedures that are used for this purpose. The work described here involves two 
aspects of data preparation: spectrum energy grouping and spectrum scaling. The following 
sections discuss these procedures. It is quite common in realistic evaluations to represent 
PFNS data as ratios of actual neutron yield values to Maxwellian functions with average 
energies comparable to those expected for the particular data types being evaluated. The 
purpose for this mathematical approach is to reduce the dynamic range of numbers being 
manipulated, since actual PFNS values extend over several orders of magnitude as the 
neutron energy ranges from a few tens of keV upward to 20 MeV. Another common 
approach to avoid issues due to the large dynamic range of values is to transform the 
evaluation input observables into logarithmic space, perform the evaluation there, and then 
transform the evaluated output back to linear PFNS space. Neither of these two approaches 
has been incorporated in the present investigation. The procedures and numerical analyses 
discussed in this paper operate only with direct PFNS values. 

 
2.A. Energy Grouping 
 
There are two methods of representing evaluated data for continuous PFNS as a 

function of emitted neutron energy. One is the point method; the second is the group method. 
In the point method evaluated PFNS values are provided at certain discrete energies and an 
interpolation scheme is specified for calculating values at intermediate energies. In the group 
method, contiguous energy intervals are defined and average PFNS values are determined for 
each energy interval. Group values are then defined as average PFNS values multiplied times 
the energy-interval widths. Therefore, an integral of the PFNS over energy can be represented 
as a discrete sum of group values over the entire range of the spectrum. While values of 
PFNS can be expressed either way, corresponding covariance data are always expressed in a 
way that is directly consistent with the energy-group approach. Therefore, it has been chosen 
in the present work to approach the evaluation of PFNS entirely from a group-structure 
perspective. 

 
The concepts mentioned in the preceding paragraphs can be expressed in 

mathematical terms. For this purpose non-normalized group values Ωi (i = 1,m) for an 
evaluated PFNS that is characterized by the continuous function Ω(E) are defined for the ith 
group as Ωi = ∫(ELi,EHi) Ω(E) dE, where ∫(Eli,EHi) signifies integration of the continuous function 
Ω(E) over the energy interval (ELi,EHi). It is also possible to write Ωi = <Ω(E)>i ∆Ei , where 
<Ω(E)>i is the average value of Ω(E) over the indicated energy interval. The group flux Ωi 
corresponds to the non-normalized neutron flux encountered with energies between the limits 
specified by the ith energy interval of width ∆Ei. If the energy group structure is sufficiently 
fine (i.e., the total number of groups m is relatively large) so that the histogram defined by the 
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indicated energy intervals and average values <Ω(E)>i provides an adequate representation of 
the continuous point energy spectrum, then it may be the case that  <Ω(E)>i ≈ Ω(<E>i) ≈ 
Ω[½(ELi + EHi)]. Exact equality is appropriate if Ω is a linear function of E in the ith interval. 
In reality this is rarely the case, but this approximation can be quite adequate in many 
practical situations for sufficiently fine group structures. Only at the higher energies, where 
the neutron yield decreases steeply with increasing energy by orders of magnitude relative to 
the maximum yield in the vicinity of 0.7 to 0.8 MeV, can this assumption be called into 
question. This was first pointed out by Madland and Nix [11]. Nevertheless, in the following 
discussion it is assumed that the average energy <Ei> for the ith group is taken as equal to the 
group midpoint energy. 

 
In the present approach, the individual data sets provided for an evaluation, including 

the one based on model calculations, should be prepared in such a way that they conform to a 
common energy-group structure. This must be carried out in a way that avoids excessively 
distorting the information provided by the experimenters and theoretical modelers. Only then 
can data from these different sources be treated as comparable, even when they span different 
energy ranges, fail to cover particular energy groups, or lack initial consistency in scaling (as 
discussed below). This preparatory step requires effort on the part of the evaluator and it is 
inevitable that some approximations will need to be made. This is familiar to cross-section 
evaluators [24], so the procedures are not discussed further here. 
 

It is not required that each experimental PFNS data set to be included in the 
evaluation process spans the entire energy range of the spectrum and yields values for every 
energy group. In fact, this will rarely if ever be the case for reasons mentioned above. 
However, it is essential that at least one PFNS data set used in the evaluation process – either 
from experiment or model - does span the entire neutron energy range, or that the data sets 
considered partially overlap and their union spans the whole range. Of course, a data set 
based on modeling can always be generated to span the whole energy range. Inclusion of 
model-calculated data in the evaluation process therefore insures that an evaluation can be 
generated that provides sufficient data coverage of the fission-neutron spectrum so that the 
requisite normalization constraint of the final evaluation can be performed and numerical 
values provided for the full energy range, as required for evaluated nuclear data libraries such 
as ENDF/B [1]. This is especially important in the evaluation of PFNS for scenarios where 
experimental data are very sparse, e.g., for spectra resulting from fission by neutrons with 
incident energies above the second chance fission threshold. In the absence of a specific 
theoretical model of PFNS, another possibility for fulfilling this requirement would be to 
introduce ad hoc extrapolated or interpolated values (augmentation) that are consistent with 
trends suggested by integral experimental data, for those regions that lack direct experimental 
PFNS data [5]. The uncertainties in those regions will then be determined by the uncertainties 
associated with the augmented data. However, one should be aware that if this approach is 
taken it may compromise the possibility of eventually using the evaluated spectra for integral 
data testing unless care is taken to utilize only a subset of all the available integral data for 
this purpose. Then, it will be legitimate to use the resulting evaluation to validate the 
remainder of the available integral data. An alternative method in such situations would be to 
augment the existing data with values that are consistent with general trends in the shape of 
PFNS based on broad theoretical considerations [6,18]. 
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2.B. Scaling 
 
The next issue to consider is the scaling of individual PFNS data sets that have been 

expressed on a common energy-group structure. Scaling, i.e., multiplying the data sets by 
constants, will not alter the shape of the individual input sets. This is important since the goal 
of a PFNS evaluation is to obtain reliable shape information based on the available data. 
Scaling should not distort this information. 

 
Since GLS is widely used for data evaluation, for convenience the present discussion 

of scaling is first framed primarily in this context. Extension of the basic concepts to 
situations where SLS can be used is fairly straightforward. Assume that there exist K+1 
PFNS data sets, with one of them originating from nuclear modeling, as discussed in the 
preceding paragraph. This model data set provides values for each of the m defined energy 
groups mentioned in Section 2.A, so it serves as a convenient prior for the GLS evaluation 
procedure. 

 
In giving consideration to the selection of an appropriate prior when employing a 

GLS procedure for an evaluation, it is proper for an evaluator to explore the impact of the 
assumed correlations associated with a model-based prior. For example, it could be decided 
to either include or exclude the off-diagonal correlations, or to arbitrarily soften them to some 
extent. Such trials might not necessarily be related to physics considerations but rather they 
might be based on certain assumptions or previous knowledge that the evaluator is willing to 
invoke for pragmatic reasons. Some options to consider might be: i) to use model uncertainty 
values without any correlations in the region where experimental data are present; ii) to use 
the actual calculated model-parameter based covariances as input to the evaluation 
everywhere; or iii) to soften the often “stiff” model covariances associated with the second 
approach to somewhat “softer” (lesser in magnitude) values over certain regions of the 
spectrum, but not to set them to zero. Differences seen in the GLS evaluated results obtained 
from exploring these three approaches could be very relevant to the eventual outcome of the 
evaluation process [25]. For example, it might be concluded by the evaluator that using the 
actual PFNS covariances propagated from model-parameter uncertainties “contaminates” the 
evaluation process excessively because of their excessive stiffness, i.e., that these correlations 
are more detrimental than helpful to the evaluation process. In any event, by examining 
limiting cases such as the three just mentioned, an evaluator can gain a better understanding 
of the impact of the assumptions associated with the utilized priors. As for justifying the 
consideration of such an approach to evaluating PFNS, an evaluator should gain some 
comfort in knowing that it is consistent with the Bayesian concept of utilizing priors that the 
evaluator believes reflect “rational degrees of expectation” as to what is actually known about 
the situation in advance of considering new objective information (e.g., data from 
experiments).  

 
In this paper, vectors and matrices generally are shown in bold font while scalar 

quantities are indicated in normal (non-bold) font. Group-spectrum prior values are denoted 
by the vector Φ0. There are m non-zero elements of Φ0 corresponding to the m contiguous 
energy groups that span the complete range of non-negligible values for the evaluated PFNS 
spectrum. The m x m covariance matrix for Φ0 is denoted by VΦ0. The vector Φ0 is assumed 
for present purposes to be non-normalized, including its covariance matrix, so a 
multiplicative scalar factor c0 may need to be assigned that serves for scaling purposes in the 
evaluation procedure. The value of c0 is to be determined as part of the data preparation 
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procedure and it will depend on the scaling approach utilized by the evaluator (see Appendix 
A). 

 
Furthermore, it is assumed that there are K remaining non-normalized data sets to be 

used in the evaluation, and that all of them are based on independent experiments. These data 
sets are denoted by Φk (k = 1,K) and their covariance matrices are identified by VΦk. Actually 
these data sets need not be entirely independent, but assuming so simplifies the discussions 
here and in Appendices A and B considerably without invalidating the basic evaluation 
methods. In realistic situations there may be uncertainties in these data sets that are correlated 
between the various sets, e.g., in the case of the experimental PFNS if their detector 
calibrations are based on a common characterization of the 252Cf spontaneous-fission neutron 
spectrum. 

 
For present purposes, it is assumed that the kth data set (k ≥ 1) has nk elements and the 

corresponding covariance matrix has dimension nk x nk. The dimensions of these vectors will 
vary from one data set to another, but nk < m in each instance since in realistic situations none 
of the experimental data sets are likely to provide values for every energy group involved in 
representing the PFNS. The scaling factors for these spectra are denoted by ck (k = 1,K). It is 
important to recognize that only the relative values of the scaling factors matter for the 
evaluation of these non-normalized data, since the evaluated solution will ultimately be 
normalized. Eleven procedures that have been examined in the present work for determining 
these scaling factors are described in Appendix A. They are compared through hypothetical 
numerical examples presented in the Appendix B. 

 
At first thought it would seem reasonable to consider uncertainties associated with 

determining the scaling parameters ck when evaluating PFNS data. However, a recent 
investigation of this issue revealed that uncertainties from this origin are eliminated 
completely when a non-normalized evaluated PFNS and its associated covariance matrix are 
ultimately normalized [25]. However, some uncertainty in the spectrum shapes might arise 
from variations in the methods of determining the scaling factors. This point is explored in 
the present investigation. 

 
After the scaling parameters ck (k = 0,K) have been determined, it is possible to define 

a new collection of non-normalized vectors zk with corresponding covariance matrices Vzk to 
characterize the scaled PFNS data sets that are to be employed in executing an actual GLS 
evaluation. Thus: 
 

zk = ck Φk (k = 0,K),                                                         (1) 
 

Vzk = ck
2 VΦk (k = 0,K).                                                      (2) 

 
In this formalism z0 and Vz0 play the role of prior information for the GLS procedure whereas 
the zk and Vzk (k = 1,K) represent new information which, in this case, corresponds to the 
available collection of experimental data. The outcome from applying the GLS procedure is a 
posterior solution PFNS that is used to generate the desired evaluation after it is normalized. 
 
 Although the preceding discussion focuses on scaling in the framework of the 
generalized least-squares (GLS) procedure, a similar approach to scaling applies in PFNS 
evaluations that utilize simple least-squares (SLS) procedures. The main difference is that in 
SLS one does not designate a particular spectrum to be a prior but rather treats all the PFNS 
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on an equal basis. Then, it is appropriate to drop the notation “k = 0” that suggests special 
treatment for a particular spectrum. Eqns. (1) and (2) still apply for SLS, but only for k = 1,K. 
Nevertheless, in SLS one generally designates a particular spectrum from the collection to 
serve as the anchor shape for scaling purposes, and then scales the other PFNS to it. It is 
convenient to designate Φ1 as this anchor shape and set c1 = 1. The scaling exercise required 
prior to performing the evaluation by SLS therefore involves determining the various 
additional ck (k = 2,K). 
 
 
3. PFNS Evaluation 
 
 There are two approximate mathematical approaches to evaluating data (both model-
calculated and experimental) that are assumed to be normally distributed. As mentioned 
above, these are the linear simple least-squares (SLS) and linear generalized least-squares 
(GLS) procedures. They are approximate in the sense that the mathematical process is taken 
to be linear where in reality relationships between various parameters that describe physical 
processes need not always be linear. The extent to which actual data are indeed normally 
distributed is another matter. Nevertheless, the mathematical procedures associated with SLS 
and GLS are widely applied in data evaluation. 
 

We begin the discussion with the GLS procedure for evaluating a PFNS. It is 
embodied completely in the following set of matrix equations [26,27]: 
 

Ω = z0 + Vz0 A
+ (Q + Vy)

-1 (y – y0),                                         (3) 
 

Q = A Vz0 A
+,                                                           (4) 

 
VΩ = Vz0 – Vz0 A

+ (Q + Vy)
-1 A Vz0,                                          (5) 

 
χ2 = (y – y0)

+ (Q + Vy)
-1 (y – y0).                                           (6) 

 
Some explanation is required to understand the roles of the quantities appearing in Eqns. (3) – 
(6). 
 

In Eqn. (3), Ω represents the solution of the GLS procedure; i.e., it is the evaluated 
non-normalized PFNS. It has dimension m, which is the same as the prior scaled PFNS 
representation z0, since the group representation for the evaluated PFNS must span the entire 
energy range of the spectrum. Both Ω and the prior z0 correspond to the same energy-group 
representation. The solution covariance matrix generated by this procedure is denoted in Eqn. 
(5) by VΩ. It has dimension m x m, which clearly is the same as the dimension of the prior 
covariance matrix Vz0. The vector y that appears in Eqns. (3) and (6) represents the entire 
collection of non-normalized but appropriately scaled experimental data, i.e., y is a vector 
that consists of K sub-vectors z1, z2, … , zk, … , zK organized in column form in the order 
indicated. The dimension of y is n, where n = Σk=1,K nk. The covariance matrix Vy in Eqns. 
(3), (5), and (6) has dimension n x n, and it is constructed from the covariance matrices Vzk (k 
= 1,K) as shown in Table 1. Note that “n” also represents the degrees of freedom (d.o.f.) of 
the GLS problem in that it corresponds to the number of experimental data points (sources of 
new information) that are introduced in order to update the prior information [27]. 
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Table 1: The structure of the experimental data covariance matrix Vy is shown here. The 
matrix is symmetric so the upper half values of Vy are not exhibited explicitly. Off-diagonal 
blocks of zero sub-matrices reflect the fact that it has been assumed for present purposes that 
the K distinct PFNS data sets are uncorrelated with each other. Of course it is also assumed 
that these experimental data sets are uncorrelated with the prior PFNS representation that is 

based on nuclear modeling. 
 

Vz1 
        

  

0 Vz2 
       

  

0 0 . 

      
  

0 0 0 . 

     
  

0 0 0 0 . 

    
  

0 0 0 0 0 Vzk 
   

  

0 0 0 0 0 0 . 

  
  

0 0 0 0 0 0 0 . 

 
  

0 0 0 0 0 0 0 0 .   

0 0 0 0 0 0 0 0 0 VzK 
 
 The vector y0 is the calculated equivalent of the experimental vector y that is derived 
from the prior values of the adjustable parameters, i.e., the elements of z0. Vector y0 has 
dimension n as does y, and their comparable elements have the same physical units. In the 
GLS procedure the elements of y and y0 should not differ by very much in magnitude since 
they represent corresponding measured values and quantities calculated from best-estimate 
values for the prior parameter values z0 using the model that relates the observable quantities 
to the adjustable parameters. Thus, y ≈ y0 = f(z0). A is an n x m linear sensitivity matrix 
whose values depend on specified functional relationships, denoted by f, between y0 and z0. 
The elements of A are aνi (ν = 1,n; i =1,m), and they are derived from the formula aνi = 
∂fν(z0)/∂z0i. Since in this exercise the adjustable parameters denoted by z are mathematically 
comparable to the physical quantities y, the matrix A consists entirely of partial derivatives 
whose values are either 0 or 1. These 0’s and 1’s are strategically situated in the matrix A to 
insure compatibility of the measured data and the computed equivalent values that are based 
on the prior parameter values [27]. It is stressed that while the details discussed in this 
paragraph are not very difficult to conceptualize, the bookkeeping effort required to insure 
that y, y0, and A are properly structured for compatibility can be quite tedious for the large 
data sets often encountered in realistic PFNS evaluations. 
 
 Q is a covariance matrix that provides the uncertainty and correlation information for 
y0 based on propagating uncertainties from the prior covariance matrix Vz0. Its inclusion 
insures that the GLS evaluation procedure considers the uncertainties in the model-calculated 
PFNS spectrum as well as those from the experimental components. The symbols “+” and “-

1” that appear as superscripts in Eqns. (3) – (6) signify matrix transposition and matrix 
inversion, respectively [27]. 
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The quantity χ2 is a chi-square parameter associated with the GLS algorithm. It 
provides a consistency test of the input information, taking into consideration the 
uncertainties of the model-calculated prior PFNS as well as of the experimental values. As is 
evident from Eqn. (6), χ2 can be calculated prior to executing the GLS procedure. Actually, it 
is the chi-square per degree of freedom (or chi-square per d.o.f.) that is of interest, i.e., χ2/n, 
since, as mentioned above, “n” represents the degrees of freedom of the mathematical 
problem as well as the number of experimental data values [27]. If the PFNS data used in the 
evaluation are consistent, in the context of the specified uncertainties, then χ2/n ≈ 1. If χ2/n << 
1, these data are most likely unrealistically consistent. This suggests that the assigned 
uncertainties may be too large. The PFNS data are considered to be inconsistent if χ2/n >> 1. 
There are several possible sources of inconsistency. One source might be inadequate scaling 
of the data prior to executing the GLS procedure. Another source could be that the specified 
uncertainties in the PFNS data are too small when compared to actual scatter of the data. 
Finally, significant shape inconsistencies for the assembled PFNS data that cannot be purged 
by scaling can lead to large values of χ2/n. Whenever values of χ2/n that are significantly 
greater than unity are encountered, an investigation as to the source of the problem needs to 
be undertaken. A PFNS evaluation should not be accepted for inclusion in an evaluated data 
library until the problem is resolved or a compromise reached. 

 
A final comment here concerns the use of model-calculated PFNS in a GLS 

evaluation procedure. As alluded to earlier in this paper, there are unique features of model-
calculated data covariance matrices when compared to results from experiments. In 
particular, the correlations for model-generated data covariances tend to be stronger (stiffer) 
than those corresponding to comparable experimental data. This can be problematic for two 
reasons. First, too-strong model correlations can lead to low evaluated uncertainties. Second, 
they can restrain the evaluated mean values such that they cannot reproduce reasonable 
experimental data. 
 
 The simple least-squares (SLS) approach to evaluating PFNS can be applied when the 
spectra to be considered can be treated on more or less equal footing, e.g., when all the 
spectra originate from experiments and they collectively span the entire energy range of the 
PFNS without having to resort to the use of a model-based prior. Such non-model evaluations 
would be appropriate if there are extensive, comprehensive data as, e.g., in the case of 252Cf 
spontaneous fission PFNS. The equations used in SLS evaluations are as follows: 
 

Ω = VΩ A
+ Vy

-1 y,                                                        (7) 
 

VΩ = (A+ Vy
-1 A)-1,                                                      (8) 

 
χ2 = (y – A Ω)+ Vy

-1 (y – A Ω).                                             (9) 
 

The symbols appearing in the SLS formalism, as embodied in Eqns. (7) – (9), have 
the same significance as they do in the preceding discussion for the GLS formalism. Vector y 
is the union vector of all the zk (k = 1,K) and Vy is the corresponding covariance matrix 
constructed from the component matrices Vzk. A is the design matrix that relates the elements 
of y to the appropriate PFNS groups. In SLS, the chi-square per d.o.f. is given by χ2 /(n – m), 
where m represents the number of grid intervals used in representing the PFNS and n is the 
total number of data values included as input to the evaluation process. Clearly, n > m is 
required, and this is a characteristic of SLS in comparison to GLS, where n, in principle, 
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could be any integer value greater than unity, and it applies only to the experimental values 
and not to the prior ones.  
 
 
4. Normalization of the Evaluated PFNS 
 

The evaluated PFNS Ω and its covariance matrix VΩ are not likely to be properly 
normalized for inclusion as shape data in an evaluated data library, even if they are based on 
input data that have been scaled. What is ultimately required for present purposes is a truly 
normalized PFNS. This section demonstrates how this normalization is accomplished. 
 

It is desired to transform an evaluated non-normalized discrete PFNS group 
representation Ω to a normalized discrete group representation Ψ having the property that 
 

Σi=1,m Ψi = 1.                                                         (10) 
 

The discrete sum of group-spectrum values in Eqn. (10) is equivalent to the integral of 
a continuous function Ψ(E) over the complete energy range of the spectrum. The energy-
group structure will have been chosen at the outset so that the first interval with width ∆E1 
will have a lower limit of zero and the upper-most interval with width ∆Em will have an 
upper limit in a region where the functional values Ψ(E) are vanishingly small (typically ≈ 12 
MeV for actual PFNS). Of course, it may be necessary to provide evaluated PFNS values up 
to 20 MeV to satisfy the format requirements of data libraries, even though these numbers are 
vanishingly small and therefore of no practical consequence [1]. The evaluated, non-
normalized group PFNS, consisting of values Ωi obtained by the procedure described in 
Section 3, will generate a finite positive number (mostly likely not 1) when summed over all 
m groups (it can be denoted by G for convenience) [25]. Thus, for i = 1,m: 
 

G ≡ Σi=1,m Ωi .                                                          (11) 
 
Therefore, Ωi and Ψi are related by the expression 
 

Ψi = [Ωi / (Σi=1,m Ωi)] = Ωi / G   (i = 1,m).                                     (12) 
 

It is obvious that this step effectively normalizes the group spectrum values Ψi, 
according to Eqn. (10), as desired for the energy-group structure defined in the present 
evaluation procedure. 

 
The collection {Ψi} forms a vector Ψ with dimension m. The relationship between Ψ 

and Ω given by Eqn. (12) is straightforward, but it is not a linear one. This has important 
implications when transforming the m x m covariance matrix VΩ for Ω to the corresponding 
m x m covariance matrix VΨ for Ψ. It is for this reason that the normalization procedure 
described in this section usually is carried out as the last step of the PFNS evaluation process, 
i.e., after executing the SLS or GLS procedure that generates Ω and VΩ. 
 
 The covariance matrix VΨ can be obtained from VΩ by applying the well-known, 
linear (first-order) Law of Error Propagation (often referred to as the “Sandwich Rule”) 
[25,26,28]: 
 

VΨ = T VΩ T+.                                                         (13) 
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 T is the m x m sensitivity matrix that implements the desired transformation. Its 
elements are defined as (T)ij = (∂Ψi/∂Ωj). It can be shown that: 
 

(T)ij = (∂Ψi/∂Ωj) = (G δij – Ωi) / G
2,                                         (14) 

 
where δij is the Kronecker Delta function: δii = 1 (i = 1,m) and δij = 0 for all i≠j (i,j = 1,m). 
This is the final step of the evaluation procedure that yields a normalized, evaluated neutron-
emission spectrum representation Ψ along with its associated covariance matrix VΨ that can 
be included in an evaluated data library [1,28]. 
 

The number of groups, m, and the detailed group-energy interval structure, with 
interval boundaries and corresponding widths ∆Ei, must be specified in an evaluated data 
library if these results are to be useful for applications. Also, it may be required by data users 
for evaluators to produce a normalized point representation of the PFNS, Ψ(E), along with an 
interpolation rule that can be used to approximate the continuous spectrum numerically. Care 
then needs to be taken to insure that this continuous point representation Ψ(E) is consistent 
with the evaluated (normalized) group spectrum values represented by the vector Ψ. The 
point representation of Ψ(E) must also be normalized such that it integrates to unity over the 
same inclusive energy range as the group representation, with point values at arbitrary 
energies within this range obtained by invoking a clearly specified interpolation scheme. 

 
Since covariance matrices can be defined only for discrete sets of values, 

corresponding to defined neutron-energy intervals, the covariance matrix VΨ should continue 
to apply in representing PFNS shape uncertainties regardless of how the central values are 
represented. 
 
 
5. Smoothing of Evaluated PFNS Results 
 
 A GLS evaluation procedure inevitably generates evaluated group PFNS results Ψ 
such that the values Ψi/∆Ei (i = 1,m) do not readily define a smooth curve as a function of 
energy. This is a consequence of statistical fluctuations in the experimental data employed in 
the evaluation process. In principle this is not a problem, but for practical as well as cosmetic 
reasons there is a preference by data users for smooth-curve representations of evaluated data. 
This is especially true if these results are represented in data libraries in point format [1]. 
 

Various smoothing procedures have been suggested and used for this purpose [5], but 
there is no clear basis for preferring any particular smoothing method as long as the resulting 
values differ from the actual evaluated values by amounts that are insignificant in comparison 
with the evaluated uncertainties. No smoothing is required for evaluated covariance data that 
are always represented in group format in evaluated data libraries [1], often as relative rather 
than absolute covariance matrices. This paper does not address the topic of PFNS data 
smoothing methods. 
 
 
6. PFNS Average Energy 
 
 The average energy ε of a PFNS is a parameter that is frequently used to characterize 
PFNS for application purposes [5,18,23]. It is defined by ε = ʃ E Ψ(E) dE, where Ψ(E) is the 
normalized PFNS and integration formally extends from 0 to infinity (or to an upper energy 
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limit beyond which the PFNS is vanishingly small). For completeness, this section examines 
two methods for calculating ε and determining its uncertainty based on evaluated group 
PFNS and average group energies. One method uses the normalized evaluated group-
spectrum values while the other approach uses the non-normalized evaluated results. Both of 
these approaches should yield the same answer. Although not discussed here, it is obvious 
that similar calculations can be performed if given continuous point representations of these 
spectra, as described in Sections 3, 4, and 5. 
 

6.A. Normalized Spectrum Formalism 
 
 The PFNS average energy ε can be expressed approximately as a function, denoted by 
“h”, of the normalized group values Ψ and the selected point energy values <E> that one 
chooses to associate with these groups. The vector <E> corresponds to (<E1>, <E2>, … , 
<Ei>, … , <Em-1>, <Em>). As discussed in Section 2, one possibility for defining each <Ei> – 
a choice that is likely to be adequate for most practical applications that utilize many groups – 
is <Ei> =  ½(ELi + EHi), where (ELi,EHi) defines the ith group energy interval with width ∆Ei. 
In other words, <Ei> is taken to be the mean energy value of the ith energy-group interval. As 
also mentioned in Section 2, the larger the number of groups involved, the better this 
approximation becomes. Thus, 
 

ε ≈ h(<E>,Ψ) = Σi=1,m <Ei> Ψi .                                             (15) 
 
 Since Σi=1,m Ψi = 1, the weighting values for the individual average group energies 
<Ei> that are exhibited in Eqn. (12) are automatically normalized in this formula. Of course, 
it is very important that the group representation span the entire energy range of significant 
neutron yield for the PFNS. In this formalism the <Ei> are not assigned uncertainties. 
However, the individual normalized spectrum values Ψi that form the weighting factors are 
taken to be uncertain. These uncertainties are characterized by the m x m covariance matrix 
VΨ, as defined by Eqn. (13). Consequently, the uncertainty in the average energy ε based on 
Eqn. (15) can be derived using the Law of Error Propagation [26,28], namely, 
 

Vε ≈ W VΨ W+.                                                        (16) 
 

The elements of the 1 x n sensitivity matrix W are given by the expression 
 

(W)1j = (∂h/∂Ψj) = <Ej>,    (j = 1,m).                                       (17) 
 
 Vε is a scalar quantity that corresponds to the estimated variance in the average energy 
ε. Therefore, the absolute uncertainty (standard deviation) eε in the average energy is given 
by eε = (Vε)

½. 
 

Three points that need to be stressed regarding this discussion of average energy are: 
i) The uncertainty in the average energy can be traced directly to the 

uncertainty in the normalized spectrum representation.  
ii) Once the average energy has been defined in this manner, its uncertainty 

can be computed in a straightforward way using the Law of Error 
Propagation.  

iii) A fine energy-grid structure is required to obtain an accurate value for the 
average energy when it is calculated using group PFNS data in the manner 
described in this section. Even if a point representation is used, the results 
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will be quite sensitive to the assumed point mesh structure since the PFNS 
values at energies elsewhere need to be determined by interpolation. 

 
 6.B. Non-normalized Spectrum Formalism 
 
 The formalism for evaluating PFNS average energy ε in the case of non-normalized 
spectral information is very similar to that described for normalized spectra, as described in 
Section 6.A. The average energy is given by the expression 
 

ε ≈ (Σi=1,m <Ei> Ωi) / (Σi=1,m Ωi) = (Σi=1,m <Ei> Ωi) / G.                            (18) 
 
Ω is the collection of non-normalized evaluated group spectrum values. The covariance 
matrix (variance) for ε can be derived using the Law of Error Propagation. Thus, 
 

Vε ≈ U VΩ U+ .                                                          (19) 
 
U is the 1 x n sensitivity matrix that is used to perform the transformation. The elements of U 
are given by the formula 
 

(U)1j = (∂ε/∂Ωj) = (Ej – ε) / G,    (j = 1,m).                                       (20) 
 
The absolute uncertainty eε in ε is therefore given by eε = (Vε)

½. This value is identical to the 
result obtained using the normalized evaluated PFNS. 
 
 
7. Conclusions 
 
 It is inevitable that scale differences will exist in PFNS data sets employed in an 
evaluation, even if care is taken to calibrate the detectors used and determine all the other 
factors that influence the experimental results. Therefore, it is clear that different PFNS data 
sets in a collection that are used in an evaluation do need to be scaled in order to be able to 
evaluate these data properly and thereby provide recommended values of PFNS shapes for 
use in data libraries. There is no unique procedure for performing the necessary data scaling 
exercise. This paper investigates eleven approaches to scaling and evaluating PFNS data 
(Appendix A). They fall into two broad categories. In one category an anchor shape is 
generated for scaling purposes that is based on averaging input PFNS data over limited 
ranges of neutron emission energy where the neutron spectrum is represented by all the input 
data sets. The averaging process may or may not weight the values being averaged based on 
their uncertainties. The second category includes those methods that utilize one of the input 
spectra as the anchor shape for scaling purposes. Usually it is the one based on model 
calculations that can provide values for the entire energy range of the spectrum. Again, the 
scaling procedure may or may not take uncertainties of the input data into consideration, but 
all the available data can be considered if desired, not just those in a limited energy range. In 
both of these categories, the scaling is accomplished by multiplying the individual input 
PFNS by their corresponding derived scaling factors. 

 
The methods described in this paper are compared by using a hypothetical (“toy”) 

data set that illustrates many of the issues encountered in scaling, evaluating, and normalizing 
PFNS data (Appendix B). Most of these methods yield results that agree very well with each 
other. This suggests that PFNS evaluations may not be particularly sensitive to the choice of 
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scaling method used as long as the scaling procedure employed makes reasonable use of the 
available PFNS data. This is not a surprising conclusion since no matter which scaling 
approach is used, the shapes of the input PFNS are not altered by scaling. 

 
If the data scaling is non-optimal, and this becomes evident if the least-squares 

evaluation procedure generates a chi-square value which is not as small as it could be, then 
the influence of individual input PFNS may become distorted and the evaluated results will 
be less reliable than they might be. The key, therefore, appears to be to achieve through the 
scaling process the lowest possible value of chi-square allowed by the input data. Of the 
eleven scaling methods considered in this paper, Scaling Method 7 (Appendix A) is probably 
the one that could be viewed as the most “rigorous” one since it utilizes all the input 
information (PFNS values as well as covariance data) in a mathematically consistent manner 
with the fewest assumptions. However, this method is also mathematically the most 
complicated approach. In the examples considered in Appendix B, this additional complexity 
leads to only small differences in the obtained results from several other simpler ones, so it 
may not be worth the trouble. It is left to evaluators to decide which approach is the most 
practical one for the particular task involved. Furthermore, it may be prudent to try several 
approaches in a particular evaluation. 

 
While there is a preference on philosophical grounds for performing PFNS 

evaluations with input data that are either all normalized or all non-normalized, the present 
investigation suggests that in practice these evaluations can often be performed with mixtures 
of normalized and non-normalized input PFNS as long as these data are properly scaled. The 
key is that the assumption of linearity inherent to SLS and GLS evaluation procedures be 
adequately fulfilled by the data being treated [25]. The normalization constraint is usually 
present with model-calculated PFNS. However, few difficulties should be encountered as 
long as the shape uncertainties of the model are larger than those of the experimental data 
(considered collectively). Care must be taken to avoid the pitfalls associated with strong 
correlations found in data generated by nuclear models that involve only a few variable 
parameters [18]. This requirement places a premium on developing physical models of PFNS 
with a sufficient number of parameters to insure that the minimum uncertainty at the pivot-
point energy for a normalized PFNS will not be too small [5,18]. This practical need for 
applied evaluation purposes, as well as the desire, from a fundamental scientific perspective, 
to develop better models of neutron fission and PFNS, is a strong motivator of ongoing 
theoretical research on nuclear-fission physics in the nuclear science community 
[13,14,15,16].  

 
Non-model evaluations based on SLS are possible in principle, and they will yield 

reasonable results as long as experimental data sets are available to span the entire energy 
range of significant PFNS yield [5]. If not, in some situations it may be possible to augment 
these data with estimated values as long as the impact of these introduced values on the 
evaluation process is modest [5]. However, in most cases it is necessary to employ nuclear 
models to generate prior PFNS spectra which can then be merged by a GLS procedure with 
experimental data to provide an evaluation.  

 
Finally, since evaluated shape PFNS results and corresponding uncertainties are 

sought through the evaluation procedures discussed here, rather than absolute neutron-yield 
data, the normalization constraint should always be applied to the posterior solution PFNS 
data as a last step, regardless of which approach is used in performing the evaluation. Even 
when an obtained solution PFNS is found to be close to satisfying the normalization 
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constraint (with concurrent row-and-column sums close to zero for the covariance matrix), 
applying the transformation described in Section 4 one more time should yield a final result 
which is in even closer compliance with this constraint [1], with only very small changes in 
the evaluated numerical results. 
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Appendix A 
 

PFNS Data Scaling 

 
 

The reason for scaling PFNS data sets prior to performing an evaluation is that it is 
important to eliminate, to the extent possible, the effects of differences in the often 
unspecified scales of different group data sets so that the adjusted (i.e., scaled) data can then 
be employed to evaluate spectral shapes using the GLS of SLS procedures discussed in 
Section 3. Section 2 describes in mathematical terms the precise role that scaling plays in 
preparing energy-grouped PFNS data for evaluation by the least-squares methods. The issue 
of scaling PFNS data for evaluation purposes has been discussed elsewhere (e.g., [29]), and it 
has been investigated further in the present work. This appendix describes eleven different 
PFNS data scaling methods that have been examined in the present investigation. All of these 
techniques are essentially ad hoc in that they cannot be justified on the basis of any rigorous 
principles, but rather they are presented here for pragmatic purposes. There may be even 
better approaches than those mentioned here that could be applied in certain practical cases, 
but even then the basic concept should be the same. From a practical point of view, in any 
particular instance a viable scaling method should normally be viewed as one that is 
physically reasonable and leads to the smallest possible chi-square “goodness of fit” test 
parameter generated by a GLS or SLS procedure. For effectively scaled data sets, the major 
contributors to this chi-square test parameter should come from shape differences and scatter 
in the input data values rather than spectrum scale effects. This work explores the following 
question: “To what extent are the evaluated normalized PFNS results and their uncertainties 
dependent on the method used to scale the input spectral data?” 

 
Such a pragmatic approach might not appeal to individuals for whom rigor is of 

paramount importance. However, the evaluation of nuclear data for the most part is 
conducted with applied objectives in mind. Evaluators are required to generate information 
that can be used for nuclear-reactor design studies and related applications. They cannot 
afford the luxury of refusing to undertake this important task simply because the data 
available to them are inadequate, uncertain, and possibly even discrepant. There appear to be 
no unique methods available for producing reasonable evaluated results in the presence of 
these existing limitations. The notion that the end justifies the means has unsavory 
connotations; however, that is quite often what evaluators are required to do. The challenge is 
in being able to apply experienced judgment to accomplish this task in a manner that yields 
evaluated data that data users will accept as reasonable, reliable, and therefore trustworthy for 
their applications. 
 
 
A.1. Basic Concept of Scaling 
 
 The basic concept of data scaling can be illustrated by examining two separate plots 
of two hypothetical data sets that purport to represent the same physical information, but that 
clearly possess inherently distinct but unspecified scales. This is shown in Fig. A.1. One plot 
(left side) shows the original unscaled data while the second plot (right side) shows the scaled 
results. The first data set is identified by red squares while the second one is identified by 
blue diamonds. For convenience in illustrating the concept, each data set has the same 
number of values corresponding to a common collection of characterizing parameters (e.g., 
energy groups), as indicated on the abscissa of each plot. 
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The method used here to scale these data so as to generate the results shown in the 

right-hand plot is as follows: First, simple (un-weighted) averages are calculated of the 
corresponding red and blue values, taken group-by-group. These average values are exhibited 
using the same dashed line in both plots. Second, separate sums are calculated of all the un-
weighted red values, of all the un-weighted blue values, and of all the computed average 
values. The scaling factor c_red used to scale (multiply) the original red values equals the 
sum of all the average values divided by the sum of all the original red values. The scaling 
factor c_blue used to scale (multiply) the original blue values is the sum of all the average 
values divided by the sum of all the original blue values. Another way of looking at this is 
that the scaling factors c_red and c_blue are calculated as ratios of an average of the 
calculated average values divided by averages of the original red and blue values, 
respectively. It is evident from the plot on the right-hand side of Fig. A.1 that the simple 
scaling algorithm described in this instance does a reasonably good job of factoring out the 
differences in inherent scales of the two considered data sets, thereby preparing these data for 
a more rigorous shape evaluation procedure based on GLS. This simple example is designed 
only for the purpose of demonstrating the basic concept of scaling so it is given no further 
consideration in the ensuing discussion. 

 

 

Figure A.1: Comparison of original data and scaled results, obtained as described in the 
Section A.1. 

 
 The eleven different scaling techniques that have been examined in the present 
investigation (denoted by Scaling Method 1 through Scaling Method 11) are discussed 
sequentially in the following sections. All of the methods discussed here are assumed to 
apply to PFNS represented as direct neutron data (real or hypothetical) rather than spectra 
expressed relative to some reference shape such as a Maxwellian distribution [30]. Due to the 
wide dynamic range of PFNS neutron yield as a function of emission energy, there may be 
technical advantages to scaling these data to a reference shape so as to suppress the dynamic 
range. In particular, doing this clearly simplifies visualization of differences between various 
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measured and calculated versions of a particular PFNS. That is a peripheral issue that is not 
considered here, but it is certainly one that is worthy of consideration. 
 
 
A.2. Scaling Method 1 
 

Suppose that each of the K+1 data sets to be used in a PFNS evaluation (one set that 
is model-calculated and K that are experimental) provides spectrum values for every energy 
group within a specific limited energy range (EL,EH) that is unlikely to encompass the entire 
range of interest for the PFNS. Typically, this energy region will be in the range ≈1 – 5 MeV, 
since this is the energy regime of typical PFNS spectra that yields the most neutrons. 
Furthermore, it is also the range where PFNS spectrum shapes tend to not vary as 
dramatically with emitted neutron energy as is the case for other energy regions of these 
spectra. This is a scenario which occurs quite frequently, though certainly not universally, in 
PFNS evaluation situations. Model values can be calculated at any energy, and all the 
experiments considered will likely provide information in this high-neutron-yield region of 
the PFNS. Therefore, in this case the scaling factors could be determined by employing 
essentially the same procedure described in the simple hypothetical example given in Section 
A.1, except that now the energy range for this type of analysis is restricted to (EL,EH). This 
particular approach is described below in more concrete mathematical terms. 

 
As in the main body of this paper, the input data are represented by the vector arrays 

of group values Φk (k = 0,K). Φ0 denotes the model-calculated values while the remaining 
arrays (k = 1,K) correspond to experimental data. The first step is to average all K+1 
spectrum values for each contiguous energy group within the indicted energy range (EL,EH), 
so as to generate an additional vector ξ, which we shall refer to as the anchor shape vector, 
whose components ξi are the averages of spectrum values Φki for each group in that defined 
energy range. 

 
Fig. A.2 illustrates how the energy interval is selected for an application of Scaling 

Method 1 in the simple case of two spectra. In realistic situations, K+1 will be greater than 
two. In Scaling Method 1 it is assumed that simple averaging is used to generate the anchor 
shape vector ξ, i.e., identical weights are given to all the comparable data values in a 
particular group, irrespective of potentially wide variations in the scales of these PFNS 
representations. So, in essence, the data are un-weighted. Thus, 

 
ξi = [Σk=0,K Φki]/(K+1).    (i = iL,iH)                                           (A.1) 

 
Vector ξ, which obviously needs to be defined only for those groups included in the 

energy range (EL,EH), serves as the anchor shape over this limited energy range for use in 
calculating the scaling factors ck that are to be employed for all the input spectra. In Scaling 

Method 1 these scaling factors are calculated using the following expression: 
 

ck = [Σ{iL,iH} ξi] / [Σ{iL,iH} Φki]   (k = 0,K).                                     (A.2) 
 

The notation {iL,iH} denotes inclusion in the indicated sums of all the contiguous energy 
groups “i” in the energy range (EL,EH). 
 

It is evident from the formula for ck given in Eqn. (A.2) that if the data points for a 
specific data set Φk tend to be larger, on average, than the comparable calculated average 
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values ξ for this energy range, then ck <1 is obtained and all the original spectrum values in 
vector Φk, not only those for the energy range (EL,EH), should be scaled to lower values using 
the scaling factor ck. The opposite holds true if the spectrum values for set Φk tend to be 
lower than comparable ones for ξ in the given energy range. Then all the values of Φk should 
be scaled toward higher values by multiplying them with ck, since ck >1 will be obtained from 
Eqn. (A.2). Thus, in applying Scaling Method 1, the scaling factors determined from 
information for the limited energy range (EL,EH) are applied over the entire energy range of 
the PFNS, i.e., for all groups in that are populated with non-zero spectrum values. 
 

 
 
Figure A.2: This figure illustrates Scaling Method 1 for calculating scaling factors based on 
un-weighted averaging of the spectrum values for all the considered spectra within a specific 
range of energies where spectral data are available for all the contiguous groups covering this 
energy range. The two distinct hypothetical spectra illustrated here are identified by triangles 
and squares. The values to be included in the scaling analysis for the two considered spectra 

are identified by yellow-filled symbols, whereas those not included in the scaling analysis are 
shown in blue-filled squares and red-filled triangles, respectively, for the two data sets. 

 
As indicated in Section 2 in this paper, no consideration is given to assigning 

uncertainties to the derived scaling factors ck since an earlier study that is reported elsewhere 
has shown that such scaling uncertainties ultimately cancel when evaluated PFNS shape data 
and their covariances are normalized [25]. 
 
 
A.3. Scaling Method 2 
 
 One assumption of Scaling Method 1 might be viewed as too simplistic. 
Determination of an anchor shape ξ and subsequent calculation of scaling factors ck is carried 
out in Scaling Method 1 with no consideration given to the variable quality of the individual 
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PFNS data sets employed in the analysis. All the spectral data values are treated equally. 
Therefore, a refinement to Scaling Method 1, which is referred to here as Scaling Method 2, 
involves taking the uncertainties in these data into consideration through the use of weighting 
factors derived from these uncertainties. Otherwise, the present approach (Scaling Method 2) 
is essentially the same as Scaling Method 1. 
 

For Scaling Method 2, the values ξi that define the anchor shape are determined by 
means of weighted-averaging, using standard deviations of the spectrum values to calculate 
the weighting factors wki. These standard deviations are denoted by eki (k = 0,K; i = iL,iH) 
and the selected weights wki are defined by wki = fki

-2, with fki = (eki / Φki). The choice is made 
to use fractional (or percent) uncertainties rather than absolute uncertainties in order to 
minimize the potential negative impact of the Peelle’s Pertinent Puzzle (PPP) phenomenon 
that might be encountered if presumably comparable values, i.e., the input PFNS values, 
actually differ considerably in magnitude (e.g., [26,28]). The average values ξi that define the 
anchor shape ξ are therefore obtained in Scaling Method 2 using the expression: 

 
ξi = [Σk=0,K wkiΦki] / [Σk=0,K wki]   (i = iL,iH).                               (A.3) 

 
The scaling factors ck are then calculated using the following formula: 
 

ck = {[Σ{iL,iH} ξi]/ν} / {[Σ{iL,iH} wkiΦki]/[Σ{iL,iH} wki]}   (k = 0,K).               (A.4) 
 
The integer ν = (iH – iL +1) corresponds to the number of energy groups in the energy range 
(EL,EH). Eqn. (A.4) states that the scaling factor ck should be calculated as the ratio of the 
average value of the elements of anchor shape ξ to the weighted average of the kth PFNS 
values. Only those values that correspond to the specific energy range (EL,EH) are considered 
in this analysis. 
 

No consideration is given here to the influence of uncertainty correlations for the 
group PFNS values Φki in the formalism that constitutes Scaling Method 2, as defined by 
Eqns. (A.3) and (A.4). It would be possible in principle to take such correlations into 
consideration in evaluating the scaling factors ck, but that would entail calculations 
considerably more complicated than those indicated by Eqns. (A.3) and (A.4). Whether or not 
the neglect of such correlations might have a significant impact on determinations of the 
scaling factors ck, and hence on the overall evaluation procedure discussed here, is a topic for 
further investigation. This possibility has not been explored in the present work. 

 
 
A.4. Scaling Method 3 
 
A matter of concern in applying Scaling Method 2, as well as in applying the overall 

PFNS evaluation procedure described in Section 3 of this paper, stems from the unique 
characteristics of the uncertainties of model-calculated PFNS in comparison with typical 
experimental PFNS data uncertainties. This point was already stressed in Section 3. It has 
been observed that the uncertainties of model-calculated PFNS can be very small at certain 
energies when compared to corresponding experimental data uncertainties, mainly as a 
consequence of the relative simplicity of most contemporary PFNS computational models 
(few variable parameters). In particular, this appears to stem from limited sensitivity of the 
calculated spectral values in certain energy regions of the PFNS to variations of certain PFNS 
model parameters [18,25]. At these energies, applying a weighted averaging procedure to 
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define an anchor shape in Scaling Method 2 could lead to average values of the anchor shape 
values ξi that are dominated to an unreasonable extent by the model-calculated results. 
 
 This issue can be illustrated by examining a very simple theoretical model of a PFNS 
that provides an approximate representation of the shape of a typical PFNS. It is the 
Maxwell-Boltzmann (M-B) function which has the mathematical form f(E) = C E1/2 exp(-
E/T), where C is treated as an arbitrary scaling constant [30]. This spectrum-shape 
representation has a single variable parameter T which corresponds to the nuclear 
temperature expressed in energy units. The inherently normalized M-B spectrum 
representation has the form fn(E) = Cn E1/2 exp(-E/T), where Cn = 2 π-1/2 T-3/2. While the 
functions f and fn have the same shape with respect to energy for a particular value of T, there 
is a difference between them which is pertinent to the present discussion. For the non-
normalized M-B function f (where C is an arbitrary constant), the relationship between the 
fractional uncertainty in f and the fractional uncertainty in T is given by the expression (∆f/f) 
= (E/T) (∆T/T). For E = 0, the fractional uncertainty in f is zero, but it increases linearly with 
energy with a slope given by 1/T. However, for the inherently normalized M-B function fn, 
the relationship between the fractional uncertainties in fn and T is given by (∆fn/fn) = [(E/T)-
(3/2)] (∆T/T). The sensitivity factor [(E/T)-(3/2)] clearly goes to zero when E = 3T/2. This 
value of E also corresponds to the average energy <E> of the M-B function. The specific 
energy where the sensitivity of the PFNS to the parameter T vanishes is commonly called the 
pivot point [18,25]. The behavioral differences in the fractional uncertainties for the non-
normalized and inherently normalized representations of the M-B spectrum, as a function of 
energy E, are shown graphically in Fig. A.3 for the case where T = 1.32, ∆T/T = 0.05, and 
<E> = 1.98.  
 

 
 

Figure A.3: Comparisons of fractional uncertainties for a non-normalized M-B PFNS (∆f/f) 
and an inherently normalized M-B PFNS (∆fn/fn), both with T = 1.32 and fractional 

uncertainty ∆T/T = 0.05. 
  

Since the M-B function has a single parameter, in the non-normalized case the 
uncertainties at all energies are 100% correlated (a very stiff covariance matrix!). For the 
inherently normalized version, the correlation pattern is more complicated. The uncertainties 
for PFNS values at energies above the pivot point are 100% correlated to each other. The 
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same holds true for the uncertainties of PFNS values below the pivot point. However, the 
uncertainties for PFNS values above the pivot point are 100% anti-correlated to PFNS values 
at energies below the pivot point. This situation can cause serious difficulties for using a 
normalized model-calculated PFNS such as the fully normalized M-B function in a GLS or 
SLS evaluation procedure. This possibility led us to focus mainly on evaluation approaches 
that utilize non-normalized PFNS in conjunction with scaling procedures to adjust the data 
used for the evaluation. Normalization is then carried out after applying a GLS or SLS 
evaluation procedure. Of course, it may not always be possible to work with non-normalized 
PFNS, especially when utilizing nuclear models where inherently normalized algorithms are 
generally encountered. 
 

Contemporary models of PFNS (e.g., the Los Alamos Model [11]) are considerably 
more complicated than the M-B function, and they involve more than one variable parameter. 
However, they nevertheless are essentially phenomenological in nature although they do 
reflect more detailed underlying physics. Still, due to the somewhat limited numbers of 
parameters in these more sophisticated PFNS models, they also tend to be afflicted with 
mathematical features resembling those seen for the M-B function, e.g., low uncertainties 
close to the pivot point and covariance matrices with strong correlations and anti-correlations. 
However, these undesirable features tend not to be quite as severe as they are for the 
inherently normalized M-B function. 
 

One way to avoid potential problems that might be associated with including model-
calculated PFNS data in applying Scaling Method 2 would be to limit the determination of an 
anchor shape ξ to inclusion of only experimental PFNS data. In order to apply this approach, 
denoted here as Scaling Method 3, it is required that more than just one experimental PFNS 
data set be available, i.e., K ≥ 2. The formulas for ξi and ck corresponding to Scaling Method 

3 are: 
 

ξi = [Σk=1,K wkiΦki] / [Σk=1,K wki]    (i = iL,iH),                                (A.5) 
 

c0 = [Σ{iL,iH} ξi] / [Σ{iL,iH} Φ0i],                                             (A.6) 
 

 ck = {[Σ{iL,iH} ξi]/ν} / {[Σ{iL,iH} wkiΦki]/[Σ{iL,iH} wki]}   (k = 1,K).                 (A.7) 
 
The weighting factors wki are defined in an identical manner as for Scaling Method 2. 
 

As in Scaling Method 2, no consideration is given in these formulas to the influence 
of uncertainty correlations in the spectrum values Φki. Eqn. (A.5) is very similar to Eqn. (A.3) 
associated with Scaling Method 2. The only difference is that the k = 0 term is excluded from 
the sums for the numerator and denominator. The scaling factor c0 to be applied to the model-
generated PFNS data is calculated using Eqn. (A.6) rather than Eqn. (A.7). It uses un-
weighted spectrum values for the sum in the denominator of Eqn. (A.6) to avoid 
overweighting group-spectrum values for energy groups near the pivot point. The scaling 
factors ck (k = 1,K) are obtained for Scaling Method 3 using Eqn. (A.7), which is identical to 
Eqn. (A.4) that is used in Scaling Method 2. It may seem odd that although the calculation of 
all scaling factors ck (k = 0,K) utilize the same anchor shape defined by the ξi values given by 
Eqn. (A.5), actual computation of the scaling factor c0 is treated differently from calculations 
of the ck scaling factors for the experimental PFNS (k = 1,K). This exemplifies the use of an 
ad hoc approach for pragmatic reasons that can only be justified based on whether 
“reasonable” results are ultimately produced by its application.  
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A.5. Scaling Method 4 

 
 Scaling Methods 1, 2, and 3 involve calculating scaling factors ck using only PFNS 
data from a defined limited energy region of a PFNS spectrum where group values are 
available for each individual data set and each energy group in that range. Furthermore, these 
three approaches involve constructing distinct anchor shapes ξ by three different methods. 
PFNS data in other energy regions are neglected by these three methods of calculating scaling 
factors. 
 

Scaling Method 4 takes advantage of the fact that the model-calculated component of 
the available data base for performing a PFNS evaluation provides values in all m energy 
groups of the spectrum. Therefore, it could be selected to play the role of an anchor shape for 
scaling each experimental PFNS, thereby avoiding the need to construct a distinct anchor 
shape ξ, as is the case for Scaling Methods 1, 2, and 3. Furthermore, doing this would enable 
PFNS data over the entire energy range of the spectrum to be employed for scaling purposes, 
at least to the extent that these data, especially experimental data, are trustworthy. The fact 
that the model PFNS may be normalized (which is often the case) does not impact on its use 
as an anchor shape. Of course, if it is suspected that the experimental data are more 
trustworthy than the model, and that the model should be used only for extrapolation and 
interpolation where data are absent, this would not be the approach one should choose. 
Nevertheless, we explore this approach as an option that is worthy of consideration if one 
attaches reasonable credence to the model shape information. In this approach it is assumed 
that c0 = 1 and all the other (experimental) PFNS are scaled so as to be consistent scale-wise 
with the model-generated spectrum shape. Use is made of the fact that the K experimental 
PFNS data sets are assumed to be independent of each other and of the model-calculated 
spectrum. No consideration is given to uncertainties in the model-calculated spectrum in this 
scaling method. It simply plays the role of anchor shape for scaling all the other 
(experimental) PFNS data. 
 

Scaling Method 4 involves calculating individual un-weighted sums of PFNS values 
for each of the K experimental PFNS spectra Φk (k = 1,K), and for each group that is 
represented in the spectrum by non-zero values over the entire energy range of the PFNS. No 
experimental data values are excluded unless the evaluator decides that some are unworthy. 
This concept is illustrated in Fig. A.4. 
 

The number of terms in these sums will generally be smaller than the total number of 
groups (m) since none of the experimental spectra are likely to provide data for every group 
of the PFNS. A typical sum for the kth experimental PFNS Φk is sk = [Σ{i}k Φki], where the 
notation “{i}k” indicates that the sum includes all nk non-zero PFNS group values for the kth 
spectrum over the entire energy range of the PFNS. In the same way, a second sum is 
calculated for the model-calculated spectrum Φ0 over the same groups populated by non-zero 
representation in the sum for the kth experimental PFNS. This sum is tk = [Σ{i}k Φ0i]. Clearly, 
sk and tk differ for each individual experimental PFNS since these sums over the model-
spectrum are tailored to correspond to the specific energy groups represented in the 
individual experimental spectra (k = 1,K). 

 
The resulting scale factors are then calculated using the expression ck = tk/sk (k = 1,K). 

In Scale Method 4 each experimental PFNS is individually scaled to the fixed model-
calculated PFNS so that collectively all experimental data will tend to group around the 
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model-calculated PFNS shape provided as input to the evaluation procedure. The main 
advantage of this approach is that all experimental data can be employed in the scaling 
procedure if desired. 
 
 
A.6. Scaling Method 5 
 
 An alternative to Scaling Method 4, denoted as Scaling Method 5, utilizes weighted-
averaging of all the input PFNS values Φki (k = 0,K) in calculating the scale factors ck (k = 
1,K). All the available PFNS data can be used in this method as well. Furthermore, as in 
Scaling Method 4, c0 = 1 since Φ0 is treated as the anchor shape for scaling purposes. The 
weighting factors are derived from standard deviations expressed in the form of fractional 
uncertainties fki (k = 0,K; i = 1,m) for reasons mentioned earlier. These weighting factors are 
defined by wki = fki

-2. Thus, for Scaling Method 5 the formula for ck (k = 1,K) is: 
 

ck = {[Σ{i}k w0iΦ0i] / [Σ{i}k w0i]} / {[Σ{i}k wkiΦki] / [Σ{i}k wki]}   (k = 1,K).                    (A.8) 
 
No consideration is given to uncertainty correlations in applying Scaling Method 5. 
 

 

 
Figure A.4: This figure illustrates Scaling Method 4 for calculating scaling factors, where 

one considers all the experimental group values of a specific experimental data set along with 
those values from the model-calculated results that correspond to the same groups as the 

experimental set. The yellow-filled triangles represent the values of a particular experimental 
data set. The yellow-filled squares correspond to the model-calculated anchor shape data set 

values that are used for scaling, whereas the blue-filled squares are the model-calculated 
values that are not used in the scaling calculation for this particular experimental data set. 
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A.7. Scaling Method 6 

 
 Scaling Method 6 is one of two possible SLS approaches for scaling experimental 
PFNS data sets Φk to the non-normalized anchor shape defined by spectrum Φ0 that have 
been investigated in the present work. The SLS calculations yield ck values for the individual 
Φk (k = 1,K). The factor c0 is exactly 1 since the model-calculated spectrum serves as the 
anchor shape, as is the case in Scaling Method 4 and Scaling Method 5. Use is made in 
Scaling Method 6 of covariance information for the input PFNS data, including that for the 
anchor shape Φ0. This is accomplished here by defining hybrid covariance matrices WΦk = 
VΦk + λk

2
VΦ0k for use in the SLS scaling factor calculations. The significance of underlining 

λk and VΦ0k in this expression is explained in more detail below. The factor λk is introduced 
in Scaling Method 6 to compensate for the fact that the scales of the PFNS data sets Φk and 
Φ0 may differ so widely that, without employing these factors, it would be unreasonable to 
try and treat the covariance matrices VΦk and VΦ0k on equal footing in generating WΦk for use 
in the SLS procedure. In Scaling Method 6 it is explicitly assumed that λk = < Φki>/<Φ0ki>, 
where <…> signifies un-weighted averages of the indicated collections of variables over 
regions of the spectrum where both anchor and experimental data are represented. 
 

It is convenient to define the parameter pk = 1/ck, where ck is the desired scale factor 
for the kth experimental PFNS (k = 1,K).  Parameter pk (k = 1,K) is to be derived using the 
SLS procedure [27]. The solution is obtained from the matrix equations 
 

pk = Vpk Φ0k
+ WΦk

-1 Φk,                                                  (A.9) 
 

Vpk = (Φ0k
+
WΦk

-1
 Φ0k)

-1,                                                (A.10) 
 

χk
2/(nk – 1) = [(Φk – Φ0k pk)

+ WΦk
-1 (Φk – Φ0k pk)] / (nk – 1).                     (A.11) 

 
The components of Eqns. (A.9) – (A.11) are defined as follows: Vpk is the variance of 
parameter pk. It is a scalar quantity. χk

2/(nk – 1) is the chi-square per d.o.f. parameter that 
measures the scatter of the experimental PFNS data set Φk relative to the model-calculated 
anchor shape Φ0. No further consideration is given to the derived uncertainty in pk, i.e., epk = 
Vpk

½, or to the uncertainty in the corresponding scaling parameter ck, since scaling 
uncertainties are eliminated when non-normalized evaluated PFNS are normalized [25]. The 
least-squares scaling procedure is repeated K times, corresponding to the K experimental data 
sets. 
 

At this point it is appropriate to explain the use of bold underlining for several of the 
variables appearing in the preceding two paragraphs. The vector Φ0k is marked with a bold 
underline to indicate that it is actually a subset of dimension nk ≤ m of the full vector Φ0 of 
model-calculated values which has dimension m and is specifically constructed for the 
calculation of pk. The corresponding covariance matrix of this subset is VΦ0k. Thus, the 
elements of Φ0k correspond specifically to the energy groups that are populated with non-
zero values in the experimental PFNS data set Φk. The same explanation applies to the factor 
λk. Only those values from the subset vector Φ0k are averaged in calculating this factor. The 
dimension of the kth experimental PFNS data covariance matrix VΦk is nk x nk. The dimension 
of VΦ0k is also nk x nk. Therefore, the dimension of WΦk is nk x nk.  
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A.8. Scaling Method 7 
 
 Scaling Method 7 is the second SLS approach to deriving the scaling factors ck for the 
experimental PFNS (k = 1,K) that is examined in this paper. Again it is assumed that the 
factor c0 is exactly 1 since the spectrum Φ0 serves as the anchor shape. This is also the case 
for Scaling Methods 4, 5, and 6. For Scaling Method 7 it is assumed that the following 
information is available to an evaluator: Φ0, VΦ0, [Φk, VΦk (k = 1,K)]. In this approach, for a 
particular PFNS “k” (k = 1,K) ratio values rki, that collectively form a vector  rk, are 
calculated using the formula rki= Φ0ki/Φki (k = 1,K; i = 1, nk). Thus, only certain values from 
Φ0 are applicable here, namely those corresponding to the specific energy groups for which 
there are corresponding data available from Φk and from the defined subset Φ0k of Φ0, in a 
similar fashion to Scaling Method 6. Then it is possible to generate a covariance matrix Vrk 
for the calculated ratio set rk using the Law of Error Propagation and the given PFNS data 
[28]. The elements vrkij of Vrk are then calculated using the formula 
 

vrkij = (∂rki/∂Φ0ki) vΦ0kij (∂rkj/∂Φ0kj) + (∂rki/∂Φki) vΦkij (∂rkj/∂Φkj) 
(A.12) 

= (1/Φki) vΦ0kij (1/Φkj) + (-Φ0ki/Φki
2) vΦkij (-Φ0kj/Φkj

2). 
 
In these equations Φ0ki is an element of Φ0k, vΦ0kij is an element of VΦ0k, and vΦkij is an 
element of VΦk. Eqn. (A.12) is derived from the assumption that the PFNS Φ0 and Φk are 
uncorrelated. 
 

A further assumption of Scaling Method 7 is that each of the nk ratios value rki should 
be representative of the scaling parameter ck that is sought from the analysis. Therefore, ck ≈ 
rki (i = 1,nk), and ck can thus be thought of as a type of least-squares weighted average of the 
nk ratios of the kth experimental PFNS to the anchor shape, with full consideration given in 
the computational procedure to the uncertainties and correlations for the PFNS sets Φ0 and 
Φk. Clearly, Scaling Method 7 is a more sophisticated approach to scaling than Scaling 

Method 6, and it involves fewer assumptions. 
 
The set of derived ratio values rk and their covariance matrix Vrk can be treated as 

input data for the SLS analysis that aims to provide a recommended value of ck based on the 
given input data. The least-squares criterion in Scaling Method 7 involves minimizing the 
quadratic form (rk – Ak ck)

+ Vrk
-1 (rk – Ak ck). The SLS solution is given by the equations 

 
ck = Vck Ak

+ Vrk
-1 rk,                                                  (A.13) 

 
Vck = (Ak

+
Vrk

-1
 Ak)

-1,                                                 (A.14) 
 

χk
2/(nk – 1) = [(rk – Ak ck)

+ Vrk
-1 (rk – Ak ck)] / (nk – 1).                      (A.15) 

 
The sensitivity matrix Ak that appears in Eqns. (A.13) – (A.15) is a column vector consisting 
of nk elements all equal to 1. This is a result of the assumption that ck ≈ rki (k = 1,K) [27].  
 

This scaling procedure is repeated independently K times, once for each of the K 
experimental data sets. As mentioned elsewhere in this paper, the uncertainties in the ck 
derived in this manner are of no particular interest since scaling uncertainties are eliminated 
when non-normalized evaluated PFNS are normalized [25]. However, the derived values of 
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chi-square are of interest since they yield useful information on the scatter of the ratio values 
rk. 

 
The approach described here is not the most general one in this particular category of 

SLS derivations of scaling factors. For example, it would be possible to evaluate all the 
scaling factors ck (k = 1,K) simultaneously using SLS in a way that takes into consideration 
correlations between them that are introduced by the use of a common anchor shape. The 
mathematics would involve a straightforward extension of that discussed for Scaling Method 

7, but the bookkeeping would be considerably more tedious. This approach was not explored 
in the present investigation. 
 
 
A.9. Scaling Method 8 
 
 If it happens that the union of all the experimental PFNS available for consideration in 
an evaluation covers essentially the entire energy range of significance for applications, 
excepting possibly the very highest and lowest energies, and if there is an energy region 
where all these spectra overlap, or if they overlap in segments such that there are no 
“orphaned” data sets that do not overlap with other sets to provide comprehensive coverage 
for scaling, then the present approach, denoted by Scaling Method 8, could be applied. In this 
approach no use is made of data from a nuclear model, therefore it can be described as a 
“non-model” PFNS evaluation procedure. As in the preceding discussions, the experimental 
data sets to be considered are denoted by Φk (k = 1,K). No model is used, so no mention is 
made of Φ0 since this notation is generally reserved in this paper to represent a model-
calculated PFNS used in GLS evaluation procedures. 
 
 The first step in Scaling Method 8 is to select one of the experimental PFNS data sets 
to serve as the anchor shape to which the other experimental PFNS are scaled so that all the 
experimental data will be comparable, albeit non-normalized. One possible choice would be 
the spectrum with the largest representation with respect to its range in energy, and therefore 
that offers the most options for spectral overlap with the remaining experimental PFNS. 
However, the procedure described here need not fulfill this particular requirement. For 
example, it might also be the case that the evaluator would want to pick as the anchor shape 
the PFNS data set viewed as the most trustworthy. Regardless of how it is chosen, this PFNS 
is then denoted as Φ1. Its scaling factor is therefore c1 = 1 by convention. In the simplest case 
where all the other spectra Φk (k ≥ 2) overlap Φ1, a value for the kth PFNS scaling factor can 
be obtained from the expression ck = (Σ{“i” overlap}k Φ1i) / (Σ{“i” overlap}k Φki). The notation {“i” 
overlap}k signifies summation over those PFNS spectrum groups where Φ1i and Φki overlap. 
This scaling approach resembles Scaling Method 4 in the sense that no attention is paid to the 
uncertainties in these data for scaling purposes. More complicated expressions for ck will be 
necessary if the PFNS overlap patterns are more complicated, but the concept remains 
unchanged. 
 

Once the ck values have been determined, the PFNS are scaled to generate the vectors 
zk = ck Φk (k = 2,K) and their corresponding covariance matrices are Vzk = ck

2 VΦk (k = 2,K), 
in the same manner as discussed earlier. If the total number of experimental data values 
exceeds the number of groups in the spectrum, i.e., if n = Σk=1,K nk > m, then the SLS 
procedure can be applied to perform the next step in the evaluation process [27]. This 
contrasts with use of the GLS method for the main part of the evaluation, as discussed for 
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Scaling Methods 1 through 7. The formulas to carry out the SLS evaluation are given in Eqns. 
(7) – (9). 
 
 The final step in this evaluation process, i.e., the one taken to obtain the normalized 
evaluated PFNS Ψ and its covariance matrix VΨ, is accomplished as discussed in Section 4. 
However, if the evaluator decides that the solution Ω obtained by using only experimental 
data needs to be augmented slightly to provide coverage of the very highest and lowest 
emitted neutron energies, then for completeness a simple shape extrapolation or theoretical 
model could be used for this purpose, leading to a non-normalized, augmented PFNS Ωa and 
its associated covariance matrix VΩa [5]. Typically, a very large uncertainty (say 100%) 
would be assigned to the added components required to deal with the extreme low and high 
ends of the PFNS. Then, the normalization transformation discussed in Section 4 would be 
applied to Ωa and VΩa to obtain the final normalized solution. 
 
 The appeal of this approach stems from the fact that the present state of development 
of reliable theoretical models of PFNS is such that whenever it is possible to generate an 
evaluated PFNS representation based entirely on experimental data (with at most minor 
extensions based on theory), then that is preferable to relying heavily on a questionable 
theoretical PFNS spectrum [5]. Unfortunately, there are relatively few cases where this is 
possible. They correspond to PFNS for certain major actinides at a few specific incident 
neutron energies, e.g., thermal or 0.5 MeV [5]. 
 
 
A.10. Scaling Method 9 
 
 Suppose that an evaluator has produced a non-normalized PFNS evaluation based on 
experimental data alone, e.g., Ω and its covariance matrix VΩ, as discussed for Scaling 

Method 8. However, the evaluator may later wish to take into consideration in an updated 
evaluation the information provided by a recently improved nuclear model. This can be 
accomplished in a straightforward manner by scaling the earlier non-model evaluated 
solution vector Ω and its covariance matrix VΩ to the model-calculated PFNS shape Φ0 and 
its covariance matrix VΦ0, e.g., by utilizing Scaling Method 4. The SLS procedure described 
in Section 3 can be used for performing the actual evaluation. The result of this least-squares 
analysis would then need to be normalized, as described in Section 4. This approach 
constitutes Scaling Method 9. Note that in this approach the evaluator is essentially 
overlooking the fact that the model-calculated PFNS may be inherently normalized and is 
treating it as if it were non-normalized. 
 

In applying this method when Φ0 and its covariance matrix VΦ0 are actually 
normalized one needs to be concerned with whether the uncertainties in Φ0 are excessively 
small near the pivot point and the correlations in VΦ0 are too strong, since this might 
compromise the evaluation process, as discussed in Section A.4. Under these circumstances, 
it may be preferable to pursue the following scaling approach, i.e., Scaling Method 10. 
 
 
A.11. Scaling Method 10 
 
 PFNS models such as the Los Alamos Model [11] are often “hard wired” to satisfy 
the normalization criterion in such a manner that the normalization constraint cannot be 
bypassed in a straightforward manner. Then one would not be able to perform an evaluation 
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based entirely on non-normalized data. We have already seen earlier in this appendix how the 
normalization criterion affects the mathematical expression for the M-B function. Therefore, 
it may be preferable to first normalize an evaluated PFNS based on the available 
experimental data (as described for Scaling Method 8), along with its covariance matrix, 
according to the procedure described in Section 4, before combining it with an inherently-
normalized, model-generated PFNS using either a GLS or SLS procedure. In this manner, the 
experimental and model-generated input to the evaluation procedure can be treated a priori 
on the same footing, and the concern expressed in Section A.10 can be completely averted. In 
this case there is no need at all for scaling the PFNS. So, Scaling Method 10 is basically a “no 
scaling” option. 
 

The solution PFNS from the least-squares procedure in this situation would likely not 
be perfectly normalized, perhaps due to numerical round-off effects in the least-squares 
analysis, so the normalization procedure discussed in Section 4 would need to be applied 
subsequently to both the solution vector and its covariance matrix to obtain the desired 
results. 
 

Sequential applications of the normalization criterion to a PFNS and its covariance 
matrix (as described in Section 4) any number of times, even when the initial result is close to 
being normalized, should produce no discernable negative consequences on the final obtained 
numerical values as long as the linear approximation is adequate. 
 
  
A.12. Scaling Method 11 
 
 It is often the case that model-calculated PFNS are intrinsically normalized, as 
discussed in Sections 2,3, and 4. Scaling Method 10, discussed in Appendix A.11, describes a 
scenario whereby the model-calculated PFNS and the experimental PFNS (there may be more 
than one) are all assumed to be normalized prior to performing an evaluation using SLS. 
 

However, it is of interest to explore the consequences of performing an evaluation 
whereby the model-calculated PFNS is acknowledged to be intrinsically normalized while the 
experimental PFNS data sets are definitely not normalized. The experimental PFNS data sets 
could be scaled to the normalized model-calculated PFNS (used as the anchor shape) by one 
of the procedures described earlier in this paper, allowing them to be properly compared to 
the model-calculated PFNS prior to performing an evaluation using a SLS or GLS procedure. 
The obtained scaling factors are needed to scale the experimental PFNS covariance matrices 
as well. This constitutes what is referred to here as Scaling Method 11. Since this approach 
unabashedly mixes an inherently normalized model-calculated PFNS with comparably scaled 
(but not normalized) experimental PFNS data sets in the evaluation process, the evaluator 
needs to be on the lookout for any potential negative consequences. The validity of such a 
“mixed” PFNS data evaluation approach can then be validated qualitatively only by 
observing whether the results obtained in a specific application appear to be “reasonable”.
  
 

It should be evident from the discussions associated with the eleven PFNS data 
scaling and evaluation approaches considered in this appendix that they by no means 
encompass all the possibilities. Other varieties of scaling techniques could be conceived that 
might be more appropriate in certain situations. It is instructive to gain some understanding of 
the sensitivity of the final evaluated results to the scaling method selected by examining 
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numerical examples. This topic is addressed in Appendix B where the eleven approaches 
described in the present appendix are applied in eleven separate examples that employ a 
single, common collection of three hypothetical “toy” PFNS data sets. Two of them are 
“experimental” and one plays the role of the “model-calculated” PFNS. 

 
  

41



 
42



 

  
Appendix B 

 
Numerical Examples 

 

 
 Eleven numerical examples are presented in this appendix. They have been designed 
to illustrate the eleven PFNS data scaling and evaluation techniques discussed in Appendix 
A. Numerical examples do not constitute mathematical proofs of the validity of particular 
evaluation procedures, but they can offer some insight on their practical viability. Use is 
made of “toy” data sets in these examples to facilitate the numerical analyses. Note that the 
numbers of decimal places given for the numerical results usually exceed the accuracy of the 
obtained results. These values were taken directly from the calculations, with no attempt to 
round them to reflect perceived numerical significance. 
 
 
B.1. “Toy” PFNS Data Collection 
 
 A common collection of “toy” PFNS data is employed in all the calculations 
presented in this appendix in order to facilitate comparisons of the performance of the various 
scaling methods considered in this investigation. Three hypothetical PFNS data sets that 
purport to characterize a particular, unspecified PFNS are considered. These data sets are in 
no way intended to actually correspond to real PFNS data, although they have been designed 
to reflect features that to some extent do resemble real data. In fact, the values in this 
collection were generated to resemble roughly a Maxwell-Boltzmann distribution with 
temperature T ≈ 1.333 MeV, corresponding to a spectrum average energy of ≈ 2 MeV. 
However, some alterations in the shapes were introduced ad hoc to add realism to the 
exercises. These “toy” PFNS data collectively span a neutron energy range from 0 to 12 
MeV. For present purposes this is assumed to be broad enough to include all emitted 
neutrons. The information is represented in group format, as discussed in the main body of 
this paper. The chosen energy range is divided into 15 contiguous energy groups. The widths 
of these energy groups and their midpoint energies are indicated in Table B.1. This is too 
crude a grid structure to adequately represent real PFNS data, but it is sufficient for 
demonstrating the various procedures discussed herein. 
 

Table B.1: Energy-group structure and midpoint energies for the numerical examples. 
 

 

Group # (i) Ei-low (MeV) Ei-high (MeV) ΔEi (MeV) <E>i

1 0 0.05 0.05 0.025

2 0.05 0.1 0.05 0.075

3 0.1 0.2 0.1 0.15

4 0.2 0.3 0.1 0.25

5 0.3 0.5 0.2 0.4

6 0.5 1 0.5 0.75

7 1 1.5 0.5 1.25

8 1.5 2 0.5 1.75

9 2 3 1 2.5

10 3 4 1 3.5

11 4 5 1 4.5

12 5 6 1 5.5

13 6 8 2 7

14 8 10 2 9

15 10 12 2 11
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 The three hypothetical (“toy”) group PFNS data sets considered here are denoted by 
the vectors Φ0, Φ1, and Φ2, respectively. The uncertainties in these data are comprised of two 
components: a random uncertainty and a fully correlated uncertainty. By fully correlated it is 
meant that the indicated uncertainty is a systematic uncertainty (given in percent) that applies 
to each PFNS value in the tables. Tables B.2, B.3, and B.4 provide the numerical values, 
including the group values and their uncertainties, for these “toy” PFNS. Figs. B.1, B.2, and 
B.3 show plots of the uncertainty components and total uncertainties for these data. The 
covariance matrices VΦ0, VΦ1, and VΦ2 can be constructed readily from this information [28]. 
 

Table B.2: Φ0 PFNS data. 
 

 
 

 
 

Figure B.1: Plot of uncertainty components and total uncertainties for Φ0 PFNS data. 
 

Group # (i) Φ0i % Rand Unc % Correl Unc % Tot Unc

1 0.077588 8.00% 3.00% 8.54%

2 0.129441 7.00% 3.00% 7.62%

3 0.346089 6.00% 3.00% 6.71%

4 0.414515 5.00% 3.00% 5.83%

5 0.937069 4.00% 3.00% 5.00%

6 2.467232 4.00% 3.00% 5.00%

7 2.189142 4.00% 3.00% 5.00%

8 1.780236 5.00% 3.00% 5.83%

9 2.424755 6.00% 3.00% 6.71%

10 1.355224 7.00% 3.00% 7.62%

11 0.725876 8.00% 3.00% 8.54%

12 0.379068 10.00% 3.00% 10.44%

13 0.277673 13.00% 3.00% 13.34%

14 0.070253 16.00% 3.00% 16.28%

15 0.01733 20.00% 3.00% 20.22%
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 Notice that Φ0 provides PFNS data for each of the twelve energy groups that 
collectively span the entire energy range of the spectrum. Consequently, Φ0 is well suited to 
play the role of a prior whenever the generalized least-squares (GLS) evaluation procedure is 
employed. However, this data set was not generated using any model. By design it avoids 
some of the problems typically associated with model-generated data, as discussed in Section 
3 and Appendix A. 
 

Notice that data set Φ1 has only ten PFNS values, and therefore it is not represented in 
every energy group of the spectrum. This is a very common situation for experimental PFNS. 
The data set Φ2 provides values for just eleven of the energy groups that characterize the 
“toy” PFNS. 
 

Table B.3: Φ1 PFNS Data. 
 

 
 

 
 

Figure B.2: Plot of uncertainty components and total uncertainties for Φ1 PFNS data. 

Group # (i) Φ1i % Rand Unc % Correl Unc % Tot Unc

1

2 0.495 15.00% 3.00% 15.30%

3 1.42 8.00% 3.00% 8.54%

4

5 3.76 4.00% 3.00% 5.00%

6 9.7 3.00% 3.00% 4.24%

7 9.05 3.00% 3.00% 4.24%

8 7 3.00% 3.00% 4.24%

9 10.2 3.00% 3.00% 4.24%

10 5.2 5.00% 3.00% 5.83%

11

12 1.7 8.00% 3.00% 8.54%

13 1 12.00% 3.00% 12.37%

14

15
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Table B.4: Φ2 PFNS Data. 

 

 
 

 
 

Figure B.3: Plot of uncertainty components and total uncertainties for Φ2 PFNS data. 
 
 The three hypothetical spectral data sets considered in the following examples are 
plotted in Fig. B.4. Group values are plotted at the group midpoint energies. The 
discontinuity observed for the spectral shapes in the vicinity of 2 MeV is the result of a 
change in energy-group width (see Table B.1). It is clear that these data cannot be treated as 
comparable for evaluation purposes without first being scaled. 
 

Group # (i) Φ2i % Rand Unc % Correl Unc % Tot Unc

1 0.00685 17.00% 4.00% 17.46%

2

3 0.032 10.00% 4.00% 10.77%

4

5 0.0852 6.00% 4.00% 7.21%

6 0.2325 5.00% 4.00% 6.40%

7 0.21 5.00% 4.00% 6.40%

8 0.18 5.00% 4.00% 6.40%

9 0.25 5.00% 4.00% 6.40%

10 0.145 6.00% 4.00% 7.21%

11 0.08 10.00% 4.00% 10.77%

12

13 0.032 15.00% 4.00% 15.52%

14

15 0.002 25.00% 4.00% 25.32%
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Figure B.4: Plots of group values for PFNS data sets Φ0, Φ1, and Φ2 prior to scaling. 
 

The calculations shown for all the following examples were carried out using various 
EXCEL and MATLAB routines. This simple computational approach was enabled by the 
limited numbers of energy groups and PFNS data values in the examples. Due to the 
relatively small number of energy groups, only matrices of modest dimensions needed to be 
manipulated (e.g., inverted) in the various data scaling and evaluation procedures. 
 
 
B.2. Example 1 
 
 This example demonstrates Scaling Method 1 which is described in Section A.2. An 
anchor shape represented by ξ is used in scaling the three given PFNS data sets. Vector ξ is 
generated by un-weighted averaging of the values from the three input PFNS data sets, 
group-by-group, for groups 5 through 10. This method can be used since each of the PFNS 
data sets provides values for all these particular groups. Fig. B.5 shows the values for ξ in 
comparison to those for Φ0, Φ1, and Φ2 in this range of energy groups. Scaling Method 1 
yields the values c0 = 1.70845, c1 = 0.43430, and c2 = 17.28072 for the three scaling factors. 
The scaled PFNS data sets, denoted by zk (k = 0, 1, and 2), are generated from the formula zk 
= ck Φk (k = 0, 1, and 2). The derived scaling factors are then applied to the PFNS data sets 
over all their respective energy groups. Segments of the scaled spectra corresponding to 
groups 5 through 10 are shown in Fig. B.6 compared with the derived anchor shape ξ. 
 
 The covariance matrices for the zk (k = 0, 1, and 2) are obtained from the formula Vzk 
= ck

2 VΦk (k = 0, 1, and 2). The evaluation was then performed using these scaled PFNS data 
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and the GLS formalism discussed in Section 3. The data set z0 serves as the prior for this 
analysis since it provides values for each energy group. 
 

 
 

Figure B.5: Example 1: Comparison of Φ0, Φ1, and Φ2 PFNS with anchor shape ξ for groups 
5 – 10. 

 

 
Figure B.6: Example 1: Comparison of z0, z1, and z2 PFNS with anchor shape ξ for groups 5 

– 10. 
 

The results of the GLS evaluation procedure are shown in Tables B.5 and B.6 for the 
spectra and their uncertainties, respectively. The evaluated, non-normalized PFNS is denoted 
by Ω. The chi-square per d.o.f. value for the evaluated solution is 0.535747. This signifies 
good consistency of the scaled input data, considering the assigned uncertainties. These 
results are also shown graphically in Figs. B.7, B.8, and B.9. Fig. B.8 is a scatter plot that 
exhibits differences of the data sets z1 and z2, as well as the evaluated solution Ω, from the 
assumed prior z0. It is evident that PFNS data set z1 exhibits a shape that is consistent with 
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the prior z0, but its values scatter considerably relative to that prior. The solution Ω also has a 
shape that is similar to the prior. However, the shape of z2 is noticeably inconsistent with the 
other PFNS data. Fig. B.9 shows that the solution PFNS Ω has noticeably smaller 
uncertainties than the input PFNS data. 
 

Table B.5: Example 1: Comparison of the scaled input PFNS data and the evaluated 
spectrum results. 

 

 
 

Table B.6: Example 1: Comparison of the scaled input and evaluated PFNS data 
uncertainties. 

 

 
 

The evaluated results, for both the PFNS spectrum and its covariance matrix, can then 
be normalized, as described in Section 4. This converts Ω to ΩN (denoted by Ψ in Section 4). 
It is evident from Fig. B.10 that this exercise further reduces the uncertainty since the 
normalization process “washes out” residual fully-correlated uncertainty from the evaluated 
solution yielding what amounts to pure “shape” uncertainty. The correlation pattern for the 
normalized solution ΩN (generated by MATLAB) is shown in Fig. B.11. 

Group # (i) <E>i z0i z1i z2i Ωi

1 0.025 0.132555864 0.118372948 0.128899803

2 0.075 0.221143169 0.210030038 0.217936481

3 0.15 0.59127492 0.602510412 0.552983115 0.583899285

4 0.25 0.708176885 0.704639291

5 0.4 1.600934651 1.595379683 1.472317545 1.565748297

6 0.75 4.215139459 4.115740139 4.017767948 4.108309588

7 1.25 3.740036943 3.83994312 3.628951695 3.753068831

8 1.75 3.041441582 2.97012175 3.110530024 3.001029442

9 2.5 4.142569552 4.327891693 4.320180589 4.279469245

10 3.5 2.315330353 2.206376157 2.505704742 2.303649035

11 4.5 1.24012179 1.382457788 1.283297983

12 5.5 0.647617484 0.721315282 0.685742059

13 7 0.474389364 0.424303107 0.552983115 0.462635852

14 9 0.12002327 0.119424742

15 11 0.029607301 0.034561445 0.031064668

Group # (i) <E>i % Unc z0i % Unc z1i % Unc z2i % Unc Ωi

1 0.025 8.54% 17.46% 7.55%

2 0.075 7.62% 15.30% 6.69%

3 0.15 6.71% 8.54% 10.77% 4.74%

4 0.25 5.83% 5.48%

5 0.4 5.00% 5.00% 7.21% 3.18%

6 0.75 5.00% 4.24% 6.40% 2.88%

7 1.25 5.00% 4.24% 6.40% 2.88%

8 1.75 5.83% 4.24% 6.40% 2.99%

9 2.5 6.71% 4.24% 6.40% 3.06%

10 3.5 7.62% 5.83% 7.21% 3.88%

11 4.5 8.54% 10.77% 6.59%

12 5.5 10.44% 8.54% 6.57%

13 7 13.34% 12.37% 15.52% 7.90%

14 9 16.28% 16.23%

15 11 20.22% 25.32% 15.86%
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Finally, the PFNS average energy and its uncertainty were calculated using Eqns. (15) 

– (17) and the normalized evaluated PFNS ΩN and its covariance matrix VΩN. The result is ε 
= 2.0189, with an uncertainty of 0.848%. Although this average-energy value is rather close 
to 2 MeV, it must be acknowledged that the 15 energy grids employed in the present 
calculations are insufficient to permit proper integration of the energy with respect to the 
spectrum shape in any realistic evaluation. For present purposes, ε should be viewed as a 
mathematical quantity that can be used to compare the results obtained by using the various 
scaling methods discussed in this paper. 

 
 
 

Figure B.7: Example 1: Comparison of z0, z1, z2, and Ω. 
 

 

Figure B.8: Example 1: PFNS data z1, z2, and Ω are plotted relative to z0. R1i = z1i/z0i, R2i = 
z2i/z0i, and RΩi = Ωi/z0i (for all applicable energy groups i = 1 to 15). 
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Figure B.9: Example 1: Comparison of the uncertainties for z0, z1, z2, and Ω. 
 

 
 

Figure B.10: Example 1: Comparison of uncertainties for the non-normalized (Ω) and 
normalized (ΩN) solution. 
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Figure B.11: Example 1: Uncertainty correlations for the normalized evaluated PFNS ΩN. 

The ordinate and abscissa values correspond to energy group numbers. 
 
 
B.3. Example 2 
 
 This example demonstrates Scaling Method 2 which is described in Section A.3. The 
approach is similar to Scaling Method 1. It differs only in the fact that weighted rather than 
un-weighted averaging is used to generate the anchor shape ξ that serves in scaling the input 
PFNS data. No consideration is given to uncertainty correlations in this approach. This 
example employs PFNS data from energy groups 5 through 10 for scaling purposes, as is the 
case for Example 1. The analyses for these two examples are similar so the details for 
Example 2 are omitted here. This procedure leads to noticeably different scaling factors for 
Example 2 when compared to Example 1, i.e., c0 = 2.24184, c1 = 0.53166, and c2 = 22.19130. 
However, in spite of these considerable differences in the scaling factors derived from the 
two methods, the evaluation procedure used for Example 2 generates normalized spectrum 
shape results which are close to those obtained in Example 1 (< 0.6% difference for any 
single energy group). This is insignificant for most practical purposes. This outcome is 
evident from Table B.7 where the normalized PFNS values and their uncertainties are 
compared for Examples 1 and 2. The chi-square per d.o.f. value for the evaluated solution is 
0.58397 which signifies good consistency of the scaled input data. The calculated PFNS 
average energy obtained using Scaling Method 2 is ε = 2.0192 with an uncertainty of 0.855%. 
This value and its uncertainty also differ very little from the corresponding results in Example 
1 that were obtained using Scaling Method 1. 
 

Scaling Method 2 is more complicated than Scaling Method 1 and, at least for the data 
considered in the present examples, it would appear that there is no practical advantage to 
using Scaling Method 2 when compared with Scaling Method 1. The similar outcomes 
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obtained in these two examples suggest that the evaluated results obtained are rather 
insensitive to the scaling approach used. This proposition is further tested in the additional 
examples considered in this paper. 
 
Table B.7: Comparison of normalized evaluated PFNS and their uncertainties for Examples 1 

and 2. 
 

 
 
B.4. Example 3 
 
 This example demonstrates Scaling Method 3 which is the same as Scaling Method 2 
with one exception. Only data sets Φ1 and Φ2 are employed to derive the anchor shape ξ. 
Data set Φ0 is not considered for this purpose. The reason for this choice is discussed in 
Section A.4. Briefly, this approach might be selected when it happens that the uncertainties 
associated with Φ0 are considerably smaller than those for Φ1 and Φ2, as is frequently the 
case if Φ0 is generated from nuclear models. Since many of the details in the present analysis 
are very similar to those encountered in Examples 1 and 2, they are omitted here for brevity. 
 

The scaling factor values obtained by this method are c0 = 2.78086, c1 = 0.65531, and 
c2 = 27.35256. These scaling factors are again noticeably different from comparable values 
obtained in Examples 1 and 2. The normalized evaluated results obtained for this example are 
presented in Table B.8, where a comparison is also made with the outcome from Example 1. 
In spite of the considerable differences in the scaling factors for the two methods, the 
evaluation procedure for Example 3 generates normalized spectrum-shape results which are 
close to those obtained in Example 1 (< 0.7% difference for any single group). These 
differences are insignificant for most practical purposes. The chi-square per d.o.f. value for 
the evaluated solution is 0.59878, signifying good consistency of the scaled data. The 
calculated PFNS average energy obtained for Example 3 using Scaling Method 3 is ε = 
2.0193 with an uncertainty of 0.854%. This value and its uncertainty differ insignificantly 
from the results obtained for Example 1 using Scaling Method 1. 
 

Group # (i) <E>i ΩNi (Method 1) Unc ΩNi (Method 1) ΩNi (Method 2) Unc ΩNi (Method 2)

1 0.025 0.005549134 7.36% 0.005571076 7.48%

2 0.075 0.009382161 6.45% 0.009412512 6.52%

3 0.15 0.025136852 4.36% 0.025189061 4.38%

4 0.25 0.030334707 5.12% 0.030516167 5.21%

5 0.4 0.067405433 2.58% 0.067452369 2.58%

6 0.75 0.176862645 1.99% 0.176729759 1.99%

7 1.25 0.161569537 2.03% 0.161605228 2.02%

8 1.75 0.129194257 2.21% 0.128980589 2.20%

9 2.5 0.184231065 2.14% 0.184038058 2.12%

10 3.5 0.099172044 3.19% 0.099004489 3.18%

11 4.5 0.055245952 6.06% 0.055519305 6.12%

12 5.5 0.029521182 6.18% 0.02959247 6.16%

13 7 0.019916464 7.58% 0.019872481 7.57%

14 9 0.005141233 16.07% 0.005171812 16.37%

15 11 0.001337333 15.77% 0.001344624 15.93%
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There seems to be no justification for preferring Scaling Method 3 to Scaling Method 

1, at least for the present data collection. However, it should be noted that for the common 
data collection utilized in the present examples, the uncertainties for data set Φ0 are 
comparable to those for data sets for Φ1 and Φ2. If they happened to be significantly smaller, 
the evaluated results might differ between the two methods by noticeable amounts. Therefore, 
it behooves evaluators to compare the outcomes of various scaling approaches in their PFNS 
evaluations when dealing with realistic data. 
 
Table B.8: Comparison of normalized evaluated PFNS and their uncertainties for Examples 1 

and 3. 
 

 
 
 
B.5. Example 4 
 
 Example 1, which is based on Scaling Method 1, employs only energy groups 5 
through 10 for scaling purposes. Un-weighted averages of the data sets Φ0, Φ1, and Φ2 are 
used to generate an anchor shape ξ so that scaling factors c0, c1, and c2 can be calculated. 
Example 4 utilizes all the available PFNS data in conjunction with Scaling Method 4. It 
differs considerably from Example 1 (using Scaling Method 1) in that the data set Φ0 serves 
as the anchor shape for scaling purposes, and data sets Φ1 and Φ2 are scaled to this anchor 
shape. Consequently, c0 = 1 exactly. This approach is facilitated by the fact that data set Φ0 
provides values for all 15 energy groups. As in Example 1, no weighting factors based on 
uncertainties are considered in this process, so all the PFNS data are treated equally. 
 

The values for the other two scaling factors obtained by this procedure are c1 = 
0.2480753 and c2 = 10.0340195. The normalized results of the evaluation for this example 
are given in Table B.9, where they are also compared with values obtained in Example 1. The 
chi-square per d.o.f. value for the evaluated solution is 0.54054, again reflecting good 
consistency of the scaled data. The comparable evaluated PFNS values obtained in Example 
4 are almost identical to those for Example 1, differing by < 0.05% for any single energy 
group of the normalized PFNS. The uncertainties for Examples 1 and 4 are similar, according 
to Table B.9. The calculated PFNS average energy obtained for Example 4 using Scaling 

Group # (i) <E>i ΩNi (Method 1) Unc ΩNi (Method 1) ΩNi (Method 3) Unc ΩNi (Method 3)

1 0.025 0.005549134 7.36% 0.005573532 7.49%

2 0.075 0.009382161 6.45% 0.009418082 6.54%

3 0.15 0.025136852 4.36% 0.025193938 4.38%

4 0.25 0.030334707 5.12% 0.03054665 5.23%

5 0.4 0.067405433 2.58% 0.067452317 2.58%

6 0.75 0.176862645 1.99% 0.176704256 1.99%

7 1.25 0.161569537 2.03% 0.161600087 2.02%

8 1.75 0.129194257 2.21% 0.128954642 2.20%

9 2.5 0.184231065 2.14% 0.184007455 2.12%

10 3.5 0.099172044 3.19% 0.098989181 3.17%

11 4.5 0.055245952 6.06% 0.055561019 6.13%

12 5.5 0.029521182 6.18% 0.02960552 6.16%

13 7 0.019916464 7.58% 0.019870552 7.57%

14 9 0.005141233 16.07% 0.005177082 16.42%

15 11 0.001337333 15.77% 0.001345687 15.96%
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Method 4 is ε = 2.0191 with an uncertainty of 0.849%. This value and its uncertainty differ 
very little from the results obtained for Example 1 using Scaling Method 1. 
 

There are two reasons why Examples 1 and 4 yield similar results. First, in both 
methods there is no weighting of the data based on their uncertainties in determining the 
scaling factors. Second, it appears that inclusion of additional PFNS values at the low- and 
high-energy ranges of the spectrum has little influence on the relative scaling factors. PFNS 
values are much smaller at the spectrum extremes than in the region of peak neutron yield, so 
these data have negligible influence on scaling. 

 
Of course, if the data in the region of peak yield show significant discrepancies, then 

the evaluator might wish to reconsider and use a different region of the spectrum for 
normalization where the data are more consistent.  

 

Table B.9: Comparison of normalized evaluated PFNS and their uncertainties for Examples 1 
and 4. 

 

 
 
 
B.6. Example 5 
 
 Example 5 employs Scaling Method 5. In many ways it resembles Scaling Method 4 
that is used in Example 4. The difference is that weighted group values of the PFNS Φ0, Φ1, 
and Φ2 are employed in scaling Φ1 and Φ2 to the anchor shape Φ0. 
 

The resulting scale factors are c0 = 1 (since Φ0 serves as the anchor shape), c1 = 
0.212441, and c2 = 9.164120. The normalized evaluated results for Example 5 are given in 
Table B.10 where they are also compared with the values from Example 1. The evaluated 
solution chi-square per d.o.f. in Example 5 is 1.05521. This value, although it would appear 
to be quite reasonable (e.g., see Section 3), is noticeably larger than the comparable results 

Group # (i) <E>i ΩNi (Method 1)  Unc ΩNi (Method 1) ΩNi (Method 4) Unc ΩNi (Method 4)

1 0.025 0.005549134 7.36% 0.005548182 7.37%

2 0.075 0.009382161 6.45% 0.009386042 6.46%

3 0.15 0.025136852 4.36% 0.025133597 4.36%

4 0.25 0.030334707 5.12% 0.030349706 5.13%

5 0.4 0.067405433 2.58% 0.067392945 2.58%

6 0.75 0.176862645 1.99% 0.17684345 1.99%

7 1.25 0.161569537 2.03% 0.161549478 2.03%

8 1.75 0.129194257 2.21% 0.129196407 2.21%

9 2.5 0.184231065 2.14% 0.184216499 2.14%

10 3.5 0.099172044 3.19% 0.099185147 3.18%

11 4.5 0.055245952 6.06% 0.055260699 6.05%

12 5.5 0.029521182 6.18% 0.029531184 6.19%

13 7 0.019916464 7.58% 0.01992499 7.58%

14 9 0.005141233 16.07% 0.005143737 16.10%

15 11 0.001337333 15.77% 0.001337938 15.75%
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obtained in Examples 1 through 4. This suggests that under certain conditions normalized 
evaluated results may be sensitive to the selected method of scaling the PFNS data. 

 

Table B.10: Comparison of normalized evaluated PFNS and their uncertainties for Examples 
1 and 5.  

 
 The calculated PFNS average energy obtained for Example 5 using Scaling Method 5 
is ε = 2.02037 with an uncertainty of 0.869%. This value and its uncertainty differ rather little 
from the value of ε obtained for Example 1 using Scaling Method 1. 

 
The normalized, evaluated PFNS values for Examples 1 and 5 differ by as much as 

2.3% for some energy groups. It is not surprising that differences of this magnitude should 
occur if one compares the scaling factor ratios for these two examples. It is also evident from 
Fig. B.12 that for most of the energy groups, the values of vectors z1 and z2 are 
correspondingly smaller than those of z0. This suggests that the Scaling Method 5 algorithm 
does a rather poor job of scaling these PFNS. This is consistent with the larger chi-square 
value seen for this example compared with Examples 1 through 4. 

 
It was stated earlier in this paper that an important measure of a “good” scaling 

procedure is that it should lead to relatively small values of chi-square when performing a 
least-squares evaluation of the scaled PFNS data. Therefore, the present outcome clearly 
indicates that Scaling Method 5 is not the most appropriate scaling option for the data 
collection considered in this paper.  

 
Further insight into this situation can be gained by comparing scatter plots of the non-

normalized, scaled data and evaluated results for Examples 1 and 5. Fig. B.13 is a scatter plot 
of z0, z1, z2, and Ω for Example 5 while Fig. B.8 shows the corresponding results for 
Example 1. It is evident from an inspection of these two figures that the values for z1, z2, and 
Ω tend to be systematically lower than z0 in Example 5 whereas vectors z1, z2, and Ω appear 
to be reasonably consistent with z0 for Example 1. This would again explain the larger value 

Group # (i) <E>i ΩNi (Method 1)  Unc ΩNi (Method 1) ΩNi (Method 5) Unc ΩNi (Method 5)

1 0.025 0.005549134 7.36% 0.005623437 7.77%

2 0.075 0.009382161 6.45% 0.009496423 6.74%

3 0.15 0.025136852 4.36% 0.025293729 4.43%

4 0.25 0.030334707 5.12% 0.031038668 5.47%

5 0.4 0.067405433 2.58% 0.06750264 2.58%

6 0.75 0.176862645 1.99% 0.176337925 1.98%

7 1.25 0.161569537 2.03% 0.161584063 2.01%

8 1.75 0.129194257 2.21% 0.128497138 2.18%

9 2.5 0.184231065 2.14% 0.183547842 2.10%

10 3.5 0.099172044 3.19% 0.098655771 3.15%

11 4.5 0.055245952 6.06% 0.056235637 6.28%

12 5.5 0.029521182 6.18% 0.029768828 6.12%

13 7 0.019916464 7.58% 0.019793008 7.57%

14 9 0.005141233 16.07% 0.005260447 17.22%

15 11 0.001337333 15.77% 0.001364444 16.37%
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of chi-square per d.o.f. obtained in Example 5 when compared with Example 1. A closer 
examination of chi-square sensitivity to scaling would be justified in order to gain further 
insight regarding this particular case. However, this matter was not pursued in the present 
investigation. 

 

Figure B.12: Example 5: Plot of scaled PFNS z0, z1, and z2. 
 

 
 

Figure B.13: Example 5: PFNS data z1, z2, and Ω plotted relative to z0. R1i = z1i/z0i, R2i = 
z2i/z0i, and RΩi = Ωi/z0i (for all applicable energy groups i = 1 to 15). 
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 The fact that Examples 1 and 5 generate spectrum-average energies that differ rather 
little, while yielding noticeably different normalized evaluated PFNS, suggests that the 
spectrum-average energy is not a particularly effective parameter for characterizing a PFNS. 
This is an important point because the assumed strong correlation between keff for benchmark 
nuclear systems and source PFNS average energy are often invoked as a means to validate 
whether the evaluated PFNS data in a particular nuclear data library are adequate for the 
intended applications. 
 
 

B.7. Example 6 
 
 Example 6 employs Scaling Method 6 which involves a SLS procedure to determine 
the individual scaling factors. The results are c0 = 1 (since Φ0 serves as the anchor shape), c1 
= 0.249137875, and c2 = 10.31067784. The chi-square per d.o.f. value obtained from the GLS 
evaluation procedure is 0.5327201 indicating that the scaled PFNS are very consistent. Table 
B.11 provides a comparison of the results obtained from Example 1 and Example 6. It 
evident that these results are in close agreement (<0.4% difference for any of the energy 
groups). 
 

The calculated PFNS average energy obtained for Example 6 using Scaling Method 6 
is ε = 2.01848 with an uncertainty of 0.848%. This value and its uncertainty differ very little 
from the results obtained for Example 1 using Scaling Method 1. 
 
Table B.11: Comparison of normalized evaluated PFNS and their uncertainties for Examples 

1 and 6. 
 

 
 
  
  

Group # (i) <E>i ΩNi (Method 1) fNi (Method 1) ΩNi (Method 6) fNi (Method 6)

1 0.025 0.005549134 7.36% 0.005550535 7.35%

2 0.075 0.009382161 6.45% 0.009373162 6.43%

3 0.15 0.025136852 4.36% 0.025143598 4.36%

4 0.25 0.030334707 5.12% 0.030298708 5.10%

5 0.4 0.067405433 2.58% 0.06743376 2.58%

6 0.75 0.176862645 1.99% 0.176909378 1.99%

7 1.25 0.161569537 2.03% 0.161615299 2.03%

8 1.75 0.129194257 2.21% 0.12919177 2.21%

9 2.5 0.184231065 2.14% 0.184267571 2.14%

10 3.5 0.099172044 3.19% 0.099142928 3.19%

11 4.5 0.055245952 6.06% 0.055207866 6.07%

12 5.5 0.029521182 6.18% 0.029497375 6.17%

13 7 0.019916464 7.58% 0.019897206 7.58%

14 9 0.005141233 16.07% 0.005135087 16.01%

15 11 0.001337333 15.77% 0.001335756 15.79%
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B.8. Example 7 
 
Example 7 employs Scaling Method 7 which involves a SLS procedure to determine 

the individual scaling factors. However, this procedure differs considerably from Scaling 

Method 6 used in Example 6. The results are c0 = 1 (since Φ0 serves as the anchor shape), c1 
= 0.246767497, and c2 = 9.991857664. The chi-square per d.o.f. value obtained from the GLS 
evaluation procedure is 0.543153989 indicating that the scaled PFNS are very consistent. 
Table B.12 provides a comparison of the results obtained from Example 1 and Example 7. 
These results agree to within ≈ 0.1% for all of the energy groups. The uncertainty values 
obtained using the Scaling Method 7 approach are also very close to the corresponding values 
obtained in Examples 1 and 6 using Scaling Method 1 and Scaling Method 6, respectively. 
 

The calculated PFNS average energy obtained for Example 7 using Scaling Method 7 
is ε = 2.01916 with an uncertainty of 0.849%. This value and its uncertainty also differ very 
little from the results obtained for Example 1 using Scaling Method 1. 

 
Table B.12: Comparison of normalized evaluated PFNS and their uncertainties for Examples 

1 and 7. 
 

 
 
 
B.9. Example 8 

 
This example illustrates a situation where there is no prior PFNS and the evaluation is 

based solely on experimental data that have been augmented by introducing additional group 
values in such a way that all the groups are represented by data values for all the PFNS 
included in the evaluation. These added values are ad hoc in the present instance, but they 
have been chosen to have plausible magnitudes. This is a situation where a “non-model” 
PFNS evaluation approach could be applied. 

 
This example, which utilizes Scaling Method 8, differs significantly from Examples 1 

through 7 in a number of ways. Therefore, the results of the present analysis cannot be 

Group # (i) <E>i ΩNi (Method 1) fNi (Method 1) ΩNi (Method 7) fNi (Method 7)

1 0.025 0.005549134 7.36% 0.005550183 7.38%

2 0.075 0.009382161 6.45% 0.009390161 6.47%

3 0.15 0.025136852 4.36% 0.025138554 4.36%

4 0.25 0.030334707 5.12% 0.030372196 5.14%

5 0.4 0.067405433 2.58% 0.067395229 2.58%

6 0.75 0.176862645 1.99% 0.176824822 1.99%

7 1.25 0.161569537 2.03% 0.161549257 2.03%

8 1.75 0.129194257 2.21% 0.129173809 2.21%

9 2.5 0.184231065 2.14% 0.18419229 2.13%

10 3.5 0.099172044 3.19% 0.099170278 3.18%

11 4.5 0.055245952 6.06% 0.055293069 6.06%

12 5.5 0.029521182 6.18% 0.029541555 6.19%

13 7 0.019916464 7.58% 0.019922269 7.57%

14 9 0.005141233 16.07% 0.005147542 16.14%

15 11 0.001337333 15.77% 0.001338784 15.76%
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compared directly with those from the preceding examples. Only two PFNS data sets are 
considered here rather than all three sets of the complete collection of “toy” data sets. 

 
 Table B.l3 shows the group PFNS values and uncertainties included in Example 8 for 
the first data set (also referred to here as Φ1 although it differs from the original collection). 
The data values introduced here to augment the data used for Examples 1 through 7 are 
shown in red font in this table. The values in black font are identical to those from the 
preceding examples. It is assumed that these ad hoc values have 100% uncertainty, and that 
these uncertainties are uncorrelated to all other data, including to each other. Table B.14 
shows the corresponding values for a second data set that was generated in a similar way 
(referred to here as Φ2 although it differs from the original collection). 
 

The information in these two tables is used to construct the covariance matrices that 
are required for a least-squares evaluation. Fig. B.14 is a plot of these two sets of group PFNS 
data. Spectrum Φ1 is selected here as the anchor spectrum for scaling. Basically, a version of 
Scaling Method 4 is applied here, with Groups 5 through 10 included in the scaling analysis 
since there are no ad hoc augmented data for any of these groups to distort the scaling 
process. 

 
The results from this analysis are c1 = 1 (since Φ1 is the anchor spectrum) and c2 = 

40.7273057. Fig. B.15 is a linear plot of the scaled data z1 and z2. 
 
The two scaled PFNS data sets and their (scaled) covariance matrices are then 

employed in a SLS evaluation procedure, as discussed in Sections 3 and A.9. The actual 
numerical PFNS values from this analysis are of limited interest to us since they cannot be 
compared with data from Examples 1 through 7. However, it is interesting to compare the 
evaluated results Ω with z1 and z2 as well as their corresponding uncertainties. To do this, it is 
useful to define R1i = z1i/Ωi and R1i = z1i/Ωi. The values of Rki (k = 1,2) are plotted in Fig. 
B.16. Uncertainties obtained from this analysis appear in Table B.15. The chi-square per 
d.o.f. value obtained from the present procedure is 0.5416724, which is quite reasonable. 

 
Table B.13: Group PFNS values for data set Φ1 employed in Example 8. The original data 

shown in black font are augmented by the values shown in red font. 
 

 

Group # (i) <E>i Φ1i % Rand Unc % Correl Unc % Tot Unc

1 0.025 0.3 100.00% 0.00% 100.00%

2 0.075 0.495 15.00% 3.00% 15.30%

3 0.15 1.42 8.00% 3.00% 8.54%

4 0.25 1.7 100.00% 0.00% 100.00%

5 0.4 3.76 4.00% 3.00% 5.00%

6 0.75 9.7 3.00% 3.00% 4.24%

7 1.25 9.05 3.00% 3.00% 4.24%

8 1.75 7 3.00% 3.00% 4.24%

9 2.5 10.2 3.00% 3.00% 4.24%

10 3.5 5.2 5.00% 3.00% 5.83%

11 4.5 3.5 100.00% 0.00% 100.00%

12 5.5 1.7 8.00% 3.00% 8.54%

13 7 1 12.00% 3.00% 12.37%

14 9 0.24 100.00% 0.00% 100.00%

15 11 0.06 100.00% 0.00% 100.00%
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Table B.14: Group PFNS values for data set Φ2 employed in Example 8. The original data 

shown in black font are augmented by the values shown in red font. 
 

 

  

 

Figure B.14: Example 8: Plot of group spectrum values Φ1 and Φ2. 

Group # (i) <E>i Φ2i % Rand Unc % Correl Unc % Tot Unc

1 0.025 0.00685 17.00% 4.00% 17.46%

2 0.075 0.012 100.00% 0.00% 100.00%

3 0.15 0.032 10.00% 4.00% 10.77%

4 0.25 0.038 100.00% 0.00% 100.00%

5 0.4 0.0852 6.00% 4.00% 7.21%

6 0.75 0.2325 5.00% 4.00% 6.40%

7 1.25 0.21 5.00% 4.00% 6.40%

8 1.75 0.18 5.00% 4.00% 6.40%

9 2.5 0.25 5.00% 4.00% 6.40%

10 3.5 0.145 6.00% 4.00% 7.21%

11 4.5 0.08 10.00% 4.00% 10.77%

12 5.5 0.05 100.00% 0.00% 100.00%

13 7 0.032 15.00% 4.00% 15.52%

14 9 0.012 100.00% 0.00% 100.00%

15 11 0.002 25.00% 4.00% 25.32%
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Figure B.15: Example 8: Plot of scaled PFNS group values z1 and z2. 
 

Table B.15: Comparison of total uncertainties for the input and solution PFNS. 
 

 
 

Group # (i) <E>i % Unc z1i % Unc z2i % Unc Ωi

1 0.025 100.00% 17.46% 17.03%

2 0.075 15.30% 100.00% 15.12%

3 0.15 8.54% 10.77% 6.73%

4 0.25 100.00% 100.00% 70.79%

5 0.4 5.00% 7.21% 4.12%

6 0.75 4.24% 6.40% 3.53%

7 1.25 4.24% 6.40% 3.53%

8 1.75 4.24% 6.40% 3.54%

9 2.5 4.24% 6.40% 3.54%

10 3.5 5.83% 7.21% 4.55%

11 4.5 100.00% 10.77% 10.35%

12 5.5 8.54% 100.00% 8.40%

13 7 12.37% 15.52% 9.79%

14 9 100.00% 100.00% 74.72%

15 11 100.00% 25.32% 24.54%
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Figure B.16: Example 8: Plot of the ratios R1i and R2i. 

 
 The results obtained from Example 8 (Table B.15 and Fig. B.16) suggest that the SLS 
evaluation procedure used here yields reasonable solution values, considering the given 
uncertainties. These evaluated results can then be normalized in the manner described in 
Section 4. The uncertainty correlation pattern generated by this procedure is illustrated in Fig. 
B.17. Strong positive and negative correlations are evident in this pattern. 

 
Figure B.17: Example 8: Uncertainty correlations for the normalized solution covariance 

matrix. The ordinate and abscissa values correspond to energy group numbers. 
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 The calculated PFNS average energy obtained for Example 8 using Scaling Method 8 
is ε = 2.04186 with an uncertainty of 2.517%. As is to be anticipated, this value and its 
uncertainty differ significantly from the results obtained for Example 1 using Scaling Method 

1 since only two of the three PFNS (the “experimental” ones) are used in the evaluation and 
extra data have been added. 
 

There is an additional way to view the material of Example 8 that is quite interesting. 
An examination of Tables B.13, B.14, and B.15 shows that Groups 1, 2, 11, 12, and 15 are 
each represented by only one “real” data value from the original input data collection. The 
second value in each instance is an ad hoc one from the augmented set that has been 
introduced somewhat arbitrarily (but with plausible magnitude). Furthermore, Groups 4 and 
14 are each represented by only the augmented data. The remaining groups of the PFNS are 
represented by “real” data from both original PFNS. If one examines Fig. B.16 and Table 
B.15 it is seen that for those groups where there is representation by “real” data from either of 
the original PFNS plus one ad hoc value from the augmented set, the evaluated non-
normalized PFNS results and their uncertainties are based almost entirely on the “real” value 
represented in that group. The ad hoc values have little impact on the evaluated results for 
those groups or on their uncertainties. The ad hoc information provided for Groups 4 and 14 
have negligible impact on the overall evaluation results for all the other groups. Indeed, this 
is quite reasonable since 100% uncertainty is assumed for all the ad hoc values. 
Consequently, they have little influence on the evaluation procedure, and the values for 
Groups 4 and 14 could be excluded from the final results. Or, perhaps better a posteriori 
estimates could be made of these values thereby leading to a smaller chi-square. 
 

The introduction of ad hoc values with large assigned uncertainties to fill “gaps” in 
the provided “real” data collection offers a convenient way to generate an evaluation which is 
based on the “real” data alone, with introduction of the ad hoc values serving as a technique 
to facilitate the SLS evaluation process. This technique could be considered as a “trick”, but 
in nuclear data evaluations such tricks are often very useful even though they may be difficult 
to justify rigorously. Generally speaking, if these tricks lead to reasonable results they can be 
viewed as pragmatically acceptable. 
 
 
 B.10. Example 9 
 
 It is seen from Example 8 that the approach labeled Scaling Method 8 produces a 
“non-model” PFNS evaluation denoted by Ω that is based, for all practical purposes, on 
“experimental” data. No use is made of the original model-calculated PFNS Φ0. Therefore, 
the results cannot be compared with those from Examples 1 through 7. However, if the non-
normalized PFNS results Ω and VΩ from such a procedure are then combined by least-
squares with a non-normalized prior PFNS representation Φ0 and VΦ0, then it should be 
possible to generate a “complete” PFNS evaluation that can be compared directly with results 
obtained in Examples 1 through 7. In order to carry out this exercise it is necessary to scale 
these two spectra so that they are comparable. This procedure is denoted as Scaling Method 

9, although the actual scaling approach is essentially the same as Scaling Method 8. 
 

In the present example, Φ0 is selected to be the anchor shape and Ω is then scaled to 
this prior PFNS using a version of Scaling Method 4 that involves all 15 energy groups, as in 
Example 8. Recall that the outcome of Example 8 involves inclusion of the ad hoc data from 
the augmented data set introduced in that example. These augmented data do not have any 
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influence on Examples 1 through 7 since they were not introduced in those examples. 
Therefore, the present exercise tests whether these ad hoc data have any influence on 
comparisons of the present results with those from Examples 1 through 7 that do not 
incorporate any of the augmented data values. 
 
 The scaling factors that are applicable in this example are c0 = 1 and cΩ = 
0.249434431. PFNS Ω is multiplied by cΩ to scale it to the anchor shape Φ0. As in Example 
8, the analysis is performed using the SLS method. The details of this analysis are similar to 
those considered in Example 8 so they are omitted here. The main results from this exercise 
appear in Table B.16. The calculated PFNS average energy obtained for Example 9 using 
Scaling Method 9 is ε = 2.01894  with an uncertainty of 0.844%. The ratios of the normalized 
solution PFNS values from Example 9 to the corresponding values from Example 1 are 
almost indistinguishable from unity. Furthermore, the uncertainties from Examples 1 and 9 
are almost identical. The chi-square per d.o.f. value for the evaluated solution is 0.228598. 
This suggests that these two distinct approaches to evaluating the PFNS data collection lead 
to essentially the same outcome. In other words, GLS can be used to simultaneously consider 
the prior data and “experimental” data, or SLS can be used to first evaluate the 
“experimental” data (by introducing severely down-weighted augmented values to fill gaps) 
and then combining these results with the prior representation Φ0, again using SLS. The ad 

hoc augmented values introduced with large uncertainties are seen to have a negligible 
influence on the outcome in Example 9. 

 
In general, evaluation approaches that utilize GLS, with Φ0 treated as a prior and Φ1 

and Φ2 introduced as experimental data, i.e., as in Examples 1 through 7, are to be preferred 
since then it is not necessary to augment the data sets with ad hoc values to satisfy the 
mathematical requirements of SLS. However, it is useful to know that the procedure 
employed in the present example can be used in situations where the experimental data base 
is nearly complete. 
 

Table B.16: Comparison of evaluated normalized PFNS results from Examples 1 and 9. 
 

 
 
  
  

Group # (i) <E>i Norm PFNS Ratio Ex9 to Ex1 Tot Unc Ex1 Tot Unc Ex9

1 0.025 0.999551522 7.36% 7.33%

2 0.075 0.999355625 6.45% 6.43%

3 0.15 0.999821554 4.36% 4.36%

4 0.25 0.999176715 5.12% 5.09%

5 0.4 0.999953922 2.58% 2.58%

6 0.75 1.000066505 1.99% 1.99%

7 1.25 0.999978756 2.03% 2.03%

8 1.75 1.000105376 2.21% 2.21%

9 2.5 1.000070513 2.14% 2.14%

10 3.5 1.000072762 3.19% 3.19%

11 4.5 0.999952142 6.06% 6.04%

12 5.5 1.000291499 6.18% 6.17%

13 7 1.000009992 7.58% 7.58%

14 9 1.000416546 16.07% 15.68%

15 11 0.993006608 15.77% 15.56%
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B.11. Example 10 
 
In Example 9 two non-normalized, scaled PFNS data sets, each of which provides 

representative values for every energy group of the spectrum, are used to generate a non-
normalized PFNS evaluation. The normalization constraint is applied subsequently to this 
spectrum and its covariance matrix. In this section, the two input spectra are first normalized, 
as well as with their respective covariance matrices. This is possible since both of these 
spectra are “complete” in that they are represented in each spectral energy group. Then, an 
evaluation is performed by the SLS method and a comparison is made to the results of 
Example 9. It should be possible for collections of spectra, all which have the imposed 
normalization constraint, to be evaluated in the same way as collections of all non-normalized 
data. This approach is denoted here as Scaling Method 10. Of interest is whether two 
equivalent data collections, one which is non-normalized and the other normalized, yield the 
same evaluated results after the normalization criterion is applied following the SLS 
procedures. One would expect this to be the case within the confines of the linear 
approximation. 

 
The identical, mutually scaled PFNS data sets (and their covariance matrices) utilized 

in Example 9 were first normalized before performing the SLS evaluation procedure. The 
sum of the solution PFNS values from this exercise, with no further change of normalization, 
is G = 1.000003003 which is very close to unity. The calculated PFNS average energy 
obtained for Example 10 using Scaling Method 10 is ε = 2.0191865  with an uncertainty of 
0.845%. The sums of rows and columns of the solution covariance matrix are also very close 
to zero (typically on the order of ±10-11 to 10-8). For interest, the normalization algorithm 
from Section 4 was applied again to the results generated by the SLS method. The changes in 
the solution PFNS due to the application of this procedure are extremely small, but the value 
of G obtained as a consequence is precisely 1. Furthermore, the matrix row and column sums 
are reduced to values on the order of ±10-17 to 10-14 by this additional step. Table B.17 
compares the results from Examples 9 and 10 in terms of PFNS ratios. This table also shows 
the uncertainties obtained using these two approaches. The differences are very small. 

 
 The point is made in Section A.11 that multiple applications of the normalization 
procedure described in Section 4 introduce only very small changes in the PFNS values and 
corresponding covariance matrix when both are already close to satisfying the normalization 
criterion, as long as the linear assumption is applicable. This point is demonstrated 
numerically in the present example. 
 

B.12. Example 11 
 
Example 11 demonstrates Scaling Method 11, as discussed in Appendix A.12. This 

example is very closely related to Example 10 and it utilizes the same input data for an SLS 
analysis, with one exception. While in Example 10 both the PFNS and their respective 
covariance matrices satisfy the normalization constraint, as discussed in Section 4, in the 
present example the covariance matrix for the second PFNS (representing the experimental 
information) is not normalized but is merely scaled to be consistent with the spectrum itself, 
which has been scaled to a sum-to-unity status. So, this second covariance matrix has rather 
different character in that it does not by necessity have zero sums for the rows and columns. 
The sum of the solution PFNS values from this exercise, with no further change of 
normalization, is G = 1.000001202 which is very close to unity. Nevertheless, the 
normalization transformation was applied to this solution, as well as to the solution 
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covariance matrix, so as to force G to equal 1 exactly. The final results from this exercise are 
shown in Table B.18 where a comparison is also made to the comparable values from 
Example 10. It is seen that the differences in the outcomes from these two examples are very 
small. The calculated PFNS average energy obtained for Example 11 using Scaling Method 
11 is ε = 2.0193933 with an uncertainty of 0.843%. 
 

The distinction between “scaling” and “normalizing” a covariance matrix, as 
discussed in earlier sections of this paper, is somewhat subtle. However, at least in the present 
situation, it appears that the evaluated outcome is not particularly sensitive to whether the 
normalization constraint is or is not applied to the second (experimental) PFNS covariance 
matrix, when the first (model-calculated) PFNS and its covariance matrix do satisfy this 
condition, as long as the experimental PFNS and its covariance matrix are scaled to a sum-to-
unity condition.    
 
 

Table B.17: Comparison of evaluated normalized PFNS results from Examples 9 and 10. 
 

 
 

  
 
  

Group # (i) <E>i Norm PFNS Ratio Ex10 to Ex9 Tot Unc Ex9 Tot Unc Ex10

1 0.025 0.999195036 7.33% 7.35%

2 0.075 0.99925469 6.43% 6.46%

3 0.15 0.999445385 4.36% 4.36%

4 0.25 0.999264948 5.09% 5.80%

5 0.4 0.999872599 2.58% 5.23%

6 0.75 0.999842199 1.99% 1.86%

7 1.25 1.00005908 2.03% 1.76%

8 1.75 1.000022338 2.21% 2.21%

9 2.5 1.000155543 2.14% 2.14%

10 3.5 1.000107569 3.19% 3.18%

11 4.5 1.000366553 6.04% 6.06%

12 5.5 1.000366649 6.17% 6.17%

13 7 1.000191084 7.58% 7.58%

14 9 0.999541732 15.68% 15.74%

15 11 0.999913961 15.56% 15.58%
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Table B.18: Comparison of evaluated normalized PFNS results from Examples 10 and 11. 
 

 
 
 

Group # (i) <E>i Norm PFNS Ratio Ex11 to Ex10 Tot Unc Ex10 Tot Unc Ex11

1 0.025 0.999894232 7.35% 7.36%

2 0.075 1.000023831 6.46% 6.46%

3 0.15 1.000044745 4.36% 4.36%

4 0.25 1.000374463 5.80% 5.73%

5 0.4 0.999590292 5.23% 5.23%

6 0.75 1.000015652 1.86% 1.85%

7 1.25 0.999825274 1.76% 1.76%

8 1.75 0.999787171 2.21% 2.20%

9 2.5 1.000030907 2.14% 2.14%

10 3.5 1.000091311 3.18% 3.18%

11 4.5 1.000882991 6.06% 6.01%

12 5.5 1.000158557 6.17% 6.16%

13 7 0.999915024 7.58% 7.57%

14 9 1.00044021 15.74% 15.73%

15 11 0.999750377 15.58% 15.58%
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Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 Ex11

c0 1.7084 2.2418 2.7809 1.0000 1.0000 1.0000 1.0000 NA NA NA NA

c1 0.4243 0.5317 0.6553 0.2481 0.2124 0.2491 0.2468 1.0000 1.0000 NA NA

c2 17.2807 22.1913 27.3526 10.0340 9.1641 10.3107 9.9919 40.7273 0.2494 NA NA

c1/c0 0.2484 0.2372 0.2357 0.2481 0.2124 0.2491 0.2468 NA NA NA NA

c2/c0 10.1149 9.8987 9.8360 10.0340 9.1641 10.3107 9.9919 NA NA NA NA

c2/c1 40.7273 41.7396 41.7396 40.4475 43.1366 41.3854 40.4910 40.7273 0.2494 NA NA

χ^2/dof 0.5357 0.5840 0.5988 0.5405 1.0552 0.5327 0.5432 0.5417 0.2286 0.1138 0.2290

Appendix C 
 

Summary of Results for Examples 1 to 11 from Appendix B 

 

 
 Tables C.1 through C.6 summarize all the evaluated results obtained for Examples 1 
through 11, as discussed in Appendix B. The following notation is used in these tables: Ex1 
through Ex11 denote Examples 1 through 11; ΩN Ex1 through ΩN Ex11 denote the 
normalized group PFNS values for Examples 1 through 11; ΩN2/ΩN1 through ΩN11/ΩN1 
denote the indicated ratios of the normalized PFNS values for Examples 1 through 11; fN1 
through fN11 denote the indicated normalized group PFNS uncertainties (in percent) for 
Examples 1 through 11; fN2/fN1 through fN11/fN1 denote the indicated group PFNS 
uncertainty ratios for Examples 1 through 11. 
 

The evaluated values obtained in Example 8 cannot be compared directly with those 
obtained from the other examples for reasons mentioned in Section B.9 so they are 
highlighted in pink color. 
 
Table C.1: Scale factors and normalized chi-square per d.o.f. values for Examples 1 through 

11. 
 

 

Table C.2: Normalized evaluated group PFNS values for Examples 1 through 11. 

Grp # ΩN Ex1 ΩN Ex2 ΩN Ex3 ΩN Ex4 ΩN Ex5 ΩN Ex6 ΩN Ex7 ΩN Ex8 ΩN Ex9 ΩN Ex10 ΩN Ex11

1 0.005549 0.005571 0.005574 0.005548 0.005623 0.005551 0.005550 0.005079 0.005547 0.005542 0.005542

2 0.009382 0.009413 0.009418 0.009386 0.009496 0.009373 0.009390 0.008974 0.009376 0.009369 0.009369

3 0.025137 0.025189 0.025194 0.025134 0.025294 0.025144 0.025139 0.024857 0.025132 0.025118 0.025120

4 0.030335 0.030516 0.030547 0.030350 0.031039 0.030299 0.030372 0.029472 0.030310 0.030287 0.030299

5 0.067405 0.067452 0.067452 0.067393 0.067503 0.067434 0.067395 0.066422 0.067402 0.067394 0.067366

6 0.176863 0.176730 0.176704 0.176843 0.176338 0.176909 0.176825 0.174840 0.176874 0.176846 0.176849

7 0.161570 0.161605 0.161600 0.161549 0.161584 0.161615 0.161549 0.161606 0.161566 0.161576 0.161547

8 0.129194 0.128981 0.128955 0.129196 0.128497 0.129192 0.129174 0.128482 0.129208 0.129211 0.129183

9 0.184231 0.184038 0.184007 0.184216 0.183548 0.184268 0.184192 0.184969 0.184244 0.184273 0.184278

10 0.099172 0.099004 0.098989 0.099185 0.098656 0.099143 0.099170 0.098848 0.099179 0.099190 0.099199

11 0.055246 0.055519 0.055561 0.055261 0.056236 0.055208 0.055293 0.059249 0.055243 0.055264 0.055312

12 0.029521 0.029592 0.029606 0.029531 0.029769 0.029497 0.029542 0.030853 0.029530 0.029541 0.029545

13 0.019916 0.019872 0.019871 0.019925 0.019793 0.019897 0.019922 0.019652 0.019917 0.019920 0.019919

14 0.005141 0.005172 0.005177 0.005144 0.005260 0.005135 0.005148 0.005256 0.005143 0.005141 0.005143

15 0.001337 0.001345 0.001346 0.001338 0.001364 0.001336 0.001339 0.001440 0.001328 0.001328 0.001328

Sums = 1 1 1 1 1 1 1 1 1 1 1
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Table C.3: Normalized evaluated group PFNS ratios for Examples 1 through 11. 

 

 
 

Table C.4: Normalized evaluated group PFNS uncertainties for Examples 1 through 11. 
 

 
 

Table C.5: Normalized evaluated group PFNS uncertainty ratios for Examples 1 through 11. 
 

 

Grp # ΩN2/ΩN1 ΩN3/ΩN1 ΩN4/ΩN1 ΩN5/ΩN1 ΩN6/ΩN1 ΩN7/ΩN1 ΩN8/ΩN1 ΩN9/ΩN1 ΩN10/ΩN1 ΩN11/ΩN1

1 1.00395 1.00440 0.99983 1.01339 1.00025 1.00019 0.91531 0.99955 0.99875 0.99864

2 1.00323 1.00383 1.00041 1.01218 0.99904 1.00085 0.95653 0.99936 0.99861 0.99863

3 1.00208 1.00227 0.99987 1.00624 1.00027 1.00007 0.98885 0.99982 0.99927 0.99931

4 1.00598 1.00699 1.00049 1.02321 0.99881 1.00124 0.97157 0.99918 0.99844 0.99882

5 1.00070 1.00070 0.99981 1.00144 1.00042 0.99985 0.98541 0.99995 0.99983 0.99942

6 0.99925 0.99910 0.99989 0.99703 1.00026 0.99979 0.98856 1.00007 0.99991 0.99992

7 1.00022 1.00019 0.99988 1.00009 1.00028 0.99987 1.00023 0.99998 1.00004 0.99986

8 0.99835 0.99815 1.00002 0.99460 0.99998 0.99984 0.99449 1.00011 1.00013 0.99991

9 0.99895 0.99879 0.99992 0.99629 1.00020 0.99979 1.00401 1.00007 1.00023 1.00026

10 0.99831 0.99816 1.00013 0.99479 0.99971 0.99998 0.99673 1.00007 1.00018 1.00027

11 1.00495 1.00570 1.00027 1.01791 0.99931 1.00085 1.07245 0.99995 1.00032 1.00120

12 1.00241 1.00286 1.00034 1.00839 0.99919 1.00069 1.04512 1.00029 1.00066 1.00082

13 0.99779 0.99769 1.00043 0.99380 0.99903 1.00029 0.98670 1.00001 1.00020 1.00012

14 1.00595 1.00697 1.00049 1.02319 0.99880 1.00123 1.02236 1.00042 0.99996 1.00040

15 1.00545 1.00625 1.00045 1.02027 0.99882 1.00109 1.07699 0.99301 0.99292 0.99267

Grp # fN1 fN2 fN3 fN4 fN5 fN6 fN7 fN8 fN9 fN10 fN11

1 7.36% 7.48% 7.49% 7.37% 7.77% 7.35% 7.38% 16.97% 7.33% 7.35% 7.36%

2 6.45% 6.52% 6.54% 6.46% 6.74% 6.43% 6.47% 14.99% 6.43% 6.46% 6.46%

3 4.36% 4.38% 4.38% 4.36% 4.43% 4.36% 4.36% 6.59% 4.36% 4.36% 4.36%

4 5.12% 5.21% 5.23% 5.13% 5.47% 5.10% 5.14% 68.75% 5.09% 5.80% 5.73%

5 2.58% 2.58% 2.58% 2.58% 2.58% 2.58% 2.58% 3.95% 2.58% 5.23% 5.23%

6 1.99% 1.99% 1.99% 1.99% 1.98% 1.99% 1.99% 3.21% 1.99% 1.86% 1.85%

7 2.03% 2.02% 2.02% 2.03% 2.01% 2.03% 2.03% 3.23% 2.03% 1.76% 1.76%

8 2.21% 2.20% 2.20% 2.21% 2.18% 2.21% 2.21% 3.30% 2.21% 2.21% 2.20%

9 2.14% 2.12% 2.12% 2.14% 2.10% 2.14% 2.13% 3.19% 2.14% 2.14% 2.14%

10 3.19% 3.18% 3.17% 3.18% 3.15% 3.19% 3.18% 4.23% 3.19% 3.18% 3.18%

11 6.06% 6.12% 6.13% 6.05% 6.28% 6.07% 6.06% 9.79% 6.04% 6.06% 6.01%

12 6.18% 6.16% 6.16% 6.19% 6.12% 6.17% 6.19% 8.17% 6.17% 6.17% 6.16%

13 7.58% 7.57% 7.57% 7.58% 7.57% 7.58% 7.57% 9.61% 7.58% 7.58% 7.57%

14 16.07% 16.37% 16.42% 16.10% 17.22% 16.01% 16.14% 74.40% 15.68% 15.74% 15.73%

15 15.77% 15.93% 15.96% 15.75% 16.37% 15.79% 15.76% 24.53% 15.56% 15.58% 15.58%

Grp # fN2/fN1 fN3/fN1 fN4/fN1 fN5/fN1 fN6/fN1 fN7/fN1 fN8/fN1 fN9/fN1 fN10/fN1 fN11/fN1

1 1.017 1.018 1.001 1.056 0.999 1.003 2.306 0.997 0.999 1.000

2 1.011 1.013 1.002 1.045 0.996 1.003 2.324 0.997 1.001 1.001

3 1.004 1.005 1.000 1.015 0.999 1.001 1.512 1.000 1.000 1.000

4 1.018 1.021 1.002 1.070 0.996 1.004 13.435 0.995 1.134 1.119

5 1.000 1.000 1.000 1.002 0.999 1.000 1.532 1.000 2.027 2.025

6 0.997 0.997 1.000 0.992 1.000 1.000 1.609 1.000 0.932 0.927

7 0.997 0.996 1.000 0.991 1.000 1.000 1.594 1.000 0.870 0.867

8 0.995 0.994 1.000 0.985 1.000 0.999 1.496 1.000 0.999 0.996

9 0.993 0.993 1.000 0.981 1.001 0.999 1.491 1.001 1.003 1.001

10 0.997 0.996 0.999 0.990 1.001 0.999 1.329 1.000 0.998 0.998

11 1.011 1.013 0.999 1.038 1.002 1.000 1.617 0.997 1.000 0.993

12 0.995 0.995 1.001 0.990 0.997 1.001 1.321 0.998 0.997 0.997

13 1.000 0.999 1.000 0.999 1.001 1.000 1.268 1.000 1.000 0.999

14 1.018 1.021 1.002 1.071 0.996 1.004 4.628 0.976 0.979 0.979

15 1.010 1.012 0.998 1.038 1.001 0.999 1.555 0.987 0.988 0.988
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Table C.6: Evaluated PFNS average energies and their uncertainties for Examples 1 through 
11. 

 

 
  

 Ex1 ε  Ex2 ε  Ex3 ε  Ex4 ε  Ex5 ε  Ex6 ε  Ex7 ε  Ex8 ε  Ex9 ε  Ex10 ε  Ex11 ε

ε 2.0189 2.0192 2.0193 2.0191 2.0204 2.0185 2.0192 2.0419 2.0189 2.0192 2.0194

% Unc ε 0.848% 0.855% 0.854% 0.849% 0.869% 0.848% 0.849% 2.517% 0.844% 0.845% 0.843%
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