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Overview 

Revision 1 of this report (July 2016) describes the 2016-2 version of the URRDO and 

URFIT computer codes. Most of the difference in this document between the original 

and revision 1 is in the Appendix describing how to analytically define multi-band 

parameters. There is a typo in ref. [6], [7], and the original version of this report. In 

calculating multi-band parameters the correct definition of 2B  is, 

2B = { A 1  [ A 0 ]2  + 1}/[  10 ]    

This only effects the documentation; the codes GROUPIE [10], URRDO and URRFIT 

have always used the correct definition of 
2B . 

This report describes HOW to calculate self-shielding in the unresolved resonance region 

(URR) [1], in terms of the computer codes we provide to allow a user to do these calculations 

himself. Here we only describe HOW to calculate; a longer companion report describes in 

detail WHY it is necessary to include URR self-shielding.  

Presently NJOY [2] uses the Probability Table Method (PTM) [3] to define self-shielding 

factors for subsequent use by MCNP [4]; this PTM data uses 20 cross section bands. Here we 

provide the computer tools needed to replace these 20 band data by Multi-band [5, 6, 7] (MB) 

data using only 2 cross section bands, and we demonstrate that this 2 band MB data produce 

statistically identical macroscopic K-eff results to those obtained by MCNP using 20 bands 

with the probability table method (PTM).  

The format for the representation of PTM and MB data is identical, so that we were able to 

easily interchange them and run MCNP with ABSOLUTELY NO CHANGES to MCNP – 

PTM and MB are 100% compatible and MCNP had no idea whether it was using one or the 

other – the only difference being 20 bands for PTM and only 2 bands for MB.   

The method described here to define self-shielded cross sections in the unresolved resonance 

region (UUR) by extrapolating moments of the cross section from the resolved to unresolved 

resonance region, is not new; it has been used in the TART Monte Carlo code since circa 

1975 [5, 6, 7]. I (D.E. Cullen) never bothered to publish the method because it always seemed 

so obvious to me, that I assumed it was widely known. In fact since I implemented it in 

TART I have not seen it used in any other code, so I am documenting it here, but I am 

stressing that it is by no means new or original.   

The tasks we wish to cover here include, 
 

1) Demonstrate that URR self-shielding is needed to accurate calculate results. 

2) Demonstrate that the multi-band method (MB) [5, 6, 7], using only 2 cross section 

bands, gets statistically the same answers as the Probability Table Method (PTM) [3] 

using 20 bands; here we use the NJOY-generated 20 band PTM data to generate the 2 

band MB data. 

3) Demonstrate that the method which D.E. Cullen has used for decades to define Multi-

band Parameters for use with the TART Monte Carlo code [9], also produces 

essentially the same answers as MCNP using 20 bands. Unlike step 2) described 
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above, here we derive the MB parameters completely independently of the method 

used by NJOY. 

 

To accomplish these tasks we provide URR-PACK, which is composed of three computer 

codes, 
 

1) GROUPIE – A standard code from PREPRO [10]. We use this to calculate self-

shielding factors and multi-band (MB) parameters over the entire energy range; not 

just the unresolved resonance region. The GROUPIE (Version 2016) code now prints 

out information that we need to run the URRFIT code described below. 
 

Resolved Resonance Region..... 1.00000E-5 to  600.000000 eV 

Complete Input Parameters for URRFIT are listed below 

ZA............................      92233 

MAT...........................       9222 

Atomic Weight Ratio (ATWT).... 231.037700 

Unresolved Resonance Region... 600.000000 to  40000.0000 eV 

Unresolved Competition (ICOMP)          0 

Is Unresolved Tabulated (LSSF)          1 

 

 

2) URRDO – Start from the present standard NJOY/MCNP Probability Table Method 

(PTM) data, in a pseudo-ENDF format, and transform these data to other forms for 

use in our testing at described below, including: no self-shielding, and self-shielding 

using Multi-band (MB), rather than PTM, parameters. 

 

3) URRFIT - Start from GROUPIE output of Multi-band (MB) parameters over the 

entire energy range, except for the unresolved resonance region. Use this to create 

self-shielding factors in the unresolved resonance region. Output is provided in 

several formats that can be used by MCNP [3] and TART [9]. The input data required 

are exactly those output by GROUPIE, described above, 

 
92233       9222   231.0377    600.0     40000.0          0    1 

u233.multband 

u233.multband.new 

U233.URRFIT.NJOY 

------------(Nothing below this line is Read)------------------------- 

   ZA        MAT   At.Wt.      E-Low     E-High       ICOMP LSSF 

 

The difference between the NJOY/MCNP results produced by URRDO and URRFIT, is that 

the URRDO Multi-band (MB) parameters are produced starting from PTM parameters 

generated by NJOY, so this relies on the NJOY code to produce the basic data. The URRFIT 

results are completely independent of NJOY, and only rely on GROUPIE and the method that 

has been used for decades to produce Multi-band (MB) data for use with the TART code.  

  



 

9 

A Brief History of the Unresolved Resonance Region 

When Leo Levitt first developed his Probability Table Method (PTM) circa 1970 [3], the 

unresolved resonance region was more important than it is today, because it spanned a larger 

energy range. As the years have passed the resolved resonance region has been extended to 

higher and higher energies, resulting in smaller unresolved resonance regions, thereby 

reducing its importance and simplifying our treatment. We can easily see this by comparing 

the current ENDF/B-VII.1 data to the earlier, circa 1970, ENDF/B-II data. 

 

For 
235

U ENDF/B-II the resolved resonance region was 1 eV to 64.504 eV, and the 

unresolved 64.504 eV to 24,788 eV; in comparison for 
235

U ENDF/B-VII.1 the resolved 

region is 10
-5

 eV to 2,250 eV, and the unresolved 2,250 eV to 25,000 eV. Here the upper 

energy limit of the unresolved region is essentially the same, but the lower energy limit has 

increased from 64.504 eV to 2,250 eV, greatly shortening the unresolved resonance region. 

 

       Fig. 1: Total cross section of  
235

U  from the ENDF/B-VII.1 and the ENDF/B-II libraries. 
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For 
238

U ENDF/B-II the resolved resonance region was 5 eV to 3,910 eV, and the unresolved 

3,910 eV to 45,000 eV; in comparison to 
238

U ENDF/B-VII.1 the resolved region is 10
-5

 eV 

to 20,000 eV, and the unresolved 20,000 eV to 149,028 eV. Here the upper energy limit of 

the unresolved region has been increased, but the lower energy limit has increased from 

3,910 eV to 20,000 eV, greatly shortening the unresolved resonance region. 

 
      Fig. 2: Total cross section of 

238
U from the ENDF/B-VII.1 and the ENDF/B-II libraries. 

 

 

Compared to the problem that Leo Levitt faced and solved circa 1970, today as a result of 

these changes in evaluations it is actually easier for us to extrapolate important moments of 

the cross section from the resolved to unresolved regions; we have more information about 

the larger resolved regions and less of an energy range to extrapolate to in order to span the 

unresolved regions.   
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URRDO Code 

The first 2 steps described above are addressed by the URRDO code. This code starts from 

the NJOY unresolved resonance region self-shielding data in a pseudo-ENDF format (i.e., an 

unofficial format created and used solely by NJOY). Based on reading this NJOY output data 

URRDO will produce one of three types of output, 

1) Identical to the Original NJOY data, allows us to “see” and check NJOY PTM data, 

2) Similar to the Original Data but with Self-Shielding Turned off. 

3) The Original 20 band PTM data replaced by 2 band MB Data. 

 

Using the Original NJOY data and the above described URRDO output we were able to 

perform MCNP runs of three different types using a collection of 32 critical assemblies and 

comparing the K-eff calculated results. Below is a table of the 32 critical assemblies used 

here for testing (the index numbers 1 through 32 will be used to refer to the different cases). 

 

 

No. ICSBEP label Short name Common name 
1 HEU-MET-FAST-001 hmf001 Godiva 
2 HEU-MET-FAST-002 hmf002-2 Topsy-2 
3 HEU-MET-FAST-003 hmf003-01 Topsy-U_2.0in(Uranium reflector) 
4 HEU-MET-FAST-003 hmf003-02 Topsy-U_3.0in(Uranium reflector) 
5 HEU-MET-FAST-003 hmf003-03 Topsy-U_4.0in(Uranium reflector) 
6 HEU-MET-FAST-003 hmf003-10 Topsy-W_4.5in(Tungsten reflector) 
7 HEU-MET-FAST-003 hmf003-11 Topsy-W_6.5in(Tungsten reflector) 
8 HEU-MET-FAST-014 hmf014 VNIIEF-CTF-DU 
9 HEU-MET-FAST-032 hmf032-1 COMET-TU1_3.93in 

10 HEU-MET-FAST-032 hmf032-2 COMET-TU1_3.52in 
11 HEU-MET-FAST-032 hmf032-3 COMET-TU1_1.742in 
12 HEU-MET-FAST-032 hmf032-4 COMET-TU1-0.683in 
13 IEU-MET-FAST-007 imf007 Big_Ten 
14 IEU-MET-FAST-007 imf007d Big_Ten(detailed) 
15 IEU-MET-FAST-010 imf010 ZPR-6/9(U9) 
16 IEU-MET-FAST-013 imf013 ZPR-9/1(Tungsten reflector) 
17 IEU-MET-FAST-014 imf014-2 ZPR-9/2(Tungsten reflector) 
18 MIX-MISC-FAST-001 mif001-01 BFS-35-1 
19 MIX-MISC-FAST-001 mif001-02 BFS-35-2 
20 MIX-MISC-FAST-001 mif001-03 BFS-35-3 
21 MIX-MISC-FAST-001 mif001-09 BFS-31-4 
22 MIX-MISC-FAST-001 mif001-10 BFS-31-5 
23 MIX-MISC-FAST-001 mif001-11 BFS-42 
24 IEU-MET-FAST-022 imf022-01 FR0_3X-S 
25 IEU-MET-FAST-022 imf022-02 FR0_5-S 
26 IEU-MET-FAST-022 imf022-03 FR0_6A-S 
27 IEU-MET-FAST-022 imf022-04 FR0_7-S 
28 IEU-MET-FAST-022 imf022-05 FR0_8-S 
29 IEU-MET-FAST-022 imf022-06 FR0_9-S 
30 IEU-MET-FAST-022 imf022-07 FR0_10-S 
31 IEU-MET-FAST-012 imf012 ZPR-3/41 
32 IEU-COMP-FAST-004 icf004 ZPR-3/12 
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The test cases included in the analysis were selected from the ICSBEP Handbook [8] 

according to the following criteria: 

 Benchmarks that are sensitive to the capture and fission of the two uranium isotopes 

in the epithermal energy region; the search for such benchmarks was done with the 

DICE package, that is available with ICSBEP (version 2014). 

 Benchmarks that are sensitive to capture in 
238

U in the energy region from 10 keV to 

20 keV (the list was provided by O. Cabellos, OECD/NEA Data Bank). 

 Availability of inputs for MCNP. 

 Godiva benchmark was added because it is the most widely used benchmark. 

 

Results: 

All calculations with MCNP were done with identical inputs. The number of source particles 

was sufficient to reach uncertainties below 8 pcm (parts per 100 000). A few selected cases 

were re-run with an increased number of particles to pin-down statistically significant 

differences. We like to think/hope that today our Monte Carlo codes [4, 9] can reproduce 

K-eff for critical assemblies to within +/- 0.1% (100 pcm). What the results show are: 

1) Calculations using MCNP with and without URR self-shielding result in differences 

in K-eff of over 1%, which is 10 times, (i.e. 1000%) the 0.1% accuracy we think we 

can achieve. These results prove that it is important to include URR Self-Shielding in 

order to achieve accurate results. 

 

2) Comparison of MCNP results using 20 band PTM data and 2 band MB differ in all 

cases by 0.02% or less, and in most cases by less than 0.01%; i.e., an order of 

magnitude closer than the uncertainty we hope to achieve and consider significant. 

These results prove that using either the original 20 band PTM data or 2 band MB 

data derived from the PTM data, the calculated K-eff values using PTM and MB 

parameters resulting are indistinguishable for all practical purposes; they are an order 

of magnitude closer than the 0.1% we hope to achieve, producing differences near 

only 0.01%. 
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Fig. 3: Comparison of calculated K-eff values with and without self-shielding 

using PTM and MB parameters. 
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URRFIT Code 

The last (third) step described above is addressed by the URRFIT code. This code starts from 

GROUPIE Multi-band Parameters (MB) that are calculated from tabulated cross sections 

over the entire energy range; this tabulated data only include infinitely dilute cross sections in 

the unresolved resonance region. URRFIT adds self-shielding f-factors for the unresolved 

resonance region. This is completely independent of the method used by NJOY to calculate 

20 band Probability Table Method (PTM) data.  

 

The method used by URRFIT is not at all new; it has been used for decades to produce self-

shielded data for use in the TART [9] Monte Carlo code. Over the decades many 

comparisons of the results with other codes were performed and published to demonstrate 

that this method produces accurate results. But this is the first time the author (D.E. Cullen) 

has shared the details of the method with the public; this is not to keep any important secret, 

rather it is because it was always felt that this method is so simple and obvious that surely 

many more people must have thought of it and used it before; but perhaps not, so the 

explanation follows below. 

 

 

Let’s talk Physics 

For use in our applications we need a continuous and physically acceptable representation of 

our cross section over the entire range of neutron energies. In our evaluated neutron data we 

use a variety of representations for our cross sections in adjacent energy range. Generally we 

have a resolved resonance region at lower energies, followed by an unresolved resonance 

region, and at still higher energies we have smoothly varying tabulated data. Part of our job in 

preparing data for use in our applications is to combine these various representations to 

define a unique and physically acceptable continuous neutron cross sections over the entire 

neutron energy range. 

To illustrate this point the below figure compares the 
238

U Total cross section at temperatures 

of 0 and 300 K. In this figure we have: a resolved region up to 20 keV, an unresolved region 

from 20 to near 150 keV, and a tabulated smooth range above 150 keV. In this figure the 

unresolved resonance region is represented only by AVERAGE cross sections. In our neutron 

transport calculations we include the actual statistical fluctuations in the cross section within 

the unresolved region range; without including an unresolved region we would have a 

ridiculous non-physical representation of the cross section, as varying over orders of 

magnitude in the resolved region, and then abruptly becoming smooth at the resolved-

unresolved energy boundary (in the below figure at 20 keV) and higher energies. By 

including an unresolved resonance region from 20 to near 150 keV we add a smooth 

transition between the resolved region below and the “smooth” tabulated data at higher 

energies that starts near 150 keV and extends upward from there. Again, let us stress that this 

is the whole purpose of the unresolved resonance region: allow a smooth and physically 

acceptable transition between resonance fluctuations and smooth tabulated cross sections.   
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   Fig. 4: Total cross section of 
238

U from the ENDF/B-VII.1 library at different temperatures. 

 

In our neutron transport calculations we are generally not interested in what happens at 

discrete energies; rather we are interested in integral observable properties, such as energy 

deposit, damage, etc. To be physically acceptable integral properties must be smoothly 

varying with energy, and in particular we expect them to smoothly vary across the artificial 

energy boundaries, between the resolved region at lower energy, followed by unresolved and 

finally “smooth” tabulated at higher energies. Let us stress again: physically nothing changes 

at these artificial energy boundaries; they are merely convenient man-made energy points 

used in our evaluations, and historically the transition energies have changed with time as our 

knowledge of the data improves.   

Good physics tell us that nothing should abruptly happen at the artificial energy boundaries; 

rather we MUST have smooth variation across these boundaries. Therefore the approach used 

by URRFIT to define unresolved region self-shielding is to guarantee that they vary smooth 

between the resolved and unresolved region, and in addition that they smoothly approach the 

higher energy “smooth” tabulated data.  

Hopefully the below figures illustrate that this objective is being met by URRFIT. In this case 

the GROUPIE code was used to calculate multi-group cross sections using the TART 616 

group structure (50 groups per energy decade from 10
-5

 eV up to 20 MeV). Self-shielding 

factors are calculated in the resolved energy range, and these are then extrapolated from the 

resolved into the unresolved region, including a physically acceptable shape such that the 

self-shielding decreases, i.e., factors F1 and F2 (see the definitions below) approach unity 

toward the upper energy boundary of the unresolved region. The result is smoothly and 

continuously varying self-shielding across the entire neutron energy range. Note that with this 

method the infinitely dilute unresolved cross sections (that we now generally agree on) are 

preserved, and only self-shielding factors, F1 and F2, are extrapolated. The definition of the 

f-factors for the Total cross section F1(T) and F2(T) are: 
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F1(T) =



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F1(0) and F2(0) are the moments that are 

extrapolated from Resolved to Unresolved 

 

You can consider F1(0) to be the totally shielded cross section. Personally I like to think of it 

as defining the reciprocal of the distance to collision; in our Monte Carlo codes we do not 

sample cross section, but rather we sample distance to collision, e.g., 

X = - log(random)/ )(E
T    

Similarly when we use the narrow resonance and Bonderenko approximations to calculate 

self-shielded multi-group cross sections, we are also calculating reciprocal distance to 

collision to define our group constants.  

The combination of the moments F1 and F2 conserve distance to collision and its variance.               

 

Extrapolation 

Nuclear theory predicts that the self-shielding will decrease with increasing energy as 1/E, so 

that the unresolved resonance region can indeed serve as a transition between the resonance 

fluctuations in the resolved resonance region, and the “smooth” tabulated cross sections at 

higher energy. 

For decades this prediction has been used in the TART code to estimate the energy 

dependence of F1 and F2 in order to extrapolate from the resolved resonance region into the 

unresolved resonance region, to have a smooth, continuous variation of physics across the 

artificial resolved/unresolved energy boundary, and approach the “smooth” tabulated cross 

sections at higher energy. Specifically, the energy dependence is assumed to be: 

F1(E) = 1 – A1/E 

F2(E) = 1 – A2/E 

where A1 and A2 are the fitting coefficients. The same factors can also be calculated directly 

from the self-shielded cross sections based on the unresolved resonance parameters, such as 

calculated by NJOY. By examining the below figures one can see that although the methods 

used by NJOY and the extrapolation method are completely different, they both show a 

similar 1/E decrease in self-shielding and differ only in how the coefficients A1 and A2 are 

defined in the above equations. NJOY uses a randomly sampled ladder of resonances, and an 

approximate method of Doppler broadening. In the extrapolation method we merely fit F1(E) 

and F2(E) in the resolved resonance region to define A1 and A2, and extrapolate this into the 

unresolved resonance region.          
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235

U Comparison of Unresolved Resonance Region Self-Shielding Factors 

The 
235

U unresolved energy range is from 2.25 keV to 25 keV. There is good agreement 

between both F1 and F2 factors for Total and Elastic, but the NJOY Fission and Capture F2 is 

generally lower than URRFIT, and lower even than the range of F2 in the resolved energy 

range; this is particular true of the Capture which is well below the entire range of F2 in the 

resolved energy range; physically there should be a smooth, continuous variation with energy 

from resolved to unresolved. URRFIT results show this, whereas NJOY results do not. 

Fig. 5: Self-shielding factors F1 and F2 for 
235

U calculated by extrapolation and  

from the cross sections calculated by NJOY. 
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238U Comparison of Unresolved Resonance Region Self-Shielding Factors 

The 
238

U unresolved energy range is from 20 keV up to nearly 150 keV. Generally there is 

fair agreement in the F1 factor calculated by URRFIT and NJOY, but the F2 by NJOY is 

generally lower than the one by URRFIT, and it is even lower for Capture over the entire 

range of F2 in the resolved range; physically there should be a smooth, continuous variation 

with energy from resolved to unresolved. URRFIT results show this, whereas NJOY results 

do not. Note, that NJOY has no data for fission, whereas the URRFIT results include the sub-

threshold fission. 

 

Fig. 6: Self-shielding factors F1 and F2 for 
238

U calculated by extrapolation and  

from the cross sections calculated by NJOY. 
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239
Pu Comparison of Unresolved Resonance Region Self-Shielding Factors 

The 
239

Pu unresolved energy range is from 2.5 keV to 30 keV. Generally there is poor 

agreement between URRFIT and NJOY for both F1 and F2, with the NJOY data being 

generally lower than URRFIT; for Fission and Capture by NJOY the F2 factors are even 

lower than the same factors over the entire resolved resonance range; physically there should 

be a smooth, continuous variation with energy from resolved to unresolved. URRFIT results 

show this, whereas NJOY results do not.  

Fig. 7: Self-shielding factors F1 and F2 for 
239

Pu calculated by extrapolation  

and from the cross sections calculated by NJOY. 
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240
Pu Comparison of Unresolved Resonance Region Self-Shielding Factors 

The 
240

Pu unresolved energy range is from 5.7 keV to 40 keV. Generally there is poor 

agreement between URRFIT and NJOY for both Total and Elastic F1 and F2, with the NJOY 

data being generally lower than URRFIT. For Fission and Capture the results are in better 

agreement, particularly F1 which is in very good agreement; physically there should be a 

smooth, continuous variation with energy from resolved to unresolved. URRFIT results show 

this, whereas NJOY results do not.  

Fig 8: Self-shielding factors F1 and F2 for 
240

Pu calculated by extrapolation  

and from the cross sections calculated by NJOY. 
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241Pu Comparison of Unresolved Resonance Region Self-Shielding Factors 

The 
241

Pu unresolved energy range is from 300 eV to 40.2 keV. It is worth noting that today 

starting the unresolved region at such a low energy (300 eV) is very unusual, which at least 

partially explains the differences we see. Generally there is poor agreement between all of the 

URRFIT and NJOY data, with the NJOY data being generally lower than URRFIT. For 

Fission and Capture the NJOY F2 factor is lower than the same factor over the entire resolved 

resonance range; physically there should be a smooth, continuous variation with energy from 

resolved to unresolved. URRFIT results show this, whereas NJOY results do not.  

 

Fig. 9: Self-shielding factors F1 and F2 for 
241

Pu calculated by extrapolation  

and from the cross sections calculated by NJOY. 
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Summary of Comparison of Unresolved Resonance Region Self-Shielding 

Factors 

Based on the above comparison for five materials we can see the difficulty of trying to 

extrapolate the resonance self-shielding properties of a material using the ENDF convention 

of using average level spacing and widths for single level Breit-Wigner resonances and 

sampling ladders of resonances that have been Doppler broadened using a very approximate 

method of Doppler broadening, i.e. the so-called psi-chi method. Many years ago the author 

D.E. Cullen contacted Eugene Wigner [12], as an expert on Breit-Wigner resonances. He 

confirmed that the Breit-Wigner resonance formalism is designed to predict reaction rates 

near the peaks of resonances, but it is much less accurate in the minima between resonances. 

When in addition the psi-chi Doppler broadening method is used, the results between 

resonances are even worse - much worse. We must also add to this the uncertainty due to 

sampling ladders of resonances. In this situation we should not be surprised to find 

inconsistent results between what we calculate in the resolved and the unresolved energy 

ranges.  

In comparison, extrapolating self-shielding properties from the resolved to unresolved energy 

ranges using moments of the cross section is relatively simple, straightforward and leads to 

consistent results, and avoid all of the restrictions involved with ENDF single level Breit-

Wigner resonances, psi-chi Doppler broadening, and ladder sampling in the unresolved 

resonance energy region. 

In summary, physically there should be a smooth, continuous variation with energy from the 

resolved to unresolved energy range. URRFIT results show this smooth, continuous results, 

whereas NJOY results do not. There seems to be little question that the approach presented 

here, to extrapolate moments, is physically more acceptable. Finally there is the investment of 

many hours of computer time to sample ladders – for each and every material – versus milli-

seconds to extrapolate moments and define two band parameters from these moments.    
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How do these differences affect our K-eff results? 

The below figure shows the results, including those based on URRFIT. As a reminder, the 

NJOY-PTM and URRFIT-MB results are completely independent being defined using two 

completely different methods. To be fair to both methods here we will not claim that one 

method is more or less accurate than the other, and as such in defining the ratios that appear 

on the below figure, the average of NJOY-PTM and URRFIT-MB results was used as the 

reference. 

 

The results are not always as close as we found for the above figure, where the MCNP-PTM 

and MCNP-MB results were completely correlated, resulting in differences in the 0.01 to 

0.02% range. But here we do find that the MCNP-PTM and URRFIT-MB results are still 

within a narrow range, +/- 0.1%, which is a realistically acceptable range; based solely on 

these results it would be hard to claim that one method is better or worse than the other for 

use in our applications. But based on the above comparison of resolved and unresolved data, 

it seems clear that extrapolating moments as has been done with TART for decades yields 

more physically acceptable results than the PTM approach, which is limited by single-level 

Breit-Wigner, very approximate Doppler broadening, and statistical variation due to sampling 

ladders.    

 

 
Fig. 10: Comparison of K-eff values calculated using PTM and MB parameters. 
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Appendix: 2 vs. 20 bands 

The question that is most often asked when I describe the Multi-band (MB) method is: How 

can only 2 MB bands produce results that are as accurate as 20 PTM bands? The secret is in 

how the weights and cross sections for each band are defined. When Leo Levitt first 

introduced his Probability Table Method (PTM) it used only a few cross section ranges; back 

then PTM used ranges, in contrast today it uses discrete value, exactly the same as the multi-

band method. Since then users have tried to improve results by adding more and more cross 

section bands, to the point where today NJOY/MCNP uses 20 bands. 

 

It seems this was completely the wrong approach to take. Rather than more and more bands, 

what was needed was better physics to define the discrete quadrature used today by both 

PTM and MB; that’s what it is: a discrete quadrature similar to the Gaussian quadrature used 

in the discrete-ordinates (Sn) codes, to approximate the angular distribution of neutrons or 

photons. What makes Gaussian quadrature so effective is how the weights and discrete 

directions are defined. 

 

Similarly here we should examine more closely the approximations we are using to define the 

multi-band parameters (weights and discrete cross sections). As stated earlier, both PTM and 

MB are using a discrete quadrature to approximate the self-shielded cross section, or self-

shielding factors, 

 

<  0)(
R

 > =  




 



B
BB

B
BBRB

tP

tP

0]/[

0]/[

      

This includes the Bonderenko approximation that defines the self-shielded cross section as a 

continuous function of 0 from 0 to infinity, as a sum of B bands. If one multiplies the 

numerator and denominator by the product of B terms he finds that we are actually defining 

the self-shielded cross section as a ratio of two (B-1) order polynomials in 0 , which is a 

Pade approximation; (B-1) order polynomial includes B coefficients, starting with 0-th order 

up to (B-1)-th order. 

 

What this means is that the PTM method in using 20 bands to represent this self-shielding 

curve; it is using polynomial in 0 , up to 19-th order, whereas the MB method using only 

2 bands is using only first order polynomials in numerator and denominator. The trick is that 

the multi-band method exactly conserves the self-shielded cross sections at the 0  limits of 

0 and infinity, whereas PTM do not explicitly conserve anything. The question is: Do we see 

any significant differences in the self-shielded curves based on 20 vs. 2 bands that will affect 

our integral results? Above in this report are results for the unresolved resonance ranges of 

some important nuclides that show no significant differences for an integral parameter such 

as K-eff.. 

 

To more clearly understand why we see so little difference between using 20 versus 2 cross 

sections bands we can look at how the self-shielding f-factors vary across the entire range of 

0 from small to large (basically0 zero to infinity). According to the approximations in 

our models this would include all possible combinations of one material and any other 

materials, e.g., 
235

U mixed with anything else. Here we will scale everything to the infinitely 
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dilute total cross section, < )(T
 >. The definition of the f-factors for the Total F1(T) and 

F2(T) is then,  

 

F1(T) =








B

BB

B

BBB

TSP

TSPS

]/[

]/[

: sum over bands, B 

T   = 0 / < )(T
 > 

SB  =TB /< )(T
 > 

F2(T) =








B

BB

B

BBB

TSP

TSPS

2

2

]/[

]/[

:sum over bands, B 

 

F1(0) and F2(0) are the moments that are 

Extrapolated from Resolved to Unresolved 

 

With this definition F1(T) approaches its maximum of 1.0 as 0  , or T approaches infinity 

(the infinitely dilute value) and its minimum as 0  , or T approaches zero (the totally 

shielded value, or reciprocal of the distance to collision).   

Our two models differ only in how many bands are used: PTM uses 20 bands, and MB uses 2 

bands, and how we define band weights and cross sections. You might think that the 

differences using 20 versus 2 would have to be very large in order to justifying requiring ten 

times as many bands. Let’s see how the results actually compare at the lower and upper 

energy limits of a few unresolved resonance regions; we expect the maximum self-shielding 

near the lower energy limit and minimum near the upper energy limit. In all cases the self-

shielding curve is a fairly simple S shape, as we see below. 

For 
235

U
 
we see differences up to 0.017% at the lower energy limit (2.25 keV) and up to 

0.001% at the upper energy limit (25 keV); the results are essentially indistinguishable. 
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For 
238

U we see differences up to 0.328% at the lower energy limit (20 keV) and up to 

0.005% at the upper energy limit (near 149 keV); there is a small difference at 20 keV and 

virtually none at 149 keV. There is little significant difference that affects integral results 

(which help to explain why we saw no significant difference above for the K-eff values). 

 

 

 

For 
239

Pu we see differences up to 0.282% at the lower energy limit (2.5 keV) and up to 

0.002% at the upper energy limit (near 30 keV); there is a small difference at 2.5 keV and 

virtually none at 30 keV. There is little significant difference that affects integral results 

(which help to explain why we saw no significant difference above for the K-eff values). 
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For 
240

Pu we see differences up to 2.056% at the lower energy limit (5.7 keV) and up to 

0.082% at the upper energy limit (near 40 keV); there is some difference at 5.7 keV and very 

little at 40 keV. Fortunately we would need an enormous concentration of 
240

Pu to see any 

significant difference that affects integral results (which help to explain why we saw no 

significant difference above for the K-eff values). 

 

  

 

For 
241

Pu we see differences up to 1.583% at the lower energy limit (300 eV) and up to 

0.001% at the upper energy limit (near 40.2 keV); there is some difference at 300 eV and 

virtually none at 40.2 keV. The difference at 300 eV can be understood by noting how low in 

energy the resolved region ends and the unresolved starts, compared to other isotopes. 

Fortunately we would need an enormous concentration of 
241

Pu to see significant difference 

that affects integral results (which once again explains why we saw no significant difference 

above for the K-eff values). 
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These results are quite typical and illustrate that in the unresolved resonance region the self-

shielding curve is such a simple S shape that it does not require higher order polynomials in 

0 to accurately represent it. From the above figures we can see that the 2 bin MB results 

are defined to exactly agree with the 20 bin PTM results for the low and high limits of 0

(at the extreme left and right of each figure), so that high and low concentrations of any 

material always produce the same results whether we use 20 or 2 bins.  

In the above figures we only see differences, and even then only % differences, when the 

cross section due to one material is similar in magnitude to the cross section due to all other 

materials in a mixture. i.e., near the middle of each figure, where sigma-0/unshielded is close 

to 1. This rarely occurs in actual assemblies, and so far we are yet to encounter any critical 

assemblies where this is true, which helps to explains why the K-eff results we calculate is 

essentially the same whether we use 20 or 2 bins. 

Please remember that the results of two sets of data, 20 bands vs. 2 bands, shown in the above 

figures, are exactly the two sets of data we used in our criticality calculations. In these 

criticality calculations for 32 critical assemblies we found that the difference in K-eff was 

usually less than 0.01% and always less than 0.02%, well below the 0.1% range that we 

consider of any significance. So that the differences shown in the middle of self-shielding 

curves do not translate into any significant macroscopic differences, as in K-eff; the 

results are actually based on the lower and upper extremes of each self-shielding curve, 

where by definition the 20 band PTM and 2 band MB results agree. 

One important point to keep in mind is that this whole concept of the self-shielding curve vs. 

sigma-0 is based on some very approximate methods and assumptions, including: infinite 

media, narrow resonances, single level Breit-Wigner resonances, simplified Doppler 

broadening (such as psi-chi), and the  Bonderenko approximation. In any real situation we do 

not expect the self-shielding to exactly agree with all of these approximations. In practice a 

good point to keep in mind is: THAT WE DO NOT NEED AN EXACT ANSWER TO A 

VERY APPROXIMATE METHOD. This statement may seem obvious to you, but what it 

means here is that in practice it is sufficient to conserve the unshielded and totally shielded 

limits for the scalar flux and partially shielded, which is what the multi-band method does, 

without necessarily agreeing with the entire VERY THERETICAL self-shielding curve. 

Generally the self-shielding of heavy even-odd isotopes, such as 
235

U, 
239

Pu and 
241

Pu, is 

small compared to that of even-even isotopes 
238

U and 
240

Pu, e.g., note the value of f-factor 

near the lower sigma-0 limit of the above figures. This makes it easier to represent the self-

shielding of these even-odd isotopes, i.e., our important fuels.  

In summary, as with any discrete quadrature, such as Gaussian quadrature, or as in our case 

multi-band quadrature, what is most important is how the discrete weights and ordinates are 

defined. For Gaussian quadrature the weights and ordinates are defined to approximate 

polynomials, e.g., N-th order Gaussian quadrature has 2*N degrees of freedom (N weights 

and N ordinates), so that it can exactly represent any 2*N order polynomial.  

To illustrate a similarity to our situation, consider that we want to define the integral of a 

function(x). You can try to accurately integrate a curve by using equally or regularly spaced 

intervals in x, and can use a brute force approach of using more and more values of x to try 
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and improve your integral. Alternatively, you can use a Gaussian quadrature, to guarantee 

that you will get the best answer for any polynomial of order 2*N.  

This is quite similar to our situation where starting from Leo Levitt’s original Probability 

Table Method (PTM) using a few cross section bands, over the years users have tried the 

brute force approach to using more and more bands. In contrast I have tried to use a more 

scientific approach to concentrate on defining the multi-band weights and ordinates to 

accurately estimate the actual, real scalar moments of the flux that we encounter in our 

applications.   

Analytical Solution for Band Parameters 

The much of following section is copied from Handbooks, Ref. [6] and [7], which the author 

D.E. Cullen wrote as long ago as 1987, so this is nothing new. I have included changes here 

to both correct typos in Ref. [6] and [7], and updates to the procedures I now use to define 

multi-band parameters.  

The equations defining the multi-band parameters are non-linear and have a non-unique 

solution, e.g., we can interchange the multiple solutions to define another solution. This has 

resulted in people trying iterative solutions, which are difficult, and numerically unstable. 

This is not necessary: you know how to solve non-linear, non-unique equations; you were 

taught as a teenager how to solve a quadratic a*X
2 

+ b*X + c = 0, by assuming X = A+/-B. 

X = {-b +/- [b
2
 – 4*a*c]

1/2
}/{2*a}   : A = -b/{2a}    : B = [b

2
 – 4*a*c]

1/2
/{2*a} 

The two band equations are no more complicated than this. The two band equations are just 

quadratic. Similarly the three band equations are cubic and the four band quartic; all of these 

have simple analytical solutions based on nothing more complicated than a change of 

variables. Here we illustrate the simple analytical two band solution (the following is mostly 

copied from Ref. [6], [7], with corrections to typos in Ref. [6], [7], and updated for the 

method I use today). 

Since we know the forms that we expect the self-shielded moments of the flux to assume in a 

number of widely applicable cases, we will define our quadrature to ensure that in these cases 

we obtain exactly the correct self-shielded cross sections. For example, if we have a standard 

self-shielded multigroup library for each group, material and reaction, we will have a variety 

of self-shielded cross sections, each corresponding to using a different self-shielding factor in 

the form (I define these using my GROUPIE code, which is part of PREPRO2015 [10]), 

)( TW    = 
k

T ][

1

0
 ; for various k  and 0  

Since from this library we know the self-shielded cross section corresponding to each self-

shielding factor (the equivalent of )( TW  ), we can use this information to solve the system 

of equations to define our multi-band weights, BP , and cross sections , RB , for each band. 

  



 

30 

Analytical Solution for 2 Bands 

In order to illustrate how to define multi-band parameters, consider the simplest possible case 

of using two bands; in this case we have four unknowns, the two band weights 1P  and 2P , and 

the two band cross sections 1R  and 2R , for each reaction R (R = total, elastic, capture,...). 

In order to uniquely define our four unknowns for the total cross section we need four 

equations. One of the four equation normalizes our quadrature 1P  + 2P  = 1. In addition to will 

use three moments of the total cross section to complete our set of four equations.  

As with any quadrature, such as Legendre, we can define our quadrature in more than one 

way to best meet our needs. In each case I use moments of the cross section to define 

quadrature ordinates and abscissa. In both cases I want to be sure to exactly reproduce the 

results for certain limiting cases that we may actually encounter in our applications; these 

include the infinitely dilute, or unshielded limit ( )1)( TW , the totally shielded flux 

weighted cross section )/1)(( TTW  , or distance to collision. To uniquely define the 

quadrature I need three moments.  

The first method that I used many years ago, and documented in ref. [6] and [7], used the 

totally shielded current weighted cross section )/1)(( 2

TTW  . The second method, that I 

have used more recently, uses a partially shielded weighted cross section, with a value of 0  

equal to the unshielded total cross section in each group )/(1)(( 0 TTW . Many years of 

experience have shown that the second method yields better results (i.e., better agreement 

with continuous energy cross section calculations), so that today this is what I personally use 

as my standard in all of my calculations [9]. The first method that I initially used many years 

ago is described in detail in  ref. [6] and [7], and I will not describe further here; here I will 

only describe the second method, because this is what I use today.       

In order to illustrate this procedure, consider the simplest possible case of using two bands; in 

this case for the we have four unknowns, the two band weights 1P  and 2P , and the two band 

cross sections 1R  and 2R , for each reaction R (R = total, elastic, capture,...). Assume that 

from a normal multigroup processing code we have calculated the unshielded cross section 

( )1)( TW , the totally shielded flux weighted cross section )/1)(( TTW   and the 

partially shielded  flux weighted cross section ( TTW  /(1)(  +  0 )), which we will 

denote by  210 ,, , respectively. Then for the total cross section )( TR  , the 

four equations sufficient to uniquely calculate our two band parameters are obtained by 

realizing that our quadrature must be normalized, 

1P  + 2P  = 1   

and by inserting each our three weighting functions into our equation and equating the 

resulting equations to our known, three pre-calculated self-shielded cross sections, 

 210 ,, , 

 0  = 
21

2211

PP

PP TT




  ;   ( )1)( TW  
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 1  = 
2211

21

TT XPXP

PP




      ;   ))(( TT XW  : TX  = T/1  

 2  =   
*

22

*

11

*

222

*

111

TT

TTTT

XPXP

XPXP




    :   ( ))( *

TT XW  : *

TX = T/[1 +  0 ] 

We obtain a set of four nonlinear equations in four unknowns. Unfortunately, the solution to 

this set of equations is not unique. For example, the two bands are indistinguishable, so that if 

we obtain one solution for this system of equations, we can obtain a second solution merely 

by exchanging the weights and cross sections for the two bands. The solution does not 

become unique until we introduce an ordering into the parameters, such as 21 TT  . This 

leads us to believe that the two band parameters will be related to the roots of a quadratic 

equation, which are also not unique without an ordering. Therefore, we make the standard 

change of variables used to solve a quadratic equation, 

1P  = 
2

1
 +     ; 1T  = 

1

1

X
 =  

 = 
2

1
 -    ; 2T  =  

2

1

X
 = 

BA 

1
 

This change of variables immediately satisfies 1P  + 2P  = 1 and the remaining three equations 

can be analytically solved to define,  

A  = 
 12

1
[





20

10 ]                         

2B = { A 1  [ A 0 ]2  + 1}/[  10 ]     

  = 




1

1

2

1

B

A
   

WARNING – the above definition of 
2B  is correct; there was a typo in all earlier 

versions of the documentation, including the original version of this report and ref. [6] 

and [7]. This only effects the documentation; the codes GROUPIE [10], URRDO and 

URRFIT have always used the correct definition of 
2B . 

As expected there are two possible values for B , corresponding to the positive and negative 

roots of 2B . This is the result of the non-uniqueness of the solution without an ordering. 

From the definitions of 1T , 2T  and   in terms of A  and B , equation [4.236] we can see 

that choosing the positive or negative root of 2B  merely corresponds to the same solution 

with the two bands interchanged. In order to obtain a unique solution we will always define 

B  to be positive, which corresponds to introducing the ordering 21 TT  . 

The above algorithm will always produce physically acceptable parameters (positive band 

weights and cross sections) as long as  0     1     2 . It can be demonstrated 

BA 

1

2P
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(see Ref. [6], [7]), that the only time that the three of these are equal is when the total cross 

section is independent of energy across the group (i.e., when it is constant); in all other cases 

this inequality is true. When the cross section is constant the two bands become 

indistinguishable and the two band cross sections become equal, i.e., only one band is 

required in the group (i.e., the normal multigroup equation) – WARNING – this is a limiting 

case that the codes URRDO and URRFIT explicitly handle to avoid a singularity in the above 

definitions, as B and    approach zero; this limit and how I handle it is described below. 

Once the two band parameters for the total cross section are known, for each other reaction R 

(R = elastic, capture, fission, etc.), we may solve for the reaction cross sections. For this two 

band example for each reaction there will be two unknowns, the two band cross sections 1R  

and 2R . If from our normal multigroup library for each reaction we know the unshielded 

cross section ( )1)( TW  and the totally shielded flux weighted cross section 

)/1)(( TTW  , we will have two equations for each reaction R, 

R 0   = 
21

2211

PP

PP RR




      ;  ( )1)( TW  

R 1  = 

2

2

1

1

2

22

1

11

TT

T

R

T

R

PP

PP















     ; )/1)(( TTW       

Since from the total cross section definitions, we know 1P  , 2P , 1T  and 2T , we may solve 

these two linear equations to define the unknowns 1R  and 2R . In order to solve these two 

equations, it is convenient to introduce the change of variables, 

1R  = R 0  - 
1P

C
 

2R  = R 0  + 
2P

C
        

This change of variables immediately satisfies the first equation, and the second can be 

solved to find, 

C  = [ RR  10 ][

21

2

2

1

1

11

TT

TT

PP










]  =  [ RR  10 ]/[ TB  12 ] 

In the seemingly trivial limit of no self-shielding, these equations become numerically 

unstable, because in this limit and two band cross sections, 1T and 2T , approach the 

unshielded average, and the two band weights, 1P  and 1P  , become non-unique, as long as 

they sum to unity, e.g., we can see this from the equations defining B and  , since in the no 

shielding limit B approaches zero and since  is proportional to 1/ B , we have a problem. 
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To handle this limit I consider three cases. In all three cases I always define, 

1P  = 
2

1
 +     ; 1T  = 

1

1

X
 =  

 = 
2

1
 -    ; 2T  =  

2

1

X
 = 

BA 

1
 

The three cases correspond to placing limits on   and/or B . 

1) No self-shielding:  1 =  0  

Weight    1)( TW  

Conserve  0  

            P1 = P2 = 1/2 :  = 0, 2B = 0, A = 1/  0  

           1T = 2T =  0  

2) Little self-shielding:  1  =>0.9999  0 ; 0.01% or less self-shielding 

Weight 1)( TW  TTW  /1)(  

Conserve  0   1  

P1 = P2 = 1/2 :  = 0 

A  = 1/  1  

2B =[  0  -  1 ]/[  0  1

2] 

  

3) General self-shielding:  1  < 0.9999  0 ; more than 0.1% self-shielding 

Weight 1)( TW  TTW  /1)(  TTW  /(1)(  +  0 ) 

Conserve  0   1   2  

A  = 
 12

1
[





20

10 ]                                 

2B = { A 1  [ A 0 ]2  + 1}/[  10 ]     

  = 




1

1

2

1

B

A
 

I repeat the WARNING – the above definition of 
2B  is correct; there was a typo in all 

earlier versions of the documentation, including the original version of this report and 

ref. [6] and [7]. This only effects the documentation; the codes GROUPIE [10], URRDO 

and URRFIT have always used the correct definition of 
2B . 

From the above equations we can see that for any reaction where the unshielded and shielded 

cross sections R 0  and R 1  are equal, we find 0C , and the two band cross sections 

will be the same in both bands and equal to their normal unshielded multigroup average. This 

will be the case for reactions that do not include resonant structure. Therefore normally in 

BA 

1

2P
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using the multi-band method we calculate multi-band parameters for total, elastic, capture 

and fission, and to use the normal multigroup unshielded cross section for all other reactions. 

NJOY/MCNP attempt to account for self-shielding from other reactions (particularly 

inelastic) by defining “competition” as the total minus elastic, capture and fission.  

WARNING: The codes URRDO and URRFIT both use a single subroutine to start from 

cross section model and define two band parameters. This subroutine handles all special 

cases, e.g., no self-shielding, little self-shielding, etc., and it is highly recommended that 

if you want to produce two band parameters that you use this subroutine. 

Once these two band parameters have been defined, they may be used in transport 

calculations and they will correctly reproduce the limiting cases of unshielded and totally 

shielded flux. For example, again consider a piece of 
232

Th in which we will use two band 

parameters to produce energy, spatially and directionally dependent self-shielding. In this 

case the combination of the two bands at the boundary (surface) for directions oriented into 

the 
232

Th will combine to produce the correct equivalent of the unshielded group averaged 

cross section. However, deep within the 
232

Th the flux in the band with the higher of the two 

band cross sections will be suppressed, relative to the other band, and the equivalent group 

averaged cross sections will approach their self-shielded value, i.e., we are reproducing 

continuously varying spatially dependent self-shielding. If we consider the albedo from the 

surface the flux in the higher cross section band will again be suppressed, relative to the other 

band, which will result in self-shielding, i.e., we are reproducing directionally dependent self-

shielding, with the flux incident on the slab unshielded, and at exactly the same spatial point, 

the albedo from the slab is self-shielded. 

Note the implications here: In principle, since self-shielding is directionally and spatially 

dependent an SN code really should use differently shielded cross sections in each direction 

and in each spatial zone. In practice, all of these directional and spatial effects can be 

reproduced by using only 2 band cross sections, the same 2 band cross sections in all 

directions and over large spatial regions.    
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Generalization to N Bands 

Today in the Unresolved Resonance Region we never need more than two cross section 

bands, but if you wish to use the multi-band method in general, over a more extended energy 

range, as for example in a deterministic multigroup code [5, 6, 7], you may want to consider 

an addition band.    

The procedures introduced above to define two band parameters may be generalized to define 

the band parameters for any number of bands per group. In general the equations are a system 

of coupled, nonlinear algebraic equations. Given a set of self-shielded cross sections, this 

system must be solved for the band cross sections RB  and TB  and band weights BP . 

This is a classic moments’ problem: for 0 = 0 and various values of N, it is the Hausdorff 

moments problem, while for N = 1 and various values of 0  it is the Stieltjes-Hilbert 

moments problem. Both of these problems have been widely studied, and only pertinent 

results will be given here. 

First take R = total. In this case, for N bands we have 2N unknowns: they are BP  and TB , for 

B = 1,2,…,N. Given 2N values of the self-shielded total cross sections (defined for 2N 

different combinations of 0 and N), the system of equations can be solved uniquely for BP  

and TB . Given more than 2N values of the self-shielded cross section, the system can be 

solved in some “best fit” sense (e.g., least squares or min-max). 

Once the BP  and TB  are known, the system of equations is linear in the N unknowns RB  for 

R = elastic, capture, fission; given N or more values of the self-shielded cross section for 

reaction R, the system is easy to solve uniquely or in some “best fit” sense.                

Reality Check: How Accurately can we Really Calculate Critical Assemblies 

Throughout this report we have repeatedly stated that today we like to assume (hope) that we 

can calculate critical assemblies – any assembly - to within about +/- 0.1%. The focus of this 

paper is not on the ability of our codes to reproduce measured results; it is on the very narrow 

subject of self-shielding in the unresolved resonance region, and how calculated results are 

effected by using one model vs. another, i.e., 20 PTM bands vs. 2 MB bands. 

Still it is interesting to have a reality check and see how accurately we can really calculate 

critical assemblies. I (D.E. Cullen) did this sometime ago to test 1,172 critical assemblies 

[11], using the ENDF/B-VII data [1] and the TART Monte Carlo code [9]. That report shows 

the realistic range of results calculated, and in particular shows that while the average 

summed over many assemblies may be very close to 1.0, there is a fairly wide spread in 

individual results which is much larger than the +/- 0.1% we hope we can achieve. 

Below are results for the 32 critical assemblies used in this study, and includes a comparison 

between Measured and MCNP Calculated results. In this case of the 32 cases, 10 are within 

+/- 0.1%, most are within 1.0%, and 3 are outside +/- 1.0%. I need not say more here than to 

merely state that this is reality, not the 0.1% widely claimed. PLEASE keep this in mind 

when judging Measured vs. Calculated results. It isn’t enough to claim you used the latest 

ENDF/B library and a widely used and respected Monte Carlo code, such MCNP; much more 
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goes into achieving agreement, particularly with regard to the geometric model and material 

composition, which can greatly limit accuracy, and we the code developers and users have 

little control over the accuracy of published models [8]. So CAVEAT EMPTOR (let the user 

beware).  
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