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ABSTRACT 

Unified Monte Carlo (UMC) refers to a data evaluation technique that has been investigated 

during the past decade as a way to avoid the need to linearize relationships between primary 

and derived variables, as is necessary to apply least-squares procedures. UMC is based on 

Bayes’ Theorem, whereby prior knowledge (generally theoretically derived) is embodied in a 

prior probability distribution function (PDF) while new experimental information is 

represented by a likelihood function. The product of these two functions forms a posterior 

PDF that can be used to provide estimates of evaluated mean values and uncertainties as well 

as additional quantities of applied interest. Probability functions can be characterized by their 

moments, and numerical values for these moments can be estimated by stochastically 

analyzing Markov chains of values of variables generated by sampling these PDFs using 

Monte Carlo techniques. In the present work we investigate two unrelated issues that are 

relevant to UMC: (1) Determine how many Monte Carlo histories are needed to obtain 

adequate estimates of the lowest-order moments of typical PDFs (mean values, standard 

deviations, skewness, and kurtosis). (2) Investigate whether Gaussian or lognormal functions 

could be used to emulate realistic model-generated PDFs in practical applications. For 

simplicity, issue (1) of this work considers only single-variable (1-D) situations. Both 

hypothetical data that are explicitly normally or lognormally distributed and prompt fission 

neutron spectra (PFNS) data calculated using the Los Alamos model are used in this work. 

We have shown that mean values and variances can often be estimated with adequate 

precision by considering only a few hundred sample histories. It requires larger numbers of 

sample histories to generate adequate estimates of skewness and kurtosis from stochastic 

analyses of Markov Chains. Depending on the circumstances, we have determined that no 

fewer than 1,000 to 5,000 sample histories are necessary to obtain acceptable estimates of 

skewness and excess kurtosis (kurtosis–3). Our present study also demonstrates that for 

PFNS data generated using the Los Alamos model, neither Gaussian nor lognormal 

probability functions can be used for a broad outgoing neutron energy range to adequately 

emulate computationally determined PDFs. 
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1.  Introduction 

We recently investigated the effects of prior probability distribution function (PDF) shapes on 

the outcomes of simple evaluation exercises that involve only a single variable (1-D) to be 

evaluated from consideration of one hypothetical model-calculated value along with one 

hypothetical experimental value as input to the evaluation process. During this earlier study 

we discovered differences in the evaluated results that were produced by applying the 

traditional Generalized Least Squares (GLS) method as well as two specific formulations of 

Unified Monte Carlo (UMC-G and UMC-B). These differences could be attributed primarily 

to shape differences for the assumed prior PDFs, and these effects are likely to be due to the 

presence or absence of PDF skewness. The report that documents our earlier work includes 

extensive discussions of the background leading up to the development of contemporary 

UMC methods as well as of several general aspects of Bayesian data evaluation [1]. We will 

not repeat these discussions here.  

 

When the UMC-G concept was originally introduced the prior PDF was taken to be normally 

distributed based on mean value and variance deduced from stochastic sampling data. This 

approximation discards much, potentially useful, shape information present in the true prior 

PDF, thereby suggesting limited applicability for UMC-G [2]. However, it was noted later 

that UMC-G in fact can be employed as an evaluation tool with greater flexibility than its 

original formulation if suitable analytic expressions for the prior PDF can be found that retain 

the essence of the true prior PDF shape, as reflected in the results of stochastic sampling of 

model-parameter space coupled with applications of nuclear models [3,4,5,6]. These 

methods, as well as several other approaches to nuclear data evaluation, including Monte 

Carlo ones, are discussed thoroughly in a thesis by Schnabel [7]. This thesis examines 

advantages and disadvantages of various evaluation concepts in their contemporary state of 

development. 

 

The present work extends our earlier study that was conducted in one dimension (1-D) and 

reported in [1]. Here we consider statistical convergence issues related to stochastic 

determination of PDF moments, and we also explore whether analytic prior PDF shapes 

might be identified that could serve to facilitate the use of a UMC-G type approach as an 

alternative to UMC-B. True symmetric “averaging” of model-calculated and experimental 

data could then be accomplished rather than using experimental information only to assign 

weights to model-generated results. There is no a priori reason to expect that the UMC-G 

Bayesian approach might be feasible in all situations. However, it does enable non-linear 

effects between the variables to be treated while GLS does not. Therefore, it has the potential 

to be more accurate. This consideration provides ample justification for conducting such an 

exploratory exercise. 

 

The basic concept of Bayesian data evaluation for a single variable is first outlined briefly in 

order to illustrate the role that an emulator prior PDF might play. We then summarize the key 

features of a single-variable lognormal function and indicate why it might be appealing to 

consider it as a potential emulator of prior PDFs. An extensive examination is then 

undertaken of convergence issues that would need to be considered in establishing whether or 

not an analytical PDF such as the lognormal function would be acceptable (or not) as an 

emulator of a true PDF that is embodied in a Markov Chain of values derived from stochastic 

sampling. The importance of this stochastic exercise is that any attempt to identify a potential 

analytical emulator PDF would need to rely on considerable Monte Carlo analysis. Therefore, 

understanding the level of computational effort that would be entailed in establishing the 
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requisite numbers of stochastic histories needed to achieve reasonable convergence is crucial 

to making decisions regarding the practicality of selecting an emulator PDF. For 

convenience, lognormal PDFs are employed in this convergence test study. Finally, this 

approach is applied to actual sampling data corresponding to prior PDFs for theoretically 

calculated prompt fission neutron spectra (PFNS). 

2. Basic Concepts 

Let y be a single random variable that corresponds to a physical quantity that is to be 

evaluated. Also, let p(y) be a PDF that defines the statistical properties of y. Furthermore, 

assume that p(y) is a posterior PDF that is formed from the product of a prior PDF p0(y|T) 

and a likelihood function L(y|E), according to Bayes Theorem, where “T” signifies theory 

and “E” signifies experiment. However, for convenience, use of “T” and “E” is dropped in 

the ensuing discussion since the point has now been made regarding typical dependence of 

the prior on theory and of the likelihood on experiment. Thus, we can write p(y) = C0 p0(y) 

L(y). We will assume that both p0 and L are integrally normalized, while C0 is a constant that 

is introduced to insure that the posterior PDF p(y) is also normalized, i.e., that ʃ p(y) dy = 1 

when integration extends over the entire range of y where the magnitude of p(y) is non-

negligible. 

 

Furthermore, let f(y) correspond to any well-defined function of the random variable y. The 

expectation value of f is defined as <f> = ʃ f(y) p(y) dy when p(y) is normalized. If f(y) = y, 

<f> corresponds to the mean value of y. It can be written as <y> or MV{y}. If f(y) = y
2
 – 

<y>
2
, Then <f> corresponds to the variance of y. This can be written as Var{y}. The standard 

deviation of y is defined as [Var{y}]
½
. It can be written as Std{y}. In addition, the skewness 

and kurtosis, i.e., Skew{y} and Kurt{y}, respectively, can be determined as discussed in [1] 

and repeated below for convenience. 

 

The mathematical formulations described in the preceding paragraph are based on possessing 

an analytical expression for the prior PDF p0(y) so that the indicated integrals can be 

computed. In typical evaluation situations it might be the case symbolically that y = M(x), 

where x represents a model parameter of the model algorithm M that relates variables x and 

y. An important case that was examined in [1] is y = M(x) = exp(c x), with c acting as a 

scaling constant. Clearly the relationship between y and x is non-linear. If x is normally 

distributed, then y is precisely lognormally distributed, i.e., p0(y) is clearly a lognormal PDF. 

 

In general this will rarely be the case for typical model algorithms M. More typically in 

nuclear data applications, the PDF for variable x is assumed (often for lack of any reason to 

choose an alternative PDF) to be Gaussian-distributed. This Gaussian PDF can be denoted by 

r(x). A Markov Chain of derived random values {yk} can be generated using the expression 

yk = M(xk), for k=1,K (large K), where the collection {xk} is generated by sampling the space 

of variable x according to PDF r(x). Knowledge of the true prior PDF p0(y) for derived y is 

embodied stochastically in the collection {yk}, especially when K is very large. It is unlikely 

that this PDF will correspond explicitly to any known analytical function. 

 

However, specific numerical values for mean value, variance, standard deviation, skewness, 

and kurtosis, i.e., the most important population moments of p0(y), can be estimated 

stochastically from the collection {yk}. The following formulas are applicable only for very 

large K so that the distinction between sample and population moments is then negligible. 

 

MV{y} ≈ λ1 ≡ [Σk=1,K yk]/K ,                                                (1) 
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Var{y} ≈ λ2 ≡ [Σk=1,K (yk-λ1)
2
]/K ,                                             (2) 

 

Skew{y} ≈ λ3 ≡ {[Σk=1,K (yk-λ1)
3
]/K} / λ2

3/2
 ,                                     (3) 

 

Kurt{y} ≈ λ4 ≡ {[Σk=1,K (yk-λ1)
4
]/K} / λ2

2
  .                                     (4) 

 

The symbol “≡” represents “defined as”, and the λn (n=1,4) are stochastic estimators for mean 

value, variance, skewness, and kurtosis, respectively. Also, note that both skewness and 

kurtosis, as defined in Eqs. (3) and (4), are dimensionless. In the following discussion the 

terms MV{y}, Std{y} (or Std{y} in percent), Skew{y}, and Kurt{y} are used to represent 

both analytically derived and stochastically derived values, and no further use is made of λn 

(n=1,4). The distinction between these dual usages is discerned from the context. 

 

The larger K becomes, the closer the estimates provided by Eqs. (1)–(4) will approach the 

correct values of the moments for the underlying prior PDF. It is proposed here to examine 

whether an analytical prior PDF, p0S(y), for which the corresponding mean value, variance, 

standard deviation, skewness, and kurtosis closely resemble those for the true p0(y), as 

deduced stochastically from the collection {yk}, could serve as an effective emulator for the 

true prior PDF p0(y). 

 

The challenge is to identify such an analytical function p0S(y) that could fulfill this 

requirement effectively in certain evaluation situations. The emulator posterior PDF is pS(y) 

= CS p0S(y) L(y), where, as mentioned earlier in this report, CS is a constant that is introduced 

to insure that pS(y) is normalized. The intent here is to explore whether the emulator posterior 

PDF is able to yield acceptable values of skewness and kurtosis for evaluation purposes by 

comparison to those for the true prior PDF p0(y) when both functions exhibit the same mean 

value and standard deviation. 

3. Single Variable Lognormal PDF 

The single variable lognormal PDF is described in detail in [1]. This function possesses 

several desirable features worthy of its consideration as a potential prior PDF emulator. 

 

Feature 1) It has only two variable parameters that are uniquely defined by the mean value 

and variance through analytical formulas. Furthermore, reciprocal formulas readily yield 

mean value and variance from the given parameters of the lognormal PDF. 

 

Feature 2) The shape of the lognormal PDF is uniquely defined by the ratio of the variance to 

the mean value, or more intuitively, by the ratio of the standard deviation to the mean. This is 

also true for the Gaussian PDF. The ratio of the standard deviation to the mean value is the 

fractional standard deviation (or percent standard deviation). The scale of the lognormal 

function depends on the actual magnitude of the mean value, but this does not influence the 

PDF shape once the percent standard deviation is specified. 

 

Feature 3) The dimensionless skewness and kurtosis for the lognormal PDF can be calculated 

easily from analytical formulas. 

 

Feature 4) The magnitudes of both skewness and kurtosis vary predictably with the fractional 

standard deviation. Both skewness and kurtosis impact the PDF shape. This offers 
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possibilities for this function to resemble arbitrary true PDF shapes. In contrast, all Gaussian 

PDFs are symmetric (zero skewness) with kurtosis that is always exactly equal to 3.  

 

Feature 5) The lognormal PDF converges to the Gaussian PDF in the limit of small fractional 

standard deviation. For practical purposes, it is likely that there is no advantage to 

considering a lognormal PDF rather than a Gaussian PDF when data uncertainties are less 

than 10%.  

 

It is instructive to list the major formulas associated with the lognormal PDF in spite of the 

fact that this repeats information that appears in [1]. A normalized lognormal prior PDF is 

defined by: 

 

p0(y) = exp[-0.5 (log y – μ)
2
/σ

2
] / (2πσ

2
y

2
)
1/2

  .                                (5) 

 

Here, “log” signifies “natural logarithm function”. For convenience, let m = MV{y} and v = 

Var{y}.  If m and v are provided for a lognormal PDF of Eq. (5), and  μ and σ are the 

parameters of this function, the following formulas define the relationships between m, v, μ, 

and σ [8, 9]: 

 

μ = log[m
2
/(v + m

2
)
1/2

] ,                                                    (6) 

 

σ = {log[(v/m
2
) + 1]}

1/2
 ,                                                   (7) 

 

m = exp[μ + (σ
2
/2)] ,                                                     (8) 

 

v = exp(2μ + σ
2
) [exp(σ

2
) – 1] .                                            (9) 

 

Analytical expressions for skewness and kurtosis of a lognormal PDF are as follows: 

 

Skew{y} = [exp(σ
2
) + 2] [exp(σ

2
) – 1]

1/2
 ,                                   (10) 

 

Kurt{y} = exp(4σ
2
) + 2 exp(3σ

2
) + 3 exp(2σ

2
) – 3 .                          (11) 

 

The so-called excess kurtosis is defined as “Kurt{y}–3” where Kurt{y} is given by Eq. (11). 

This factor is a useful measure of shape difference between a lognormal PDF and a Gaussian 

PDF since the latter always has kurtosis equal to 3. In the limit of very small fractional 

standard deviation, the excess kurtosis approaches zero since the lognormal PDF approaches 

the Gaussian PDF under these circumstances. 

 

Table 1 gives values of the dimensionless lognormal PDF skewness, kurtosis, and excess 

kurtosis calculated using the formulas above for various selected values of standard deviation 

Std{y}, expressed in percent, over the nominal range 0.1–1,000%. Figure 1 shows the same 

information as Table 1 in graphical form, to aid in comprehension, for percent Std{y} values 

up to 500%. 
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Table 1: Calculated values of skewness, kurtosis, and excess kurtosis of a lognormal PDF for 

selected percent standard deviations. 

 

 
 

 

 
 

Fig. 1: Analytically calculated values of skewness, kurtosis, and excess kurtosis for a 

lognormal PDF as a function of percent standard deviation. These moments are 

characteristic of the inherent shape of the function and they do not depend on scale, i.e., on 

the actual magnitudes of the mean value MV{y} or standard deviation Std{y}. 

 

It is apparent that the magnitude of kurtosis changes very slowly as a function of nominal 

percent standard deviation below about 10%. Both skewness and excess kurtosis change 

rapidly with percent standard deviation over the range considered, especially for percent 

Std{y} (%) Skew{y} Kurt{y} Kurt{y}-3

0.1 3.0000E-03 3.0000E+00 1.6000E-05

0.15 4.5000E-03 3.0000E+00 3.6000E-05

0.2 6.0000E-03 3.0001E+00 6.4000E-05

0.3 9.0000E-03 3.0001E+00 1.4400E-04

0.5 1.5000E-02 3.0004E+00 4.0001E-04

0.75 2.2500E-02 3.0009E+00 9.0005E-04

1 3.0001E-02 3.0016E+00 1.6002E-03

1.5 4.5003E-02 3.0036E+00 3.6008E-03

2 6.0008E-02 3.0064E+00 6.4024E-03

3 9.0027E-02 3.0144E+00 1.4412E-02

5 1.5012E-01 3.0401E+00 4.0094E-02

7.5 2.2542E-01 3.0905E+00 9.0476E-02

10 3.0100E-01 3.1615E+00 1.6151E-01

15 4.5338E-01 3.3677E+00 3.6766E-01

20 6.0800E-01 3.6644E+00 6.6439E-01

30 9.2700E-01 4.5659E+00 1.5659E+00

50 1.6250E+00 8.0352E+00 5.0352E+00

75 2.6719E+00 1.7914E+01 1.4914E+01

100 4.0000E+00 4.1000E+01 3.8000E+01

150 7.8750E+00 2.0891E+02 2.0591E+02

200 1.4000E+01 9.4700E+02 9.4400E+02

300 3.6000E+01 1.2297E+04 1.2294E+04

500 1.4000E+02 4.9415E+05 4.9415E+05

750 4.4438E+02 1.1128E+07 1.1128E+07

1000 1.0300E+03 1.0615E+08 1.0615E+08
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Std{y} values above 100%. Figure 1 suggests that over short ranges of percent Std{y} the 

curves are approximately linear on a log-log scale. Thus Table 1 might be useful, along with 

log-log interpolation, to provide approximate values of Skew{y} and Kurt{y} as an 

alternative to employing Eqs. (6)–(11) for percent Std{y} values not listed in Table 1. 

4. Stochastic Convergence Tests for Lognormal PDFs 

It is of interest to determine whether an arbitrary prior PDF p0(y) generated in the form of a 

Markov Chain of sample values from nuclear modeling can be shown to resemble a particular 

analytical PDF. One way to approach this matter is to examine whether the known moments 

of an analytical PDF can be determined stochastically with sufficient accuracy from a 

Markov Chain of sample values generated in accordance with that known PDF.  

 

Table 2: Comparison of analytically and stochastically derived values of skewness, kurtosis, 

and excess kurtosis for percent standard deviations Std{y} ranging from 0.1–300%. The cells 

shaded in light green indicate regions of percent Std{y} in which skewness and excess 

kurtosis can be determined stochastically with adequate reliability for K=10
6
 samples. For 

present purposes, “adequate reliability” is defined arbitrarily as agreement of stochastically 

determined values with comparable analytically determined ones to within 10%. 

 

 
 

An ideal opportunity to test this conjecture is by considering the lognormal PDF. The 

convergence tests reported in this section were performed using a procedure described in [1]. 

Markov Chains of values {yk} (k=1,K) were generated to resemble what would be 

encountered by sampling from a lognormal PDF. A collection of sample values {xk} was 

produced from a Gaussian PDF with MV{x} = 1 and Std{x} = 0.1 (10% standard deviation). 

It was assumed that y = M(x) = exp(c x), where various value for constant “c” were 

considered in the exercise.  
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Fig. 2: Deterministically and stochastically generated values of Skew{y}, Kurt{y}, and 

Kurt{y}–3 (excess kurtosis) for K=10
6
 samples.  

 

 
 

Fig. 3: Plots of 100-bin histograms of K=10
6
 collections of lognormally distributed values 

{yk} for nominal Std{y}=10, 20, 30, and 50%. The abscissa scale corresponds to values of 

variable y while the ordinate scale indicates sample events per histogram bin. Note that the 

PDF for Std{y} = 10% appears to be only slightly skewed toward larger values of yk whereas 

the PDF for Std{y} = 50% is severely skewed. PDFs for values of Std{y} smaller than 10% 

would not be visually distinguishable from symmetric Gaussian PDFs. 
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Values yk in these Markov Chains were derived from the expression yk = M(xk). The values 

of constant “c” were selected so that the stochastically calculated MV{y} and Var{y} yielded 

corresponding stochastically determined fractional Std{y} values very close to those values 

given in Table 1 when a very large number K of Monte Carlo histories was traced. In 

particular, this analysis was performed on a PC using MATLAB [9] with K=10
6
 samples for 

each selected value of “c”. It was possible to use “c” as a tool to accomplish this objective 

because of standard deviation amplification (if c > 1) or suppression (if c < 1) effects, as 

described in [1]. Table 2 provides the results of this analysis over the range 0.1–300% in 

nominal percent Std{y}. This information is also represented graphically in Figs. 2 and 3. 

 

Conclusion: It is evident that even for as many as K=10
6
 samples, the results from stochastic 

determinations of skewness and excess kurtosis for a lognormal PDF appear to be reliable 

(e.g., differing by no more than 10% from the known analytically determined values) only for 

values of Std{y} within the ranges 0.75–150% (for Skew{y}) and 5–75% (for Kurt{y}–3). As 

discussed in [1], it is very difficult to calculate values of skewness and excess kurtosis 

accurately by stochastic means when Std{y} in percent is either very small or relatively large. 

 

In practical situations, it is unlikely that there would be a need to consider data with 

uncertainties larger than those indicated by the upper limits of these ranges. In fact, for 

practical applications the range 10–50% of nominal Std{y} is probably the most important 

one. Data with uncertainties larger than 50% are unlikely to play significant roles in realistic 

evaluations. Realistic nuclear model analyses involve algorithms that propagate multiple 

model parameters to multiple derived observables. This is a far more complex and 

computationally intensive process than the simple 1-D analysis involving an exponential 

function discussed above. Therefore, the emulator approach described in the present work can 

be shown to be practical only if reasonable results can be obtained for data sets with typical 

uncertainties when fewer sampling histories are considered, e.g., for K not exceeding 1,000 to 

5,000 histories. The following analyses explore this issue in some detail by once again 

employing lognormal PDFs. Two hundred sets of Monte Carlo simulations were performed 

using the lognormal PDF. They involve ten distinct values of c = 0.3, 0.5, 0.75, 0.998, 1.493, 

1.98, 2.94, 4.73, 6.663, and 8.31, with K=1,000 or 5,000 histories. These selected values of c 

form a subset of the list given in Table 1. They correspond to the nominal standard deviations 

of 3, 5, 7.5, 10, 15, 20, 30, 50, 75, and 100% that are included in Table 1. Representative PDF 

histograms from K=10
6
 and 5,000 and 1,000 sampling histories for Std{y} = 30% are shown 

in Fig. 4. 

 
 

Fig. 4: Plots of 100-bin PDF histograms from K=10
6
 and 5,000 and 1,000 sampling histories 

for nominal Std{y} = 30%. The abscissa scale corresponds to values of variable y while the 

ordinate scale indicates sample events per histogram bin. Although the histograms for 

K=1,000 and 5,000 are considerably more irregular than the one for K=10
6
, nevertheless 

they do reflect the essential shape of the lognormal PDF that is shown much more smoothly 

in the K=10
6
 history profile. 
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Ten independent but repetitive Monte Carlo simulations were performed for each value of 

“c” and K. This accounts for the abovementioned 200 simulations. For each such simulation 

set, sample averages of the ten stochastically derived values for MV{y}, Std{y}, Std{y} in 

percent, Skew{y}, and Kurt{y}–3 were determined along with corresponding sample 

standard deviations. These averages of ten values are denoted by “AVG” while the sample 

standard deviations for the ten are denoted by “STD”. 

 

These calculations were performed using algorithms that are available in MATLAB and 

Microsoft Excel. The numerical results from this statistical exercise are tabulated in the 

Appendix. Keep in mind when considering the tabulated values of AVG and STD that, e.g., 

ten independent repetitions of 5,000 Monte Carlo simulations correspond to performing 

50,000 simulations.  

 

The objective of performing ten independent simulations for each choice of “c” and K was to 

assess stochastic scatter in the obtained results. This provides a reasonable measure of the 

reliability of results for the PDF moments that might be obtained for any single simulation 

from the collection of ten. This scatter is clearly reflected in STD (%). The reader is reminded 

that this particular exercise was conceived as a means of assessing how many Monte Carlo 

samplings of an arbitrary prior PDF would be needed in order to provide a meaningful 

comparison of its moments with those of a potential lognormal PDF that might serve as an 

emulator prior PDF. 

 

The purpose for performing a stochastic analysis of an arbitrary prior PDF generated from 

nuclear modeling would be to determine whether its skewness and kurtosis agree reasonably 

well (or not) with a corresponding emulator PDF (e.g., a lognormal function) having the same 

percent standard deviation. It is important to establish just how well the mean values and 

standard deviations can be determined stochastically for any stochastically generated prior 

PDF by considering a limited number of sampling histories. Obviously, K=10
6
 is beyond 

practical feasibility limits. In the present investigation K=1,000 and 5,000 histories are 

considered, and these correspond to representative PDFs (which happen to be lognormal). 

 

Table 3 suggests that the ratio Std{y}/MV{y}, which corresponds to Std{y} in percent,  can 

be determined quite accurately with modest numbers of Monte Carlo histories, even for rather 

large values of nominal standard deviation. The entries in Table 3 can be understood as 

follows: The role of “c” in yielding lognormal PDFs with desired nominal standard 

deviations is clear from the preceding discussion. The quantity “AVG” is based on averages 

of sets of 10 simulations of K=1,000 or 5,000, respectively. The quantity “STD” is a measure 

of the scatter and thus reliability of any single stochastic simulation. 

 

The most severe case is 100% nominal standard deviation. It is seen that a determination of 

the standard deviation from 1,000 samples might be unreliable by at most 10%. It is unlikely 

that an evaluator will be considering very many data with uncertainties exceeding 50%. The 

scatter in this case would be expected to be no more than about 3%, even for as few as 

K=1,000 sampling histories. So, for practical reasons the focus in the following analysis is on 

the range 10–50% nominal standard deviation. 
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Table 3: Estimates are given of the scatter “STD” for stochastically derived percent Std{y} 

values based on ten trials of K=1,000 or 5,000 histories performed to estimate the true values 

of Std{y} by sampling known lognormal PDFs. These results are taken from the Appendix. 

 

 
 

What this table demonstrates is that in the range of nominal PDF percent standard deviation 

from 10–50%, the scatter in stochastically determined values for percent Std{y} can range 

from 1.0–3.6% for K=1,000 histories. The corresponding scatter in the case for K=5,000 

histories is 1.3–1.8%. These results suggest that acceptable (emphasized by light green filled 

cells) estimates of Std{y} can be achieved with modest scatter from analyses involving as 

few as K=1,000 sampling histories for the range of nominal standard deviation of interest for 

most applications. The present investigation also indicates that in such practical situations 

acceptable estimates of MV{y} most likely can be obtained from only a few hundred sample 

histories.  

 

Similar analyses were performed to determine the scatter likely to be encountered in 

statistically estimated skewness and excess kurtosis values derived from stochastic sampling 

data. The results are shown in Tables 4 and 5. In these tables, light green filled cells indicate 

acceptable values of scatter less than 10%, light yellow filled cells indicate marginally 

acceptable values of scatter in the nominal standard deviation range 10–50%, while orange-

brown filled cells indicates unacceptable values of scatter greater than 50% for that range. 

 

Table 4: Estimates are given of the percent scatter “STD” in stochastically derived Skew{y} 

for ten repeated trials of K=1,000 or 5,000 histories to determine the true value of Skew{y} 

from sampling known lognormal PDFs. These results are taken from the Appendix. 

Differences between AVGs and analytical values are also presented.  

 

 
 

Conclusion: Stochastic sampling with K=5,000 histories appears to be capable of yielding 

acceptable values of skewness for most of the range of nominal standard deviation from 10–

50%, but the corresponding results for K=1,000 histories are marginally acceptable. 

                Std{y} Percent              K = 1,000             K = 5,000

Nominal Std{y} (%) c AVG (%) STD (%) AVG (%) STD (%)

3% 0.3 3.00% 2.60% 2.98% 1.05%

5% 0.5 4.99% 1.10% 4.99% 1.07%

7.5% 0.75 7.42% 2.33% 7.52% 1.62%

10% 0.998 9.79% 2.69% 10.03% 1.36%

15% 1.493 14.95% 1.93% 15.04% 1.30%

20% 1.98 19.68% 3.61% 19.91% 1.44%

30% 2.94 30.10% 2.88% 30.04% 1.73%

50% 4.73 50.26% 3.22% 49.99% 1.79%

75% 6.663 73.87% 5.01% 74.63% 2.20%

100% 8.31 102.20% 10.30% 99.17% 3.78%

                       Skew{y}            K = 1,000 Analy Differ                        Skew{y}            K = 5,000 Analy Differ

Nominal Std{y} (%) c AVG (%) STD (%) Skew{y} in % * Nominal Std{y} (%) c AVG (%) STD (%) Skew{y} in % *

3% 0.3 0.1066356 58.59% 0.090027 -18.45% 3% 0.3 0.105898 30.00% 0.090027 -17.63%

5% 0.5 0.2098224 37.64% 0.150125 -39.77% 5% 0.5 0.1686167 14.92% 0.150125 -12.32%

7.5% 0.75 0.2350123 26.03% 0.2254219 -4.25% 7.5% 0.75 0.2204237 9.04% 0.2254219 2.22%

10% 0.998 0.2881653 32.66% 0.301 4.26% 10% 0.998 0.2914944 12.35% 0.301 3.16%

15% 1.493 0.4652225 23.07% 0.453375 -2.61% 15% 1.493 0.4617234 9.53% 0.453375 -1.84%

20% 1.98 0.5551559 18.01% 0.608 8.69% 20% 1.98 0.6203352 9.62% 0.608 -2.03%

30% 2.94 0.9971676 11.03% 0.927 -7.57% 30% 2.94 0.9179036 5.08% 0.927 0.98%

50% 4.73 1.633515 18.58% 1.625 -0.52% 50% 4.73 1.5531083 6.95% 1.625 4.42%

75% 6.663 2.4444728 18.41% 2.671875 8.51% 75% 6.663 2.5605645 11.00% 2.671875 4.17%

100% 8.31 3.809321 45.52% 4 4.77% 100% 8.31 3.9885878 29.11% 4 0.29%

* Differ = (Analy Skew{y} - AVG)/Analy Skew{y} * Differ = (Analy Skew{y} - AVG)/Analy Skew{y}
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Table 5: Estimates are given of the percent scatter “STD” in stochastically derived Kurt{y}–

3 (excess kurtosis) for ten repeated trials of K=1,000 or 5,000 histories to determine the true 

value of excess kurtosis from sampling known lognormal PDFs. These results are taken from 

the Appendix. Differences between the AVGs and analytical values are also presented. 

 

 
 

Conclusion: Stochastic sampling with K=5,000 histories appears to be capable of yielding 

marginally acceptable values of excess kurtosis for most of the range of nominal standard 

deviation 10–50%, but the corresponding results for K=1,000 histories are generally 

unacceptable over most of this range. 

 

It is well-established, e.g., from [1], that skewness in the data PDFs can influence the 

outcome of an evaluation relative to what would be obtained for symmetric Gaussian PDFs 

with the same standard deviations. However, what is not well known is what the comparable 

effect of kurtosis might be on evaluated outcomes. Intuitively, one would expect that PDFs 

with no skewness, the same standard deviations, but differing values of kurtosis should yield 

rather similar results. However, this is an issue that needs to be investigated more thoroughly 

before deciding whether the sole focus in identifying potential emulator PDFs should be on 

equating mean value, standard deviation, and skewness for the true and emulator PDFs. That 

should be the topic of a future investigation. 

5. Statistical Analyses of Data from PFNS Model Calculations 

In this section, we analyze stochastic data produced by realistic nuclear model calculations. 

In particular, we consider prompt fission neutron spectrum (PFNS) values generated using 

the Los Alamos model [10] and emphasize the determination of skewness and kurtosis for the 

corresponding PDFs. These investigations strive to answer three questions: 

 

(1) Are 1,000 or 5,000 samples of model generated values marginally sufficient to 

approximate the skewness and kurtosis calculated from a distinctly larger number of 

samples? Contrary to the studies reported in the preceding sections, which involved only 

Gaussian and lognormal probability functions, in this section we do not know the exact 

skewness and kurtosis of the model calculated values as there are no analytical expressions 

for the skewness and kurtosis that pertain to the PFNS model used. Therefore, the applicable 

numerical values of skewness and kurtosis of these model-calculated values must be 

approximated by those calculated stochastically from a large number of sampled model-

generated values. 

(2) Can the PDFs generated by the particular PFNS model used in this work be well-

described by either a Gaussian or a lognormal emulator? If this happens to be true, then 

UMC-G, involving either a Gaussian or lognormal prior PDF, or GLS in either ordinary or 

log-space, could be used for PFNS evaluations with this particular model. 

                      Kurt{y} -3            K = 1,000 Analy Differ                       Kurt{y} -3            K = 5,000 Analy Differ

Nominal Std{y} (%) c AVG STD (%) Kurt{y}-3 in % * Nominal Std{y} (%) c AVG STD (%) Kurt{y}-3 in % *

3% 0.3 0.0028923 4267.78% 0.0144122 79.93% 3% 0.3 0.0289514 288.94% 0.0144122 -100.88%

5% 0.5 0.1801931 121.12% 0.0400938 -349.43% 5% 0.5 0.0617619 127.36% 0.0400938 -54.04%

7.5% 0.75 0.1121771 253.42% 0.0904757 -23.99% 7.5% 0.75 0.0723711 126.88% 0.0904757 20.01%

10% 0.998 0.1592911 227.74% 0.161506 1.37% 10% 0.998 0.1025939 93.45% 0.161506 36.48%

15% 1.493 0.3875443 96.01% 0.3676624 -5.41% 15% 1.493 0.3893479 31.03% 0.3676624 -5.90%

20% 1.98 0.4354172 60.29% 0.6643866 34.46% 20% 1.98 0.7384295 34.21% 0.6643866 -11.14%

30% 2.94 2.049494 37.16% 1.5659396 -30.88% 30% 2.94 1.5156075 21.70% 1.5659396 3.21%

50% 4.73 4.609746 46.87% 5.0351563 8.45% 50% 4.73 4.2649052 20.25% 5.0351563 15.30%

75% 6.663 10.278251 44.21% 14.914078 31.08% 75% 6.663 12.53725 36.50% 14.914078 15.94%

100% 8.31 28.824201 100.41% 38 24.15% 100% 8.31 37.587754 85.66% 38 1.08%

* Differ = (Analy Kurt{y}-3 - AVG)/Analy Kurt{y}-3 * Differ = (Analy Kurt{y}-3 - AVG)/Analy Kurt{y}-3
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(3) Can the skewness and kurtosis derived from actual PFNS data calculated from this 

model be used to quantify how well these data are described by a chosen emulator PDF?  

 

We investigated these questions by examining numerous statistically generated 
239

Pu PFNS 

values predicted by the Los Alamos model [10] for an incident neutron energy of 0.5 MeV 

and the following collection of outgoing neutron energies E={0.0001, 0.001, 0.01, 0.1, 0.5, 1, 

2, 2.24, 3, 4.5, 6, 8, 10, 15, 17.6} MeV. The PFNS at these particular outgoing neutron 

energies were chosen since they serve well to represent the characteristics of a PFNS, where 

the neutron yield is non-negligible, and the associated relative uncertainties span a large 

range from 2.4–132%, as can be seen in Fig. 5. A total of K=34,241 Monte-Carlo generated 

PFNS samples were produced for each outgoing neutron energy E. These samples were 

obtained in two steps. In the first step the Los Alamos model parameters were sampled within 

their uncertainties K=34,241 times. K=34,241 model-parameter vectors were then generated 

from the sampled parameters. These model-parameter vectors were used in the second step as 

input for the Los Alamos model that was used to calculate the K=34,241 PFNS vectors. The 

interested reader is referred to Ref. [11] for a more detailed description of how these PFNS 

vectors were calculated. Here we concentrate on answering the questions stated above. 

 

5.1. Required Number of Sampling Histories 

 

Question: Are 1,000 or 5,000 samples of model-generated values marginally sufficient to 

approximate the skewness and kurtosis calculated from a distinctly larger number of 

samples? 

 

This question is examined by calculating mean values MV{y}, standard deviation Std{y}, 

skewness Skew{y}, and kurtosis Kurt{y} for each outgoing neutron energy E, first for 

K=1,000, 5,000 and 34,241 samples, and then for K=1,000i (i=1–34) samples. These values 

were calculated with the NumPy functions “mean” and “var” and the SciPy.stats functions 

“skew” and “kurtosis” implemented in the programming language Python [12]. The MV{y} 

and Std{y} values calculated from K=1,000 and 5,000 samples in Table 6 are acceptably 

close to those calculated from K=34,241 samples. The deviation from values calculated using 

K=34,241 samples is less than 3% for MV{y} and less than 5% for Std{y}. The deviation is 

largest where the PFNS neutron yield is very small, as is seen in Fig. 5. It is also obvious 

from Figs. 6 and 7 that MV{y} and Std{y} converge very rapidly towards those values 

calculated from K=34,241 samples. 

 

However, Skew{y} values calculated from K=1,000 samples are only marginally acceptable 

compared to those values calculated from K=34,241; that is the deviation is in the range of 

10–50%. K=5,000 samples yield acceptable values of Skew{y} with a deviation of less than 

10%. The only exception is Skew{y} for E=2 MeV. At this E, Skew{y} converges very 

slowly towards the values calculated from K=34,241 samples, as is illustrated in Fig. 8, while 

Skew{y} converges rapidly at all other E. At E=2 MeV, Skew{y} assumes its lowest value. 

This slow convergence is an artifact that stems from observing the convergence as a ratio to 

Skew{y} calculated from K=34,241. Very small absolute changes in the values of two small 

numbers being divided can produce large effects on their ratio. In fact the Skew{y} value for 

K=5,000 at E=2 MeV is close to the value calculated from K=34,241 samples. 
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Table 6: MV{y} and Std{y} values given in this table were calculated from K=1,000, 5,000 

and 34,241 model-predicted PFNS sample vectors that are dependent on the outgoing 

neutron energy E. MV{y} and Std{y} values for K=1,000 and 5,000 are also provided as 

ratios to those corresponding quantities calculated from K=34,241 PFNS samples. 

 
 

E 

(MeV) 

 

MV{y} (MeV-1) 

K=34,241 

 

Ratio MV{y} 

K=1,000/34,241 

 

Ratio MV{y} 

K=5,000/34,241 

 

Std{y} (%) 

K=34,241 

 

Ratio Std{y} 

K=1,000/34,241 

 

Ratio Std{y} 

K=5,000/34,241 

0.0001 0.005861 0.9965400 0.996733 12.59158 0.966198 0.982005 

0.001 0.018530 0.9965398 0.996730 12.58064 0.966344 0.981937 

0.01 0.058452 0.9966096 0.996772 12.51384 0.967419 0.982392 

0.1 0.179822 0.9971190 0.997142 12.31883 0.977585 0.987052 

0.5 0.333744 0.9982805 0.998093 13.38499 1.004679 1.001228 

1 0.330704 0.9987725 0.998260 10.83695 1.006354 1.004709 

2 0.241238 0.9999686 0.999830 3.541333 1.008290 1.011618 

2.24 0.215008 1.0001882 1.000154 2.403518 0.985124 0.996894 

3 0.140439 1.0008057 1.001070 8.234878 1.007308 0.996884 

4.5 0.056421 1.0026311 1.003330 23.75321 1.002724 0.999851 

6 0.022386 1.0050163 1.005853 37.67255 0.996269 0.998431 

8 0.006158 1.0077442 1.009212 54.85443 0.988505 0.997986 

10 0.001683 1.0097186 1.013572 70.88279 0.980820 0.998398 

15 6.728299E-05 1.0105917 1.023952 109.8787 0.971508 0.993320 

17.6 1.278100E-05 1.0091402 1.028958 131.5706 0.968145 0.989924 

 
 

 

Fig. 5: MV{y} and Std{y} (in percent) calculated from K=34,241 samples are shown as a 

function of outgoing neutron energy E. These plots illustrate information provided in Table 6. 
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Fig. 6: MV{y} values are shown for each E as a function of sample numbers K from which 

they were calculated. These values are given as ratios to MV{y} calculated from K=34,241 

samples. The values of E in the legend are given in units of MeV. MV{y}(K) converges 

rapidly towards MV{y}(K=34,241), and K=1,000/5,000 samples yield acceptable values for 

MV{y}. 

 

Fig. 7: Std{y} values are shown as a function of sample numbers K from which they were 

calculated for each E. These values are given as ratios to Std{y} calculated from K=34,241 

samples. The values of E in the legend are given in units of MeV. Std{y}(K) converges rapidly 

towards Std{y}(K=34,241), and K=1,000/5,000 samples yield acceptable values for Std{y}. 

 

Table 7: Skew{y} and Kurt{y}-3 values for the indicated outgoing neutron energies E are 

given as calculated from K=1,000, 5,000 and 34,241 model-predicted PFNS sample vectors. 

Skew{y} and Kurt{y}-3 for K=1,000 and 5,000 samples are given as ratios to the K=34,241 

values. 
E (MeV) Skew{y} 

K=34,241 

Ratio Skew{y} 

K=1,000/34,241 

Ratio Skew{y} 

K=5,000/34,241 

Kurt{y}-3 

K=34,241 

Ratio Kurt{y}-3 

K=1,000/34,241 

Ratio Kurt{y}-3 

K=5,000/34,241 

0.0001 0.497412 0.913935 0.981389 0.025455 -2.085910 0.853052 

0.001 0.498720 0.918133 0.981238 0.026375 -1.697841 0.872524 

0.01 0.500605 0.947218 0.981847 0.019130 0.335094 0.864214 

0.1 0.567234 1.103421 0.995549 0.068218 4.747358 1.138593 

0.5 0.816338 1.092405 1.040896 0.387228 1.325284 1.285237 

1 0.746625 1.101503 1.035387 0.157048 1.417523 1.444791 

2 -0.081892 0.115315 0.562504 -0.37252 1.066587 1.297996 

2.24 -0.569154 0.951257 0.986697 0.668951 0.658609 0.883216 

3 -1.448442 1.046990 1.034933 2.109777 1.090294 1.134511 

4.5 -0.661709 1.131863 1.044541 -0.143029 0.259311 0.622340 

6 -0.220612 1.351971 1.121561 -0.660567 0.956307 1.024191 

8 0.262882 0.715627 0.893443 -0.596928 1.125889 1.118824 

10 0.689622 0.866435 0.961030 0.017014 -12.67771 -5.648806 

15 1.735932 0.923811 0.960369 3.949938 0.767580 0.873710 

17.6 2.367074 0.914027 0.951492 8.180630 0.738951 0.861306 
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Fig. 8: Calculated Skew{y} values are shown for each E as a function of sample numbers K. 

These results are given as ratios to Skew{y} calculated from K=34,241 samples. The values 

of E in the legend are given in units of MeV. Skew{y}(K) converges considerably more slowly 

towards Skew{y}(K=34,241) than MV{y}(K) and Std{y}(K). However, K=1,000/5,000 

samples yield marginally acceptable values for Skew{y}. An exception is Skew{y} at E=2 

MeV where the skewness is near zero. There, exhibiting the difference in percent is 

misleading. 

 

 

Fig. 9: Calculated Kurt{y}–3 values for each E are shown as a function of number of samples 

K from which they were calculated. They are given as ratios to Kurt{y}–3 calculated from 

K=34,241 samples. The values of E in the legend are in units of MeV. Kurt{y}–3 (K) 

converges much more slowly towards Kurt{y}–3 (K=34,241) than MV{y}(K), Std{y}(K), and 

Skew{y}(K). It does not converge at all for E ={0.0001, 0.001, 0.01, 0.1, 10} MeV since 

Kurt{y}–3 is close to 0 for those particular energies. For all other E, K=5,000 samples yield 

marginally acceptable values for Skew{y} and Kurt{y}–3. 

 

It is obvious from Fig. 9 that Kurt{y}–3(K) has not converged toward Kurt{y}–3 for 

K=34,241, whenever the values are close to zero, if one chooses to observe the convergence 

by means of a ratio to Kurt{y}–3 for K=34,241. However, it is also seen in Fig. 10 that the 

Kurt{y}–3 calculated from K=5,000 or 10,000 samples seem to be close to that calculated 

from K=34,241 samples. Thus, the results in Table 7 for E< 0.5 MeV are misleading. One 
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might be led to believe that those values have converged to marginally acceptable results by 

considering the ratio to Kurt{y}(K=34,241), but this is just an anomaly associated with this 

particular E. 

 

 
 

Fig. 10: Skew{y} and Kurt{y}–3 calculated from K={1,000, 5,000, 10,000 and 34,241} 

samples are shown as a function of E. K=5,000 and 10,000 samples yield Skew{y} and 

Kurt{y}–3 values close to those calculated with K=34,241 samples. 

 

Conclusion: Stochastic sampling with K=5,000 histories appears to be capable of yielding at 

least marginally acceptable values of skewness and excess kurtosis for PFNS predicted by the 

Los Alamos model.  In cases where the skewness and excess kurtosis assume values close to 

0, the ratio to those values calculated from many more samples is not a good measure of 

convergence. 

 

5.2. Use of Lognormal or Gaussian Functions as PDF Emulators 

 

Question: Can the PDFs generated by the particular PFNS model used in this work be well-

described by either a Gaussian or a lognormal emulator? If this happens to be true, then 

UMC-G, involving either a Gaussian or lognormal prior PDF, or GLS in either ordinary or 

log-space, could be used for PFNS evaluations with this particular model. 

  

This question is studied by using the mean values MV{y} and standard deviation Std{y} 

calculated from K=34,241 samples of the true PDF as input for Gaussian or lognormal 

distributions. For the Gaussian, MV{y} and standard deviation Std{y} were taken as given, 

while the parameters that characterize the lognormal PDFs were derived by considering Eqs. 

(6) – (9) and using the stochastically generated MV{y} and Std{y} values from the true PDF. 

The resulting Gaussian and lognormal PDFs approximate the actual model-generated PFNS 

PDFs reasonably well only for E=2 MeV, as shown in Fig. 11. They provide a fair 

description for model PFNS PDFs with E<0.5 keV and E=2.24 MeV. The lognormal PDF is 

marginally better in describing the model PFNS PDFs in these energy ranges. However, both 

Gaussian and lognormal PDFs fail to describe model PFNS PDFs for E={0.5, 1, 3, 4.5, 6, 8, 

10, 15, 17.6} MeV. At 15 and 17.6 MeV, the lognormal PDF describes the model PFNS 

PDFs better, while at 6 and 8 MeV, the Gaussian PDFs are better suited to describe the model 

PFNS PDFs. The Gaussian and lognormal PDFs determined on the basis of MV{y} and 

Std{y} values from the model-generated PDFs differ substantially for several E, as seen in 
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Fig. 11. The question therefore arose as to whether GLS evaluated results in PFNS space 

might differ in a similar manner from those obtained by a GLS evaluation in corresponding 

log(PFNS) space. To investigate this point, covariances and mean values were calculated 

from K=34,241 samples to form prior covariance matrices and mean values as input for a 

GLS evaluation. They were updated with experimental 
239

Pu PFNS described in [12,13], first 

applying GLS in PFNS space and then applying it in log(PFNS) space. The evaluated results 

in Fig. 12 differ noticeably for most E. So, the difference between using a Gaussian or 

lognormal approximation for Los Alamos model values can influence the evaluated results. 

 

Since the agreement between Gaussian, lognormal, and the PDF of actual model values is 

unsatisfactory for some E, this shortcoming raises the question of whether using GLS in 

either PFNS or logarithmic PFNS space for evaluations might therefore bias the evaluated 

results. GLS implicitly assumes that all data entering the algorithm are Gaussian distributed. 

Hence, evaluating with GLS in PFNS or log(PFNS) space leads to a truncation of model 

predicted PDFs, as can be observed from Fig. 11. The same would be true for using UMC-G 

with a Gaussian or lognormal emulator. 

 

Conclusion: The Los Alamos model predicted PFNS are neither well-described by a 

Gaussian nor by a lognormal emulator. Therefore, it should be studied whether evaluating 

with GLS in PFNS or log(PFNS) space biases the evaluated results, since model values are 

assumed to be Gaussian or lognormal in this case. The same is true for UMC-G if a Gaussian 

or lognormal emulator is used. 

 

5.3. Choice of a PDF Emulator Based on Skewness and Kurtosis 

 

Question: Can the skewness and excess kurtosis calculated from actual model-generated data 

be used to quantify how well these data might be described by a chosen analytical emulator 

PDF? 

 

The skewness and kurtosis of Gaussian distributed data are zero and 3, respectively, with the 

excess kurtosis being exactly zero. The skewness and kurtosis–3 of lognormal distributed 

data can be calculated using MV{y} and Std{y} via Eqs. (7), (10) and (11). Skewness and 

kurtosis can be calculated from sample data for arbitrary PDF by Eqs. (3) and (4). These 

operations are straightforward to implement and perform for large data sets. The question to 

consider now is whether the differences of Skew{y} and Kurt{y} for a Gaussian or 

lognormal PDF from those calculated from actual model-generated sample data that involve 

an arbitrary PDF are indicators of how well model-generated PDFs might possibly be 

emulated by a Gaussian or lognormal PDF. This matter also has been investigated in the 

present work using the K=34,241 PFNS samples for the 15 emitted neutron energies E 

mentioned earlier. 

 

The difference between the skewness of a lognormal PDF and the skewness calculated from 

actual PFNS data, shown in Fig. 13, is smallest at E=2 MeV where the model results are 

well-described by a lognormal PDF, as seen in Fig. 11. The difference is largest where the 

model PDFs clearly differ from a lognormal PDF. The difference between Kurt{y}–3 

calculated from a lognormal and model data is also larger for E where the lognormal PDF 

does not describe the model value PDF well. However, this effect is not as obvious as when 

Skew{y} is examined. A similar effect can be observed when comparing the Skew{y} and 

Kurt{y}–3 values of a Gaussian and the model-generated PDF: Skew{y} in Fig. 10 is close to 

zero, where the model-generated PDF is nearly Gaussian, and it assumes increasingly larger 
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absolute values when the model-generated PDF deviates considerably from a Gaussian. This 

tendency is not as pronounced when observing Kurt{y}–3. 

 

Fig. 11: The histograms shown here represent sets of K=34,241 stochastically determined 

PFNS values for each of the indicated outgoing energies E that were calculated using the Los 

Alamos model. The MV{y} and Std{y} values derived from these sample data were used to 

generate the shown Gaussian and lognormal PDF shapes to compare with these histograms. 
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Fig. 12: Evaluated results obtained using GLS in PFNS space are compared to those 

obtained for the same data using GLS in log(PFNS) space. Noticeable differences between 

these two evaluated PDF shapes can be observed for most of the outgoing neutron energies 

E. 

 

 

Fig. 13: The difference between skewness and kurtosis calculated from a lognormal PDF 

using MV{y} and Std{y} values obtained from the model-generated PFNS are compared to 

Skew{y} and Kurt{y} calculated directly from model-generated PFNS. 

 

Conclusion: The difference between the skewness calculated from a Los Alamos model-

generated PDF and a Gaussian or lognormal PDF based on MV{y} and Std{y} taken from 

the model-generated values can be used as an indicator of how well these data are described 

by a Gaussian or lognormal PDF. 

6. Summary 

While mean values typically can be estimated with reasonable reliability from PDF sample 

data collections corresponding to perhaps a few hundred Monte Carlo histories, at least 1,000 

sampling histories are needed to obtain acceptable estimates of skewness while no less than 
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5,000 sampling histories are needed to estimate kurtosis reliably. These sampling numbers 

apply equally well to lognormal PDFs and arbitrary smooth PDFs, e.g., for those applicable 

to PFNS data generated using the Los Alamos model. Differences between skewness values, 

and to a lesser extent kurtosis values, obtained from realistic nuclear model analyses and 

simple lognormal PDFs having the same mean values and standard deviations, can be used as 

a way to ascertain whether lognormal or Gaussian distributions might serve effectively as 

analytical surrogates for actual PDFs. In the case of PFNS data generated by the Los Alamos 

model, we have determined that it is not possible to do this for all the emitted neutron 

energies corresponding to 0.5 MeV incident neutron energy. 
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Appendix 

The results from K=5,000 and K=1,000 histories, respectively, of stochastic calculations of 

MV{y}, Std{y}, percent Std{y}, Skew{y}, and Kurt{y}, for selected values of the factor “c” 

corresponding to nominal standards deviations 3, 5, 7.5, 10, 15, 20, 30, 50, 75, and 100%, are 

tabulated in detail below. Each stochastic calculation was repeated ten times for every value 

of “c” and K, resulting in 200 independent sets of calculated statistical data. Averages 

(AVG), sample standard deviations (STD), and sample percent standard deviations, i.e., STD 

(%) = STD/AVG of each set of ten repetitions were generated for the accumulated results. 

These sample-specific values, indicated by the yellow filled cells, are also provided in the 

following tables. The principal results from analyses of these raw statistical results are 

summarized in Section 4 of the main body of this paper. 

 

 

 
 

 

 
 

 

  

Std{y} = 3% ==> c = 0.3 K = 1,000 Std{y} = 3% ==> c = 0.3 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 1.351588 0.0410211 3.035% 0.0947382 2.9738179 -0.0261821 1 1.3512744 0.0403688 2.987% 0.1433266 3.1194561 0.1194561

2 1.3501613 0.0417032 3.089% 0.0190899 2.8695943 -0.1304057 2 1.3497725 0.0400162 2.965% 0.111585 3.0013153 0.0013153

3 1.349273 0.0393399 2.916% 0.0403701 2.8736806 -0.1263194 3 1.3501872 0.0397661 2.945% 0.0900796 3.023051 0.023051

4 1.351166 0.0426811 3.159% 0.1581693 3.0289641 0.02896413 4 1.3505584 0.0404332 2.994% 0.0678465 2.9280661 -0.071934

5 1.3512169 0.0407678 3.017% 0.1911391 3.2224255 0.22242546 5 1.3500623 0.0408945 3.029% 0.1279727 3.0770381 0.0770381

6 1.349605 0.0401868 2.978% 0.0866795 3.1666127 0.16661271 6 1.3505655 0.040128 2.971% 0.1119076 2.9842032 -0.015797

7 1.3490654 0.0402477 2.983% 0.0725035 2.9166302 -0.0833698 7 1.3505409 0.0395525 2.929% 0.0430174 2.8702326 -0.129767

8 1.3501556 0.0394838 2.924% 0.1593147 3.0789909 0.07899089 8 1.3503524 0.0403576 2.989% 0.1145861 3.0932773 0.0932773

9 1.3502714 0.039407 2.918% 0.0577106 2.8894264 -0.1105736 9 1.3498464 0.0408042 3.023% 0.1053321 3.0734185 0.0734185

10 1.349244 0.0403779 2.993% 0.1866408 3.0087804 0.00878041 10 1.3512744 0.0403688 2.987% 0.1433266 3.1194561 0.1194561

AVG 1.3501747 0.0405216 3.001% 0.1066356 3.0028923 0.00289229 AVG 1.3504435 0.040269 2.982% 0.105898 3.0289514 0.0289514

STD 0.0009013 0.0010695 0.078% 0.0624734 0.1234367 0.12343671 STD 0.0005212 0.0004193 0.031% 0.0317726 0.0836528 0.0836528

STD (%) 0.067% 2.639% 2.603% 58.586% 4.111% 4267.782% STD (%) 0.039% 1.041% 1.046% 30.003% 2.762% 288.942%

Std{y} = 5% ==> c = 0.5 K = 1,000 Std{y} = 5% ==> c = 0.5 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 1.6480893 0.082542 5.008% 0.2675525 3.4349181 0.43491812 1 1.6524226 0.0823526 4.984% 0.2059987 3.163129 0.163129

2 1.6538292 0.0829045 5.013% 0.3147773 3.378778 0.37877801 2 1.6493503 0.0815461 4.944% 0.1705141 3.0318658 0.0318658

3 1.6539675 0.083238 5.033% 0.1906684 3.1239396 0.12393962 3 1.6501846 0.0810355 4.911% 0.1494525 3.0605644 0.0605644

4 1.6530186 0.0822107 4.973% 0.1100428 2.8855383 -0.1144617 4 1.6509673 0.0823928 4.991% 0.125419 2.9494109 -0.050589

5 1.6532087 0.0806976 4.881% 0.1416169 2.9748432 -0.0251568 5 1.6499759 0.0833637 5.052% 0.1903892 3.1220319 0.1220319

6 1.6459538 0.0831321 5.051% 0.2002684 3.1771207 0.1771207 6 1.6509691 0.0818063 4.955% 0.1704895 3.0215195 0.0215195

7 1.6510281 0.0811137 4.913% 0.1002995 2.8891575 -0.1108425 7 1.6495328 0.0831517 5.041% 0.1675893 3.0947126 0.0947126

8 1.6480893 0.082542 5.008% 0.2675525 3.4349181 0.43491812 8 1.6505446 0.0822687 4.984% 0.1767785 3.1390833 0.1390833

9 1.6538292 0.0829045 5.013% 0.3147773 3.378778 0.37877801 9 1.6503822 0.0839938 5.089% 0.1920391 3.1062173 0.1062173

10 1.6539675 0.083238 5.033% 0.1906684 3.1239396 0.12393962 10 1.6511333 0.0823937 4.990% 0.1374967 2.9290841 -0.070916

AVG 1.6514981 0.0824523 4.993% 0.2098224 3.1801931 0.18019312 AVG 1.6505463 0.0824305 4.994% 0.1686167 3.0617619 0.0617619

STD 0.0030277 0.0008851 0.055% 0.0789689 0.2182434 0.21824342 STD 0.0008921 0.0008811 0.054% 0.0251586 0.0786619 0.0786619

STD (%) 0.183% 1.073% 1.097% 37.636% 6.863% 121.116% STD (%) 0.054% 1.069% 1.074% 14.921% 2.569% 127.363%

Std{y} = 7.5% ==> c = 0.75 K = 1,000 Std{y} = 7.5% ==> c = 0.75 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 2.1272525 0.1587401 7.462% 0.1798591 2.9383733 -0.0616267 1 2.1199266 0.1609091 7.590% 0.2385228 3.0759243 0.0759243

2 2.1275468 0.1558838 7.327% 0.212934 2.9912991 -0.0087009 2 2.1223089 0.1603042 7.553% 0.2234667 3.0008433 0.0008433

3 2.1136896 0.1603592 7.587% 0.2808842 3.2286241 0.22862406 3 2.1247525 0.1585325 7.461% 0.1791234 3.0926871 0.0926871

4 2.123364 0.1565067 7.371% 0.1694316 2.9199272 -0.0800728 4 2.1223904 0.1549256 7.300% 0.2265291 3.2415563 0.2415563

5 2.123374 0.1561697 7.355% 0.2193226 3.1625258 0.16252579 5 2.1211821 0.1621017 7.642% 0.214055 3.0645329 0.0645329

6 2.11217 0.1594132 7.547% 0.3110323 3.016626 0.01662602 6 2.124209 0.1552005 7.306% 0.2074765 2.8997957 -0.100204

7 2.1281601 0.1538471 7.229% 0.2559239 3.125354 0.12535405 7 2.1240775 0.1613267 7.595% 0.2382953 3.0676338 0.0676338

8 2.1212846 0.1582211 7.459% 0.2870129 3.8568143 0.85681432 8 2.126564 0.1605298 7.549% 0.2400181 3.108015 0.108015

9 2.1235694 0.1516193 7.140% 0.1334141 2.8813126 -0.1186874 9 2.1250594 0.1615861 7.604% 0.2014474 3.0149916 0.0149916

10 2.1240109 0.1640163 7.722% 0.3003079 3.0009147 0.00091466 10 2.1255786 0.160605 7.556% 0.2353026 3.157731 0.157731

AVG 2.1224422 0.1574776 7.420% 0.2350123 3.1121771 0.11217711 AVG 2.1236049 0.1596021 7.516% 0.2204237 3.0723711 0.0723711

STD 0.0054854 0.0034904 0.173% 0.0611797 0.2842808 0.28428079 STD 0.0020877 0.0025737 0.122% 0.0199244 0.0918214 0.0918214

STD (%) 0.258% 2.216% 2.329% 26.033% 9.134% 253.421% STD (%) 0.098% 1.613% 1.619% 9.039% 2.989% 126.876%
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Std{y} = 10% ==> c = 0.998 K = 1,000 Std{y} = 10% ==> c = 0.998 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 2.7106248 0.2741268 10.113% 0.3610319 3.302819 0.30281898 1 2.7251326 0.2748878 10.087% 0.3054826 3.0457738 0.0457738

2 2.7269591 0.2675737 9.812% 0.2382173 2.9657463 -0.0342537 2 2.7225944 0.2703527 9.930% 0.2403474 2.933898 -0.066102

3 2.7269597 0.2671514 9.797% 0.295872 3.2416511 0.24165114 3 2.7250856 0.2726131 10.004% 0.2759039 3.0815697 0.0815697

4 2.73503 0.2634827 9.634% 0.3290872 3.2217774 0.22177741 4 2.7257138 0.2814305 10.325% 0.3197127 3.1619192 0.1619192

5 2.7270251 0.2589069 9.494% 0.2166692 3.1307147 0.13071468 5 2.726469 0.2729047 10.009% 0.3265394 3.1936148 0.1936148

6 2.7182917 0.2653574 9.762% 0.373204 2.8560201 -0.1439799 6 2.7237114 0.2719635 9.985% 0.2958936 3.1997555 0.1997555

7 2.723479 0.2707825 9.943% 0.388373 4.0738749 1.07387488 7 2.7217305 0.2726499 10.018% 0.2448659 3.0189948 0.0189948

8 2.7236947 0.2608922 9.579% 0.1072788 2.8193762 -0.1806238 8 2.7290582 0.2696386 9.880% 0.2508665 3.1487314 0.1487314

9 2.7283741 0.2809212 10.296% 0.3727206 3.0738049 0.07380493 9 2.7297998 0.2772492 10.156% 0.3198942 3.0219064 0.0219064

10 2.7271113 0.2591073 9.501% 0.1991987 2.9071264 -0.0928736 10 2.7302061 0.2695656 9.873% 0.3354374 3.2197757 0.2197757

AVG 2.724755 0.2668302 9.793% 0.2881653 3.1592911 0.15929109 AVG 2.7259501 0.2733256 10.027% 0.2914944 3.1025939 0.1025939

STD 0.0065259 0.0069852 0.264% 0.0941086 0.362773 0.36277297 STD 0.0029517 0.0036982 0.136% 0.0359952 0.0958778 0.0958778

STD (%) 0.240% 2.618% 2.692% 32.658% 11.483% 227.742% STD (%) 0.108% 1.353% 1.356% 12.349% 3.090% 93.454%

Std{y} = 15% ==> c =1.493 K = 1,000 Std{y} = 15% ==> c =1.493 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 4.519868 0.6864476 15.187% 0.4465634 3.1838894 0.18388943 1 4.4907522 0.6717264 14.958% 0.5001802 3.554683 0.554683

2 4.4975353 0.6918212 15.382% 0.3680839 3.1298637 0.12986366 2 4.5080881 0.6668716 14.793% 0.4519295 3.2897034 0.2897034

3 4.4782669 0.6510557 14.538% 0.3737417 3.2162018 0.2162018 3 4.5080692 0.6823116 15.135% 0.4762565 3.4707368 0.4707368

4 4.4785424 0.6774826 15.127% 0.6300705 4.1012216 1.10122164 4 4.4984424 0.6756614 15.020% 0.4546689 3.6207815 0.6207815

5 4.5253651 0.686667 15.174% 0.6640173 4.0279116 1.0279116 5 4.4902269 0.6855277 15.267% 0.5074774 3.3052522 0.3052522

6 4.5181065 0.6727732 14.891% 0.3927526 3.1984185 0.19841848 6 4.4945176 0.6627089 14.745% 0.3684831 3.2851684 0.2851684

7 4.5184638 0.6614524 14.639% 0.4228208 3.1408846 0.14088463 7 4.4899923 0.6680288 14.878% 0.4085037 3.3337945 0.3337945

8 4.5010815 0.6617765 14.703% 0.3764861 3.1031529 0.10315293 8 4.5027905 0.6858382 15.231% 0.4674216 3.3096834 0.3096834

9 4.5010198 0.6616273 14.699% 0.4514896 3.4643613 0.46436128 9 4.4981182 0.6763266 15.036% 0.4814032 3.3117304 0.3117304

10 4.4551188 0.6742158 15.134% 0.5261993 3.3095379 0.30953789 10 4.5228868 0.6916534 15.292% 0.5009103 3.4119459 0.4119459

AVG 4.4993368 0.6725319 14.947% 0.4652225 3.3875443 0.38754433 AVG 4.5003884 0.6766654 15.036% 0.4617234 3.3893479 0.3893479

STD 0.0227495 0.0133812 0.289% 0.1073301 0.372098 0.37209801 STD 0.0104234 0.0094869 0.195% 0.0439832 0.1208045 0.1208045

STD (%) 0.506% 1.990% 1.934% 23.071% 10.984% 96.014% STD (%) 0.232% 1.402% 1.297% 9.526% 3.564% 31.027%

Std{y} = 20% ==> c =1.98 K = 1,000 Std{y} = 20% ==> c =1.98 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 7.4273638 1.4319523 19.279% 0.6334346 3.8402257 0.84022575 1 7.4145634 1.483641 20.010% 0.6900323 3.9586052 0.9586052

2 7.3823957 1.3953694 18.901% 0.509766 3.5215191 0.52151907 2 7.3583043 1.4559041 19.786% 0.6200657 3.6598504 0.6598504

3 7.3392176 1.4361915 19.569% 0.6191155 3.2262717 0.22627166 3 7.3715671 1.446731 19.626% 0.611854 3.8294718 0.8294718

4 7.4009859 1.5281208 20.648% 0.6649477 3.525393 0.52539302 4 7.3887434 1.470403 19.901% 0.561868 3.4809244 0.4809244

5 7.3656709 1.3970108 18.967% 0.3633688 3.0420759 0.04207588 5 7.3740965 1.4941858 20.263% 0.6781038 4.004275 1.004275

6 7.4131927 1.5209216 20.516% 0.6792135 3.8109271 0.81092709 6 7.387411 1.4648966 19.830% 0.6239341 3.7412799 0.7412799

7 7.3829543 1.3950687 18.896% 0.4594087 3.1408091 0.1408091 7 7.3827301 1.4334253 19.416% 0.5070266 3.2892824 0.2892824

8 7.4295562 1.5025819 20.224% 0.5899752 3.3894734 0.38947342 8 7.381173 1.4739707 19.969% 0.6639822 4.0167446 1.0167446

9 7.3819473 1.5091439 20.444% 0.5146394 3.3498173 0.3498173 9 7.3829104 1.5070505 20.413% 0.6762754 3.9169497 0.9169497

10 7.3360667 1.4179635 19.329% 0.5176894 3.5076602 0.50766021 10 7.3917085 1.4720007 19.914% 0.5702096 3.4869119 0.4869119

AVG 7.3859351 1.4534324 19.677% 0.5551559 3.4354172 0.43541725 AVG 7.3833208 1.4702209 19.913% 0.6203352 3.7384295 0.7384295

STD 0.0328396 0.0554079 0.710% 0.0999615 0.2625298 0.26252984 STD 0.0147075 0.0217744 0.286% 0.0597067 0.2525986 0.2525986

STD (%) 0.445% 3.812% 3.610% 18.006% 7.642% 60.294% STD (%) 0.199% 1.481% 1.437% 9.625% 6.757% 34.208%

Std{y} = 30% ==> c =2.94 K = 1,000 Std{y} = 30% ==> c =2.94 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 19.939646 6.3752859 31.973% 1.0381947 4.7831159 1.78311595 1 19.654559 5.9753123 30.402% 0.9289258 4.374954 1.374954

2 19.874301 6.1143841 30.765% 1.1922069 6.2171055 3.21710545 2 19.734522 5.9568302 30.185% 0.9018107 4.3905094 1.3905094

3 19.579778 5.891928 30.092% 0.9002992 4.0922047 1.09220468 3 19.719894 5.8391661 29.611% 0.910998 4.8361514 1.8361514

4 19.616932 5.8748984 29.948% 1.1124721 6.5773512 3.57735124 4 19.695626 5.7591938 29.241% 0.9690703 4.9526465 1.9526465

5 19.672496 5.814498 29.556% 1.01736 4.9221745 1.92217454 5 19.708253 6.0177657 30.534% 0.919616 4.5185946 1.5185946

6 19.680129 5.7145576 29.037% 0.8608355 4.6761557 1.67615567 6 19.762281 5.7512719 29.102% 0.8139803 3.8736878 0.8736878

7 19.578272 5.9397995 30.339% 1.0373775 4.9325495 1.93254954 7 19.806661 6.0256433 30.422% 0.9390404 4.5200591 1.5200591

8 19.759116 6.0281129 30.508% 0.9898464 4.711743 1.71174302 8 19.88987 6.0166595 30.250% 0.9449759 4.5642096 1.5642096

9 20.06859 5.935941 29.578% 0.8369357 4.5477016 1.54770161 9 19.842896 6.016459 30.320% 0.8781156 4.226602 1.226602

10 19.820407 5.7832896 29.178% 0.9861476 5.0348383 2.03483833 10 19.854843 6.0129831 30.285% 0.9725026 4.898661 1.898661

AVG 19.758967 5.9472695 30.098% 0.9971676 5.049494 2.049494 AVG 19.766941 5.9371285 30.035% 0.9179036 4.5156075 1.5156075

STD 0.1647268 0.189976 0.866% 0.109981 0.7616049 0.7616049 STD 0.0779111 0.1107329 0.519% 0.0466583 0.3289529 0.3289529

STD (%) 0.834% 3.194% 2.876% 11.029% 15.083% 37.161% STD (%) 0.394% 1.865% 1.729% 5.083% 7.285% 21.704%
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Std{y} = 50% ==> c =4.73 K = 1,000 Std{y} = 50% ==> c =4.73 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 128.19739 63.610404 49.619% 1.2534523 5.0643741 2.0643741 1 126.60767 63.691324 50.306% 1.5040727 6.5176508 3.5176508

2 125.01267 65.542759 52.429% 2.1744565 11.845131 8.84513125 2 125.64279 61.29765 48.787% 1.3474162 5.7391859 2.7391859

3 129.28032 68.143627 52.710% 2.0927708 10.551724 7.55172438 3 126.38782 62.834714 49.716% 1.5307027 7.2390162 4.2390162

4 129.25892 65.783062 50.892% 1.6590462 7.5753143 4.57531425 4 127.28863 66.044823 51.886% 1.6491614 7.6070838 4.6070838

5 128.11106 62.892813 49.092% 1.4893225 6.9835908 3.98359075 5 126.75713 63.801122 50.333% 1.6434839 7.7800343 4.7800343

6 127.8436 61.785946 48.329% 1.366364 5.6177151 2.61771506 6 126.06889 63.056687 50.018% 1.6695943 8.3903017 5.3903017

7 123.56422 63.384198 51.297% 1.7139388 7.9681349 4.96813493 7 125.64993 62.129749 49.447% 1.478906 7.1410412 4.1410412

8 126.34706 60.942657 48.234% 1.3528732 5.715837 2.715837 8 126.97368 62.184274 48.974% 1.5210992 7.2004275 4.2004275

9 126.37617 62.026378 49.081% 1.6486023 8.0041938 5.00419376 9 127.80657 64.817596 50.715% 1.4960373 6.5100834 3.5100834

10 122.90358 62.524039 50.872% 1.5843237 6.7714445 3.77144449 10 127.29253 63.332349 49.753% 1.69061 8.5242277 5.5242277

AVG 126.6895 63.663588 50.256% 1.633515 7.609746 4.609746 AVG 126.64756 63.319029 49.994% 1.5531083 7.2649052 4.2649052

STD 2.262458 2.202958 1.618% 0.3034376 2.1604464 2.16044642 STD 0.7224472 1.3799461 0.897% 0.107947 0.8635192 0.8635192

STD (%) 1.786% 3.460% 3.219% 18.576% 28.391% 46.867% STD (%) 0.570% 2.179% 1.795% 6.950% 11.886% 20.247%

Std{y} = 75% ==> c =6.663 K = 1,000 Std{y} = 75% ==> c =6.663 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 962.8548 782.54214 81.273% 3.5274189 24.423087 21.423087 1 968.05917 736.16867 76.046% 2.9891913 21.612675 18.612675

2 1007.0591 767.32897 76.195% 2.5541937 14.112229 11.1122286 2 980.1784 717.13483 73.164% 2.4695347 14.267431 11.267431

3 990.92426 719.39062 72.598% 2.3728039 12.98837 9.98836992 3 970.83557 711.30341 73.267% 2.2121486 11.06304 8.0630401

4 986.35393 699.88465 70.957% 2.0124052 9.0381056 6.03810557 4 988.21314 756.32398 76.534% 3.1023243 25.516141 22.516141

5 945.89003 729.15741 77.087% 2.6548304 14.948498 11.948498 5 984.83064 744.1219 75.558% 2.3878537 12.207976 9.2079759

6 970.05927 685.96978 70.714% 2.0313019 9.1425714 6.14257137 6 988.74488 747.47836 75.599% 2.6862113 16.411884 13.411884

7 971.52106 713.29648 73.421% 2.6286403 15.326426 12.3264264 7 974.14259 743.64236 76.338% 2.434922 12.545907 9.545907

8 938.11785 711.00878 75.791% 2.3528144 11.260841 8.26084063 8 964.67031 692.85111 71.823% 2.43531 14.300603 11.300603

9 959.36331 661.49547 68.952% 2.2582719 11.808906 8.80890582 9 963.83555 705.34272 73.181% 2.479303 14.557674 11.557674

10 950.77809 682.23297 71.755% 2.0520474 9.7334735 6.7334735 10 976.27155 729.83607 74.757% 2.4088461 12.889167 9.8891671

AVG 968.29217 715.23073 73.874% 2.4444728 13.278251 10.2782507 AVG 975.97818 728.42034 74.627% 2.5605645 15.53725 12.53725

STD 21.559331 37.336178 3.700% 0.4500096 4.5442114 4.54421137 STD 9.2892711 20.817219 1.645% 0.2815863 4.5755201 4.5755201

STD (%) 2.227% 5.220% 5.008% 18.409% 34.223% 44.212% STD (%) 0.952% 2.858% 2.204% 10.997% 29.449% 36.495%

Std{y} = 100% ==> c =8.31 K = 1,000 Std{y} = 100% ==> c =8.31 K = 5,000

Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3 Trial No. MV{y} Std{y} Std{y} in % Skew{y} Kurt{y} Kurt{y}-3

1 5741.8897 7031.058 122.452% 7.7791095 100.56768 97.5676812 1 5975.222 6181.6179 103.454% 4.1095119 36.826379 33.826379

2 5493.0063 4701.1262 85.584% 2.6125634 16.029843 13.0298426 2 5821.8973 5889.6105 101.163% 4.1108855 36.158635 33.158635

3 5893.4922 5994.7636 101.718% 2.9655132 15.412426 12.4124257 3 5486.5815 5071.27 92.430% 2.9316203 16.965623 13.965623

4 5920.8297 6191.8607 104.578% 2.3474797 10.830469 7.83046904 4 5831.5489 5748.2246 98.571% 3.2281217 20.189508 17.189508

5 5910.4446 5744.0083 97.184% 2.7776196 13.993103 10.9931026 5 5856.8835 5890.8084 100.579% 3.8061767 31.533434 28.533434

6 5770.1745 5608.2102 97.193% 2.9418094 16.455888 13.455888 6 5783.4758 5644.6314 97.599% 3.3787489 24.795828 21.795828

7 5473.6269 5164.0047 94.343% 3.9969941 35.28534 32.2853404 7 5685.0802 5890.3669 103.611% 5.736654 90.232269 87.232269

8 6069.767 6593.1553 108.623% 3.9512291 30.882989 27.8829887 8 5782.2944 5504.7089 95.199% 2.9780034 17.596917 14.596917

9 5924.4862 6716.7693 113.373% 5.8663744 63.598602 60.5986021 9 5684.2084 5829.2856 102.552% 6.319802 108.96409 105.96409

10 5601.9989 5433.2886 96.988% 2.8545174 15.185666 12.1856659 10 5712.8497 5516.6003 96.565% 3.2863538 22.614861 19.614861

AVG 5779.9716 5917.8245 102.204% 3.809321 31.824201 28.8242006 AVG 5762.0042 5716.7124 99.172% 3.9885878 40.587754 37.587754

STD 201.11735 732.13053 10.527% 1.733843 28.941825 28.9418245 STD 130.81098 303.12151 3.746% 1.1611754 32.198565 32.198565

STD (%) 3.480% 12.372% 10.300% 45.516% 90.943% 100.408% STD (%) 2.270% 5.302% 3.777% 29.112% 79.331% 85.662%
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