
INDC(NDS)-0750 
Distr. J,NM,SD,ST 

INDC International Nuclear Data Committee 

Some Algorithms for Evaluating Nuclear Data and Generating 

Uncertainty Covariance Matrices 

E.V. Gai

Institute of Physics and Power Engineering 

State Research Centre of the Russian Federation 

English translation from Voprosy Atomnoi Nauki i Tekhniki, 

Ser.: Yadernye konstanty 1-2 (2007) 56 

Translated by IAEA/NDS 

January 2018 

IAEA Nuclear Data Section 
Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria 

https://doi.org/10.61092/iaea.hqeg-efbt



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Selected INDC documents may be downloaded in electronic form from 

http://www-nds.iaea.org/publications 

or sent as an e-mail attachment. 

Requests for hardcopy or e-mail transmittal should be directed to  

NDS.Contact-Point@iaea.org 

or to: 

Nuclear Data Section 

International Atomic Energy Agency 

Vienna International Centre 

PO Box 100 

1400 Vienna 

Austria 

 

 

Printed by the IAEA in Austria 

January 2018 

 

 

 

http://www-nds.iaea.org/publications
mailto:NDS.Contact-Point@iaea.org


 

 
 

INDC(NDS)-0750 
Distr. J,NM,SD,ST 

 

 

 

 

 

 

Some Algorithms for Evaluating Nuclear Data and Generating 

Uncertainty Covariance Matrices 

 
 

 

 

 

E.V. Gai 

Institute of Physics and Power Engineering 

State Research Centre of the Russian Federation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 
Nuclear data is evaluated using a realistic covariance matrix of observable uncertainties in 

experimental data. This matrix is built on a model of the piecewise constant energy dependence 

of experimental uncertainties. Using this model least square problems can be solved without 

inversion of ill-conditioned matrices with a rank equal to the total number of experimental points 

and with inversion of a matrix with a rank equal to the number of energy zones of the function. 

Within the least squares approach the problem of the combined processing of already known 

evaluations and new experimental data is considered. The algorithm for construction of the 

covariance matrixes of the uncertainties of the different reactions multigroup cross sections, 

correlated because of the use of the same reference cross sections in the relative measurements, 

is described. 
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1.  Main steps in the evaluation of nuclear data in a model of piecewise-constant 

experimental uncertainties 

1.1.  A brute-force search for rational approximants for an entire set of experimental data (in practice, 

data were taken from the latest version of EXFOR, throwing out or correcting obvious errors) is used 

to generate a zero-order approximant of the uncorrelated experimental uncertainties (total declared error 

at each point is taken to be statistical).  When generating a realistic uncertainty covariance matrix for 

an existing evaluation, a rational approximant of the evaluation is constructed as a zero-order 

approximation. 

1.2. Studies that each have only one or two points are combined into a single composite study. For such 

studies it is not useful to separate out the systematic and statistical components of the errors because 

the sample systematic error (for example, the background) is for practical purposes statistical 

(uncorrelated). 

1.3. Based on a visual assessment of the entire experimental data set, the energy range is divided into 

zones that differ according to the dispersion of the data (in relative terms). 

1.4. In the single-zone model and in the multi-zone model, the average values for the relative deviation 

of the experimental data from the zero-order approximant are calculated for each of the studies with 

data in the zone in question. These values are treated as observable systematic errors in the respective 

studies. For each study in each zone, the variance of the experimental points relative to the approximant 

— shifted by the corresponding systematic error of the study in question — is treated as the variance of 

the statistical error of these points. If only one point in a given study is included in the zone, its total 

variance (the square of the deviation from the approximant) is apportioned equally between the variance 

of the systematic and the statistical errors. 

1.5. If in the model of a given zone the observed systematic errors of several studies are close in value, 

their correlation is dealt with by combining some of them into composite studies and then repeating the 

procedure for determining the observed errors. This approach is an effective way to deal with 

correlations between studies without increasing the rank of the matrix of systematic errors. 

1.6. For each zone, the variance in the observed systematic uncertainties in all the studies with data in 

the zone and their mean are estimated. Within each zone, the observed systematic errors of the various 

studies with data points in that zone are assumed to be independent (sample distribution with estimated 

variance). The mean is the bias that can be used for generating the estimate for the next approximation. 

1.7. Based on analysis of previously observed single-zone systematic uncertainties of individual studies, 

the cross-zone covariances of the systematic uncertainties are estimated. 

1.8. A covariance matrix of the actual observed experimental uncertainties is generated using estimated 

observed values for the single-zone variability (variances) in the systematic uncertainties (shared by all 

studies) and statistical uncertainties (separately for each study), and for the cross-zone covariances of 

the systematic uncertainties. 

1.9. The iterative least squares problem is solved using the authors’ experimental data sets and the 

estimated covariance matrix. 

1.10. If one wishes to estimate uncertainties in a known evaluation (for example, from a nuclear data 

library) but it is not known which specific experimental data were used in the evaluation in question, 

the bias in the systematic errors (see 1.6) is eliminated by selecting the studies based on their observed 

systematic errors, and no least squares iterations are performed. 

1.11. To generate covariance matrices of the uncertainties in estimated parameters, the formalism of the 

Fisher information matrix is used, and the approximation of the estimates using a rational function 

allows one to use analytical expressions for the sensitivity coefficients. Then covariance matrices of the 

pointwise and group-wise uncertainties are generated, again using analytical expressions. The evaluated 

covariance matrices of the uncertainties generated in this way relate to the selected experimental data, 

and not to the original complete set. 

In the course of solving practical problems it was discovered that some stages of the evaluated 

calculations can be omitted or simplified. This concerns primarily the iterative generation of the 
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approximant; when generating the first-order approximant (second iteration), instead of solving the least 

squares problem taking into account correlations, one can construct a rational approximant of the 

function yielded by the zero-order approximation by properly taking into account the systematic bias. 

It is even easier to construct an approximant of the points taken from the experimental points by adding 

a zone-specific bias. The algorithm for calculating the Fisher matrix requires a rational approximant, 

even though for the generation of evaluated data files approximants with any bias correction may be 

used. In practice, one iteration is sufficient, meaning that any further improvement of the approximant 

can be neglected. 

The evaluated covariance matrices of the uncertainties are determined mainly by the covariance 

matrices of the experimental uncertainties, which are generated by an algorithm that does not take into 

account bias. In our view, a reasonable accuracy for the determination of evaluated uncertainties would 

be of the order of several tens per cent. Meanwhile, iterative improvement of the approximant, like the 

use of different regression functions (see [1]), has an effect on uncertainties that is of the order of several 

per cent. For this reason, when solving many problems in which the main purpose was to generate 

evaluated covariance matrices of uncertainties, no iterations were performed. 

2. Mathematical apparatus of the model of piecewise-constant experimental 

uncertainties 

2.1. Notation 

L – number of parameters in the evaluation (approximant) 

I – number of study 

NI  –  number of points in study 

J – total number of studies 

 

N =  – total number of experimental points 

 

K – number of energy zone 

XK – lower limit of energy zone 

NIK – number of points from the I-th study in the K-th zone 

nIK – fill-in numbers; nIK = 0, if NIK = 0 and nIK = 1, if NIK > 0 

M – total number of zones (not less than one) 

MI – number of zones that include points from the I-th study 

MK – number of studies that have points in the K-th zone 

YI(xi) – experimental value of the I-th study at point xi 

y(x) – dependence to be estimated (approximant) 

ΔYI(xi) = YI(xc) - y(xi) – absolute discrepancy at point xi 

δYI(xi)  = ΔYI(xi)/y(xi) – relative discrepancy 

εI(xi) – sampled absolute statistical error 

ζI(xi) – sampled relative statistical error, εI(xi) = y(xi)ζ
I(xi) 

χI(xi) – sampled absolute systematic error 

λI(xi) – sampled relative systematic error, χI(xi) = y(xi)λ
I(xi) 

λIK – sampled relative systematic error for the I-th study in the K-th zone 

 

 – variance in the relative statistical errors of the I-th study in the K-th zone, 

– variance in the absolute statistical error of the I-th study at point xi, 

 – variance in the relative statistical errors of points in the I-th study over the entire energy range 

(single-zone model) 
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W – covariance matrix of relative systematic experimental errors 

R – covariance matrix of experimental uncertainties 

 

2.2. Evaluating systematic and statistical uncertainties in experimental data and their 

covariance matrices (steps 1.4–1.8)  

The sample systematic error for the I-th study in each zone that includes points from that study is defined 

as follows: 

 

 (1) 

 

 

summing over points within the zone. The variance in the statistical uncertainty in these same 

experimental data is taken to be equal to 

 

 

 (2) 

 

Eqs (17)–(18) are used if NIK > 1. If NIK = 1, then 

 

 (3) 

 

and 

 

 (4) 

 

The average systematic uncertainty in a zone is defined as: 

 (5) 

 

for MK > 1 and 

 

(6) 

for MK = 1. 

 

The elements of the covariance matrix of systematic uncertainties are evaluated based on estimates of 

the sample systematic uncertainties: 

 

(7) 

 

 

 

 

 

The denominator in (7) is a multiplier for  in the expected value of the numerator; if the  

 

denominator is zero, then  is taken to be zero. 

 

Bearing in mind the limitations imposed by Peelle’s pertinent puzzle and the underestimated uncertainty 

paradox [2], we redefine this covariance matrix as 

(8) 
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and in cases where there are few studies shared between zones, i.e., if is a small number, 

then the following conservative estimate is used. 

 

(9) 

Under the adopted model 

(10) 

 

 

and the elements of the covariance matrix of experimental uncertainties are determined as follows: 

 

𝑅
𝐼1𝐼2

𝑖𝑘
= 𝑦(𝑥𝑖)𝑦(𝑥𝑘) < (𝜁𝐼1(𝑥𝑖) + 𝜆𝐼1(𝑥𝑖))(𝜁𝐼2(𝑥𝑘) + 𝜆𝐼2(𝑥𝑘)) >= 𝑦(𝑥𝑖)𝑦(𝑥𝑘) 𝛿𝐼1𝐼2

(𝛿𝑖𝑘𝜇𝐼1𝐾2
2 + 𝑊𝐾1𝐾2

), (11) 

 

where K1 and K2 are the numbers of the energy zones that include the points xi and xk, respectively. 

 

The elements of the covariance matrix of systematic uncertainties have the same values for all studies. 

This means that the observed systematic uncertainty for a individual study in an individual zone is 

treated as a sample from the distribution characterized by the matrix W. However, for each study, only 

those elements of W used are those corresponding to energy zones with non-zero fill-in numbers for 

the study in question, and the corresponding matrix we denote as WI. Since the uncertainties in 

individual studies are assumed to be independent, the evaluated covariance matrix of experimental 

uncertainties is a block-diagonal matrix and the least squares functional is the sum of the functionals of 

the individual studies. 

 

2.3. Formulating the least squares problem (steps 1.9, 1.11) 

2.3.1.  Least squares functional for one study 

In the traditional formulation of the problem, the least squares functional for each of the studies has the 

form 

 

 (12) 

 

and to solve the least squares problem the covariance matrix of experimental uncertainties R must be 

inverted, which is not always possible when the number of experimental points with correlated 

uncertainties is large, as it is ill-conditioned. It can be shown [3] that in the model chosen by us this 

functional is equivalent to the functional 

 

 (13) 

 

where J is a diagonal matrix with elements 

 

(14) 

 

for the points from the I-th study in the K-th zone, 

 

 (15) 

 

 

for the same points, and, finally, 

 

U = W-1 + F-1      (16) 

 

where, for each study, F-1 is a diagonal matrix with elements 
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(17) 

 

When there is a large number of points with small statistical uncertainties, it turns out that the elements 

of matrix F-1 are orders of magnitude greater than the elements of matrix W-1, which leads to a loss of 

information about systematic errors. For this reason, using the matrix identity 

 

 (А-1 + В-1)-1 = А - А(А + В)-1А,  (18) 

 

we transform (13) to the form 

 

(19) 

 

 

2.3.2. Complete least squares functional and information matrix 

As already indicated, for each study the rank of matrix W is determined by the number of energy zones 

that include points from the study in question, and the same applies to the rank of matrix F and the 

number of dimensions of vector Z. From the point of view of software implementation of the algorithm 

it is more convenient to deal with matrices and vectors that have the same number of dimensions for all 

studies, and therefore we write the complete functional in the form 

 

(20) 

 

where the elements of the matrices and vectors are defined as follows: 

 

(21) 

 

 

 (22) 

 

 

 (23a) 

 

 

  

(23b) 

 

 

 

The functional (20) can be written in the form 

 

 

 (24) 

 

 

where YI(𝑥𝑖
𝐾) are the points from the I-th study that are in the K-th zone. 

Functional (20) corresponds to a Fisher information matrix I [4] with matrix elements 

 

 

 

 (25) 
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in which, in place of the discrepancies in the experimental data that appear in functionals (20) and (24), 

there are the partial derivatives of the evaluation (approximants) with respect to each parameter. We 

recall that the parameter covariance matrix P is related in the following way to the Fisher information 

matrix: 

 

 

 (26) 

 

 

and for the covariance of the uncertainties in the evaluation at any two points we have 

 

 

(27) 

 

 

Using (27), it is possible to generate covariance matrices of evaluated uncertainties at any number of 

points, including on experimental abscissas, and in any multi-group partitioning of the energy range. 

3.  Global characteristics of uncertainties in experimental data and uncertainties 

in evaluations 

In [1], for any regression functions, the following relationships are obtained between the covariance 

matrices of experimental uncertainties and the covariance matrices of evaluated uncertainties (summing 

over all N experimental points): 

 

 (28) 

  

 

where r and v are relative covariance matrices with matrix elements 

    

 (29) 

 

and 

 vr-1v = v,  (30) 

 

 VR-1V = V. (31) 

 

In addition, for functions in which a constant factor can be distinguished as one of the parameters (for 

example, for any rational approximant), the following relation holds 

 

 

 (32)  

 

 

 

and for functions with a constant shift parameter (for example, for rational functions in which numerator 

and denominator are of the same degree), it also holds that 

 

 

 (33) 

 

 

 

All these relations were tested on a large number of practical and model examples. 
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4.  Combined handling of several evaluations 

Suppose that from the evaluations of several independent sets of experimental data we have the 

parameters of the regression functions y(x; pk) (same model for all sets, but different parameter values) 

pk and their information and covariance matrices, respectively,  

Ik and Pk = (Ik)-1 

Then the combined evaluation is obtained by solving the least squares problem with respect to the 

parameters p = (p1,..pα,...pL) for the following functional: 

 

 (34) 

 

where JJ is the number of sets being considered, the row vector Δpk = (pk - p) describes the discrepancies 

in the parameters obtained for estimating the k-th set of experimental data, with respect to the true values 

of the parameters, and (Δpk)T is the corresponding column vector. The solution of the corresponding 

(linear!) system of equations has the form: 

 

 

(35) 

 

and the information matrix will simply be the sum of the information matrices for the individual sets: 

 

 (36) 

 

The simplest example is one with only one parameter whose uncertainty has a variance equal to one  

 

for all sets. Then the combined evaluation is                       , and its mean-square uncertainty is 1/JJ. 

 

Expressions (34)–(36) can be obtained by writing the least square functional of the combined 

evaluation of the experimental data as the sum of the functionals of the independent data sets 

 

(37) 

 

where ΔYk is the vector of experimental discrepancies for the k-th set, and Rk is the covariance matrix 

of experimental uncertainties for that set. Representing each of the partial evaluations then in the form 

 

 (38) 

 

 

and the combined evaluation in the form 

 

 (39) 

 

and differentiating the functional (36) with respect to the components of Δр and using the least square 

equations for the partial evaluations, for the parameters of the combined evaluation we obtain the 

equality (35), and for their uncertainties , we obtain 

 

 (40) 

 

 

Bearing in mind the independence of the partial evaluations, for the covariance of uncertainties in the 

parameters of the partial evaluations and the combined evaluation we obtain 

 

 (41) 
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that is, the covariance matrices of the uncertainties in the parameters of all the partial evaluations 

coincide with the uncertainties for the full evaluation; the correlation matrices will differ, and the worse 

the partial evaluation, the lower the correlation with it. 

 

Using (41) and assuming that all evaluations are close to the true function and therefore 

 

   

 

 

(this condition was already used to derive the relations (35) and (40)), we obtain for the covariance 

matrix of the uncertainties in the evaluations: 

 

 

 

 (42) 

 

 

 

Thus, when dealing with independent partial evaluation, the conclusion regarding the coincidence of 

the covariance matrix of the complete and partial uncertainties in the evaluated parameters with the 

covariance matrix of the complete uncertainties carries over to the uncertainties in the evaluations 

themselves. 

If evaluations for some sets of experimental data are to be considered together with new experimental 

data, it is simplest first to separately evaluate the new experimental data and then use the least squares 

functional (34). It is also possible to solve the least squares problem for the sum of functional (34) (only 

for the past evaluations) and the usual functional for the discrepancies in the new experimental data 

with respect to the regression function y(x; p). The information matrix for the parameters of the 

combined evaluations will be the sum of the information matrices of these functionals. Since the 

enumeration method cannot be used for such a functional, the least squares problem, if possible, is 

solved in a linear approximation and the parameters of the combined evaluation q are expressed as 

follows in terms of the parameters of the old evaluation p, the new experimental data Y, the new 

covariance matrix of the experimental uncertainties S 

 

and the new information matrix:           

 

 

 (43) 

 

If the evaluations of different sets are correlated (for example, through a common standard), it is 

necessary first to construct the covariance matrices of the parameters of the partial evaluations 

Then, when constructing the covariances for the full and partial evaluations, replace Eqs (34) and (39) 

by 

 

 

(44) 

  

 

(45) 

 

 

 

In this case, of course, relations (41) and (42) are no longer satisfied. 
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5.  Generating covariance matrices of uncertainties in evaluated cross sections 

for various reactions 

Let ΔуR be the absolute error, based on relative measurements, in the estimate of the absolute value of 

the cross section, Δуr the absolute error in the relative measurements, Δуs the absolute error in the 

standard, f(x), g(x), h(x) the values of the respective evaluations, f(x) = g(x)h(x), and δyR = ΔyR/f, 

δy  = Δyr/g, and δys = Δys/h the respective relative errors. If the errors in the relative measurements are 

not related in any way to the errors in the standard, then for the absolute errors we get  

 

 (46) 

 

and the relative errors are simply added, 

 δуR = δуr+ δуs.  (47) 

 

In this case, we have for the elements of the covariance matrices of the absolute uncertainties 

 

 (48) 

 

 

and for the relative uncertainties 

 

 

 (49) 

 

 

Choosing the reference ordinates as parameters and considering the covariance of the errors for 

reference values on the abscissa, using (48)–(49) we can show that for any parametrization 

 

 (50) 

 

 

Henceforth, covariance matrices of relative uncertainties shall be donated by Q with the relevant 

indices: A for an estimate based on absolute measurements, C for a combined estimate based on relative 

and absolute measurements, and other indices as introduced above. Since the errors in the standard are 

correlated only with the errors in the estimate based on systematic measurements, using (40) and (47) 

we get: 

 

 (51) 

 

that is, a representation of the covariance matrix of the relative uncertainties in the parameters of the 

complete estimate and the uncertainties in the parameters of the standard, in terms of the covariance 

matrices of the uncertainties in the parameters of the complete estimate, in the parameters of the estimate 

based on relative measurements, and in the parameters of the standard. The covariances of the 

corresponding uncertainties at any points have the following form: 

 

 (52) 
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Expressions (51) and (52) are strong, but to use them one must know the covariance matrices of the 

parameters. 

 

The group average cross sections are defined as follows: 

 

 (53) 

 

 

The evaluation error of a group average cross section in the first-approximation based on the errors in 

the parameters can be written in the form 

 

 (54) 

 

and therefore, the covariance matrix of the uncertainties in the group average cross sections has the 

form 

 

(55) 

 

where 

 

(56) 

 

 

The dimension of the covariance matrix of the uncertainties of the group average cross sections is equal 

to the number of groups but its rank cannot exceed the number of parameters, since, according to 

expression (54), the errors in the estimates of the group average cross sections are linear combinations 

of the parameter errors. If the number of groups and the number of parameters of the approximant 

coincide, then the group average cross sections are one of the possible parametrizations of the 

approximant and therefore the covariance matrices of their uncertainties obey relations (49) and (50). 

 

If the number of groups is smaller than the number of parameters, we partition one of the groups into 

subgroups so that the strong relations (51) and (52) can be used. Next, one must move on to the original 

number of groups. Aggregation of a group entails summing the factors (56) and averaging the 

corresponding matrix elements; we will illustrate this by combining two groups (х1,х2) and (х2,х3) into 

one (х1,х3), with the condition that х3 - х2 = х2 - х1, 

 

 (57) 

 

 

It can be shown that if the cross section in at least one of the original groups is nearly constant, its 

partitioning and subsequent approximate aggregation leads to relations of the form (51) and (50) for the 

covariance matrices of the uncertainties in the group average cross sections even in the case where the 

number of groups is smaller than the number of parameters of the approximant. 

We obtain the same result if we represent the evaluation as a step function whose parameters 

(step heights) are the group average cross sections. Under this approach, using (36) for the covariance 

matrix of the relative uncertainties in the combined evaluations, we get: 

 

 QCC = ((QAA)-1 + (QRR)-1)-1, (58) 

and using (49), we can write 

 QRs = Qss (59) 

 

 QRR = Qrr + Qss. (60) 
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The covariance matrix of the uncertainties in the complete evaluation of the group average cross 

sections and the uncertainties in the standard is given by expression (49), in which the role of the 

covariance matrices of uncertainties in the parameters is played by the corresponding matrices for the 

group average cross sections, i.e. V = QCC, VR = QRR. Using (51), (58) and (60) and the familiar relation 

(18) from matrix algebra, we finally get 

 

 QCC =Qrr + Qss  (Qrr + Qss )(QAA + Qrr + Qss )-1(Qrr + Qss ) (61) 

 

 QCs = Qss  (Qrr + Qss )(QAA + Qrr + Qss )-1Qss. (62) 

 

 

If the evaluations of the cross sections of two nuclides are obtained using the same standard, then their 

uncertainties are correlated. Using (36), for the covariance matrix for these evaluations, we get 

 

 

 (63) 

 

 

 

6.  Conclusion 

The mathematical apparatus described above has been coded and tested on model problems and is 

successfully being used in the evaluation of nuclear data. In practice, the maximum number of 

parameters of the regression function was 40, the maximum number of experimental studies was 75, 

and the maximum number of experimental points in the least squares functional was 4000 (in some 

cases, following preliminary processing of studies with many thousands of points). The evaluations of 

nuclear data and the covariance matrices of their uncertainties are stable with respect to changes, within 

reasonable limits, in the number of parameters, with respect to the number of energy zones and with 

respect to the choice of a conservative or realistic version of the covariance matrix of the observed 

experimental uncertainties, despite the fact that when the approximant has a large number of parameters 

some of them can only be determined with very large uncertainty. 
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