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ABSTRACT 

In two previous investigations that are documented in this IAEA report series, we examined the effects 

of non-Gaussian, non-symmetric probability density functions (PDFs) on the outcomes of data 

evaluations. Most of this earlier work involved considering just two independent input data values and 

their respective uncertainties. They were used to generate one evaluated data point. The input data are 

referred to, respectively, as the mean value and standard deviation pair (y0,s0) for a prior PDF p0(y) and 

a second mean value and standard deviation pair (ye,se) for a likelihood PDF pe(y). Conceptually, these 

input data could be viewed as resulting from theory (subscript “0”) and experiment (subscript “e”). In 

accordance with Bayes Theorem, the evaluated mean value and standard deviation pair (ysol,ssol) 

corresponds to the posterior PDF p(y) which is related to p0(y) and pe(y) by p(y) = Cp0(y)pe(y). The 

prior and likelihood PDFs are both assumed to be normalized so that they integrate to unity for all y ≥ 

0. Negative values of y are viewed as non-physical so they are not permitted. The product function 

p0(y)pe(y) is not normalized, so a positive multiplicative constant C is required to normalize p(y).  In 

the earlier work, both normal (Gaussian) and lognormal functions were considered for the prior PDF. 

The likelihood functions were all taken to be Gaussians. Gaussians are symmetric, with zero skewness, 

and they always possess a fixed kurtosis of 3. Lognormal functions are inherently skewed, with widely 

varying values of skewness and kurtosis that depend on the function parameters. In order to explore the 

effects of kurtosis, distinct from skewness, the present work constrains the likelihood function to be 

Gaussian, and it considers three distinct, inherently symmetric prior PDF types: Gaussian (kurtosis = 

3), Continuous Uniform (kurtosis = 1.8), and Laplace (kurtosis = 6). A product of two Gaussians 

produces a Gaussian even if ye ≠ y0. The product of a Gaussian PDF and a Uniform PDF, or a Laplace 

PDF, yields a symmetric PDF with zero skewness only when ye = y0. A pure test of the effect of kurtosis 

on an evaluation is provided by considering combinations of s0 and se with ye = y0. The present work 

also investigates the extent to which p(y) exhibits skewness when ye ≠ y0, again by considering various 

values for s0 and se. The Bayesian results from numerous numerical examples have been compared with 

corresponding least-squares solutions in order to arrive at some general conclusions regarding how the 

evaluated result (ysol,ssol) depends on various combinations of the input data y0, s0, ye, and se as well as 

on prior-likelihood PDF combinations: Gaussian-Gaussian, Uniform-Gaussian, and Laplace-Gaussian. 
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1.  Introduction 

As mentioned in the Abstract, our two earlier investigations examined the effects of non-

Gaussian (non-normal), asymmetric input-data probability density functions (PDFs) on data-

evaluation outcomes [1, 2]. The statistical methods that were used are described in the indicated 

references. For simplicity, portions of this earlier work involved considering just two 

independent input-data values and their respective uncertainties, both corresponding to a single 

random variable y. These data were employed to generate one evaluated data point. The input 

data are referred to, respectively, as a prior value for y and its standard deviation, i.e., the pair 

(y0,s0), and an additional value for y and its standard deviation, i.e., the pair (ye,se). 

Conceptually, these two input data values could be viewed as generated by theory (subscript 

“0”) and experiment (subscript “e”), respectively, since this is representative of scenarios 

encountered frequently by nuclear data evaluators. The evaluation procedure discussed in the 

earlier work, as well as in the present investigation, has been conducted in the random-variable 

space S(y) associated with these two “observable” values for y, as opposed to performing the 

analysis in a variable space S(x) of theoretical parameters x used to calculate values of y 

through the mapping of S(x) to S(y) by some theoretical model function “g”, i.e., y = g(x). 

 

In 2007, Smith suggested a data evaluation method that has come to be known by the nuclear 

data community as Unified Monte Carlo (UMC) [3]. More recently, variations of the original 

UMC technique have been suggested by various investigators, so the original approach from 

Smith is now denoted by UMC-G. The extension “G” appears for historical reasons. “Unified” 

in UMC indicates that both theoretical and experimental data are taken into consideration in a 

unified manner by this procedure. The term “Monte Carlo” stems from the fact that Smith 

suggested the use of Monte Carlo (stochastic) simulation techniques to calculate the often 

complicated integrals associated with realistic applications of the UMC method. The method 

used in the present work is most closely related to UMC-G; however, it does not employ Monte 

Carlo in the calculations. In very simple evaluation exercises, such as those examined in the 

present work, the integrals involved can be calculated readily by deterministic numerical 

methods rather than by resorting to Monte Carlo analyses. The method used for computation 

of the integrals does not alter the basic concept that underpins this evaluation method. 

 

The approach introduced by Smith [3], and used in our earlier work [1, 2], as well as in the 

present investigation, is based on Bayes Theorem [4,5]. The evaluated mean value and standard 

deviation pair (ysol,ssol) corresponds to the posterior PDF p(y). This PDF is related to p0(y) and 

pe(y) by p(y) = Cp0(y)pe(y). The prior and likelihood PDFs are both assumed to be normalized 

so that they integrate to unity over the entire range of allowed values for y. Negative values of 

y are considered to be non-physical, so y ≥ 0 is assumed throughout in this work. In situations 

where specific PDF types might yield non-negligible probability for negative y, e.g., Gaussians 

with standard deviations exceeding ≈ 30%, it is essential to avoid including any negative y 

when calculating all integrals involved in the evaluation procedure. Finally, the product 

function p0(y)pe(y) is usually not normalized, so a positive multiplicative constant C must be 

introduced to normalize p(y) before it can be used in the evaluation calculations. 

 

In the earlier work, both Gaussian [6] and lognormal functions [7] were considered for the prior 

PDFs. All the likelihood functions were assumed to be Gaussians, in accordance with the 

Principle of Maximum Entropy, since usually only mean values ye and standard deviations se 

are provided by experimenters [8, 9]. Gaussians are symmetric, with zero skewness, and they 

always possess a fixed kurtosis of 3. Lognormal functions are inherently skewed, with widely 
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varying values of skewness and kurtosis that depend on the lognormal function parameters. 

Instances of noticeable differences between evaluated mean values and standard deviations 

obtained by the least-squares method [5, 10] and those derived by Bayesian analyses were 

observed in our earlier work. Those differences for the mean values could be attributed to non-

symmetric, non-Gaussian posterior PDFs p(y), and in particular to significant skewness 

associated with these PDFs. However, it was not possible from our earlier work to draw any 

conclusions regarding possible effects of PDF kurtosis on the evaluated mean values and 

standard deviations because of the simultaneous presence of skewness in the posterior PDFs. 

 

In order to explore the effects of kurtosis, independent of skewness, the present work constrains 

the likelihood PDF pe(y) to be Gaussian, as in our earlier studies [1, 2], and it then considers 

three distinct, inherently symmetric functional forms for the prior PDF p0(y) [11]: Gaussian 

(kurtosis = 3) [6], Continuous Uniform, which is referred to in this document simply as 

Uniform (kurtosis = 1.8) [12], and Laplace (kurtosis = 6) [13]. While many varieties of 

symmetric PDFs are known to statisticians [11], the choices of Uniform and Laplace PDFs 

employed here were made because of their simplicity as well as the fact that their constant 

kurtosis values bracket that of the Gaussian PDF. A product of two Gaussians always produces 

a Gaussian even if ye ≠ y0. The product of a Gaussian PDF and a Uniform PDF, or of a Gaussian 

and a Laplace PDF, yields a symmetric PDF with zero skewness only when ye = y0. 

 

A pure test of the effects of kurtosis on the outcomes of evaluations is provided by considering 

combinations of s0 and se, always with ye = y0. The resulting posterior PDFs p(y) then have 

zero skewness. The kurtosis effects should impact only on the derived standard deviations. The 

present work also investigates skewness in the posterior PDFs p(y) when ye ≠ y0, again by 

considering various combinations of s0 and se. Bayesian evaluated results for studied examples 

are compared with the corresponding least-squares solutions to deduce general conclusions 

regarding how the evaluated results (ysol,ssol) depend systematically on various combinations 

of the input data y0, s0, ye, and se, as well as on the prior-likelihood PDF combinations: 

Gaussian-Gaussian, Uniform-Gaussian, and Laplace-Gaussian. The results of this work are 

presented in several tables and graphs that demonstrate the systematic effects associated with 

various choices for the input data values as well as the PDF combinations used. These 

numerical results compiled in this investigation also appear in their entirety in the Appendix. 

2. Concepts and Formalism 

The Bayesian approach to data evaluation is described conceptually in this section. First, we 

define in detail the nomenclature used in the present work. Random variable y, as well as the 

prior PDF p0(y), likelihood PDF pe(y), and posterior PDF p(y), were introduced already in 

Section 1. Let f(y) correspond to any well-defined, well-behaved function of the random 

variable y. The expectation value of f is defined in terms of the integral <f> = ʃ f(y)p(y)dy, 

provided that p(y) is normalized. Integration extends over the entire range of values y for which 

the magnitude of p(y) contributes significantly to the integral in question, but restricted to y ≥ 

0 whenever y represents a positive physical quantity (also mentioned in Section 1). If f(y) = y, 

<f> corresponds to the mean value of p(y), and it can be written as <y> or, in the present 

context, as ysol. If f(y) = <(y-ysol)
2> = <y2>-ysol

2, then <f> corresponds to the variance of p(y) 

which is written as var(y). The standard deviation of p(y) is defined as std(y) = [var(y)]½, or in 

the present context as ssol. For present purposes, the skewness and kurtosis of p(y) can be 

written as skewsol and kurtsol, respectively. The following formulas are used to determine the 

skewness and kurtosis of p(y): 
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skewsol =  [<(y-ysol)
3>] / [var(y)]3/2 ,                                              (1) 

 

kurtsol = [<(y-ysol)
4>] / [var(y)]2 .                                                (2) 

 

In contrast to our earlier work [1, 2], the present investigation does not involve any stochastic 

(Monte Carlo) analyses. All the calculations have been performed deterministically. Since 

integrals need to be determined, and analytical formulas are often unavailable, the following 

numerical approach was utilized in the present work to compute these integrals. 

 

Assume that the range of integration is (ylow,yhigh) and <f> = ʃ f(y)p(y)dy is to be approximated 

by a finite, discrete sum of terms. The following formulas have been used for this purpose: 

 

<f> ≈ [Σk=1,K f(yk)p(yk)] / [Σk=1,K p(yk)],                                              (3) 

 

Δy = [(yhigh-ylow)/K],                                                          (4) 

 

yk = ylow + (k-0.5)Δy    (k=1,K).                                                 (5) 

 

Note that inclusion of a term in the denominator of Eq. (3) insures that <f> will always be 

properly evaluated regardless of whether p(y) is or is not normalized. The accuracy of the 

discrete-sum approximations to these integrals increases with the number of terms K. All the 

calculations performed for the examples considered in the present investigation were carried 

out using EXCEL, with ylow = 0, yhigh = 20, and K = 4,000. Therefore, Δy = 0.005. Values for 

y0, s0, ye, and se were selected for the studied examples so that the desired accuracy of this 

approximation would be adequate. Several checks to determine that this was indeed fulfilled 

were conducted during this investigation. This is an important consideration because some 

differences between corresponding least-squares and Bayesian evaluated results were found to 

be relatively small. To establish that these effects were real, the possibility of numerical biases 

due to the approximation defined by Eqs. (3), (4), and (5) needed to be excluded. In practice 

this numerical approach to approximating the encountered integrals proved to be very accurate. 

 

An evaluated result produced by the least-squares method was generated for each example 

considered in the present work to compare with the corresponding Bayesian result. These 

calculations were performed using the following analytical formulas [5,10]: 

 

ysol = [(y0 / s0
2) + (ye / se

2)] / [(1 / s0
2) + (1 / se

2)] ,                                  (6) 

  

(1 / ssol
2) = (1 / s0

2) + (1 / se
2) .                                                 (7) 

 

Least-squares results are explicitly independent of the prior and likelihood PDFs. However, an 

assumption of the least-squares method is that all the data being evaluated are normal, i.e., 

Gaussian-distributed [5]. This issue is revisited in a later section of the present report. 

 

For the present Bayesian evaluation approach, the PDF associated with the “experimental” data 

point represented by (ye,se) is assumed to be Gaussian, thus pe(y) is given by: 

 

pe(y) = exp[-0.5(y-ye)
2/ se

2] / (2πse
2)½ .                                           (8) 
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The formulas used to characterize the three distinct, symmetric prior PDF types p0(y) 

considered in the present Bayesian approach are as follows: 

 

Gaussian prior PDF [6] 

 

p0(y) = exp[-0.5(y-y0)
2/ s0

2] / (2πs0
2)½ .                                          (9) 

 

Uniform prior PDF [12] 

 

p0(y) = 0    if y < a or y > b (with 0 < a < b < ∞) ,                               (10) 

 

p0(y) = h    if a ≤ y ≤ b ,                                                  (11) 

 

h = 1/(b-a) .                                                          (12) 

 

Laplace prior PDF [13] 

 

p0(y) = (1/2c) exp[-(y0-y)/c]    if y ≤ y0 ,                                   (13) 

 

p0(y) = (1/2c) exp[-(y-y0)/c]    if y ≥ y0 ,                                   (14) 

 

c = [s0
2/2]½ .                                                         (15) 

 

It is instructive to compare the shapes of the Gaussian, Uniform, and Laplace PDFs with a 

common mean value and standard deviation. This is exemplified in Fig. 1 for <y> = 10 and 

std(y) = 1 (10% uncertainty). The plotted curves share a common normalization. 

 

 

 
 

Fig. 1: Comparison of Gaussian, Uniform, and Laplace prior PDFs p0(y) with <y> = 10, std(y) 

= 1, and a common normalization. 
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The use of Gaussians to represent PDFs is well justified for many situations in nuclear science 

[5, 6]. However, Uniform PDFs are sometimes used if it is assumed that the value for a 

particular random variable should fall within a particular range, but otherwise there is no basis 

for preferring one value over another within that range [12]. The Laplace PDF is not as 

commonly used as the other two PDFs [13]. The present investigation is not concerned with 

this particular issue, but rather it has been carried out to gain an understanding of how PDF 

shapes influence the outcomes of evaluations performed using Bayesian methods when 

compared to what is obtained from using the more common least-squares approach where 

evaluated outcomes are not explicitly dependent on the assumed underlying PDFs. 

 

The following three sections present and analyze results from least-squares and Bayesian 

evaluations performed with various selections of input data y0, s0, ye, and se, as well as the 

abovementioned three prior PDF types p0(y) in combination with a Gaussian likelihood PDF 

pe(y). Numerical results from all the considered examples are compiled in the Appendix. 

3. Gaussian – Gaussian Examples 

It is straightforward to show that if p(y) = Cp0(y)pe(y), with Gaussian pe(y) given by Eq. (8), 

Gaussian p0(y) given by Eq. (9), and a normalization constant C, then p(y) is Gaussian with 

mean value ysol and standard deviation ssol given by Eqs. (6) and (7), respectively. Then C is: 

 

C = (2πssol
2)-½ .                                                        (16) 

 

Fig. 2 shows plots of normalized prior PDF p0(y) and likelihood pe(y), along with their un-

normalized product p0(y)pe(y), for a specific example with y0 = 11, s0 = 1, ye = 9, and se = 1. 

 
 

 
 

Fig. 2: Plots of normalized Gaussians p0(y) and pe(y), along with their product p0(y)pe(y), for 

y0 = 11, s0 = 1, ye = 9, and se = 1. 
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Note: For convenience, throughout this report the following un-subscripted notation is 

used in both tables and figures (and occasionally in the text) to refer to the indicated 

corresponding subscripted quantities that appear only in the text: p0 ≡ p0; pe ≡ pe; y0 ≡ 

y0; ye ≡ ye; ysol ≡ ysol; s0 ≡ s0; se ≡ se; and ssol ≡ ssol.  

 

If “Overlap” is defined by “Overlap = ʃ p0(y)pe(y)dy”, with pe(y) and p0(y) normalized 

according to Eqs. (8) and (9), then “Overlap” can be calculated using Eq. (17) [1,14].  

 

Overlap = ʃ p0(y)pe(y)dy = exp[-0.5(y0-ye)
2/(s0

2+se
2)] / [2π(s0

2+se
2)]½ .       (17) 

 

“Overlap” can also be calculated using the approximation method defined by Eqs. (3), (4), and 

(5). Comparisons of “Overlap” values obtained by these two methods therefore provides a very 

sensitive test of the accuracy of the approximation method used in the present investigation. 

 

The least-squares evaluated result for this particular example is ysol = 10 and ssol = 

0.707106781186547. The normalized chi-square value is 2. The Bayesian solution obtained 

using the approximation method embodied in Eqs. (3), (4), and (5) yields the following results: 

ysol = 10 (obviously), ssol = 0.707106781186549, skewsol = 4.64417E-14, and kurtsol = 

3.00000000000002.  The skewness for a Gaussian should be exactly zero while the kurtosis 

should be exactly 3. The digits that agree for the comparable values are highlighted in yellow 

while those that disagree are highlighted in blue. 

 

The value of “Overlap” obtained analytically using Eq. (17) is Overlap = 0.103776874355149. 

The value of “Overlap” obtained from numerical integration according to the approximation 

method embodied in Eqs. (3), (4), and (5) is Overlap = 0.103776874355133. Again, the digits 

that agree for the comparable values are highlighted in yellow while those that disagree are 

highlighted in blue. 

 

Agreement between the analytical least-squares results and those obtained from the Bayesian 

calculations that are performed using the present approximation method is excellent to many 

significant figures, as is evident from examination of the highlighted digit values for the 

indicated comparable quantities. Similar excellent agreement is observed for the other 

Gaussian – Gaussian examples considered in this work, as is seen in Tables A.1 and A.2 of the 

Appendix. This leads to the following general conclusion: 

 

• Conclusion: If all the input data to be evaluated are assumed to be Gaussian-

distributed, the Bayesian solution will be identical to that obtained by applying the 

least-squares method. Then, there is no benefit to employing the more computationally 

intensive Bayesian approach rather than using the simpler least-square approach in 

performing the evaluation. 

 

However, the Bayesian evaluation approach should be considered if some or all of the 

underlying PDFs of the data being evaluated are non-Gaussian. This is the case whenever non-

linear functional relationships are involved, as was demonstrated in our earlier work [1,2]. 

4. Uniform – Gaussian Examples 

In this section we explore examples that incorporate the Uniform – Gaussian PDF combination, 

with ye = y0. This allows examination of the effects of kurtosis free from skewness, since the 
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prior and likelihood PDFs are both symmetric. A number of examples have been analyzed 

using ye = y0 = 10, s0 = 0.577350269 (≈ 5.8%) and various values of se. The relevant results, 

collected from numerical information compiled in the Appendix, are assembled in Table 1. 

 

 
Table 1: Comparisons of evaluated standard deviations ssol obtained using the least-squares (LS) and 

Bayesian (Bay) methods for Uniform prior and Gaussian likelihood PDFs, as well as assumed equal 

mean values ye = y0 = 10. These results are drawn from the numerical information compiled in Tables 

A.3 and A.4 of the Appendix. 
 

 
 
 

The results provided in Table 1 are also plotted in Figs. 3 and 4. These figures offer two distinct 

yet comparable views that demonstrate the systematic behavior of ratios of the evaluated least-

squares (LS) and the Bayesian (Bay) standard-deviation results, ssol. These ratios are plotted 

versus posterior PDF kurtosis (Fig. 3) and the input data standard deviation ratio se/s0 (Fig. 4). 
 

 
 

Fig. 3: Plot of standard-deviation ratios obtained by the least-squares and Bayesian methods 

versus kurtosis for several Uniform – Gaussian PDF examples. 

s0 se se/s0 Kurtosis ssol(Bay) ssol(LS) ssol Ratio

0.57735 3 5.196152 1.815278 0.566947 0.5730789 1.0108162

0.57735 2.5 4.330127 1.822042 0.562544 0.571205 1.0153961

0.57735 2 3.464102 1.834545 0.5547 0.567763 1.0235494

0.57735 1.5 2.598076 1.861773 0.538816 0.5603645 1.0399924

0.57735 1.2 2.078461 1.897166 0.520266 0.5509363 1.0589512

0.57735 1 1.732051 1.940905 0.5 0.5395592 1.0791184

0.57735 0.75 1.299038 2.053599 0.457496 0.5114609 1.1179578

0.57735 0.62 1.073872 2.172679 0.422522 0.4832982 1.1438411

0.57735 0.5 0.866025 2.365527 0.377964 0.4398132 1.1636362

0.57735 0.4 0.69282 2.624217 0.328798 0.3818394 1.1613192

0.57735 0.3 0.519615 2.914466 0.266207 0.2984526 1.1211298

0.57735 0.2 0.34641 2.999673 0.188982 0.1999985 1.0582927

0.57735 0.1 0.173205 3 0.098533 0.1 1.0148892
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Fig. 4: Plot of the standard-deviation ratios obtained by the least-squares and Bayesian 

methods versus the ratio se/s0 for several Uniform – Gaussian PDF examples. 

 

 

Variations in the standard deviation ratios can be significant, i.e., they can exceed 16%. Fig. 3 

shows that the largest difference between the least-squares and Bayesian results corresponds 

to a solution PDF p(y) having a kurtosis of ≈ 2.4. It is interesting to notice that this kurtosis 

value falls about midway between the kurtosis of 1.8 for p0(y), a Uniform PDF, and a kurtosis 

of 3 for pe(y), a Gaussian PDF. This also corresponds to a situation where the “theoretical” and 

“experimental” values have about the same uncertainties, and therefore contribute about 

equally to determination of the uncertainty in the evaluated solution. This observation is also 

borne out by the results shown in Fig. 4, where the maximum difference between the least-

squares and Bayesian ssol results correspond to se ≈ s0, i.e., to se/s0 ≈ 1. Figs. 3 and 4 also 

demonstrate that the difference between the least-squares and Bayesian results tends to vanish 

at the limits where either the prior or the “experimental” input data point dominates the 

evaluation due to a much lower uncertainty than the other input data point. Fig. 5 shows a plot 

of the prior, likelihood, and posterior PDFs for the case where se ≈ s0. 

 

• Comment: It is evident that ssol(Bay) ≥ ssol(LS) for the considered Uniform – Gaussian 

cases. One might suspect that perhaps this holds true in general whenever the prior 

PDF kurtosis is less than that of the Gaussian PDF (and ye = y0), regardless of the 

nature of the prior PDF. However, such a claim cannot be substantiated by considering 

only one type of prior PDF (Uniform). Studies with other symmetric PDFs types having 

kurtosis values less than for a Gaussian would be needed to validate such a claim. 

 

The practical implication of the preceding observations and general comment is that in realistic 

nuclear data evaluations one will encounter some instances where model values have 

significantly larger uncertainties than the experimental uncertainties in energy ranges where 

experimental data dominate the evaluation, while the opposite will be true for the evaluation 
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of data in energy ranges which are mostly dominated by theoretical models, owing to scarce 

and hard-to-measure experimental data. In the energy ranges transitioning between those two 

regimes, it is very likely to encounter cases where model values and experimental data have 

similar uncertainties. Studies such as the present one should be done for realistic data sets. 

 

• Conclusion: The cases of experimental versus model uncertainties studied in the 

present work are potentially relevant for the evaluation of realistic nuclear data.  

 

 

`  

 

Fig. 5: Plots of pe(y), p0(y), along with their product p0(y)pe(y), for ye = y0 = 10 and se = s0 = 

0.577350269 (≈ 5.8%). Notice that the kurtosis of the posterior PDF is < 3 since the Gaussian 

“wings” are effectively truncated by the Uniform PDF. 

 

 

This analysis suggests two additional conclusions relevant to the Uniform – Gaussian case: 

 

• Conclusion: The posterior PDF kurtosis appears to fall between the kurtosis of the 

prior PDF and the likelihood PDF. The largest difference between the least-squares 

and Bayesian evaluated standard deviations corresponds to a posterior PDF kurtosis 

that is about midway between the prior PDF kurtosis and the likelihood PDF kurtosis.  

 

• Conclusion: Differences in the posterior PDF kurtosis relative to that of a Gaussian 

can have a significant effect on the differences between evaluated results obtained by 

the least-squares and Bayesian methods, even if the input data mean values are equal. 

The Bayes standard deviations appear to be systematically greater than or equal to the 

least-squares values whenever the prior PDF is the Uniform function. 

 

The present investigation also considers a number of examples corresponding to y0 = 10 and s0 

= 0.577350269 (≈ 5.8%), but with various values of se and ye ≠ y0. A graphical rendition of the 
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PDFs for a typical example, i.e., se = 1 and ye = 11, appears in Fig. 6. If one is accustomed to 

Gaussian PDF shapes, the product PDF shape (shown in red in Fig. 6) seems strange indeed. 

 

The considered examples are grouped into five categories based on standard deviation values 

se = 0.1, 0.2, 0.5, 1, and 1.5, respectively. All numerical results are compiled in the Appendix. 

 

What is shown here are systematic dependencies on the scaled displacement factor (ye-y0)/se 

of ratios of the Bayesian and least-squares evaluated mean values ysol and standard deviations 

ssol as well as posterior PDF skewness and kurtosis values. These results are presented below 

in tables and figures with accompanying discussions. The displacement factor is a measure of 

the discrepancy between the “theoretical” value y0 and “experimental” value ye utilized in the 

evaluation procedure. In realistic evaluations, there are compelling reasons to suspect the input 

data – either the theoretical or experimental values – when discrepancies between these values 

exist that exceed more than two combined standard deviations. In such situations, careful 

evaluators will expend extra effort to try and trace the origins of these discrepancies. The 

present investigation employs hypothetical data. Doing so offers the opportunity to explore 

what happens in those situations where the data are chosen artificially to be very discrepant.  

 

Extreme displacement factors (indicated in red font) for the input mean values yield large 

evaluated chi-squares, small “Overlaps”, and various other numerical anomalies due to the 

discrepant nature of the input data. Furthermore, there may be numerical biases associated with 

incomplete integration due to including only the range of variable “y” from 0 to 20. For these 

reasons, one should avoid drawing any conclusions from those tabulated values shown in red 

font even though they may be included in the tables and plots.  

 

 

 
 

Fig. 6: Plots of normalized pe(y) and p0(y), along with the product PDF p0(y)pe(y), for y0 = 10,  

s0 = 0.577350269, ye = 11, and se = 1. Prior PDF is Uniform and likelihood is Gaussian.  



 

17 
 

Uniform – Gaussian Examples with se = 0.1 

 

Results for y0 = 10, s0 = 0.57735, and se = 0.1 appear in Table 2 and Fig. 7 (A through D). 

Smooth variations with (ye-y0)/se are seen in the table and plots. The mean-value ratios are 

close to unity for (ye-y0)/se ≤ 5. The standard deviation ratios differ systematically from unity 

by ≈ 1.5 to 2% for (ye-y0)/se ≤ 5. Skewness values are totally negligible for (ye-y0)/se ≤ 5. The 

kurtosis for (ye-y0)/se ≤ 5 is ≈ 3. It deviates considerably from 3 for (ye-y0)/se > 5.  

 

 
Table 2: Tabulated Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 0.1. 
 

 
 

 

  

(A)                                                                                   (B) 

 

(C)                                                                              (D) 

 

Fig. 7: Plots of Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 0.1. 

  

                                              Examples with y0 = 10 : s0 = 0.57735 : se = 0.1

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 1.019803903 3.36206E-15 3

0.5 1.000144928 1.014889157 6.73977E-15 3

1 1.000288462 1.014889157 -3.38613E-15 3

2 1.000571429 1.014889157 -1.55338E-14 3

3 1.000849057 1.014889156 -1.38E-11 2.999999997

4 1.001121495 1.014889138 -6.70314E-09 2.999998801

5 1.001388875 1.014885393 -1.12601E-06 2.99983676

10 0.995381356 0.611673924 -0.014738976 3.87017511
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Uniform – Gaussian Examples with se = 0.2 

 

Results for y0 = 10, s0 = 0.57735, and se = 0.2 are shown in Table 3 and Fig. 8 (A through D). 

Smooth variations with (ye-y0)/se are seen in the table and plots. The mean-value ratios differ 

from unity by ≤ 0.5% for (ye-y0)/se ≤ 5. The standard deviation ratios differ systematically from 

unity by ≈ 5 to 6% for (ye-y0)/se ≤ 2. These ratio differences from unity are ≈ 0.4 to 36% for          

3 ≤ (ye-y0)/se ≤ 5. The skewness is very small for (ye-y0)/se ≤ 2 and it is very modest elsewhere. 

The kurtosis varies from ≈ 2.8 to 3.8 for (ye-y0)/se ≤ 5. 

 

 
Table 3: Tabulated Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 0.2. 
 

 
 

 

 

(A)                                                                                  (B) 

 

 (C)                                                                                 (D) 

 

Fig. 8: Plots of Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 0.2. 

  

                                              Examples with y0 = 10 : s0 = 0.57735 : se = 0.2

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 1.058292662 -1.19839E-14 2.999673062

0.5 1.001061632 1.058262167 -2.72298E-05 2.998743326

1 1.002102635 1.058017279 -0.000179579 2.993031563

2 1.004052253 1.051222692 -0.003223293 2.916751448

3 1.005053007 0.996408709 -0.018053517 2.760912428

4 1.002631507 0.839783105 -0.037421378 3.001366317

5 0.995186 0.637925322 -0.041669788 3.869426535

7.5 0.964383891 0.315585798 -0.023552615 6.445149136
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Uniform – Gaussian Examples with se = 0.5 

 

Results for y0 = 10, s0 = 0.57735, and se = 0.5 are shown in Table 4 and Fig. 9 (A through D). 

Smooth variations with (ye-y0)/se are observed in the table and plots. The mean-value ratios 

differ from unity by < 1.1% for (ye-y0)/se ≤ 3. Standard deviation ratios differ from unity by ≈ 

0.8 to 41% for (ye-y0)/se ≤ 3. The skewness is noticeable for 0.8 ≤ (ye-y0)/se ≤ 3. The kurtosis 

increases systematically from ≈ 2.4 to 5 for (ye-y0)/se ≤ 3. 

 

 
Table 4: Tabulated Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 0.5. 
 

 
 

 

 

(A)                                                                                 (B) 

 

(C)                                                                                 (D) 

 

Fig. 9: Plots of Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 0.5.  

                                              Examples with y0 = 10 : s0 = 0.57735 : se = 0.5

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 1.163636242 5.30998E-14 2.365527418

0.4 1.003804067 1.141288968 -0.062887704 2.437960462

0.8 1.006440596 1.079770801 -0.113841464 2.646199402

1.2 1.007223871 0.992496037 -0.146606049 2.96641576

1.6 1.005958965 0.894297089 -0.161617826 3.367537788

2 1.002812869 0.796642156 -0.163175933 3.818156486

3 0.988973892 0.590225826 -0.138619504 4.99049609

4 0.970431869 0.447184037 -0.106771139 6.018422948

5 0.950113327 0.351374885 -0.081280228 6.803251557

6 0.929393387 0.285767465 -0.062879393 7.365674865
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Uniform – Gaussian Examples with se = 1 

 

Results for y0 = 10, s0 = 0.57735, and se = 1 are shown in Table 5 and Fig. 10 (A through D). 

Smooth variations with (ye-y0)/se are observed in the table and plots. The mean-value ratios 

differ from unity by < 0.3% for (ye-y0)/se ≤ 2. Differences from unity in the standard-deviation 

ratios range from ≈ 0.3 to 17% for (ye-y0)/se ≤ 2. Noticeable skewness occurs for 0.4 ≤ (ye-

y0)/se ≤ 2. Kurtosis increases systematically from ≈ 1.9 to 3.6 for (ye-y0)/se ≤ 2. 

 

 
Table 5: Tabulated Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 1. 
 

 
 

 

 

(A)                                                                                     (B) 

 

 

(C)                                                                                     (D) 

 

Fig. 10: Plots of Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 1. 

  

                                             Examples with y0 = 10 : s0 = 0.57735 : se = 1

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 1.079118421 3.5649E-14 1.940905062

0.3 1.001184718 1.071690504 -0.067120884 1.983355719

0.4 1.001535011 1.065992821 -0.088654678 2.016232085

0.5 1.001849543 1.058767428 -0.109490941 2.058318989

1 1.002654555 1.002626637 -0.198656636 2.400817767

1.5 1.001779384 0.922793696 -0.256099514 2.937489323

2 0.999042663 0.832949516 -0.281664946 3.614657458

3 0.988777907 0.662060975 -0.267985038 5.102576981

5 0.957728417 0.431532614 -0.175962539 7.194155139

6 0.940303852 0.361538007 -0.140429052 7.705728835
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Uniform – Gaussian Examples with se = 1.5 

 

Results for y0 = 10, s0 = 0.57735, and se = 1.5 are shown in Table 6 and Fig. 11 (A through D). 

Smooth variations with displacement (ye-y0)/se are observed in the table and plots. The mean-

value ratios differ from unity by < 0.1% for (ye-y0)/se ≤ 2. The standard-deviation ratio 

differences from unity range from negligible to ≈ 10% for (ye-y0)/se ≤ 2. The skewness is 

negligible for (ye-y0)/se < 0.4, but it is noticeable for 0.4 ≤ (ye-y0)/se ≤ 2. The kurtosis increases 

systematically from ≈ 1.9 to 2.8 for (ye-y0)/se ≤ 2. 

 

 
Table 6: Tabulated Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 1.5. 
 

 
 

 

 

(A)                                                                                    (B) 

 

 

(C)                                                                                   (D) 

 

Fig. 11: Plots of Uniform – Gaussian results for y0 = 10, s0 = 0.57735, and se = 1.5.  

                                              Examples with y0 = 10 : s0 = 0.57735 : se = 1.5

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 1.039992435 3.77604E-14 1.861772951

0.2 1.000310182 1.038343307 -0.035576395 1.871974898

0.4 1.000591784 1.033430503 -0.070575795 1.902533749

0.6 1.000819824 1.025356029 -0.104445023 1.953306346

1 1.001025382 1.000434065 -0.166827669 2.114397698

1.5 1.000627614 0.95545827 -0.230921384 2.422553094

2 0.999334925 0.899622 -0.276664971 2.838261651

3 0.99391276 0.774541535 -0.315100192 3.913507399

5 0.974260171 0.553812286 -0.267883743 6.24847372
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An examination of the collected results from the preceding five hypothetical examples offers 

the possibility to arrive at some general conclusions about the evaluation of the two differently 

distributed data, one that is normal (Gaussian) and the other one that is Uniform. 

 

• Conclusion: The derived Bayesian-to-least-squares mean-value and standard-

deviation ratios, as well as skewness and kurtosis, for the collection of Uniform – 

Gaussian examples, are seen to vary smoothly with the scaled displacement (ye-y0)/se 

for the five cases of se in these examples, as is seen in the tables and plots.  

 

• Conclusion: Generally, the derived mean-value ratios are reasonably close to unity in 

most of these examples except for extreme displacements. 

 

• Conclusion: Substantial differences are observed for the standard-deviation ratios. 

This is correlated with observed significant variations in the kurtosis of the posterior 

PDF rather than being traceable to skewness effects. The observed skewness values, if 

not always negligible, tend to be fairly modest for most of the studied examples. 

 

• Conclusion: Extreme values of displacement (ye-y0)/se in the affected examples are 

generally seen to lead to unreasonable derived values for all four quantities. This 

phenomenon is traceable in some of these examples to the aforementioned incomplete 

integration phenomenon that occurs when the integration range is limited to 0 to 20. 

 

• Conclusion: For those examples that consider input data which are reasonably 

consistent, i.e., modest displacements (ye-y0)/se, the results of the present analysis, and 

the interpretations of these results, can be viewed as trustworthy. 

 

The analyses for all of the examples considered in the present investigation for the Uniform – 

Gaussian category generated chi-square values from the least-squares calculations as well as 

corresponding “Overlap” values from the Bayesian calculations, as described in Section 2. 

These results are collected in the Appendix in Tables A.3 and A.4. 

 

Those examples where very large chi-square values (chi-square/d.f. > 6) and very small 

“Overlap” values (Overlap < 0.02) were generated correspond to hypothetical data that are 

clearly discrepant. The individual entries are identified by means of red font in these tables. As 

indicated in the discussion above, one should not trust the evaluated results or base any general 

conclusions on these discrepant cases. 

5. Laplace – Gaussian Examples 

As indicated in Section 4 for the Uniform – Gaussian case, examples in which ye = y0 offer the 

possibility of examining the effects of kurtosis, free of skewness, when the prior and likelihood 

PDFs are both symmetric, as is also the case for the Laplace – Gaussian combination. 

 

A number of examples have been analyzed using ye = y0 = 10 and various values of s0 and se. 

The relevant information, based on compiled numerical results from the Appendix, is collected 

in Table 7. The results in Table 7 are plotted in Figs. 12 and 13. These figures offer two distinct 

yet comparable views that demonstrate the systematic behavior of ratios of the evaluated least-

squares (LS) and the Bayesian (Bay) standard-deviation results, ssol. The ratios are plotted 

versus posterior PDF kurtosis (Fig. 12) and input data standard deviation ratio se/s0 (Fig. 13). 
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Table 7: Comparisons of evaluated standard deviations ssol obtained using the least-squares (LS) and 

Bayesian (Bay) methods for Laplace prior and Gaussian likelihood PDFs, and assumed equal mean 

values ye = y0 = 10. These results are based on the numerical data compiled in Tables A.5 and A.6 of 

the Appendix. 
 

 
 

 

 

 
 

Fig. 12: Plot of the standard-deviation ratios obtained by the least-squares and Bayesian 

methods versus kurtosis for several Laplace – Gaussian examples. 

 

 

s0 se se/s0 Kurt ssol(Bay) ssol(L.S.) ssol Ratio

1 0.05 0.05 3.05633 0.049938 0.048615 0.973523

0.5 0.05 0.1 3.112571 0.049752 0.04728 0.950325

1 0.1 0.1 3.112694 0.099504 0.094559 0.950306

0.5 0.1 0.2 3.22477 0.098058 0.089503 0.912752

1 0.2 0.2 3.22484 0.196116 0.179003 0.912742

0.5 0.15 0.3 3.335753 0.143674 0.127209 0.885398

0.5 0.2 0.4 3.445049 0.185695 0.16089 0.866422

1 0.4 0.4 3.445094 0.371391 0.321779 0.866416

0.5 0.3 0.6 3.65687 0.257248 0.217918 0.847113

1 0.6 0.6 3.656908 0.514496 0.435834 0.847109

1 0.8 0.8 3.857453 0.624695 0.527249 0.84401

0.5 0.5 1 4.044833 0.353553 0.300432 0.849749

1 1 1 4.044867 0.707107 0.600861 0.849745

1 1.5 1.5 4.451072 0.83205 0.729931 0.877267

0.5 1 2 4.770994 0.447214 0.404574 0.904654

1 2 2 4.771027 0.894427 0.809145 0.904651

0.5 1.5 3 5.205993 0.474342 0.446838 0.942018

1 3 3 5.205999 0.948683 0.893673 0.942014

0.5 2 4 5.46225 0.485071 0.466874 0.962486

0.5 3 6 5.717735 0.493197 0.483964 0.981279
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Fig. 13: Plot of the standard-deviation ratios obtained by the least-squares and Bayesian 

methods versus the ratio se/s0 for several Laplace – Gaussian examples. 

 

 

It is evident from Table 7 that ye = y0 = 10, s0 equals either 0.5 (5%) or 1 (10%), and various se 

are used for the considered examples. Variations in the standard deviation ratio values can be 

significant, i.e., they can exceed 16%.  

 

Fig. 12 shows that the largest difference between the least-squares and Bayesian results 

corresponds to a solution PDF p(y) having a kurtosis of ≈ 3.8. This value is roughly in the 

middle between the kurtosis of 6 for p0(y), a Laplace PDF, and kurtosis of 3 for pe(y), a 

Gaussian PDF. Again, this is what one might expect to observe if the prior and “experimental” 

data carry roughly equal weights in determining the evaluated outcome. 

 

This observation is also borne out by the information plotted in Fig. 13, where the maximum 

difference between the least-squares and Bayesian results correspond to values of se differing 

only modestly from s0, i.e., to se/s0 ≈ 0.8. Again, this corresponds to a situation where the prior 

and “experimental” data values are roughly equally weighted in the evaluation process. 

 

Both figures also show that the differences between the least-squares and Bayesian results 

vanish at both extremes, i.e., when either the prior or the “experimental” input data point 

dominates the evaluation due to a much lower uncertainty than the other input data point. 

 

• Comment: It is evident that ssol(Bay) ≤ ssol(LS) for the considered Laplace – Gaussian 

cases. One might suspect that perhaps this holds true in general whenever the prior 

PDF kurtosis is greater than that of the Gaussian PDF (and ye = y0), regardless of the 

nature of the prior PDF. However, such a claim cannot be substantiated by considering 

only one type of prior PDF (Laplace). Studies with other symmetric PDFs types having 

kurtosis values greater than for a Gaussian would be needed to validate such a claim. 

 

This is the exact opposite direction from the Uniform – Gaussian situation. It can be attributed 

to the fact that the Uniform and Laplace prior PDFs differ notably with respect to their kurtosis 
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values relative to a Gaussian. The Uniform PDF has a kurtosis that is smaller than a Gaussian 

while the Laplace PDF has a kurtosis that is much larger than a Gaussian. As mentioned earlier, 

further investigation is needed to establish whether this is just one example of a more 

fundamental principle of PDF moments. 

 

Fig. 14 is a plot of the prior, likelihood, and posterior PDFs for s0 = 0.5 and se = 1. 

 

 

 
 

Fig. 14: Plots of pe(y), p0(y), and their product p0(y)pe(y), for ye = y0 = 10, s0 = se = 0.5. The 

kurtosis of the posterior PDF is > 3 because the probability density at higher and lower values 

relative to the mean value is enhanced by the influence of the Laplace PDF. A Laplace PDF 

exhibits broader “wings” than a Gaussian PDF with a comparable standard deviation. 

 

 

This analysis leads to the following two general conclusions for the Laplace – Gaussian case 

that are comparable to those expressed in Section 4 for the Uniform – Gaussian case: 

 

• Conclusion: The posterior PDF kurtosis appears to fall between the kurtosis of the 

prior PDF and the likelihood PDF. The largest difference between the least-squares 

and Bayesian evaluated standard deviations corresponds to a posterior PDF kurtosis 

that is about midway between the prior PDF kurtosis and the likelihood PDF kurtosis.  

 

• Conclusion: Differences in the posterior PDF kurtosis relative to that of a Gaussian 

can have a significant effect on the differences between evaluated results obtained by 

the least-squares and Bayesian methods, even if the input data mean values are equal. 

The Bayes standard deviations appear to be systematically less than or equal to the 

least-squares values whenever the prior PDF is the Laplace function. 
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The present investigation also considered a number of examples corresponding to y0 = 10 and 

s0 = 0.5 (5%), but with various values of se and ye ≠ y0. A graphical rendition of the PDFs for 

a typical example, i.e., se = 1 and ye = 11, appears in Fig. 15. The product PDF shape (shown 

in red in Fig. 15) appears as a slightly skewed version of a Laplace PDF shape. Notice that this 

appearance is not as strange as the comparable result for the Uniform – Gaussian case shown 

in Fig. 6 since the Laplace shape is not as severe (i.e., truncated) as the Uniform PDF shape. 

 

 

 
 

Fig. 15: Plots of pe(y), p0(y), and the product PDF p0(y)pe(y) for y0 = 10,  s0 = 0.5, ye = 11, 

and se = 1. The prior PDF is Laplace and the likelihood is Gaussian. 

 

The considered examples are grouped into five categories based on standard deviation values 

se = 0.1, 0.2, 0.5, 1, and 1.5, respectively. All numerical results are compiled in the Appendix. 

What is shown here, in the same fashion as for the Uniform – Gaussian cases in Section 4, are 

systematic dependencies on the scaled displacement factor (ye-y0)/se of ratios of the Bayesian 

and least-squares evaluated mean values ysol and standard deviations ssol, along with posterior 

PDF’s skewness and kurtosis values. These results are shown in tables and figures below, with 

accompanying discussions. 

 

As stated before in Section 4, extreme displacement factors (indicated in red font) for the input 

mean values yield large evaluated chi-squares, small “Overlaps”, and various other numerical 

anomalies due to the discrepant nature of the input data. Furthermore, there may be numerical 

biases associated with incomplete integration due to including only the range of variable “y” 

from 0 to 20. For these reasons, one should avoid drawing any conclusions from those tabulated 

values shown in red font even though they may be included in the tables and plots. 
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Laplace – Gaussian Examples with se = 0.1 

 

Results for y0 = 10, s0 = 0.5, and se = 0.1 are shown in Table 8 and Fig. 16 (A through D). 

Smooth variations with displacement (ye-y0)/se are seen in the table and plots. The mean-value 

ratios agree very well with unity to < 0.2% for all (ye-y0)/se. The standard-deviation ratio 

differences from unity range from ≈ 0.2 to 9% for all (ye-y0)/se. Skewness values are all 

negligible. Kurtosis ranges systematically from ≈ 3 to 3.2. 

 

 
Table 8: Tabulated Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 0.1. 
 

 
 

 

 

(A)                                                                                  (B) 

 

 

(C)                                                                                  (D) 

 

Fig. 16: Plots of Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 0.1. 

  

                                                Examples with y0 = 10 : s0 = 0.5 : se = 0.1

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 0.912752121 7.97988E-15 3.224769698

0.5 0.999230737 0.922581605 0.002451288 3.167649471

1 0.998627786 0.94728445 0.0036858 3.045413572

2 0.998174379 0.998535854 0.002244878 2.919025964

3 0.998387812 1.017384887 0.000401466 2.970771383

4 0.998758295 1.019703236 2.30128E-05 2.997517152

5 0.999136185 1.01980238 4.43485E-07 2.999937156

8 1.000230746 1.019803903 1.40251E-14 3
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Laplace – Gaussian Examples with se = 0.2 

 

Results for y0 = 10, s0 = 0.5, and se = 0.2 are shown in Table 9 and Fig. 17 (A through D). 

Smooth variations with displacement (ye-y0)/se are observed in the table and plots. The mean-

value ratios agree with unity to within ≈ 0.2% for (ye-y0)/se ≤ 5. The standard-deviation ratio 

differences from unity range from ≈ 2 to 13% for (ye-y0)/se ≤ 5.  Skewness is very small for all 

(ye-y0)/se. Kurtosis ranges systematically from ≈ 3 to 3.4. 

 

 
Table 9: Tabulated Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 0.2. 

 

 
 

 

 

                             (A)                                                                                   (B) 

 

 

  (C)                                                                                   (D) 

 

Fig. 17: Plots of Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 0.2. 

  

                                                Examples with y0 = 10 : s0 = 0.5 : se = 0.2

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 0.866421504 -2.14785E-15 3.445048739

0.5 0.997945106 0.881546349 0.010765613 3.360759258

1 0.996353037 0.9215827 0.017365124 3.165175906

2 0.99550824 1.019499629 0.01374437 2.877854055

3 0.997228113 1.068123763 0.003495564 2.92397044

4 0.999743657 1.076523351 0.000285535 2.990195951

5 1.002282695 1.077022472 7.65252E-06 2.999643968

7.5 1.008302365 1.077032961 8.74647E-12 2.999999999
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Laplace – Gaussian Examples with se = 0.5 

 

Results for y0 = 10, s0 = 0.5, and se = 0.5 are shown in Table 10 and Fig. 18 (A through D). 

Smooth variations with displacement (ye-y0)/se are observed in the table and plots. The mean-

value ratios agree with unity to within ≈ 0.7% for (ye-y0)/se ≤ 3. The standard-deviation ratio 

differences from unity range from ≈ 4 to 32% for (ye-y0)/se ≤ 3. Negligible to modest skewness 

values are seen for all (ye-y0)/se. Kurtosis ranges from ≈ 2.8 to 4 for (ye-y0)/se ≤ 3. 

 

 
Table 10: Tabulated Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 0.5. 
 

 
 

 

 

(A)                                                                                     (B) 

 

 

(C)                                                                                    (D) 

 

Fig. 18: Plots of Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 0.5. 

                                                Examples with y0 = 10 : s0 = 0.5 : se = 0.5

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 0.849748734 -2.61885E-14 4.044833356

0.4 0.997320259 0.862503108 0.040612617 3.996444104

0.8 0.995122873 0.89993779 0.076883256 3.854314994

1.2 0.993825481 0.959421044 0.104872774 3.634404472

1.6 0.993824346 1.036112257 0.121259646 3.373428629

2 0.995451248 1.122548849 0.123709994 3.122285262

3 1.007325864 1.316229351 0.074912969 2.802108168

4 1.026951672 1.400154904 0.017201839 2.90074505

6 1.068947413 1.414200027 3.0506E-05 2.999630703

8 1.107741102 1.414213562 7.00348E-10 2.999999987
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Laplace – Gaussian Examples with se = 1 

 

Results for y0 = 10, s0 = 0.5, and se = 1 are shown in Table 11 and Fig. 19 (A through D). 

Smooth variations with displacement (ye-y0)/se are observed in the table and plots. The mean-

value ratios differ from unity by < 0.3% for (ye-y0)/se ≤ 2. The standard-deviation ratio 

differences from unity range from ≈ 3 to 18% for (ye-y0)/se ≤ 2. Noticeable skewness is seen 

for (ye-y0)/se ≥ 0.3. Kurtosis ranges from ≈ 4.3 to 4.8 for (ye-y0)/se ≤ 2. 

 

 
Table 11: Tabulated Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 1. 
 

 
 

 

 

(A)                                                                                    (B) 

 

(C)                                                                                  (D) 

 

Fig. 19: Plots of Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 1. 

                                               Examples with y0 = 10 : s0 = 0.5 : se = 1

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 0.904654339 4.32002E-14 4.770994208

0.3 0.998938173 0.910560161 0.055236153 4.768973698

0.4 0.998609159 0.915161107 0.073567666 4.766923094

0.5 0.998300529 0.921086208 0.091829874 4.763694149

1 0.99723627 0.970867578 0.181458713 4.714246512

1.5 0.997466476 1.055285448 0.266262596 4.567303279

2 0.999786963 1.175722398 0.341994059 4.291590832

3 1.014837975 1.518484919 0.42956845 3.486497854

5 1.108972955 2.164474085 0.127399471 2.807526153

6 1.176180842 2.229992624 0.016261884 2.956985745
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Laplace – Gaussian Examples with se = 1.5 

 

Results for y0 = 10, s0 = 0.5, and se = 1.5 are shown in Table 12 and Fig. 20 (A through D). 

Smooth variations with displacement (ye-y0)/se are observed in the table and plots. The mean-

value ratio differences from unity are < 0.2% for (ye-y0)/se ≤ 2. The standard-deviation ratio 

differences from unity range from ≈ 1 to 14% for (ye-y0)/se ≤ 2. Skewness increases noticeably 

for (ye-y0)/se > 0.4. Kurtosis ranges from ≈ 5.2 to 5.3 for (ye-y0)/se ≤ 2. 

 

 
Table 12: Tabulated Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 1.5. 
 

 
 

 

 

  (A)                                                                                  (B) 

 

 

  (C)                                                                                  (D) 

 

Fig. 20: Plots of Laplace – Gaussian results for y0 = 10, s0 = 0.5, and se = 1.5.  

                                                Examples with y0 = 10 : s0 = 0.5 : se = 1.5

(ye-y0)/se ysol(Bayes)/ysol(LS) ssol(Bayes)/ssol(LS) Skewness Kurtosis

0 1 0.942017569 -2.54033E-14 5.205992566

0.2 0.999666669 0.943862824 0.039268487 5.210021623

0.4 0.999356148 0.949412645 0.07860543 5.221579412

0.6 0.999089398 0.958709355 0.118080452 5.239122188

1 0.998774311 0.988856897 0.19773268 5.281750267

1.5 0.999036589 1.04951517 0.299365839 5.313639764

2 1.000441535 1.138460322 0.404175656 5.26955386

3 1.009180877 1.418410461 0.620947963 4.815428794

5 1.082874312 2.441729547 0.778350477 3.085125698
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An examination of the collected results from the preceding five hypothetical Laplace- Gaussian 

examples offers the possibility to arrive at some general conclusions about the evaluation of 

the two differently distributed data, one that is normal (Gaussian) and the other one that is 

Laplace. These conclusions are identical those reached from consideration of the Uniform - 

Gaussian examples in Section 3. They are repeated in this section for the reader’s convenience, 

with “Laplace” replacing “Uniform” in the text. 

 

• Conclusion: The derived Bayesian-to-least-squares mean-value and standard-

deviation ratios, as well as skewness and kurtosis, for the collection of Laplace – 

Gaussian examples, are seen to vary smoothly with the scaled displacement (ye-y0)/se 

for the five cases of se in these examples, as is seen in the tables and plots.  

 

• Conclusion: Generally, the derived mean-value ratios are reasonably close to unity in 

most of these examples except for extreme displacements. 

 

• Conclusion: Substantial differences are observed for the standard-deviation ratios. 

This is correlated with observed significant variations in the kurtosis of the posterior 

PDF rather than being traceable to skewness effects. The observed skewness values, if 

not always negligible, tend to be fairly modest for most of the studied examples. 

 

• Conclusion: Extreme values of displacement (ye-y0)/se in the affected examples are 

generally seen to lead to unreasonable derived values for all four quantities. This 

phenomenon is traceable in some of these examples to the aforementioned incomplete 

integration phenomenon that occurs when the integration range is limited to 0 to 20. 

 

• Conclusion: For those examples that consider input data which are reasonably 

consistent, i.e., modest displacements (ye-y0)/se, the results of the present analysis, and 

the interpretations of these results, can be viewed as trustworthy. 

 

Analyses for all of the examples considered in the present investigation for the Laplace – 

Gaussian category generated chi-square values from the least-squares calculations and 

corresponding “Overlap” values from the Bayesian calculations, as described in Section 2. 

These results are presented in the Appendix in Tables A.5 and A.6. 

 

Those examples for which very large chi-square values (chi-square/d.f. > 7) and very small 

“Overlap” values (Overlap < 0.03) were produced, correspond to hypothetical data that are 

clearly discrepant. The entries in all the tables for these discrepant cases are identified by means 

of red font. As indicated in the discussion above, one should not trust the evaluated results, nor 

draw any general conclusions from them, for these discrepant cases. 

6. Summary and Conclusions 

The present investigation was conducted to explore the influence of PDF kurtosis on evaluated 

data outcomes. Two independent data values are analyzed to produce an evaluated mean value 

and standard deviation as well as skewness and kurtosis. Three different combinations of input 

data PDFs are examined: Gaussian – Gaussian, Uniform – Gaussian, and Laplace – Gaussian. 

Each of the three assumed input data PDF types have symmetric shapes. Two different 

evaluation approaches are used. One is the conventional least-square approach which involves 

no explicit assumptions about the PDFs. The second is the Bayesian approach, in which PDF 
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shape information is incorporated in evaluating the integrals involved in applying the method. 

Although the input data PDFs are symmetric, the posterior PDFs are asymmetric if the input 

data mean values differ. 

 

If the two input data values that are used to produce an evaluated result are both assumed to be 

normally distributed (Gaussian – Gaussian), then the evaluated mean value and standard 

deviation produced by the Bayesian procedure will be identical to the least-squares results. 

Then, there is no advantage to using the more computationally intensive Bayesian approach. 

Otherwise, the Bayesian approach should be used since it accounts for PDF shape features. 

 

If one of the input data values is assumed to have a Uniform PDF and the other a Gaussian 

PDF (Uniform – Gaussian), then significant differences may be observed between the results 

obtained from applying the two considered evaluation methods, depending on the details of the 

input data. Even when the two input data being evaluated have identical mean values, 

differences will arise in the standard deviations produced by the Bayesian and least-squares 

procedures. These differences are most pronounced when the two data points are equally 

weighted, as a consequence of equal input data standard deviation values, and these differences 

appear to be associated with differences in the input data PDF kurtosis values. If the input data 

mean values differ (data discrepancies), then matters become more complicated. However, 

differences in evaluated mean values tend to be modest, even for fairly discrepant input data. 

The evaluated standard deviation, skewness, and kurtosis values will vary noticeably with the 

discrepancy between the two input data values, although skewness tends to remain fairly 

modest. This is reflected in modest asymmetries observed in plots of the posterior PDFs. 

 

The conclusions for the Laplace – Gaussian case are similar in most ways to those for the 

Uniform – Gaussian case. However, differences in the ratios of Bayesian and least-square 

standard deviations (greater than or less than unity) are observed when comparing the Uniform 

– Gaussian and Laplace – Gaussian data pairs. When the two input data mean values are equal, 

then the solution standard deviation ratios for Uniform – Gaussian data pairs are ≥1 whereas 

the corresponding ratios are ≤1 for Laplace – Gaussian data pairs. This appears to correlate 

with the fact that the kurtosis for a Uniform PDF is smaller than for a Gaussian PDF, whereas 

the Laplace PDF has a larger kurtosis than the Gaussian. 

 

It was already demonstrated in earlier work that PDF shapes can have a significant impact on 

evaluated results obtained by the Bayesian method when compared to use of the least-squares 

technique [1,2]. The present investigation sheds further light on this matter by demonstrating 

that kurtosis impacts mainly the standard deviation whereas skewness affects the mean value. 
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Appendix: Compiled Numerical Results 

The numerical results of the evaluation exercises conducted in this investigation are tabulated 

here. They are organized in the three categories, as discussed in the main text of this report: 

Gaussian – Gaussian, Uniform – Gaussian, and Laplace – Gaussian. The values in red font 

correspond to those examples where the data sets (y0,s0) and (ye,se) are very discrepant, as 

evidenced by the large chi-square values and very small values of “Overlap”. Under these 

conditions, the solution values ysol and ssol should be treated as unreliable. 

 

Gaussian Prior and Gaussian Likelihood Examples 

 
Table A.1: Evaluated results from least-squares and Bayesian analysis for various y0, s0, ye, and se and 

the Gaussian – Gaussian assumption for the prior and likelihood PDFs.  
 

 
 
Table A.2:  These results supplement those in Table A.1. The integrals are defined in Sections 1 and 2 

of the main text. “Formula ʃp0pe(y)” corresponds to “Overlap” from Eq. (17). 
 

 
 

 

 

                   Input Data       Least-squares Solution                      Bayesian Solution

y0 s0 ye se ysol ssol Chi2/d.f. ysol ssol skewsol kurtsol

12 1 8 1 10 0.707107 8 10 0.707107 1.97E-14 3

12 2 8 2 10 1.414214 2 10 1.414214 -1.2E-13 3

11 1 9 1 10 0.707107 2 10 0.707107 4.64E-14 3

11 0.5 9 0.5 10 0.353553 8 10 0.353553 -4.4E-14 3

11 1 9 0.5 9.4 0.447214 3.2 9.4 0.447214 -9.8E-15 3

11 0.5 9 1 10.6 0.447214 3.2 10.6 0.447214 4.42E-15 3

11 2 9 2 10 1.414214 0.5 10 1.414214 -6.9E-14 3

11 2 9 0.2 9.019802 0.199007 0.990099 9.019802 0.199007 9.51E-15 3

10.5 1 9.5 1 10 0.707107 0.5 10 0.707107 1.37E-14 3

10.5 0.5 9.5 0.5 10 0.353553 2 10 0.353553 9.6E-15 3

10.2 0.2 9.8 0.2 10 0.141421 2 10 0.141421 -6E-15 3

10.1 0.2 9.9 0.2 10 0.141421 0.5 10 0.141421 -6E-15 3

                   Input Data                    Calculated Formula Ratio

y0 s0 ye se ʃ pedy ʃ p0dy ʃ p0pedy ʃ p0pedy ʃ p0pedy

12 1 8 1 1 1 0.005167 0.005167 1

12 2 8 2 0.999963 0.999968 0.051888 0.051888 1

11 1 9 1 1 1 0.103777 0.103777 1

11 0.5 9 0.5 1 1 0.010333 0.010333 1

11 1 9 0.5 1 1 0.072042 0.072042 1

11 0.5 9 1 1 1 0.072042 0.072042 1

11 2 9 2 0.999996 0.999997 0.109848 0.109848 1

11 2 9 0.2 1 0.999997 0.120982 0.120982 1

10.5 1 9.5 1 1 1 0.219696 0.219696 1

10.5 0.5 9.5 0.5 1 1 0.207554 0.207554 1

10.2 0.2 9.8 0.2 1 1 0.518884 0.518884 1

10.1 0.2 9.9 0.2 1 1 1.098478 1.098478 1
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Uniform Prior and Gaussian Likelihood Examples 

 
Table A.3: Evaluated results from least-squares and Bayesian analysis for various y0, s0, ye, and se and 

the Uniform – Gaussian assumption for the prior and likelihood PDFs. 
 

 

 

                   Input Data       Least-squares Solution                      Bayesian Solution

y0 s0 ye se ysol ssol Chi2/d.f. ysol ssol skewsol kurtsol

10 0.5774 10 0.1 10 0.098058 0 10 0.1 3.36E-15 3

10 0.5774 10.05 0.1 10.04854 0.098533 0.007282 10.05 0.1 6.74E-15 3

10 0.5774 10.1 0.1 10.09709 0.098533 0.029126 10.1 0.1 -3.4E-15 3

10 0.5774 10.2 0.1 10.19417 0.098533 0.116505 10.2 0.1 -1.6E-14 3

10 0.5774 10.3 0.1 10.29126 0.098533 0.262136 10.3 0.1 -1.4E-11 3

10 0.5774 10.4 0.1 10.38835 0.098533 0.466019 10.4 0.1 -6.7E-09 2.999999

10 0.5774 10.5 0.1 10.48544 0.098533 0.728155 10.5 0.1 -1.1E-06 2.999837

10 0.5774 11 0.1 10.97087 0.098533 2.912621 10.9202 0.06027 -0.01474 3.870175

10 0.5774 10 0.2 10 0.188982 0 10 0.199999 -1.2E-14 2.999673

10 0.5774 10.1 0.2 10.08929 0.188982 0.026786 10.1 0.199993 -2.7E-05 2.998743

10 0.5774 10.2 0.2 10.17857 0.188982 0.107143 10.19997 0.199946 -0.00018 2.993032

10 0.5774 10.4 0.2 10.35714 0.188982 0.428571 10.39911 0.198662 -0.00322 2.916751

10 0.5774 10.6 0.2 10.53571 0.188982 0.964286 10.58895 0.188304 -0.01805 2.760912

10 0.5774 10.8 0.2 10.71429 0.188982 1.714286 10.74248 0.158704 -0.03742 3.001366

10 0.5774 11 0.2 10.89286 0.188982 2.678571 10.84042 0.120557 -0.04167 3.869427

10 0.5774 11.5 0.2 11.33929 0.188982 6.026786 10.93542 0.05964 -0.02355 6.445149

10 0.5774 10 0.5 10 0.377964 2.21E-29 10 0.439813 5.31E-14 2.365527

10 0.5774 10.2 0.5 10.11429 0.377964 0.068571 10.15276 0.431367 -0.06289 2.43796

10 0.5774 10.4 0.5 10.22857 0.377964 0.274286 10.29445 0.408115 -0.11384 2.646199

10 0.5774 10.6 0.5 10.34286 0.377964 0.617143 10.41757 0.375128 -0.14661 2.966416

10 0.5774 10.8 0.5 10.45714 0.377964 1.097143 10.51946 0.338013 -0.16162 3.367538

10 0.5774 11 0.5 10.57143 0.377964 1.714286 10.60116 0.301102 -0.16318 3.818156

10 0.5774 11.5 0.5 10.85714 0.377964 3.857143 10.73743 0.223084 -0.13862 4.990496

10 0.5774 12 0.5 11.14286 0.377964 6.857143 10.81338 0.16902 -0.10677 6.018423

10 0.5774 12.5 0.5 11.42857 0.377964 10.71429 10.85844 0.132807 -0.08128 6.803252

10 0.5774 13 0.5 11.71429 0.377964 15.42857 10.88718 0.10801 -0.06288 7.365675

10 0.5774 10 1 10 0.5 0 10 0.539559 3.56E-14 1.940905

10 0.5774 10.3 1 10.075 0.5 0.0675 10.08694 0.535845 -0.06712 1.983356

10 0.5774 10.4 1 10.1 0.5 0.12 10.1155 0.532996 -0.08865 2.016232

10 0.5774 10.5 1 10.125 0.5 0.1875 10.14373 0.529384 -0.10949 2.058319

10 0.5774 11 1 10.25 0.5 0.75 10.27721 0.501313 -0.19866 2.400818

10 0.5774 11.5 1 10.375 0.5 1.6875 10.39346 0.461397 -0.2561 2.937489

10 0.5774 12 1 10.5 0.5 3 10.48995 0.416475 -0.28166 3.614657

10 0.5774 13 1 10.75 0.5 6.75 10.62936 0.33103 -0.26799 5.102577

10 0.5774 15 1 11.25 0.5 18.75 10.77444 0.215766 -0.17596 7.194155

10 0.5774 16 1 11.5 0.5 27 10.81349 0.180769 -0.14043 7.705729

10 0.5774 10 1.5 10 0.538816 0 10 0.560364 3.78E-14 1.861773

10 0.5774 10.3 1.5 10.03871 0.538816 0.034839 10.04182 0.559476 -0.03558 1.871975

10 0.5774 10.6 1.5 10.07742 0.538816 0.139355 10.08338 0.556829 -0.07058 1.902534

10 0.5774 10.9 1.5 10.11613 0.538816 0.313548 10.12442 0.552478 -0.10445 1.953306

10 0.5774 11.5 1.5 10.19355 0.538816 0.870968 10.204 0.53905 -0.16683 2.114398

10 0.5774 12.25 1.5 10.29032 0.538816 1.959677 10.29678 0.514816 -0.23092 2.422553

10 0.5774 13 1.5 10.3871 0.538816 3.483871 10.38019 0.484731 -0.27666 2.838262

10 0.5774 14.5 1.5 10.58065 0.538816 7.83871 10.51624 0.417335 -0.3151 3.913507

10 0.5774 17.5 1.5 10.96774 0.538816 21.77419 10.68543 0.298403 -0.26788 6.248474
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Table A.4:  These results supplement those in Table A.3. The integrals are defined in Sections 1 and 2 

of the main text. “Formula ʃp0pe(y)” corresponds to “Overlap” from Eq. (17). 
 

 

 

                   Input Data            Calculated Integral Formula Ratio

y0 s0 ye se ʃ pe(y) ʃ p0(y) ʃ p0pe(y) ʃ p0pe(y) ʃ p0pe(y)

10 0.5774 10 0.1 1 1 0.5 0.680851 0.734375

10 0.5774 10.05 0.1 1 1 0.5 0.678377 0.737054

10 0.5774 10.1 0.1 1 1 0.5 0.671008 0.745148

10 0.5774 10.2 0.1 1 1 0.5 0.642323 0.778425

10 0.5774 10.3 0.1 1 1 0.5 0.597214 0.837221

10 0.5774 10.4 0.1 1 1 0.5 0.539333 0.92707

10 0.5774 10.5 0.1 1 1 0.5 0.473081 1.056902

10 0.5774 11 0.1 1 1 0.25 0.158703 1.575272

10 0.5774 10 0.2 1 1 0.5 0.652923 0.765787

10 0.5774 10.1 0.2 1 1 0.499998 0.644236 0.77611

10 0.5774 10.2 0.2 1 1 0.499984 0.618865 0.807905

10 0.5774 10.4 0.2 1 1 0.499325 0.526985 0.947512

10 0.5774 10.6 0.2 1 1 0.488626 0.403153 1.212013

10 0.5774 10.8 0.2 1 1 0.420676 0.277083 1.518231

10 0.5774 11 0.2 1 1 0.25 0.171087 1.461244

10 0.5774 11.5 0.2 1 1 0.003104 0.032075 0.096782

10 0.5774 10 0.5 1 1 0.47725 0.522338 0.913681

10 0.5774 10.2 0.5 1 1 0.468502 0.504733 0.928218

10 0.5774 10.4 0.5 1 1 0.441188 0.455398 0.968796

10 0.5774 10.6 0.5 1 1 0.393729 0.383655 1.026259

10 0.5774 10.8 0.5 1 1 0.327632 0.301794 1.085615

10 0.5774 11 0.5 1 1 0.249984 0.221666 1.127751

10 0.5774 11.5 0.5 1 1 0.079327 0.075925 1.04481

10 0.5774 12 0.5 1 1 0.011375 0.016941 0.671434

10 0.5774 12.5 0.5 1 1 0.000675 0.002462 0.274081

10 0.5774 13 0.5 1 1 1.58E-05 0.000233 0.067909

10 0.5774 10 1 1 1 0.341345 0.345494 0.987991

10 0.5774 10.3 1 1 1 0.330618 0.334028 0.989791

10 0.5774 10.4 1 1 1 0.322495 0.325374 0.991152

10 0.5774 10.5 1 1 1 0.312328 0.314576 0.992853

10 0.5774 11 1 1 1 0.238625 0.237454 1.00493

10 0.5774 11.5 1 1 1 0.151164 0.148595 1.017286

10 0.5774 12 1 1 1 0.078653 0.07709 1.020267

10 0.5774 13 1 1 1 0.011359 0.011822 0.960838

10 0.5774 15 1 1 1 1.58E-05 2.93E-05 0.540361

10 0.5774 16 1 0.999968 1 1.43E-07 4.74E-07 0.302584

10 0.5774 10 1.5 1 1 0.247508 0.24821 0.997169

10 0.5774 10.3 1.5 1 1 0.243284 0.243924 0.997377

10 0.5774 10.6 1.5 1 1 0.231038 0.231504 0.997985

10 0.5774 10.9 1.5 1 1 0.21197 0.212194 0.998941

10 0.5774 11.5 1.5 1 1 0.160826 0.16058 1.001529

10 0.5774 12.25 1.5 1 1 0.093599 0.093171 1.004593

10 0.5774 13 1.5 0.999998 1 0.04369 0.043482 1.004798

10 0.5774 14.5 1.5 0.999877 1 0.004846 0.004928 0.983416

10 0.5774 17.5 1.5 0.95221 1 3.67E-06 4.64E-06 0.790351
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Laplace Prior and Gaussian Likelihood Examples 

Table A.5: Evaluated results from least-squares and Bayesian analysis for various y0, s0, ye, and se and 

the Laplace – Gaussian assumption for the prior and likelihood PDFs. 
 

 

 

                   Input Data       Least-squares Solution                      Bayesian Solution

y0 s0 ye se ysol ssol Chi2/d.f. ysol ssol skewsol kurtsol

10 0.5 10 0.1 10 0.098058 0 10 0.089503 7.98E-15 3.22477

10 0.5 10.05 0.1 10.04808 0.098058 0.009615 10.04035 0.090467 0.002451 3.167649

10 0.5 10.1 0.1 10.09615 0.098058 0.038462 10.0823 0.092889 0.003686 3.045414

10 0.5 10.2 0.1 10.19231 0.098058 0.153846 10.1737 0.097914 0.002245 2.919026

10 0.5 10.3 0.1 10.28846 0.098058 0.346154 10.27187 0.099763 0.000401 2.970771

10 0.5 10.4 0.1 10.38462 0.098058 0.615385 10.37172 0.09999 2.3E-05 2.997517

10 0.5 10.5 0.1 10.48077 0.098058 0.961538 10.47172 0.1 4.43E-07 2.999937

10 0.5 10.8 0.1 10.76923 0.098058 2.461538 10.77172 0.1 1.4E-14 3

10 0.5 10 0.2 10 0.185695 0 10 0.16089 -2.1E-15 3.445049

10 0.5 10.1 0.2 10.08621 0.185695 0.034483 10.06548 0.163699 0.010766 3.360759

10 0.5 10.2 0.2 10.17241 0.185695 0.137931 10.13532 0.171134 0.017365 3.165176

10 0.5 10.4 0.2 10.34483 0.185695 0.551724 10.29836 0.189316 0.013744 2.877854

10 0.5 10.6 0.2 10.51724 0.185695 1.241379 10.48809 0.198346 0.003496 2.92397

10 0.5 10.8 0.2 10.68966 0.185695 2.206897 10.68691 0.199905 0.000286 2.990196

10 0.5 11 0.2 10.86207 0.185695 3.448276 10.88686 0.199998 7.65E-06 2.999644

10 0.5 11.5 0.2 11.2931 0.185695 7.758621 11.38686 0.2 8.75E-12 3

10 0.5 10 0.5 10 0.353553 0 10 0.300432 -2.6E-14 4.044833

10 0.5 10.2 0.5 10.1 0.353553 0.08 10.07293 0.304941 0.040613 3.996444

10 0.5 10.4 0.5 10.2 0.353553 0.32 10.15025 0.318176 0.076883 3.854315

10 0.5 10.6 0.5 10.3 0.353553 0.72 10.2364 0.339207 0.104873 3.634404

10 0.5 10.8 0.5 10.4 0.353553 1.28 10.33577 0.366321 0.12126 3.373429

10 0.5 11 0.5 10.5 0.353553 2 10.45224 0.396881 0.12371 3.122285

10 0.5 11.5 0.5 10.75 0.353553 4.5 10.82875 0.465357 0.074913 2.802108

10 0.5 12 0.5 11 0.353553 8 11.29647 0.49503 0.017202 2.900745

10 0.5 13 0.5 11.5 0.353553 18 12.2929 0.499995 3.05E-05 2.999631

10 0.5 14 0.5 12 0.353553 32 13.29289 0.5 7E-10 3

10 0.5 10 1 10 0.447214 0 10 0.404574 4.32E-14 4.770994

10 0.5 10.3 1 10.06 0.447214 0.072 10.04932 0.407215 0.055236 4.768974

10 0.5 10.4 1 10.08 0.447214 0.128 10.06598 0.409272 0.073568 4.766923

10 0.5 10.5 1 10.1 0.447214 0.2 10.08284 0.411922 0.09183 4.763694

10 0.5 11 1 10.2 0.447214 0.8 10.17181 0.434185 0.181459 4.714247

10 0.5 11.5 1 10.3 0.447214 1.8 10.2739 0.471938 0.266263 4.567303

10 0.5 12 1 10.4 0.447214 3.2 10.39778 0.525799 0.341994 4.291591

10 0.5 13 1 10.6 0.447214 7.2 10.75728 0.679087 0.429568 3.486498

10 0.5 15 1 11 0.447214 20 12.1987 0.967982 0.127399 2.807526

10 0.5 16 1 11.2 0.447214 28.8 13.17323 0.997283 0.016262 2.956986

10 0.5 10 1.5 10 0.474342 0 10 0.446838 -2.5E-14 5.205993

10 0.5 10.3 1.5 10.03 0.474342 0.036 10.02666 0.447713 0.039268 5.210022

10 0.5 10.6 1.5 10.06 0.474342 0.144 10.05352 0.450346 0.078605 5.221579

10 0.5 10.9 1.5 10.09 0.474342 0.324 10.08081 0.454756 0.11808 5.239122

10 0.5 11.5 1.5 10.15 0.474342 0.9 10.13756 0.469056 0.197733 5.28175

10 0.5 12.25 1.5 10.225 0.474342 2.025 10.21515 0.497829 0.299366 5.31364

10 0.5 13 1.5 10.3 0.474342 3.6 10.30455 0.540019 0.404176 5.269554

10 0.5 14.5 1.5 10.45 0.474342 8.1 10.54594 0.672811 0.620948 4.815429

10 0.5 17.5 1.5 10.75 0.474342 22.5 11.6409 1.158214 0.77835 3.085126
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Table A.6:  These results supplement those in Table A.5. The integrals are defined in Sections 1 and 2 

of the main text. “Formula ʃp0pe(y)” corresponds to “Overlap” from Eq. (17). 
 

                   Input Data                    Calculated Formula Ratio

y0 s0 ye se ʃ pedy ʃ p0dy ʃ p0pedy ʃ p0pedy ʃ p0pedy

10 0.5 10 0.1 1 0.999992 1.144093 0.78239 1.462305

10 0.5 10.05 0.1 1 0.999992 1.116408 0.778638 1.433796

10 0.5 10.1 0.1 1 0.999992 1.041646 0.767488 1.357214

10 0.5 10.2 0.1 1 0.999992 0.829157 0.724463 1.144513

10 0.5 10.3 0.1 1 0.999992 0.629743 0.658047 0.956988

10 0.5 10.4 0.1 1 0.999992 0.474825 0.575167 0.825542

10 0.5 10.5 0.1 1 0.999992 0.35785 0.483758 0.739731

10 0.5 10.8 0.1 1 0.999992 0.153176 0.228511 0.670322

10 0.5 10 0.2 1 0.999992 0.948621 0.740817 1.280506

10 0.5 10.1 0.2 1 0.999992 0.908126 0.728154 1.247162

10 0.5 10.2 0.2 1 0.999992 0.801172 0.691448 1.158686

10 0.5 10.4 0.2 1 0.999992 0.521306 0.562219 0.927228

10 0.5 10.6 0.2 1 0.999992 0.303449 0.398244 0.761969

10 0.5 10.8 0.2 1 0.999992 0.172694 0.245748 0.702728

10 0.5 11 0.2 1 0.999992 0.098092 0.132108 0.742513

10 0.5 11.5 0.2 1 0.999992 0.023848 0.015309 1.557753

10 0.5 10 0.5 1 0.999992 0.604688 0.56419 1.071781

10 0.5 10.2 0.5 1 0.999992 0.574638 0.542067 1.060086

10 0.5 10.4 0.5 1 0.999992 0.49402 0.480771 1.027559

10 0.5 10.6 0.5 1 0.999992 0.386256 0.393622 0.981288

10 0.5 10.8 0.5 1 0.999992 0.277092 0.297493 0.931424

10 0.5 11 0.5 1 0.999992 0.184622 0.207554 0.889512

10 0.5 11.5 0.5 1 0.999992 0.053481 0.059465 0.899364

10 0.5 12 0.5 1 0.999992 0.013398 0.010333 1.2966

10 0.5 13 0.5 1 0.999992 0.000794 6.96E-05 11.40049

10 0.5 14 0.5 1 0.999992 4.69E-05 6.35E-08 738.9498

10 0.5 10 1 1 0.999992 0.361181 0.356825 1.012207

10 0.5 10.3 1 1 0.999992 0.347846 0.344208 1.010571

10 0.5 10.4 1 1 0.999992 0.337823 0.334703 1.009322

10 0.5 10.5 1 1 0.999992 0.32537 0.322868 1.007747

10 0.5 11 1 1 0.999992 0.238229 0.239187 0.995995

10 0.5 11.5 1 1 0.999992 0.142444 0.145074 0.981871

10 0.5 12 1 1 0.999992 0.070158 0.072042 0.973857

10 0.5 13 1 1 0.999992 0.010104 0.00975 1.036309

10 0.5 15 1 1 0.999992 5.51E-05 1.62E-05 3.40314

10 0.5 16 1 0.999968 0.999992 3.29E-06 1.99E-07 16.54452

10 0.5 10 1.5 1 0.999992 0.253144 0.252313 1.003291

10 0.5 10.3 1.5 1 0.999992 0.248572 0.247812 1.003066

10 0.5 10.6 1.5 1 0.999992 0.23535 0.234785 1.002406

10 0.5 10.9 1.5 1 0.999992 0.214868 0.214578 1.001354

10 0.5 11.5 1.5 1 0.999992 0.160623 0.160882 0.998392

10 0.5 12.25 1.5 1 0.999992 0.091158 0.091668 0.994434

10 0.5 13 1.5 0.999998 0.999992 0.041422 0.041707 0.993154

10 0.5 14.5 1.5 0.999877 0.999992 0.004488 0.004396 1.020927

10 0.5 17.5 1.5 0.95221 0.999992 5.67E-06 3.28E-06 1.72769
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