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Overview 

In this paper I describe why Resonance Self-Shielding is so important, and I present examples to 

illustrate the magnitude of this effect. More importantly, in order to improve the accuracy of our 

results, I address what can be done to improve our treatment of self-shielding. Throughout I use 

recent ENDF data [1, 2], and Monte Carlo codes TART [3], and MCNP [4]. 

 

I point out the difference between Monte Carlo and deterministic codes (e.g., Sn), as it relates to 

how each treats self-shielding; particularly with regard to boundary conditions. Self-shielding 

means using energy averaged cross sections: obviously this applies to multi-group codes, but it 

also applies even to codes that use continuous energy cross sections [3, 4], to correctly include 

self-shielding in the unresolved resonance region [5, 6]. 

 

Lastly, I address the question of the statistical accuracy of Monte Carlo codes, and I present 

numerous examples, both very simple theoretical results, and hundreds of critical assemblies. 

 

Please note that today our computers are fast enough and large enough that for my own applications 

with my TART Monte Carlo code [3], I always use continuous energy cross sections, not multi-

group. Therefore, self-shielding is no longer a problem I must deal with, except in the unresolved 

resonance region [5, 6], where an “energy average” statistical approach is still required and used 

by both TART [3], and MCNP [4], see the appendix for details. 

 

My conclusions include, 

 

1) Failure to account for resonance self-shielding can give RUBBISH results. When you use  

unshielded cross sections be aware: The results from any computer code can be no 

better than the data they use; with unshielded cross sections you can be in a: garbage in, 

garbage out, situation. 

2) Standard methods of self-shielding in principle only apply to infinite, homogeneous media, 

but in practice they produce surprisingly accurate results for integral parameters, such as 

keff. However, they fail to accurately account for important spatial and directional  results 

simultaneously for thick and thin media, such as spatially dependent fuel burn-up. 

3) The multi-band method is designed to accurately reproduce both integral parameters, such 

as keff, as well as spatial and directional results, for media which are optically thick or thin 

media (multi-group does not), and generally agrees with results based on using continuous 

energy cross sections. 

 

The multi-band method as used by TART [3] is used at all energies, whereas with MCNP [4], it 

has only been applied to self-shielding in the unresolved energy range. The multi-band method 

owes much to the earlier work of Nikolaev [23] and Levitt [24, 25]; it differs in providing an 

analytical solution to the multi-band equations, to explicitly conserve expected moments of the 

flux and reaction rates, and in using Monte Carlo [3], to make practical the correct, all important, 

boundary conditions, ala Nikolaev’s all the way approach [23].  The results included in this report 

are based on using the multi-band method in the TART Monte Carlo code [3] for over 40 years, 

during which time it has been applied to thousands of applications. 
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The Multi-Group Problem 

The problem with the Multi-Group method is that we have to “guess” the answer, in order 

to define the multi-group constants, and our “guess”, even when using many groups (here I use 

616 groups), can have a major impact on the accuracy of our answers.  

 

Let’s look at the source of the problem. The following applies to any geometry, but for simplicity, 

I will illustrate results starting from the time independent, linear transport equation, in planar 

geometry with continuous energy, and I will then explicitly describe the six models I used for the 

continuous, multi-group and multi-band cross sections, 

 

μ ∂Φ(𝐸, 𝑧, 𝜇)/𝜕𝑧 + Σt(E,z)*Φ(E,z,𝜇) = R(E,z,𝜇)  is the slowing down and sources. 

The multi-group equations are obtained by integrating over adjacent energy ranges, and usually 

spatial regions, and direction, to define multi-group constants, 

μ ∂ < Φ(𝐸, 𝑧, 𝜇)𝑑𝐸 >/𝜕𝑧 + <Σt(E,z)*Φ(E,z,𝜇)dE> = <R(E,z,𝜇)dE>, or, equivalently, 

μ ∂Φg(𝑧, 𝜇)/𝜕𝑧 + Σtg(z)*Φg(z,𝜇) = 𝑅𝑔(𝑧, 𝜇) 

Where the group averaged total cross section is defined as the group averaged ratio of reactions 

to flux,  

                 < Σt(E,z)*Φ(E,z,𝜇)dE)>        Reactions 

 Σtg(z) = -------------------------------- = ------------- 

                              < Φ(E,z,𝜇)dE>         Flux 

 

Our problem is that in order to define our multi-group cross sections, Σtg(z), we must “guess” at 

the energy dependence of the flux, Φ(E,z,𝜇), which is the answer we are trying to find; sounds 

like a “Catch-22” situation. Less obvious we are integrating not only over energy, but usually also 

over space and direction. Generally, the energy dependent flux can be approximated by the 

product of two terms: an energy dependent spectrum, e.g., Maxwellian at low energy, 1/E in the 

slowing down range, and a fission and even possibly fusion source at higher energies, and a cross 

section dependent, self-shielding factor. For the slowing down here, I assume it is “smooth” in 

energy, which implies the narrow resonance (NR) approximation (an additional complication I 

will not address here). For a sufficiently large number of groups the assumption of the energy 

dependent term plays only a minor role, and since it appears in both numerator and denominator 

its normalization plays no role at all.  

Unfortunately, the same cannot be said about the cross section dependent self-shielding factor. 

Here the effect is persistent for even many groups, indeed it plays a role as long as the width of a 

group is large compared to the width of resonances in the total cross section. We can see this by 

returning to our original energy dependent equation and assuming,   
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Φ(E,z,𝜇 ) ~ Φ(E,𝜇)*Exp[K*z],  similar to a Laplace transform or Case method 

 

{𝜇𝐾 + Σt(E,z)}Φ(E,𝜇 ) = R(E,𝜇) 

 

                R(E)                ; here R(E) is an energy dependent term (no angular dependence) 

Φ(E,𝜇) = ------------------   

               {𝜇𝐾 + Σt(E,z)}; here the denominator is the self-shielding factor 

 

We can see here that neutron flux is inversely related to the total cross section, plus a spatially and 

direction dependent term, 𝜇K. One interpretation of the flux (the interpretation we use in our Monte 

Carlo codes) is that the flux is the distance travelled by the neutrons normalized per unit time, 

space, energy and direction; which helps us understand the above inverse relationship to the total 

cross section, e.g., doubling the total cross section will half the distance travelled by the neutrons, 

and hence half the flux. This is referred to as “self-shielding” because it is the variation in the 

total cross section, itself, that causes variation in the flux; it is this flux that we want to calculate 

using our multi-group equations, but as we can see here it is also the flux that we must “guess” in 

order to define our multi-group constants. 

The most commonly used self-shielding models start from our above equation, and assume we 

have an infinite, homogeneous medium, i.e., ignore the 𝜇𝐾 term, 

             R(E)  

Φ(E) = ------------------  ; note, here I have omitted the directional dependence of flux, Φ(E) 

            {Σt(E,z)} 

An additional complication is that here the total cross section in the denominator is not the total of 

each evaluation (which is application independent), but rather the total of whatever mix of 

materials we are using in each spatial zone we are averaging over (obviously application 

dependent). Historically due to limited computer resources we wanted to only define application 

independent multi-group libraries, so another approximation is introduced; the Bondarenko, or 

partial shielding, where we assume that the total cross section for any mixture can be defined as 

that of each evaluation, plus a second cross section, Σ0, which can be any value between zero 

(Totally Shielded) to infinity (Unshielded or infinitely dilute), cross sections, 

 

                   < Σt(E,z)* R(E) dE/{Σt(E,z) + Σ0}dE> 

 Σtg(z) = --------------------------------------------------- ; Σtg(z) constant within spatial zone (z)  

                                < R(E) dE/{Σt(E,z) + Σ0}dE> 

Let’s review the explicit approximations used to arrive at this equation, 

1) Infinite, Homogeneous media; ignore 𝜇𝐾. 

2) Narrow resonances, which affects the slowing down spectrum, R(E). 

3) Resonance structure in each evaluation independent; Σt(E,z) + Σ0 

In addition, there are less obvious implied approximations 

1) Multi-group constants are constant throughout each spatial region 

2) Multi-group constants are independent of direction 
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The below plots illustrate the 235U and 238U Total Cross Section using the TART 616 group 

structure (50 groups per energy decade from 10-5 eV to 20 MeV), comparing Unshielded and 

Totally Shielded cross sections. These plots illustrate that even with 616 groups, the 235U Shielded 

Total can be up to ~ 75% less than the Unshielded (i.e.,1/4-th of  it), and for 238U it can be over 

99% less (100 times less). So the differences due to self-shielding can be ENORMOUS; 

increasing to 2,020 groups does not imptove things by much. 

 

Spatial Zoning 

One very important point to note: if a region of space contains only one mixture of materials, 

dividing this region into smaller and smaller volumes has no effect on these self-shielding models, 

so regardless of how fine we zone our geometry, this will not change the results shown below. 
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Cross Sections versus Distance of Collision 

Note that above I only mention calculating the cross section, but in our Monte Carlo codes we 

sample the distance to collision, not the total cross section, 

 

Distance = - log(random)/ Σt(E,z) 

Here we are trying to estimate the flux = the distance travelled by the neutrons. This suggests also 

that when we estimate the flux used as weighting in our multi-group equations, it should also be 

the distance to collision, or the inverse of the total cross sections, as shown in the above equations. 

Six Cross Section Models 

To illustrate the importance of self-shielding, I will use six different cross section models that I 

have included in the TART Monte Carlo code [3]. All the below differences shown for the simple 

1-D planar, and 311 Slow Uranium problems are due solely to how these approximations are used 

in the six cross sections models; these six models include, 

      

1) Continuous Energy Cross sections [7, 8], including Multi-Band shielding in the 

unresolved – this has the fewest approximations and here I assume produces the most 

accurate results to which all others are compared. 

2) Multi-Band Cross Sections at ALL energies – uses the fewer approximations (as will be 

explained in detail below), and in this study it consistently produces results that agree 

closely with the Continuous energy results.  

3) Multi-Group Cross Sections at ALL energies (unshielded energy averages) – this model 

completely ignores self-shielding and defines group averages by merely integrating over 

the energy range of each group, 

Φ (E,𝜇) = R(E), completely ignoring the denominator, {Σt(E,z) + Σ0}. 

4) Unshielded Multi-Group (defined from 2 Band Parameters, including unresolved) – this 

should be statistically equivalent to 3), but for this paper starts from 2 band parameters, 

and combines them to define unshielded cross sections.  

5) Totally Shielded Multi-Group (defined from 2 Band Parameters, including unresolved) – 

this ignores the presence of any other materials in the mixture, 

Φ (E,𝜇) = R(E,𝜇) /{Σt(E,z)}, assuming <Σ0> = 0 

6) Partially Shielded Multi-Group (defined from 2 Band Parameters), including unresolved) 

– uses the Bondarenko approximation, that each isotope in a material is independent, 

Φ (E,𝜇) = R(E,𝜇) /{Σt(E,z) + <Σ0>} 

Here I will note, that this last “definition” is not necessarily unique, because a variety of 

multi-group processing codes treat <Σ0> differently, e.g., is <Σ0>  the shielded or 

unshielded cross section for all other materials, and is it specific to each material included 

in each application? Accounting for the actual self-shielding in all other materials would 

require a multi-group processing code to iterate starting from any “application 

independent” multi-group data library. Here I use the unshielded cross section for each 

evaluation, in each group, to define <Σ0> in all cases. 
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Definition of Criticality 

Based on the literature you will find a number of different definitions of keff, 

 

1) A definition as the eigenvalue of a mathematical problem, to find the multiplier of 

fission nu-bar that will make a system self-sustaining. This can lead to a dangerously 

low estimate of keff, if there are any other processes, besides fission, that can contribute 

neutrons. For example (n,2n) cannot by itself make a system critical, because there is 

no “upscatter”. However, in the presence of fission, (n,2n) can contribute neutrons to 

an otherwise sub-critical system and make it critical. 

2) A definition based on the balance between neutron production and removal; where 

removal includes both neutron absorption and leakage. Unlike definition 1), which only 

considers fission, this definition includes all neutron production, such as due to (n,2n), 

etc. For example, with a sub-critical assembly we can add a beryllium reflector, whose 

high (n,2n) can to make the system critical. This is the definition used by the TART 

Monte Carlo code [3], and of the values presented in this paper. 

3) A definition based on Analog Monte Carlo; for example, tracking neutrons collision 

by collision, and sampling one, and only one, outcome for each  event (collision), only 

at the spatial point of the collision. This is a rather slowly converging process. 

4) A definition based on Expected Monte Carlo; for example, rather than the Analog 

method, that only tallies one outcome per event, with Expected we tally continuously 

along the neutron track, based on ALL the cross sections that contribute to the total 

cross section. Compared to Analog, this converges more rapidly, particularly for 

integral parameters, such as keff. But in some cases, this can lead to loss of important 

correlations. 

 

TART [3] tallies both Analog and Expected results. This approach allows comparison of the two 

“answers” to check for convergence; in an unbiased sample we expect the two to converge to the 

same answer, as we sample progressively more neutrons. Generally, I quote Expected values in 

this paper, but I have also included some Analog results, which I have tried to clearly mark. 

 

There are many well documented “critical” systems, for example TART [3] is distributed with 

over 1,000 “critical” systems [9], which are intended for testing purposes. But we must use caution, 

and carefully read the documentation for these systems, because not all are for actual critical 

systems (some are sub-critical), and all are simplified models (geometrically, and often materially). 

In addition, there is uncertainty in keff due to the nuclear data used; the answer of any computer 

code cannot be any more accurate than the data it uses. In this paper I assume the BEST, most 

physically acceptable, answer, will be that based on using the most detailed nuclear data, i.e., 

Continuous energy cross sections. WARNING: Due to the combination of many limitations, for 

any “approximate” model, the keff closest to unity, may not be the most “accurate”; again, a 

reminder that here I assume the answer based on using Continuous energy cross sections is the 

BEST, and I compare all other to this.  

 

These limitations need not concern us in this paper, because rather than investigating how 

accurately we can produce keff, we will only be concerned with how much keff is changed due to 

using one cross section model versus another; particularly, how resonance self-shielding 

affects keff. 
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Simple, 1-D, Planar Example 

To illustrate results I first calculated a very geometrically simple, theoretical critical system of a 

1-D, planar, infinitely repeating array of Uranium layers in Water. I start with this extremely simple 

system to make it as easy as possible for anyone to replicate these results using other neutron 

transport codes, particularly deterministic codes. 

 
I used continuous energy cross sections as well as the TART 616 groups (50 per energy decade 

from 10
-5

 eV to 20 MeV) to represent the multi-group and multi-band cross sections (2 bands per 

group). The only difference in the calculations was the representation of the neutron cross sections 

as either continuous or multi-group (histograms), e.g., in all six cases I used the same continuous 

energy neutrons, geometry and reaction kinematics; only the  multi-group (histogram), cross 

sections differed. Today we seem to have FAITH (faith = belief, without proof) that we can 

calculate keff to an accuracy of roughly 0.1% (3 digits), whereas the below results illustrate that if 

we do not account for self-shielding the difference between the results using continuous energy 

cross sections and 616 groups is over 0.025, 2.5%, or over 25 TIMES what we consider acceptable 

– let me repeat what I wrote: the difference is not 25%; it is 25 TIMES the 0.001 in keff, 0.1%, 

we consider acceptable. This difference is solely because of our “guess” for the flux that I 

used to define the multi-group constants, i.e., solely due to the self-shielding model. 

 

Note the running times: These are typical, showing that today using continuous energy cross 

sections is no longer prohibitively expensive, which is why this is “The Standard BEST Option” 

that I use for all of my TART production work; here I use multi-group and multi-band results 

solely in the hope that the results can be useful by others in their multi-group calculations; 

particularly deterministic calculations.  
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Planar U/Water Criticality Results 

======================================================================== 

Cross Section       Expected  Difference  Removal     Median    Seconds 

Representation      K-eff     in K-eff    Lifetime    Energy 

                                          (Microsec.) (eV) 

======================================================================== 

Continuous          0.999924  --------  7.89162D+01 5.00948D-02 5066.660 

Multi-Group         0.974683 -0.025241  7.70376D+01 5.01225D-02 3837.700 

Multi-Band          1.000980  0.001056  7.90684D+01 5.01097D-02 4404.120 

Unshielded          0.974645 -0.025279  7.70372D+01 5.01247D-02 4442.640 

Totally Shielded    1.001750  0.001826  7.97356D+01 4.95769D-02 4581.800 

Partial Shielded    0.991570 -0.008354  7.86170D+01 4.98773D-02 4512.280 

======================================================================== 

Today we have FAITH (again, belief, without proof) that we can calculate critical systems within 

roughly 0.1%, i.e., 3-digits of accuracy. But the above results using 616 groups, demonstrates that, 

1) Not self-shielding at all leads to differences of ~ 2.5%; 25 TIMES what we assume. 

2) Totally or Partially shielding improves results, but not to ~ 0.1% 

3) Only the Multi-Band (in this case only 2 Bands) produces agreement ~ 0.1%. 

I should stress that this is for a very simple, 1-D planar, system; far from what we expect to find 

in the real World. 

 

Below is a picture of the neutron flux in the Uranium and Water, separately. The spectrum is more 

or less what we expect: a fission spectrum at high energy, a 1/E slowing down spectrum at 

intermediate energies, and a thermal Maxwellian. As it relates to this paper, note the minima in 

the flux in the Uranium near the peaks of the strongest 238U resonances; exactly as predicted by 

Self-Shielding theory. Also, as we expect, there are no such minima in the water; showing the 

strong spatial dependence of the self-shielding. 
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PLANE 1D: Reaction Details; based on one 10
+8

 neutron sample 

The below tables present results using Continuous, Unshielded and Totally Shielded cross sections. Based on these 

tables it is easy for us to see the sources of the differences in keff; I have highlighted the important differences and 

similarities. Similarities include: All predict about the same 238U fast fission, and (n,2n) contributions (no self-

shielding at high energy), as well as that most scatter is in the moderator (H2O) , and no leakage from the system. We 

see differences in elastic, capture, and fission, i.e., the resonance components.  

PLANE 1D: Analog Events vs. Isotope per Removed Neutron 
 -------------------------------------------- 

 Continuous 

 -------------------------------------------- 

 Reaction    92235    92238     1001     8016 

 -------------------------------------------- 

 Elastic   0.04333  1.98132 50.68940  4.55955 

 (n,n')    0.00539  0.34429  0.00000  0.00092 

 (n,2n)    0.00002  0.00139  0.00000  0.00000 

 (n,3n)    0.00000  0.00001  0.00000  0.00000 

 Fission   0.37264  0.03073  0.00000  0.00000 

 (n,n'p)   0.00000  0.00000  0.00000  0.00000 

 (n,n'a)   0.00000  0.00000  0.00000  0.00001 

 (n,p)     0.00000  0.00000  0.00000  0.00001 

 (n,d)     0.00000  0.00000  0.00000  0.00000 

 (n,a)     0.00000  0.00000  0.00000  0.00242 

 (n,g)     0.06893  0.15345  0.37030  0.00011 

 -------------------------------------------- 

 Totals    0.49031  2.51118 51.05970  4.56301 

 -------------------------------------------- 

 Unshielded 

 -------------------------------------------- 

 Reaction    92235    92238     1001     8016 

 -------------------------------------------- 

 Elastic   0.04193  2.03861 49.64060  4.48570 

 (n,n')    0.00538  0.34454  0.00000  0.00092 

 (n,2n)    0.00002  0.00139  0.00000  0.00000 

 (n,3n)    0.00000  0.00001  0.00000  0.00000 

 Fission   0.36233  0.03078  0.00000  0.00000 

 (n,n'p)   0.00000  0.00000  0.00000  0.00000 

 (n,n'a)   0.00000  0.00000  0.00000  0.00001 

 (n,2a)    0.00000  0.00000  0.00000  0.00000 

 (n,p)     0.00000  0.00000  0.00000  0.00001 

 (n,d)     0.00000  0.00000  0.00000  0.00000 

 (n,a)     0.00000  0.00000  0.00000  0.00242 

 (n,g)     0.06699  0.17461  0.36134  0.00010 

 -------------------------------------------- 

 Totals    0.47666  2.58994 50.00190  4.48916 

 -------------------------------------------- 

 Totally Shielded 

 -------------------------------------------- 

 Reaction    92235    92238     1001     8016 

 -------------------------------------------- 

 Elastic   0.04369  1.97345 51.12700  4.58447 

 (n,n')    0.00538  0.34430  0.00000  0.00092 

 (n,2n)    0.00002  0.00138  0.00000  0.00000 

 (n,3n)    0.00000  0.00001  0.00000  0.00000 

 Fission   0.37346  0.03075  0.00000  0.00000 

 (n,n'p)   0.00000  0.00000  0.00000  0.00000 

 (n,n'a)   0.00000  0.00000  0.00000  0.00001 

 (n,p)     0.00000  0.00000  0.00000  0.00001 

 (n,d)     0.00000  0.00000  0.00000  0.00000 

 (n,a)     0.00000  0.00000  0.00000  0.00243 

 (n,g)     0.06705  0.15091  0.37387  0.00011 

 -------------------------------------------- 

 Totals    0.48960  2.50081 51.50090  4.58795 

 -------------------------------------------- 
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PLANE 1D: Analog Removal and Production per Removed Neutron. 

The above table of results are Expected, and the below table are Analog; note the agreement in all cases to well 

within 3 digits (yet another indicator of convergence). 

 
                    Expected  Analog 

 Continuous         0.999924  0.999780    
 Unshielded         0.974645  0.974810    

 Totally Shielded   1.001750  1.001805    

 -------------------------------------------- 

 Continuous 

 -------------------------------------------- 

 Reaction    Removal     Production Events 

 -------------------------------------------- 

 Elastic     0.000000    0.000000   57.273600 

 (n,n')      0.000000    0.000000    0.350596 

 (n,2n)      0.001412    0.002824    0.001412 

 (n,3n)      0.000008    0.000023    0.000008 

 Fission     0.403369    0.996932    0.403369 

 (n,n'p)     0.000000    0.000000    0.000000 

 (n,n'a)     0.000000    0.000000    0.000008 

 (n,p)       0.000007    0.000000    0.000007 

 (n,d)       0.000001    0.000000    0.000001 

 (n,a)       0.002419    0.000000    0.002419 

 (n,g)       0.592785    0.000000    0.592785 

 Leakage     0.000000    0.000000    0.000000 

 -------------------------------------------- 

 Totals      1.000000    0.999780   58.624200 

 K-eff                   0.999779 

 -------------------------------------------- 

 Unshielded 

 -------------------------------------------- 

 Reaction    Removal     Production Events 

 -------------------------------------------- 

 Elastic     0.000000    0.000000   56.206800 

 (n,n')      0.000000    0.000000    0.350841 

 (n,2n)      0.001410    0.002820    0.001410 

 (n,3n)      0.000008    0.000024    0.000008 

 Fission     0.393117    0.971966    0.393117 

 (n,n'p)     0.000000    0.000000    0.000000 

 (n,n'a)     0.000000    0.000000    0.000007 

 (n,2a)      0.000000    0.000000    0.000000 

 (n,p)       0.000007    0.000000    0.000007 

 (n,d)       0.000001    0.000000    0.000001 

 (n,a)       0.002419    0.000000    0.002419 

 (n,g)       0.603039    0.000000    0.603039 

 Leakage     0.000000    0.000000    0.000000 

 -------------------------------------------- 

 Totals      1.000000    0.974810   57.557700 

 K-eff                   0.974810 

  ------------------------------------------- 

 Totally Shielded 

 -------------------------------------------- 

 Reaction    Removal     Production Events 

 -------------------------------------------- 

 Elastic     0.000000    0.000000   57.728600 

 (n,n')      0.000000    0.000000    0.350606 

 (n,2n)      0.001402    0.002804    0.001402 

 (n,3n)      0.000008    0.000024    0.000008 

 Fission     0.404212    0.999007    0.404212 

 (n,n'p)     0.000000    0.000000    0.000000 

 (n,n'a)     0.000000    0.000000    0.000007 

 (n,p)       0.000007    0.000000    0.000007 

 (n,d)       0.000001    0.000000    0.000001 

 (n,a)       0.002434    0.000000    0.002434 

 (n,g)       0.591937    0.000000    0.591937 

 Leakage     0.000000    0.000000    0.000000 

 -------------------------------------------- 

 Totals      1.000000    1.001805   59.079200 

 K-eff                   1.001805 

 -------------------------------------------- 
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To better understand the source of these differences let’s look inside the Uranium to see what’s 

happening as far as the spatially dependent flux and the all-important reaction rates. 

 

Flux, Reactions and Average Total Cross Section vs. Depth into Uranium 

Our Monte Carlo codes track neutrons collision by collision; as do discrete ordinate codes when 

they run analogue sweep by sweep. Let’s look inside the Uranium to see the details of what 

happens for the first collision versus depth into the Uranium. We will be interested in the spatially 

dependent flux, reaction rates, and “local” average cross section. I will use the Russian ABBN 26 

group structure, which allows us to very clearly “see” self-shielding effects; these results will be 

similar to those seen using any group structure.  

 

PLEASE understand that these are not Monte Carlo results; they are analytical results based on 

using a series of PREPRO [7] codes. The only uncertainty is that of the ENDF/B data [2]; there 

are no statistical uncertainties, as would occur with Monte Carlo or modelling errors as occur in 

either Monte Carlo or deterministic codes. Starting from ENDF/B cross section [8] the following 

series of PREPRO codes were used, 

 

LINEAR/RECENT/SIGMA1: Linearly interpolable, tabulated, 293.6 Kelvin cross sections. 

MIXER: Create the Uranium mixture: 2% 235U, 98% 238U. 

GROUPIE: Calculate ABBN multi-group and multi-band cross sections. 

VIRGIN: Calculate uncollided (i.e., virgin) flux, reaction rates, and cross sections. 

 

With this approach the uncollided results are based on the actual Uranium mixture, of 2% 235U and 

98% 238U, so that we avoid even the “partial” or Bondarenko approximation, i.e., for the multi-

group results we need only consider Unshielded or Totally Shielded results. Anyone can re-create 

these, or any other, analytical uncollided results by FREELY downloading the ENDF data [8], and 

my PREPRO codes from my website [7]. 

 

The ABBN group structure uses three (3) groups per neutron energy decades; in any decade there 

are boundaries at 1, 2.15, 4.65, and 10 . Here I will show results only for one energy group from 

100 to 215 eV (results in other groups are similar). To allow simple comparisons I will normalize 

the integral of the incident flux to be unity,  

 Energy Dependent                     Group Averaged 

Flux                                           

          Exp[-Σt(E)*z/ μ]      

∫              Exp[−Σt(E) ∗ z/ μ]
𝐸𝑔+1

𝐸𝑔

𝑑𝐸 

Reactions Σt(E)*Exp[-Σt(E)*z/ μ]           ∫ Σt(E) ∗ Exp[−Σt(E) ∗ z/ μ]
𝐸𝑔+1

𝐸𝑔
dE 

Cross Section      Reactions/Flux = Σt(E)                    Reactions/Flux = Variable in space                    

The above results are general, since they apply to using either continuous energy or multi-group 

cross sections. It is informative to look at the special case where we are using multi-group cross 

sections, and the energy range that we use corresponds to only one group. Rather than a general 

energy dependent cross section we have, Σt(E) = < Σt>; the above general equations reduce to, 
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 Energy Dependent                     Group Averaged 

Flux                                          Exp[-<Σt>*z/ μ]                    Exp[-<Σt>*z/ μ] 

Reactions <Σt>*Exp[-<Σt>*z/ μ]    <Σt>*Exp[-<Σt>*z/ μ] 

Cross Section      Reactions/Flux = <Σt> = Constant                   Reactions/Flux =  <Σt> = Constant                  

 

First let’s look at the actual energy dependent first collided total reaction rate versus depth into the 

Uranium, from a depth 0 to 0.72 cm (the midpoint of the Uranium, in the above simple problem), 

for the energy range 100 to 215 eV (one of the ABBN groups). This is followed by a detail of the 

180 to 200 eV range, to more clearly see the results in one large resonance. 

 

Note the reaction (Y axis) scale. By a depth of 0.72 cm there are virtually no remaining uncollided 

neutrons near the resonances and compared to the incident reaction rates at the surface (0 cm) the 

remaining reaction rates are up to 1,000 times lower, basically the only remaining reactions occur 

in the minima between resonances. From these figures even for very small depth (0.001 cm) we 

see significant self-shielding; even for as little as 0.0001 cm thickness the analytical calculations 

show significant reduction in the reaction rate (~ 20%). 

 

What is important for the reader to understand is that in this case there is no reason for us 

to show the approximate energy dependent reaction used by the ABBN group structure, 

because by definition of “multi-group”, it is constant across this entire energy range. After 

“seeing” the actual energy dependent reaction rate in the below figures you might question how 

accurate multi-group methods can be if they ignore this energy dependence. Multi-group results 

can be quite accurate, particularly to define simple integral parameters such as keff.  
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Next let’s look at the group integrated results versus depth into the Uranium for the same single 

ABBN group from 100 to 215 eV. Using continuous energy cross sections, at the surface of the 

Uranium the neutrons have not yet “seen” the Uranium resonances, so strictly by cause and effect, 

we know there cannot be any self-shielding, i.e., the correct “local” group averaged cross 

section MUST be the unshielded value. As the neutrons progress further into the Uranium 

neutrons encounter the resonances, and within a very short distance the energy dependent flux 

nearest the resonances is heavily depressed (as we have seen in the above energy dependent 

figures), causing the “local” group averaged cross section (the ratio of group reactions to flux) to 

be dramatically self-shielded (as we have seen in the below spatially dependent figures). In the 

below figure we can see that the “local” group averaged average cross section decreases by about 

a factor of eight (8), from its highest, unshielded, value at the surface, to its heavily self-shielded 

value deep within the Uranium – I repeat: a factor of 8!!!! Whereas all of our multi-group 

models assumes it is constant, independent of space within each zone; therein lies the 

problem with our multi-group models; they all suffer the loss of detail in space and direction. 
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In contrast using multi-group cross sections, by definition, for each group the “local” average 

cross section is independent of depth, which means the flux and reaction rates within each group 

will show simple exponential attenuation into the Uranium. Using Continuous Energy or 

Unshielded cross sections, at the surface the “average” cross section is the same unshielded value, 

so the reaction rates are the same. However, with Continuous energy cross section the “local” 

cross section decreases with depth, allowing neutrons to penetrate further into the Uranium, 

making the reaction rate deep within the Uranium much higher than with unshielded multi-group 

cross sections; in this case over a factor of more than a hundred (100) times higher. 

 

 
In the above figures the most obvious differences are because using continuous energy cross 

sections the “local” (z/ 𝛍 dependent) total cross section is variable, whereas with multi-group 

cross sections, by definition, the total cross section in any one group is a constant. 

 

Next let’s look at the same results using Totally self-shielded cross sections. Here the group 

averaged cross section is only about 1/8 that of the unshielded cross sections, so that the Uranium 

is optically thin and there is little attenuation. Comparing these three figures, particularly the 

spatially dependent “local” average cross section using Continuous cross sections, to me it is 

amazing that the calculated keff only differ by a few per-cent. 
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Below when we compare the total reaction rates vs. depth for these three cross sections models, 

we can see that the Unshielded model yields the same reaction rate at the surface but varies 

enormously everywhere else. Whereas Totally shielding yields much lower reaction rates near the 

surface (~ 8 times lower), but pretty good agreement deeper into the Uranium 

. 
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Through Thick or Thin: The above figure demonstrates that in order to reproduce the spatially 

dependent Total Reactions we need Unshielded group averages for THIN, or small, depths (or 

thicknesses), and Shielded group averages for THICK, or larger, depths (or thicknesses), and to 

reproduce spatial averages. With only one degree of freedom (the group average) normal 

multi-group models cannot simultaneously satisfy both extremes.   

Below plotting the Flux vs. Depth clearly shows the problem with Unshielded cross sections, 

where it looks nothing like the Continuous cross section results; the Unshielded being up to 200 

TIMES less than the Continuous results. The first below figure seems to show agreement between 

the Continuous and Totally Shielded results, however this is only because of the log Y scale. 

Switching to a linear Y scale, shows that in fact the Totally Shielded results are up to 30% greater 

than the Continuous results, and greater than the Continuous at all depths, so its integral will also 

be greater. 
 

 

 
 

The above simple infinite repeat lattice is by far not the most difficult problem we will face; in 

general, keff = Production/[ Absorption + Leakage], but our infinite system has no leakage, so that 

in this case keff is merely a ratio of reaction rates. Also, generally we will be interested in more 

than simple integral parameters, such as keff. For example, we may also be interested in the 

spatially dependent burn-up, which based on the above plots of Continuous reactions, will be 

high near the surface, as predicted by Unshielded, and nothing like the much lower reactions based 

on Shielded cross sections (~ 8 times too low).   
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Based of the above results, I will summarize the multi-group results by pointing out that in 

our neutron calculations in general we are interested in the scalar flux and current as well 

as reaction rate. The problem is that with only one degree of freedom (the multi-group cross 

sections), we cannot accurately simultaneously satisfy all these needs. Also as mentioned 

earlier, dividing  into finer zones may not help, because using one of these multi-group self-

shielding models, all zones may still have the same shielded cross sections. 

 

The Multi-Band method [10, 11,12, 13, 14, 15], is designed to directly address these needs by 

introducing more degrees of freedom for each of the multi-groups. Physically we can think of each 

energy group divided into N Total Cross Section Ranges (Lebesque integration over cross 

section, instead of Riemann integration over energy). After our calculation we can add the N results 

together to define the results for each group . Generally, using N cross section bands per group we 

have 2*N degrees of freedom; only 2*N – 1, because by definition of sum of the band weights 

MUST be unity. Here I will only use two (2) cross section bands, so we have four (4) constants 

that we can define for each group: P1, P2, ΣT1 ,ΣT2. With this 2-band model the equivalent 
definitions of flux, reactions and “local” group averaged cross sections become, 
 

 Group Averaged 

Flux        P1*Exp[-ΣT1*z/ μ]  +               P2*Exp[-ΣT2*z/ μ] 

Reactions ΣT1*P1*Exp[-ΣT1*z/ μ]  +      ΣT2* P2*Exp[-ΣT2*z/ μ] 

Cross Section Reactions/Flux = Variable 

 

Note, here we have two cross sections attenuating the neutrons, compared to only one for the multi-

group model. I define these constants to ensure that in certain limiting cases we reproduce the 

known, or at least expected, limiting values, basically the THIN and THICK limits mentioned 

above, 

1) P1 + P2 = 1 = normalization 

2) The Unshielded value 

3) The Totally Shielded value 

4) One Partially shielded value, to follow expected Σ0 = 0 to infinity self-shielding curve 

These are four equations in four unknowns, so we expect a unique analytical solution to define 

four constants: P1, P2, ΣT1, and ΣT2. By inserting three weighting functions into our equation and 

equating the resulting equations to our known, three pre-calculated self-shielded cross sections 

[7, 16],  0
,  1 ,  2  (Unshielded, Total, Partial), 
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These are a set of non-linear equations; in this case with 2 bands,  quadratic equations. We all 

know how to solve a quadratic equation [ x2 + 2*b*x  + c = 0]; the solution is A+/-B, where: A = 

-b, and B  = Sqrt[b2 – c]; it’s that simple. I used this to analytically define a unique solution to 

these four equations. We also know that there are similar solutions to cubic and quartic equations, 

so I also have analytical solutions for the 3 and 4 band equations, but in almost all cases 2 bands 

are more than adequate. 

Making the standard change of variables used to solve a quadratic equation, 

1P  = 
2

1
 +     ; 1T  = 

1

1

X
 =  ;  = 

2

1
 -    ; 2T  =  

2

1

X
 = 

BA −

1
 

This change of variables immediately satisfies 1P  + 2P  = 1 and the remaining three equations can 

be analytically solved to define,  

A  = 
 12

1
[

−

−

20

10 ]                         

2B = { A 1  [ A 0
]2−  + 1}/[  10

]     

  = 


−

1

1

2

1

B

A
  

As expected, there are two possible values for B , corresponding to the positive and negative roots 

of 2B . This is the result of the non-uniqueness of the solution without an ordering. From the 

definitions of 1T , 2T  and   in terms of A  and B , we can see that choosing the positive or 

negative root of 2B  merely corresponds to the same solution with the two bands interchanged. In 

order to obtain a unique solution, we will always define B  to be positive, which corresponds to 

introducing the ordering 21 TT  . 

The above algorithm will always produce physically acceptable parameters (positive band weights 

and cross sections) as long as  0   2   1 (Unshielded   Partial   Total) . The only 

time that the three of these are equal is when the total cross section is independent of energy across 

the group (i.e., when it is constant); in all other cases this inequality is true. When the cross section 

is constant the two bands become indistinguishable and the two band cross sections become equal, 

BA +

1
2P
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i.e., only one band is required in the group (i.e., the normal multigroup equation). WARNING – 

this is a limiting case that the codes GROUPIE [7], URRDO [5] and URRFIT [6], explicitly handle 

to avoid a singularity in the above definitions, as B and    approach zero; this limit and how I 

handle it is described below. 

In the seemingly trivial limit of no self-shielding, these equations become numerically unstable, 

because in this limit and two band cross sections, 1T and 2T , approach the unshielded average, 

and the two band weights, 1P  and 1P  , become non-unique, as long as they sum to unity, e.g., we 

can see this from the equations defining B and  , since in the no shielding limit B approaches 

zero and since  is proportional to 1/ B , we have a problem. 

To handle this limit, I consider three cases. In all three cases I always define, 

1P  = 
2

1
 +     ; 1T  = 

1

1

X
 =    ;  = 

2

1
 -    ; 2T  =  

2

1

X
 = 

BA −

1
 

The three cases correspond to placing limits on   and/or B . 

1) No self-shielding:  1 =  0
 

Weight    1)( =TW  

Conserve  0
 

            P1 = P2 = 1/2 :  = 0, 
2B = 0, A = 1/  0

 

           1T = 2T =  0
 

2) Little self-shielding:  1  =>0.9999  0
; 0.01% or less self-shielding 

Weight 1)( =TW  TTW = /1)(  

Conserve  0
  1  

P1 = P2 = 1/2 :  = 0 

A  = 1/  1  

2B = A 2 [  0
 -  1 ]/[  0

] 

  

BA +

1
2P



 26  

 

3) General self-shielding:  1  < 0.9999  0
; more than 0.01% self-shielding 

Weight 1)( =TW  TTW = /1)(  TTW = /(1)(  +  0
) 

Conserve  0
  1   2  

A  = 
 12

1
[

−

−

20

10 ]     

2B = { A 1  [ A 0
]2−  + 1}/[  10

]                                

  = 


−

1

1

2

1

B

A
 

Let’s look at some results. The first plot below compares FLUX; here the multi-band results are 

similar, but somewhat better than the shielded results. Where we see the BIG difference is in the 

second plot below of TOTAL REACTIONS; here the multi-band results clearly outperform the 

shielded and unshielded results. The multi-band method reproduces the expected unshielded 

results at the surface (depth = 0), where the shielded results are far too low (in this case a factor 

of ~ 8 too low). The multi-band method also reproduces the expected shielded results at large 

depths, where the unshielded results are very poor. And most important, across the entire depth 

range the multi-band results are in closer agreement with the real Continuous results versus 

depth, so its integral will be closer, which is what we are interested in to accurately calculate 

keff. 
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Usually when one thinks of multi-group data, one only considers an “average” over energy, but in 

fact the “average” is really over (energy, space, direction). Hopefully the above results clearly 

show the need for improved spatial results, which the multi-band method is designed to provide. 

Less obvious is that the multi-band method also improves directional results. For example, at 

the surface of the fuel the multli-band method is designed to reproduce the unshielded incident 

fux and reaction rate (as shown above). But it will also reproduce the shielded leakage from the 

surface of the fuel. In other words: at exactly the same spatial point (the surface) the multi-

band method can reproduce the angular incident and reflected flux and reaction rates; 

something multi-group “averages” cannot do. This is equivalent in a discrete ordinate code having 

different “average” cross sections in each discrete direction, which the 2 multi-band cross sections 

combine to reproduce.  



 28  

 

Transmission Measurements 

The above results for the Uncollided flux and Reaction Rates are more than an Academic Exercise 

that we can never actually observe. They correspond to the measurement of well columnated 

transmission through a range of thicknesses for any given material; in the above case the 

transmission through a material composed of 2% 235U and 98% 238U. In these measurements, “self-

indication” corresponds to measuring reaction rates and “flux” obviously corresponds to the flux 

shown above.  

There are many such measurements and reports analyzing these measurements. As it relates to this 

paper, I will mention the measurements of Bramblett and Czirr for 239Pu [17] and 235U [18], who 

reported results for transmission measurements through 239Pu and 235U, integrated over a series the 

ABBN groups, i.e., the same quantities as shown above, but for different materials. These 

measurements have been extensively analyzed to show the same self-shielding effects [19, 20, 21] 

as seen in the above figures, so I will not repeat these calculations here. I will merely state that 

these earlier measurements and calculations verify the self-shielding results shown above, i.e. 

these results are real and important to include in multi-group calculations if we expect to 

produce accurate results, particularly all-important reaction rates. 

It would be wonderful to have a similar self-indication measurement for 238U (hint, for any 

experimentalists who may be reading this). This would be a very difficult measurement due to the 

very narrow 238U resonances. The above results indicate that this measurement would require 

extremely thin foils; the above analytical calculations show that a thickness of only 0.0001 cm 

(that is not a typo, 10-4 cm)  reduces the total reaction rate by ~ 20%. By a thickness of only 0.1 

cm almost all the self-shielding due to 238U resonance is complete; there are but few neutrons 

remaining in the energy range of major resonances; see the above plot of the energy dependent 

spectra versus energy and depth. 
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Statistics 

Unfortunately, too many people assume that since they are using Monte Carlo with continuous 

energy cross sections this will result in the BEST possible answer. However, anytime we use 

Monte Carlo we must be sure to run enough samples to insure convergence, this is particularly 

true when using continuous energy cross sections. When using multi-group cross sections our 

Monte Carlo need only sample a limited number of cross section values. In contrast with 

continuous energy cross sections the code must sample many thousands of tabulated values, as 

well as the interpolated values between tabulated values. This can require a very large number of 

samples to TRULY achieve convergence to a final answer. 

For the results shown in this report for each of six different cross section models I used 100 million 

(10+8) neutron samples, for each of 311 235U slow critical systems [22], i.e., 6 Models X 10+8 

samples X 311 assemblies ~ 2*10+11 neutron samples. In my home, on my DELL desktop with 6 

processors and 24 GB memory, running all six cross section models simultaneously, this took 

roughly a week. Was this much time necessary? Yes, if we really want to insure the differences, I 

present here have truly converged to the accuracy that we claim today. Today many users have 

FAITH (again, faith = belief, without proof) that we can calculate Monte Carlo criticality keff 

results to ~ 0.1% accuracy (3 digits). Generally, Monte Carlo will converge to one stable final 

answer with an uncertainty of R/Sqrt(S), where R is a system dependent constant, and S is the 

number of independent samples used, e.g., reducing the uncertainty by a factor of 10 requires 

roughly 100 times as many samples.  

 

 



 30  

 

Here to illustrate convergence I used Continuous energy cross sections to compare results for 311 
235U slow critical assemblies [8] for: 10+6 ,10+7, 10+8, and neutron samples. The above figures 

show that 10+6 results differ from the 10+8  results by up to 0.37%, and 10+7 results have converged 

to within 0.1% of the 10+8 . 

 

Note the 1/Sqrt(S) convergence: 10+6 0.37%, 10+7 0.1%, and a assume (have faith) that the 10+8 

results are ~ .03%, well within the accuracy we need for this study. Hopefully this explains why I 

used at least 10+8 samples for ALL of the final results = it is necessary to validate the accuracy 

that I claim. 

 

WARNING: Hopefully these results demonstrate that when comparing differences, as in this 

study, users must not be in a rush to finish calculations by using too few samples. If you use too 

few your answers – and conclusions – can be incorrect, and rather than saving time you will end 

up wasting it. 
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311 U-235 Slow Critical Assemblies 

In an earlier report I published results of keff calculated by TART [3] for 1,172 Critical Assemblies 

[22], so this has already been done, and need not be repeated here. Here my focus is not on the 

BEST calculated keff, but on rather the difference between the BEST calculated keff, using 

Continuous energy cross sections, and the five (5) multi-group and multi-band models discussed 

here. In order to demonstrate these differences, I used all 311 235U Slow Assemblies for my earlier 

report [22]. From the first figure below, we can see that rather than achieving agreement to 0.1% 

(3 digits), I found differences up to almost 9% for the multi-group unshielded and shielded 

models. In contrast the second figure shows close agreement using 2 Bands, but even it has some 

problems with assemblies 207 through 231 (LCT006, LMT001, LMT002). In this report I only 

present 2 bands Narrow Resonance (NR) results, comparable to what other multi-band codes can 

calculate; see, the appendix for Intermediate Resonance (IR) TART [3] results for assemblies 207 

through 231. Of the models discussed here the multi-band clearly out performs the four 

strictly multi-group models. 
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LCT006-1: Reaction Details; based on one 10
+8

 neutron sample 

The below tables present results using Continuous, Unshielded and Totally Shielded cross sections. Based on these 

tables it is easy for us to see the sources of the differences in keff; I have highlighted the important differences and 

similarities. Similarities include: All predict the same 238U fast fission, and (n,2n) contributions (no self-shielding at 

high energy), as well as that most scatter is in the moderator (H2O) (large n,n’ is due to bound H) , and small leakage 

from the system. We see differences in: elastic, capture, and fission, i.e., the resonance components. 

LCT006-1: Analog Events vs. Isotope per Removed Neutron 
 ----------------------------------------------------------------------- 

 Continuous 

 ----------------------------------------------------------------------- 

 Reaction    92238    92235     8016    92234    13027     1001     7014 

 ----------------------------------------------------------------------- 

 Elastic   1.88951  0.05271  5.70417  0.00064  0.38601 11.79320  0.00017 

 (n,n')    0.24331  0.00502  0.00136  0.00002  0.01297 51.41410  0.00000 

 (n,2n)    0.00091  0.00002  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,3n)    0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Fission   0.02204  0.38300  0.00000  0.00003  0.00000  0.00000  0.00000 

 (n,n'p)   0.00000  0.00000  0.00000  0.00000  0.00002  0.00000  0.00000 

 (n,n'a)   0.00000  0.00000  0.00001  0.00000  0.00000  0.00000  0.00000 

 (n,p)     0.00000  0.00000  0.00001  0.00000  0.00018  0.00000  0.00001 

 (n,d)     0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,t)     0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,a)     0.00000  0.00000  0.00386  0.00000  0.00003  0.00000  0.00000 

 (n,g)     0.18303  0.07714  0.00010  0.00140  0.00482  0.30584  0.00000 

 ----------------------------------------------------------------------- 

 Totals    2.33881  0.51789  5.70951  0.00210  0.40403 63.51310  0.00018 

 ----------------------------------------------------------------------- 

 Unshielded 

 ----------------------------------------------------------------------- 

 Reaction    92238    92235     8016    92234    13027     1001     7014 

 ----------------------------------------------------------------------- 

 Elastic   1.98423  0.04979  5.55550  0.00059  0.37873 11.53880  0.00016 

 (n,n')    0.24260  0.00501  0.00136  0.00002  0.01294 50.15130  0.00000 

 (n,2n)    0.00091  0.00002  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,3n)    0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Fission   0.02201  0.34938  0.00000  0.00003  0.00000  0.00000  0.00000 

 (n,n'p)   0.00000  0.00000  0.00000  0.00000  0.00002  0.00000  0.00000 

 (n,n'a)   0.00000  0.00000  0.00001  0.00000  0.00000  0.00000  0.00000 

 (n,p)     0.00000  0.00000  0.00001  0.00000  0.00017  0.00000  0.00001 

 (n,d)     0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,t)     0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,a)     0.00000  0.00000  0.00386  0.00000  0.00003  0.00000  0.00000 

 (n,g)     0.23168  0.07023  0.00009  0.00128  0.00441  0.29873  0.00000 

 ----------------------------------------------------------------------- 

 Totals    2.48143  0.47443  5.56083  0.00192  0.39631 61.98880  0.00017 

 ----------------------------------------------------------------------- 

 Totally Shielded         

 ----------------------------------------------------------------------- 

 Reaction    92238    92235     8016    92234    13027     1001     7014 

 ----------------------------------------------------------------------- 

 Elastic   1.85213  0.05411  5.79611  0.00054  0.38256 11.93760  0.00018 

 (n,n')    0.24381  0.00505  0.00136  0.00003  0.01300 52.39080  0.00000 

 (n,2n)    0.00092  0.00002  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,3n)    0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 Fission   0.02211  0.39577  0.00000  0.00003  0.00000  0.00000  0.00000 

 (n,n'p)   0.00000  0.00000  0.00000  0.00000  0.00002  0.00000  0.00000 

 (n,n'a)   0.00000  0.00000  0.00001  0.00000  0.00000  0.00000  0.00000 

 (n,p)     0.00000  0.00000  0.00001  0.00000  0.00018  0.00000  0.00001 

 (n,d)     0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,t)     0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

 (n,a)     0.00000  0.00000  0.00389  0.00000  0.00003  0.00000  0.00000 

 (n,g)     0.16668  0.07495  0.00010  0.00102  0.00507  0.31130  0.00000 

 ----------------------------------------------------------------------- 

 Totals    2.28565  0.52990  5.80148  0.00162  0.40086 64.63970  0.00018 

 ----------------------------------------------------------------------- 
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LCT006-1: Analog Removal and Production per Removed Neutron  
 -------------------------------------------- 

 Continuous  

 -------------------------------------------- 

 Reaction    Removal     Production Events 

 -------------------------------------------- 

 Elastic     0.000000    0.000000   19.826400 

 (n,n')      0.000000    0.000000   51.676700 

 (n,2n)      0.000931    0.001863    0.000931 

 (n,3n)      0.000005    0.000014    0.000005 

 Fission     0.405076    0.997110    0.405076 

 (n,n'p)     0.000000    0.000000    0.000017 

 (n,n'a)     0.000000    0.000000    0.000010 

 (n,p)       0.000191    0.000000    0.000191 

 (n,d)       0.000001    0.000000    0.000001 

 (n,t)       0.000000    0.000000    0.000000 

 (n,a)       0.003894    0.000000    0.003894 

 (n,g)       0.572330    0.000000    0.572330 

 Leakage     0.017571    0.000000    0.000000 

 -------------------------------------------- 

 Totals      1.000000    0.998987   72.485600 

 K-eff                   0.998986 

 -------------------------------------------- 

 Unshielded 

 -------------------------------------------- 

 Reaction    Removal     Production Events 

 -------------------------------------------- 

 Elastic     0.000000    0.000000   19.507800 

 (n,n')      0.000000    0.000000   50.413200 

 (n,2n)      0.000933    0.001865    0.000933 

 (n,3n)      0.000005    0.000014    0.000005 

 Fission     0.371423    0.915064    0.371423 

 (n,n'p)     0.000000    0.000000    0.000018 

 (n,n'a)     0.000000    0.000000    0.000011 

 (n,p)       0.000189    0.000000    0.000189 

 (n,d)       0.000002    0.000000    0.000002 

 (n,t)       0.000000    0.000000    0.000000 

 (n,a)       0.003895    0.000000    0.003895 

 (n,g)       0.606421    0.000000    0.606421 

 Leakage     0.017133    0.000000    0.000000 

 -------------------------------------------- 

 Totals      1.000000    0.916944   70.903900 

 K-eff                   0.916943 

 -------------------------------------------- 

 Totally Shielded 

  ------------------------------------------- 

 Reaction    Removal     Production Events 

 -------------------------------------------- 

 Elastic     0.000000    0.000000   20.023300 

 (n,n')      0.000000    0.000000   52.654000 

 (n,2n)      0.000938    0.001877    0.000938 

 (n,3n)      0.000005    0.000015    0.000005 

 Fission     0.417913    1.028410    0.417913 

 (n,n'p)     0.000000    0.000000    0.000018 

 (n,n'a)     0.000000    0.000000    0.000011 

 (n,p)       0.000197    0.000000    0.000197 

 (n,d)       0.000001    0.000000    0.000001 

 (n,t)       0.000000    0.000000    0.000000 

 (n,a)       0.003925    0.000000    0.003925 

 (n,g)       0.559116    0.000000    0.559116 

 Leakage     0.017906    0.000000    0.000000 

 -------------------------------------------- 

 Totals      1.000000    1.030300   73.659400 

 K-eff                   1.030300    

 -------------------------------------------- 
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Is it the model or Statistics? 

Before jumping to any conclusions let’s take a closer look at these 311 235U slow critical 

assemblies. Most of  these are geometrically simple large assemblies, that’s why we see better 

agreement for the first 200 or so. But starting with # 207, LCT006-1, there are a series of 

geometrically complicated assemblies. Below is a TARTCHEK [3] view of LCT006-2 which 

shows an array of 20 x 20 = 400 fuel pins in a roughly 43 x 43 cm space. Remember, that all four 

of the Multi-Group models used here assume an infinite, homogenous medium (they ignore 

μK; directional and spatial streaming). In the LCT006 series there are rather strong neutron 

currents flowing in and out of each fuel pin, so we would expect differences when we use cross 

sections designed for infinite, homogeneous models.  

 

 

 

Mark Twain said, “There are LIES, DAMN LIES, and STATISTICS”.  Here I want to be sure we 

answer the question: Are the above differences due to the cross section model or statistics? 

Even using 10+8 active neutrons to calculate each assembly, one might question whether this is 

sufficient to guarantee convergence, for the LCT006 series, e.g.., for each of the 400 fuel pins we 

are only sampling 10+8/400 pins = 250,000  neutrons/pin.  

 

In order to test the accuracy of the above results, I re-ran one of the most complicated assemblies, 

LCT006-1, which is a 19 X 19 array, similar to the one shown above. I used the TART input option 

to re-run LCT006-1 100 times, using all six cross section models. To start I ran TART using 1,000 

settle cycles (to minimize the effect of the initial flux guess), followed by 10+7 active neutrons for 

each of 100 statistically independent calculations using different random number sequences; this 

is a cumulative sample of 10+9 source neutrons for each of the six cross section models. The below 

results are absolute keff results; not ratios to the Continuous results. For each model the below 

tables define: 

1) The Average and standard deviation, as well as Lowest and Highest of the 10+7 100 results 

2) A comparison to a Normal Probability Distribution, as far as the expected distribution of 

results relative to the average and using the standard deviation. 
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By 10+9 samples the standard deviation of all six models, are well below the 0.1% level. For each 

model the spread in results and comparison to a Normal Distribution show that even by 10+7, there 

are no abnormal results beyond +/- 4 standard deviations. In other words: Statistically this is 

about as good as it gets. These results demonstrate that the differences are due to the six 

models, not statistics.  

 

Continuous              0.9991316   --------    ---------- 

Multi-Group            0.9169121   -0.0822   8.2% 

Unshielded               0.9169121  -0.0822   8.2% 

Multi-Band              1.0046517    0.0055   0.5% 

Totally Shielded      1.0302999    0.0339   3.3% 

Partial Shielded       0.9821768   -0.0170   1.7% 

 

The four multi-group models are well in excess 0.1% differences (from 17 up to 82 TIMES). Multi-

Band, 2 Band, results differ by 0.5%; extending to 3 Bands eliminates even this difference and 

achieves our 0.1% goal. I know of no similar improvement I can make to any of the four multi-

group models.   
 

Continuous 
Average    0.9991316 +/-0.0002700       

Lowest     0.9980110   -0.0011206 

Highest    0.9999790    0.0008474 

Sample Width  Occurrences  Per-Cent  Per-Cent 

Range                      Occurred  Normal   

 -4  -3            1          1.000     0.132 

 -3  -2            1          1.000     2.140 

 -2  -1           13         13.000    13.591 

 -1   0           31         31.000    34.134 

  0   1           37         37.000    34.134 

  1   2           13         13.000    13.591 

  2   3            4          4.000     2.140 

Sum              100 

Multi-Band (2 Bands) 
Average    1.0046517 +/-0.0007666 

Lowest     1.0020091   -0.0026446 

Highest    1.0067325    0.0020808 

Sample Width  Occurrences  Per-Cent  Per-Cent 

Range                      Occurred  Normal    

-3  -2            4          4.000     2.140  

-2  -1           15         15.000    13.591 -

1   0           31         31.000    34.134 

 0   1           37         37.000    34.134 

 1   2           12         12.000    13.591 

 2   3            2          2.000     2.140 

Sum             100 

Multi-Group 
Average    0.9169121 +/-0.0002659 

Lowest     0.9161100   -0.0008021           

Highest    0.9178380    0.0009259 

Sample Width  Occurrences  Per-Cent  Per-Cent 

Range                      Occurred  Normal   

 -3  -2            4          4.000     2.140 

 -2  -1           12         12.000    13.591 

 -1   0           34         34.000    34.134 

  0   1           31         31.000    34.134 

  1   2           18         18.000    13.591 

  2   3            1          1.000     2.140 

Sum              100 

Totally Shielded 
Average    1.0302999 +/-0.0002789 

Lowest     1.0294000   -0.0008999 

Highest    1.0311700    0.0008701 

Sample Width  Occurrences  Per-Cent  Per-Cent 

Range                      Occurred  Normal   

 -3  -2            3          3.000     2.140 

 -2  -1           17         17.000    13.591 

 -1   0           26         26.000    34.134 

  0   1           42         42.000    34.134 

  1   2            9          9.000    13.591 

  2   3            3          3.000     2.140 

Sum              100 

Unshielded 
Average    0.9169121 +/-0.0002659 

Lowest     0.9161100   -0.0008021 

Highest    0.9178380    0.0009259 

Sample Width  Occurrences  Per-Cent  Per-Cent 

 Range                     Occurred  Normal   

 -3  -2            4          4.000     2.140 

 -2  -1           12         12.000    13.591 

 -1   0           34         34.000    34.134 

  0   1           31         31.000    34.134 

  1   2           18         18.000    13.591 

  2   3            1          1.000     2.140 

 Sum             100 

Partially Shielded 
Average    0.9821768 +/-0.0002671 

Lowest     0.9814710   -0.0007058 

Highest    0.983372     0.0011952 

Sample Width  Occurrences  Per-Cent  Per-Cent 

Range                      Occurred  Normal   

 -3  -2            3          3.000     2.140 

 -2  -1           12         12.000    13.591 

 -1   0           31         31.000    34.134 

  0   1           41         41.000    34.134 

  1   2           10         10.000    13.591 

  2   3            2          2.000     2.140 

  3   4            1          1.000     0.132 

 Sum             100                  



 36  

 

311 235U Slow Critical Assemblies 
    1 HMT001-1  U235      Poly                 

    2 HMT008-D  U235      Poly                 

    3 HMT008-S  U235      Poly                 

    4 HST001-1  U235      Bare                 

    5 HST001-2  U235      Bare                 

    6 HST001-3  U235      Bare                 

    7 HST001-4  U235      Bare                 

    8 HST001-5  U235      Bare                 

    9 HST001-6  U235      Bare                 

   10 HST001-7  U235      Bare                 

   11 HST001-8  U235      Bare                 

   12 HST001-9  U235      Bare                 

   13 HST001-10 U235      Bare                 

   14 HST002-1  U235      Steel       case     

   15 HST002-2  U235      Steel       case     

   16 HST002-3  U235      Steel       case     

   17 HST002-4  U235      Steel       case     

   18 HST002-5  U235      Al          case     

   19 HST002-6  U235      Al          case     

   20 HST002-7  U235      Al          case     

   21 HST002-8  U235      Al          case     

   22 HST002-9  U235      Al          case     

   23 HST002-10 U235      Al          case     

   24 HST002-11 U235      Al          case     

   25 HST002-12 U235      Al          case     

   26 HST002-13 U235      Al          case     

   27 HST002-14 U235      Al          case     

   28 HST003-1  U235      Poly                 

   29 Hst003-2  U235      Poly                 

   30 Hst003-3  U235      Poly                 

   31 Hst003-4  U235      Poly                 

   32 Hst003-5  U235      Poly                 

   33 Hst003-6  U235      Poly                 

   34 Hst003-7  U235      Poly                 

   35 Hst003-8  U235      Poly                 

   36 Hst003-9  U235      Poly                 

   37 Hst003-10 U235      Poly                 

   38 Hst003-11 U235      Poly                 

   39 Hst003-12 U235      Poly                 

   40 Hst003-13 U235      Poly                 

   41 Hst003-14 U235      Poly                 

   42 Hst003-15 U235      Poly                 

   43 Hst003-16 U235      Poly                 

   44 Hst003-17 U235      Poly                 

   45 Hst003-18 U235      Poly                 

   46 Hst003-19 U235      Poly                 

   47 HST004-1  U235      27cm-D2O             

   48 HST004-2  U235      26cm-D2O             

   49 HST004-3  U235      25cm-D2O             

   50 HST004-4  U235      24cm-D2O             

   51 HST004-5  U235      22cm-D2O             

   52 HST004-6  U235      30cm-D2O             

   53 HST006-1  U235      Air                  

   54 HST006-2  U235      Air                  

   55 HST006-3  U235      Air                  

   56 HST006-4  U235      Air                  

   57 HST006-5  U235      Air                  

   58 HST006-6  U235      Air                  

   59 HST006-7  U235      Air                  

   60 HST006-8  U235      Water                

   61 HST006-9  U235      Water                

   62 HST006-10 U235      Water                

   63 HST006-11 U235      Water                

   64 HST006-12 U235      Nickel               

   65 HST006-13 U235      Nickel        

   66 HST006-14 U235      Nickel               

   67 HST006-15 U235      Nickel               

   68 HST006-16 U235      Nickel               

   69 HST006-17 U235      Nickel               

   70 HST006-18 U235      Ni-Borated-H2O       

   71 HST006-19 U235      Ni-Borated-H2O       

   72 HST006-20 U235      Ni-Borated-H2O       

   73 HST006-21 U235      Ni-Borated-H2O       

   74 HST006-22 U235      Borated-H2O          

   75 HST006-23 U235      Borated-H2O          

   76 HST006-24 U235      Borated-H2O          

   77 HST006-25 U235      Borated-H2O          

   78 HST006-26 U235      Borated-H2O          

   79 HST006-27 U235      Nickel&     H2O      

   80 HST006-28 U235      Nickel&     H2O      

   81 HST006-29 U235      Nickel&     H2O      

   82 HST009-1  U235      H2O                  

   83 HST009-2  U235      H2O                  

   84 HST009-3  U235      H2O                  

   85 HST009-4  U235      H2O                  

   86 HST010-1  U235      H2O                  

   87 HST010-2  U235      H2O                  

   88 HST010-3  U235      H2O                  

   89 HST010-4  U235      H2O                  

   90 HST011-1  U235      Spherical            

   91 HST011-2  U235      Spherical            

   92 HST012-1  U235      H2O                  

   93 HST013-1  U235      ORNL-1               

   94 HST013-2  U235      ORNL-2               

   95 HST013-3  U235      ORNL-3               

   96 HST013-4  U235      ORNL-4               

   97 HST014-1  U235      H2O                  

   98 HST014-2  U235      H2O                  

   99 HST014-3  U235      H2O                  

  100 HST015-1  U235      H2O                  

  101 HST015-2  U235      H2O                  

  102 HST015-3  U235      H2O                  

  103 HST015-4  U235      H2O                  

  104 HST015-5  U235      H2O                  

  105 HST016-1  U235      H2O                  

  106 HST016-2  U235      H2O                  

  107 HST016-3  U235      H2O                  

  108 HST017-1  U235      H2O                  

  109 HST017-2  U235      H2O                  

  110 HST017-3  U235      H2O                  

  111 HST017-4  U235      H2O                  

  112 HST017-5  U235      H2O                  

  113 HST017-6  U235      H2O                  

  114 HST017-7  U235      H2O                  

  115 HST017-8  U235      H2O                  

  116 HST018-1  U235      H2O                  

  117 HST018-2  U235      H2O                  

  118 HST018-3  U235      H2O                  

  119 HST018-4  U235      H2O                  

  120 HST018-5  U235      H2O                  

  121 HST018-6  U235      H2O                  

  122 HST018-7  U235      H2O                  

  123 HST018-8  U235      H2O                  

  124 HST018-9  U235      H2O                  

  125 HST018-10 U235      H2O                  

  126 HST018-11 U235      H2O                  

  127 HST018-12 U235      H2O                  

  128 HST019-1  U235      H2O                  

  129 HST019-2  U235      H2O                  

  130 HST019-3  U235      H2O    
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311 235U Slow Critical Assemblies (continued) 
  131 HST020-1  U235      Bare                 

  132 HST020-2  U235      Bare                 

  133 HST020-3  U235      Bare                 

  134 HST020-4  U235      Bare                 

  135 HST020-5  U235      Bare                 

  136 Hst025-1  U235      Water                

  137 Hst025-2  U235      Water                

  138 Hst025-3  U235      Water                

  139 Hst025-4  U235      Water                

  140 Hst025-5  U235      Water                

  141 Hst025-6  U235      Water                

  142 Hst025-7  U235      Water                

  143 Hst025-8  U235      Water                

  144 Hst025-9  U235      Water                

  145 Hst025-10 U235      Water                

  146 Hst025-11 U235      Water                

  147 Hst025-12 U235      Water                

  148 Hst025-13 U235      Water                

  149 Hst025-14 U235      Water                

  150 Hst025-15 U235      Water                

  151 Hst025-16 U235      Water                

  152 Hst025-17 U235      Water                

  153 Hst025-18 U235      Water                

  154 Hst027-1  U235      Bare                 

  155 Hst027-2  U235      B4C-rod              

  156 Hst027-3  U235      B4C-rod              

  157 Hst027-4  U235      B4C-rod              

  158 Hst027-5  U235      B4C-rod              

  159 Hst027-6  U235      Cd-rod               

  160 Hst027-7  U235      Cd-rod               

  161 Hst027-8  U235      Cd-rod               

  162 Hst027-9  U235      Cd-rod               

  163 Hst028-1  U235      Water                

  164 Hst028-2  U235      Water                

  165 Hst028-3  U235      Water                

  166 Hst028-4  U235      Water                

  167 Hst028-5  U235      Water                

  168 Hst028-6  U235      Water                

  169 Hst028-7  U235      Water                

  170 Hst028-8  U235      Water                

  171 Hst028-9  U235      Water                

  172 Hst028-10 U235      Water                

  173 Hst028-11 U235      Water                

  174 Hst028-12 U235      Water                

  175 Hst028-13 U235      Water                

  176 Hst028-14 U235      Water                

  177 Hst028-15 U235      Water                

  178 Hst028-16 U235      Water                

  179 Hst028-17 U235      Water                

  180 Hst028-18 U235      Water                

  181 Hst029-1  U235      Water                

  182 Hst029-2  U235      Water                

  183 HST029-3  U235      Water                

  184 Hst029-4  U235      Water                

  185 Hst029-5  U235      Water                

  186 Hst029-6  U235      Water                

  187 Hst029-7  U235      Water                

  188 Hst030-1  U235      Water                

  189 Hst030-2  U235      Water                

  190 Hst030-3  U235      Water                

  191 Hst030-4  U235      Water                

  192 Hst030-5  U235      Water                

  193 Hst030-6  U235      Water                

  194 Hst030-7  U235      Water                

  195 HST032-1  U235      ORNL-10     

  196 HST042-1  U235      solution             

  197 HST042-2  U235      solution             

  198 HST042-3  U235      solution             

  199 HST042-4  U235      solution             

  200 HST042-5  U235      solution             

  201 HST042-6  U235      solution             

  202 HST042-7  U235      solution             

  203 HST042-8  U235      solution             

  204 HST043-1  U235      solution             

  205 HST043-2  U235      solution             

  206 HST043-3  U235      solution             

  207 LCT006-1  U235      Water                

  208 LCT006-2  U235      Water                

  209 LCT006-3  U235      Water                

  210 LCT006-4  U235      Water                

  211 LCT006-5  U235      Water                

  212 LCT006-6  U235      Water                

  213 LCT006-7  U235      Water                

  214 LCT006-8  U235      Water                

  215 LCT006-9  U235      Water                

  216 LCT006-10 U235      Water                

  217 LCT006-11 U235      Water                

  218 LCT006-12 U235      Water                

  219 LCT006-13 U235      Water                

  220 LCT006-14 U235      Water                

  221 LCT006-15 U235      Water                

  222 LCT006-16 U235      Water                

  223 LCT006-17 U235      Water                

  224 LCT006-18 U235      Water                

  225 LMT001    U-nat     D2O                  

  226 LMT002-1  U235      D2O                  

  227 LMT002-2  U235      D2O                  

  228 LMT002-3  U235      D2O                  

  229 LMT002-6  U235      D2O                  

  230 LMT002-10 U235      D2O                  

  231 LMT002-11 U235      D2O                  

  232 LMT002-12 U235      D2O                  

  233 LST001    U235      Sheba-11             

  234 LST002-1  U235      15cm-H2O             

  235 LST002-2  U235      Bare                 

  236 LST002-3  U235      15cm-H2O             

  237 LST003-1  U235      Bare                 

  238 LST003-2  U235      Bare                 

  239 LST003-3  U235      Bare                 

  240 LST003-4  U235      Bare                 

  241 LST003-5  U235      Bare                 

  242 LST003-6  U235      Bare                 

  243 LST003-7  U235      Bare                 

  244 LST003-8  U235      Bare                 

  245 LST003-9  U235      Bare                 

  246 LST004-1  U235      30cm-H2O             

  247 LST004-2  U235      30cm-H2O             

  248 LST004-3  U235      30cm-H2O             

  249 LST004-4  U235      30cm-H2O             

  250 LST004-5  U235      30cm-H2O             

  251 LST004-6  U235      30cm-H2O             

  252 LST004-7  U235      30cm-H2O             

  253 LST005-1  U235      H2O                  

  254 LST005-2  U235      H2O                  

  255 LST005-3  U235      H2O                  

  256 LST007-1  U235      Bare                 

  257 LST007-2  U235      Bare                 

  258 LST007-3  U235      Bare                 

  259 LST007-4  U235      Bare                 

  260 LST007-5  U235      Bare         
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311 235U Slow Critical Assemblies (continued) 
  261 LST009-1  U235      Concrete             

  262 LST008-1  U235      Concrete             

  263 LST008-2  U235      Concrete             

  264 LST008-3  U235      Concrete             

  265 LST008-4  U235      Concrete             

  266 LST009-2  U235      Concrete             

  267 LST009-3  U235      Concrete             

  268 LST010-1  U235      Poly                 

  269 LST010-2  U235      Poly                 

  270 LST010-3  U235      Poly                 

  271 LST010-4  U235      Poly                 

  272 LST016-1  U235      30cm-H20             

  273 LST016-2  U235      30cm-H20             

  274 LST016-3  U235      30cm-H20             

  275 LST016-4  U235      30cm-H20             

  276 LST016-5  U235      30cm-H20             

  277 LST016-6  U235      30cm-H20             

  278 LST016-7  U235      30cm-H20             

  279 LST017-1  U235      Bare                 

  280 LST017-2  U235      Bare                 

  281 LST017-3  U235      Bare                 

  282 LST017-4  U235      Bare                 

  283 LST017-5  U235      Bare                 

  284 LST017-6  U235      Bare                 

  285 LST019-1  U235      Poly                 

  286 LST019-2  U235      Poly                 

  287 LST019-3  U235      Poly                 

  288 LST019-4  U235      Poly                 

  289 LST019-5  U235      Poly                 

  290 LST019-6  U235      Poly                 

  291 LST020-1  U235      H2O                  

  292 LST020-2  U235      H2O                  

  293 LST020-3  U235      H2O                  

  294 LST020-4  U235      H2O                  

  295 LST021-1  U235      Bare                 

  296 LST021-2  U235      Bare                 

  297 LST021-3  U235      Bare                 

  298 LST021-4  U235      Bare                 

  299 LST022-1  U235      case-136             

  300 LST022-2  U235      case-135             

  301 LST022-3  U235      case-134             

  302 LST022-4  U235      case-138             

  303 LST023-1  U235      TwoTanks             

  304 LST023-2  U235      TwoTanks             

  305 LST023-3  U235      TwoTanks             

  306 LST023-4  U235      TwoTanks             

  307 LST023-5  U235      TwoTanks             

  308 LST023-6  U235      TwoTanks             

  309 LST023-7  U235      TwoTanks             

  310 LST023-8  U235      TwoTanks             

  311 LST023-9  U235      TwoTanks   
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Boundary Conditions 

Physically the correct boundary conditions are simple to state: we require continuity of the neutron 

flux, using continuous energy, multi-group or multi-band cross sections.  

 

This is EXTREMLY important, because the results in this paper, and other related papers, indicate 

that the reason the Probability Table Method (PTM) and Multi-Band Method (MB), with all of 

their apparent approximations, are so successful is not because of what is happening inside the 

fuel, but rather by improving what’s incident and reflected on the surface of the fuel; all this needs 

is the correct distribution of total cross sections, and is independent of the NR, SLBW, and other 

limitations of PTM and MB. As shown in the above figures, this is something Continuous energy 

cross sections, and Multi-Band cross section can do, for thin and thick systems, but Multi-Group, 

with only one degree of freedom, cannot do.  

 

With Monte Carlo codes this is easy for us to accomplish: in TART after each “event” (be it a 

source, collision, fission, etc.) I sample cross sections for each isotope that the neutron encounters. 

I then use these cross sections until the next “event”, regardless of how many different spatial 

zones the neutron may pass through between “events”. For example, in the above simple 

Uranium/water assembly, if an “event” occurs in the Uranium I separately sample 235U and 238U 

cross sections, which is all I need to start tracking the neutron. If the neutron leaves the Uranium 

and enters the water, I sample H and O cross sections, and continue tracking. If the neutron track 

leaves the water and enters another Uranium zones, I know that I have already sampled the 235U 

and 238U, so I need not sample any more cross sections to continue tracking the neutron. This cross 

section “memory” is imperative to accomplish the correct boundary conditions (Nikolaev’s 

all the way method [23]); easy to do in a Monte Carlo code. Consider the multi-band method using 

only 2 bands, I’ll refer to these as the smaller and larger totals. If in the first Uranium zone I 

randomly select the smaller cross section this greatly increases the probability that the neutron will 

leak from the Uranium, transport through the water, and enter a second Uranium pin. It is then 

imperative that in the second Uranium pin we continue to use the already sampled smaller cross 

section. This is the only way we can guarantee satisfying the correct boundary conditions, and 

correctly define the so called Dancoff correction factor for the coupling between surrounding fuel 

pins. If we mistakenly re-sample the Uranium cross section when entering the second pin, we lose 

the strong correlation to leakage from the first pin, and overestimate the 235U and 238U cross 

sections, immediately overestimating the reaction rate from the surface and into the second pin.     

 

With multi-group codes continuity of the multi-group flux at boundary is easy to accomplish. 

Unfortunately, continuity of multi-band flux is much more difficult. The analogy to the method I 

described above for Monte Carlo infers 2 bands for each isotope, and per group: with N isotopes 

we end up with 2N cross section bands. For the simple U/water example with 4 evaluations, 24, or 

16 bands per group; for a problem with 10 isotopes (more realistic), 210, or 1,204 bands per group 

(Nikolaev’s all the way method [23]). While theoretically correct, for any real problems this 

quickly becomes impractical in a deterministic code; this is an obvious advantage of Monte Carlo 

over multi-group. However, multi-group is still so widely used it is worth investigating 

approximate boundary conditions.  
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The above results demonstrate accuracy problem with standard multi-group methods, but these 

results can be improved by focusing on the source of the differences, which is self-shielding in the 

fuel. For example, much of the difference can be eliminated by using 2 bands in the fuel, to correct 

self-shielding, and normal multi-group cross sections in the water. For the simple U/water 

presented here I prepared 2 band cross sections for the Uranium mixture (2% 235U, 98% 238U). 

This accounts for self-shielding and calculates keff values very similar to those I calculate with the 

standard multi-band TART method, described above. 
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Infinite and Homogeneous 

The simple example presented earlier is an infinite system, but it is not infinite and homogeneous, 

which, by ignoring the spatial and directional effect, 𝜇𝐾, is what the multi-group models presented 

here assume. But obviously the simple example is a heterogeneous system, with separate layers of 

Uranium and Water; here we expect large spatially currents between the Uranium and Water, as 

shown in the above plots of flux and reactions. In this case ignoring the spatial and directional 

effect, 𝜇𝐾, would seem to be difficult to justify. 

 

In order to show how heterogeneous effects self-shielding, I homogenized the simple example of 

Uranium and Water, by mixing the two together, and changing the 235U enrichment to make the 

resulting homogeneous system close to critical.     

 
Cross Section 

Presentation 

Infinite 

K-eff     Difference 

Infinite & Homogeneous 

K-eff     Difference  

Continuous 

Multi-Group 

Multi-Band 

Unshielded 

Total Shielded 

Partial Shielded 

0.999924  --------  

0.974683 -0.025241   

1.000980  0.001056   

0.974645 -0.025279   

1.001750  0.001826   

0.991570 -0.008354   

0.999816  -------- 

0.966235 -0.033581 

1.000680  0.000864 

0.966169 -0.033647 

0.999059 -0.000757 

0.986059 -0.013757 

 

The above table shows the heterogenous (identical to the earlier table) and homogeneous results 

side-by-side. The results to note include, 

 

1) Unshielded results in BIG differences: heterogenous 2.52% ; homogeneous3.35% . 

2) Partial Shielding yields mixed results: heterogeneous 0.8%; homogenous 1.3%.  

3) Totally Shielding in heterogeneous within 0.2%; homogeneous is within 0.1%.  

4) In both cases, Multi-Band is near or within 0.1%. 

 

The bottom line is that, 

1) Self-shielding is always important; failure to include it results in differences in keff over 

25 to 22 TIMES the 0.1 we believe we can achieve.  

2) Standard multi-group self-shielding improves keff results close to 0.1; here 0.1 to 0.2. 

3) Only Multi-band agrees within or close to 0.1. 

 

Beyond these keff results, I will remind readers of the important spatial and directional effects seen 

in the above plots; standard multi-group results differ by large factors, whereas multi-band results 

agree much closer for both thin and thick systems. This would suggest that if you are interested 

in spatially dependent effects, such as fuel burnup, normal multi-group is not for you. 

Whereas, continuous and/or multi-band will need your needs.  
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Homogeneous: Analog Events vs. Isotope per Removed Neutron 
  

 Continuous 

 -------------------------------------------- 

 Reaction    92235    92238     1001     8016 

 -------------------------------------------- 

 Elastic   1.36013 26.23770  0.61951  0.12478 

 (n,n')    0.16432  3.49912  0.00000  0.00001 

 (n,2n)    0.00021  0.00432  0.00000  0.00000 

 (n,3n)    0.00000  0.00002  0.00000  0.00000 

 (n,4n)    0.00000  0.00000  0.00000  0.00000 

 Fission   0.27713  0.10661  0.00000  0.00000 

 (n,n'a)   0.00000  0.00000  0.00000  0.00000 

 (n,p)     0.00000  0.00000  0.00000  0.00000 

 (n,a)     0.00000  0.00000  0.00000  0.00004 

 (n,g)     0.06680  0.54486  0.00001  0.00000 

 -------------------------------------------- 

 Totals    1.86859 30.39260  0.61952  0.12483 

 -------------------------------------------- 

Homogeneous: Analog Removal and Production per Removed Neutron 

The above table of results are Expected, and the below table are Analog; note the agreement in all cases to well 

within 3 digits (yet another indicator of convergence). 

 
 Expected 0.999924  

 Analog   0.999874 

   

 Continuous 

 -------------------------------------------- 

 Reaction    Removal     Production Events 

 -------------------------------------------- 

 Elastic     0.000000    0.000000   28.342100 

 (n,n')      0.000000    0.000000    3.663460 

 (n,2n)      0.004535    0.009070    0.004535 

 (n,3n)      0.000024    0.000072    0.000024 

 (n,4n)      0.000000    0.000000    0.000000 

 Fission     0.383742    0.990734    0.383742 

 (n,n'a)     0.000000    0.000000    0.000000 

 (n,p)       0.000000    0.000000    0.000000 

 (n,a)       0.000036    0.000000    0.000036 

 (n,g)       0.611665    0.000000    0.611665 

 Leakage     0.000000    0.000000    0.000000 

 -------------------------------------------- 

 Totals      1.000000    0.999876   33.005600 

 K-eff                   0.999874 

 -------------------------------------------- 
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The Unresolved Resonance Region 

Even codes that use continuous energy cross sections, must account for self-shielding in the 

unresolved resonance region (URR) [1]. In earlier papers [5, 6] we address this point, using NJOY 

[16] and MCNP [4], with and without self-shielding in the URR. The following test were 

performed  

 

First, we demonstrated the importance of self-shielding in the URR by performing MCNP [4] 

calculations of 32 critical assemblies with and without URR self-shielding; all these results are 

based on running an unmodified version of MCNP. The following results are for, 

1) Not including URR self-shielding (SS), i.e., using unshielded, or infinitely dilute. 

2) Using the Probability Table Method (PTM), with 20 cross section bands [24, 25]. 

3) Using the Multi-Band Method, using only 2 cross section bands. 

On the below figure the MCNP PTM +/- 0.1% lines are included merely as eye guides. 

 

In the below figure the crit # corresponds to the numbers in the critical assembly in following table. 

Even without identifying the individual assemblies the below figure clearly shows that, 

 

1) In these cases, unresolved region self-shielding (URR SS) had an important macroscopic 

effect on the results. Here we see that if we do not account for URR SS the answers can 

be up to 1% different from the standard MCNP results with URR SS, well outside the 

accuracy we are attempting to achieve. 

 

2) In ALL these cases the results using 20 PTM bands or 2 MB bands are 

indistinguishable, well within 0.1% of one another; indeed, almost ALL are within 0.02% 

of one another, far below the level of agreement we require in our applications. 
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32 Critical Assemblies used for MCNP Results 

Crit #  ICSBEP label Short name Common name 

    1     HEU-MET-FAST-001 hmf001 Godiva 

   2     HEU-MET-FAST-002 hmf002-2 Topsy-2 

  3      HEU-MET-FAST-003 hmf003-01 Topsy-U_2.0in(Uranium reflector) 

  4      HEU-MET-FAST-003 hmf003-02 Topsy-U_3.0in(Uranium reflector) 

  5     HEU-MET-FAST-003 hmf003-03 Topsy-U_4.0in(Uranium reflector) 

  6     HEU-MET-FAST-003 hmf003-10 Topsy-W_4.5in(Tungsten reflector) 

  7     HEU-MET-FAST-003 hmf003-11 Topsy-W_6.5in(Tungsten reflector) 

  8     HEU-MET-FAST-014 hmf014 VNIIEF-CTF-DU 

  9     HEU-MET-FAST-032 hmf032-1 COMET-TU1_3.93in 

 10   HEU-MET-FAST-032 hmf032-2 COMET-TU1_3.52in 

 11   HEU-MET-FAST-032 hmf032-3 COMET-TU1_1.742in 

 12   HEU-MET-FAST-032 hmf032-4 COMET-TU1-0.683in 

 13   IEU-MET-FAST-007 imf007 Big_Ten 

 14   IEU-MET-FAST-007 imf007d Big_Ten(detailed) 

 15   IEU-MET-FAST-010 imf010 ZPR-6/9(U9) 

16   IEU-MET-FAST-013 imf013 ZPR-9/1(Tungsten reflector) 

17   IEU-MET-FAST-014 imf014-2 ZPR-9/2(Tungsten reflector) 

18   MIX-MISC-FAST-001 mif001-01 BFS-35-1 

19   MIX-MISC-FAST-001 mif001-02 BFS-35-2 

20   MIX-MISC-FAST-001 mif001-03 BFS-35-3 

21   MIX-MISC-FAST-001 mif001-09 BFS-31-4 

22   MIX-MISC-FAST-001 mif001-10 BFS-31-5 

23   MIX-MISC-FAST-001 mif001-11 BFS-42 

24   IEU-MET-FAST-022 imf022-01 FR0_3X-S 

25   IEU-MET-FAST-022 imf022-02 FR0_5-S 

26   IEU-MET-FAST-022 imf022-03 FR0_6A-S 

27   IEU-MET-FAST-022 imf022-04 FR0_7-S 

28   IEU-MET-FAST-022 imf022-05 FR0_8-S 

29   IEU-MET-FAST-022 imf022-06 FR0_9-S 

30   IEU-MET-FAST-022 imf022-07 FR0_10-S 

31   IEU-MET-FAST-012 imf012 ZPR-3/41 

32   IEU-COMP-FAST-004 icf004 ZPR-3/12 

 

The reason the 2 band Multi-Band results produces results equivalent to 20 band PTM results is in 

the difference between how the bands and weights are defined: Multi-Band explicitly conserves 

expected limiting values of the total cross section (exactly, without any statistics), while PTM does 

not explicitly conserve anything (it randomly samples ladders to some statistical level). For more 

on this topic, see details in refs. [5, 6], and/or the brief summary in the Appendix on PTM vs. MB 

Methods.  
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Conclusions 

In this paper I describe why Resonance Self-Shielding is so important, and I present examples to 

illustrate the magnitude of this effect. More importantly, in order to improve the accuracy of our 

results, I address what can be done to improve our treatment of self-shielding. Throughout I use 

recent ENDF data [1, 2], and Monte Carlo codes TART [3], and MCNP [4]. 

 

I point out the difference between Monte Carlo and deterministic codes (e.g., Sn), as it relates to 

how each treats self-shielding; particularly regarding boundary conditions. By definition self-

shielding means using energy averaged cross sections: obviously this applies to multi-group codes, 

but it also applies even to codes that use continuous energy cross sections [3, 4], to correctly 

include self-shielding in the unresolved resonance region [5. 6]. 

 

Lastly, I address the question of the statistical accuracy of Monte Carlo codes, and I present 

numerous examples, both very simple theoretical results, and hundreds of critical assemblies. 

 

Please note that today our computers are fast enough and large enough that for my own applications 

with my TART Monte Carlo code [3], I always use Continuous energy cross sections, not multi-

group. Therefore, self-shielding is no longer a problem I must deal with, except in the unresolved 

resonance region [5, 6], where an “energy average” statistical approach is still required and used 

by both TART [3], and MCNP [4], see the appendix for details. 

 

My conclusions include, 

 

1) Failure to account for resonance self-shielding can give RUBBISH results. When you use  

unshielded cross sections be aware: The results from any computer code can be no 

better than the data they use; with unshielded cross sections you can in a: garbage in, 

garbage out, situation. 

2) Standard methods of self-shielding in principle only apply to infinite, homogeneous media, 

but in practice they produce surprisingly accurate results for integral parameters, such as 

keff. However, they fail to accurately account for important spatial and directional  results 

simultaneously for thick and thin media, such as spatially dependent fuel burn-up. 

3) The multi-band method is designed to accurately reproduce both integral parameters, such 

as keff, as well as spatial and directional results, for media which are optically thick or thin 

media (multi-group does not), and generally agrees with results based on using continuous 

energy cross sections. 

 

The multi-band method as used by TART [3] is used at all energies, whereas with MCNP [4], it 

has only been applied to self-shielding in the unresolved energy range. The multi-band method 

owes much to the earlier work of Nikolaev [23] and Levitt [24, 25]; it differs in providing an 

analytical solution to the multi-band equations, to explicitly conserve expected moments of the 

flux and reaction rates, and in using Monte Carlo [3], to make practical the correct, all important, 

boundary conditions, ala Nikolaev’s all the way approach [23].  The results included in this report 

are based on using the multi-band method in the TART Monte Carlo code [3] for over 40 years, 

during which time it has been applied to thousands of applications. 
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APPENDICES 

 

A Long History of Time 

We have come so far since the beginning of ENDF, over 50 years ago, but I fear that today we are 

repeating some of the mistakes we made and corrected many years ago. When ENDF started the 

U.S. nuclear data effort was relatively small and uncoordinated, with each Lab or company 

independently handling their own nuclear data needs. In this situation at each site all the nuclear 

needs were met by a relatively small number of people, which had the advantage that it was the 

same people who selected the basic data, processed it, and then used it in their applications. But 

the lack of coordination meant that it was difficult to compare results or properly test data, in any 

attempt to improve the basic data. It was so bad that the two main U.S. nuclear reactor producers 

could each independently design their type of reactor, but they couldn’t design the reactor built by 

the other company, e.g., their codes and nuclear data were incompatible. 

 

One important step in the ENDF effort was to standardize definitions, and document them in the 

ENDF Formats and Convention Manual, ENDF-102 [1]. This allowed ENDF users to become 

more specialized, with experts in different areas concentrating strictly on their own area of 

expertise and relying on everyone else to follow the strict rules and definitions documents in 

ENDF-102. As a result, today we have on one side experts on nuclear physics producing ENDF 

data using their nuclear model codes, and on the other side experts on neutron transport codes 

using their expertise to use this data in their applications. 

There are a number of important steps needed to go from evaluated data in the ENDF format to 

the form it is used in our transport codes. The two extreme ends of the ENDF chain are manned 

by experts in nuclear physics and measurements, as well as creating evaluated data and on the 

other end of the ENDF chain we have experts on neutron transport codes. But what I see as the 

weak link “nuclear data processing” is a less attractive activity, often performed by individuals 

with little or no background in either creating evaluations or using the data in transport codes. The 

result can be limitations in the accuracy of our best neutron transport codes because of the 

processed data they are supplied directly from the nuclear data processing codes. 

Here, in this paper, I focused on but one important point: resonance self-shielding, and how it can 

affect the accuracy of our multi-group neutron transport codes. In the hope that it helps, I will 

merely repeat what I have been saying for decades, 

The results of computer codes can be no more accurate than the input data they use. 

Or more bluntly: Garbage in, garbage out.  
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A Brief History of Time 

In 1972 I first heard Leo Levitt describe his Probability Table Method (PTM), that handles the 

effect of self-shielding in the unresolved resonance region using Monte Carlo calculations [24, 

25]. I immediately saw the potential to use Leo’s PTM method over the entire neutron energy 

range, using deterministic codes as well as Monte Carlo codes [3, 4]. Only after my first 

publication did we (Leo Levitt and I) learn of the earlier work in multi-group transport or diffusion, 

by Nikolaev and Phillipov for neutrons [23], and Stewart for photons [26]; they originated the idea 

of within each group characterizing the neutrons or photons by the value of the total cross section 

with which they interact. We must particularly note the work of Nikolaev, who extensively 

published on this subject, but unfortunately too many of his publications are not available in the 

West, in English. I am certainly indebted to the work and ideas of Nikolaev, who kindly made me 

aware of his works. 

When I first saw the Levitt’s PTM equations [24, 25], I was working on non-linear problems, so I 

recognized how to analytically solve these equations to define the multi-band weights and cross 

sections. By 1975 I had implemented what I call the multi-band (MB) method in our TART Monte 

Carlo code [3] to account for self-shielding across the entire neutron energy range; including the 

intermediate resonance (IR) method [27, 28, 29], rather than the narrow resonance (NR) used in 

PTM. This was only possible by using Monte Carlo, to make handling boundary conditions [23] 

practical, in combination with my analytical parameters.   

By now we have over 40 years of experience using the multi-band method in thousands of different 

neutron calculations. Over those years I have continued to use TART to compare Monte Carlo 

results using a variety of models, including continuous energy cross sections, versus multi-band to 

account for self-shielding, versus multi-group with and without for self-shielding. The work that I 

was doing I documented in textbooks, such as the Handbook of Nuclear reactor Calculations 

(1986) [14] and more recently the Handbook of Nuclear Engineering (2010) [15]. Also, over the 

years I have provided computer codes that could be used by others to prepare nuclear data [7] and 

perform Monte Carlo calculations [3].      

When we started work on this self-shielding problem over 40 years ago, computers were too slow 

and too small to allow us to routinely use continuous energy cross sections, so at the time we 

heavily relied on the multi-band method. Today’s computers are so much faster and bigger that for 

all my real applications I use continuous energy cross sections, except in the unresolved resonance 

region, where statistical sampling is still necessary [23, 24, 25]. Even though I personally no longer 

use the multi-band method across the entire energy range, here I have tried to briefly summarize 

these 40 years of experience, in the hope that it saves the reader from having to re-invent the wheel 

and to allow you to more quickly understand the multi-band method: how and why is works and 

how to use it, particularly in the hope that this method can be used in deterministic codes. 
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Probability Table versus Multi-Band Methods 

Much of this section have been copied from earlier reports [5, 6]. To better understand the 

similarities and difference between these two methods, let’s look at some real cases, such as 

ENDF/B-VII.1 235U and 238U, in the unresolved resonance region to see what we are trying to 

approximate, 

 

Material Unresolved Energy Range Most self-shielding = lowest f(0) factor 

235U 2.25 to   25 keV 0.9544 ~   4.6% lower than unshielded 

238U    20 to 149 keV 0.8667 ~ 12.3% lower than unshielded 

 

Here we see that the variation of the self-shielded cross section in the unresolved resonance energy 

range is quite small, e.g., 235U only a maximum of 4.6% change and 238U only a maximum of 

12.3%. These differences are certainly large enough to affect macroscopic quantities, such as Keff 

for critical assemblies, so that self-shielded in the unresolved resonance energy range is important 

to include in our calculations. But they are relatively easy to accurately represent with a very low 

order rational, or Pade approximation [14, 15]. Indeed, our comparison of Keff for a variety of 

critical assemblies listed above show that these integrals results are statistically 

indistinguishable whether we use 20 PTM bands or only 2 MB bands. 

 

How can only 2 multi-band (MB) bands replace 20 probability table method (PTM) bands and still 

produce accurate results? It is shown that both methods “look” exactly the same (they are both 

discrete quadratures), and as such either can be used in ACE [5] files as input to MCNP [4] 

without making any changes in MCNP; MCNP doesn’t know whether it is using PTM or MB 

data, e.g., that’s why we were able to obtain ALL of the MCNP results presented here without 

making ANY – repeat ANY – changes to MCNP . Based on the approximations used by the PTM 

and MB method both are shown to be using a rational, or Pade, approximation, to represent the 

self-shielded cross section for all values of  0 between zero and infinity. This sounds like a 

difficult task, but, the variation in the self-shielded cross section in the unresolved energy range is 

quite small, so that even only 2 MB bands are adequate to reproduce integral results that are 

indistinguishable from the results obtained using 20 PTM bands. 
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If we look at the self-shielding curve for 0  between zero and infinity, using 20 or 2 bins, 

for 235U we see differences up to 0.017% at the lower energy limit (2.25 keV) and up to 

0.001% at the upper energy limit (25 keV); the results are essentially indistinguishable. 

 

  
Using 20 or 2 bins, for 238U we see differences up to 0.328% at the lower energy limit (20 

keV) and up to 0.005% at the upper energy limit (near 149 keV); there is a small difference at 

20 keV and virtually none at 149 keV. There is little significant difference that affects integral 

results (which help to explain why we saw no significant difference above for the Keff values).  

  

That is not to say that there is anything wrong with the 20 bands and it gives good answers, but for 

this application 20 bands simply isn’t needed; 2 bands are sufficient as long as these 2 band 

parameters are defined using the multiband definitions to exactly conserve important 

moments of the flux, as I have done above; AS WITH ANY DISCRETE QUADRATURE, 

SUCH AS LEGENDRE QUADRATURE USED BY Sn CODES, THAT IS THE KEY.  

 

If both give the same results, does this means PTM and MB are equivalent? Please do not make 

the mistake of assuming they are equivalent, because they ARE NOT. Also, please do not 

make the mistake of assuming that PTM and MB results will always agree so closely that their 
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integral results are essentially indistinguishable, as we found in the above example here. In the 

above example they both produce statistically identical answers, only because they both used the 

same approximations.  

What the above results show is that in this case the 2 band MB results using only moments from 

the PTM data, reproduce the 20 band PTM results. In other words, we do not need 20 bands to 

reproduce the rather small changes in the self-shielded cross sections that we see in these cases, 

i.e., only 4.6% for 235U and 12.3% for 238U. 

This does not mean the two methods are equivalent, because PTM uses a number of 

approximations that MB does not. In general MB can do much better than this because if we 

consider all the approximations used by PTM, 

1) MB only needs moments of the cross sections, so there is no statistical uncertainty due 

to random sampling of a ladder of sampled resonances [5, 6]. 

2) By only using moments MB is not restricted to the ENDF restriction to SLBW [1]. 

3) MB uses the intermediate resonance [27, 28, 29], approximation, not the NR used by 

PTM [13]. 

4) MB uses an analytical solution to define the band weights and cross sections [12]. 

5) MB only uses a few cross sections bands, making practical an extension to 

deterministic codes, while still satisfying the all-important boundary conditions [14, 

15]. 

6) PTM has only been applied to the unresolved region, whereas MB has been applied 

across the entire incident neutron energy range [10, 11]; in TART, from 1.0d-5 eV to 

20 MeV.  
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Bondarenko Model 

One additional approximation that  both PTM and MB use is the Bondarenko approximation, that 

assumes the resonance structure in each isotope is independent of the resonance structure in all 

other isotopes; this predicts self-shielding of any mixture of isotopes as 1/[ t(E) + < 0>]; < 0> 

represents all other materials. In principle this is an APPROXIMATION strictly valid only for 

infinite, homogeneous media, i.e., 𝜇𝐾 = 0. In practice, many years of use have proven how 

accurate it can be.   

As applied here it means that when dealing with a mixture of isotopes, both PTM and MB sample 

the cross sections for each isotope, assuming the resonance structure in each isotope is independent 

of the resonance structure in all other isotopes. By the definition of “unresolved” that is about the 

best we can do in the URR. Although I doubt if it is of much importance in the unresolved region, 

I will merely mention that both PTM and MB cannot account for this effect and as such both are 

using the Bondarenko approximation. However, when used outside the unresolved energy range 

we can account for this correlation, in multi-group calculations, e.g., for N cross section bands, an 

N x N matrix of bands can include conditional probabilities, accounting for “coincidental” 

correlation. Here we see a BIG, important difference between using PTM with 20 cross section 

bands, and MB with only 2 bands. A MB 2 x 2 correlation matrix is easy to construct and 

understand, whereas a PTM 20 x 20 matrix really isn’t practical to even consider trying to construct 

or use. 

The below figure compares the TOTAL cross section of Natural Iron (Fe) to the TOTAL cross 

section of Fe’s most abundant isotope, Fe56 (over 91% by atom fraction). Near the 25 keV window 

in Fe we can see that even though based on atomic fraction Fe56 is dominant, in terms of TOTAL 

cross section it is only about 1% of the Natural Fe TOTAL cross section. Hopefully this one figure 

will help you to appreciate, the magnitude of the APPROXIMATION of assuming that when 

defining self-shielded cross sections for Natural Fe, as an independent sum over its isotopes,  for 

Fe56, we are assuming that the Natural Fe TOTAL can be APPROXIMATED by the Fe56 isotope  

TOTAL plus some constant < 0>.    
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The below figure shows a comparison of the TOTAL cross sections for the Uranium mixture used 

in the above Simple 1-D model; the Uranium was 2% 235U and 98% 238U. The below figure shows 

an expanded view of the 4 eV to 100 eV energy range. We see a number of strong, widely spaced 
238U resonances (again, 98% of the mix), and more numerous 235U resonances (only 2% of the 

mix). Here we can see examples of “coincidental” correlation, where rather than sitting on an 

energy independent < 0>, the 235U resonances are within the energy range of the strong 238U 

resonances. From the ratio included in the below figure we can see a number of cases where a 1/

 t(E) weighting drastically changes the contribution of some 235U resonances. 

 

  
While the Bondarenko approximation has been successfully used for many years to produce 

processed nuclear data “application independent libraries”, today our modern evaluations have so 

much detail, including thousands and thousands of resonances, there are bound to be groups 

(ranges of energy) where there is what I refer to as “coincidental” correlation, where resonance 

just happen to rise or fall in similar patterns. Today our computers are so fast and large and efficient 

that we really no longer need to use the Bondarenko approximation, e.g., if you want to calculate 

the self-shielded cross section for any mixture of materials, we now have the computer resources 

to first define the total cross section of the mixture (e.g., use PREPRO/MIXER [7]) and then use 

this total as the self-shielding factor to calculate self-shielded cross sections for the individual 

constituents (use GROUPIE [7]); we need not construct tables of results for a variety of < 0>;  

we can bypass the Bondarenko approach and directly calculate one, unique answer. 

One method successfully used by TART for many years uses MB parameters over the entire energy 

range, usually 10-5 eV up to 20 MeV; not just the unresolved region. Many years of testing and 

comparison to TART continuous energy cross section treatment, shows that generally only 2 MB 

bands are needed to account for self-shielding. I mention this here because one the biggest 

problems with deterministic codes today is accounting for spatial and directional dependent self-
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shielding. Over decades deterministic codes have used more and more groups to account for self-

shielding; generally, this approach does not work, e.g., 238U would require many thousands of 

groups and the group-to-group transfer matrix becomes of questionable use/accuracy. What does 

work is fewer groups, but 2 cross section bands ala MB in each group. This is a very practical 

approach as it can be even more efficient because you will find that you do not need nearly as 

many groups as you think you do.  

Both PTM and MB use a rationale, Pade, approximation [14, 15], as the ratio of two polynomials 

to define the self-shielded cross section as a smooth continuous function over the entire range of

 0 = 0 to  . This can be used to replace the somewhat crude methods used to interpolate in  0 

in tables of Bondarenko self-shielded cross sections. Here you will find that you need fewer values 

of  0 to tabulate data, and results will be smooth and continuous.          

< R( 0)> =  




 +

+

B
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B

BRB

tP
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0]/[
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The Intermediate Resonance (IR) Approximation 

The Probability Table Method (PTM) uses the Narrow Resonance (NR) Approximation to 

sample from the entire distribution of cross sections after each scatter, so it is important for us to 

understand what this means and how it affects results. Here I will briefly describe the various 

resonance models, including Narrow (NR), Wide (WR), and Intermediate (IR), and investigate 

what effect these models have on our calculated results, and more importantly I will try to explain 

why. Returning to the 1-D Boltzmann equation, 

 

μ ∂Φ(𝐸, 𝑧, 𝜇)/𝜕𝑧 + Σt(E,z)*Φ(E,z,𝜇) = R(E,z,𝜇) = R(E,z,𝜇) is the slowing down and sources. 

In an infinite, homogeneous medium this becomes, 

                                      Σt(E)*Φ(E)         = R(E) 

                                  Total Reactions   = Slowing Down Spectra 

 

In the Narrow Resonance (NR) Approximation we assume that R(E) is smoothly varying with 

energy, e.g., at successfully higher energies R(E) is: Maxwellian, 1/E, fission, and fusion spectra. 

Obviously, since we assume R(E) is smoothly varying with energy, this equation says that the 

Total Reaction Rate is smoothly varying, and that the Flux ~ 1/Σt(E), the classic self-shielding 

I have been discussing throughout this paper. 

In the other extreme the Wide Resonance (WR) Approximation we assume that the slowing down 

varies following the cross section,  

                                     Σt(E)*Φ(E)         = Σt(E)*R’(E) 

                                 Total Reactions   = Slowing Down Spectra 

 

This equation says that the Flux is smoothly varying, and that the Flux is not self-shielded. 

 

Briefly, the Narrow Resonance (NR) model assumes that the widths and spacings of the 

resonances in the medium are narrow compared to the range of secondary scattered energies, so 

there is a probability that the neutron can “see” the entire range of cross sections. In the other 

extreme of Wide Resonance (WR) model assumes that the resonance, or energy dependence of 

the cross section is so wide compared to the range of scattered energies that after a collision the 

neutron “sees” only the same cross section it saw before the collision.  

 

In nature, when we examine the entire periodic table, we find almost a continuum of isotopes with 

various atomic weights, and resonance spacings and widths, that neither the narrow and wide 

model is accurate in all cases; hence the need for the Intermediate Resonance (IR) model. A 

detailed description of the IR is beyond the scope of this paper; see the papers by Rubin Goldstein 

[27, 28, 29]. Soon after developing the Multi-Band model [10,11, 12], I realized that based on the 

many results we were calculating, the NR is not always accurate enough, so I extended the multi-

band method by adding the IR Approximation to TART [13]. Here I will merely present a few 

example results based on the six cross section models used above and adding IR results (identified 

as Multi-Band NR and IR) in the results. 
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Note that when using Continuous energy cross sections none of these resonance width 

models/approximations are used, so we can use continuous energy results as a standard to 

determine which of these models are accurate – or inaccurate. 

 

Infinite, Homogeneous Model: The first example should be the simplest possible, corresponding 

to the above equation for an infinite, homogeneous medium. I homogenized the Water/U system 

discussed above, for a range of ratios of H2O molecules to U atoms, including five different ratios: 

1:100, 10:100, 100:100, 1000:100, 10000:100, i.e. from predominately U (100 times more), to 

predominately H2O (100 times more). In each case I first used continuous energy cross sections 

and adjusted the 235U enrichment to make the system approximately critical. I then ran TART using 

each of the six cross section models discussed above, plus a seventh model to provide multi-band 

results using either narrow (NR) or intermediate (IR) resonance treatments. Each TART run used 

10
+8

 neutron samples, to achieve converged results to within about 0.1% (3-digit convergence).  
 

Infinite, Homogeneous: H2O Molecules Atoms Ratio 

============================================================ 

Model          1:100    10:100   100:100  1000:100 10000:100 

============================================================ 

Continuous     0.999816 1.000080 1.000810 0.999657 1.000290 

Multi-Group    0.966235 0.828187 0.794985 0.903417 0.987059  

Multi-Band  NR 1.000680 1.010940 1.023410 1.007310 0.999690 

Multi-Band  IR 1.000950 1.002020 1.000550 0.997719 0.998776 

Unshielded     0.966169 0.828150 0.795056 0.903405 0.987063 

Totally        0.999059 1.006050 1.090950 1.067940 1.027070 

Partial        0.986059 0.935382 0.956772 0.997413 1.012270 

============================================================ 

 

Frankly I was shocked by the results; here is a summary of what I see from the above table, 

1) The effects of the difference in self-shielding models are most extreme near the middle 

of the table (100:100 ratio). For a much lower ratios the system becomes so heavily 

absorbing it is hard to see the effect of elastic scatter in the resonance range, and at much 

higher ratios the scatter is predominately from the water, particularly H, which scatters 

over such a large secondary energy range that it satisfies the narrow resonance (NR) model. 

2) Multi-group and Unshielded results show incredible (at least to me), poor results; in the 

worst case predicting keff ~ 0.795, which is dangerously low if you are trying to predict the 

safety of a homogeneous mixture of materials; this result I found particularly surprising 

and SCARY!!!! Statistically these two models should – and do – produce very similar 

results; these results were so shocking I would not have believed them without this 

independent agreement.   

3) Totally and Partially Shielded, respectively over (Totally ~ 1.091) and under (Partially ~ 

0.956) results. 

4) In this case the Multi-Band Narrow Resonance (NR) results are even worse than the 

Totally or Partially shielded results (NR ~ 1.023); not surprising, since U is does not satisfy 

the Narrow Resonance model.  

5) Only the Multi-Band Intermediate Resonance (IR) results produce close to acceptable 

results across all five H2O to U ratios (at 100:100 ~ 1.0005).     
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Simple 1-D Planar Infinite Model: The below table is identical to Table 1 above, under a Simple 

1-D Planar model, except that I have added Intermediate Resonance (IR) approximation models. 

In this case the difference between narrow resonance (NR) and intermediate resonance is only 

0.000320 (~ 0.03 %), which is insignificant to the statistical accuracy of the results. The bottom 

line is that for this simple 1-D model NR versus IR plays no significant role. 
 

U/Water Criticality Including Narrow (NR) and Intermediate (IR) Results 

======================================================================== 

Cross Section       Expected  Difference  Removal     Median    Seconds 

Representation      K-eff     in K-eff    Lifetime    Energy 

                                          (Microsec.) (eV) 

======================================================================== 

Continuous          0.999924  --------  7.89162D+01 5.00948D-02 5066.660 

Multi-Group         0.974683 -0.025241  7.70376D+01 5.01225D-02 3837.700 

Multi-Band     NR   1.000980  0.001056  7.90684D+01 5.01097D-02 4404.120 

Multi-Band     IR   1.001300  0.001376  7.90471D+01 5.00872D-08 4208.120 

Unshielded          0.974645 -0.025279  7.70372D+01 5.01247D-02 4442.640 

Totally Shielded    1.001750  0.001826  7.97356D+01 4.95769D-02 4581.800 

Partial Shielded    0.991570 -0.008354  7.86170D+01 4.98773D-02 4512.280 

======================================================================== 

Homogeneous versus Heterogeneous: Why is there such a significant difference between the 

preceding H2O/U infinite, homogeneous system, and this H2O/U finite, heterogeneous system? 

Because in the homogenous case the scatter was occurring in the entire uniform mix of materials, 

so that for some H2O/U ratios the scatter from the U was important but did not satisfying the 

narrow resonance (NR) model. In the heterogeneous case the scatter and slowing down was 

primarily in the H2O, which does satisfy the NR model. In the heterogeneous case what is 

important is not the scatter within the U, but rather the all-important boundary conditions at the 

H2O to U interface; here the spectrum of neutrons incident from the H2O into the U is smooth from 

scatter in H2O and satisfies the narrow resonance model (NR).  

 

The Probability Table Method (PTM) [24, 25], using the narrow resonance (NR) model in the 

unresolved resonance region has been more successful than you might think, even though most 

heavy even-odd isotopes (fuels), themselves do not narrow resonance (NR) scatter. As long as it 

is dealing with heterogeneous media where the slowing down is primarily outside of the fuel what 

is most important is not the scatter inside the fuel, but rather the boundary conditions to introduce 

neutrons into the fuel with the “correct” distribution of cross sections; hopefully this is illustrated 

by the above figures showing the energy and spatial dependence of the uncollided flux into the U 

from the H2O.  

 

The above two examples are for infinite homogeneous and heterogenous media, which being 

infinite are of course completely theoretical. To illustrate the differences between Narrow and 

Intermediate Resonance Models for real systems, below I present results for the Uranium Slow 

Critical Assemblies where using the Narrow Resonance Model we found small, but significant, 

differences for assemblies 207 through 231.   

  



 59  

 

Uranium Slow Critical Assemblies: Below is a comparison for the Uranium Slow Critical 

Assemblies 207 through 231. These are the assemblies where we found significant differences 

using the Narrow Resonance (NR) Model; below the Narrow Resonance (NR) results are 

compared to Intermediate Resonance (IR) Model results. The results show that for these 

assemblies using the Intermediate Resonance (IR) reduces the difference to within 0.1%, except 

for one case (225) where it is 0.11% (statistically the same as 0.1%). 

 

 
 

Critical Assembly Intermediate Resonance Narrow Resonance 

  207 LCT006-1  U235      Water                

  208 LCT006-2  U235      Water                

  209 LCT006-3  U235      Water                

  210 LCT006-4  U235      Water                

  211 LCT006-5  U235      Water                

  212 LCT006-6  U235      Water                

  213 LCT006-7  U235      Water                

  214 LCT006-8  U235      Water                

  215 LCT006-9  U235      Water                

  216 LCT006-10 U235      Water                

  217 LCT006-11 U235      Water                

  218 LCT006-12 U235      Water                

  219 LCT006-13 U235      Water                

  220 LCT006-14 U235      Water                

  221 LCT006-15 U235      Water                

  222 LCT006-16 U235      Water                

  223 LCT006-17 U235      Water                

  224 LCT006-18 U235      Water                

  225 LMT001    U-nat     D2O                  

  226 LMT002-1  U235      D2O                  

  227 LMT002-2  U235      D2O                  

  228 LMT002-3  U235      D2O                  

  229 LMT002-6  U235      D2O                  

  230 LMT002-10 U235      D2O                  

  231 LMT002-11 U235      D2O 

        207  1.0002102 

        208  1.0006123 

        209  1.0002300 

        210  0.9998600 

        211  1.0006700 

        212  0.9998001 

        213  0.9999000 

        214  1.0002898 

        215  0.9997503 

        216  1.0000999 

        217  1.0000200 

        218  0.9996105 

        219  0.9998701 

        220  1.0004792 

        221  0.9995608 

        222  0.9995907 

        223  1.0003694 

        224  0.9997404 

        225  0.9988893 

        226  0.9999504 

        227  1.0000700 

        228  0.9998713 

        229  1.0001731 

        230  1.0003893 

        231  1.0000580 

        207  1.0079426 

        208  1.0079456 

        209  1.0083485 

        210  1.0060991 

        211  1.0070495 

        212  1.0067855 

        213  1.0069066 

        214  1.0074652 

        215  1.0060522 

        216  1.0052534 

        217  1.0052721 

        218  1.0056730 

        219  1.0058548 

        220  1.0045922 

        221  1.0047417 

        222  1.0050217 

        223  1.0050425 

        224  1.0051126 

        225  0.9998243 

        226  1.0013182 

        227  1.0022889 

        228  1.0020988 

        229  1.0074080 

        230  1.0030043 

        231  1.0041909 
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