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ABSTRACT 

This report introduces the evaluation method RAC-CERNGEPLIS and the results obtained for 

the project “R-matrix Codes for Charged-particle Induced Reactions in the Resolved Resonance 

Region” that is coordinated by the Nuclear Data Section. In fact, this method has been used 

before in the evaluation of the compound systems n+6Li and n+10B, for the IAEA Neutron 

Standards (2006 and 2017 release). The main characteristics of the RAC code are that i) the 

eliminated channel width is included in the R-matrix algorithm and ii) the Generalized-Least 

Square method is used in the fitting procedure. In this report we discuss different approaches 

to R-Matrix fitting that are used in nuclear data evaluation. Practice shows that the RAC-

CERNGEPLIS method is a reasonable, useful and powerful tool for evaluation of nuclear data. 
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1. INTRODUCTION 

Charged-particle induced reactions at low energy are important for Ion Beam Analysis (IBA) 

applications in materials analysis, cultural heritage and preservation, environment and climate 

control, and forensics, to mention but a few examples. The Nuclear Data Section (NDS) of 

IAEA is the international center collecting and disseminating nuclear data for IBA. For this 

purpose it maintains the Ion Beam Analysis Data Library (IBANDL) that contains over 6000 

datasets of experimental differential and total cross section for charged-particle induced 

reactions in the low-energy region below several MeV. 

Other applications where charged-particle reactions in the resolved-resonance-region are 

relevant include management of reactor fuel in nuclear reactors. For the most widely used fuel 

material UO2, UF6, PuF4, and PuO2, the dominant neutron producing reactions are (α,xn) 

reactions on isotopes of O and F occurring in the resolved resonance region. A survey of 

evaluated library reveals lack of reliable (α,xn) data on these isotopes in the low-energy 

resolved resonance region.   

In nuclear astrophysics, stellar synthesis models are based on thermonuclear reactions at 

temperatures of tens of millions of degree Kelvin to produce both the energy of the stars and 

the light and medium elements up to iron. In the earth laboratory these conditions correspond 

to charged-particle induced reactions on light and medium mass nuclei at energy of few tens of 

KeV. Efforts have been made over past decades to measure these cross sections and provide 

theoretical description, R-Matrix fits and/or evaluation of the data that would allow 

extrapolating to the lower energies needed for the stellar models.    

To address the above-mentioned data needs the IAEA-NDS is coordinating an international 

effort to (1) perform an inter-comparison of all available R-matrix Code, (2) evaluate cross 

sections of charged-particle induced reaction in the resolved resonance region (RRR), (3) 

produce evaluated nuclear data files for further processing and finally (4) disseminate these 

data through the general purpose evaluated nuclear data libraries, and therefore make them 

available to the broader user community. 

This report mainly introduces the results obtained within the project “R-matrix Codes for 

Charged-particle Induced Reactions in the Resolved Resonance Region” [1] using the 

evaluation method RAC-CERNGEPLIS. This method has already been used in the evaluation 

of n+6Li and n+10B for the IAEA Neutron Standard (2006 [2] and 2017 [3] (way be released 

later). The main characteristics of the RAC code are that (i) the eliminated channel width is 

included in the R-matrix algorithm and (ii) the Generalized-Least Square method is used in the 

fitting procedure. Different approaches to R-Matrix fitting adopted in nuclear data evaluation 

are also discussed. Our practice demonstrates that the RAC-CERNGEPLIS method is a 

reasonable, useful and powerful tool for evaluation of nuclear data. 

The structure of the report is as follows: in Section 2 we introduce the formulas used in RAC, 

including the new calculation method; in Section 3 we discuss the computational accuracy of 

RAC and present the results in comparison with other R-matrix codes; in Section 4 we present 

the different evaluation methods based on Approximate Least Squares (ALS), Conventional 

Least Squares (CLS) and Generalized Least Squares (GLS) in detail, and in particular we 
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discuss the differences between the RAC code and EDA R-matrix code (Los Alamos R-matrix 

code); the importance of selecting a suitable level scheme for the evaluation is presented in 

Section 5; in Section 6 we demonstrate the different schemes used for the ALS, CLS and GLS 

and show that the differences in the end are observed in the chi2 the covariance matrix of 

evaluated values; in Section 7 we discuss some important issues related to the evaluation 

process; the final complete evaluation of 7Be is presented in Section 8; our conclusions are 

given in Section 9 while the 6 files produced by this evaluations are appended in the Appendix. 

2. BASIC FORMULAS OF THE R-MATRIX CODE RAC 

In this section we introduce the R-matrix expressions and approximations implemented in the R-

matrix code RAC. In Section 2.1 we present the improved formalism implemented in RAC which 

leads to small differences when compared with the results obtained by the other standard R-matrix 

codes for the same input parameters. Then in Section 2.2 we introduce the statistical theory of 

covariances and the method used to build a covariance matrix based on experimental data. Finally, 

in Section 2.3 we introduce the classical Reduced R-matrix formalism of Lane and Thomas [4]. 

2.1. Improved level width and energy shift 

The level width and energy shift formulas given below are an extreme approximation that is 

valid for one single level 

  Γλc = 2Pc γλc
2   

 𝛥𝜆𝑐 = −𝑆𝑐 𝛾𝜆𝑐
2  (2.1) 

In Ref. 4 (see page 273, Eqs. 1.17, 1.18, 1.19), the correct general formulas for the ‘level width’ 

and ‘level shift’ are given as follows: 

  𝛤𝜆𝑐 = 2𝑃𝑐 𝛾𝜆𝑐
2 𝑑𝑐

⁄   (2.2) 

 𝛥𝜆𝑐 =
𝑃𝑐(𝑅𝑐𝑐

0 𝑃𝑐)−𝑆𝑐
0 (1−𝑅𝑐𝑐

0 𝑆𝑐
0 )

𝑑𝑐
𝛾𝜆𝑐

2   (2.3) 

 𝑑𝑐 = (1 − 𝑅𝑐𝑐
0 𝑆𝑐

0)2 + (𝑅𝑐𝑐
0 𝑃𝑐

)2  (2.4) 

where 𝑅𝑐𝑐
0  is the constant background. In RAC we have implemented the Multi-channel and 

Multi-level R-Matrix formula without constant background. Instead, in the calculation of an 

energy level’s width and shift, the contribution of the remaining levels are taken as a constant 

background, which is an accurate equivalent of using 𝑅𝑐𝑐
0  . Due to the complexity of the 

algorithm described in Eqs. (2.2-2.4), the calculation time required for adjusting the parameters 

in the fitting process increases by a factor of 5.  

In this work we have used all the information on the experimental level widths and branching 

ratios available in the literature, which is absolutely essential to accurately calculate the width 

and shift in some cases. For example, we use 

  Γ𝜆𝛾
𝑜𝑏𝑠 = 2P𝑐  𝛾𝜆𝑐

2 /(1 + ∑ 𝑘  𝛾𝜆𝑘    
2 (

𝑑𝑆𝑘

𝑑𝐸
)𝐸𝜆

) (2.5) 
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where Γ𝜆𝛾
𝑜𝑏𝑠  represents the observed width, Pc is the penetrability, 𝛾𝜆𝑐

2   the reduced width 

amplitudes in the calculation. 

Note that the improved level width and energy shift formulas are absolutely necessary when 

very narrow levels are considered. For example, in the evaluation for 12C(α, γ)16O, γ transitions  

play the most important role, but since all the information used is level width or level half-life 

for the bound levels, the improved formulas have to be used to get accurate results. 

We obtain accurate wave functions of positive energy by using the continued fractions method 

in the (α,α) and γ−particle channels. This ensures that the wave functions calculated by RAC 

agree with the results of Barnett [5] by more than fourteen significant figures. 

2.2.  Covariances, generalized least squares and error propagation law 

The book of D. Smith [6] presents the most advanced theory for evaluation of nuclear data and 

is a guide to developing computer programs. The IAEA Neutron Standards reports [2,3] are the 

best examples of applications of the theory of nuclear data evaluation and can be considered as 

‘best practice’. Key components of nuclear data evaluation and of self-contained methods are 

(i) the theory of error distribution and error propagation, (ii) the formulae for covariance fitting, 

(iii) the theory of generalized least squares, (iv) the experimental method for modification of 

Pearl’s Pertinent Puzzle (PPP), (v) Lett’s criteria for minimizing the effect from occasional 

‘outliers’, and (vi) the test for the definiteness of the covariance matrix. These components 

cannot be ignored if one wants to obtain an accurate evaluated value and describe the 

experimental nuclear data objectively and with high precision. The basic reason for this is that 

nuclear measurements involve long-range, middle-range and short-range errors of the 

observables objectively, and this can never be avoided completely. The long-range and middle-

range errors are connected via correlations. 

The code RAC13 makes use of a suitable reaction model, employs the most advanced 

evaluation methods, and uses the most complete global experimental database, to obtain 

evaluated values close to the expectation values combined with the most reasonable error 

information. In previous efforts, we used the ‘Conventional Least Squares fitting’ fitting 

procedure - but neglecting the problem of PPP - which in theory cannot give an unbiased 

estimation for complex samples.  

In this work, we use the 'covariance fitting' approach, because, in theory, the systematic error 

always exists no matter how exact the evaluation of the experimental data (ED) is. As long as 

the systematic error exists, the correlation between the experimental data (ED) and the off-

diagonal elements of the covariance matrix can never be removed. The ‘Conventional Least 

Squares fitting’ fitting only considers the diagonal elements of the covariance matrix, while it 

ignores the off-diagonal elements and that part of the correlations of experimental data (ED). 

Therefore, the optimal calculation is only a rough approximation of the expected value 

according to the ‘maximum likelihood principle’. Fitting the data using covariances is an 

accurate method. When the inverse of the covariance matrix is used in the optimization 

procedure, the values of χ
2
Mean are accurately estimated. Table 6.1 shows the significant 
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difference in the χ
2
Mean obtained with the ‘Conventional Least Squares fitting’ and the ‘Covariance 

Fitting’.  

In the following, we describe how to construct the covariance matrix with error information 

taken from the experimental data: 

Suppose 𝑈𝑖
2 , 𝑆𝑖

2 , 𝐿𝑖
2 , 𝑀𝑖

2  and 𝑌𝑖
2  are total variance, statistical variance, long-range 

component (LERC) of systematic variance, medium-range component (MERC) of systematic 

variance and total systematic variance of the ith ED point respectively, and let 𝑈𝑖
2 = 𝑆𝑖

2 +

 𝐿𝑖
2+𝑀𝑖

2 ,  𝑌𝑖
2 = 𝐿𝑖

2+𝑀𝑖
2. The diagonal elements 𝐶𝑗𝑗 of correlation coefficient matrix C are 1 

for all. The non-diagonal elements for integral cross sections are 

 𝐶𝑖𝑗 = 𝐶𝑖𝑗
𝐿 + 𝐶𝑖𝑗

𝑀   (2.6) 

Here 𝐶𝑖𝑗
𝐿  refers to the LERC of systematic errors, 𝐶𝑖𝑗

𝑀to the MERC of systematic errors, and 

 𝐶𝑖𝑗
𝐿 = 𝐿𝑖 𝐿𝑗 (𝑈𝑖 𝑈𝑗)⁄    (2.7) 

 𝐶𝑖𝑗
𝑀 = 𝑀𝑖 𝑀𝑗 (𝑈𝑖 𝑈𝑗) ∙⁄ 𝑓𝑖𝑗    (2.8) 

 𝑓𝑖𝑗 = Exp  {− [(𝐸𝑖 − 𝐸𝑗 )/W]2 2⁄ }  (2.9) 

where W is a distribution width parameter, and 𝐸𝑖 and 𝐸𝑗 stand for energy points of the data. 

The non-diagonal elements of C for AD are  

 𝐶𝑖𝑗 = (𝐶𝑖𝑗
𝐿 + 𝐶𝑖𝑗

𝑀) ∙ 𝐺𝑖𝑗   (2.10) 

 𝐺𝑖𝑗 = Exp {− [(𝜃𝑖 − 𝜃𝑗 )/160]2 2⁄ }  (2.11) 

Here 160 is a distribution parameter related to angle, 𝜃𝑖 and 𝜃𝑗 are angle values. 

 

It can be seen from the formulas given above that the correlation coefficient is determined by 

the total error and systematic error, and a larger systematic error leads to a larger correlation 

coefficient. The absolute covariance matrix elements of the simulated data can be calculated 

from the corresponding correlation coefficients as follows:   

  𝑉𝑖𝑗 = 𝐶𝑖𝑗 ∙ 𝑈𝑖 ∙ 𝑈𝑗   (2.12) 

The theoretical formula for error propagation within the R-matrix model fitting is as follows:    

 y − 𝑦0 = 𝐷(𝑃 − 𝑃0
)  (2.13) 

 𝐷𝑘𝑖 = (𝜕𝑦𝑘 /𝜕𝑃𝑖 )0   (2.14) 

Here y refers to the vector of calculated values, 𝐷 to the sensitivity matrix, 𝑃 to the vector 

of R-matrix parameters. Subscript 0 means optimized original value, k and i are for fitted data 

and R-matrix parameter subscript respectively.  The covariance matrix of parameter 𝑃 is  

 𝑉𝑃 = (𝐷+ 𝑉−1𝐷)−1  (2.15) 
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Here V refers to the covariance matrix of the data to be fitted, and its inversion matrix can be 

expressed as follows: 

 𝑉−1 = (
𝑉1

−1

0

𝑉2
−1

⋱

0

𝑉𝑘
−1

)  (2.16) 

Here V1, V2⋯Vk refer to the covariance matrixes of the sub-set data, which are independent of 

each other. The covariance matrix of calculated values is 

 𝑉𝑦 = 𝐷𝑉𝑃𝐷+   (2.17) 

The formula adopted for optimizing the R-matrix fitting is 

 𝝌𝟐 = (𝜼 − 𝒚)+ 𝑽−𝟏(𝜼 − 𝒚) ⇒ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚   (2.18) 

Here 𝜂 refers to the vector of ED, 𝑦 refers to the vector of calculated values. 

2.3. Basic formulas used in RAC2015 

The practical formulas implemented in RAC are taken from the literature [4,6,7,8]. Regarding 

the R-matrix and reaction cross section calculations, the algorithms were implemented in strict 

accordance with the formulas in Ref. [4] without introducing any approximation. Here we 

present that part of the algorithm that was further developed. 

For the positive energy channel, the incoming (I) and outgoing wave (O) function is defined as 

follows 

 𝐼𝑐
+ = (𝐺𝑐 − 𝑖𝐹𝑐

) exp(𝑖𝜔𝑐
) ;  𝑂𝑐

+ = (𝐺𝑐 + 𝑖𝐹𝑐
) exp(−𝑖𝜔𝑐

)  (2.19) 

For the negative energy channel, only the outgoing wave (O) function is defined as 

 𝑂𝑐
− = 𝑊 (−𝜂𝛼 , 𝑙 +

1

2
; 2𝜌𝛼 ) ,  (2.20) 

 𝜔𝑐 ≡ 𝜔𝛼𝑙 = 𝜎𝛼𝑙 − 𝜎𝛼0 = ∑ 𝑡𝑎𝑛−1(𝜂𝛼/𝑛)𝑙
𝑛 =1  (2.21) 

The logarithmic derivative of O-type wave function is designated as    

 𝐿𝑐 ≡ (
𝜌𝑐𝑂𝑐

′

𝑂𝑐

)
𝑟𝑐=𝑎𝑐

= 𝑆𝑐 + 𝑖𝑃𝑐  (2.22) 

The real and imaginary parts of which are given by, according to Eqs. (4.4a), (4.4b) in Ref. [4], 

respectively, 

  𝑆𝑐
+ = [

𝜌𝑐(𝐹𝑐𝐹𝑐
′−𝐺𝑐𝐺𝑐

′)

𝐹𝑐
2+𝐺𝑐

2
]

𝑟𝑐=𝑎𝑐

  (2.23) 

 𝑆𝑐
− = (

𝜌𝑐𝑊𝑐
′

𝑊𝑐
)

𝑟𝑐=𝑎𝑐

  (2.24) 
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 𝑃𝑐
+ = [

𝜌𝑐

𝐹𝑐
2+𝐺𝑐

2
]

𝑟𝑐=𝑎𝑐

 (2.25) 

 𝑃𝑐
− = 𝑧𝑒𝑟.  (2.26) 

In the case of the positive energy channels, the ratio is defined as 

 Ω𝑐
+ = (𝐼𝑐 /𝑂𝑐 )𝑟𝑐=𝑎𝑐

1 2⁄
 (2.27) 

It is a unit-modulus complex number which is expressible as 

 Ω𝑐
+ ≡ Ω𝛼𝑙

+ = 𝑒𝑥𝑝 𝑖(𝜔𝑐 − 𝜙𝑐
+ ) 

 𝜙𝑐
+ ≡ 𝜙𝛼𝑙

+ = 𝑡𝑎𝑛−1(𝐹𝑐 /𝐺𝑐 )  (2.28) 

We also introduce  

 𝔏𝑐 = (𝜌𝑐 𝐼𝑐
′ /𝐼𝑐)𝑟𝑐=𝑎𝑐

; 𝔅𝑐 = (𝜌𝑐 /𝐼𝑐 𝑂𝑐 )𝑟𝑐=𝑎𝑐
 (2.29) 

The Wronskian is 

 ω = (𝑂𝑐
′𝐼𝑐 − 𝐼𝑐

′ 𝑂𝑐 )𝑟𝑐=𝑎𝑐
.  (2.30) 

The relation between the R-matrix and the collision matrix U is 

 UJ =  ΩW𝐽Ω  (2.31) 

 W𝐽 = 1 + 𝔅
1

2 (1 − RJL0)−1RJ𝐿𝔅
1

2𝑤  (2.32) 

where,  

 L0 = L − B  (2.33) 

 𝐵𝑐 ≡
𝛿𝜆𝑐

𝛾𝜆𝑐
=

𝐷𝜆𝑐

𝑉𝜆𝑐
.  (2.34) 

The formulas for the R-matrix, level matrix and energy shift are 

 (R(𝐸)
𝐽

)𝛼′𝑠′𝑙′ ,𝛼𝑠𝑙  = ∑ 𝛾
𝛼′𝑠′ 𝑙′
𝐽

𝛾𝛼𝑠𝑙
𝐽

𝐴𝜆𝜇 𝛿𝐽𝐽0

𝑁
𝜆𝜇  (2.35) 

 [𝐴−1]
𝜆𝜇 = [𝐸𝜆

𝑟 − 𝐸 − Δ𝜆𝜇
𝑟 (𝐸𝜆

𝑟 )]𝛿𝜆𝜇 + Δ𝜆𝜇
𝑒 (𝐸𝜆

𝑟 ) −
𝑖

2
Γ𝜆𝜇

𝑒 𝛿𝜆𝜇   (2.36) 

  Δ𝜆𝜇
𝑟 = − ∑ (S𝜆𝜇 − B𝛼)𝛾𝛼′𝑠′ 𝑙′ 𝛾𝛼𝑠𝑙

𝑁
𝛼𝑠𝑙  (2.37) 

 

Let Δ𝜆𝜇
𝑒 (𝐸𝜆

𝑟 ) ≡ 0.0 or take it as an adjustable parameter. 
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With the relation between T-matrix and U-matrix the cross-section formulas are:   

 𝑇
𝛼′𝑠′ 𝑙′ ,𝑎𝑠𝑙

𝐽
= 𝑒2𝑖 𝜔𝛼𝑙𝛿𝛼′𝑠′𝑙′ ,𝛼𝑠𝑙 − 𝑈

𝛼′𝑠′ 𝑙′ ,𝛼𝑠𝑙

𝐽
  (2.38) 

 𝜎𝛼′ ,𝑎 ==
𝜋

𝑘𝛼
2

∑ 𝑔𝐽𝑠𝑙′𝑠′𝑙𝐽 |𝑇
𝛼′𝑠′ 𝑙′ ,𝑎𝑠𝑙

𝐽 |
2

  (2.39) 

 𝜎𝑡𝑜𝑡 =
𝜋

𝑘𝛼
2

∑ 2𝑔𝐽𝑠𝑙𝐽 (1 − Re𝑈𝑎𝑠𝑙,𝑎𝑠𝑙
𝐽

)  (2.40) 

 𝑔𝐽 =
(2𝐽+1)

(2𝐼1+1)(2𝐼2+1)
  (2.41) 

 
𝑑𝜎𝛼𝛼′

𝑑Ω𝛼′
=

1

(2𝐼1+1)(2𝐼2+1)
∑ |𝐴𝛼′ 𝑠′𝜈′ ,𝑎𝑠𝜈 (Ω𝛼′ )|

2

𝑠𝑠′𝜈𝜈′   (2.42) 

 𝐴𝛼′𝑠′𝜈′ ,𝛼𝑠𝜈 =
√𝜋

𝑘𝛼
(−𝐶𝛼′ (𝜃𝛼′ )𝛿𝛼′𝑠′ 𝜈′ ,𝛼𝑠𝜈 + 

 𝑖 ∑ √2𝑙 + 1(𝑠𝑙𝜈0|𝐽𝑀)(𝑠 ′𝑙′𝜈 ′𝑚′|𝐽𝑀)𝑇
𝛼′𝑠′ 𝑙′ ,𝛼𝑠𝑙

𝐽
𝑌

𝑚′
(𝑙′)

(Ω𝛼′))𝐽𝑀𝑙 𝑙′𝑚′   (2.43) 

 

RAC also includes Eqs. (2.2 - 2.12) from page 292 of Ref. [4], as well as some formulas from 

Ref. [29] as follow: 

 𝑑𝜎𝛼→𝜆𝑓
𝑑Ω⁄ =  1 ((2𝐼𝛼1 + 1)(2𝐼𝛼2 + 1))⁄ 1

𝑘𝛼
2

∑ 𝐵𝑘𝑃𝑘𝑘 (𝜃)  (2.44) 

with the following definitions: 

 𝐵𝑘 =∑ [ ] (−1)1+𝑠−𝐽𝑓 /4𝑍1(𝜄, 𝐽, 𝜄′ 𝐽 ′;𝑠𝑘)𝑠,𝐿,𝐿′ ,𝜄,𝜄′𝐽,𝐽′ ,𝜖,𝜖′ × 𝑍2 (𝐿 𝐽 𝐿′ 𝐽′ ; 𝐽𝑓𝑘)  

 𝑇
𝛼𝑠𝜄′ ,𝜖′𝐿′ 𝜆𝑓

∗𝐽′

 𝑇
𝛼𝑠𝜄 ,𝜖𝐿𝜆𝑓

𝐽
  (2.45) 

  𝑍1(𝜄 𝐽 ι′ 𝐽′; 𝑠𝑘) = 𝜄 ̂𝐽 ′ 𝑗̂ 𝑗̂′ (𝜄 ̂0 𝜄 ̂′0│𝑘0)W(ιJ𝜄′ 𝐽 ′;𝑠𝑘)  (2.46) 

  𝑍2 (𝐿𝐽𝐿′𝐽′; 𝐽𝑓𝑘) = 𝐿 𝐿̂′ 𝐽 𝐽 ′ (𝐿1𝐿′ − 1|k0)𝑊(𝐿𝐽𝐿′𝐽′; 𝐽𝑓 𝑘)  (2.47) 

 𝜄 ̂ = (2𝜄 + 1)1/2 , 𝐽 = (2𝐽 + 1)1/2  (2.48) 

 [ ] = 
1

2
 [1 + (−1)𝐿′+𝐿+𝑘+𝜖+𝜖′

]  (2.49) 

Eqs. (2.45 -2.49) are suitable when γ is assumed to be a transverse wave with intrinsic spin 1. 
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3. COMPUTATIONAL ACCURACY OF THE CODES 

This section presents the computational accuracy achieved by the RAC code and how this 

compares with other R-matrix codes. The accurate wave functions of positive energy are 

obtained by the continued fractions method. This ensures that the wave functions calculated by 

RAC are in conformance with the results of Ref. [5].  

All the results demonstrate that the computational accuracy of RAC is reliable and satisfactory 

for the needs of evaluating nuclear data.  

3.1. The comparison of RAC13 with EDA, SAMMY and NJOY 

EDA [9] is an R-matrix code for light nucleus systems and has been developed for data 

evaluation at Los Alamos National Laboratory. A systematic comparison between EDA and 

RAC was completed within the international cooperation project on Neutron Cross Section 

Standards coordinated by the International Atomic Energy Agency [2]. The calculation of the 

6Li(t,α)4He neutron standard cross section by both codes is consistent within 5 or 6 digits. In 

Fig. 3.1 (a), the black curve corresponds to the calculated values of EDA, while the red curve 

represents the calculation by RAC: the two curves are in agreement with each other without 

any significant difference.  

SAMMY [10] is the R-Matrix code developed at Oak Ridge National Laboratory to evaluate 

mainly neutron-induced reactions of heavier systems. NJOY [11] is a nuclear data processing 

code which is used to reconstruct resonance cross sections from resonance parameters provided 

in the ENDF-6 format. Using the same R-Matrix parameters produced by SAMMY, the 

reconstructed cross sections from RAC and NJOY are identical to 4 to 6 digits. In Fig. 3.1 

(right), the black line indicates the calculated values of NJOY, while the red line represents the 

calculation by RAC, and these two lines are in agreement with each other without any 

significant difference. 

  

FIG 3.1. (Left) The calculated cross sections from RAC and EDA obtained with the same parameters. 

(Right) The reconstructed resonance cross sections of RAC and NJOY obtained with the same parameters 

of SAMMY. 

 

Figure 3.2 shows the comparison of calculated results from RAC and EDA obtained with the 

same parameter set of EDA for 7Be system evaluation. The parameter set was taken from the 

evaluation file of 7Be system produced by the LANL group [46]. The agreement looks good.  
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FIG 3.2. (Left) The calculated DA of 
4
He(

3
He,

3
He)

4
He from RAC and EDA at 1.72 MeV. (Right) The 

calculated DA of 
4
He(

3
He,

3
He)

4
He from RAC and EDA at 2.46 MeV. 

 

FIG 3.3. (Left) The calculated DA of 
4
He(

3
He,

3
He)

4
He from RAC and EDA at 2.98 MeV. (Right) The 

calculated DA of 
4
He(

3
He,

3
He)

4
He from RAC and EDA at 8.422 MeV. 

 

FIG 3.4. (Left) The calculated DA of 
6
Li(p, p)

6
Li from RAC and EDA at 0.495 MeV. (Right) The calculated 

DA of 
6
Li(p, p)

6
Li from RAC and EDA at 0.692 MeV. 

3.2. Alpha spectrum results 

The delayed alpha spectrum following β decay in 16N (alpha spectrum) is calculated by RAC 

using the original parameters given in Ref. [12]. Figure 3.5 shows that the curve of the alpha 

spectrum of RAC is in agreement with the curve of Ref. [12] and is also very similar to the 

normalized alpha spectra of Ref. [13]. The calculated wave contribution of RAC is very similar 
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to that of Ref. [14]. The conclusion is that the calculation of the alpha spectrum using RAC is 

correct.  

 

FIG 3.5. The data and calculated normalized alpha spectrum. 

3.3. The Test1a results 

Test1a was an exercise carried out within the IAEA project on R-matrix Codes for Charged-

particle Reactions in the Resolved Resonance Region [1] with the aim of systematically 

comparing the various R-matrix codes used in nuclear data evaluation. The exercise required 

the calculation of cross sections using the same R-matrix parameter-set provided by the AMUR 

code (R-Matrix code developed at JAEA) and the same energy points for the following 

reactions: 6Li(p,p)6Li, 6Li(p,4He)3He,3He(4He,4He)3He and 3He(4He,p)6Li. The results of the 

inter-comparison (also published in [15]) show that SAMMY (ORNL), AZURE2 (Univ. Notre-

Dame) and FRESCOX (Lawrence Livermore National Laboratory) agree very well, while EDA 

(LANL) and AMUR (JAEA) are close but with some differences. The results of RAC (Tsinghua 

Univ.) agree well with these of other codes for the (p,p) channels where these channels are open, 

but have obvious differences in the case of (p,p) channels where these channels are closed. 

From the point of view of computational physics and overall experience, different nuclear codes 

based on many different approximations will unavoidably give different calculated cross 

sections. Differences of 2% are acceptable in the smooth energy region, while in the near 

threshold energy region differences of 5% are reasonable, and near the narrow pole energy 

region or very low energy region differences of 10% are expected. Based on this, the accuracy 

of the calculations obtained with all the participating codes (RAC, SAMMY, AZURE2, FRESCOX, 

EDA, AMUR and CONRAD) is acceptable, however the reasons for the larger differences still 

need to be investigated. 

The first possible reason for the differences between RAC and the other codes may be that RAC 

uses the corrected formulas for ‘Width of level’ and ‘Energy shift’ when multi-level calculations 

are performed, while the other codes use the ‘extreme one-level approximation’ formulas shown 
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instead (see Section 2.1). The corrected formulas are explained clearly in the classical reference 

of Lane and Thomas [4] on pp. 273 (an excerpt from the original publication is in following on 

the left side): 

 

 

 

 

It is hard to give a precise estimate of the differences produced by these different formulas, but, 

in Ref. [4] it is mentioned that ‘the contribution to 𝜙𝑙
′ from the other levels is of the same order 

of magnitude as the hard sphere contribution 𝜙𝑙, therefore more importance is attached to this 

potential source of differences than any other. In theory, a multi-level R-matrix code using the 

correct formulas for ‘level width’ and ‘energy shift’ should produce more reasonable results, 

but at the cost of using much longer CPU time. 

The second possible reason is that RAC uses the integrated method to calculate the ‘Whittaker 

Function’ for ‘negative energies’ (refer to the right side in above text from Ref. [4], pp. 349). 

Other codes use different methods to calculate the wave function for ‘negative energies’. In 

physics, in principle, using the integrated method to calculate the ‘Whittaker Function’ should 

be more reliable but again at the cost of using much longer CPU time. 

In the following figures we present the results obtained using 4 different approaches to 

calculating the wave function for ‘negative energies’: 

a. AMUR: the results obtained with the code AMUR which uses the ‘continued fraction 

method’ to calculate the wave function for ‘negative energies’. 

b. Int-Whittaker: the results from RAC obtained with the accurate integrated formulas for 

the Whittaker function (see Ref. [4], pp. 349, A.5). This is an exact calculation, 

therefore its precision must be better than that of other approximate methods, such as 

for example, the ‘continued fraction method’. The drawback is that it costs much longer 

CPU, about 10 times as much as the ‘continued fraction method’.   

c. Asymp-Thompson: the results from RAC using the subroutine developed by I. 

Thompson. The asymptotic formulas (see Ref. [4], pp. 349, A.4) are used to calculate 
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the Whittaker function. In this case one obtains a relative value for the wave function 

while the scaling factor is 1.60. This is not an exact calculation. 

d. MM-Bessel: the results from RAC using the approximate formulas for the Whittaker 

function (see Ref. [4], pp. 349, A.6). A modification factor 1.18 is used. This is not an 

exact calculation. 

At Eα = 9.27 MeV the 3He (α,p) 3He channel is open. So in the 4 approaches mentioned above, 

a common requirement is that at Eα = 9.20 MeV they produce the same cross sections for 
3He(α, α)3He, in order to get smooth and continuous cross sections for 3He(α,α)3He. 

In the following figures one can see that all the results agree very well for the (p,p) channel in 

the open energy region; as for the 3He(4He,4He)3He channel, the 4 approaches agree in the 

energy region Eα > 9.27 MeV, but there exist obvious differences in the region of Eα < 8.5 MeV. 

It is clear that the different methods for calculating the wave function at ‘negative energies’ 

produce different results.  

The third source of differences could be the intrinsic precision of a computer which includes 

the error from word length truncation among others. In computer calculations, the procedure 

(a+b) c may be different to ac+bc, in other words the different calculation order used in the 

different codes may give rise to different results. These errors cannot be avoided and may 

impact the very complex calculations performed in R-matrix analysis. 

There may be other reasons for the R-matrix codes giving different results given the same input 

but as they are of minor importance we do not list them here. 

As a general comment，the comparison performed in exercise Test1a can indicate if there is 

something wrong with the codes, for example if a specific code shows very large differences 

compared to the others. But it is not really possible to conclude which code is the most accurate 

one, or which code can be taken as a reference. The fact that more than one code give a certain 

value does not necessarily mean that the value is the best one. It may be that the codes use the 

same approximation or that they contain the same subroutines from another code or share 

subroutines. Therefore, it does not make much sense to set ‘0.1% to 0.3%’ as the standard 

differences expected in R-matrix calculations using different codes. 

Furthermore, the Test1a exercise is based on a very simple case that does not allow all the 

aspects of R-matrix analysis to be revealed and compared. For example, in the final evaluation 

exercise, new reaction channels (p,p1), (p,p2), (p,γ0), (p, γ1), (3He,p1), (3He,p2), (3He, γ0) and 

(3He, γ1) are involved, and additionally the polarization or analyzing data have to be included, 

so all the participating codes will have to prove that they can produce these types of observables 

as well.  

To conclude, in order to be able to draw a reliable conclusion on the various R-matrix codes, 

more studies on more complex cases need to be performed. 

In the following we present the figures comparing the results of Test1a obtained with RAC and 

AMUR codes. 
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3.3.1. 6Li(p,p)6Li reaction 

The cross sections obtained for 6Li(p,p)6Li using the 4 approaches to calculating the Whittaker 

functions are completely identical.  

    

    

FIG 3.6. DA calculated using different Whittaker functions in RAC compared with AMUR results for 
6Li(p,p)6Li. 
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3.3.2. 6Li(p,4He)3He 

The calculations for the 6Li(p,4He)3He reaction using the 3 approaches implemented in RAC 

are identical. The RAC and AMUR results however have very small differences for some 

energies. 

 

 

 

  

FIG 3.7. Same as in FIG 3.6 but for 
6
Li(p,

4
He)

3
He. 
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3.3.3. 3He(4He,4He)3He 

There are obviously differences for the 3He(4He,4He)3He reaction in the energy range from 1.5 

MeV to 6.5 MeV. Some reasons for these differences have been given in the previous section. 

At Eα = 9.27 MeV the 3He(α,p)3He channel opens. So in the 4 approaches used in the 

calculations, a common requirement is that at Eα  =  9.20 MeV they give the same cross 

sections for 3He(α,α)3He, in order to get smooth and continuous cross sections for 3He(α,α)3He 

reaction. 

 

 

 

 

 

FIG 3.8. Same as in FIG 3.6 but for 
3
He (

4
He,

4
He)

3
He. 
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3.3.4. 3He(4He,p0)6Li 

The calculated cross sections for the 3He(4He,p0)6Li reaction are identical using the 3 

approaches implemented in RAC. AMUR gives small differences at the energies near the 

threshold.  

 

 

 

  

FIG 3.9. Same as in FIG 3.6 but for 
3
He (

4
He,p0)

6
Li. 

4. EVALUATION METHODS 

In this section we discuss the evaluation methods based on Conventional Least Squares and 

Generalized Least Squares in detail. In particular, we describe the differences between the codes 

RAC and EDA. The opinions expressed herein are open to debate as undoubtedly further discussions 

on the issues will benefit future evaluation work. 

4.1. Introduction to evaluation theory and terminology 

At present, the ‘Conventional Least Squares method’ (CLS), as defined in p. 188 of Ref. [6], is 

commonly accepted and used worldwide to evaluate nuclear data. The objective of the 

operations performed under CLS is： 

 𝜒 2 = （𝜂 − 𝑦)+  𝑉−1 (𝜂 − 𝑦) ⇒ minimum  (4.1) 
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The actual nuclear measurement samples must have statistical error si and system error yi，and 

the covariance matrix of experimental data is composed of statistical error and system error. 

Many different expressions are used to calculate 𝜒2. In order to identify the differences between 

the various expressions of 𝜒2, the definitions and formulas of the covariance matrix, and error 

propagation theorem are introduced following the prescriptions in [6] (see p. 118 of this 

reference). 

Error propagation theorem 

If the vector Y is a linear function of vector x, that is y = ∑ 𝑡𝑖𝑖=1,𝑛 𝑥𝑖 , δY=𝑇+δx，where T 

is a 𝑛 × 𝑚 matrix, then the following relations exist between the covariance matrix 𝑉𝑥 of x 

and Y covariance matrix 𝑉𝑦, 

 𝑉𝑦=𝑇 + 𝑉𝑥𝑇  (4.2) 

Formula of covariance matrix 

The realization of Least Squares fitting must meet the requirements of linear regression, that is, 

the calculated value must be a linear function of the fitting model parameters. So if an initial 

parameter vector 𝑃0⃗⃗⃗⃗⃗ was selected for parameter vector 𝑃⃗⃗, the approximate linear function can 

be obtained by using the bench expansion: 

 𝑌⃗⃗ − 𝑌0
⃗⃗⃗⃗ =D(𝑃⃗⃗-𝑃0

⃗⃗⃗⃗⃗)  (4.3) 

 𝐷𝑘𝑙 = (𝜕𝑦𝑘 /𝜕𝑃𝑙 )0   (4.4) 

Here, Y is the said calculated value vector, D represents the ‘Sensitivity Matrix’, k is the 

subscript of calculated value vector, 𝑙 is the subscript of parameter vector. The formula for 

calculation of covariance of parameter vector 𝑃⃗⃗ is as follows: 

 𝑉𝑃 = (𝐷+ 𝑉−1𝐷)−1   (4.5) 

Here V represents the covariance matrix of all experimental data sets, 𝑉−1  represents the 

inverse matrix of V, 

 𝑉−1 = (
𝑉1

−1

0

𝑉2
−1

⋱

0

𝑉𝑘
−1

)   (4.6) 

Here, V1，V2…Vk  represent independent subsets. 

According to the theory of Error Propagation (Eq. (4.2)), the covariance matrix of the final 

calculated value (also known as the evaluation value) is as follow: 

 𝑉𝑦 = 𝐷𝑉𝑃𝐷+   (4.7) 

Here, VP is the covariance matrix of the optimal parameter set, D is the sensitivity matrix of the 

final experimental data set with respect to the optimal parameter set. Formulas (4.5, 4.7) clearly 

show according to Ref. [6]: 
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1. If the non-diagonal element of V is ignored, that is the correlation between the systematic 

error of the experimental data is ignored, it is impossible to get the correct covariance 

matrix of the optimal parameter set 𝑉𝑃  , and then it is impossible to get the correct 

covariance matrix value of evaluation value 𝑉𝑦. However, this is a common practice in the 

field of nuclear data evaluation.  

2. 𝑉𝑦 is the covariance matrix of evaluation values. The covariance information obtained from 

the ‘non model’ evaluation of experimental data can be used as initial data for ‘Global 

evaluation’, but, absolutely cannot be regarded as the covariance matrix of evaluation value 

𝑉𝑦, while the 𝑉𝑦 also includes the influence of the model parameters, which through the 

sensitivity matrix D play a major role. 

3. When we consider all the matrix elements of V, it is possible to get the correct value of the 

covariance matrix, however this can only be achieved by using the ‘Generalized Least 

Squares method’ (GLS) (see pp. 188 of Ref. [6]). However, it is necessary to have accurate 

systematic errors to use the GLS. This is precisely the goal of our current efforts.  

4.2. Systematic uncertainties 

In the experimental data files accumulated over the past decades in the international 

experimental cross-section databases [16], the vast majority of experimental data have clearly 

assigned statistical errors，but the same does not hold for systematic errors. A large part of the 

available experimental data consists of only relative measurements without any systematic 

errors. On the other hand, of those experimental data files containing absolute measurements, 

the majority do not have information on systematic errors or in the best case provide rough 

estimates. Only a small fraction of the newly measured experimental data sets contains 

complete information on the system errors, however, if in these cases the systematic error is 

much larger than the statistical error, this is extremely unfavorable for nuclear data evaluation. 

There are many sources of systematic errors such as (i) systematic deficiencies of the 

experimental devices (accelerator, detector, electronics, data acquisition, etc.), (ii) systematic 

deviations in data processing, (iii) systematic bias of the treated model, and many others. There 

is no exact information about these factors in most of the relevant literature. Therefore, in the 

process of data evaluation, in order to get the systematic error, evaluators have to use skills 

similar to those used by archaeologists to ‘dig out’ information buried in publications or reports 

or hidden in the data themselves. These ‘archaeological skills’, as was mentioned in Ref. [6], 

are very often combined with unreliable operations such as ‘hypothesis’, ‘guess’, ‘analog’ and 

‘estimate’ and so on. If the 'archaeological approach’ reveals lack of adequate original records, 

then the systematic errors have to be assumed arbitrarily. In other words, the accurate 

determination of the systematic errors of a single experimental data set is the core issue of 

nuclear data evaluation. It is also the most vexing problem and a major obstacle which the 

nuclear data reviewers have been struggling to overcome for decades. 

Past experience in nuclear data evaluation shows that the problem of poor knowledge of 

systematic errors cannot be overcome by treating different nuclear data as isolated cases and 

evaluating them using local approaches. It has been demonstrated that only by applying the 

theory of unitarily in the physical models, and through the systematic and comprehensive 

evaluation of all available nuclear data for a given nuclear system（global as opposed to local 
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fitting), is there a chance to solve the problem. This is because it is possible to obtain accurate 

and self-consistent fitting values for all types of data that can be considered to be very close to 

their ‘expectation’ values. Once the 'expectation values' are obtained, the systematic error of 

each experimental data set can be determined.  

For example, let’s assume an experimental data set Yi, and by adjusting the normalization 

coefficient ni we convert it to niYi ⇒ 𝑋𝑖 (P) ≈ E, where niYi is the final practical experimental 

data, 𝑋𝑖 (P) is the final fitting value, and E is the expected value of such data. If we use σ𝑖  as 

the standard error of 𝑋𝑖 (P), it is possible to have the following relations 

 niYi -kσ𝑖  ≤ E ≤ niYi + kσ𝑖, (k=1 to 2)  (4.8) 

The kσ𝑖 can be considered as a systematic error of niYi,, which corresponds roughly to a 70% 

to 95% confidence interval. The value of k is based on the principle that PPP does not occur.  

It should be emphasized that only when there exist good enough evidence to support that the 

final evaluated value is very close to the expectation value, can the kσ be taken as the systematic 

error of the normalized experimental data that was obtained finally. Otherwise it’s better to use 

the original systematic error. 

Two main criticisms have been expressed of formula (4.8): (a) in the evaluation of nuclear data 

one cannot change the original experimental information, and (b) the error of the evaluation 

value one obtains is too small. In the following we will focus on these two key arguments.  

4.3. Improved least-squares method (ILS) 

In the Least Square method, often the statistical error and systematic error of the experimental 

data are considered simultaneously (𝑉𝑖
2 = 𝑆𝑖

2 +  𝑌𝑖
2), however, the non-diagonal elements of 

the covariance matrix of experimental data are not considered. This in theory means that, the 

‘unbiased estimate’ of the sample is not guaranteed. However, the systematic error is taken into 

account, and is also conveniently calculated, so this approach is widely used in the field of 

nuclear data evaluation. In this paper, we call this approach as ‘Improved Least Square method’ 

(ILS). Since this method ignores the non-diagonal elements of the covariance matrix V of the 

experimental data, it cannot give the correct value of the covariance matrix. In the ILS one can 

have different expressions for 𝜒2, and two practical examples are given below. 

4.3.1. EDA-Improved least-squares method 

EDA [9] is a well-known R-matrix analysis program that has been extensively used for the 

evaluation of light systems, in particular for the evaluated nuclear data files in ENDF/B7 and 

ENDF/B8. The optimization expression for 𝜒2 used in EDA (Ref. [2], p. 3235) is 

  (4.9) 

where n is the normalization coefficient，𝑋𝑖 (P) indicates the fitting value, 𝑅𝑖 is the value of the 

experimental data, Δ𝑅𝑖 is the data error, S is the shape factor of the experimental data，ΔS/S is the 

relative systematic error. Obviously, the first item in (4.9) refers to the contribution from the 
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statistical error，while the second term is the contribution form the systematic error. 

There is a particularly important issue that needs to be discussed related to Eq. (4.9) and that is 

how to normalize the experimental data. 

One approach is to treat the normalization as ‘a subset of the experimental data’, by taking its 

initial value 𝑅𝑖  as the standard, then changing the fitted values 𝑋𝑖  (P) by adjusting the 

normalization coefficient n, and finally letting n𝑋𝑖 (P)→𝑅𝑖. This is the method adopted in EDA 

as shown above. 

It is obvious from Eq. (4.9) that the principle behind this kind of 'normalization' is that ‘one 

cannot change the original experimental information’. Is this a reasonable approach? 

In theory，in the classical Least Squares method, one uses [𝑋𝑖 (P)-𝑅𝑖]
2/(ΔRi)2 to calculate 𝜒2，

where 𝑋𝑖 (P) is the calculation value; in EDA they use [n𝑋𝑖(P)-𝑅𝑖]
2/(ΔRi)2 to calculate 𝜒2，

where the n𝑋𝑖 (P) is a modification of the calculation value. This has the following 

consequences: 

1. The 𝜒2 expression of EDA is inconsistent with the original definition of classical 

Least Squares method, 

2. It does not meet the established requirements for “maximum likelihood principle”, 

3. It is not obvious that the 𝑋𝑖 (P) will have maximum probability,  

4. It is not obvious that it can lead to “unbiased estimates”, 

5. The obtained minimum 𝜒2 of EDA has no real physical meaning, 

6. In the end, the evaluated data have to take the original values, so there is a big 

possibility that the difference between experimental data and the evaluated data 

will be much larger (refer to Appendix 1). 

Most likely it just an empirical expression without a rigorous statistical theoretical basis. 

In the data fitting procedure, the fitting values of EDA depend entirely on the original 

experimental data, even if the original data values have serious defects. For example, in the 

case of experimental data sets with very large systematic errors, the latter essentially reflect the 

experimenter’s lack of confidence in the experimental data. But in the EDA approach, this kind 

of data with serious defects always contribute to the fitting value.  

Another consequence of Eq. (4.9) is that it is impossible to use the ‘Generalized Least Squares 

method’. 

Also, because the calculated value must be lower than the experimental data systematically, this 

leads to the occurrence of PPP. Of course, the ‘Smith-NOppp-method’ can be used to overcome 

PPP, but the essence of the ‘Smith-NOppp-method’ is to overcome PPP by modifying the 

original systematic error, which is in conflict with the principle of not changing the original 

experimental information (refer to Section 5 for more details). 

In fact, the premise of doing this kind of normalization is to change the original experimental 

data, i.e. is to ‘pre-evaluate’ the experimental data which includes the following steps in the 

RAC CLS procedure before performing a GLS fitting: 



29 
 

i. Determine the shape factor S for all relative data, make it close to 1, and change the 

original relative value to the absolute value; 

ii. Determine their ‘systematic error’ ΔS/S for all relative data; 

iii. For absolute data without systematic errors, give the 'systematic errors'. 

iv. For absolute data with very large systematic errors, make pre-evaluation. 

EDA ignores the correlation between errors of the experimental data，On the whole, it is 

impossible to get an accurate fitting value and the corresponding covariance matrix directly. 

See Appendix 1 for details. 

4.3.2. RAC-Improved least-squares method 

At the beginning of the analysis work, RAC used the ‘RAC-Improved least-squares method’ to 

fit experimental data. The optimization expression used by RAC was (taking an independent 

data subset as an example): 

  𝜒 2 =∑ [𝑋𝑖
(P) − n𝑅𝑖 ((𝜀𝑠

⁄𝑖=𝑛 
𝑖=1 +𝜀𝑡)n𝑅𝑖 )]2 ⇒ minimum  (4.10) 

where ni is the normalization coefficient，𝑋𝑖 (P) indicates the fitting value, 𝑅𝑖 is the value of 

the experimental data, εs is the relative statistical error, εt is the relative systematic error. As 

can be seen from this formula, ‘RAC-normalization’ means taking the fitting value 𝑋𝑖 (P) as 

standard (because the final 𝑋𝑖  (P) is close to the expected value), and then adjusting the 

normalized coefficient ni to let ni𝑅𝑖 → 𝑋𝑖 (P), or adjusting the shape factor Si to let Si𝑅𝑖  → 𝑋𝑖 (P). 

It is obvious from Eq. (4.10) that the principle of this normalization is the following: the original 

experimental information is adjusted in a ‘global fitting’ procedure, taking the fitting values 

𝑋𝑖  (P) as standard, and under the constraints of ‘unitarily’, ‘self-consistency’ and ‘identity’ 

which include the following: 

1. The total neutron cross section equals the sum of the cross sections of all 

reaction channels; 

2. The integrated value of the differential cross section is equal to the reaction 

cross section;  

3. The experimental data of the same reaction cross section should be equal, 

and so on; 

4. The experimental data of the positive reaction cross section and the cross-

section data of the inverse cross section should match; 

5. Different types of experimental data (cross section, polarization, width, etc.) 

should match. 

The 𝜒2 expression of RAC in Eq. (4.10) is fully consistent with the classical ‘Least Squares 

method’ that uses [𝑋𝑖 (P)-𝑅𝑖]
2/(ΔRi)2 to calculate 𝜒2，where 𝑋𝑖 (P) is the fitting value. In other 

words, RAC strictly implements the statistical theory thus satisfying the ‘maximum likelihood 

principle’, leading to ‘unbiased estimates’，and producing a 𝜒2  that has real physical meaning. 

In the data fitting procedure, the fitting value obtained from the expression is related to the 

original experimental data. However, it is not entirely dependent on the original experimental 
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data, since in the iterative fitting procedure the defects of the original experimental data are 

corrected. As a result, the defects no longer have a negative impact on the evaluated values. On 

the other hand, the systematic errors change with changing normalization coefficient, and 

finally become 1 to 2 times the value of the standard error of the calculated value, which is 

usually significantly less than the statistical error. Using this kind of 'normalization' formula 

and the modified systematic error, the non-diagonal elements of the covariance matrix of 

experimental data can be introduced directly, that is one can use the ‘Generalized Least Squares 

method’ directly. This will significantly improve the fitting value and give a more accurate 

covariance matrix at the same time, as will be discussed in more detail in the following section. 

4.4. Generalized Least Squares method (GLS) 

In the Least Squares method, if the full covariance matrix of the experimental data is considered, 

then we have what is called the ‘Generalized Least Squares (GLS) method’ (see pp. 188 of Ref. 

[6]). 

In GLS，both the statistical error and systematic errors are considered simultaneously, which 

means that the sample no longer satisfies a strictly normal distribution, which is in fact the 

actual state of our experimental data set. To date, there is no rigorous statistical theory that can 

prove that the least squares method described above can lead to the generation of an ‘unbiased 

estimate’. But according to a famous classical statistical theorem, the 'Gauss-Markev' theorem, 

under certain conditions GLS can lead to the minimum variance estimation, which is exactly 

what we need. 

'Gauss-Markev' theorem 

Let’s assume that 𝜃0
⃗⃗⃗⃗⃗ is a set of parameters，it has an a priori value 𝜃𝑎

⃗⃗⃗⃗⃗ and a corresponding 

covariance matrix 𝑉𝑎⃗⃗ ⃗⃗ . In addition, let’s assume the existence of a linear relationship between 

observable 𝑦  and 𝜃 . Finally, let’s assume that 𝜂  is a group of measured data, and the 

corresponding covariance matrix is V. Then the least squares formula in Eq. (4.11) will produce 

an estimate of 𝜃 for  𝜃0
⃗⃗⃗⃗⃗ that is of minimum variance  

         𝜒 2 = （𝜃 − 𝜃𝑎
⃗⃗⃗⃗⃗)+  𝑉𝑎

−1 (𝜃 − 𝜃𝑎
⃗⃗⃗⃗⃗) +（𝜂 − 𝑦)+  𝑉−1 （𝜂 − 𝑦) ⇒minimum  (4.11) 

The applicability of this theory depends only on the initial parameters and the observed data 

having an average value and the corresponding covariance, not on the normalcy of the 

probability distributions. Of course, there must be a linear relationship between the parameters 

and the observed data. Here are a few specific issues. 

1. Assume the functional relationship between 𝑦 and 𝜃 to be 𝑦  ⃗⃗⃗⃗⃗= 𝜃. This is an absolutely 

accurate linear relationship where the parameter is the observable itself, and formula (4.11) 

can be used to estimate the observable with the minimum variance. The fitting Code GMA 

of IAEA used for the evaluation of the neutron standard cross sections is working with the 

assumption 𝑦  ⃗⃗⃗⃗⃗= 𝜃. 

2. Assume the functional relationship between 𝑦  and 𝜃  to be 𝑦  = f(𝜃 ),where 𝜃  is the  

fitting model parameters. Using the initial condition ya⃗⃗ ⃗⃗  = f(𝜃𝑎) and the Taylor expansion, 

an approximate linear relationship can be obtained as 𝑌⃗⃗ − 𝑌𝑎⃗⃗ ⃗⃗   = D (𝜃 − 𝜃𝑎
⃗⃗⃗⃗⃗ ). By using 

http://www.baidu.com/link?url=e1lg4Qx20Q8ejYQuDgRNqNjWS8qtnX0QnkU-4OBEiM8T0wHC_vEUks3sk3oI0Kh_OKABAlo5YQKM4CP9IsEAjb4vARfC6rLnw61FyrDOhMuC6do9_oszsiRKTNfym5Zy
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formula (4.11), an estimation with least variance can be given to 𝜃 and the covariance 

matrix 𝑉𝜃  of 𝜃 . According to the formula 𝑉𝑦 = 𝐷𝑉𝜃𝐷 +，the covariance estimates of 

𝑦 observables can be given. But having obtained a 𝜃 of minimum variance does not mean 

that we have the minimum variance of the Y observables, nor that the value of the estimated 

y is very close to the expectation value. Analytical experience shows that if the systematic 

error is too large, that is, if the distribution of the sample deviates from the normal 

distribution significantly, the estimated value of Y will deviate from the expected value 

significantly. At which point, the fitting value is probably systematically lower than the 

average value of the experimental data, which is the so-called PPP phenomenon. Based on 

experience from using the GLS, if the systematic error of the analysis sample is greater 

than 30% of the statistical error, a mild PPP phenomenon is observed, while if it is more 

than 50% then a pronounced PPP phenomenon is observed. In the following section we 

discuss the PPP phenomenon in more detail. 

3. At the beginning of the analysis work, RAC uses the ‘RAC-Improved least-squares method’ 

to fit experimental data. After obtaining a good parameter set 𝜃 and its covariance matrix 

𝑉𝜃 , then we use the optimization formula of ‘Generalized Least–squares Method’ (Eq. 

(4.11)). That is, this group of 𝜃 and 𝑉𝜃 is used as the initial value 𝜃𝑎
⃗⃗⃗⃗⃗ and 𝑉𝑎. RAC then 

uses an iterative process to continuously improve the estimated value of 𝜃, and decrease 

the 𝜒2 with respect to 𝜃 and with respect to 𝜂 at the same time. The evaluated values of 

the experimental data sets are continuously improved. This of course comes at the cost of 

using 100 times more CPU time than what is required when using CLS or ILS. Of course, 

the most obvious advantage of GLS is able to use the error propagation theorem to produce 

an accurate covariance matrix for the evaluation value at the same time. Something that is 

impossible to do by using the ‘Conventional Least Squares method’ or the ‘Improved Least 

Square method’. 

4.5. Solution to PPP 

Pearl’s Pertinent Puzzle (PPP) refers to the phenomenon where the sample fitting value is 

systematically lower than the sample mean value. From the statistical point of view, the 

occurrence of ‘PPP’ is due to the fact that the sample deviates from the normal distribution too 

much. From the numerical calculation we to make an intuitive explanation. 

In the ‘Improved Least Squares method’ (see Sect. 4.1.3.2), 𝜒2 = （𝜂 − 𝑦)+ 𝑉𝑑𝑖𝑎
−1（𝜂 − 𝑦)，

where 𝑉𝑑𝑖𝑎  are the diagonal elements of the covariance matrix of experimental data, and each 

element is the sum of the statistical and systematic variances of the experimental data.  𝑉𝑑𝑖𝑎
−1  is 

the inverse matrix of 𝑉𝑑𝑖𝑎. From a statistical point of view, this approach amounts to treating 

the systematic variance as statistical variance, the used experimental data sample is a purely 

statistical sample in fact too, only the statistical error is increased, therefore the fitting value 

may reach the average value and PPP does not occur.  

In the GLS, where 𝜃  = 𝜃𝑎
⃗⃗⃗⃗⃗ , the final 𝜒2  is 𝜒2 = （𝜂 − 𝑦)+ 𝑉−1  （𝜂⃗ − 𝑦)，V is the 

covariance matrix of the experimental data, and  𝑉−1 is the inverse matrix of V. The diagonal 
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element (number n) of V is the sum of the statistical variance and the systematic variance, and 

the non-diagonal element (number n2-n) is the product of systematic errors of different data 

points. The number of non-diagonal elements is much larger than the number of diagonal 

elements. Because of the huge number of summations in the non-diagonal elements of 𝜒2, the 

𝜒2 in the GLS is quite sensitive to the systematic error. 

As is well known, the smaller the error of the experimental data, the larger the weighting factor 

of this data in the determination of 𝜒2. The systematic errors of experimental data are usually 

expressed in percentages, leading to the small experimental values in the sample having 

relatively small error compared to the larger experimental values that have larger errors. This 

means that the smaller data points have relatively larger weighting factors. Although the 

differences of these weighting factors are very small, because of the large number of non-

diagonal elements these small data points end up contributing significantly to the fitting. 

Consequently, the resulting fitting values are systematically lower than the mean value of the 

sample and the PPP phenomenon is observed. The greater the systematic error is, the worse the 

PPP.  

The explanation given above may seem simplistic, but it can be verified by a series of practical 

examples. In the following we present a few examples where we use the same sample of 

experimental data for the 7Li system but apply different data fitting methods, thus obtaining 

different fitting values. Figure 4.1 shows the ratios of the total cross sections relative to that 

obtained with purely statistical fitting (ii). 

 

 

FIG 4.1. The ratios of cross sections obtained with 6 different fitting methods for 
6
Li(n,tot). 

In Fig. 4.2 we compare the different fitted total cross sections with experimental data，It can 

be seen that the curves corresponding to NTOT-GLS, NTOT-DIA, NTOT-Smith and NTOT-

mod2% are within the errors of the experimental data, while the NTOT-PPP and NTOT-EDA 

curves lay roughly beyond the experimental data error line. 
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FIG 4.2. Comparison of fitting values and experimental data for 
6
Li(n,tot). 

The six different cases that are compared are described below: 

I. Using ‘Improved least squares method’ (NTOT-DIA), the variance of the 

experimental data is the sum of the statistical variance and the variance of the 

systematic variance, without considering the correlations between systematic errors. 

The fitting values are quite close to the sample average values，and PPP does not 

occur. These fitted values were taken as the reference values for the comparison 

shown in Fig. 4.1 where we plot the ratios of the cross sections obtained with the other 

methods over the cross sections obtained with this method.  

II. Using the ‘Generalized least squares method’ (NTOT-PPP) and the original 

covariance matrix of the experimental data, that is we consider the correlations 

between statistical error and systematic errors, we obtain fitting values that are 

systematically lower than the sample average values. This is obviously a case of PPP 

(red line in Fig. 4.1). The largest discrepancies are of the order of 3.5%. 

III. Using the ‘Generalized least squares method’ (NTOT-mod2%), keeping the statistical 

error of experimental data unchanged, and adjusting the systematic error of the 

experimental data so that if it is less than the average value (NTOT-DIA) it is 

increased by 2% and the fitting weight is reduced, whereas where it is greater than the 

average value it is reduced by 2% and the fitting weight is increased. The covariance 

matrix is constructed by using the original statistical error and the modified systematic 

error. The resulting fitting value of the whole sample is close to the sample average 

(violet line in Fig. 4.1), while the maximum difference is about 1.2%. This example 

intuitively explains why PPP occurs and how it is possible to overcome it in a very 

simple way. In principle, experimental data deviate differently and regulating the 

corresponding weight factor by using a fixed correction coefficient is not the proper 

way of dealing with PPP. A different approach is discussed below. 
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IV. Using the ‘Generalized least squares method’ (NTOT-Smith), keeping the statistical 

error of the experimental data unchanged，and replacing the absolute error of the 

experimental data by the corresponding fitting value multiplied by the relative 

systematic error. Essentially what is done is that for the experimental data points 

whose values are less than the average, the absolute systematic error is increased a 

little, thus reducing the fitting weight; while for the experimental data points whose 

values are larger than the average, the absolute systematic error is decreased a little, 

thus increasing the fitting weight. Thus, it can be seen that the larger the deviation of 

experimental data points, the greater the degree of adjustment of the fitting weight. 

The resulting fitting value is close to the sample average. The largest difference 

observed (purple line in Fig. 4.1) is about 1.5%. This is called the ‘Smith-NOppp’ 

method in this paper. 

V. Using the ‘Generalized Least Squares method’ (NTOT-GLS), keeping the statistical 

error of experimental data unchanged, however, adjusting the systematic error to be 1 

to 2 times the error of the fitting value. The principle behind this approach is that the 

systematic error is significantly smaller than the corresponding statistical error. The 

covariance matrix is constructed by using the original statistical error and the 

improved systematic error. Because the systematic error is very small, it is not 

necessary to use the ‘Smith-NOppp’ method to avoid PPP, and the fitting values are 

very close to the mean values (experimental) of the samples. This method of 

overcoming PPP is a reasonable physical correction and can be applied to the global 

evaluation of a nuclear system. The largest differences obtained (green line in Fig. 

4.1) are about 0.5%. 

VI. The NTOT-EDA curve (dark blue in Fig. 4.1) shows that the evaluation value of the 

total cross section of ENDF/B7.1 deviates systematically from the mean value 

(experimental) in most part of the energy region. The discrepancies are as high as 3% 

and as low as 5% (see also Appendix 1). 

The R- matrix analysis is a phenomenological fitting method. Appendix 1 shows that NTOT-

EDA significantly and systematically deviates from the experimental data, while NTOT-GLS 

is in good agreement with the experimental data. 

4.6. Error analysis 

It has been said that the error of the evaluation value given by RAC is too small. Our opinion 

is that this should be discussed after the actual evaluation is finished. As long as the theory and 

method that is used are both correct, the experimental data set is correct, the fitting results are 

good, and error propagation theorem is used to calculate the errors, then the size of the error is 

what it is. 

According to the error propagation theorem, the final average relative error value (FERR) 

depends on the following factors: 

1. The greater the number of parameters (M), the greater the FERR; FERR is 

proportional to √𝑀; 
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2. The larger number of points (N) of the experimental data set, the smaller the FERR; 

FERR is inversely proportional to N; 

3. The smaller the average relative error (DER) of the experimental data sets is, the 

smaller the FERR; FERR is approximately proportional to DER; 

4. The smaller the optimal objective function 𝜒2 is, the smaller the FERR; FERR is 

approximately proportional to the mean χ. 

For the 'Global fitting' of the 7Li compound system, the number of adjusted parameters is 365, 

the number of experimental data points is 14400, the average value of the initial error of the 

data is about 3%, the mean 𝜒2 is about 1.8, so, 

FERR ≈ √360/√144000.03 √1.8 ≈ 19/1260.031.35 = 0.005 = 0.5%. 

The error is therefore reasonable. 

5. NUCLEAR STRUCTURE 

In R-matrix fitting, the selection of a suitable level scheme is key to solving the problem. A bad 

level scheme will definitely result in a bad fit. In principal, the R-Matrix theory is based on a 

complete collection of quantum states, so one needs to include a complete level scheme in the 

analysis.  

In this section we explore the effect of using different nuclear structure input, such as level 

schemes, on the R-matrix analysis. Eight fitting schemes based on different level schemes have 

been employed to analyze the given database of Test1b [1]. This database was augmented by 

adding the data of McCray 1961 at 90 degree [20], because these are the most accurate 

experimental data available for the 7Be system. The database includes experimental cross 

sections and angular distributions for 3He(4He,4He)3He, 6Li(p, p)6Li, 3He(4He, p)6Li and   
6Li(p, 4He)3He reactions. In Table 5.1 we display the details of the eight fitting schemes.  
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TABLE 5.1. The eight fitting schemes, where columns 2-11 give the number of levels for each Jπ, Γe refers to the width of eliminated channels, and χ2/free is 

χ2 over the number of degrees of freedom. Column 14 gives a comment on the quality of the fit. 

Name  +0.5 -0.5 +1.5 -1.5 +2.5 -2.5 +3.5 -3.5 +4.5 -4.5 Γe 
χ2/free. Comment 

James--03JP-07L    2  3  2   No 26.20 Very bad 

Satoshi-10JP-14L 1 1 1 2 1 3 1 2 1 1 No 16.20 Very Bad 

Chen1-07JP-13L 1 1 1 3 1 3  3   No 2.001 Not good 

Chen2-07JP-15L 3 1 1 3 1 3  3   Yes 1.722 Good 

Chen3-10JP-19L 3 1 1 3 1 4 1 3 1 1 Yes 1.042 Very good 

Chen4-10JP-23L 3 2 2 4 1 4 1 4 1 1 Yes 0.958 Very good 

Chen5-10JP-28L 3 2 2 4 2 5 2 4 2 2 Yes 0.844 Very good 

Chen6-10JP-28L 3 2 2 4 2 5 2 4 2 2 No 2.515 Bad 
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James--03JP-07L: the original level scheme given in test1b was used. The resulting 

χ2/freedom is 26.2, and the fit is very poor, which confirms that the level scheme has to be 

improved. 

Satoshi-10JP-14L: the improved level scheme obtained as a result of Test1a [1] was used, the 

resulting χ2/freedom is 16.2, and the fit is poor too. The level structure has to be improved. 

Chen1-07JP-13L: starting from the level scheme of Satoshi-10JP-14L, 1 level with Jπ = 1.5− 

and one level with Jπ = 7/2− were added, while the levels with Jπ = 4.5+ and Jπ = 4.5− were 

removed. The resulting χ2/freedom is 2.001, but the fit does not look that good. The problem 

lies in the first peak observed in the 6Li(p,p)6Li reaction with Jπ = 5/2− near E p= 1.75 MeV，

where the calculations give a very strong peak or 2 peaks in some Excitation Function (EF) 

datasets. 

Chen2-10JP-15L: starting from the level scheme of Chen1-07JP-13L, 2 levels of Jπ = 0.5+ 

were added, and some ‘widths of eliminated channels’ were added. The χ2/freedom is 1.701, 

the serious problem with the overestimated peaks seen in Chen1-07JP-13L has been solved and 

the resulting fit looks good.  

Chen3-10JP-19L: starting from Chen2-10JP-15L, one level was added for each Jπ = 2.5−, 

3.5+, 4.5+ and 4.5− was added, and the χ2/freedom decreases to 1.042. The fit looks very good. 

Chen4-10JP-23L: starting from Chen3-10JP-19L, more levels were added, and the 

χ2/freedom decreased to 0.958, while the fit looks very good. 

Chen5-10JP-28L: starting from Chen4-10JP-23L, more levels were added, and the 

χ2/freedom decreased to 0.844. The resulting fit looks very good. 

Chen6-10JP-28L: starting from Chen5-10JP-28L, the existing ‘widths of eliminated channels’ 

were removed, so the χ2/freedom increases to 2.515 and the fit looks bad. 

In statistics, for a pure statistical sample the fit that gives χ2/freedom ≈ 1.00 is the best fit, but 

for a non-pure statistical sample no conclusion can be drawn. The database selected for Test1b 

is a non-pure statistical sample, which requires a strong background, so maybe χ2/freedom < 

1.5 can be considered as very good. 

How many levels should be used? It depends on the evaluator. At the same time one should 

study the visual comparisons with the experimental data in detail to see if the calculations are 

close to the experimental data or within the error bars for all the data. In this example, maybe 

Chen3-10JP-19L is already good enough, while Chen5-10JP-28L is significantly improved. 

In the following figures, ‘Ori’ indicates the original experimental data, ‘Nor’ means normalized 

data, which are the data used in the fitting actually. N or S means normalization factor or shape 

factor.   
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5.1. Results of Test1b 

  

FIG 5.1. (Left) The 
3
He(

4
He,

4
He)

3
He cross sections at 54.7 degree for James-03JP-07L, (Middle) 

Satoshi-10JP-14L, and (Right) Chen1-07JP-13L. All the fits are poor. 

 

FIG 5.2. (Left) The 
3
He(

4
He,

4
He)

3
He at 90.54 degree for James-03JP-07L, (Middle) Satoshi-10JP-14L 

and (Right) Chen1-07JP-13L. All the fits are poor. 

 

In the following figures we show the results for Chen5-10JP-28L. In this scheme, the systematic 

error given in the experimental papers is taken as a constraint for the normalization, i.e. the 

modification of the experimental data does not exceed the systematic error given by the authors 

in most of the cases. The whole fit is reasonable, the mean χ2 is about 0.84, and for most of the 

data the calculated values are in good agreement with the experimental data. In this work, the 

parameter ‘width of eliminated channels’ represents the 6Li(p,γ)7Be channel and so on, so the 

strong interference have been removed. 

In this fit, the 3He(4He,4He)3He and 6Li(p, p)6Li channels are the dominant channels, whereas 

the fitted values of 3He(4He, p)6Li  and 6Li(p, 4He)3He depend on 3He(4He,4He)3He and 6Li(p, 

p)6Li to some extent.  

 

FIG 5.3. The 
3
He(

4
He,

4
He)

3
He cross sections of Barnard [21] at 54.7, 63.4 and 73.93 degrees. 
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FIG 5.4. The 
3
He(

4
He,

4
He)

3
He cross sections of Barnard [21] at 90.03, 104.6 and 116.6 degrees. 

 

FIG 5.5. The 
3
He(

4
He,

4
He)

3
He cross sections of Barnard [21] at 125.3 degrees, and of Spiger at 54.7 

and 90.0 degrees. 

 

FIG 5.6. The 
6
Li (p,p)

6
Li cross sections of McCray at 90.0, 90.54 and 126.6 degrees [20]. The dataset at 

90.0 degrees (left) was added to the Test1b database, because these data are the most accurate absolute 

experimental data with statistical error near 0.5% for the 
7
Be system. 

 

 

FIG 5.7. The 
6
Li (p,

4
He)

3
He cross sections of Elwyn et al [22]at 0.136 MeV (left): the shape indicates 

that there exists a 0.5
+
 level in the 

7
Be system. The middle and right panels are for the data of Lin et al 

[23]. 
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FIG 5.8. The 
6
Li (p,

4
He)

3
He cross sections of Lin et al. [23] at 1.90 MeV(left) and 2.60 MeV (middle). 

The shape of these angular distributions indicates that these data are good. The right panel is for the 

3
He(

4
He,p)

6
Li cross sections of Spiger et al. [24]. 

 

Remarks on Test1b exercise 

1. The word ‘global fitting’ means that, with one set of R-matrix parameters one fits all kinds of 

available and useful experimental data for one nuclear system in a wide energy range (maybe 

from 1.0e-7 MeV to 20 MeV) simultaneously. The whole dataset may include normal reactions 

and inverse reactions. The most important advantages of ‘global fitting’ are that by comparing 

systematically the original data in the database, (i) existing errors can be found and removed; 

(ii) the discrepancies between different datasets can be found and minimized, and (iii) the 

systematic error of each dataset can be found and reduced. So finally the improved database 

will be much closer to the real and objective world, and the final unique evaluation result will 

be much closer to the real and objective world, that is the expectation value according to 

statistics.  

2. In the complete ‘database’ used for a ‘global fitting’, there must exist a ‘background’. This 

‘background’ may come from: 

a. The contribution from levels in the higher energy region. This is a physical contribution;  

b. The contribution from non-compound nuclear reactions. These are physical contributions; 

c. The contribution from discrepancies between the many datasets; these are non-physical 

contributions; 

d. The contribution from experimental technology and data processing; these are non- physical 

contributions; 

e. Other sources. 

The shape of the ‘background’ is very complex and unknown. The following possibilities are 

valid: 

a. Smooth dependence on energy; 

b. Increasing with increasing energy; 

c. Decreasing with increasing energy; 

d. Fluctuating with energy;  

e. Other trends. 
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3. Due to the fact that the complete ‘database’ has a complex ‘background’, one should never 

expect to use only levels with obvious physical meaning or levels existing in the existing level 

scheme. It will be necessary to use additional levels to describe the complex ‘background’. 

Only when the complex ‘background’ has been described correctly, can the physical 

contributions be described correctly.  

4. Due to the fact that R-matrix fitting is a phenomenological fitting, there is no reason for the 

following: 

a. To limit the number of levels used; instead every level that is very sensitive to the total 

χ2  must be used. In fact, the level set used finally should be ‘not one more and not one 

less’. 

b. To limit the number of the R-matrix parameters of the sub-channels used; instead all R-matrix 

parameters that are very sensitive to the mean χ2/freedom should be used; the parameter set 

used finally should be ‘not one more and not one less’. 

c. To limit the energy position of any level or to fix the value of any R-matrix parameter. All R-

Matrix parameter should be searched freely. 

In other words, every level and parameter used in the fit must be necessary to get the minimum 

χ2 . In the RAC fitting procedure, any non-necessary level and parameter is identified and 

flagged automatically, and is deleted in the iteration procedure. 

5. The ‘non-physical parameter’ should not be considered as void of any meaning. In fact, it may 

mask the contribution from a non-physical part of the database, or it may represent the 

contribution of non-compound nuclei. It may even be a real level which has not been recognized 

in the past. If more than one code introduces the same identical new levels in order to get a 

good fit, then maybe the new levels can be recognized as real levels. 

6. Evaluated libraries should in principle contain the complete and accurate Covariance matrix of 

the Evaluation value (CE) which includes both the contribution of data and model at the same 

time, and is associated with the Evaluation value in the corresponding ENDF file. A method 

which only evaluates data using mathematical approaches (Archaeology method), or only uses 

MC calculations, or misses the interference between statistical and systematic errors (CLS), 

will not be adequate. 

7. The basic expression for the minimum of chi-squared should be χ2= (ExpN - Cal)2/Err2, in 

which the normalized target is the experimental value EXP (as in RAC). It should not be χ2 = 

(Exp - CalN)2/Err2, in which the normalized target is the calculation value Cal (as in EDA). N 

is the normalization factor or shape factor, Err is the total error. 

8. If some open channels have no data in the analyzed energy range, the Reduced R-matrix Theory 

should be used. If some open channels are ignored temporarily, then again the Reduced R-

matrix theory should be used.  

9. To obtain a good analysis of the resolved resonances, one has to consider also the non-resolved 

resonances simultaneously. There exist strong correlations between resolved and non-resolved 

resonances that can only be treated with the Reduced R-matrix theory. 

10. Given that the complete experimental database includes strong contributions from non-
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compound nuclei, and from levels at higher energies, distant levels have to be introduced in the 

R-matrix analysis. 

11. If the complete database includes some very discrepant data which are ‘outliers’, then they have 

to be dealt with carefully. In some cases, one should use Lett’s criteria’ (χ2/freedom > 9), or 

choose to increase the statistical error, or remove the data from the database. 

12. The R-matrix fitting is a phenomenological fitting, so the best fit should correspond to the 

minimum χ2, with the acceptable value being mean χ2/freedom < 3.0 

13. Different methods are used to deal with errors, so the best way to check whether a fit is good is 

to perform a visual comparison of data and fitted values.  

14. The basic criteria for a good fit is that the calculated value is close to the data value, and that 

most of the calculated values for a given data-group are located within the error bar.  

15. Using an ‘iterative fitting process’ has many advantages. The normalization factor changes little 

by little, the value of normalized data approaches the ‘real value’ little by little. At the same 

time, the relative statistical error is fixed always, but the relative systematic error of the data 

should be reduced little by little.  

16. The modification of experimental data in the normalization procedure should be less than the 

systematic error given in the original paper. 

17. In the normalization procedure, some data should not be changed, for example, the data which 

is considered to be the most accurate, and data which has no competition, i.e. they are the only 

existing data. 

6. DIFFERENT EVALUATION SCHEMES 

In this section we present the results of the evaluation of 7Be system using ALS, CLS and GLS. 

The details of ALS, CLS and GLS, including all the formulas used to calculate χ2 are provided 

in Section 4. 

In the evaluation of the 7Be system we used all the available experimental data from EXFOR. 

The evaluation of 7Be consists of two separate evaluations: p+6Li for lab projectile energies up 

to 20 MeV and 3He+4He for lab projectile energies up to 30 MeV. 

We included data for the following reactions: 6Li(p, p)6Li, 6Li(p, 3He)4He, the 6Li(p,p1)6Li*, 

6Li(p,p2)6Li**, 6Li(p,g0)7Li, and 6Li(p,g1)7Li*, 4He(3He,3He)4He, 4He(3He,p)6Li, 

4He(3He,p1)6Li*, 4He(3He,g0)7Li , 4He(3He,g1)7Li*. Both cross sections and analyzing powers 

were fitted amounting to a total of 5032 data points. Seven different approaches to dealing with 

systematic errors and calculating the χ2 were employed (see Table 6.1) while the level scheme 

of 7Be remained the same. To our surprise, all the evaluated data are very close to the 

experimental values, the obvious differences existing in the resulting χ2 and the covariance 

matrix of evaluated values.  

Here we remind the reader of the most important formulas used in the seven approaches: 

 𝜒2 = （𝜂 − 𝑦)+ 𝑉0
−1  （𝜂 − 𝑦) + ((N-1)/S)2 ⇒ minimum               (ALS)  F1 
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 𝜒2 = （𝜂 − 𝑦)+ 𝑉𝑂
−1  （𝜂 − 𝑦) ⇒ minimum                         (CLS)  F2 

 𝜒2 = （𝜃 − 𝜃𝑎
⃗⃗⃗⃗⃗)+ 𝑉𝑎

−1  (𝜃 − 𝜃𝑎
⃗⃗⃗⃗⃗) + (𝜂⃗ − 𝑦)+ 𝑉𝑀

−1（𝜂 − 𝑦) ⇒ minimum   (GLS)  F3 

In the above expressions of 𝜒2, the 𝜂 are the normalized data (Modi) which are effectively 

used in the fitting. They are derived from the original experimental data (Origi) after 

multiplying by the normalization factor for absolute data, or multiplying by the shape factor for 

relative data; the 𝑦 are the calculated values. This is the method that is always used in RAC 

for the normalization of experimental data. 

6.1. Abbreviations  

NAME OF SEVEN SCHEMES 

For the second letter, 0 refer to 0.0, O refer to ORI, S refer to Standard error (STD);  

For the third letter, N refer to No, P refer to Part, M refer to Modification, A refer to All.  

ALS: Approximate Least Squares method; 

CLS: Conventional Least Squares method; 

GLS: General Least Squares method with 'Gauss-Markev' theorem; 

DATA USED 𝜂  IN FITTING 

Origi: original experimental data; 

Modi: normalized experimental data of part or full; 

V OF 𝜂  

V: Covariance matrix of 𝜂, which is produced with Statistic error and Systematic error; 

V0: all non-diagonal elements in V is 0.0; 

VO: For making V all original Systematic error is used;  

VM: For making V, the standard error of evaluation values is used as Systematic error; 

STATISTICAL ERROR  

ORI: use the original statistical error always; 

SYSTEMATIC ERROR (%) 

No (0.0 to 0.0): for building V, all systematic errors are 0.0; 

ORI (1.5 to 10): for building V, all original systematic errors are used, the value ranging from 

1.5% to 10%; 

STD (0.2 to 2.5): for building V, the standard error of evaluated values is used, the value 

ranging from 0.2% to 2.5%; 

((N-1)/S)2 

N: The real normalization factor obtained in fitting; 
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S: The normalization factor or shape factor of original data; 

NOR-REL 

Yes:The relative data are normalized always; 

NOR-ABS 

No: All absolute data are not normalized; 

Part: Part of absolute data have been normalized; 

All: All absolute data have been normalized; 

EAE/EEE 

EAE： the normalization is done for both ‘Angle dependency’ and ‘Energy dependency’； 

EEE： the normalization is done for ‘Energy dependency’ only； 

FM OF 𝜒 2: THE FORMULA OF 𝜒 2 

χ2
Mean:   the mean 𝜒2 for the whole database used. 
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6.2. Evaluation schemes 

TABLE 6.1. Characteristics of the seven evaluation schemes 

Scheme  Data V (𝜂⃗) Stat. Error Syst. Error (%) ((N-1)/S)2 NOR-Rel. NOR-Abs. EAE/EEE FM χ2
Mean Comment 

1-0-N-ALS Origi V0 ORI No (0.0 to 0.0) Yes Yes No EEE F1 3.602 𝜒 2 too larger 

2-0-P-ALS Origi V0 ORI No (0.0 to 0.0) Yes Yes Part EEE F1 2.616 As a Reference 

3-0-M-ALS Origi V0 ORI No (0.0 to 0.0) Yes Yes Part EEE F1 2.116 Acceptable 

4-O-P-CLS Modi VO ORI ORI (1.5 to 10) No Yes All EEE F2 0.961 As a Reference 

5-S-M-CLS Modi VM ORI STD (0.2 to 2.5) No Yes Part EAE F2 1.462 Very good 

6-S-M-GLS Modi VM ORI STD (0.2 to 2.5) No Yes Part EAE F3 1.542 The best one 

7-S-A-GLS Modi VM ORI STD (0.2 to 2.5) No Yes All EAE F3 1.404 As a Reference 
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6.3. Results 

All the results shown in the figures herein include: 

a. The curves corresponding to the seven evaluation schemes.  

b. The original experimental data points (Origi) and the normalized data points (Modi) 

which were used in the fitting. In practice, most of the Modi data points are located 

within the error bar of Origi, and for most of the datasets the changes are less than the 

original systematical error given in the original paper; which explains why the 

modification of the original dataset is reasonable.  

From the figures below it is clear that it is necessary to normalize some of the absolute 

experimental datasets, otherwise the χ2 is not statistically acceptable as is that of 

scheme (1-0-P-ALS). It should be pointed out that decreasing χ2 by the normalization 

n of the calculated values (which has been done in EDA) is absolutely wrong (refer to 

Nuclear Data Sheets 109 (2008) 2812–2816). 

c. In the figures showing the elements of a row of the 3 dimensional Correlation factor(C) 

and Covariation matrix (COV), it is clear that the evaluated COV of General Least 

Squares (GLS) are larger than the evaluated COV of Conventional Least Squares 

(CLS); the evaluated COV of Conventional Least Squares are larger than the evaluated 

COV of Approximate Least Squares (ALS). 

d. For those data which are not in direct competition with other data, we do not perform 

any normalization. Such data include, for example, integrated (p,p1)and (p,p2), the data 

on (p,p),(p,p1) and (p,p2) at 14 MeV; the data on γ capture and analyzing powers.  

e. The results of the three evaluations (6-S-M-GLS), (5-S-M-CLS) and (3-0-P-ALS) can 

be taken as the final recommended evaluated results, where the (6-S-M-GLS) is better 

than (5-S-M-CLS), and (5-S-M-CLS) is better than (3-0-P-ALS). 
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6.3.1. 6Li(p,p)6Li 

 

FIG 6.1. The 
6
Li (p, p) 

6
Li excitation function near 54 degrees and 70 degrees 
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FIG 6.2. The 
6
Li (p,p) 

6
Li excitation function at 90 degrees. The top panel shows that the fits are excellent. 

The shape and peak position of the relative data of Fasoli [28] is important information for fitting the 

data. The bottom panel shows the fits using the seven schemes: both the values and shapes are almost 

identical. 
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FIG 6.3. The top panel shows the ratios of the excitation functions calculated at 90 degrees using the 

seven schemes over their mean value for 
6
Li (p,p) 

6
Li. The maxima of the ratio range from 0.98 to 1.02 

at Ep < 4 MeV, and from 0.97 to 1.03 for Ep > 4 MeV. The bottom panel shows the ratios of the STD for 

the seven schemes to their mean value. The figures shows rather large differences. The deviation of (4-

O-P-CLS) is the largest one for Ep < 7 MeV because the original systematic errors were used in the 

diagonal elements of the experimental covariance matrix. 
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FIG 6.4. The top panel shows that among the seven schemes the 5-S-M-CLS is the best fit for CLS, 6-S-

M-GLS is the best fit for GLS, while the maximum ratio of the corresponding evaluations range from 

0.995 to 1.005. Thus, it is safe to say that both can be adopted as the final recommended values. The 

bottom panel shows the ratio of the STD of 6-S-M-GLS to that of 5-S-M-CLS, with the maximum ratio 

ranging from 1.2 to 1.4. This difference is due to the fact that data correlations are considered in the GLS 

fitting, but not in the CLS fitting. For the non-diagonal elements of the covariance matrix of the 

evaluation data, the differences are much larger by a factor of 3 (see Fig. 6.5).  
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FIG 6.5. The top panel shows the correlation factor (C) for the excitation function of 
6
Li(p,p) 

6
Li at 90 

degrees, and Ep = 0.5 to 7 MeV. It is the result of the scheme (6-S-M-GLS). In the C matrix the diagonal 

elements Cii ≡ 1. The bottom panel shows the covariance matrix elements for the excitation function of 
6
Li(p,p) 

6
Li at 90 degree, and for the Ep0 = 1.85 MeV with Ep = 0.5 to 7 MeV in the 4 scheme (1-0-N-

ALS), (3-0-M-ALS), (5-S-M-CLS) and (6-S-M-GLS). It should be noted that the scheme (6-S-M-GLS) has 

the largest covariance matrix elements, because the correlations among the data are considered in GLS. 

On the other hand, the scheme (3-0-M-ALS) has the smallest covariance matrix elements, since the 

correlations of the data are not considered in ALS.  
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FIG 6.6. The 
6
Li(p,p)

6
Li excitation function near 110 degrees. The fit is excellent. The shape and peak 

position of the relative data of Fasoli [28] is important information for fitting the data.  
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FIG 6.7. The top panel shows the 
6
Li(p,p)

6
Li excitation function of near 125 degree. The figure shows 

that the fit is excellent. The shape and peak position of the relative data of Fasoli [28] is important 

information for fitting. The bottom panel shows the 
6
Li(p,p)

6
Li excitation function near 125 degrees 

obtained with the seven schemes. The results agree very well both in magnitude and shape. 
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FIG 6.8. The top panel shows the correlation factor (C) for the excitation function of 
6
Li(p,p)

6
Li at 

125 degrees, and Ep=2.2 MeV to 12 MeV obtained with the scheme (6-S-M-GLS). In the C matrix 

diagonal elements Cii≡1. The bottom panel shows the covariance matrix elements for the same excitation 

function but for Ep0=1.85 MeV with Ep=2.2 to 12 MeV obtained with the 4 schemes (1-0-N-ALS), (3-0-

M-ALS), (5-S-M-CLS) and (6-S-M-GLS). It should be noted that the scheme (6-S-M-GLS) has the largest 

covariance matrix elements in most of the energy region.  
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FIG 6.9. The top panel shows the 
6
Li(p,p)

6
Li excitation function near 140 degrees. The fit is good. The 

bottom panel shows the same but for 150 degrees. In the range 3.9-5.3 MeV there are no data points for 

Harrison [27] at 150.5 degrees, hence the straight line in calculated curve. 
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FIG 6.10. The top panel shows the 
6
Li(p,p)

6
Li EF near 160 degrees. The fit is very good. The shape and 

peak position of the relative data of Harrison [27] is important information for fitting the data. The 

bottom panel shows the same but at 167 degrees.  
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FIG 6.11. The top panel shows the fitted DA of 
6
Li(p,p)

6
Li at Ep=14 MeV, which is the largest energy 

used in the database. The fit is very good. This data are in the non-resolved resonance region, so the 

good fit shows that RAC has the ability to analyze the experimental data in the non-resolved resonance 

region as well. The bottom panel shows the corresponding calculated DA using the seven R-matrix 

schemes. The results agree very well both in magnitude and shape. 
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6.3.2. 6Li(p,3He)4He 

 

FIG 6.12. The top panel shows the fit of the integrated cross section of the 
6
Li(p,

 3
He)

4
He reaction.. The 

fit is very good. The bottom panel shows the corresponding calculated integrated cross sections obtained 

with the seven schemes. The results agree very well both in magnitude and shape. 
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FIG 6.13. The top panel shows the 
6
Li(p,

3
He)

4
He excitation function near 20 and 23 degrees. The bottom 

panel shows the same at 30 degrees. Both fits are very good.  
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FIG 6.14. The top panel shows the 
6
Li(p,

3
He)

4
He excitation function at 37 and 38 degrees, while the 

bottom panel shows the same at 48 and 52 degrees. Both fits are very good. It should be noted that near 

2.5 MeV the experimental data of Elwyn [22] are systematically lower. 
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FIG 6.15. The top panel shows the 
6
Li(p,

3
He)

4
He excitation function at 59 and 62 degrees, while the 

bottom panel shows the same at 70 degrees. Both fits are good. It should be noted that near 2.5 MeV the 

experimental data of Elwyn [22] are systematically lower. 
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FIG 6.16. The top panel shows the correlation factor (C) for the excitation function of 
6
Li(p, 

3
He)

4
He at 

70 degrees, and Ep = 0.4 MeV to 7 MeV. It is the result of the scheme (6-S-M-GLS). The bottom panel 

shows the covariance matrix elements for the same excitation function, for Ep0 = 1.85 MeV with Ep = 0.5 

to 7 MeV obtained from the 4 schemes (1-0-N-ALS), (3-0-M-ALS), (5-S-M-CLS) and (6-S-M-GLS). It 

should be noted that the scheme (6-S-M-GLS) has the largest covariance matrix elements in most of the 

energy region.  
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FIG 6.17. The top panel shows the excitation function of 
6
Li(p,

3
He)

4
He at 75 degrees. The fit looks good. 

It should be noted that large differences are observed in the region Ep = 2.1 to 2.6 MeV, as in this energy 

range the experimental data have rather large systematic errors. The bottom panel shows the 

corresponding calculated excitation function obtained with the seven schemes. The results agree both in 

magnitude and shape. 
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FIG 6.18. The top panel shows the excitation function of 
6
Li(p,

3
He)

4
He at 80 degrees, while the bottom 

panel shows the same at 86 and 89 degrees. Both fits look good. It should be noted that near 2.5 MeV 

the experimental data are systematically lower. 
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FIG 6.19. The top panel shows the excitation function of 
6
Li (p, 

3
He) 

4
He at 93 degrees. The fit looks 

good however, it should be noted that near 2.5 MeV the experimental data are systematically lower. The 

bottom panel shows the corresponding calculated excitation functions obtained with the seven schemes. 

The absolute magnitudes are close and the shapes are similar. 
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FIG 6.20. The top panel shows the excitation function of the 
6
Li(p,

3
He)

4
He at 106 degrees, while the 

bottom panel shows the same at 110 degrees. The fits look good, however it should be noted that near 

2.5 MeV the experimental data are systematically lower.  
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FIG 6.21. The top panel shows the 
6
Li(p,

3
He)

4
He excitation function close to 119 degrees. The fit looks 

good. The bottom panel shows the same but close to 130 degrees. It should be noted that close to 2.5 MeV 

the experimental data are systematically lower. 
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FIG 6.22. The top panel shows the 
6
Li(p,

3
He)

4
He excitation function close to 143 degrees. The fit looks 

good. The bottom panel shows the same but for 149 degrees. It should be noted that near 2.5 MeV the 

experimental data are systematically lower. 
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FIG 6.23. The top panel shows the 
6
Li(p,

3
He)

4
He excitation function close to 156 degrees. The fit looks 

good. The bottom panel shows the same but for 167 degrees. 
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6.3.3. 6Li(p,p1)6Li* 

 

FIG 6.24. The top panel shows the fits for the integrated cross sections of 
6
Li(p,p1)

6
Li

*
 using the scheme 

(6-S-M-GLS). The fit looks good. The bottom panel shows the calculated integrated cross sections for 

6
Li(p,p1)

6
Li

*
 using all seven schemes. The results show that they agree reasonably. 
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FIG 6.25. The fit of the DA of 
6
Li (p,p1) 

6
Li

* 
at Ep = 14 MeV, which is the largest energy used in database. 

The fit is very good. At this energy the reaction occurs in the non-resolved resonance region, therefore 

the results show that the code RAC is able to analyze the experimental data in the non-resolved resonance 

region as well. 
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6.3.4. 6Li(p,p2)6Li** 

 

FIG 6.26. The top panel shows the fit of the integrated cross sections of 
6
Li(p,p2)

6
Li

**
 using the scheme 

(6-S-M-GLS). N=1 means that the data are not normalized. The fit looks good. The bottom panel shows 

the calculated integrated cross sections of 
6
Li(p,p2)

6
Li

**
 using all seven schemes. The results agree 

reasonably. 
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FIG 6.27. The fit for the DA of 
6
Li(p,p2)

6
Li

**
 at Ep = 14 MeV, which is the largest energy used in database. 

The fit looks good. The results show that the code RAC is able to analyze the non-resonance region as 

well. 
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6.3.5. 6Li(p,γ0)7Be 

 

FIG 6.28. The left panel shows the fit for the integrated cross section of 
6
Li(p,γ0)

7
Be using the scheme 

(1-S-M-GLS). N=1 means data are not normalized. The fit looks good. The bottom panel shows the 

calculated integrated cross sections obtained with the seven schemes. The results agree in magnitude 

and shape except for the scheme (6-S-M-GLS). 
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6.3.6. 6Li(p,γ1)7Be*  

 

FIG 6.29. The left panel shows the fit for the integrated 
6
Li(p,γ1)

7
Be * using the scheme (6-S-M-GLS). 

N = 1 means that data are not normalized. The fit looks good. The bottom panel shows the calculated 

integrated cross sections obtained from the seven schemes. The results agree reasonably except for the 

scheme (6-S-M-GLS). 
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6.3.7. 4He(3He,3He)4He  

 

FIG 6.30. (Top) The fit for the excitation function of 
4
He(

3
He,

3
He)

4
He at about 35 degrees. The fit is very 

good. (Bottom) The same but at about 39 degrees. This fit also looks good. 
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FIG 6.31. Fit for the excitation function of 
4
He(

3
He 

3
He)

4
He at about 43 degrees. The fit is good. 
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FIG 6.32. (Top) Fit of the excitation function of 
4
He(

3
He,

3
He)

4
He at about 54.7 degrees. The fit is very 

good. (Bottom) Then same but at about 63.4 degree. Again, the fit is very good. 
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FIG 6.33. (Top) Fit for excitation function of 
4
He(

3
He,

3
He)

4
He at about 70 degrees. The fit is very good. 

(Bottom) The calculated excitation functions at about 70 degrees obtained with the seven schemes. The 

results agree both in magnitude and shape. 
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FIG 6.34. (Top) Fit for the excitation function of 
4
He(

3
He,

3
He)

4
He at about 73.8 degrees. The fit is very 

good. (Right) The same but for 80 degrees. Again, the fit is very good. 



81 
 

 

FIG 6.35. (Top) Fit for the excitation function of 
4
He(

3
He,

3
He)

4
He at 90 degrees. The fit is very good. 

The data from 14 to 18 MeV are in the non-resolved resonance region, so the good results show that RAC 

has the ability to analyze experimental data in the non-resolved resonance region. (Bottom) The 

calculated excitation functions of obtained with the seven schemes. The results agree both in magnitude 

and shape. 
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FIG 6.36. (Top) The ratio of calculated excitation functions of 
4
He(

3
He,

3
He)

4
He at 90 degrees for the 

seven schemes to their mean value. The maximum of the ratio ranges from 0.99 to 1.01, so it is fair to 

say that all seven schemes are acceptable. (Bottom) The ratio of the STD of the seven schemes to their 

mean value. The results show rather large differences. The STD obtained with (4-O-P-CLS) is the largest 

one for Ep below 4 MeV. This is because in this case the original systematic errors are considered in the 

diagonal elements of the experimental covariance matrix. The STDs of (6-S-M-GLS) and (6-S-M-GLS) 

are the largest ones for Ep greater than 4.5 MeV. The explanation is given in the text. 
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FIG 6.37. (Top) Fit for the excitation function of 
4
He(

3
He,

3
He)

4
He at about 99 degrees. The fit is very 

good. (Bottom) The same but at about 106 degrees. Again, the fit is very good.  
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FIG 6.38. Fit for the excitation function of 
4
He(

3
He,

3
He)

4
He at about 115 degrees. The fit is very good. 
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FIG 6.39. (Top) Fit for the excitation function of 
4
He(

3
He,

3
He)

4
He at 125 degrees. The fit is very good. 

(Bottom) The corresponding calculated excitation functions obtained with the seven schemes. The results 

agree both in magnitude and shape. 

The figures show that the global fitting of the 7Be system depends strongly on the reproduction 

of the four groups of experimental data on 4He(3He,3He)4He (Mohr [25], Barnard [21], 

Tombrello [26], Spiger [24]). These data have been measured at energies ranging from 1.0 to 

18 MeV, so fitting them well requires an accurate R-matrix analysis of widely varying cross 

sections for all the open channels for which data exist. This in turn requires a suitable and 

reliable R-matrix code.  
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FIG 6.40. (Top) Correlation factor (C) for the excitation function of 
4
He (

3
He,

3
He)

4
He at 90 degrees for 

E3He = 1.1 MeV to 16 MeV obtained with (6-S-M-GLS). The correlations are very strong. (Bottom) The 

same but at 125 degrees and for E3He = 4.6 MeV to 6 MeV. In this case the correlations are not very 

strong.  
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FIG 6.41. (Top) Covariance matrix elements for the excitation function of 
4
He(

3
He,

3
He)

4
He at 90 degrees 

and for E3He0 = 5.2 MeV with E3He=1 to 16 MeV obtained with the 4 schemes (1-0-N-ALS), (3-0-M-ALS), 

(5-S-M-CLS) and (6-S-M-GLS). It should be noted that (6-S-M-GLS) has the largest covariance matrix 

elements. (Bottom) The same but at 125 degrees and for E3He0 = 5.18 MeV with E3He = 4.6 to 6 MeV. Here 

the scheme (6-S-M-GLS) has the smallest covariance matrix elements.  
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FIG 6.42. (Top) Fit for the excitation function of 
4
He(

3
He,

3
He)

4
He at 133 degrees. The fit is very good. 

(Bottom) The same but at 139 degrees. Again, the fit is very good.  
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FIG 6.43. (Top)Fit for the analyzing power of 
4
He(

3
He,

3
He)

4
He at 79 degrees. N = 1.000 means that the 

data are not normalized. The fit is very good. (Bottom) Corresponding calculated analyzing powers 

obtained with the seven schemes. The results agree in magnitude and shape. 
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FIG 6.44. (Top) Fit for the analyzing power of 
4
He(

3
He,

3
He)

4
He at 87 degrees. N = 0.9788 is the 

normalization factor. The fit is very good. (Bottom) Corresponding calculated analyzing powers obtained 

with the seven schemes. The magnitudes agree and the shapes are identical. 
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6.3.8. 4He(3He,p)6Li 

 

FIG 6.45. (Top) Fit for the excitation function 
4
He(

3
He,p)

6
Li at about 25 degrees. N = 0.8425 is the 

normalization factor. The fit is good. (Bottom) The same but at 35 degrees. 
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FIG 6.46. (Top) Fit for the excitation function of 
4
He(

3
He,p)

6
Li near 28 degree. N = 0.9767 is the 

normalization factor. The fit looks good. The data from 14 to 18 MeV are in the non-resolved resonance 

region, which shows that RAC has the ability to analyze experimental data in the non-resolved resonance 

region as well. (Bottom) Corresponding calculated excitation functions obtained with the seven schemes. 

The results are in reasonable agreement both in magnitude and shape. The scheme (7-S-M-GLS) gives 

the smallest values.  
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FIG 6.47. (Top) Fit for the excitation function 
4
He(

3
He,p)

6
Li at 41 degrees. N = 0.8523 is the 

normalization factor. The fit looks good. (Bottom) The same but at 49 degrees. 
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FIG 6.48. (Top) Fit for the excitation function of 
4
He(

3
He,p)

6
Li at 56 degrees. N = 0.9694, 1.0343 are 

the normalization factors. The fit looks good. The data from 14 to 18 MeV are in the non-resolved 

resonance region, which proves that RAC is able to analyze the experimental data in the non-resolved 

resonance region. (Bottom) Corresponding calculated excitation functions using the seven schemes. The 

results agree well in magnitude and less in shape. The scheme (7-S-M-GLS) gives the smallest values.  
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FIG 6.49. (Top) Correlation factor (C) for the excitation function of 
3
He(

4
He,p)

6
Li at 28 degrees, 

E3He = 7.6 MeV to 16 MeV, obtained with the scheme (6-S-M-GLS). (Bottom) The same but at 56 degrees 

and E3He = 7.6 MeV to 16 MeV. 
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FIG 6.50. (Top) Fit for the excitation function of 
4
He(

3
He,p)

6
Li at 65 degrees. The fit looks good. (Bottom) 

The same but at 73 degrees. 
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FIG 6.51. (Top) Fit for the excitation function of 
4
He(

3
He,p)

6
Li at 78 degrees. The fit looks good. (Bottom) 

The same but at 101 degrees. 
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6.3.9. 4He(3He,p1)6Li* 

 

FIG 6.52. (Top) Fit for the excitation function of 
4
He(

 3
He,p1)

6
Li

*
 at 47degrees. The fit looks good, but 

these are shape data. (Bottom) The same but at 59 degrees. Again, the fit looks good, but these are shape 

data. 
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6.3.10. 4He(3He,γ0)7Be  

 

FIG 6.53. (Top) Fit for integrated cross sections of 
4
He(

 3
He,γ0)

7
Be. N = 1.000 means no normalization 

of data. The fit looks good. (Bottom) Calculated integrated cross sections using the seven schemes. The 

results agree reasonably in both magnitude and shape. 
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6.3.11. 4He(3He,γ1)7Be* 

 

FIG 6.54. (Top) Fit for integrated cross sections of 
4
He(

 3
He,γ1)

7
Be

*
. N = 1.000 means no normalization 

of experimental data. The fit looks good. (Bottom) Calculated integrated cross sections using the seven 

schemes. The results agree reasonably in magnitude and shape. 
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7. GLOBAL FITTING OF 7Be SYSTEM (GLS) 

In this section we present the final results for the evaluation of the 7Be system, in which we 

have fitted all the available and useful experimental data in the energy region extending to 20 

MeV. Each experimental data group is discussed separately in the following subsections in 

order to highlight the role of the data in the global fit, the status of the original data, the 

normalized values and the final fitted values. 

We have performed a ‘global fitting’ which means that with we have used one R-Matrix 

parameter set to fit all the experimental data available simultaneously. The advantages of 

‘global fitting’ have been detailed in the previous sections 4, 5 and 6. One other important 

advantage of a global fit is that the evaluation is done within the same approach/model and 

therefore is consistent for all the different experimental data. This ensures that unitarity is 

respected and there is no need to make any adjustments to meet it.  

For the global fitting we have employed the Reduced R-Matrix theory (see Section 3) combined 

with the GLS statistical method in Section 4. 

The selection of the level scheme (see Section 5) has been done as follows: for every Jπ one 

background level with positive higher energy is introduced, and for some Jπ one distant 

background level negative distant energy is assumed. The iterative fitting procedure will sort 

out if any one of the initial parameters is needed or not, and in case it is not needed, i.e. it does 

not contribute to the minimization of χ2 , then it will be removed from the next iteration. The 

goal is to get an improved fit to the entire database with every iteration.   

The experimental data used in the global fit were taken from the EXFOR database. They include 

experimental data for the following reactions and energies: 

 6Li(p,p)6Li,     6Li(p, 3He)4He,     6Li(p,p1)6Li*,  

6Li(p,p2)6Li**,   6Li(p,γ0)7Li,      6Li(p,γ1)7Li*,  

for Ep = 0.4 to 22.5 MeV;  

4He(3He,3He)4He,  4He(3He,p)6Li ,  4He(3He,p1)6Li* , 

4He(3He,γ0)7Li ,    4He(3He,γ1)7Li*,  

for E3He = 1.0 to 22.6 MeV.  

The experimental database consists of both cross section and analyzing powers, about 6709 

data points in total, which means nearly all the valuable and useful data have been used. Some 

details of the composition of the experimental database are given in Tables 7.1, 7.2. 
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TABLE 7.1. Reaction channels information in this work 

Channel AC(fm) If-search Step-% Lmax Threshold (MeV) 

'P,6Li' 0.39439688299650 y 0.2 4 0.000000 

'3He,4He' 0.42415108711860 y 0.2 5 4.019800 

'P1,6Li*' 0.39439688299650 y 0.2 6 -2.186000 

'P2,6Li*' 0.39439688299650 y 0.2 7 -3.563000 

'G0,7Be' 0.39439688299650 y 0.2 2 5.610000 

'G1,7Be*' 0.39439688299650 y 0.2 2 5.180000 

'RED-CH' Used to represent 'P3,6Li* ' and other channels 

 

TABLE 7.2. Reaction channels and data information 

Reaction channel Type of data Energy range (MeV)  Data Groups Data points Final mean χ2 /Comment 

6Li(p,p)6Li DA 0.3 to 14.1  8 2697  

6Li(p,3He)4He CS 0.1 to 3 4 92  

6Li(p,3He)4He DA 0.1 to 3 4 1134  

6Li(p,3He)4He AY 0.5 to 3 1 121  

6Li(p,p1)6Li* CS 3 to 10.1 1 12  

6Li(p,p1)6Li* DA 4 to 14.1 4 199  

6Li(p,p2)6Li** CS 4 to 10.1 1 50  

6Li(p,p2)6Li** DA 6 to 14.1 3 52  

6Li(p,g0)7Be CS 0.3 to 1.1 1 9  

6Li(p,g0)7Be DA 0.3 to 1.1 1 8  

6Li(p,g1)7Be* CS 0.03 to 1.1 1 14  

6Li(p,g1)7Be* CS 0.03 to 1.1 2 27  

4He(3He,3He)4He DA 1.2 to 22.6 9 3611  

4He(3He,3He)4He AY 3.3 to 11 1 65  

4He(3He,p)6Li DA 8 to 18 1 198  

4He(3He,p1)6Li* DA 11 to 18 1 36  

4He(3He,g0)7Be CS 0.28 to 1.7 2 40  

4He(3He,g1)7Be* CS 0.28 to 1.7 2 40  

Total or mean   49 6721 1.421 
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In this global experimental database, the most complete and accurate experimental data exist 

for the reactions 6Li(p,p) 6Li and 4He(3He,3He)4He, therefore they play a key role in the fitting; 

the fitting of the reactions 6Li(p,3He)4He and 4He(3He,p)6Li depends on the 6Li(p, p)6Li and 
4He(3He, 3He) 4He fits, and of course 6Li(p, 3He) 4He and 4He(3He,p) 6Li are to some extent 

competing channels. For the channels 6Li(p,p1)6Li*, 6Li(p,p2)6Li**, 6Li(p,γ)7Li, 4He(3He p1)6Li , 
4He(3He,γ)7Li , we use a free parameter in the fitting, so most of the shape factors are keep equal 

to 1.00. 

In the figures we display both the original experimental data points (Ori-(name of group) and 

the normalized data points (Nor-(S = K.xxx)) which were used practically in the fitting. It can 

be seen that most of the normalized data points lie within the error bars of the original data, and 

that for most of the data sets the changes are less than the original systematical error given in 

the original paper; this confirms that the modification of the original data sets are reasonable 

We first show the evaluated cross sections that resulted from the global fitting. 

7.1. Evaluation results 

The evaluation has been performed for proton energies in the range Ep = 0.01 to 20 MeV and 

for 3He energies in the range E3He = 1 to 20 MeV. The angular distributions (DA) extend from 

0.1 degree to 180 degree.  

 

FIG 7.1. Integrated evaluated cross sections for p+
6
Li. 
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FIG 7.2. Evaluated integrated cross sections for p+
6
Li. 

 

 

FIG 7.3. Evaluated integrated cross sections for 
3
He+

4
H.  
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FIG 7.4. Evaluated integrated cross sections for 
3
He+

4
H. 

 

 

FIG 7.5. Evaluated DA for p+
6
Li. 
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FIG 7.6. Evaluated DA for 
3
He+

4
He. 

 

 

FIG 7.7. The Evaluated DA for 
6
Li(p,

3
He)

4
He.
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FIG 7.8. The Evaluated DA for 
4
He(

3
He,p)

6
Li. 

 

 

FIG 7.9. DA correlation factors at 90
0 
for 

6
Li(p,p)

6
Li. 
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FIG 7.10. Cross section correlation factors for 
6
Li(p,

3
He)

4
He. 

 

7.2. Reaction channel 6Li(p,p) 6Li 

7.2.1. Data of McCray (1963) - group a 

This data set of McCray [20] is the most accurate data set available for the 7Be system. It is an 

absolute measurement with about 0.5% statistical error only at 90 degree. In the fitting 

procedure, its normalization factor is fixed at 1.00 initially, however in the final fitting 

procedure it is an adjustable parameter and the best fit value obtained is about 0.995.  

 

FIG 7.11. Evaluated DA for McCray data [20] at 90 deg.
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7.2.2. Data of McCray (1963) - group b 

This data set [20] is a rather accurate data set for the 7Be system, as it is a relative measurement 

with respect to the Rutherford elastic scattering cross section at 3 angles. The statistical error is 

set to range from 3 to 5%. 

 

FIG 7.12. Evaluated DA for McCray data [20] at 90.45, 126, and 159.7 degrees.
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7.2.3. Data of McCray (1963) - group c 

This data set [20] is a rather accurate data set of the 7Be system, as it is an absolute measurement 

at 5 angles. The statistical error is set to range from 3 to 5%. The data at 90.7 degree is in better 

agreement with group a (Sect. 7.2.1).  

 

 

FIG 7.13. Evaluated DA for McCray data [20] at 70, 90.7, 110.7, 125.6, and 140.7 degrees. 
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7.2.4. DA of Merchez (1968) 

This data set [30] is a rather accurate data set of the 7Be system, as it is an absolute measurement 

at 14 MeV which is the highest energy for 6Li(p,p) 6L. The statistical error is set to range from 

2 to 3%. It plays a key role in the fitting in the higher energy range and its normalization factor 

is fixed to 1.00. 

 

FIG 7.14. Evaluated DA for Merchez data [30] at 14 MeV incident energy. 

 

7.2.5. Data of Fasoli (1974) - group a 

This data set is from a relative measurement at 8 angles [28]. The statistical error is set to 5%. 

The mean value of the shape factor is about 0.95. 
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FIG 7.15. Evaluated DA for Fasoli data [28] – group a at 8 angles. 
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7.2.6. Data of Fasoli (1974) - group b 

This data set is measured relative to group a (Sect. 7.2.5) at 8 angles for many more energies. 

The statistical error is set to 3%. The mean value of the shape factor is about 0.886. This data 

set shows that the shape of the data is important experimental information.  
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FIG 7.16. Evaluated DA for Fasoli data [28] – group b. 
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7.2.7. Data of Harrison (1963) 

This data set [27] is from a relative measurement at 14 angles for a rather wide range of energies 

from 2 MeV up to 12 MeV. The statistical error is set to 3%. The mean value of the shape factor 

is about 0.95. This data set shows that the shape of the data is important experimental 

information. And plays a key role in the fitting of the data in the middle-to-high energy range. 

 

 

 

 

FIG 7.17. Evaluated DA for Harrison data [27]. 
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7.2.8. Data of Haller (1989) 

This data set [31] is from a relative measurement at 28 angles for a rather wide range of energies 

from 1.5 MeV up to 10 MeV. The statistical error is set to 3%. The mean value of the shape 

factor ranges from 0.95 to 0.98. The data at energies less than 2 MeV are not good, so they have 

been modified (energy shifted) and the errors have been increased. The main feature of these 

data is that they include many angles (total of 28).  

 

 

FIG 7.18(a). Evaluated DA for Haller data [31]. 

 

  



117 
 

 

FIG 7.18(b). Evaluated DA for Haller data [31]. 
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7.2.9. DA of Skill-1995 

This data set is from a relative measurement at 10 angles and for 19 energies from 0.4 MeV to 

2.2 MeV [32]. The statistical error is set to 7%. The mean value of the shape factor is about 1.2. 

The main feature is that it includes many energies at very small intervals.  

  

FIG 7.19(a). Evaluated DA for Skill data [32]. 
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FIG 7.19(b). Evaluated DA for Skill data [32]. 

 

7.2.10. Comparison of 4 data sets 

This figure compares the excitation function of 4 data sets at angles from 89.5 to 90.5 degrees. 

These data sets have a strong weighting factor in the fitting procedure.  

 

FIG 7.20. Evaluated DA for 
6
Li(p,p)

6
Li at angles 89.5 to 90.5 degrees. 
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7.3. Reaction channel 6Li(p,3He)4He 

7.3.1. Integrated cross sections 
These integrated cross-section data set are taken from the EDA evaluated file for the 7Be system. 

 

FIG 7.21. Evaluated intergated cross sections for 
6
Li(p,

3
He)

4
He. 

 

7.3.2. Angular distributions at very low energies 

This data set includes 3 groups of data (Kuan [33], Spinka [34] and Bouchez [35]) measured at 

very low energies from Ep = 0.15 to 0.33 MeV. They are relative values with similar smooth 

shapes, which is attributed to the 1S-wave being the dominant contribution. The statistical 

errors are rather large ranging from 10% to 20%. These data can only be reproduced if S-wave 

(0.5+ or 1.5+) levels are included in the level scheme used in the R-matrix analysis, even though 

levels with Jπ = 0.5+ or 1.5+ do not exist in the current level scheme of 7Be.  
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FIG 7.22. Evaluated DA of [33. 34,35] for 
6
Li(p,

3
He)

4
He at very low energies. 
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7.3.3. Data of Elwyn (1979) 

This data set of Elwyn includes 18 angles [22], with each angle covering an angle range in the 

CM system. Each angle range corresponds however to a detector located at a fixed angle in the 

LAB system. The figures clearly show that the data at 2.2, 2.4 and 2.56 MeV have a very larger 

negative systematic error, which cannot be attributed to a resonance because in this same energy 

range the 6Li(p,p)6Li and 4He(3He,3He)4He vary smoothly. In the same energy range the data 

set of Lin [23] also very smooth with energy. 

For proton energies Ep < 1 MeV these data contribute strongly to the global fitting, while for 

Ep > 1 MeV, the data set of Lin (1977) dominates in the fitting.  

 

 

 

 

FIG 7.23(a). Evaluated DA of Elwyn [22] for 
6
Li(p,

3
He)

4
He at 18 angles. 
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FIG 7.23(b). Evaluated DA of Elwyn [22] for 
6
Li(p,

3
He)

4
He at 18 angles. 

 

7.3.4. Data of Lin (1977) 

This data set of Lin [23] includes 16 angles, with each angle having an angle range in the CM 

system, and each angle range corresponding to a detector set at a fixed LAB angle. The figures 

clearly show that the data at energies from 2.2 to 2.56 MeV vary smoothly with energy, and 

that no resonannce exists. For proton energies Ep from 1 MeV to 2.6 MeV, the data set of Lin 

[23] competes strongly with the data set of Elwyn [22]. Both the Lin and Elwyn data are 

absolute values, and for most of the data the corresponding nomorlization factors look 

reasonable, and lie within the range of systematic errors given in the original papers (9% to 

10%).  

 

 

FIG 7.24(a). Evaluated DA of Lin [23] for 
6
Li(p,

3
He)

4
He at 16 angles. 
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FIG 7.24(b). Evaluated DA of Lin [23] for 
6
Li(p,

3
He)

4
He at 16 angles. 
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7.3.5. Data of Bas51 

These relative data [36] were measured at the very large angle of 167.1 degrees. N = 1.2589 so 

the data have a very good shape. 

 

 

FIG 7.25. Evaluated DA of Bas51 [36] at mean 167.1 degrees. 

  



126 
 

7.3.6. DA of Gould (1974) 

This data set [37] was measured at energies in the ‘middle-energy region’, i.e. at Ep = 4 to 10 

MeV. In this middle-energy region, both these data and those of Schenk [37] contribute 

significantly to the fitting.  

 

 

FIG 7.26. Evaluated DA of Gould [37] for 
6
Li(p,

3
He)

4
He. 
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7.3.7. DA of Schenk (1973) 

This dataset [37] consists of anglular distributions measured in very wide energy region with 

proton energies Ep = 3.8 to 22.5 MeV. As a result, they play a key role in fitting the data in the 

higher energy region, which in fact is where the strong constraints on the distant level 

parameters are set, hence ensuring that the fitting of the data in the middle- and low-energy 

region is reasonable and reliable. The data at 15 MeV has a shape factor of 1.016 and are fitted 

very well. This is because there is no competition from other data sets at this energy. The fitting 

of the data at 22.5 MeV could still be improved to decrease the shape factor if one continued 

with further iterations. 
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FIG 7.27. Evaluated DA of Schenk [37] for 
6
Li(p,

3
He)

4
He. 
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7.3.8. Analyzing Power data 

The reproduction of the shapes of this data set of analyzing powers of 6Li (p,3He)4He measured 

by Schenk [38] is reasonable. 

 

 

FIG 7.28. Evaluated analyzing powers of 
6
Li(p,

3
He)

4
He [38]. 
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7.4. Reaction channel 6Li(p,p1)6Li* 

7.4.1. Integrated cross sections 
The integrated cross-sections of Harrison [27] play a key role in the fitting of the 6Li(p,p1)6Li* 

channel data by constraining the fit. The shape factor is fixed at N = 1.00. 

 

FIG 7.29. Evaluated cross sections of Harrison [27] for 
6
Li(p,p1)

6
Li

*
. 
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7.4.2. DA of Laurat (1969) 
The DA of Laurat [39] for 6Li(p,p1)6Li*  is well reproduced. This data set is very important for 

fitting the 7Be system in the middle-high energy region. 

 

 

FIG 7.30. Evaluated DA of Laurat [39] for 
6
Li(p,p1)

6
Li

*
at low energies. 
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7.4.3. DA of Merchez (1968)  

This DA data set of Merchez at 14 MeV [30] constrains the fitting of the 6Li(p,p1)6Li* data in 

the higher energy region, and has a shape factor fixed at N = 1.00. 

 

FIG 7.31. Evaluated DA of Merchez [30] for 
6
Li(p,p1)

6
Li

* 
at 14 MeV. 

 

7.4.4. DA of Harrison (1967) 
This DA data set of Harrison [27] for 6Li(p,p1)6Li* constrains the global fit of 6Li(p,p1)6Li* data in 

the middle-high energy region, and has a shape factor fixed at N = 9864. 

 

 

FIG 7.32. Evaluated DA of Harrison [27] for 
6
Li(p,p1)

6
Li

*
. 
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7.4.5. Data of Laurat (1969) 

This excitation function data of Laurat [38] contribute strongly to the fitting of the 6Li(p,p1)6Li* 

channel in the middle-high energy region. 

 

FIG 7.33. Evaluated DA of Laurat [38] for for 
6
Li(p,p1)

6
Li

*
. 

 

7.5. Reaction channel 6Li(p,p2)6Li** 

7.5.1. Integrated cross sections 

The integrated cross sections of Harrison [27] for 6Li(p,p2)6Li** play a constraining role in the 

the fitting of the 6Li(p,p2)6Li** channel in the middle energy region, and the shape factor is fixed 

at N = 1.00. 

 

FIG 7.34. Evaluated integrated cross sections of Harrison [27] for 
6
Li(p,p2)

6
Li

**
. 
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7.5.2. DA of Harrison (1967) 

This DA data set of Harrison [27] is constrained by the integrated cross sections shown in Sect. 

7.5.1 in the middle energy region. The shape factor at Ep = 5.8 MeV is much less than 1.00, but 

the shape factor at Ep = 7.8 MeV is higher than 1.00. The corresponding shapes look good. 

 

FIG 7.35. Evaluated DA of Harrison [27] for 
6
Li(p,p2)

6
Li

**
. 

 

7.5.3. DA of Merchez (1968) 
This data set of Merchez [30] at 14 MeV constrains the fitting of the 6Li(p,p2)6Li** channel in 

the higher energy region, and its shape factor is fixed at N = 1.00. 

 

FIG 7.36. Evaluated DA of Merchez [30] for 
6
Li(p,p2)

6
Li

** 
at 14 MeV. 
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7.6. Reaction channel 6Li(p,γ)7Be 

7.6.1. Integrated cross sections 

These integrated cross sections of Switkowski [39] for 6Li(p,γ0)7Be and 6Li(p,γ1)7Be*, respectively, 

are very hard to fit. Their shape factor is fixed at N = 1.00. 

 

 

FIG 7.37. Evaluated integrated cross sections of Switkowski [39] for 
6
Li(p,γ)

7
Be. 

 

7.6.2. Data of Ostojic (1983) 
These excitation functions of 6Li(p,γ0)7Be and 6Li(p,γ1)7Be measured at 90 degrees by Ostojic [40] 

are relative values. Their shape factor should be constrained by the integrated cross sections from 

previous Sect. 7.6.1. 

 

FIG 7.38. Evaluated excitation functions of Ostojic [40] for 
6
Li(p,γ)

7
Be. 
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7.7. Reaction channel 4He(3He,3He)4He 

7.7.1. Data of Mohr (1993) 
This set of data of Mohr [25] includes 14 angles and covers an energy range from E3He = 1.2 to 

3.12 MeV. It contributes significantly to the fitting procedure in the low energy region. The 

original data is relative to the Rutherford elastic scattering and the value of the first data point 

(1.2 MeV, 34.8 degree) agrees very well with the Rutherford cross section. This data point can 

actually be used to check the calculation accuracy of the R-matrix codes. 
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FIG 7.39. Evaluated excitation functions of Mohr [25] for 
4
He(

3
He,

3
He)

4
He. 
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7.7.2. Data of Barnard (1964) 

The data set of Barnard [21] includes 8 angles and energies from E3He = 2.4 to 5.8 MeV at very 

small intervals (total of 840 data points). As a result, it dominates the fitting of the 4He(3He,3He) 

4He channel. From the energy of 4.4 to 5.8 MeV, there exist also data from Spiger [24] and 

Tombrello [26]. These 3 groups of data compete against each other in the fitting procedure.  

 

 

FIG 7.40. Evaluated excitation functions of Barnard [21] for 
4
He(

3
He,

3
He)

4
He. 

 

7.7.3. Data of Spiger (1967) 

This set of data measured by Spiger [24] includes 19 angles and covers energies from E3He = 

4.2 to 10.8 MeV. The main feature is the very small systematic error (1.5%), however from the 

comparison with the data of Tombrello [26], it turns out the systematic error is positive and 

much larger in fact. In the energy range from 4.4 to 12.0 MeV, there exist also data from 

Tombrello [26] and Barnard [21]. These 3 groups of data are in a very strong competion in 

fitting procedure.  
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FIG 7.41. Evaluated excitation functions of Spiger [24] for 
4
He(

3
He,

3
He)

4
He. 
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7.7.4. Data of Tombrello (1963) 

This data set of Tombrello [26] includes 8 angles and covers energies from E3He = 4.6 to 12.0 

MeV. The main feature of these data is that they are in good agreement with the data of Barnard 

[21] in the low energy region, while from the comparison with the data of Spiger [24] they have 

a systematic error about 2% which is negative. In the energy range from 4.4 to 12.0 MeV, these 

data are in very strong competition with the data of Spiger [24] and Barnard [21]. 

 

 

FIG 7.42. Evaluated excitation functions of Tombrello [26] for 
4
He(

3
He,

3
He)

4
He. 

  



141 
 

7.7.5. DA of Tombrello (1963) 

This set of data of Tombrello [26] includes angular didtribution with 18 angles at 4 energies. 

The fit at 9.69 MeV looks very good.  

 

FIG 7.43. Evaluated DA of Tombrello [26] for 
4
He(

3
He,

3
He)

4
He. 

 

7.7.6. DA of Gorpinch (1992) 

This data set of Gorpinch [41] has a different distribution compared to other data sets. 

 

 

FIG 7.44. Evaluated DA of Gorpinch [41] for 
4
He(

3
He,

3
He)

4
He. 
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7.7.7. DA of Jacobs (1970) 

This data set of Jacobs [42] includes angular distributions with 38 angles at 7 very high energies, 

and therefore plays a key role in constraining the parameters of the distant levels.. All the fitted 

shapes look good.  

 

 

FIG 7.45. Evaluated DA of Jacobs [42] for 
4
He(

3
He,

3
He)

4
He. 
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7.7.8. Analyzing powers of Harrison (1967) 
This set of analyzing powers measured by Harrison [27] includes 3 angles and energies ranging 

from 6 to 11 MeV. The fits are fairly good. 

 

 

FIG 7.46. Evaluated analyzing powers of Harrison [27] for 
4
He(

3
He,

3
He)

4
He. 
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7.7.9. Analyzing powers of Boy (1972) 
This set of analyzing powers of Boy [43] include 3 angles and energies ranging from 3.2 to 7 MeV. 

They are taken from the EDA evaluation file. The fit looks very good. 

 

FIG 7.47. Evaluated analyzing powers of Boy [43] for 
4
He(

3
He,

3
He)

4
He. 
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7.7.10. Comparison of data at 90 degree 

This figure shows the excitation function of 4He (3He, 3He) 4He for 4 different data sets at 90 

degree. These data sets have a large weighting factor in the fitting process. 

 

FIG 7.48. Evaluated excitation functions for 
4
He(

3
He,

3
He)

4
He based on data from Barnard [21], 

Spiger [24], and Tombrello [26]. 

 

7.8. Reaction channel 4He(3He,p)6Li 

7.8.1. Data of Spiger (1967) – group a 

This ‘group a’ data set of Spiger [24] includes 2 angles and energies ranging from 7.5 to 18 

MeV. The fit looks good. 

 

FIG 7.49. Evaluated excitation functions of Spiger [24] for 
4
He(

3
He,p)

6
Li – group a. 
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7.8.2. Data of Spiger (1967) – group b 

This ‘group b’ data set of Spiger [24] includes 13 angles and energies that range from 8.5 to 11 

MeV. They too are taken from the EDA evaluation file. The statistical error is 6%. 

 

 

 

FIG 7.50. Evaluated excitation functions for the ‘Spiger data [24] for 
4
He(

3
He,p)

6
Li – group b. 
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7.9. Reaction channel 4He(3He,p1)6Li* 

7.9.1. Data of Spiger (1967) 
This data set of Spiger [24] includes 2 angles and energies ranging from 11.5 to 18 MeV. The 

fit depends on other data sets. 

 

FIG 7.51. Evaluated excitation functions of Spiger [24] for 
4
He(

3
He,p1)

 6
Li

*
. 

 

7.10. Reaction channel 4He(3He,γ)7Be 

Integrated cross sections of 4He(3He,γ0) 7Be4 and He(3He,γ1) 7Be reaction from Osborne [44] and 

Singh [45]. The data are very hard to fit. The shape factor is fixed to N = 1.00. 

 

FIG 7.52. Evaluated excitation functions of Osborne [44] and Singh [45] for 
4
He(

3
He,γ)

7
Be. 
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7.11. Proposal for ENDF format 

In Fig. 7.53 all the recommended DA resulting from the global fitting of 7Be are plotted at different 

energies. The question is how one can store these evaluated data in the ENDF-6 format [47].  

 

FIG 7.53. The final calculated DA for 
6
Li(p,p)

6
Li using the best R-matrix parameter set of RAC, which 

has been obtained from the global fitting of the 
7
Be system. 

In the currently adopted ENDF-6 format, the elastic scattering cross sections for incident 

charged-particles are defined by Eqs. (6.13-6.14) of the manual [47]. According to these 

equations, ‘elastic scattering of charged particles includes components from Coulomb 

scattering, nuclear scattering, and the interference between them. The Coulomb scattering is 

represented by the Rutherford formula and electronic screening is ignored. Eqs. (6.13) describe 

the net elastic scattering differentinal cross sections, where the al are complex coefficients for 

expanding the trace of the nuclear scattering amplitude matrix and the bl are real coefficients 

for expanding the nuclear scattering cross section.”  

It is a very challenging task to get accurate al and bl, and there is no accurate way of producing 

their covariance matrix. Furthermore, it may happen that the non-Rutherford scattering effect 

is involved in the fitting process, in which case Eqs. (6.13) are not useful. For these reasons, it 

is recommended to use Tabulated Probability Distributions. 

The proposal is to store charge-particle induced reactions as Tabulated Probability Distributions 

using the same form used for neutron-induced reactions, with the only difference being that an 
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extra line 3 is added for DA (File=4, MT=2). An example is given below: 

     [MAT, 4, 2/  1.000000-1 1.000000+0 1.800000+2 1.000000+0   181 20]  3 

 

The above excerpt is from Ref. [47] for a neutron as incident particle. For an incident charged 

particle, an additional line (line 3 highlighted) is added straight after line 2 marked with (LI=0) 

including the following items:  

MAT 4 2 1.000000-1 1.000000+0 1.800000+2 1.000000+0     181      20        3 

In the above line 3, ‘1.00000E-1’ is the first angle, ‘1.00000E+0’ is the second angle, 

‘1.80000E+2’ is the last angle, ‘1.00000E+0’ is the uniform step, ‘181’ is the total number of 

angles. ‘20’ is the number of energy points. ‘3 is the line number in ascending order. 

8. CONCLUSION 

The R-matrix Analysis Code RAC with the CERNGEPLIS Evaluation Method has been used 

to perform a global fitting of the 7Li and 11B systems. The obtained results have been 

incorporated in the Neutron Cross-Section Standards of the IAEA [2,3]. Furthermore, the 

method has been implemented in the evaluation of the 20O system to obtain the astrophysical S 

factor of 12C (α,γ) 16O with high precision (about 5%), and in the 7Be system with perfect results 

for the IAEA coordinated project on “R-matrix Codes for Charged-particle Reactions in the 

Resolved Resonance Region” [1]. Recently the method has been used in the evaluation of the 
10Be system, with improved results for the n+9Be cross sections. Our experience thus far proves 

that the code RAC combined with the CERNGEPLIS Evaluation Method is a reasonable, useful 

and powerful tool for nuclear data evaluation. 
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APPENDIX 1: Comparison of RAC and EDA for the 7Li system 

Figure A.1 (private communication of V. Pronyaev within IAEA Neutron Standards project, 

2016) shows the correlation coefficients of 6Li(n,n) and 6Li(n,t) in the covariance matrix 

obtained with RAC and EDA. For neutrons on 6Li, in the En < 2 MeV energy region only two 

outgoing reaction channels are open, 6Li(n,n) and 6Li(n,t), thus the neutron total cross section 

6Li(n,tot) ≡ 6Li(n,n) +6Li(n,t). The errors of the experimental neutron cross sections are very 

small thsu putting a strong constraint on the evaluated values of 6Li(n,n) and 6Li(n,t). As a result, 

the 6Li(n,n) and 6Li(n,t) cross sections have opposite tendency and the corresponding 

correlation coefficient is negative, not positive. All the correlation coefficients obtained with 

RAC are negative, which is perfectly reasonable from the physics point of view. In Fig. A.1 one 

sees the ‘positive correlations observed for diagonal cross reaction correlations from EDA’.  

 

 

FIG A.1. Comparison of cross reaction correlations
 6
Li(n,n)* 

6
Li(n,t), the diagonal element of the square 

block with the maximum of cross correlations obtained with EDA and RAC. Positive correlations are 

observed for diagonal cross reaction correlations from EDA because of “confidence interval” approach. 
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FIG A.2. The left panel shows that ENDF/B7.1 is systematically higher than experimental data for 
6
Li 

(n,tot) at neutron energies En = 0.22 to 0.27 MeV. The right panel shows that ENDF/B7 is systematically 

lower than the experimental data for 
6
Li (n,tot) at neutron energies En=0.6 to 2 MeV. 

 

FIG A.3. The The left panel shows that ENDF/B7.1 systematically deviates from experimental data for 
6
Li (n,tot) at energies En = 2 to 4 MeV，and the right panel shows it is systematically higher than 

experimental data for 
6
Li (n,tot) at energies En=4 to 12 MeV. 

 

FIG A.4. The left panel shows that ENDF/B7.1 is systematically higher than experimental data for 
6
Li 

(n,n) at neutron energies En = 0.0001 to 0.01 MeV, while the right panel shows that it is systematically 

higher than the experimental data of 
6
Li (n,n) at energies En = 0.2 to 0.28 MeV. 
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FIG A.5. The left panel shows that ENDF/B7.1 is systematically lower than the experimental data of 
6
Li 

(n,n) for energies En = 0.6 to 2 MeV，and the right panel shows that it is systematically lower than the 

experimental data of 
6
Li (n,n) for energies En = 2 to 4 MeV. 

 

FIG A.6. The left panel shows that ENDF/B7.1 is systematically lower than the experimental data of 
6
Li 

(n,t) for energies En = 0.22 to 0.27 MeV，and the right panel shows that it is systematically lower than 

experimental data of 
6
Li (n,t) for energies En = 4 to 7 MeV. 
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