Technical Meeting on the Development of Software Programs and Database Tools for Modelling Edge Plasma Processes in Fusion Devices

Summary Report of the Meeting
IAEA Headquarters, Vienna, Austria
27 – 29 November 2019

Prepared by

C. Hill
Nuclear Data Section, International Atomic Energy Agency
Vienna, Austria

December 2019

IAEA Nuclear Data Section
Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
Selected INDC documents may be downloaded in electronic form from
http://nds.iaea.org/publications
or sent as an e-mail attachment.
Requests for hardcopy or e-mail transmittal should be directed to
NDS.Contact-Point@iaea.org
or to:
Nuclear Data Section
International Atomic Energy Agency
Vienna International Centre
PO Box 100
1400 Vienna
Austria

Printed by the IAEA in Austria
December 2019
Technical Meeting on the Development of Software Programs and Database Tools for Modelling Edge Plasma Processes in Fusion Devices

Summary Report of the Meeting
IAEA Headquarters, Vienna, Austria
27 – 29 November 2019

Prepared by

C. Hill
Nuclear Data Section, International Atomic Energy Agency
Vienna, Austria

ABSTRACT

A Technical Meeting formulating new and reviewing existing standards and software tools for representing, storing and classifying atomic and molecular species, states and plasma-relevant processes was held at IAEA Headquarters in Vienna from 27 – 29 November 2019. 12 IAEA staff and participants from 6 Member States attended the meeting. This report summarises their discussions and the meeting conclusions and includes drafts of the updated standards documents, which are freely-available on the website of the Atomic and Molecular Data Unit in their final form.

December 2019
Table of Contents

1. Introduction 7
2. Proceedings 9
3. Discussions 12
4. Summary and Recommendations 19
 Appendix 1: Participants 19
 Appendix 2: Meeting Agenda 21
 Appendix 3: Abstracts 24
 Appendix 4: Classification of Processes in Plasma Physics (Draft Version 2.0) 29
 Appendix 5: Draft Standards for the Representation of Atomic and Molecular Species and States in Databases 38
1. Introduction

The accurate and unambiguous identification of atomic and molecular species, states and processes is essential to the effective description of data concerning them. Although many alternative standards have been proposed and implemented, none has been universally adopted by the plasma physics and spectroscopy community in their data services. This introduction will consider, in turn, the two broad areas of identifying species and their states, and of identifying the collisional and other processes that such species undergo, with a particular focus on plasma physics.

1.1 Atomic and molecular species

The two broad categories of identifiers for species are those which assign arbitrary numbers or strings to a species and those which attempt to encode the molecular structure into a single string. The former method, of course, requires the maintenance of a database in which to look up details concerning a species from its identifier. The most comprehensive such database may be the Chemical Abstracts Services (CAS) Registry, a catalogue of unique numerical identifiers for (as of November 2019) 156,000,000 organic and inorganic substances referenced in the scientific literature since the early 1800s[1]. ChemSpider[2] is a similar, free chemical structure database, containing information on more than 78,000,000 molecules, owned by the UK Royal Society of Chemistry.

Similar registries exist for the fields of organic chemistry (for example, the Beilstein database[3]), inorganic and organometallic chemistry (Gmelin[4]) bioinformatics (ChEBI[5], ChEMBL[6], PubChem[7]) and for regulatory purposes (EC Number[8], UN Number[9], CompTox Chemicals Dashboard[10]). These databases are much more limited in scope, since they are restricted to molecules of interest to specified research domains.

Of the standards that encode the molecular structure in their identifiers, the most widely-used are the XML-based Chemical Markup Language (CML)[11], the Simplified molecular-input line-entry system (SMILES)[12] and the International Chemical Identifier (InChI)[13].

For use in databases of processes for astrophysical, fusion and other plasma applications, no single standard currently provides an adequate method of unambiguously identifying species: common problems in the case of databases using arbitrary identifiers are incompleteness and ambiguity over the phase, isotopic composition and isomeric forms of molecules. The CML standard lacks software tools for parsing and validating identifiers (and has apparently not been updated since 2012), whilst SMILES and InChI can be cumbersome to use and struggle to reliably and unambiguously identify isotopologues (particularly those of inorganic compounds involving isotopes of hydrogen) and metal hydrides.

In the absence of any concise and easy-to-use convention in widespread use for the description of even simple systems such as atomic ions, where fully word-processed solution is not possible, a range of plain-text notations are used in the scientific literature. For example, the highly-charged tungsten ion conventionally written as W^{63+} is variously
indicated by the strings “W LXIV”, “Na-like W”, “W+63”, “W^{+63}”, and “W^{+63}”, (the last examples two (ab)using the syntax of LaTeX and HTML).

There are few, standards in use for the description of the internal states of atomic and molecular species. The XSAMS format, initially developed at the IAEA in 2001 and subsequently developed within Virtual Atomic and Molecular Data Centre (VAMDC) Consortium[14] provides a comprehensive XML-based standard for describing atomic and molecular states, but typically requires several nested XML elements per state and is intended to be machine- rather than human-readable. In the absence of any simple standard for the specification of such states, authors in the scientific literature have resorted to images, un-rendered mark-up or verbose description in their titles and article metadata. Some representative examples are given below.

Infrared emission spectroscopy of the a\$\prime\$3\$\{\upSigma}\$ band of \{CS\}

PAPER

Isotope shifts of the 1s^22s^2p(J) \rightarrow 1s^22s^2 transition energies in Be-like thorium and uranium

Calculations of the High Lying (2pns)^{(1,3)P} and (2pnd)^{(1,3)P} Rydberg States of the be Atom via the Modified Atomic Orbital Theory

The lack of a easy-to-use standard in this area means that such articles are hard to search for and are not easily transcribed into a bibliography.

1.2 Collisional processes in plasmas

The IAEA published a document in 2003 attempting to classify collisional and other processes and to assign each a recommended 3-letter code for use in databases [15]. This document received input from experts from the IAEA, the US National Institute of Standards and Technology (NIST) and the Controlled Fusion Atomic Data Center (CFADC) at Oak Ridge National Laboratory (ORNL), in Tennessee, US. The standards referred to three main databases, the CFADC database at Oak Ridge, GAPHYOR (“GAz-PHYsics-ORsay”) at Université Paris-Sud, France, and AMBDAS (“Atomic and Molecular Bibliographic Data System”) at the IAEA. Only the last of these databases is still extant.
The meeting reported here has updated this document and released Version 2.0 of the recommended classifications[16] with the redundant information removed and an extended set of plasma and other processes considered.

[1] https://www.cas.org/about/cas-content

[3] Access to the Beilstein database is through the Reaxys web-based tool, which is licensed by the Elsevier publishing company https://www.reaxys.com/

[4] Based originally on Leopold Gmelin’s *Handbook of Inorganic Chemistry*, published in 1817, this database is also now searchable through Reaxys.

[5] Chemical Entities of Biological Interest: https://www.ebi.ac.uk/chebi/

[9] UN numbers (United Nations numbers) are four-digit numbers that identify hazardous materials with a focus on their transport: http://www.unece.org/trans/danger/danger.html

[10] The CompTox Chemicals Dashboard is an online database maintained by the US Environmental Protection Agency (EPA) for regulatory purposes.

2. Proceedings

The Meeting was opened by the Head of the Atomic and Molecular Data Unit, C. Hill. After the welcoming address and some administrative formalities, participants introduced
themselves and the Agenda was adopted. As meeting convener, C. Hill outlined the scope and background to the meeting, and described previous relevant publications and standards in the area of atomic and molecular physics.

Grzegorz KARWASZ (Nicolaus Copernicus University, Toruń, Poland) described his research group’s work on the production of total and partial electron scattering cross sections for fusion and other applications. The particular difficulty of measuring accurate electronic excitation (as opposed to elastic scattering or ionization) cross sections was highlighted.

Bratislav MARINKOVIĆ (Laboratory for Atomic Collision Processes, Institute of Physics Belgrade, Serbia) gave a detailed account of elastic electron scattering differential cross section data in the Belgrade Electron-Atom/Molecule DataBase (BEAMDB)[1]; the need for a set of standards for codifying atomic and molecular species and states to facilitate interoperability with other databases was emphasised.

Carlo Maria ZWÖLF (Paris Observatory, France), on behalf of colleagues Marie-Lise DUBERNET and Nicolas MOREAU, presented an account of the present status of the Virtual Atomic and Molecular Data Centre[2, 3], an interoperable e-infrastructure providing a portal to query and retrieve atomic and molecular data from around 30 online databases in a standard format, XSAMS. An important recent development is the ability for this portal to archive user queries in a “Query Store” and to deposit the corresponding XSAMS documents in the Zenodo repository[4] operated by CERN, where they can be assigned Digital Object Identifiers (DOIs). The VAMDC have also been working with the Research Data Alliance[5] and Scholix initiative[6] to promote Open Data based on the FAIR principle[7]: that research data should be Findable, Accessible, Interoperable and Reusable.

Sebastian MOHR (Quantemol LTD, UK) described the approach taken by Quantemol and University College London to the production of plasma chemistries: assemblies of plasma reactions (collisional processes) for modelling the behaviours of plasmas of a given composition for industrial and other purposes. The QuantemolDB[8] data model and implementation was outlined, and the internal standards used to specify atomic and molecular species and states described.

Christian ENDRES (Max Planck Institute for Extraterrestrial Physics, Germany) gave an account of the current status of the Cologne Database for Molecular Spectroscopy (CDMS) [9], a catalogue of microwave spectroscopic data used by astrophysicists in research concerning the interstellar medium (ISM) and circumstellar envelopes.

Thomas MARQUART (Uppsala University, Sweden) described the Vienna Atomic Line Database (VALD)[10], a catalogue of data concerning atomic (and diatomic) transitions significantly contributing to absorption in stellar spectra. VALD contains data for a wide variety of atom and ion systems whose electronic states can only be accurately specified using one of several angular momentum coupling schemes (LS-, JJ-, JK-, LK-coupling). The VALD developers have formulated a comprehensive notation for the description of such states[11].
Christian HILL (Atomic and Molecular Data Unit, International Atomic Energy Agency), summarised the Unit’s ongoing activities in support of fundamental data for fusion applications and gave illustrative examples of the need for new standards for the description of atomic and molecular species and states in this and other, related fields.

Ludmila MARIAN (Nuclear Data Section, International Atomic Energy Agency) gave an account of the available software tools for conducting Open Science, with a particular focus on those provided by CERN: the Zenodo repository[4], the CERN Document Server (CDS) [12] and reproducible research data analysis with the REANA tool[13].

The meeting then split into two groups to work on the recommendation of standards in (a) collisional processes, with a view to the drafting of version 2.0 of a document classifying such processes; and (b) the description of atomic and molecular species and states. A summary of these recommendations is given in Section 4 of this report.

The remainder of the meeting was spent in discussions reviewing currently-active databases in fundamental atomic and molecular physics, the need and prospects for databases and workflows to promote open data methodologies and exchange. The meeting participants collectively assessed and evaluated a draft of the recommendations to be made, and future work and collaborations were planned.

[8] https://quantemoldb.com
[9] https://cdms.astro.uni-koeln.de/
3. Discussions

3.1 Currently-active data resources for atomic and molecular physics

The following is a non-exhaustive list of databases of fundamental atomic and molecular data for collisional and spectroscopic processes known to be active (that is, currently maintained and updated in the last five years).

ADAMANT

http://www.adamant.tfai.vu.lt/

An online, open-access database containing theoretical high-precision spectroscopic parameters and electron/photon interaction with ion parameters for the complex atoms and multicharged ions developed at Vilnius University, Lithuania. Continuously updated.

ADAS

http://www.adas.ac.uk/index.php

The Atomic Data and Analysis Structure (ADAS) is an interconnected set of computer codes and data collections for modelling the radiating properties of ions and atoms in plasmas. Its applications are in plasmas in the interstellar medium, and stellar atmospheres, industrial processes, and experimental thermonuclear fusion devices. Continuously updated.

ALADDIN

https://www-amdis.iaea.org/ALADDIN/

ALADDIN (A Labelled Atomic Data INterface) is a database of evaluated and recommended atomic, molecular and plasma-surface interaction data for fusion applications maintained by the International Atomic Energy Agency. Continuously updated.

AMBDAS

https://www-amdis.iaea.org/AMBDAS/

The Atomic and Molecular Bibliographic Data System (AMBDAS) is a bibliographic database of literature on fundamental atomic and molecular processes for fusion applications maintained by the International Atomic Energy Agency. Continuously updated.

BASECOL
https://basecol.vamdc.eu/

A database devoted to collisional ro-vibrational excitation of molecules by colliders including atoms, ions, molecules, and electrons. Continuously updated.

BEAMDB

http://servo.aob.rs/emol/

Electron interaction cross sections for elastic scattering, electron excitation, ionization and total scattering. Continuously updated.

CDMS

https://cdms.astro.uni-koeln.de/

The Cologne Database for Molecular Spectroscopy is a database of microwave spectroscopic data concerning 900+ species in the interstellar medium (ISM) and circumstellar envelopes. Continuously updated (2–3 updates per month).

CDSD

CHIANTI

https://www.chiantidatabase.org/chianti_linelist.html

ECaSDa, GeCaSDa, MeCaSDa, RuCaSDa, SHeCaSDa, TFMeCaSDa

http://vamdc.icb.cnrs.fr/PHP/

A suite of “Calculated Spectroscopic Databases (CaSDa)” for the individual molecules: C2H4 (ECaSDa), GeH4 (GeCaSDa), CH4 (MeCaSDa), RuO4 (RuCaSDa), SF6 (SHeCaSDa), CF4 (TFMeCaSDa). Updated as new calculations are completed.

Electron Scattering Cross Sections at UMK
A database of electron-atom and electron-molecule scattering cross sections maintained by the group of Grzegorz Karwasz at Nicolaus Copernicus University in Toruń (Uniwersytet Mikołaja Kopernika w Toruniu, UMK). Continuously updated.

ExoMol

http://exomol.com/

A database of molecular line lists that can be used for spectral characterisation and simulation of exoplanet and cool star atmospheres. Since some line lists in this collection are extremely large (up to 10^{14} lines), a service to produce absorption cross section data at a user-defined resolution is provided. Continuously updated.

GEISA

http://cds-espri.ipsl.upmc.fr/geisa/

A spectroscopic line list database for atmospheric applications with an interactive interface. Continuously updated.

Grotrian

http://grotrian.nsu.ru/en/

The “Grotrian” Electronic Structure of Atoms Information System is a collection of experimental and theoretical data on energy levels and transitions in atoms and ions with an interactive interface maintained by researchers at Novosibirsk State University in Russia. Continuously updated.

HITRAN

https://hitran.org/

HITRAN (HIgh-resolution TRANsmission) is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. Continuously updated, with major releases every four years.

IDEADB

http://ideadb.uibk.ac.at/

A database of cross sections for dissociative electron attachment to molecules. Apparently no longer updated, but the web service is still useable.

JPL Molecular Spectroscopy Database
A companion database to the CDMS catalogue, this is a compilation of rotational transition frequencies and intensities of molecules of astrophysical interest. Continuously updated.

KIDA

http://kida.astrophy.u-bordeaux.fr/

The Kinetic Database for Astrochemistry is a database of kinetic data of interest for astrochemical (interstellar medium and planetary atmospheres) studies. Continuously updated.

LXCat

https://fr.lxcat.net/data/set_type.php

A database of electron- and ion-scattering cross sections, swarm parameters, reaction rates, energy distribution functions and other data required for modelling low-temperature plasmas initiated in 2010 by researchers at Laboratoire des Plasmas et Conversion d’Energie (LAPLACE), a laboratory operated jointly by the CNRS, the University of Toulouse and the Institut Polytechnique of Toulouse. Continuously updated.

MolD

http://servo.aob.rs/mold/

A database of photodissociation cross sections with an interactive interface, run by the Institute of Physics Belgrade and Astronomical Observatory Belgrade. Continuously updated.

NIFS Databases

https://dbshino.nifs.ac.jp/nifsdb/

A suite of databases of fundamental atomic and molecular data for fusion applications developed and maintained by the Atomic and Molecular Research Center at the National Institute for Fusion Science, Japan. Continuously updated.

NIST Atomic Spectra Database (ASD)

https://physics.nist.gov/PhysRefData/ASD/lines_form.html

A database of radiative transitions and energy levels in atoms and atomic ions managed by the US National Institute of Standards and Technology. Continuously updated.
PEARL

http://pearl.kaeri.re.kr/pearl/

The Photonic Electronic Atomic Reaction Library (PEARL) is a database of photoionization/electron-impact ionization and dielectronic recombination cross sections and rate coefficients maintained by the Atomic Data Center of the Korea Atomic Energy Research Institute (KAERI). Continuously updated.

QuantemolDB

https://www.quantemoldb.com/

A commercial database (with separate licensing terms for academic use) of plasma collisional processes and chemistries for industrial, astrophysical and fusion applications. Continuously updated.

SPECTR-W³

http://spectr-w3.sntz.ru/index.phtml

A database of spectroscopic properties of atoms and ions, including ionization potentials, energy levels, transition frequencies and intensities, and collisional data). Managed by the Joint Institute for High Temperatures (JIHT) of the Russian Academy of Sciences (RAS) and the All-Russian Scientific Research Institute Of Technical Physics (VNIITF). Last updated: since January 2014.

STARK-B

https://stark-b.obspm.fr/

TipTopbase

https://tiptopbase.obspm.fr/

Two databases: TIPbase, containing fine-structure atomic data computed for ions of astrophysical interest; and TOPbase, an online atomic database created as part of the Opacity Project (http://cdsweb.u-strasbg.fr/topbase/publi.html). Last updated: although the database itself may not have been updated for some time (2009?), the data service itself continues to run effectively.

UMIST RATE2012

http://udfa.ajmarkwick.net/
The UMIST Database for Astrochemistry contains reaction rate coefficient data for species of astrophysical interest, with a particular emphasis on hydrocarbons and their ions. Last updated: 2012.

VALD

http://vald.astro.uu.se/

The Vienna Atomic Line Database (VALD) is a collection of atomic and molecular transition parameters of astronomical interest. Now identifying as VALD3, it is provided by mirrored servers in Uppsala, Sweden, Vienna, Austria, and Moscow, Russia. Continuously updated.

3.2 Considerations and scope of the recommended of standards

3.2.1 Collisional processes in plasmas

In drafting a update to the “Classification of Processes”, it was noted that of the databases and data services referred to in Version 1.2 (2003) of this document, only the AMBDAS database still exists. Version 2.0 will therefore remove the historical reference to codes used by the CFADC and GAPHYOR databases.

In order to ensure backwards-compatibility, no process code definitions will be changed; where clarity is needed, new codes will be assigned. Older codes no longer recommended will be deprecated but their definitions still listed.

As a general principle, all processes categorised should be associated with a generic example, in which electrons are represented by ‘e\(^{-}\)’ and atoms by ‘A’, ‘B’, ‘C’, …

The recommended classifications will be available at the Atomic and Molecular Data Unit’s website, https://amdis.iaea.org/databases/ and in the form of a downloadable PDF document. A draft version is presented in Appendix 4 of this report.

3.2.2 Atomic and molecular species and states

The goal of the standards proposed for the description of atomic and molecular species and states at this Meeting is to provide a simple, plain-text based notation for unambiguously identifying atoms and ions, and their isotopes; small molecules, molecular ions, and their isotopologues; and the internal (electronic, vibrational, rotational) states of such species. Because of the wide variety of molecular structures possible for molecules with even a few atoms, “small” is left deliberately undefined: simple structures with many atoms, such as linear hydrocarbons without substituents, may easily be described by the proposed format, the notation may be cumbersome or impossible for cyclic or highly-branched species. The goal of the project is not the comprehensive description of all species, but the practical and
effective description of a large proportion of the species actually considered in plasma science and spectroscopy.

It was noted that any standard proposed in this area has a much better chance of being adopted if it is (a) associated with full documentation, including examples; (b) implemented on as many as possible “seed” databases which are widely used by the community; and (c) associated with software tools and libraries (including online applications) to assist in resolving and validating identifiers.

After some discussion, it was decided to build on the existing free, open-source PyValem tool, written in the Python programming language to define a vocabulary and grammar that can be used to specify species and states within the domain of interest here. A draft version of the PyValem tool, describing the syntax used is presented in Appendix 5 of this report; the document available at https://amdis.iaea.org/databases/ should be considered normative.

3.3 Miscellaneous comments

• The FOSTER Plus initiative[1], a two-year European Union-funded project to promote Open Science in research was noted.

• The following conferences to be held in 2020 were identified as relevant events at which to connect with communities likely to find the proposed standards useful:

 • ASA-HITRAN 2020[2]
 • International Symposium on the Physics of Ionized Gases (SPIG-2020)[3]
 • International Conference on Matter and Radiation at Extremes (ICMRE 2020)[4]
 • International Conference on the Physics of Highly Charged Ions (HCI-2020)[5]

• The standards are seen as complementary to the existing XML-based XSAMS format: the XSAMS Schema can be extended to include new collisional process codes and the “OrdinaryStructuralFormula” element is the obvious location for strings conforming to the standardised description of atomic and molecular species.

• It was noted that by creating standardised descriptive strings from existing XSAMS documents (including those deposited with the Zenodo repository), a database connecting publications (identified by DOI) with species (identified by standardised strings) could be constructed.

• The project to write a draft “manifesto” on Open Data principles initiated by the Open Data Libraries Workshop at the IEEE Nuclear and Plasma Sciences Society’s Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), held in Manchester, UK on 27 October 2019 was noted. This document is likely to focus on nuclear physics and at the time of writing is at a relatively early stage of preparation.
4. Summary and Recommendations

A draft document, version 2.0 of the “Classification of Processes” publication will be circulated amongst the meeting participants and subsequently to the broader plasma physics community, including members of the Data Centres Network[1].

The new classification codes will be incorporated into the next release of the ALADDIN and AMBDAS databases at the IAEA[2, 3].

After review by the VAMDC Consortium, the new process codes may be incorporated into the XSAMS Schema, and used in the VAMDC Species Store[4].

The recommended standards for describing atomic and molecular species and states will be described in a separate document, to be placed on the AMD Unit’s website at https://amdis.iaea.org/databases/ and an online service parsing and validating standardised strings will be implemented at a suitable location on the same server.

Subject to review and, potentially, modification or extension of the standards, the notation may be used on the VALD, CDMS, BASECOL, and BEAMDB databases, with a view to demonstrating its usage for further database services.

[1] https://amdis.iaea.org/DCN/

Appendix 1: Participants

Marie-Lise DUBERNET, Observatoire de Paris, 61 Avenue de L'Observatoire, 75014 PARIS, FRANCE
Christian ENDRES, Max Planck Institute for Extraterrestrial Physics, Gießenbachstrasse 1, 85748 GARCHING, GERMANY

Kalle HEINOLA, IAEA Division of Physical and Chemical Sciences, Nuclear Data Section, Vienna International Centre, A-1400 VIENNA, AUSTRIA

Christian HILL, IAEA Division of Physical and Chemical Sciences, Nuclear Data Section, Vienna International Centre, A-1400 VIENNA, AUSTRIA

Grzegorz KARWASZ, University Nicolaus Copernicus, Institute of Physics, ul. Grudziadzka 5-7, 87100 TORUN, POLAND

Ludmila MARIAN, IAEA Division of Physical and Chemical Sciences, Nuclear Data Section, Vienna International Centre, A-1400 VIENNA, AUSTRIA

Bratislav MARINKOVIĆ, Laboratory for Atomic Collision Processes, Institute of Physics Belgrade, 11080 BELGRADE, SERBIA

Thomas MARQUART, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 UPPSALA, SWEDEN

Sebastian MOHR, Quantemol LTD, 320 Angel, 320 City Road, EC1V 2NZ LONDON, UK

Carlo Maria ZWÖLF, Observatoire de Paris, 61 Avenue de L’Observatoire, 75014 PARIS, FRANCE
Appendix 2: Meeting Agenda

Wednesday, 27 November 2019

09:30 – 10:00 Christian HILL and Kalle HEINOLA: Welcome, introduction of the participants, adoption of the agenda

Session 1: Collisional Processes
Chair: Christian HILL

10:00 – 10:25 Grzegorz KARWASZ, Nicolaus Copernicus University, Toruń, Poland
Total and partial cross sections for electron scattering on atoms and molecules

10:25 – 10:50 Bratislav MARINKOVIĆ, Laboratory for Atomic Collision Processes, Institute of Physics Belgrade, Serbia
Elastic electron scattering by atomic particles and cross section representation in the Belgrade Electron-Atom/Molecule DataBase: BEAMDB

10:50 – 11:20 Coffee Break

11:20 – 12:10 Marie-Lise DUBERNET, Paris Observatory, France

12:10 – 12:35 Sebastian MOHR, Quantemol LTD, United Kingdom
Quantemol-DB: A species and reaction database for plasma applications

12:35 – 14:00 Lunch

Session 2: Atomic and Molecular Spectroscopy
Chair: Marie-Lise DUBERNET

14:00 – 14:30 Christian ENDRES, Max Planck Institute for Extraterrestrial Physics, Germany
The Cologne Database for Molecular Spectroscopy, CDMS: spectroscopic data for Astrochemists and Astrophysicists

14:30 – 15:00 Thomas MARQUART, Uppsala University, Sweden

15:00 – 15:30 Coffee Break

Session 3: Databases and Data Services at the IAEA
Chair: Kalle HEINOLA

15:30 – 17:00 Christian HILL, IAEA, Austria
Data activities of the Atomic and Molecular Data Unit
Thursday, 28 November 2019

Session 4: Databases and Data Services at the IAEA
Chair: Kalle HEINOLA

09:00 – 09:25 **Ludmila MARIAN, IAEA, Austria**
Open Science Tools

Session 5: Discussion: Atomic and Molecular Species and States

09:25 – 11:00 Discussion (all): Recommendations for identifying, classifying and representing atoms, molecules, ions and their states
11:00 – 11:30 Coffee Break
11:30 – 12:30 Discussion (all): Surfaces and plasma-surface interactions: description and representation

12:30 – 14:00 Lunch

Session 6: Discussion: Collisional Process Description and Classification

14:00 – 15:30 Discussion (all): Recommendations for classifying and exemplifying collisional processes
15:30 – 16:00 Coffee Break
16:00 – 17:30 Drafting of recommendations report; summary of discussions
19:00 – 21:30 Social Dinner
Friday, 29 November 2019

Session 7: Discussion: Database Implementation, Maintenance and Interoperability

09:00 – 11:00 Discussion (all): Structures for storage and querying of atomic and molecular data; Database implementations and sustainability

11:00 – 11:30 Coffee Break

11:30 – 13:00 Discussion (all): Facilitating interoperability between databases; Software tools for comparison and interconversion between data formats; Units

13:00 – 14:00 Lunch

Session 8: Discussion: Recommendations and Draft Report

14:00 – 16:00 Drafting of recommendations report; Summary of meeting

16:00 – 16:30 Concluding remarks; Close of meeting
Appendix 3: Abstracts

From Species to publications by going through data: the VAMDC species database and Query Store

Marie-Lise DUBERNET, Carlo Maria ZWOLF and Nicolas MOREAU
Paris Observatory, France

After recalling the functioning of the VAMDC species database and the Query Store, we will highlight the related main features of these services and will sketch possible future development for directly link species to publications.
The interpretation and analysis of astronomical observations crucially depends on the knowledge and availability of accurate rest frequencies and intensity information. Such information is usually generated from laboratory data for rest frequencies and complemented by quantum chemical calculations for intensity information.

The CDMS was founded in the year 1998 to provide such information for atoms and molecules of astrophysical and atmospheric interest to the astronomical and spectroscopical community in a standardized way. At present, the catalog covers mostly rotational transitions from the radio-frequency to the terahertz region and lower mid-infrared region. Its entries, together with those in the JPL catalog, cover a large fraction of more than 200 molecules detected in the interstellar medium (ISM) or in circumstellar envelopes (CSEs) of late type stars. Both databases are accessible through the Virtual Atomic and Molecular Data Centre.

Radio astronomical spectra are often analyzed under the assumption of local thermodynamic equilibrium (LTE), but deviations from LTE may be considerable at lower temperatures, especially in the diffuse ISM. In these cases it is often necessary to take into account collisional processes with H₂, He and/or with H and electrons. This task, to access and combine spectroscopic data together with collisional data, has been greatly simplified thanks to the infrastructure and tools developed by VAMDC.
Total and partial cross sections for electron scattering on atoms and molecules will be presented in a possibly wide (0.001 – 1000 eV) energy range. Total scattering and elastic cross sections are based mainly on experimental data, corrected whenever some systematical errors related to a specific technique used are suspected. Ionization total and partial cross sections are based on experiments; ionization total are further checked against Born-Bethe binary-encounter model [1]. Data for electronic excitation are poor: experiments may suffer from incorrect attribution of states and from normalization errors: the case of H2O and N2O will be discussed. For CH4 the theory (R-matrix) will be shown. Vibrational excitation have little direct experiments but one can deduce cross sections from Born approximation and (in resonances) from differences between total and elastic. Rotational will be based on R-matrix calculations. Comprehensive sets of data will be shown [2].

Elastic electron scattering by an atomic particle (atom/molecule/ion) we define as a scattering process that conserves the kinetic energy of the colliding particles. Elastic cross sections are usually measured for unpolarised beams of electrons and atomic particles at specific energies and angles and they are defined as differential cross sections (DCS). DCS represents the ratio between number of scattered particles in unit time and unit solid angle and the incoming current density. In the crossed-beam scattering experiments DCSs are determined through a rather complex expression involving geometrical and instrumental functions, averaging over the angular and energy resolution [1]. In the Belgrade Laboratory for Atomic Collisional Processes, many data have been experimentally obtained on electron scattering cross section for metal atomic particles (see for e.g. [2,3]) or data for reference gases (such as Ar [4]). Such type of collisional data, among the other (excitation, ionization, etc. cross sections), are presented in the Belgrade Electron-Atom/Molecule DataBase (BEAMDB) [5]. Representing the atomic/molecular states as a single string data within the current database, we faced with certain challenges that need to be overcome by codifying a set of standards.

Quantemol-DB: A species and reaction database for plasma applications

Sebastian Mohr,
Quantemol LTD, UK

The importance of computer simulations for the understanding of plasmas and the design of reactions is ever growing. However, accurate results can only be obtained with detailed knowledge about the chemical reactions both between electrons and heavy particles and between different heavy particles. This information is often scattered over several publications, so assembling a chemistry set for a given problem is an arduous task. To assist with a fast assembly of reaction sets from reliable sources, Quantemol started the Quantemol-DB project, an online database of species and reactions related to plasma applications.

The Quantemol-DB comprises a large collection of species and reactions along with either cross sections or reaction rate coefficients. It is currently primarily aimed at low temperature plasma applications but can easily be extended to other fields such as fusion plasmas. The database is complemented by some additional functionalities such as pre-assembled chemistry sets and a tool to assemble custom chemistry sets from the database. The assembled data can be downloaded in formats compatible with common simulation programmes such as COMSOL.

This presentation will give an overview over the underlying data model, with an emphasis on the classification of excited species and reactions, and a demonstration of the website interface.
Appendix 4: Classification of Processes in Plasma Physics (Draft Version 2.0)

Electron-Heavy Particle Interactions

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Reaction</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAE</td>
<td>Auger Electron Ejection</td>
<td>Electron-impact induced Auger electron ejection</td>
<td>$e^- + A \rightarrow A^{+} + 2e^-; A^{+} \rightarrow A^{*2+} + e^-$</td>
</tr>
<tr>
<td>EAS</td>
<td>Angular Scattering</td>
<td>Differential electron-scattering cross sections, usually as a function of energy and angle.</td>
<td></td>
</tr>
<tr>
<td>EBS</td>
<td>Bremsstrahlung</td>
<td>The emission of electromagnetic radiation by a charged particle as it is decelerated through Coulomb interactions with other charges; "free-free" radiation in the context of plasma physics.</td>
<td>$e^- + A \rightarrow e^- + A + h\nu$</td>
</tr>
<tr>
<td>EDA</td>
<td>Dissociative Attachment</td>
<td>Dissociative attachment</td>
<td>$e^- + AB \rightarrow A + B^-$</td>
</tr>
<tr>
<td>EDC</td>
<td>Dielectronic Capture</td>
<td>Dielectronic capture</td>
<td>$e^- + A^+ \rightarrow A^{**}$</td>
</tr>
<tr>
<td>EDE</td>
<td>Dissociative Excitation</td>
<td>Electron-impact dissociative excitation</td>
<td>$e^- + AB \rightarrow A^+ + B + e^-$</td>
</tr>
<tr>
<td>EDI</td>
<td>Dissociative Ionization</td>
<td>Electron-impact dissociative ionization</td>
<td>$e^- + AB \rightarrow A^+ + B + 2e^-$</td>
</tr>
<tr>
<td>EDP</td>
<td>Depolarization, Change of Polarization</td>
<td>Electron-impact change of polarization, including depolarization</td>
<td></td>
</tr>
<tr>
<td>EDR</td>
<td>Dissociative Recombination</td>
<td>Electron-impact dissociative recombination</td>
<td>$e^- + AB^+ \rightarrow A + B$</td>
</tr>
<tr>
<td>EDS</td>
<td>Dissociation</td>
<td>Electron-impact dissociation</td>
<td>$e^- + AB \rightarrow A + B + e^-$</td>
</tr>
<tr>
<td>EDT</td>
<td>Electron Detachment</td>
<td>Electron-impact detachment</td>
<td>$e^- + A^- \rightarrow A + 2e^-$</td>
</tr>
<tr>
<td>EDX</td>
<td>De-excitation</td>
<td>Generic inelastic collisional processes in which a scattered electron gains energy from the target particle.</td>
<td>$e^- + A^* \rightarrow e^- + A$</td>
</tr>
<tr>
<td>EEL</td>
<td>Elastic Scattering</td>
<td>Scattering of an electron with no change in energy.</td>
<td>$e^- + A \rightarrow e^- + A$</td>
</tr>
<tr>
<td>EEX</td>
<td>Excitation</td>
<td>Electron-impact excitation</td>
<td>$e^- + A \rightarrow e^- + A^*$</td>
</tr>
<tr>
<td>EFL</td>
<td>Fluorescence (Optical Emission)</td>
<td>Total optical emission following electron-impact events</td>
<td></td>
</tr>
<tr>
<td>EGN</td>
<td>General</td>
<td>General electron-impact processes that do not fall into any more specific category.</td>
<td></td>
</tr>
<tr>
<td>EHT</td>
<td>Transport</td>
<td>Transport cross sections: momentum, viscosity and higher-order.</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td>Equation</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>EIN</td>
<td>Ionization</td>
<td>$e^- + A \rightarrow A^+ + 2e^-$</td>
<td></td>
</tr>
<tr>
<td>EIP</td>
<td>Ion-Pair Formation</td>
<td>Electron-impact induced formation of a (positive, negative) ion pair $e^- + AB^+ \rightarrow A^+ + B^-$</td>
<td></td>
</tr>
<tr>
<td>ELB</td>
<td>Line Broadening, Shapes and Shifts</td>
<td>Data relating to the line shapes and positions of radiative transitions</td>
<td></td>
</tr>
<tr>
<td>EMI</td>
<td>Multiple Ionization</td>
<td>Electron-impact ionization to a charge state greater than +1 $e^- + A \rightarrow A^{n+} + (n+1)e^-$</td>
<td></td>
</tr>
<tr>
<td>EMT</td>
<td>Momentum Transfer</td>
<td>Electron impact momentum transfer</td>
<td></td>
</tr>
<tr>
<td>ENI</td>
<td>Negative Ion Formation</td>
<td>Electron-impact formation of negative ion (attachment) $e^- + A \rightarrow A^-$</td>
<td></td>
</tr>
<tr>
<td>ERC</td>
<td>Recombination</td>
<td>Electron-impact recombination $e^- + A^{n+} \rightarrow A^{(n-1)+}$</td>
<td></td>
</tr>
<tr>
<td>ERD</td>
<td>Dielectronic Recombination</td>
<td>Electron-impact dielectronic recombination $e^- + A^+ \rightarrow A^{**} \rightarrow A^* + h\nu$</td>
<td></td>
</tr>
<tr>
<td>ERO</td>
<td>Electron-Ion-Other Recombination</td>
<td>Electron-ion recombination involving a third body other than an electron $e^- + A^+ + B \rightarrow A + B$</td>
<td></td>
</tr>
<tr>
<td>ERR</td>
<td>Radiative Recombination</td>
<td>Electron-impact recombination with radiative emission $e^- + A^+ \rightarrow A + h\nu$</td>
<td></td>
</tr>
<tr>
<td>ERT</td>
<td>Three-Body Recombination</td>
<td>Electron-impact three-body recombination $e^- + e^- + A^+ \rightarrow A + e^-$</td>
<td></td>
</tr>
<tr>
<td>ERV</td>
<td>Rovibrational Excitation</td>
<td>Electron-impact rovibrational excitation $e^- + AB \rightarrow e^- + AB (v=\ast; J=\ast)$</td>
<td></td>
</tr>
<tr>
<td>ESF</td>
<td>Spin-Flip</td>
<td>Electron-impact change of spin state $e^- + [\uparrow]A \rightarrow e^- + [\uparrow']A$</td>
<td></td>
</tr>
<tr>
<td>ETS</td>
<td>Total Scattering</td>
<td>Total electron scattering cross sections</td>
<td></td>
</tr>
<tr>
<td>EUP</td>
<td>Unknown Products</td>
<td>Electron-impact collision with unknown products. Deprecated: use EGN (General) instead.</td>
<td></td>
</tr>
<tr>
<td>EXE</td>
<td>Electronic Excitation</td>
<td>Electron-impact electronic excitation $e^- + AB \rightarrow e^- + AB^*$</td>
<td></td>
</tr>
<tr>
<td>EXR</td>
<td>Rotational Excitation</td>
<td>Electron-impact rotational excitation $e^- + AB \rightarrow e^- + AB (J=\ast)$</td>
<td></td>
</tr>
<tr>
<td>EXV</td>
<td>Vibrational Excitation</td>
<td>Electron-impact vibrational excitation $e^- + AB \rightarrow e^- + AB (v=\ast)$</td>
<td></td>
</tr>
<tr>
<td>PAD</td>
<td>Scattering</td>
<td>Photon scattering (angular diffusion)</td>
<td></td>
</tr>
<tr>
<td>PAE</td>
<td>Auger Electron Ejection</td>
<td>Photon-induced Auger electron ejection $A + h\nu \rightarrow A^{+} + e^-; A^{+} \rightarrow A^{*2+} + e^-$</td>
<td></td>
</tr>
<tr>
<td>PCS</td>
<td>Compton Scattering</td>
<td>Inelastic scattering of a photon by a charged particle that decreases the photon energy.</td>
<td></td>
</tr>
<tr>
<td>PDP</td>
<td>Depolarization, Change of Polarization</td>
<td>Photon-induced change of polarization, including depolarization</td>
<td></td>
</tr>
</tbody>
</table>

Photon-Particle and Field-Particle Interactions
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDS</td>
<td>Photodissociation</td>
<td>Photodissociation of a molecule $\nu + AB \rightarrow A + B$</td>
</tr>
<tr>
<td>PDT</td>
<td>Photodetachment</td>
<td>Absorption of a photon inducing the removal of an electron from an anion to form a neutral species. $\nu + A^- \rightarrow A + e^-$</td>
</tr>
<tr>
<td>PEA</td>
<td>Effective Absorption, Total Diffusion</td>
<td>Effective Absorption, Total Diffusion of photons</td>
</tr>
<tr>
<td>PED</td>
<td>Elastic Diffusion</td>
<td>Photon elastic diffusion processes (Thomson scattering, Rayleigh scattering)</td>
</tr>
<tr>
<td>PES</td>
<td>Elastic Scattering</td>
<td>Scattering of a photon with no change in energy. $\nu + A \rightarrow \nu + A$</td>
</tr>
<tr>
<td>PEX</td>
<td>Photoexcitation</td>
<td>Photon absorption leading to excitation $\nu + A \rightarrow A^*$</td>
</tr>
<tr>
<td>PFF</td>
<td>Inverse Bremsstrahlung</td>
<td>Acceleration of a charged particle by a photon absorption process mediated by an electron-particle Coulomb interaction; "free-free absorption" in the context of plasma physics. $e^- + A + \nu \rightarrow A + e^-$</td>
</tr>
<tr>
<td>PFL</td>
<td>Fluorescence</td>
<td>Fluorescence $A^* \rightarrow A + \nu$</td>
</tr>
<tr>
<td>PGF</td>
<td>General Electromagnetic Field</td>
<td>Miscellaneous effects induced by an electromagnetic field</td>
</tr>
<tr>
<td>PGN</td>
<td>General</td>
<td>General photon-particle interaction processes which do not fall into any more specific category</td>
</tr>
<tr>
<td>PIN</td>
<td>Photoionization</td>
<td>Photon-induced ionization $\nu + A \rightarrow A^+ + e^-$</td>
</tr>
<tr>
<td>PIP</td>
<td>Ion-Pair Formation</td>
<td>Photon-induced formation of a (positive, negative) ion pair $AB + \nu \rightarrow A^+ + B^-$</td>
</tr>
<tr>
<td>PMA</td>
<td>Multiphoton Excitation</td>
<td>Absorption of more than one photon, leaving to excited and/or charged products $nh\nu + A \rightarrow A^+ / A^/ A^{+}$</td>
</tr>
<tr>
<td>PNL</td>
<td>Non-Linear Effects</td>
<td>Non-linear radiative effects</td>
</tr>
<tr>
<td>PRV</td>
<td>Rovibrational Excitation</td>
<td>Photon-induced rovibrational excitation $BC + \nu \rightarrow BC (v=, J=)$</td>
</tr>
<tr>
<td>PSE</td>
<td>Stark Effect</td>
<td>Spectral line-splitting caused by an external electric field</td>
</tr>
<tr>
<td>PTA</td>
<td>True Absorption</td>
<td>True Absorption of a photon</td>
</tr>
<tr>
<td>PTF</td>
<td>Interaction with Time-Varying Fields</td>
<td>General interactions with time-varying fields</td>
</tr>
<tr>
<td>PTS</td>
<td>Total Absorption, Total Scattering</td>
<td>Total photon absorption or scattering cross sections.</td>
</tr>
<tr>
<td>PXE</td>
<td>Electronic Excitation</td>
<td>Photon-induced electronic excitation $BC + \nu \rightarrow BC^*$</td>
</tr>
<tr>
<td>PXR</td>
<td>Rotational Excitation</td>
<td>Photon-induced rotational excitation $BC + \nu \rightarrow BC (J=*)$</td>
</tr>
<tr>
<td>PXV</td>
<td>Vibrational Excitation</td>
<td>Photon-induced vibrational excitation</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PZE</td>
<td>Zeeman Effect</td>
<td>Spectral line-splitting caused by a static magnetic field</td>
</tr>
</tbody>
</table>

Heavy Particle-Heavy Particle Interactions

<table>
<thead>
<tr>
<th>HAS</th>
<th>Association</th>
<th>Heavy-particle collision leading to association (i.e. bond formation)</th>
<th>(A + B \rightarrow AB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAS</td>
<td>Angular Scattering</td>
<td>Heavy-particle differential scattering cross sections, usually as a function of energy and angle.</td>
<td></td>
</tr>
<tr>
<td>HAT</td>
<td>Attenuation</td>
<td>Attenuation</td>
<td></td>
</tr>
<tr>
<td>HCX</td>
<td>Charge Transfer</td>
<td>Heavy-particle impact leading to charge-transfer.</td>
<td>(A^+ + B \rightarrow A + B^-; A^- + B \rightarrow A + B^+)</td>
</tr>
<tr>
<td>HDC</td>
<td>Dissociative Charge Transfer</td>
<td>Heavy-particle dissociative charge transfer</td>
<td>(A^+ + BC \rightarrow A + B^- + C)</td>
</tr>
<tr>
<td>HDS</td>
<td>Dissociation</td>
<td>Heavy-particle impact leading to dissociation (bond-breaking)</td>
<td>(A + BC \rightarrow A + B + C)</td>
</tr>
<tr>
<td>HDT</td>
<td>Detachment</td>
<td>Heavy-particle collisions leading to electronic detachment.</td>
<td>(A + B^- \rightarrow A + B + e^-)</td>
</tr>
<tr>
<td>HDX</td>
<td>De-excitation</td>
<td>Heavy-particle impact leading to de-excitation (decrease of total internal energy).</td>
<td>(A^* + B \rightarrow A + B)</td>
</tr>
<tr>
<td>HEL</td>
<td>Inelastic Energy Losses</td>
<td>Heavy-particle collisions leading to inelastic energy loss.</td>
<td></td>
</tr>
<tr>
<td>HES</td>
<td>Elastic Scattering</td>
<td>Scattering of heavy particles with no change in energy.</td>
<td>(A + B \rightarrow A + B)</td>
</tr>
<tr>
<td>HET</td>
<td>Energy Transfer</td>
<td>Heavy-particle collisions with energy transfer between the particles.</td>
<td></td>
</tr>
<tr>
<td>HEX</td>
<td>Excitation</td>
<td>Heavy-particle impact leading to excitation (increase of total internal energy).</td>
<td>(A + B \rightarrow A^* + B)</td>
</tr>
<tr>
<td>HFL</td>
<td>Fluorescence</td>
<td>Heavy particle collisional excitation followed by radiative decay.</td>
<td>(A + B \rightarrow A^* + B; A^* \rightarrow A + h\nu)</td>
</tr>
<tr>
<td>HGN</td>
<td>General</td>
<td>General heavy-particle collisional processes which do not fall into any more specific category</td>
<td></td>
</tr>
<tr>
<td>HIN</td>
<td>Ionization</td>
<td>Heavy-particle collisions leading to ionization</td>
<td>(A + B \rightarrow A + B^- + e^-)</td>
</tr>
<tr>
<td>HIP</td>
<td>Interaction Potentials</td>
<td>Interaction potentials between heavy particles.</td>
<td></td>
</tr>
<tr>
<td>HIR</td>
<td>Interchange Reactions</td>
<td>Heavy-particle interchange reactions</td>
<td>(A + BC \rightarrow AB + C)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>HLB</td>
<td>Line Broadening, Shapes and Shifts</td>
<td>Data relating to line shapes and positions determined by heavy-particle collisions.</td>
<td></td>
</tr>
<tr>
<td>HMN</td>
<td>Mutual Ion-Ion Neutralization</td>
<td>Neutralization of heavy-particle ions. $A^+ + B^- \rightarrow A + B$</td>
<td></td>
</tr>
<tr>
<td>HPN</td>
<td>Penning Ionization</td>
<td>Ionization through collision of an internally-excited heavy-particle with another heavy particle. $A^* + B \rightarrow A + B^+ + e^-$</td>
<td></td>
</tr>
<tr>
<td>HRC</td>
<td>Recombination</td>
<td>Heavy-particle collisions with recombination.</td>
<td></td>
</tr>
<tr>
<td>HRV</td>
<td>Rovibrational Excitation</td>
<td>Heavy particle impact rovibrational excitation. $A^+ + B^- \rightarrow A + B + e^-$</td>
<td></td>
</tr>
<tr>
<td>HST</td>
<td>Electron-Stripping</td>
<td>Ionization of the projectile in a heavy-particle collision. $A + B \rightarrow A^+ + B + e^-$</td>
<td></td>
</tr>
<tr>
<td>HTI</td>
<td>Transfer Ionization</td>
<td>Transfer of an electron from an atom to an ion, followed by further ionization. $A + B^+ \rightarrow A^{2+} + B + e^-$</td>
<td></td>
</tr>
<tr>
<td>HTS</td>
<td>Total Scattering</td>
<td>Total heavy particle scattering cross sections.</td>
<td></td>
</tr>
<tr>
<td>HUP</td>
<td>Unknown Products</td>
<td>Heavy-particle collisions/reactions with unknown products. $A + B \rightarrow ?$</td>
<td></td>
</tr>
<tr>
<td>HXE</td>
<td>Electronic Excitation</td>
<td>Heavy particle impact electronic excitation. $A + BC \rightarrow A + BC^*$</td>
<td></td>
</tr>
<tr>
<td>HXF</td>
<td>Fine-Level Excitation</td>
<td>Heavy particle impact fine-level excitation. $A + B \rightarrow A + B (J=\ast)$</td>
<td></td>
</tr>
<tr>
<td>HXH</td>
<td>Hyperfine Excitation</td>
<td>Heavy particle impact hyperfine-level excitation. $e^- + AB \rightarrow e^- + AB (F=\ast)$</td>
<td></td>
</tr>
<tr>
<td>HXR</td>
<td>Rotational Excitation</td>
<td>Heavy particle impact rotational excitation. $A + BC \rightarrow A + BC (J=\ast)$</td>
<td></td>
</tr>
<tr>
<td>HXT</td>
<td>Excitation Transfer</td>
<td>Transfer of internal excitation in a heavy-particle collision. $A^* + B \rightarrow A + B^*$</td>
<td></td>
</tr>
<tr>
<td>HXV</td>
<td>Vibrational Excitation</td>
<td>Heavy particle impact vibrational excitation. $A + BC \rightarrow A + BC (v=\ast)$</td>
<td></td>
</tr>
</tbody>
</table>

Structure and Spectra

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAD</td>
<td>Autodetachment</td>
<td>Autodetachment in atoms and molecules.</td>
</tr>
<tr>
<td>SAI</td>
<td>Autoionization</td>
<td>Autoionization processes in atoms and molecules.</td>
</tr>
<tr>
<td>SDP</td>
<td>Dynamic Polarizability</td>
<td>Dynamic polarizability of atoms and molecules.</td>
</tr>
<tr>
<td>SDS</td>
<td>Autodissociation</td>
<td>Autodissociation in atoms and molecules.</td>
</tr>
<tr>
<td>SEW</td>
<td>Energy Levels and Wavelengths</td>
<td>Energy levels and transition frequencies / wavelengths of atoms and molecules.</td>
</tr>
<tr>
<td>SFT</td>
<td>Forbidden Transitions</td>
<td>Forbidden transitions in atoms and molecules.</td>
</tr>
<tr>
<td>SGN</td>
<td>General</td>
<td>General spectral processes and structural properties that do not fall into any more specific category.</td>
</tr>
<tr>
<td>SHF</td>
<td>Hyperfine Structure</td>
<td>Hyperfine structure of atoms and molecules.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>SIA</td>
<td>Interatomic Potentials</td>
<td>Interatomic Potentials as they relate to the spectral or structural properties of atoms or molecules.</td>
</tr>
<tr>
<td>SIE</td>
<td>Isoelectronic sequences</td>
<td>Isoelectronic sequences of atoms</td>
</tr>
<tr>
<td>SIP</td>
<td>Ionization Potentials</td>
<td>Ionization potentials of atoms and molecules.</td>
</tr>
<tr>
<td>SIR</td>
<td>Infrared Spectra</td>
<td>Infrared spectra of atoms and molecules</td>
</tr>
<tr>
<td>SLS</td>
<td>Line Broadening, Shapes and Shifts</td>
<td>Data relating to line shapes and positions with a focus on spectroscopy or atomic/molecular structure.</td>
</tr>
<tr>
<td>SMM</td>
<td>Magnetic Moments</td>
<td>Magnetic moments (dipolar, quadrupolar, etc.) of atoms and molecules.</td>
</tr>
<tr>
<td>SPM</td>
<td>Polarizabilities, Electric Moments</td>
<td>Polarizabilities and electric moments (dipolar, quadrupolar, etc.) of atoms and molecules.</td>
</tr>
<tr>
<td>SQE</td>
<td>QED Effects</td>
<td>QED effects in atoms and molecules</td>
</tr>
<tr>
<td>SRA</td>
<td>Raman spectroscopy</td>
<td>Raman spectroscopy of atoms and molecules.</td>
</tr>
<tr>
<td>SRP</td>
<td>Relaxation Processes</td>
<td>Relaxation processes in atoms and molecules.</td>
</tr>
<tr>
<td>SRS</td>
<td>Rotational Spectra</td>
<td>Rotational spectra of molecules</td>
</tr>
<tr>
<td>SRY</td>
<td>Rydberg States</td>
<td>Rydberg states of atoms and molecules.</td>
</tr>
<tr>
<td>SSM</td>
<td>Potential Curves and Structure of Molecules</td>
<td>Potential energy curves/surfaces and molecular structure data.</td>
</tr>
<tr>
<td>STP</td>
<td>Transition Probabilities and Oscillator Strengths</td>
<td>Transition probabilities (Einstein A-factors), oscillator strengths and line intensities of radiative transitions in atoms and molecules.</td>
</tr>
<tr>
<td>SUV</td>
<td>UV/VUV/XUV Spectra</td>
<td>UV spectra of atoms and molecules from ~10 nm (extreme ultraviolet) to ~400 nm (near ultraviolet).</td>
</tr>
<tr>
<td>SVS</td>
<td>Visible Spectra</td>
<td>Visible spectra of atoms and molecules</td>
</tr>
<tr>
<td>SVS</td>
<td>Vibrational Spectra</td>
<td>Vibrational spectra of molecules</td>
</tr>
<tr>
<td>SXR</td>
<td>X-Ray Spectra</td>
<td>X-Ray spectra of atoms and molecules</td>
</tr>
</tbody>
</table>

Particle-Matter Interactions

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>Accomodation</td>
<td>Accomodation</td>
</tr>
<tr>
<td>MAD</td>
<td>Adsorption</td>
<td>Adsorption on a surface</td>
</tr>
<tr>
<td>MBS</td>
<td>Backscattering</td>
<td>Backscattering from a surface</td>
</tr>
<tr>
<td>MCP</td>
<td>Charge State Population</td>
<td>Charge state population of condensed materials.</td>
</tr>
<tr>
<td>MCR</td>
<td>Chemical Reactions</td>
<td>Chemical reactions at a surface</td>
</tr>
<tr>
<td>MCS</td>
<td>Chemical Sputtering</td>
<td>Chemical sputtering of surfaces.</td>
</tr>
<tr>
<td>MDE</td>
<td>Desorption</td>
<td>Desorption from a surface.</td>
</tr>
<tr>
<td>MDP</td>
<td>Deposition</td>
<td>Deposition on a surface.</td>
</tr>
<tr>
<td>MEL</td>
<td>Energy Loss and Stopping Power</td>
<td>Energy loss and stopping power of materials with respect to a flux of particles.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Details</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>MEP</td>
<td>Excited State Population</td>
<td>Excited state population of condensed materials.</td>
</tr>
<tr>
<td>MER</td>
<td>Erosion</td>
<td>Erosion of a surface (over a longer timescale than sputtering)</td>
</tr>
<tr>
<td>MGN</td>
<td>General</td>
<td>General particle-matter interaction processes that do not fall into any more specific category.</td>
</tr>
<tr>
<td>MIR</td>
<td>Particle-Impact Induced Radiation</td>
<td>Radiation induced by particle impact on surfaces.</td>
</tr>
<tr>
<td>MMS</td>
<td>Multiple Scattering</td>
<td>Multiple scattering of particles within a material.</td>
</tr>
<tr>
<td>MNE</td>
<td>Neutralization, Ionization, Dissociation</td>
<td>Neutralization, ionization or dissociation at a surface.</td>
</tr>
<tr>
<td>MPE</td>
<td>Photoelectric Ejection of Electrons</td>
<td>Ejection of electrons due to incoming radiation (the photoelectric effect).</td>
</tr>
<tr>
<td>MMP</td>
<td>Permeation</td>
<td>Permeation of particles through a solid</td>
</tr>
<tr>
<td>MPR</td>
<td>Particle Range</td>
<td>Data relating to the particle transmission through a material.</td>
</tr>
<tr>
<td>MPS</td>
<td>Physical Sputtering</td>
<td>Physical sputtering of surfaces.</td>
</tr>
<tr>
<td>MRE</td>
<td>Reemission</td>
<td>Re-emission of accommodated particles at a surface</td>
</tr>
<tr>
<td>MRF</td>
<td>Reflection</td>
<td>Reflection of particles from a surface.</td>
</tr>
<tr>
<td>MRH</td>
<td>Reflection of Heavy Particles from Surfaces</td>
<td>Reflection of heavy particles from surfaces</td>
</tr>
<tr>
<td>MRL</td>
<td>Reflection of Electrons from Surfaces</td>
<td>Reflection of electrons from surfaces</td>
</tr>
<tr>
<td>MRS</td>
<td>Radiation-Enhanced Sublimation</td>
<td>Radiation-enhanced sublimation of solids.</td>
</tr>
<tr>
<td>MSD</td>
<td>Surface Damage</td>
<td>Surface damage of a surface due to impinging particles over a short timescale.</td>
</tr>
<tr>
<td>MSE</td>
<td>Secondary Electron Emission</td>
<td>Secondary electron emission from a surface.</td>
</tr>
<tr>
<td>MSI</td>
<td>Surface Interactions</td>
<td>Interactions at surfaces.</td>
</tr>
<tr>
<td>MSP</td>
<td>Sputtering</td>
<td>Sputtering of surface material by impinging particles</td>
</tr>
<tr>
<td>MTD</td>
<td>Trapping, Detrapping</td>
<td>Trapping and detrapping of accommodated particles in a solid.</td>
</tr>
<tr>
<td>MTR</td>
<td>Transmutation</td>
<td>Transmutation of nuclei in solid material by impact of subatomic particles.</td>
</tr>
<tr>
<td>MVP</td>
<td>Vapour Formation and Properties</td>
<td>Formation and properties of vapour in front of a surface; in the context of plasma physics, vapour shielding phenomena.</td>
</tr>
</tbody>
</table>

Data Compilations

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEH</td>
<td>Electron-Heavy Particle Interactions</td>
<td>Data compilations concerning electron-heavy particle interactions.</td>
</tr>
<tr>
<td>DGN</td>
<td>General</td>
<td>General data compilations that do not fall into any more specific category.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DHH</td>
<td>Heavy Particle-Heavy Particle Interactions</td>
<td>Data compilations concerning heavy particle-heavy particle interactions.</td>
</tr>
<tr>
<td>DPF</td>
<td>Photon-Particle and Field-Particle Interactions</td>
<td>Data compilations concerning photon-particle and field-particle interactions.</td>
</tr>
<tr>
<td>DPM</td>
<td>Particle-Matter Interactions</td>
<td>Data compilations concerning particle-matter interactions.</td>
</tr>
<tr>
<td>DSS</td>
<td>Structure and Spectra</td>
<td>Data compilations concerning atomic and molecular structure and spectra.</td>
</tr>
<tr>
<td>DTP</td>
<td>Transport Properties</td>
<td>Data compilations concerning transport properties.</td>
</tr>
</tbody>
</table>

Bibliographic Resources

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEH</td>
<td>Electron-Heavy Particle Interactions</td>
<td>Bibliographic data resources concerning electron-heavy particle interactions.</td>
</tr>
<tr>
<td>BGN</td>
<td>General</td>
<td>General bibliographic data resources that do not fall into any more specific category.</td>
</tr>
<tr>
<td>BHH</td>
<td>Heavy Particle-Heavy Particle Interactions</td>
<td>Bibliographic data resources concerning heavy particle-heavy particle interactions.</td>
</tr>
<tr>
<td>BPF</td>
<td>Photon-Particle and Field-Particle Interactions</td>
<td>Bibliographic data resources concerning photon-particle and field-particle interactions.</td>
</tr>
<tr>
<td>BSS</td>
<td>Structure and Spectra</td>
<td>Bibliographic data resources concerning atomic and molecular structure and spectra.</td>
</tr>
<tr>
<td>BTP</td>
<td>Transport Properties</td>
<td>Bibliographic data resources concerning transport properties.</td>
</tr>
</tbody>
</table>
Appendix 5: Draft Standards for the Representation of Atomic and Molecular Species and States in Databases
pyvalem

Release 2.0

Christian Hill

Mar 25, 2020
INTRODUCTION TO PYVALEM

PyValem is a Python package for parsing, validating, manipulating and interpreting the chemical formulas, quantum states and labels of atoms, ions and small molecules.

Species and states are specified as strings using a simple and flexible syntax, and may be compared, output in different formats and manipulated using a variety of predefined Python methods.

1.1 Installation

For now:

```
python setup.py install
```

1.2 Examples

The basic (state-less) chemical formula class is `Formula`. A `Formula` object can be created by passing its constructor a valid string. This object contains attributes for producing its plain text, HTML and LaTeX representations, and for calculating its molar mass:

```
In [1]: from pyvalem.formula import Formula
In [2]: f = Formula('C2H5OH')
In [3]: print(f)
C2H5OH
In [4]: print(f.html)
C<sub>2</sub>H<sub>5</sub>OH
In [5]: print(f.latex)
$\text{C}_{2}\text{H}_{5}\text{O}\text{H}$
In [6]: print(f.rmm)  # g.mol⁻¹
46.069
```

Note that there is no underscore character (_) before between the element symbol and its stoichiometry. Isotopes are specified with the mass number placed before the element symbol, with both surrounded by parentheses. Do not use a caret (^) to indicate a superscript:
In [7]: f = Formula('\{14C\}')
In [8]: print(f.html)
¹⁴C
In [9]: print(f.rmm)
14.0032419884
In [10]: f = Formula('\{H2\{18O\}\}')
In [11]: print(f.rmm)
20.0151561279998

For isotopically-pure compounds, the mass returned is the atomic mass.

Charges are specified as +n or -n, where n may be omitted if it is 1. Do not use a caret (^) to indicate a superscript:

In [12]: f = Formula('\{H3O\}^+\}')
In [13]: print(f.charge)
1
In [14]: print(f.html)
H₃O⁺
In [15]: f = Formula('\{Co\{H2O\}\}^{6+2}')
In [16]: print(f.charge)
2
In [17]: print(f.html)
Co(H₂O)₆²⁺

“Stateful” species are formulas which consist of a valid Formula string, followed by whitespace, followed by a semicolon-delimited sequence of valid quantum state or label specifications. Stateful species know which states they possess and can render these states in different ways. For example:

In [18]: from pyvalem.stateful_species import StatefulSpecies
In [19]: ss1 = StatefulSpecies('\{Ne+ 1s2.2s2.2p5; \{2P_1/2\}\}')
In [20]: ss1.states
Out[21]: [1s2.2s2.2p5, 2P_{1/2}]
In [22]: ss1.states[1].__class__
Out[22]: pyvalem.atomic_term_symbol.AtomicTermSymbol
In [23]: ss1.html
Out[23]: 'Ne⁺ 1s²2s²2p⁵; 2P_{1/2}'

This HTML renders as:

Ne⁺ 1s²2s²2p⁵; 2P_{1/2}

Another example:

In [24]: ss2 = StatefulSpecies('\{52Cr\}^{1H} 1σ2.2σ1.1δ2.1π2; 6Σ+; v=0; J=2')
In [25]: ss2.html
Out[25]: ⁵²Cr¹H 1σ².2σ¹.1δ².1π²; 6Σ⁺; v=0; J=2

which produces:
$^{52}\text{Cr}^{1}\text{H} \, 1\sigma^2.2\sigma^1.1\delta^2.1\pi^2; \, 6\Sigma^+; \, v = 0; \, J = 2$

The syntax for writing different types of quantum state are described in later pages of this documentation.
A `Formula` object instance represents the chemical formula of an atom, isotope, ion, molecule, molecular ion, or certain sorts of other particle. The `Formula` class has methods for producing representations of the formula in HTML, LaTeX and plain text.

`Formula` objects are not supposed to be unique (different `Formula` objects can represent the same formula); nor is their syntax or this library designed to be applied to large or complex molecules. PyValem is intended as a lightweight, easy-to-use library with an expressive syntax for representing many common small atoms and molecules and their isotopes, states and reactions.

Furthermore, whilst some validation functionality is built into the library, PyValem does not attempt to verify that a provided formula is chemically plausible. In particular, it knows nothing about valence or oxidation state.

2.1 Instantiation

A `Formula` object may be instantiated by passing a valid string, conforming to the following grammar:

- Single atoms, with atomic weights given by a default natural isotopic abundance are specified with their element symbol, e.g. H, Be, Fr.
- Isotopes are specified in parentheses (round brackets) with the isotope mass number preceding the element symbol, e.g. (12C), (35Cl), (235U). Note that no caret (^) is used to indicate a superscript.
- Charged species are specified with the charge following the formula in the format +n or −n, where n may be omitted if it is 1. Do not use a caret (^) to indicate a superscript. For example, He+, C+2, W−, (79Br)−2.
- Molecular formulas are written as a sequence of element symbols (which may be repeated for clarity over the structure), with their stoichiometries specified as an integer following the symbol. No underscore (_) character is used. For example, H2O, (1H)2(16O), C2H6OH, CH3CH2OH, NH+, CO3+2.
- Moieties within formula can be bracketed for clarity, for example CH3C(CH3)2CH3.
- A limited number of formula prefixes are supported, for example L-CH3CH(NH2)CO2H, cis-CH3CHCHCH3, ortho-C6H4(CH3)2

- **There are some special species:**
 - e− is the electron;
 - e+ is the positron;
 - M is a generic third-body with no specific identity (and no defined mass or charge);
 - hν (or hv) is the photon.
2.2 Output as HTML, LaTeX and slugs

The `Formula` attributes `html` and `latex` return strings representing the formula in HTML and LaTeX respectively. The attribute `slug` returns a URL-safe slug which uniquely identifies the formula's plain text string. For example:

```python
In [1]: from pyvalem.formula import Formula

In [2]: f = Formula('')
In [3]: print(f.formula)   # or simply print(f)
Co(H2O)6+2

In [4]: print(f.html)
Co(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>

In [5]: print(f.latex)
\text{Co(H}_2\text{O)}_{6}^{2+}

In [6]: print(f.slug)
Co-_l_H2O_r_6_p2
```

The HTML and LaTeX representations render as:

Co(H₂O)₆²⁺

2.3 Formula Attributes

`Formula` objects can count atoms, calculate masses and record the total species charge:

```python
In [7]: f = Formula('CO3-2')
In [8]: print(f.natoms)
4
In [9]: print(f.rmm)
60.008

In [10]: print(f.charge)
-2

In [11]: lys = Formula('(NH3+)(CH2)4CH(NH2)CO2-')
In [12]: print(lys.natoms)
24

In [13]: print(lys.rmm)   # relative molecular mass
146.19

In [14]: print(lys.charge)
0
```

This last example is the Lysine zwitterion,

(NH₃)(CH₂)₄CH(NH₂)CO₂←

The same applies to isotopes and isotopically-pure molecules, in which case the exact mass is held by the `mass` attribute:

```python
In [15]: f = formula('(1H)(35Cl)+')
In [16]: print(f.mass)
15.9766777262
```
The stoichiometric formula can be output either in order of increasing atomic number (the default) or in alphabetical order:

```python
In [17]: print(lys.stoichiometric_formula())
H14C6N2O2

In [18]: print(lys.stoichiometric_formula('alphabetical'))
C6H14N2O2
```
PyValem recognises several different kinds of quantum states and labels and is able to deduce the state type, parse quantum numbers and symmetries from provided strings, and do some validation.

States of different types can be instantiated directly from their class or associated with a species formula as a StatelessSpecies object.

3.1 GenericExcitedState

A “generic excited state” is simply an unspecified excitation of the species above its ground state: it may represent excitation of a single species to an unspecified quantum level or the general excitation of an ensemble of such species to a range of levels under equilibrium or non-equilibrium conditions.

A GenericExcitedState object is instantiated as a string of 1-4 asterisks or as a number preceding a single asterisk. For example:

```python
In [1]: from pyvalem.generic_excited_state import GenericExcitedState
In [2]: x0 = GenericExcitedState('*')
In [3]: x1 = GenericExcitedState('***')
In [4]: x2 = GenericExcitedState('5*')
```

3.2 AtomicConfiguration

The electronic configuration of atoms, ions and isotopes is represented by the AtomicConfiguration class. The string representation provided to instantiate an AtomicConfiguration object is a sequence of orbital specifiers, separated by a full stop (period, .). An atomic orbital is represented by its principal quantum number, \(n \), the azimuthal quantum number, \(l \) written as the letter s, p, d, ..., and the an occupancy (number of electrons, 1 or 2). For example:

```python
In [1]: from pyvalem.atomic_configuration import AtomicConfiguration
In [2]: c0 = AtomicConfiguration('1s2')
In [3]: c1 = AtomicConfiguration('1s2.2s2.2p6')
In [4]: c2 = AtomicConfiguration('1s2.2s2.2p6.3s2.3d10')
```

The closed-shell part of an atomic configuration can be specified by providing the corresponding noble gas element symbol in square brackets:

```python
In [5]: c2 = AtomicConfiguration('[Ne].3s2.3d10')
```

The HTML representation of the atomic configuration is returned by the html attribute:
which renders as:

\[[\text{Ne}]3s^23d^{10}\]

If the same atomic orbital appears more than once or an orbital is specified as being occupied by more than the number of electrons allowed by the Pauli exclusion principle, an `AtomicConfigurationError` is raised:

```python
In [6]: c3 = AtomicConfiguration('\[\text{Ar}\].3s2')
...
AtomicConfigurationError: Repeated subshell in [\text{Ar}].3s2
```

```python
In [7]: c3 = AtomicConfiguration('1s2.2s2.2p7')
...
AtomicConfigurationError: Too many electrons in atomic orbital: 2p7
```

3.3 AtomicTermSymbol

The `AtomicTermSymbol` class represents an atomic electronic term symbol in the LS-coupling (Russell–Saunders coupling) notation. The total electronic spin quantum number, \(S\), is specified by a multiplicity, \(2S+1\), followed by the total electronic orbital angular momentum quantum number, \(L\), as a letter, \(S, P, D, \ldots\) for \(L = 0, 1, 2, \ldots\); there may optionally follow a parity label, \(o\) (for odd-parity states), and a total (spin-orbit coupled) electronic angular momentum quantum number, \(J\) after an underscore character \(_\). Half (odd)-integers are specified as fractions: \(1/2, 3/2, 5/2, \ldots\)

Examples:

```python
In [1]: from pyvalem.atomic_term_symbol import AtomicTermSymbol
In [2]: a0 = AtomicTermSymbol('3P_{1/2}')
In [3]: a1 = AtomicTermSymbol('4D')
In [4]: a2 = AtomicTermSymbol('2P_{o_{1/2}}')
```

`AtomicTermSymbol` objects know about their quantum numbers, where defined:

```python
In [5]: a0.S, a0.L, a0.J
Out[5]: (1.0, 1, 0.5)
```

```python
In [6]: a1.S, a1.L, a1.J
Out[6]: (1.5, 2, None)
```

```python
In [7]: a2.S, a2.L, a2.J, a2.parity
Out[7]: (0.5, 1, 0.5, 'o')
```

As with other states, the `html` attribute returns the HTML representation:

```python
In [8]: print(a2.html)
<sup>2</sup>P_{o_{1/2}}
```

which renders as:

\(2P^o_{1/2}\)

\(J\) must satisfy the “triangle rule” \(|L-S| \leq J \leq L+S\); if this test fails, an `AtomicTermSymbolError` is raised:
In [9]: a3 = AtomicTermSymbol('3P_3')
...
AtomicTermSymbolError: Invalid atomic term symbol: 3P_3 |L-S| <= J <= L+S must be satisfied.

3.4 DiatomicMolecularConfiguration

The electronic configuration of diatomic molecules, molecular ions and their isotopologues is represented by the DiatomicMolecularConfiguration class. This class is instantiated with a string consisting of a sequence of numbered molecular orbitals, separated by a full stop (period, .). Each orbital is denoted with a counting number (which increments for each orbital of the same symmetry), an orbital symmetry label, and an electron occupancy number.

The valid symmetry labels are the lower case greek letters, σ, π, and δ, with an optional letter, u or g denoting the inversion symmetry for centrosymmetric molecules. For convenience, the identifiers sigma, pi, delta may be used as identifiers instead of the greek labels.

Examples:

In [1]: from pyvalem.diatomic_molecular_configuration import *
...
DiatomicMolecularConfiguration
In [2]: c1 = DiatomicMolecularConfiguration('1σ')
In [3]: c2 = DiatomicMolecularConfiguration('1ou2')
In [3]: c3 = DiatomicMolecularConfiguration('1πu.1pu3')
In [4]: c4 = DiatomicMolecularConfiguration('1og2.1ou2.2og2.2ou2.1nu4.3og2')

An HTML representation of the configuration is held in the html attribute:

In [5]: print(c3.html)
1π\textsubscript{u}4.1π\textsubscript{g}3
In [6]: print(c4.html)
1σ\textsubscript{g}2.1σ\textsubscript{u}2.2σ\textsubscript{g}2.2σ\textsubscript{u}2.1π\textsubscript{u}4.3σ\textsubscript{g}2

These render as:
1π\textsubscript{u}41\textsubscript{π}\textsubscript{g}3 and 1\textsubscript{σ}\textsubscript{g}21\textsubscript{σ}\textsubscript{u}22\textsubscript{σ}\textsubscript{g}22\textsubscript{σ}\textsubscript{u}21\textsubscript{π}\textsubscript{u}43\textsubscript{σ}\textsubscript{g}2

An attempt to fill an orbital with too many electrons raises a DiatomicMolecularConfigurationError, as does repeating an orbital:

In [7]: c5 = DiatomicMolecularConfiguration('1o2.2o2.3o3')
...
DiatomicMolecularConfigurationError: Only two electrons allowed in σ orbital, but ... received 3
In [8]: c6 = DiatomicMolecularConfiguration('1o2.2o2.2o1')
...
DiatomicMolecularConfigurationError: Repeated orbitals in 1o2.2o2.2o1
3.5 MolecularTermSymbol

The MolecularTermSymbol class represents a molecular electronic term symbol. It is instantiated with a string providing the spin multiplicity \((2S+1)\), electronic orbital angular momentum symmetry label and (optionally) the quantum number \(\Omega\) in the Hund’s case (a) formulation.

Symmetry labels are specified as an appropriate letter combination representing the irreducible representation of the electronic orbital wavefunction. For molecules with a centre of symmetry, the \(u/g\) label comes last, preceded by any +/- label denoting the reflection symmetry of the wavefunction. Do not use a caret (^) or underscore (_) character to indicate superscripts or subscripts. For linear molecules, the irrep symbols \(\Sigma, \Pi, \Delta\) and \(\Phi\) may be replaced with \(\text{SIGMA}, \text{PI}, \text{DELTA},\) and \(\text{PHI}\).

If a term symbol has a label, this is given before the term symbol itself, which should be enclosed with parentheses.

Examples:

```python
In [1]: from pyvalem.molecular_term_symbol import MolecularTermSymbol
In [2]: c1 = MolecularTermSymbol('1Σ−')
In [3]: c2 = MolecularTermSymbol('1SIGMA−')
In [4]: c3 = MolecularTermSymbol('3Σ+g')
In [5]: c4 = MolecularTermSymbol('3SIGMA+g')
In [7]: c5 = MolecularTermSymbol('b(4Π−3/2)')
In [8]: c6 = MolecularTermSymbol("A'(1A1g_0)")
In [9]: c7 = MolecularTermSymbol('A(1A″)')
```

The html attribute returns the HTML representation of the molecular term symbol. The examples above are represented by:

\[
1\Sigma^-
\]

\[
1\Sigma^-
\]

\[
3\Sigma^+_g
\]

\[
3\Sigma^+_g
\]

\[
b(4\Pi_{-3/2})
\]

\[
A'(1A_{1g_0})
\]

\[
A(1A″)
\]

MolecularTermSymbol objects know about their total spin angular momentum quantum number, \(S\), the electronic orbital angular momentum wavefunction irrep, the projection of the total angular momentum along the symmetry axis, \(\Omega\), and the term label. For example:

```python
In [10]: c6 = MolecularTermSymbol('X(4Πu_-3/2)')
Out[11]: (1.5, 'X', 'Πu', -1.5)
```

3.6 VibrationalState

Molecular vibrational states of diatomic and polyatomic molecules are represented by the VibrationalState class. For diatomic molecules, this class is instantiated with a string of the form \(v=n\) for \(n=0,1,2,\ldots\). Polyatomic vibrational states are initialised with a string giving the number of quanta in each labelled normal mode. Unspecified vibrational excitation is denoted \(v=\ast\). For example:

```python
In [1]: from pyvalem.vibrational_state import VibrationalState
In [2]: v0 = VibrationalState('v=0')
In [3]: v1 = VibrationalState('v=\ast')
```
In [4]: v2 = VibrationalState('3v2+v3')
In [5]: v3 = VibrationalState('v1+v2')
In [6]: v4 = VibrationalState('2v1 + 3v4')
In [7]: v5 = VibrationalState('2v1+1v2+v3')

The attribute html holds an HTML representation of the vibrational state:

```
In [8]: print(v5.html)
2v₁ + ν₂ + ν₃
```

This renders as:

\[2ν₁ + ν₂ + ν₃ \]

3.7 RotationalState

A single class, RotationalState, represents the total rotational angular momentum (excluding nuclear spin) quantum number, \(J \), for both atoms and molecules. It is instantiated with a string, \(J=n \), where \(n \) is an integer or half integer (expressed as a fraction or in decimal notation). Three different levels of unspecified rotation excitation may alternatively be specified by providing \(n \) as one to three asterisks. The parsed value of \(J \) is available as an attribute with that name.

Examples:

```
In [1]: from pyvalem.rotational_state import RotationalState
In [2]: r0 = RotationalState('J=0')
In [3]: r1 = RotationalState('J=3/2')
In [4]: r2 = RotationalState('J=1.5')
In [5]: r3 = RotationalState('J=*')
In [6]: print(r1.J)
1.5
```

3.8 KeyValuePair

The KeyValuePair class represents an arbitrary quantum number or symmetry provided as a (key, value) pair. It is instantiated with a string of the form \(\text{key=value} \). For example:

```
In [1]: from pyvalem.key_value_pair import KeyValuePair
In [2]: kv1 = KeyValuePair('n=1')
In [3]: kv2 = KeyValuePair('C = 45a#')
```
A stateful species is a species identified by a chemical formula which is associated with one or more quantum states of labels, and can be represented by an instance of the StatefulSpecies class.

A StatefulSpecies object can be instantiated by providing a string consisting of the formula (which can be parsed into a Formula object), followed by whitespace and a semicolon delimited sequence of strings that can be parsed by one of the State classes described previously. The state type is deduced from the format of the string.

Examples:

```python
In [1]: from pyvalem.stateful_species import StatefulSpecies
In [2]: ss1 = StatefulSpecies('HCl v=2;J=0')
In [3]: ss2 = StatefulSpecies('NCO v2+3v1;J=10.5;a(2Σ-g)')
In [4]: ss3 = StatefulSpecies('Ar+ 1s2.2s2.2p5; 2P_3/2')
In [5]: ss4 = StatefulSpecies('CrH 1σ^2.2σ^1.1π^4.3σ^1; 6Σ^+')
```

An HTML representation is accessible through the html attribute:

```python
In [6]: print(ss4.html)
CrH 1σ<sup>2</sup>.2σ<sup>1</sup>.1π<sup>4</sup>.3σ<sup>1</sup>; 6Σ<sup>+</sup>
```

This example renders as:

CrH \(1\sigma^22\sigma^11\pi^43\sigma^1;6\Sigma^+\)

The Formula object and a list of the parse State objects are returned by the formula and states attributes:

```python
In [7]: print(ss4.formula)
CrH
In [8]: print(ss4.states)
[1\sigma^2.2\sigma^1.1\pi^4.3\sigma^1, 6\Sigma^+]
```

Two StatefulSpecies are considered the same (equal) if they have equal Formula objects and matching states:

```python
In [9]: ss5 = StatefulSpecies('CO2 v2+3v1; J=2')
In [10]: ss6 = StatefulSpecies('CO2 J=2; v2+3v1')
In [11]: ss5 == ss6
Out[11]: True
```

Some State types cannot be repeated within a StatefulSpecies object (e.g. it doesn’t make sense for a molecule to have two rotational quantum numbers, J). This is checked for:
In [12]: StatefulSpecies('N2 J=0;J=1')

...
StatefulSpeciesError: Multiple states of type RotationalState specified for N2 J=0;J=1

In [13]: StatefulSpecies('Li 1s2.2s1; 1s2.2p1')

...
StatefulSpeciesError: Multiple states of type AtomicConfiguration specified for Li...
A Reaction object is a collection of reactants and a collection of products, each of which is represented by a StatefulSpecies (though an individual species need not be associated with a specified state). It is instantiated using a string consisting of reactant and product StatefulSpecies, each separated by a plus sign surrounded by whitespace: ' + '. Reactants and products are separated by any of the following strings: ' → ', ' = ', ' ⇌ ', ' -> ', ' <-> '. Examples:

```
In [1]: from pyvalem.reaction import Reaction
In [2]: r1 = Reaction('CO + O2 → CO2 + O')
In [3]: r2 = Reaction('CO v=1 + O2 J=2;X(3SIGMA-g) → CO2 + O')
In [4]: r3 = Reaction('HCl + hv -> H+ + Cl + e-')
In [5]: r4 = Reaction('C6H5OH + 7O2 → 6CO2 + 3H2O')
```

An HTML representation of the reaction is returned by the html attribute:

```
In [6] print(r2.html)
CO v=1 + O<sub>2</sub> J=2; X(3SIGMA-g) → CO<sub>2</sub> + O
```

These examples render as:

\[
\text{CO} \ v=1 + \text{O}_2 \ J=2; \ X(3\Sigma^{-g}) \rightarrow \text{CO}_2 + \text{O}
\]

Reaction objects are validated to ensure that the charge and stoichiometry are conserved:

```
In [8]: Reaction('BeH+ + I2 ⇌ BeI + HI')
... ReactionChargeError: Charge not preserved for reaction: BeH+ + I2 ⇌ BeI + HI

In [9]: Reaction('BeH + I2 ⇌ BeI')
... ReactionStoichiometryError: Stoichiometry not preserved for reaction: BeH + I2 ⇌ BeI
```
CHAPTER

SIX

INDICES AND TABLES

- genindex
- modindex
- search