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Overview 

Here using the TART Monte Carlo code we demonstrate the importance of neutron resonance self-shielding 

to calculate a neutron source problem, recently described as difficult to obtain consistent answers between 

Monte Carlo and deterministic codes. First, we present results for exactly the same system with and without 

self-shielding, in order to demonstrate the magnitude of the effect. Next, we present results obtained using 

three different methods to model self-shielding; Unshielded, Total Shielded and Multi-Band, to illustrate 

the magnitude of the differences between results. Lastly, based on the results in this report, we propose a 

future area of study to improve our self-shielding methods. 

Details of our example problem  

Part 1 of this paper [1] described the importance of resonance self-shielding in criticality calculations. Here 

in Part 2 we describe resonance self-shielding in source problem calculations. We have selected a problem 

described at a recent meeting on data for fusion neutrons applications as a difficult case to obtain agreement 

between Monte Carlo and deterministic calculations [2]. Below 20 MeV the FENDL-3.1d library is similar 

to ENDF/B-VIII.0, so we focus on the latter for convenience. We concentrate on one major concern that 

may lead to these differences in the results, namely the resonance self-shielding. In order to focus on self-

shielding, we have modelled the problem to be as geometrically simple as possible: namely one, uniform 

sphere, of one material. Here is a complete description of our model.  

 

Geometry:       100 cm radius uniform sphere (1 spatial zone) 

Material:         57-La-139 

Temperature:  293.6 K 

Density:          6.2029 g/cm3 

Source:           Monoenergetic isotropic at 20 MeV 

Observable     The neutron leakage spectrum from the surface of the sphere. 

 

This completely describes the problem, hopefully in enough detail to allow any reader to uniquely 

reproduce this calculation. For 57-La-139 we used the ENDF/B-VIII.0 evaluation [3] as processed by the 

ENDF PREPRO codes [4], to, 

 

1) LINEAR: Linearize all tabulated energy dependent cross sections. 

2) RECENT: Reconstruct tabulated energy dependent cross sections from resonance parameters. 

3) SIGMA1: Doppler broadened cross sections to 293.6 K. 

4) GROUPIE: Calculated multi-group TART 616 group constant, and multi-band parameters in the 

unresolved resonance region (URR).  

 

The 57-La-139 293.6 K  SIGMA1 results are freely available on-line as part of POINT 2018 library [5] 

through the website http://RedCullen1.net/Homepage.new, for use by anyone who would like to 

reproduce our calculations; we encourage  as many people as possible, using as many different transport 

codes (both Monte Carlo and deterministic) to try this simple test problem. 

 

http://redcullen1.net/Homepage.new
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In this paper we first describe the 57-La-139 ENDF/B-VIII.0 evaluation in detail, which will help us better 

understand why we chose this evaluation, and how its features define our results. We next present results 

obtained for a number of models of self-shielded and unshielded cross sections, using the TART Monte 

Carlo code [6]. All of these results used exactly the geometrically simple problem defined above, and differ 

solely in how the neutron cross sections were defined:  

1) Continuous energy cross sections, with multi-band unresolved resonance region self-shielding. 

2) Multi-group cross sections, with and without self-shielding. 

3) Multi-band (2-band) cross sections, with unresolved resonance region self-shielding. 

 

Hopefully by the end of this paper the reader will appreciate the importance of neutron cross section self-

shielding, and the magnitude (penalty) of the error introduced if self-shielding is not included. We hope to 

show that self-shielding must be included in any realistic neutron transport calculation. We close by 

using the results of this paper to suggest the subject of our next paper, closely related to this one, but 

specifically addressing modelling of the self-shielding in the unresolved resonance region. 

57-La-139 ENDF/B-VIII.0 Evaluated Data 

In order to understand the results of our test problem, and in order to allow any reader to reproduce the 

results presented here, we must uniquely define the evaluated data used. For this test problem we used only 

one evaluation, 57-La-139 ENDF/B-VIII, as shown here [5]. This evaluation has a resolved resonance 

region (RRR) up to 20 keV, and an unresolved resonance region from 20 keV to 100 keV. Note the large 

(n,2n) and (n,3n) cross sections near 20 MeV (our source energy), and the strong capture resonance near 

72 eV; these play important roles in defining the leakage. 

 

 
 

This evaluation was Doppler broadened [4] to room temperature, 293.6 K [5]. Temperature has a very 

important effect on the relatively narrow resonances in the resolved resonance region (RRR). As shown 

here the resonance peaks differ between old (0 K) and room temperature (293.6 K) data by up to over a 

factor of 14 (over 1400 %). In order to reproduce the leakage results presented here it is imperative to use 

exactly the evaluation Doppler broadened to 293.6 K [5]  
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This evaluation also includes a classic design flaw that is worth noting, because it affects the results 

that we will be viewing. I say classic, because over the last 50 years I have seen the same defect in many 

ENDF formatted evaluations. With any ENDF formatted evaluation that includes a resolved resonance 

region it is important to include a sufficient number of resonances with a peak above the upper energy limit 

of the resolved resonance region, to allow the tail, or wings, of the resonances to extend down into the 

resolved region, and help to define a baseline, or the lower limit of the sum of resonances near the upper 

energy limit of the resolved resonance region. In this case the resolved resonance region extends up to 20 

keV, but there are no resonances defined above about 19 keV; this is the classic ENDF error. The result 

is that in this evaluation the capture cross section approaching from below 20 keV, is physically far too 

small; based on the average capture just above 20 keV, the value just below 20 keV is a factor of about 

1,000 too low = not 1,000 % - a factor of 1,000 – creating a unphysical “hole” in the capture cross section. 

The elastic minimum is “saved” by potential scattering, but even here the lack of resonances above 19 keV 

results in an elastic that is about a factor of two too low. I mention this here because when we later in this 

report look at the leakage we should expect to see a non-physical result just below the 20 keV resolved-

unresolved resonance region boundary; I predict a “bump” in leakage due to this evaluation’s cross sections 

being too low in this energy range; I will repeat: Unphysically too small. We hope this serve as a 

WARNING to ALL evaluators: Your job includes extending the resonance sequence to establish 

baseline cross sections; failure to do so can lead to unrealistic results. 



10 
 

 

 
  



11 
 

Here is an overall view of the 57-La-139 total, elastic, and capture, TART 616 [7] multi-group averaged, 

unshielded and fully shielded cross sections, over the entire energy range [4]. I’ll mention just a few points 

we should note because they will affect the leakage from our example sphere of 57-La-139. First is the very 

strong resonance near 72 eV; here we can see the unshielded total is close to 200 barns, and the shielded is 

close to 10 barns, 20 times smaller. Next, notice the unresolved region moderate self-shielding between 20 

keV and 100 keV; moderate that is compared to the self-shielding in the resonance region below 20 keV. 

Next, note the extremely small capture group average in the group just below 20 keV; again, let me stress 

that this is unphysical, and completely due to the flaw in the 57-La-139 ENDF/B-VIII.0 evaluation.  I 

mention this because this “hole” in the cross section may show up as a “bump” in our calculated leakage; 

any such “bump” is not real, and strictly due to the flaw in this evaluation. 
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Another important feature of this evaluation are the spectra of (n,2n), and to a lesser degree (n,3n), 

secondary neutrons that will be produced by the monoenergetic 20 MeV we are using. In this evaluation 

these secondary neutron spectra are tabulated for a series of discrete incident neutron energies. Above 

roughly 400 keV of the secondary energy, the neutron shape of each spectrum is similar to a MeV-like 

Maxwellian, but below they are a rather crude linear function of secondary energy extending all the way 

down to zero energy. 

 

These spectra will play a dominant role in defining the leakage spectrum. The total mean free path (MFP) 

for a neutron of 20 MeV is roughly 8 cm, so we expect few neutrons to transport 100 cm at 20 MeV and 

leak from the sphere at 20 MeV. We expect virtually all of the source neutrons to collide at 20 MeV, which 

will produce a spectrum of (n,2n) and (n,3n) secondary neutrons across the entire secondary neutron energy 

range; again I will mention that at higher energy this spectrum will be similar to a Maxwellian. The net 

effect of our monoenergetic 20 MeV source, will be similar to a Maxwellian neutron source created near 

the centre of the sphere (within a few MFPs), which will then transport and preliminarily scatter (elastic 

and inelastic) and be captured, as they find their way toward the surface of the sphere to define the leakage 

we measure in our test case. 

 

  
 

  



14 
 

Here are preliminary results to illustrate the importance of La139 capture resonance near 72 eV; it is so 

strong and wide that few neutrons can scatter across it, greatly reducing the leakage spectrum below this 

energy, i.e., less than 1 in a million neutrons leak below roughly 100 eV, as we can see in the below figure. 

Because of this effect we will ignore the lower energy range for the remainder of this report. 
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The lower part of the figure above represents cumulative integrals of the leakage spectrum from zero to E, 

and from Emax to E, respectively. 

 

Here’s a quick look comparing what’s going on inside the sphere to the leakage on the surface. These two 

quantities are in different units; for comparison purpose, to show the energy dependent shape, each is 

normalized so that the integrals over energy and over space (the whole interior of the sphere or the surface 

of the sphere) are normalized to unity. 

 

With the monoenergetic source at 20 MeV the high energy flux is quite high, but at very high energy the 

flux is close to the neutron source at the origin, so that very little leaks from the surface, i.e., low leakage. 

With decreasing energy the neutrons spread out from the source, and by 100 keV to 200 keV, reach a peak 

and then flux and leakage appear to be in equilibrium from that point on down to low energy. With spectra 

like these this would appear to be a perfect case to test the importance of resolved region (RRR), that 

extends up to 20 keV, and unresolved resonance region (URR) that extends from 20 keV up to 100 keV, 

i.e., near the peak of the leakage. 

 

Note, the peaks and valleys of flux and leakage throughout the resolved resonance region, below 20 keV. 

If you compare these to the cross sections shown above you will see that the peaks in flux and leakage 

correspond to the valleys between resonances; this is classic neutron resonance self-shielding, where the 

distance to collision (flux) varies inversely to the total cross section. 
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Monte Carlo Statistical Uncertainty 

Often users make the mistake of assuming that if they are using Monte Carlo the answers are as accurate as 

possible, because Monte Carlo allows us to use the most precise models, in terms of geometry and accuracy 

of the nuclear data, e.g., continuous energy cross sections rather than multi-group. 

 

This assumption ignores the effect of the uncertainty in our Monte Carlo answers due to statistics; even the 

most precise model that will give us an accurate answer if we run our calculations long enough, may still 

include significant statistical uncertainty in any real case that we run a finite number of samples. 

 

To illustrate this point below I present results for the leakage from the surface of our La139 sphere 100 cm 

radius, due to a point, monoenergetic 20 MeV neutron source at the origin. Here I present results using 100 

million (10+8) source neutrons compared to the results using ten time as many, 1,000 million (10+9) source 

neutrons. I use the TART 616 tally bins, which are defined as 50 bins per energy decade, equally spaced in 

lethargy, which means that the leakage shown is the leakage integrated over each bin (not normalized by 

the width of the bin) and effectively represents the lethargy spectrum. In this form we can “see” how many 

counts (tallies) we predict in each bin per source neutron. Due to the large (n,2n) and (n,3n) cross sections 

at 20 MeV in La139, the integral of the leakage per source neutron exceeds unity, i.e., about 1.677. 

Combined with the capture within the sphere we actually end up tracking about twice the number of source 

neutrons.   

 

Surely 100 million (10+8) samples, to say nothing of 1,000 million (10+9), are overkill for such a simple 

problem, and yet we still see difference in some bins of over 20%; even the integral slightly differs. Again, 

let me stress that both cases use exactly the same model and all differences shown here are solely due to 

statistics, i.e., 10+8
 versus 10+9

 samples. 
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By looking at the integral(s) of the leakage we can get a better idea of why there is such a large difference 

due to statistics, even for such large sample sizes. Consider the integral from low energy to high. This shows 

that the probability of leakage below 1 keV is 10
-4,

 and below 100 eV is 10
-6

. For a sample of 100 million 

(10
+8

) this means only 100 neutrons will leak below 100 eV and 10,000 below 1 keV. Very crudely 

assuming that convergence varies as the reciprocal of the square root of the sample size, S/SQRT(N), we 

should expect: for 100 samples about 10% difference and 10,000 samples about 1%, which is very roughly 

what we see for the integral shown below between 100 eV and 1 keV. This result is for the integral; when 

we consider that the differential results shown above are further subdivided into 50 bins per energy decade, 

you should not be at all surprised to see differences of up to 20% in some bins. 

 

From the combination of the two integrals shown below we can see the 99% (all but 1%) of the leakage 

occurs between about 7 keV and 1 MeV (where each integral crosses 0.01). Hopefully these differential 

and integral results shown here will help the reader focus on what is important AND how well we should 

expect different models to affect results shown later in this paper. Monte Carlo is not perfect, and 

requires investing enough resources to insure accurate answers.  
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Model Dependent Convergence 

The above results illustrate the speed of convergence using exactly the same model, versus the number of 

neutron samples. The above results are for about the worst case to achieve convergence, as far as the number 

of degrees of freedom we must sample, since it uses continuous energy cross sections. For example, in a 

616 multi-group calculation our Monte Carlo code need only sample 616 different multi-group total cross 

sections. Whereas using continuous energy cross sections our code must sample many different cross 

sections, e.g., for fissile materials this can involve many thousands of energy dependent tabulated cross 

sections; in extreme cases even hundreds of thousands.  

 

It is worth illustrating that the speed of convergence can be improved, using simpler models that still meets 

the needs. For example, below I compare results using 1,000 vs. 100 million neutron samples, first using 

continuous energy cross sections (the same as shown above), to results using multi-band (2 band) cross 

sections. Statistically both give the same integral answer to 4-digits, but the convergence of the multi-band 

is faster due to reducing the number of degrees of freedom it must sample. This also illustrates that users 

of deterministic codes (multi-band) can potentially achieve the same accuracy as Monte Carlo codes.  
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Continuous vs. Unshielded 

ALL results below in this report used 1,000 million (10
+9

) neutron samples to assure statistical 

accuracy. To clearly “see” how important self-shielding is, here I compare TART’s BEST estimate of the 

correct answer, using continuous energy cross sections, and multi-band self-shielding in the unresolved 

region (URR),  to TARTs answer using 616 group unshielded cross section. This is a very controlled test, 

using only one code, TART, one evaluation 57-La-139, one spatial model; everything is exactly the same 

except for how the cross sections are defined: Continuous versus unshielded group averages. 

 

Starting from the monoenergetic neutron source at 20 MeV, we see close agree between the two results 

down to 100 keV; in this energy range there are no resonances and the generally “smooth” cross sections 

do not require self-shielding. Below 100 keV we see progressively more self-shielding effects; even by 20 

keV, the lower energy limit of the unresolved resonance region (URR), the unshielded value is only 70 % 

of the shielded value (clearly demonstrating the importance of self-shielding the unresolved resonance 

region). Below 20 keV in the resolved energy region we see ENORMOUS differences near the 57-La-139 

resonances, where the unshielded cross sections can be over a factor of 10 too large = let me repeat that: 

not 10%, a factor of 10 too large, resulting in deep minimum in the leakage. The net effect is that the 

integrals of the leakage are: Continuous 1.6772, Unshielded 1.5646, about 6.7% lower, completely due to 

self-shielding. But with all of the fluctuations due to competition between scatter and capture it is difficult 

to judge which energy ranges are important, as far as defining the overall spectrum integral. 
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From the integrals we can see more clearly what energy ranges are important. From the integral from low 

to high energy we can again see many fluctuations at low energy, making it difficult to judge what the net 

effect of these fluctuations ultimately has on the overall integral. From the integral from high energy to low 

we see extremely close agreement from 20 MeV down to 100 keV, the upper energy limit of the unresolved 

resonance region (URR). Between 100 keV and 20 keV, the lower energy limit of the unresolved resonance 

region (URR) , the unshielded integral become lower than the continuous by 6.8 %, virtually the entire 

integral difference between the two spectra. 

 

This difference clearly demonstrates the importance of self-shielding in the unresolved resonance 

region (URR), e.g., here it is responsible for virtually all of the difference in the two spectra. 
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Continuous vs. Totally Shielded 

The only difference between the above and below results is that for the above results Unshielded TART 

616 group cross sections were used, and for the below results Totally Shielded (sigma0=0), TART 616 

group cross sections were used, including in the unresolved resonance region. 

 

Above 100 keV the unshielded and shielded results are similar, because there are no resonances and self-

shielding is not required. Below 100 keV Self-shielding the cross sections definitely improves the results. 

In the unresolved region between 100 keV and 20 keV we start to see differences between the continuous 

and totally shielded results, but there is a definite improvement compared to using unshielded cross sections. 

Below 20 keV in the resolved region we still see differences in some tally bins up to about 37%, which is 

a major improvement over using unshielded where we saw differences in excess of a factor of 10 (1000%). 

There is a very definite improvement in the integral: Continue 1.6773, Totally Shielded 1.6738, about 

0.20% difference; as a reminder, for Unshielded 1.5646, about 6.7% lower. 

 

Depending on your application this 0.2% difference in the integral may to good enough to meet your needs. 
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Continuous vs. Multi-Band (2-bands) 

If the above totally shielded results do not meet your needs, you may need multi-band (2-band). Compared 

to the above totally shielded results, using multi-band results extends the agree down to 20 keV; this is 

because in the unresolved region the continuous model uses the same multi-band data. Below 20 keV the 

individual tally bin differences are reduced at about 12 % (shielded 37%) and multi-band does a good job 

tracking through the stronger resonance. The big improvement comes in the integral: Continuous 1.6772, 

Multi-Band 1.6775, only about 0.018% different; the integrals are statistically identical. Here is a 

comparison of the three different results, 

 

  Method                        Integral          % Difference 

Continuous 1.6772  

Unshielded 1.5646 6.7% 

Totally Shielded 1.6738 0.20% 

Multi-Band 1.6775 0.018% 

 

Hopefully one of these methods meets your needs. If not, sorry but deterministic methods probably 

will not work for use, i.e., you probably need Monte Carlo. 
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Continuous vs. Continuous without Unresolved Self-Shielding 

As a hint at what we will address in our next paper, here we focus on the importance of the unresolved 

resonance region (URR). Far too many codes seem to ignore the URR or use a poor treatment to handle it. 

Here we use a TART option to turn off URR self-shielding. The below results are both based on our BEST 

continuous energy cross sections, and differ only that one includes URR self-shielding and the other does 

not. From the below figure we can see that, not shielding the cross sections in the URR between 20 keV 

and 100 keV, means the cross sections will be higher, resulting in a decrease in leakage, an increase in 

capture, (obvious 20 to 100 keV), and an increase in scatter causing a shift in the spectrum below 20 keV 

(the increase we see here). 

 

What we see from the below results is how much of the difference is due to the URR self-shielding. For the 

integrals we find: Continuous 1.6772, No URR Shielding 1.6327, 2.65% lower; compare this to Unshielded 

1.5646, 6.7% lower. Roughly 1/3 of the difference is solely due to URR self-shielding. Hopefully this serves 

as a WARNING that regardless of how good you think your data and codes are, if they do not include 

URR self-shielding you will not be able to produce accurate results. Our next paper will focus on 

insuring we can accurately model unresolved resonance region (URR) self-shielding.  

 

 
 

  



25 
 

From the integrals of the spectra, particularly the one from max-to-min energy, we can see how the integral 

is the same down to top of the URR at 100 keV. It then drops between 100 keV and 20 keV, by about 5%. 

But then below 20 keV it rebounds, increasing back to the final 2.65% total integral difference.  
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Conclusions 

Here using the TART Monte Carlo code we demonstrated the importance of neutron resonance self-

shielding to calculate a neutron source problem, recently described as difficult to obtain consistent answers 

between Monte Carlo and deterministic codes [2]. First, we presented results for exactly the same system 

with and without self-shielding, in order to demonstrate the magnitude of the effect. Next, we presented 

results obtained using three different methods to model self-shielding: Unshielded, Total Shielded and 

Multi-Band, to illustrate the magnitude of the differences between results. Lastly, based on the results in 

this report, we propose a future area of study to improve our self-shielding methods, namely improved 

unresolved resonance region (URR) self-shielding. 
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