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ABSTRACT 

In view of the fast advancing adoption of machine learning (ML) in various domains, a Consultants’ 

Meeting was held to bring together researchers from nuclear physics and machine learning to present 

their on-going work and achievements and discuss directions of development. The presentations 

touched upon a broad range of topics, such as the prediction of parameters in nuclear models and the 

detection and localization of anomalies in nuclear power plants as well as the use of ML methodology 

to improve nuclear data evaluations. The wide interest in the meeting clearly indicated the promising 

potential of the application of ML in the field of nuclear data. To continue this unified effort, a cross-

cutting IAEA Technical Meeting on Artificial Intelligence for Nuclear Technology and Applications 

will take place in October 2021, involving several departments of the IAEA.  

October 2021 
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1. Introduction 

The production of high-quality nuclear data libraries is a challenging undertaking. Besides human 
expertise, it relies on nuclear physics codes as well as evaluation and processing codes to evaluate the 
data of nuclear experiments and validate the resulting nuclear data files. Due to the complexities 
involved, it is often difficult to detect problems and trace their causes. Computational tools and 
procedures that assist humans in the evaluation process are therefore valuable.   

Significant progress has been made in the field of machine learning (ML) over the last decade, 
especially regarding natural language processing and image analysis thanks to the advancement of 
deep learning. Along with this progress, methods of machine learning have been widely adopted in 
various applications and areas both to help humans make better informed decisions and to automate 
procedures that had to be carried out manually before. 

In view of these advancements, it is pertinent to investigate how machine learning and other methods 
beyond standard practice, such as numerical and statistical algorithms, can help to make the nuclear 
data evaluation process more efficient, transparent and less error prone. 

To this end, this consultants’ meeting on machine learning for nuclear data was held, to review the 
work already done in the context of nuclear physics, to identify commonalities in the approaches, and, 
in general, to gain a broader perspective on potential future developments of machine learning in the 
field of nuclear data. 

To get an overview of the status quo, both nuclear physics researchers who have already applied ML 
in their field of work and ML researchers were invited. Seventeen technical presentations were given, 
the majority of which were dedicated to the application of ML in nuclear data evaluation. The 
remainder mainly dealt with the improvement of machine learning methods. This report contains the 
presentation abstracts and, based on the work presented, a Summary and Conclusions section with a 
broader perspective. 

Due to the COVID-19 pandemic and the concomitant travel restrictions, the meeting was held virtually. 
To accommodate participants in different time zones around the globe, the duration of the meeting 
was limited to three hours per day, between 2pm and 5pm CET. The meeting spanned four days. The 
first three days were dedicated to presentations and the last day was reserved for general discussions. 

2. Presentation Summaries 

2.1. Introduction to Consultancy Meeting on machine learning for nuclear data, 

G. Schnabel (IAEA) 

As an introduction to the consultancy meeting, this presentation briefly reviewed the increase of 

compute power due to semiconductor device fabrication. Moore’s law postulating that the number 

of transistors on microchips doubles every two years still holds today. This exponential increase in 

combination with the availability of large amounts of image data led to a breakthrough in image 

classification tasks with deep neural networks and a rapidly growing interest into the field of AI and 

machine learning. A definition of machine learning as the study of computer algorithms that improve 

automatically through experience was given. It was also emphasized that for the purpose of the 

meeting, the term machine learning encompasses all approaches and algorithms beyond standard 

practice in nuclear data and is not restricted to neural networks.  The basic questions to be addressed 

in the context of this meeting were:  

1. How can ML help to improve the handling of nuclear data? 

2. How can ML help to improve the handling of nuclear models? 

3. Can we learn something about physics by using ML methods? 
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2.2. Bayesian calibration with TMCMC, A. Gray (Liverpool Univ., UK) 

Transitional Markov Monte Carlo (TMCMC) has become a popular numerical method for Bayesian 
calibration in uncertainty quantification since its proposal in 2007. It was originally proposed to 
overcome some of the issues with Metropolis-Hastings, and has the following features: 

• Can sample multi-modal and high dimensional posteriors 
• Importance sampling: samples are weighted and resampled 
• Proposal distribution changed adaptively 
• Multi-chain: each sample has an individual chain, and is simple to parallelise 
• Provides Evidence: required for model class selection and model averaging 

In this presentation, we discuss the theoretical details of TMCMC, with some examples. We show the 
use of the sampler in the 2020 Nasa UQ challenge on optimisation under uncertainty, which has a 
calibration problem similar to those faced in Nuclear Data evaluation (high dimensional, limited data 
and functional output); and how the method may be used to calibrate for sets of distributions. 

2.3. When marginals or dependencies are unknown: computing with imprecise 

probabilities, A. Gray (Liverpool., UK) 

According to Marakov [1], it was Kolmogorov who originally asked about the sum of two distributions 
without knowing their joint. This was answered by Marakov, who showed that the result was a set of 
distributions (Ref. [1]). Sklar and Frank generalised this result to other binary operations (Ref. [2]), and 
in this pursuit, they created copulas, a now essential object in probabilistic dependence modelling. In 
a seminal dissertation (Ref. [3]), Williamson described an algorithm for efficiently performing these 
arithmetic operations, which provide guaranteed bounds on probability distributions in terms of 
upper and lower cdfs. He called his method Probabilistic Arithmetic, and his sets Dependency Bounds. 
Since then, the method has been generalised to most of the base binary and unary operations used in 
programming languages. Probability Boxes (p-boxes) are the name now given to these structures, and 
Probability Bounds Analysis the name of the method. 
P-boxes are one of many was to describe a set of probabilities, others include: intervals, possibility 
distributions, Dempster-Shafter structures and random sets. These structures were discovered 
independently, but are often synonymous and can be translated from one to another. Imprecise 
Probabilities links all these theories into one. 
In this presentation, we review the main elements of Interval Arithmetic and Probability Bounds 
Analysis, showing how intervals and p-boxes bound sets of distributions, and how arithmetic 
operations are performed with these structures, with various degrees of knowledge about the 
correlations between variables. We also show that p-boxes arise naturally in situations where data is 
limited, or when distributional information is only partially known. 
 
References: 

[1] G.D. Makarov. Estimates for the distribution function of a sum of two random variables when the 
marginal distributions are fixed, Theor. Probab. Appl. 26 (1981) 803– 806. 

[2] M.J. Frank, R.B. Nelsen, and B. Schweizer, Best-possible bounds for the distribution of a sum—a 
problem of Kolmogorov, Probab. Theory Related Fields, 74(2) (1987) 199–211. 

[3] R.Ch. Williamson, Probabilistic arithmetic, PhD thesis, University of Queensland, Australia, 1989. 

2.4. Validating nuclear data augmented by random forests, D. Neudecker 

(LANL, USA) 

This talk shows how the random forest algorithm helped in exploring which nuclear data could 
potentially lead to differences between simulated values and experimental data of validation 



9 
 

measurements. This information could highlight what nuclear data should be revisited and corrected 
and could identify the need for future integral and differential experiments. 
This question lends itself to be tackled with machine-learning (ML) methods because nuclear-data 
validation is a complex and highly underdetermined problem: For instance, one simulates the 
criticality value of one critical assembly with thousands of nuclear data from different observables of 
different isotopes. It is very hard to identify which specific nuclear-data value is leading to the 
difference between simulated values and experimental data. Traditional validation methods approach 
this by first fixing data of major actinides with bare spheres. Then, additional complexity is added by 
studying materials one at a time, such as via experiments containing reflectors of distinct materials. 
Due to this staggered approach of exploring specific isotopes, one is likely to overlook issues in data 
not studied explicitly. 
We proposed in D. Neudecker et al., Nucl. Data Sheets 167, 36-60 (2020) to address this issue with 
random forest algorithms and the SHAP metric. It is explored whether these algorithms give expected 
and stable results by fabricating a sizable shortcoming in various Pu fission-source-term nuclear data 
and forward-propagating them to simulated criticality values. Random forest and SHAP correctly 
identify data of the fission-source term as culprit for bias in simulating criticality. However, they cannot 
distinguish between total spectrum, total fission neutron multiplicity and fission cross section as these 
three go together in simulating the fission-source term and cannot be disentangled - a typical issue in 
the input data well known to validators. In a second step it is shown that the algorithms are able to 
identify issues in nuclear data that would have eluded validators with traditional methods at the 
examples of 19F(n,inl) cross sections and 241Pu(n,f) cross sections in ENDF/B-VIII.0. These examples 
demonstrate that the random forest and SHAP algorithms not only give plausible results but also 
provide additional information in comparison to traditional validation methods. However, these 
algorithms only assist nuclear-data experts in their validation work because additional knowledge 
from theory and differential experimental data are needed to disentangle correlation effects due to 
how criticality is formulated. The ML tools shown here are already being used for every-day validation 
work at LANL and will contribute to validation work of the International Nuclear Data Evaluation 
Network (INDEN) in the future. 

2.5. Highlighting physics reasons for discrepancies in differential experimental data 

via elastic net and random forest, D. Neudecker (LANL, USA) 

This talk was about trying to understand the physics reasons leading to outliers and systematic 

discrepancies in an experimental database via the machine-learning (ML) algorithms elastic net and 

random forest. This information is valuable for the field of nuclear-data evaluation as it allows us to 

better quantify missing uncertainties or justify why specific data sets should be rejected. 

Uncertainty quantification and outlier rejection are a fundamental part of nuclear-data evaluations 

including experiments. One complication in understanding what part of a measurement is driving the 

discrepant behavior (i.e., what part of the analysis or equipment could lead to bias) is that most 

nuclear-data measurements are composite in nature, i.e., the reported values (cs, nu-bar, PFNS, etc.) 

are extracted by combining several measurements (count rate, number of atoms in the sample, flux, 

etc.), and corrections. They have different attributes (features in ML language, e.g.: detector type) 

related to these measurements and corrections. To find the reason for outliers with expert knowledge 

can be tricky if there are too many common features across many experiments, but ML methods are 

made to find trends in a large amount of data. 

To address this issue, a two-step approach is demonstrated in B. Whewell et al., NIMA Vol. 978, 

164305 (2020): First outliers in the experimental data are identified with a modified version of the 

Hybrid Robust Support Vector Machine. In a second step, two very different machine learning 

methods (logistic regression with elastic net regularization and random forest regression with SHAP 
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feature importance metric) are used to highlight measurement features that are common among 

many of the outlying data points. We applied this process to features and data of 24 239Pu(n,f) cross-

section data sets of the Neutron Data Standards database. We studied 37 feature categories per 

measurement with about 100 values across the 24 measurements. For instance, methods to 

determine the background, sample backing material, or impurities in the sample, are explicitly taken 

into account in the ML process. These input data allow us to judge whether the chosen algorithms 

give stable and plausible answers. 

The Hybrid Robust Support Vector Machine identified data as outliers that an expert would also 

visually accept as such. The results of elastic net and random forest agree with regards to the most 

important features related to outliers and accepted data showing that the algorithms are stable for 

two rather different types of algorithms. It is also shown that the results are not only stable but also 

plausible. More specifically, the elastic net and random forest algorithms find features related to 

outliers and accepted data that are indeed expected by experts. But they also identify unexpected 

ones, showing us again that ML might highlight issues that experts can miss due to the large amount 

of data. If the information gained on potential physics biases in the data is translated into additional 

uncertainties, these added measurement uncertainties can lead to significant changes in evaluated 

mean values and uncertainties (within +/- 0.5% for the mean value below 10 MeV and up to 17% 

increase of evaluated uncertainties). 

In short: Elastic net and random forest algorithms can be applied in a stable manner (i.e., enough data) 

and reliably (giving plausible results) to highlight potential shortcomings in the experimental data that 

could lead to a physics understanding of discrepancies. It is always up to the physicist to decide if the 

results are helpful. ML augments but does not replace expert judgment. These algorithms might be 

applied in the future to Neutron Data Standards data to help understand unrecognized sources of 

uncertainties. One issue is that we need the features for the data which is time-intensive. A 

collaboration with SG-50 might help. 

2.6. Using machine learning to explore, diagnose, and correct for bias in nuclear data, 

M. Grosskopf (LANL, USA) 

Misfit between integral benchmark experiments and simulation is commonly used for testing the 

validity of nuclear data and for directing the exploration of ways to improve nuclear data libraries. 

Because of the large number of isotopes and reactions relevant to these benchmarks, the space of 

possible relationships between this prediction bias and nuclear data sensitivities is huge. In this work 

we leverage the capabilities of machine learning (ML) to augment the expert-knowledge-driven search 

for relationships that may have been missed. To do this we build an ML predictor of bias using random 

forest regression to encode systematic relationships between prediction bias and nuclear data 

sensitivity. The ML interpretability metric SHAP is then used to quantify what sensitivities are strongly 

leveraged by the random forest to inform experts of potential unseen relationships driving 

inconsistency between simulation and experiment. This augmentation of expert knowledge can be 

used to identify candidate nuclear data for future adjustment using the integral experiments. 

Beyond this search for relationships between nuclear data sensitivity and misfit in integral benchmark 

experiments, ML can be leveraged for quantifying other relationships in high-dimensional spaces for 

improving nuclear data. Bias in differential and integral nuclear experiments can arise from sources 

other than simply poorly estimated nuclear data. Experimental metadata – information about shared 

experimental configurations, diagnostics, etc. – can lead to outlying observations or correlated error 

across experiments that, if understood and accounted for, can reduce estimation bias in nuclear data. 

We present results using ML interpretability to quantify and communicate relationships between this 
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metadata and both outlying observations in differential experiments and to do nuclear data 

adjustment to integral experiments accounting for a sparse set of linear relationships between 

metadata and simulation bias.   

2.7. Anomaly detection in nuclear reactors using deep learning, F. Caliva (California 

Univ., USA) 

Monitoring nuclear reactors while running at nominal conditions is critical. Based on analysis of the 

core reactor neutron flux, it is possible to derive useful information for building fault/anomaly 

detection systems. We presented a pioneer work in the application of deep learning to detect 

anomalies in nuclear reactor signals. Specifically, a novel deep learning approach to unfold nuclear 

power reactor signals was proposed. It includes a combination of convolutional neural networks 

(CNN), denoising autoencoders (DAE) and k-means clustering of representations. By leveraging signal 

and image pre-processing techniques, the high and low energy spectra of the signals were 

transformed into a compatible format for CNN training. Firstly, a CNN was employed to unfold the 

signal into either twelve or forty-eight perturbation location sources, followed by a k-means clustering 

and k-Nearest Neighbour coarse-to-fine procedure, which significantly increases the unfolding 

resolution. Secondly, a DAE was utilized to denoise and reconstruct power reactor signals at varying 

levels of noise and/or corruption. The reconstructed signals were evaluated with regard to their 

original counter parts, by way of normalized cross correlation and unfolding metrics. The results 

illustrate that the origin of perturbations can be localized with high accuracy, despite limited training 

data and obscured/noisy signals, across various levels of granularity.  

The research conducted was made possible through funding from the Euratom research and training 

programme 2014-2018 under grant agreement No 754316 for the 'CORe Monitoring Techniques And 

EXperimental Validation And Demonstration (CORTEX)' Horizon 2020 project, 2017-2021. For further 

details, please refer to our paper: Caliva, Francesco, De Sousa Ribeiro, Fabio, et al., A deep learning 

approach to anomaly detection in nuclear reactors, 2018 International joint conference on neural 

networks (IJCNN). 

2.8. Gaussian processes under inequality constraints, F. Bachoc (Toulouse Univ., 

France) 

Gaussian processes provide a Bayesian prior over functions. In nuclear engineering, they are widely 

used to address complex computer models that can be seen as black box functions. This talk will 

introduce Gaussian processes, with a focus on Gaussian conditioning that enables to predict the 

computer model values and provide confidence intervals. Then, this talk will show how constraints 

can be enforced in a Gaussian process model. These constraints correspond to expertise on the 

computer model and can be for instance boundedness, monotonicity and convexity. The talk will 

present the framework based on finite-dimensional approximation that guarantees to satisfy the 

constraints everywhere on the input space. The computational treatment of the model will be 

discussed, and results on simulated and nuclear test cases will be given. 

2.9. Machine learning in radiation methodology: Neutron spectrum unfolding and 

Gamma-ray spectrometry, T. Kin (Kyushu Univ., Japan) 

Machine learning approaches have been applied to radiation metrology, especially in image 

reconstruction of diagnosis using nuclear medicine. This trend has been observed in other fields, and 

http://eprints.lincoln.ac.uk/id/eprint/31359/1/Leontidis_IJCNN_preprint.pdf
http://eprints.lincoln.ac.uk/id/eprint/31359/1/Leontidis_IJCNN_preprint.pdf
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we have also adopted this approach since 2016. Currently, the following applications are investigated 

in our research projects: 

1. The neutron spectrum unfolding ML model has been adopted especially for the multiple foils 

activation method. The performance is at the same level as of the conventional method, 

GRAVEL, but ML requires no initial guess and does not require the specification of 

convergence parameters. 

2. Gamma-ray spectrometry: To decrease measurement time from the conventional analysis, 

the Covell method, we have been developing a ML model which can treat the whole 

gamma-ray spectrum. We found that our ML model can reduce the measurement time by 

30% in a specific activity range. The range of applicability depends on the loss function used 

to train the ML model. We have found a new loss function for uniform performance over a 

wide activity range. 

3. Terrestrial muon measurement: We have developed the Full-Absorption Muon Energy 

Spectrometer plus (FAMES+) to measure terrestrial cosmic-ray muon spectra. Two ML models 

will be used to eliminate other charged particles of cosmic rays, and energy prediction, 

respectively. 

2.10. Towards the inclusion of model uncertainties in nuclear data evaluations, 

E. Alhassan (SCK-CEN, Belgium) 

In a typical Bayesian Monte Carlo approach used in nuclear data evaluation in the fast energy 
region [1], parameters of pre-selected models are fine-tuned to selected experimental data. The 
assumption here is that the uncertainties in the nuclear data are due to our imperfect knowledge of 
the model parameters with the model itself being ‘true’ [2, 3]. Hence, by varying the parameters of 
these models within pre-determined uncertainties, the random cross section curves produced would 
overlap most of the experimental data available. This approach, however, ignores the model 
uncertainties and, most often, leads to a difficulty in reproducing experimental data through 
parameter fine-tuning alone. For example, we show in Fig. 1 that through parameter variation only 
not all the experimental data were covered by the random cross section curves. However, by varying 
many models together with their parameters, we covered all the available experimental data for the 
58Ni(p,2p) cross section.  

 
FIG. 1. Excitation functions of the 58Ni(p,2p) cross section showing random cross section curves produced from 

the variation of many models with their parameters (purple) and only model parameters (orange), compared 

with experimental data from the EXFOR database. A total of 3,000 random cross section curves were produced 

in the case of parameter variation only, while over 10,000 were produced with the variation of many models and 

their parameters.  
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We therefore propose in this work that, instead of using a single model combination for the entire 
energy range of interest, we take an average over all the models within a Bayesian Model Averaging 
framework, using the likelihood function values as weights. Where experimental data are not 
available, the evaluation simply becomes the average of all the considered models. Smooth functions 
are then applied to the evaluation in order to smoothen-out the cross section curves. This method has 
been applied to p + 58Ni evaluation in the fast energy region and the results obtained compared 
favorably with differential experimental data.  
 
References: 

[1] A.J. Koning, Bayesian Monte Carlo method for nuclear data evaluation, Eur. Phys. J. A 51 (2015) 
1-16. 

[2] E. Alhassan, D. Rochman, A. Vasiliev, M. Wohlmuther, M. Hursin, A.J. Koning, and H. Ferroukhi, 
Iterative Bayesian Monte Carlo for nuclear data evaluation, arXiv:2003.10827v1. 

[3] S. Hilaire, E. Bauge, P.C. Huu-Tai and M. Dupuis, S. Péru, O. Roig, P. Romain, and S. Goriely, 
Potential sources of uncertainties in nuclear reaction modeling. EPJ Nuclear Sci. Technol, 
4 (2018) 16.  

 
Acknowledgement: The author would like to thank D. Rochman, A.J. Koning, G. Schnabel, H. Sjöstrand, 
A. Vasiliev, G. Van den Branden for useful suggestions. 

2.11. Gaussian processes for treatment of model defects in nuclear data evaluations, 

H. Sjöstrand (Uppsala Univ., Sweden) 

Work done at Uppsala University, by H. Sjöstrand, G. Schnabel, P. Helgesson, and J. Hansson was 

presented.  

A model defect is when, independent of the choice of model parameters, a model cannot represent 

the actual underlying physical reality. Especially, a model with a model defect typically produces 

uncertainties on the model output that does not represent the magnitude of the model error. Hence, 

it has long been recognized that model defects can deteriorate Nuclear Data (ND) evaluations (Refs 

[1, 2]). Some of the features of Gaussian Processes (GPs) (Ref. [3]) were presented and how these can 

be used to compensate for model defects in ND evaluations. Three different options for using GPs to 

treat model defects were discussed. The three methods are as follows:  

(1) A correction term is added to the model. This correction term is modelled with a GP. It was 

shown that the resulting evaluation reproduced data well. Concerns were raised on how to 

integrate this method in a full ND-evaluation where model constraints, e.g., sum-rules, need 

to be included.  Regarding this method, concerns were also raised in connection with those 

cases where the experimental covariance is not well represented in the evaluation procedure. 

(2) The GP is used to increase the flexibility of the model, f, by allowing the model parameters, 𝛃, 

to become energy dependent: 𝑓(𝐸;𝛃+𝛅(𝐸)), where 𝛅(𝐸) is modeled as a GP (Refs [4,  5]). Here, 

it was shown that the resulting evaluation reproduced the data well. Compared to method (1), 

this method automatically takes care of any model constraints such as sum-rules. This method 

gave rather large updates on the model parameters, meaning that in many cases the posterior 

model parameters were not consistent with the prior assumption. 

(3) This method combines method (2) with adding a correction term onto the model (similar as 

in (1)). However, in contrast to what is done in (1), only the prior covariance of the correction 

term is added to the model's prior, i.e., the mean vector of the GP is ignored. The resulting 

evaluation also reproduced data well. In contrast to (2), this method retains more of the prior 
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information of the model. A hypothesis was put forward that this method might also be less 

sensitive to errors in the experimental covariance matrix.  

Summing up, three different options to handle model defects in nuclear data evaluations using GP 

were presented, and arguments to use the third method were given.  

References: 

[1] P. Helgesson, et al., Assessment of Novel Techniques for Nuclear Data Evaluation, In Reactor 
Dosimetry: 16th International Symposium, 2018 (Eds: M. Sparks, K. DePriest, and D. Vehar) 
105-116.  

[2] G. Schnabel, Large Scale Bayesian Nuclear Data Evaluation with Consistent Model Defects, 
Ph.D thesis, TUW, 2015.  

[3] C.E. Rasmussen and C.K.I. Williams, Gaussian processes for machine learning. Cambridge, 
Mass: MIT Press, 2006. 

[4] P. Helgesson and H. Sjöstrand, Treating model defects by fitting smoothly varying model 
parameters: Energy dependence in nuclear data evaluation, Ann. Nucl. Energy 120 (Oct. 2018) 
35–47. 

[5] G. Schnabel, et al., Conception and software implementation of a nuclear data evaluation 
pipeline, Nucl. Data Sheets 173 (2021) 239-284, http://arxiv.org/abs/2009.00521. 

2.12. AI/ML-based evaluation in the resonance region, V. Sobes (Tennessee 

Univ., USA) 

The work currently on-going at the University of Tennessee on the application of Artificial Intelligence 

algorithms to nuclear data evaluation in the resonance region was presented. This work will be 

realized in the form of a machine-learning-based wrapper for the SAMMY resonance evaluation code. 

The advantages of an AI/ML-based approach to nuclear data evaluation were highlighted such as 

introducing reproducibility into nuclear data evaluation, greatly accelerating the time necessary to 

produce a new evaluation and providing reliability and systematic uncertainty quantification in the 

process. The approach currently pursued by Sobes and his collaborators is limited to automating the 

evaluation process after all of the experimental data has been compiled by a human evaluator. One 

of the challenges faced by the AI/ML-algorithm approach is the fact that statistical models of the 

experimental uncertainty are hardly ever reported and always assumed to be Gaussian. The group is 

currently researching methods for the algorithm to be self-aware of its own limitations and to identify 

regimes where even the estimate of uncertainty may not be reliable. Sobes concluded with the 

observation that even with rigorous statistical models for uncertainty quantification, AI/ML-based 

evaluation of nuclear data may raise concerns about the interpretability of results and decisions made 

by the algorithm. 

2.13. GPyTorch: Gaussian processes for modern machine learning systems, G. Pleiss 

(Columbia Univ., USA) 

Gaussian processes (GPs) are powerful machine learning models that offer well-calibrated uncertainty 

estimates, interpretable predictions, and the ability to encode prior knowledge. They are commonly 

used in many applications ranging from geo-statistics to health care to robotics. At the same time, GPs 

suffer from practical limitations: poor scalability, challenging implementations, and inefficient use of 

modern compute hardware. 

The GPyTorch library is a Gaussian process framework specifically designed to combat these practical 

issues. Taking inspiration from neural networks, the GPyTorch library construct inference procedures 

that only use matrix multiplication and other operations amenable to GPU acceleration. This not only 

http://arxiv.org/abs/2009.00521
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makes inference more scalable and efficient, but it also simplifies the implementation of specialty 

models. It will be demonstrated that GPyTorch scales exact GP models to datasets with millions of 

observations – two orders of magnitude larger than existing frameworks. Many common GP models 

can be implemented in less than 30 lines of Python code. 

2.14. Nuclear data generation using Gaussian process regression and its related 

topics, H. Iwamoto (JAEA, Japan) 

Gaussian processes are used as a Bayesian machine learning technique to solve regression and 

classification problems. Because a regression model based on Gaussian processes (GPs) gives 

predictive distributions for the regression problems, this technique may be a powerful tool not only 

for evaluating nuclear data but also for determining the corresponding uncertainty. 

In the previous study, a method to generate nuclear data from experimental data was proposed based 

on GPs, and it was demonstrated that our method can generate reasonable regression curves and 

their uncertainties from experimental data. In this meeting I presented this technique as well as some 

merits and issues for the nuclear data generation. 

2.15. Uninformative, sparse, smooth: GP priors on second derivatives of cross 

sections, G. Schnabel (IAEA) 

Gaussian process regression is a flexible non-parametric method for supervised learning. In nuclear 

data evaluation, Gaussian processes (GPs) have already been used (1) to fit cross sections [1], (2) as 

an energy-dependent prior on model parameters [2], and (3) to account for the deficiencies of a 

nuclear model in an evaluation, e.g., [3,4]. The time requirement to fit a Gaussian process scales with 

the cube of the number of data points, which makes it problematic to apply them to large data sets. 

At the time of writing, data sets with more than ten thousand data points may be considered large. 

This presentation outlined a specific Gaussian process construction which scales better to large sets. 

The first ingredient is to approximate the full Gaussian process by imposing a multivariate normal 

distribution on a finite mesh and to employ linear interpolation to obtain the full Gaussian process 

specification. The second ingredient is to impose the multivariate normal distribution with a diagonal 

covariance matrix on the second derivative of the cross section as prior. This construction introduces 

a high degree of sparsity into the Gaussian process, which can be exploited by relying on sparse matrix 

algorithms. 

References: 

[1] H. Iwamoto, Generation of nuclear data using Gaussian process regression, J. Nucl. Sci. Technol. 
57/8 (2020) 932-938 

[2] P. Helgesson, H. Sjöstrand, Treating model defects by fitting smoothly varying model parameters: 
Energy dependence in nuclear data evaluation, Ann. Nucl. Energy, 120 (2018) 35-47.  

[3] H. Leeb, D. Neudecker, Th. Srdinko, Consistent Procedure for Nuclear Data Evaluation Based on 
Modeling, Nucl. Data Sheets 109/12 (Dec. 2008) 2762-2767. 

[4] G. Schnabel, H. Leeb, Differential Cross Sections and the Impact of Model Defects in Nuclear Data 
Evaluation, EPJ Web of Conferences 111 (Mar 2016) 09001. 

2.16. Trees, forests and islands: A machine learning approach to nuclear physics, 

N. Dwivedi (IIT, India) 

Machine Learning (ML) and Artificial Intelligence (AI) have found a place in our contemporary 

technology to discover patterns, and to classify and predict any large data. These classifications and 
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predictions find applications from social media, online behaviour to banking, stock market movement, 

etc. Recent use of ML in high energy physics for search of exotic particles, and making faster 

computations in molecular dynamics calculations, etc., has opened the vistas of their usage in 

fundamental sciences.  

In this work we explore such a ML algorithm for model generation and prediction of various nuclear 

observables like damping parameters, shell correction energies, quadrupole deformations, pairing 

gaps, level densities and giant dipole resonances for a large number of nuclei. We, in particular, predict 

level density parameters for superheavy elements which is of great current interest. 

We train Gradient Boosted Trees and Random forests on the available nuclear data to obtain a 

prediction model. We use as features the energy terms of the semi empirical mass formula derived 

from the liquid drop model. The performance of the prediction model is good. This work is detailed in 

https://arxiv.org/abs/1907.09764  

2.17. Machine learning for neutron resonance evaluations, D. Brown (BNL, USA) 

The performance of nuclear reactors and other nuclear systems depends on a precise understanding 

of the neutron interaction cross sections for materials used in these systems. These cross sections 

exhibit a resonance structure whose shape is determined in part by the angular momentum quantum 

numbers of the resonances. The correct assignment of the quantum numbers of neutron resonances 

is therefore of paramount importance. In this presentation, we describe the application of machine 

learning to automate the quantum number assignments. Scikit-learn classifiers were trained on 

simulated resonance data whose statistical properties were chosen to mimic real data. We explored 

the use of several physics (and random matrix theory)-motivated features for training the classifiers, 

including the nearest neighbor spacing distribution, cumulative level distribution, and channel width 

distributions. Initial results demonstrated that we can determine resonance spin groups somewhat 

reliably. We are now investigating the application of our approach to 52Cr resonance data. 

2.18. Probabilistic machine learning for uncertainty quantification, A. Lovell 

(LANL, USA) 

The use of machine learning (ML) is becoming more prominent in the nuclear theory community. 

However, their use for uncertainty quantification (UQ) usually relies on ML algorithms implemented 

as emulators with a separate UQ formalism built on top. To directly extract uncertainties from 

machine learning, we instead explore a probabilistic ML algorithm, the Mixture Density Network 

(MDN). Through the MDN, instead of using a standard neural network to directly map from input to 

output, the output is described as a sum of Gaussians and the weight, mean, and variance of each 

Gaussian is determined through the neural network. In this way, uncertainties from the training set – 

taken from the nuclear data observables of interest – can be propagated to the predicted observables. 

Here, we explore the use of the MDN to reproduce fission mass yields and their uncertainties. Using 

spontaneous fission of 252Cf, we study how many training samples are needed for converged results, 

how different levels of uncertainties propagate from the input to output, and how well the 

normalization and symmetry of the yields are upheld. In addition, using energy-dependent mass yields 

of neutron-induced fission of 235U, we explore the ability of the MDN to interpolate and extrapolate 

between and beyond incident energies in the training set. Although further studies are still needed, 

this initial investigation indicates that the MDN is a promising machine learning algorithm for use in 

predicting nuclear data with well-quantified uncertainties. 

https://arxiv.org/abs/1907.09764
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2.19. Constrained Bayesian optimization of criticality experiments at LLNL, D. Siefman 

(LLNL, USA) 

The design of criticality experiments is typically an iterative process that employs a Monte Carlo 

transport code. The goal is to find a design that optimizes some variable, like the sensitivity of a 

response to a cross section, while simultaneously ensuring criticality. The high fidelity of the Monte 

Carlo code is a great asset, but it makes exploring the design space computationally expensive. Herein, 

we present how a constrained Bayesian optimization algorithm can be used to efficiently design a 

criticality experiment. It uses Gaussian processes as a surrogate model to probe the design space and 

to reduce the number of code executions that are needed to find the optimum. We demonstrate 

constrained Bayesian optimization with a U-235/polyethylene spherical system and a TEX experiment 

that is designed for criticality safety validation of a nuclear waste model at the Hanford Site. For both 

systems, a global optimum was found within 75 Monte Carlo simulations. 

3. Summary and conclusions 

The presentations indicated that ML approaches are already being pursued in the nuclear science and 

engineering domain and first applications have proven successful. Hence recent advancements in ML 

methodology are likely to benefit applications in the nuclear field. We conclude by summarizing and 

highlighting the achievements outlined in participants’ presentations regarding (1) nuclear data 

evaluation and validation, (2) other applications in nuclear science and engineering, and (3) general 

ML methodology. 

(1) In nuclear data evaluation, the widely adopted Generalized Least Squares (GLS) method to 

combine experimental data for an evaluation is sensitive to discrepant data and outliers and 

their proper identification is therefore important. D. Neudecker and M. Grosskopf elaborated 

on a two-step procedure to determine problematic experimental features related to outliers by 

using Support Vector Regression (SVR) in combination with either elastic nets or random 

forests. M. Grosskopf further highlighted the SHAP metric to extract feature importance from 

classifiers that are not easily interpretable, such as random forests, and presented an extension 

of the GLS method that also accounts for experimental biases. This approach can guide future 

measurements and highlight features of experiments that should be explored to maximally 

impact future evaluations rather than strive to reduce uncertainties of a single measurement - 

a costly and difficult task. 

E. Alhassan and H. Sjöstrand addressed in their presentations the issue that in model-based 

evaluations nuclear models are not always able to follow the experimental data closely. The 

adoption of model-based evaluations therefore may introduce significant biases in nuclear-data 

libraries and addressing them is of high importance from the application point of view as often 

the model defect uncertainties are not reflected in the evaluated uncertainties. E. Alhassan 

presented a solution based on Bayesian model averaging to combine several nuclear physics 

models to obtain a better overlap between the ensemble of model predictions and the 

experimental data. H. Sjöstrand presented two options to integrate Gaussian processes into a 

model-based evaluation to obtain more reliable uncertainties and better agreement between 

the evaluation and the experimental data, which either impose GPs as priors on energy-

dependent model parameters or add them to the model prediction. In a preliminary study, he 

also presented results using the two approaches in combination with a favorable impact on 

evaluated uncertainties. H. Iwamoto reviewed GP regression and elaborated on the possibility 

to evaluate nuclear data with GP regression instead of using a nuclear physics model and 
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showed several evaluations of various proton-induced reactions obtained by GP regression. This 

approach is potentially less prone to biases compared to model-based evaluations but requires 

decisive experimental data. G. Schnabel outlined in his presentation a GP construction that 

scales well to a large number of data points and enforces smooth solutions, which is often 

desirable for cross sections curves in the fast energy range. Depending on the specifics of the 

evaluation, several hundreds of thousands of data points are feasible. N. Dwivedi trained 

Gradient Boosted Trees (GBT) to predict nuclear properties, such as level density parameters, 

using the terms in the Bethe-Weizsäcker mass formula as features. A. E. Lovell presented results 

with density mixture networks to predict important fission observables, such as mass yields. A 

notable feature of density mixture networks is that uncertainties are also learned and predicted 

by the approach. Approaches that quantify uncertainties are relevant for the ongoing CRP on 

“Updating Fission Yield Data for Applications” as covariances for fission yields are often not 

provided. 

In the resolved resonance range, evaluations are performed by using R-matrix fits, which 

require the correct assignment of several quantum numbers. The proper assignment is often 

achieved by trial and error and considerable human intervention to obtain good fits to 

experimental data. D. Brown presented work that aims to automate, among other quantities, 

the spin assignment by using synthetic data with known spin assignment as training data to train 

various ML classifiers available in the scikit-learn Python module. 

Nuclear data libraries are validated and tweaked to perform favorably in predicting integral 

experiments. This step is important for quality assurance as it guarantees that the libraries can 

be reliably used for applications represented by the integral experiments. D. Neudecker 

explained how random forests in combination with the SHAP metric can be used to trace 

potential problems in nuclear data. The approach used features associated with the 

experiments, such as the reflector material, and the sensitivity coefficients that link the 

simulated experimental values to specific nuclear data to learn to predict discrepancies 

between simulated and experimental values of various integral responses. The SHAP metric was 

then used to identify problematic measurement features and nuclear data that might need to 

be revised after careful analysis by the evaluator. 

Besides leveraging the information of existing benchmarks, new benchmarks sensitive to 

specific aspects of the nuclear data can be built to help constrain nuclear data or to identify 

problematic aspects of an evaluation. D. Siefman introduced Bayesian global optimization as a 

tool to find good designs of integral benchmark experiments. A key ingredient of this approach 

is to replace the computationally expensive transport model by a computationally inexpensive 

Gaussian process surrogate model that mimics the original model. This surrogate model is then 

be used in the design optimization. This line of research is important because previously integral 

experiments were designed with expert judgement mapping out the best design space; humans 

may miss possible and good designs.  

(2) Regarding the use of ML in the broader nuclear science and engineering domain, T. Kin reported 
several successful applications of ML in radiation metrology. He elaborated on neutron 
spectrum unfolding in the multiple-foils activation method using a feed-forward neural 
network, and on the determination of the activity of Caesium-137 and other isotopes from a 
gamma-ray spectrum using convolutional neural networks. He also talked about the application 
of ML in the measurement of terrestrial cosmic-ray muon spectrum. F. Caliva explained how 
deep neural networks can be trained on data generated with a simulation code (CORE SIM) to 
perform anomaly detection in nuclear reactor cores. Noise analysis today, which is seldomly 
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applied, requires an analyst to look at the neutron noise measurements, and guess what is 
happening. As this unfolding is far from trivial, using AI for the unfolding represents a significant 
advancement. 

(3) The remaining presentations focused on pure statistics and ML methodology. A. Gray presented 

the Transitional Markov Chain Monte Carlo (TMCMC) approach to efficiently sample from 

posterior distributions with potentially multiple peaks. This approach may have the potential to 

improve uncertainty quantification in nuclear data evaluation. He also outlined an alternative 

paradigm to Bayesian statistics to compute with probabilities, which are probability boxes (or 

p-boxes in short). G. Pleiss addressed the issue that standard algorithms for Gaussian process 

regression cannot work with a large number of data points. He outlined improvements in 

numerical methods to enable Gaussian process inference also in situations with large amounts 

of data. In view of the recent uses of Gaussian processes in nuclear data evaluation, this 

methodological improvement indicates that global evaluations with GPs across the nuclide 

chart may become possible soon. F. Bachoc showed that inequality constraints can be 

incorporated into GP regression, which is also highly relevant for nuclear data evaluation. 

Constraints, such as cross sections being non-negative, are usually not formally taken into 

account in the commonly employed Generalized Least Squares method to produce an 

evaluation. 

It was an interesting observation that neural networks were mostly used in situations where it 

is possible to generate training data by running a model with varied model parameters, such as 

in the work on anomaly detection in reactor cores presented by F. Caliva and on spectrum 

unfolding presented by T. Kin. The purpose of the neural networks in these scenarios was to 

learn the inverse function, i.e., to estimate the parameters of the model based on the 

predictions. In the other cases GP regression and random forests were employed.  

In summary, presentations gave evidence that ML has already been applied beneficially in 

nuclear science and engineering and its use can be expected to expand in the future thanks to 

the improvements of compute hardware and advances in ML methodology. 
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APPENDIX I: ADOPTED AGENDA 

all times in CET  

San Francisco CET-9 

New York CET-6 

Japan  CET+8 

Connecting via Webex will be possible from 13:50 onwards every meeting day 

All presentation times comprise 5 min of Q&A at the end 

Tuesday 8 December 
  

Time Duration Name Affiliation  

14:00 0:10 A. Koning IAEA Welcome address 

14:10 0:15 G. Schnabel IAEA Introduction 

14:25 0:05   Election of chair and rapporteur 

    Presentations by Participants 

14:30 0:20 A. Gray ULIV Bayesian calibration with Transitional Markov Chain 
Monte Carlo 

14:50 0:20 A. Gray ULIV When marginals or correlations are unknown: UQ with 
imprecise probabilities 

15:10 0:20 D. Neudecker LANL Validating nuclear data augmented by Random Forests 

15:30 0:10   Break 

15:40 0:20 D. Neudecker LANL Highlighting physics reasons for discrepancies in 
differential experimental data via Elastic Net and 
Random Forest 

16:00 0:25 M. Grosskopf LANL Using Machine Learning to explore, diagnose, and 
correct for bias in nuclear data 

16:25 0:25 F. Caliva UCSF Anomaly detection in nuclear reactors using deep 
learning 

16:50 0:30   Discussion 

Wednesday 9 December 
  

Time Duration Name Affiliation Presentations by Participants (cont’d) 

14:00 0:35 F. Bachoc IMT/UPS Gaussian processes under inequality constraints 

14:35 0:25 T. Kin Kyudai ML in radiation metrology: Neutron spectrum unfolding 
and Gamma-ray spectroscopy 

15:00 0:25 E. Alhassan SCK-CEN Towards the inclusion of model uncertainties in nuclear 
data evaluations 

15:25 0:10   Break 

15:35 0:25 H. Sjöstrand UU Gaussian Processes for treatment of model defects in 
nuclear data evaluations 

16:00 0:15 V. Sobes UTK ML wrapper around Sammy 

16:15 0:25 G. Pleiss CU GPyTorch: Gaussian processes for modern machine 
learning systems 

16:40 0:30   Discussion 
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Thursday 10 December 
  

Time Duration Name Affiliation Presentations by Participants (cont’d) 

14:00 0:25 H. Iwamoto JAEA Nuclear data generation using Gaussian process 
regression and its related topics 

14:25 0:25 G. Schnabel IAEA Uninformative, sparse and smooth: GP priors on 
second-derivatives of cross sections 

14:50 0:25 N. Dwivedi IIT Bombay Trees, Forests and Islands - ML approach to nuclear 
physics 

15:15 0:10   Break 

15:25 0:25 D. Brown BNL Machine Learning for neutron resonance evaluations 

15:50 0:25 A. Lovell LANL Probabilistic Machine Learning for Uncertainty 
Quantification 

16:15 0:25 D. Siefman LLNL Constrained Bayesian optimization of integral 
experiments at LLNL 

16:40 0:30   Discussion 

Friday 11 December 
  

Time Duration    

14:00 3:00   General discussion and report preparation 
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APPENDIX III: PRESENTATION LINKS 

# Author Title Link 

1 G. Schnabel Introduction to Consultancy Meeting on Machine Learning for Nuclear Data pptx 

2 A. Gray Bayesian Calibration with Transitional MCMC pptx 

3 A. Gray When marginals or dependencies are unknown: computing with imprecise 

probabilities 
pptx 

4 D. Neudecker Validating Nuclear Data Augmented by Random Forests pdf 

5 D. Neudecker Highlighting Physics Reasons for Discrepancies in Differential Experimental Data 

via Elastic Net and Random Forest 
pdf 

6 M. Grosskopf Using Machine Learning to Explore, Diagnose, and Correct for Bias in Nuclear Data pdf 

7 F. Caliva Anomaly detection in nuclear reactors using deep learning pdf 

8 F. Bachoc Gaussian processes under inequality constraints pdf 

9 T. Kin Machine learning in radiation metrology: Neutron spectrum unfolding and 

Gamma-ray spectrometry 
pptx 

10 E. Alhassan Towards the inclusion of model uncertainties in nuclear data evaluations pdf 

11 H. Sjöstrand Gaussian Processes for treatment of model defects in nuclear data evaluations pptx 

12 V. Sobes AI/ML-based evaluation in the resonance region pdf 

13 G. Pleiss GPyTorch: Gaussian Processes for Modern Machine Learning Systems pdf 

14 H. Iwamoto Nuclear data generation using Gaussian process regression and its related topics pptx 

15 G. Schnabel Uninformative, sparse, smooth: GP priors on second derivatives of cross sections pdf 

16 N. Dwivedi Trees, Forests and Islands: A Machine learning approach to Nuclear Physics pptx 

17 D. Brown Machine Learning for Neutron Resonance Evaluations pdf 

18 A. Lovell Probabilistic Machine Learning for Uncertainty Quantification pdf 

19 D. Siefman Constrained Bayesian Optimization of Criticality Experiments at LLNL pptx 

20 G. Schnabel Opening of final day of CM on ML for ND pptx 

https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/11%20-%20Georg%20Schnabel%20-%20Introduction%20to%20CM%20on%20ML%20for%20ND.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/12%20-%20Ander%20Gray%20-%20Transitional%20MCMC.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/13%20-%20Ander%20Gray%20-%20Imprecise%20probabilities.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/14%20-%20Denise%20Neudecker%20-%20Validation%20with%20ML.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/15%20-%20Denise%20Neudecker%20-%20Evaluation%20with%20ML.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/16%20-%20Michael%20Grosskopf%20-%20detection%20and%20estimation%20of%20bias.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/17%20-%20Francesco%20Caliva%20-%20Anomaly%20detection%20using%20deep%20learning.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/21%20-%20Francois%20Bachoc%20-%20GP%20under%20inequality%20constraints.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/22%20-%20Tadahiro%20Kin%20-%20ML%20in%20radiation%20metrology.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/23%20-%20Erwin_Alhassan%20-%20BMA%20approach%20to%20evaluation.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/24%20-%20Henrik%20Sjoestrand%20-%20Gaussian%20Processes%20for%20treatment%20of%20model%20defects.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/25%20-%20Vladimir%20Sobes%20-%20SAMMY%20ML.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/26%20-%20Geoff%20Pleiss%20-%20GPyTorch.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/31%20-%20Hiroki%20Iwamoto%20-%20GP%20regression.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/32%20-%20Georg%20Schnabel%20-%20GP%20prior%20on%202nd%20derivative.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/33%20-%20Nishchal%20Dwivedi%20-%20Trees%20and%20islands.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/34%20-%20David%20Brown%20-%20ML%20for%20RRR.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/35%20-%20Amy%20Lovell%20-%20Probabilistic%20ML%20for%20UQ.pdf
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/36%20-%20Daniel%20Siefman%20-%20Constrained%20Bayesian%20Optimization%20of%20Criticality%20Experiments%20at%20LLNL%20.pptx
https://www-nds.iaea.org/index-meeting-crp/CM-AI-ML-2020-12/docs/41%20-%20Georg%20Schnabel%20-%20summary.pptx
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