

INDC(NDS)-0904 Distr. RD,ST,PH

INDC International Nuclear Data Committee

Impact of Photonuclear Reactions on Neutron Dosimetry in ²⁵²Cf(s.f.) and ²³⁵U(nth,f) Neutron-gamma Mixed Radiation Fields

S. Simakov

Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany

October 2024

IAEA Nuclear Data Section Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria

Selected INDC documents may be downloaded in electronic form from *<http://www-nds.iaea.org/publications>* or sent as an e-mail attachment. Requests for hardcopy or e-mail transmittal should be directed to *NDS.Contact-Point@iaea.org* or to: Nuclear Data Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna

Austria

Impact of Photonuclear Reactions on Neutron Dosimetry in ²⁵²Cf(s.f.) and ²³⁵U(nth,f) Neutron-gamma Mixed Radiation Fields

S. Simakov

Karlsruhe Institute of Technology Eggenstein-Leopoldshafen, Germany

Abstract

The systematic analysis of the competition between the γ-ray induced and the neutron dosimetry reactions in the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) mixed neutron-gamma radiation fields was performed for the first time. 49 neutron induced reactions on mono-isotopes in the IRDFF-II library were found for which the photonuclear reactions produce the same residual or observable. The following competing reaction pairs were eventually considered: (n,f) and (γ,f) , (n,n') and (γ,γ') , (n,xn) and $(\gamma(x-1)n)$ with neutron multiplicity $x = 2 - 10$, $(n, np+d)$ and (γ,p) , (n,α) and (γ,h) . The contributions were quantitatively estimated using the calculated gamma and neutron Spectrum Averaged Cross Sections (SACS). The energy spectra and multiplicities for the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) radiations where taken either from nuclear standards (e.g., prompt fission neutron spectra) or from available evaluations (e.g., fission gamma spectra) which are presently known up to 20 – 30 MeV. Both the prompt and delayed radiation emission modes were considered. Extrapolation of the radiation energy distributions for ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) up to 100 – 200 MeV was made based on the energy trends or scarce existing experimental data. Eventually the impact of (γ,x) on the total residual production was shown to be less than $\approx 1\%$ for most of the considered reaction pairs and thus could be neglected since 1% is the highest accuracy presently achievable. The role of the photonuclear reaction increases and becomes dominating for the high threshold reactions such as $(\gamma,(x-1)n)$ and (n,xn) on ²⁰⁹Bi when $x \ge 5$, if the energy distribution of gammas from ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) tends to plateau at energies above ≥ 40 MeV.

In addition to the mono-isotope targets, the natural elements which are also included in IRDFF-II were considered. 13 elements were found, where, additionally to the neutron dosimetry reactions on specific isotopes, the photonuclear reactions on other isotopes will contribute to the radionuclide production. Such an impact was estimated to be lower than $10⁴%$ and can be safely neglected in neutron dosimetry.

Contents

1. Introduction

The International Reactor Dosimetry and Fusion File (IRDFF-II) [\[1\]](#page-27-1) is an internationally recognised library of reference neutron induced cross sections. It is widely used by the dosimetry community in various research and power reactor applications. IRDFF-II relies on the microscopic cross section measured data and IRDFF-II evaluations were validated in the standard or reference neutrons fields such as the Prompt Fission Neutron Spectra (PFNS) from reactions ²⁵²Cf(s.f.), ²³⁵U(n_{th},f) and other more complicated field[s \[1\].](#page-27-1) This validation was performed by comparison of the measured and calculated neutron induced Spectrum Averaged Cross Sections (SACS). The abbreviation SACS was so far traditionally used for neutron reactions and fields. In the present work we will designate it as n-SACS to distinguish from the γ-spectra averaged gamma induced cross sections γ-SACS.

The ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) radiation sources emit additionally to neutrons also gammas. The gamma multiplicities per fission event are even several times larger than the neutron ones. If the neutron and gamma induced reactions on a given target isotope result in the same final reaction product (residual radionuclide or fission fragments, used for the reaction detection), then the neutron and gamma induced contribution become impossible to separate experimentally. Such an impact of gammas has not yet been investigated for the refence neutron fields, in particular because the accompanying gamma spectra were not well studied and numerically characterized or because the role of gammas was ignored.

The purpose of the present work is a systematic study of the competition between the neutron and gamma induced reactions leading to the same residuals in the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) gamma-neutron mixed fields. For all neutron reactions included in IRDFF-II, the competing gamma reaction were searched. The following pairs were found, for which the impact was a estimated: (n,f) and (γ,f), (n,n') and (γ,γ'), (n,xn) and (γ,(x-1)n) where x = 2 -10, (n,pn+d) and (γ,p), (n,α) and (γ,³He). Since activation measurements span the time typically more than seconds, both the prompt and delayed emission modes, i.e. their multiplicities and energy spectra, were considered for neutrons and gammas.

In practice, the dosimetry samples consisting of the single natural (but non mono-isotope) element are often used. However, the neutron induced reaction only on single isotope of element is considered as neutron dosimeter in IRDFF-II. In these cases, the photonuclear reactions on all other isotopes of element could result in production of the same reaction residual as the IRDFF neutron dosimeter. Such influence of the photonuclear reactions in the elemental targets was found only for the neutron dosimetry reactions $(n,2n)$, (n,p) and (n,α) , their contribution was estimated too.

This is the first systematic study of the impact of the photonuclear reaction on the residual production by the neutron dosimetry reaction in the reference ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) radiation mixed fields. First our attempts were undertaken in [\[2\],](#page-27-2) where the competition between the (γ,n) and $(n,2n)$ production pathways on the ²³⁸U and ²⁴Na targets in the ²³⁵U(n_{th} ,f) mixed radiation field was calculated.

Section 2 of this report describes the cross section libraries, reaction identifications and processing used in the calculations; Section 3 gives an overview of the status of the existing neutron and gamma energy spectra and averaged multiplicities for the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) mixed radiation fields and extension to the higher emission energies; Section 4 reports the calculated neutron- and gamma-induced spectrum average cross sections, yields and partial fractions to the total residual production; Section 5 shows the impact of (γ, x) reactions in the case of elemental targets; Section 6 shortly investigates the feasibility to measure the extremely high energy threshold reactions on ²⁰⁹Bi. The report concludes with a summary.

2. Cross sections for the competing neutron and gamma induced reactions

This section gives an overview of the neutron and gamma induced cross section libraries, the identification of reaction type and necessary data processing used for the calculation of the spectrum averaged cross section and, eventually, for the estimation of the impact of photonuclear reactions on neutron dosimetry.

Table 2.1 lists 43 neutron dosimetry reactions found in the IRDFF-II library [\[1\],](#page-27-1) explicitly those for which the competing photonuclear reactions found in the IAEA/PD-2019.2 [\[3\]](#page-27-3) or TENDL-2023 [\[4\]](#page-27-4) libraries result in the same residual. Most of these pairs lead to the final unstable nuclei decaying with emission of bettas or gammas, the latter are used to measure the reaction cross section. To this list of competing reactions the fission reactions

(n,f) and (γ,f) are also added, since detectors of the fission fragments (FF) cannot distinguish between incident neutrons and photons.

TABLE 2.1. Neutron induced dosimetry reactions on mono-isotopes from the IRDFF-II library and competing gamma induced reactions from IAEA/PD-2019.2 or TENDL-2023.

Note: a) Cross sections for ²⁰⁹Bi(n,xn), $x = 2 - 6$, are included in IRDFF-II up to incident neutron energy 400 MeV. b) Cross sections for 209Bi(n,xn) , $x = 7 - 10$, are not included in IRDFF-II yet. They were taken from the preliminary evaluation of V. Pronayev for ²⁰⁹Bi(n,xn), $x = 7 - 10$, up to incident neutron energy 100 MeV [\[5\].](#page-27-5)

All competing reactions are arranged in several sub-groups in accordance with their type: (n,f) and (γ,f) , (n,n') and (γ,γ'), (n,2n) and (γ,n), (n,3n) and (γ,2n), (n,xn) and (γ,(x-1)n) where multiplicity x = 4 - 10, (n,np+d) and (γ,p), (n,α) and (γ,h). The sub-groups are ordered according to the increase of kinematic thresholds, and within the sub-groups by element charge number Z. The kinematic thresholds for the neutron- and gamma-induced reactions were calculated by the own developed code *SKNMT* that uses the nuclei isotope masses from the mass evaluation database AME2020 [\[6\].](#page-27-6)

The cross sections for neutron induced reactions were taken from the dedicated dosimetry library IRDFF-II (the latest release of January 2020) [\[1\].](#page-27-1) It contains in total 93 reactions for the mono-isotopes and 26 for natural elements as targets. The incident neutron energy range extends from threshold up to energy 60 MeV. The exception is the cross sections for reactions (n, xn) with the neutron multiplicity $x = 2 - 6$, on ²⁰⁹Bi, which have the high energy cut-off 400 MeV.

The cross sections for the extreme high threshold reactions $^{209}Bi(n,xn)$, $x = 7 - 10$, are not included in IRDFF-II yet. In the present work we used for these reactions the preliminary evaluation of V. Pronyaev which provides the cross sections and uncertainties up to incident neutron energy 100 MeV [\[5\].](#page-27-5) Fig. 2.1 depicts the experimental data found in database EXFOR [\[7\]](#page-27-7) in comparison with the V. Pronyae[v \[5\]](#page-27-5) and TENDL-202[3 \[4\]](#page-27-4) evaluations. It shows that existing measurements [\[8\],](#page-27-8) [\[9\]](#page-27-9) and [\[10\]](#page-27-10) are extremely scarce and controversial, the spread between two evaluations is unacceptably large. In general, V. Pronyaev's evaluation seems to be closer to the experiment and was therefore selected for our present assessments. To improve the status of the high threshold neutron dosimetry reactions, the call for measurements and evaluation was formulated in the Nuclear data high priority request list (HPRL) [\[11\].](#page-27-11)

For retrieving the specific dosimetry reaction cross sections, we used the proper MT numbers accepted in the IRDFF-II library $[1]$ (it has to be noticed that most IRDFF-II point-wise cross sections are stored in file MF = 3). In several cases, the combination $ZAP = 1000*Z + A$, where Z and A are the charge and mass numbers of the residual isotope, is a unique identification of the dosimetry reaction (in that case the cross sections are stored in file $MF = 10$). If the excitation and decay of the metastable state of the residual radionuclide serve as a neutron dosimeter, then the letter "m" is added to ZAP. The proper information is given in Table 2.1 for each considered reaction.

The cross sections for gamma induced reactions were taken from the dedicated photonuclear library IAEA/PD-2019.2 (the latest update was released on October 31, 2022) [\[3\].](#page-27-3) In total, it contains the evaluated photonuclear cross sections for 219 isotopes, the highest gamma energies extend mostly up to 200 MeV. For the unique identification of the required photonuclear reaction, the final product identification ZAP is often sufficient. In some cases, the combination of the file (MF) and reaction (MT) numbers is necessary [\[3\],](#page-27-3) [\[12\],](#page-27-12) see Table 2.1.

FIG. 2.1. *Cross sections for the neutron induced reactions* $^{209}Bi(n, xn)^{209-x+1}Bi$ with the neutron multiplicity $x = 7 - 10$: existing *measurements [\[8\]](#page-27-8) - [\[10\]](#page-27-10) (symbols) and evaluations from V. Pronyaev (green curve with corridor of uncertainty) [\[5\]](#page-27-5) and from TENDL-2023 (brown histogram) [\[4\].](#page-27-4)*

Since IAEA/PD-2019.2 has no evaluations for 113 In, 199 Hg, 204 Pb and 241 Am, the corresponding cross sections were taken from the gamma sub-library of TENDL-2023 [\[4\]](#page-27-4) (namely, the library option that includes all explicit channels up to 200 MeV). The photonuclear cross section for the reaction $^{103}Rh(\gamma,\gamma')$ ^{103m}Rh was also taken from TENDL-2023, since the IAEA/PD-2019.2 cross section only starts above 5 MeV which is not acceptable for the reaction with low kinematic threshold 0.040 MeV (Table 2.1).

For the reaction ${}^{90}Zr(\gamma,1n){}^{89}Zr$ from IAEA/PD-2019.2 we found that the cross section of ${}^{90}Zr(\gamma,x){}^{89}Zr$ leading to the residual ⁸⁹Zr (final product identification ZAP = 40089) has a non-zero value below the kinematic threshold 11.968 MeV, Fig. 2.2. This results in a substantially wrong overestimation of the spectrum averaged cross sections, since the gamma spectra from considered radiation sources decrease exponentially, Fig. 2.2. To avoid this defect of IAEA/PD-2019.2, we used the ⁹⁰Zr(γ,1n)X cross section (MF/MT/ZAP = 10/5/1). As can be seen, the latter agrees with the needed ⁹⁰Zr(γ ,x)⁸⁹Z cross section in the energy range between the thresholds for (γ ,1n) and (γ,2n). At an energy above 21.3 MeV, the ⁹⁰Zr(γ,1n)X cross section obviously includes the double value of the $90Zr(\gamma,2n)^{88}Zr$ cross section (i.e., the neutron emission). Since at such high energies the gamma spectrum exponentially falls, the impact on γ -SACS is expected to be rather small with little impact on the accuracy sufficient for the present assessments.

A similar wrong energy dependence was observed for the cross section ²⁷Al(γ ,x)²⁴Na from IAEA/PD-2019.2. Fig. 2.3 shows that the cross section for the production of ²⁴Na (identification MF/MT/MT = $10/5/11024$) has a non-physical bump below the reaction kinematic threshold 23.710 MeV. To overcome this problem, the helion emission cross section ²⁷Al(γ,x)³He (MF/MT/MT = 10/5/2003) was selected in the present calculations.

FIG. 2.2. (Right Axis) The neutron (IRDFF-II) and gamma (IAEA/PD-2019.2) induced cross sections for ⁹⁰Zr (extracted with indicated MF/MT/ZAP): ${}^{90}Zr(n,2n){}^{89}Zr$ - blue histogram; ${}^{90}Zr(\gamma,x){}^{89}Zr$ – black, ${}^{90}Zr(\gamma,x){}^{89}Zr$ – dashed red, double *neutron emission ⁹⁰Zr(γ,2n) – dashed black.*

(Left axis) The absolute total energy emission spectra of γ-rays from ²⁵²Cf(s.f.) (thin red histogram), for more details see Section 3.

FIG. 2.3. (Right Axis) The neutron (IRDFF-II) and gamma (IAEA/PD-2019.2) induced cross sections (extracted with indicated MF/MT/ZAP) for ²⁷Al: ²⁷Al(n,a)²⁴Na – blue histogram; ²⁷Al(y,x)²⁴Na – black, ²⁷Al(y,x)³He – dashed red. *(Left axis) The absolute total energy emission spectra of γ-rays from ²⁵²Cf(s.f.) (thin red histogram), for more details see*

The neutron induced (IRDFF-II) and photonuclear (IAEA/PD-2019.2 or TENDL-2023) libraries were processed in the fine multigroup representation by the PREPRO2023 code [\[13\].](#page-27-13) The 765 group structure was selected, which consists of SAND-II structure (up to 20 MeV), plus 2 MeV energy bins up to 60 MeV, plus 2 MeV bins up to 100 MeV and plus 5 MeV bins up to 200 MeV. The proper built-in group structure was invoked in the GROPIE module of PREPRO2023.

It is worth noticing that the SAND-II 725 group structure up to 60 MeV is traditionally used for the IRDFF-II representation up to 60 MeV, which is the high energy end for most neutron dosimetry reactions in this library [\[1\].](#page-27-1) The necessity of the IRDFF-II group-wise cross section extension from 60 MeV to 200 MeV in the present work was dictated by high threshold reactions ²⁰⁹Bi(n,xn), $x = 2 - 6$, which are part of IRDFF-II but have the high neutron energy limit 400 MeV. The eventually selected 200 MeV end-point for grouped neutron and gamma cross sections in the present calculations is limited by the achievable extension of the ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) radiation spectra towards the high energies, see next Section.

3. Neutron and γ-ray energy spectra from ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f)

This first two sub-sections review the status of the neutron and gamma energy spectra and averaged multiplicities for the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) sources of mixed radiations. The basic characteristics of the gamma and neutron emission and references from which the numerical data were taken, are summarised in Table 3.1. It shows that the prompt neutron and gamma spectra have the high energy cut-off around $20 - 30$ MeV.

The last sub-section considers the extrapolation of the reference ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) prompt neutron and gamma spectra to higher energies, i.e. to 100 or 200 MeV. This opens the possibility to assess the contribution of the photonuclear reactions to the residual production in comparison with those neutron dosimetry reactions that have kinematic thresholds *Ethr* in the range from 20 to 100 MeV.

TABLE 3.1. Main parameters of the neutron and γ-ray radiations from spontaneous fission of ²⁵²Cf and thermal neutron induced fission of ²³⁵U.

	$\mathcal{L}_{\mathcal{L}}$, we can concentrate the mass of the concentration of $\mathcal{L}_{\mathcal{L}}$, where $\mathcal{L}_{\mathcal{L}}$, we can be expected to $\mathcal{L}_{\mathcal{L}}$								
Emission		Neutrons	Gammas						
mode	Multiplicity	Spectrum Range	ε_{n}	Multiplicity	Spectrum Range	ϵ_{γ}			
	v, n/f	MeV	MeV	M_{γ} , γ/f	MeV	MeV			
	²⁵² Cf spontaneous fission: P _{sf} = (3.086 ± 0.008)%, T _{1/2} = (85.76 ± 0.23) y								
Prompt	3.7590 ± 0.048 [17]	$0.00001 - 30.0$ [15]	2.122	9.194 [21]	$0.1 - 20.0$ [21]	0.813			
Delayed	0.0086 ± 0.010 [19],[17]	$0.0 - 3.0$ [17]	0.477	10.3 [22], [23]	$0.0 - 2.0$ [22], [23]	0.774			
Total	3.7676 ± 0.016 [20], [17]			19.49^{a}					
		²³⁵ U thermal neutron induced fission: cross section $\sigma_f = 587.3 \pm 1.4 \text{ b } [1]$							
Prompt	2.425 ± 0.011 [15]	$0.10 - 30.0$ [15], [17]	2.000	8.57905 [17]	$0.01 - 21.35$ [17]	0.849			
Delayed	0.01585 ± 0.00071 [17]	$0.0 - 3.0$ [17]	0.509		٠				
Total	2.44085 ± 0.011^{a}								

(*The average neutron (ν) and gamma (Mγ) multiplicities are normalized per fission event (f). The spectrum average energies (ε) were calculated from the referenced energy spectra. The data origin is given.)*

Note: a) arithmetic sum of prompt and delayed multiplicities.

3.1. Known information about 252Cf(s.f.) neutron and gamma energy spectra and multiplicities

The prompt fission neutron spectrum (PFNS) from spontaneous fission of ²⁵²Cf was measured in several experiments. Both the energy differential data and the neutron averaged cross sections were used by W. Mannhart in his non-model evaluatio[n \[14\].](#page-27-21) The evaluated ²⁵²Cf(s.f.) PFNS was accepted as a standard spectrum in the IAEA project "Neutron Data Standards" [\[15\],](#page-27-15) [\[16\].](#page-27-22) Its uncertainty amounts to $1 - 12\%$ in the emission neutron energy range 0.1 – 15 MeV. For our calculations we took the numerical PFNS data in the 725 group presentation from the database IRDFF-II [\[1\].](#page-27-1) The prompt neutron multiplicity, i.e. the number of prompt neutrons per spontaneous ²⁵²Cf fission $v_p = 3.7590 \pm 0.0048$ were taken from Standards [\[15\].](#page-27-15)

The ²⁵²Cf(s.f.) delayed fission neutron spectrum (DFNS) is available in library ENDF/B-VIII.0 [\[17\]](#page-27-14) and presented there for 6 delayed time groups in the section $MF/MT = 5/455$. The DFGS, summed over the time groups, was derived with the retrieving system JANIS of the NEA Databank [\[18\].](#page-27-23) The delayed neutron multiplicity v_d = 0.0086 ± 0.010 was taken from ENDF/BVIII.0 [\[17\],](#page-27-14) which in turn refers to the evaluation of T. England [\[20\]](#page-27-20) as a primary resource.

Similar to PFNS, the ²⁵²Cf(s.f.) prompt fission γ-ray spectrum (PFGS) was also intensively measured in many labs during the last several decades. Based on these experimental data, PFGS was recently evaluated and proposed as a reference in the energy range 0.1 to 20 MeV [\[21\].](#page-27-16) This evaluation also provided the prompt gamma multiplicity $M_y = 9.194$ γ/f by integration of PFGS in the evaluated range and extrapolation below 0.1 MeV, see Table 3.1.

For the ²⁵²Cf(s.f.) delayed fission gamma spectrum (DFGS), it was shown [21] that existing measurements, theoretical models or contemporary evaluations are not sufficient for the delayed gamma spectrum evaluation and recommendation. In present calculations we used an evaluation carried out by Stoddard in 1965 [\[22\],](#page-27-18) [\[23\],](#page-27-19) which is rather old but the only existing one. He also provided the delayed gamma multiplicity $M_y = 10.3$ γ/f .

Fig. 3.1 shows the prompt neutron and γ-ray energy absolute energy differential spectra (number of neutrons or gammas per energy unit and fission event *f*) from ²⁵²Cf(s.f.).

FIG. 3.1. The absolute energy differential spectra of the prompt and delayed γ-rays and neutrons from ²⁵²Cf(s.f.) available in the most recent evaluations: PFNS and DFNS - from IAEA Standard[s \[15\]](#page-27-15) and ENDF/B-VIII.[0 \[17\];](#page-27-14) PFGS – Simako[v \[21\],](#page-27-16) DFGS - Stoddard [\[22\],](#page-27-18) [\[23\].](#page-27-19) 0.1 0.2 0.4 0.6 ¹ ² ⁴ ⁶ ¹⁰ ²⁰ ⁴⁰

3.2. Known information about 235 U(nth,f) neutron and gamma energy spectra and multiplicities

The prompt fission neutron spectrum (PFNS) from the thermal neutron induced fission of ²³⁵U was also rather well investigated, see [\[24\],](#page-27-24) [\[25\].](#page-27-25) $^{235}U(n_{th},f)$ PFNS is included as a reference spectrum in the IAEA Standard[s \[15\],](#page-27-15) [\[16\]](#page-27-22) as well as in the ENDF/B-VIII.0 [\[17\]](#page-27-14) and IRDFF-II [\[1\]](#page-27-1) libraries. We derived the PFNS and covariance numerical values from section MT = 18 of files MF = 5 and MF = 35 of ENDF/B-VIII.0, respectively. The prompt neutron multiplicity, i.e. the number of prompt neutrons per ²³⁵U(n_{th},f) fission event, $v_p = 2.425 \pm 0.011$ n/f was taken from Standards [\[15\],](#page-27-15) [\[16\]](#page-27-22) (this value is slightly higher than the value $v_p = 2.414$ n/f given in ENDF/VIII.0, section $MT = 456$ of file $MF = 1$).

The ²³⁵U(n_{th},f) delayed fission neutron energy spectra (DFNS) were derived from ENDF/B-VIII.0 [\[17\]](#page-27-14) from section MF/MT = $5/455$ by means of JANIS. The delayed neutron multiplicity and its uncertainty $v_d = 0.01585 \pm 0.00071$ n/f were taken from sections MF/MT = 1/455 and MF/MT = 31/455 of ENDF/VIII.[0 \[17\].](#page-27-14)

The ²³⁵U(n_{th} ,f) prompt γ-ray spectrum (PFGS) at thermal neutron energy was extracted for our calculations from section $MT = 18$ of file $MF = 15$ of ENDF/B-VIII.0 [\[17\]](#page-27-14) (the PFGS covariances are not presented in this library). This evaluation was based on the statistical model calculations [\[26\]](#page-28-0) and existing measurements with a preference for the experimental data of A. Oberstedt et al. [\[27\].](#page-28-1) The evaluators in their recent paper [\[28\]](#page-28-2) confirmed that ${}^{35}U(n_{th},f)$ PFGS and multiplicity as given in ENDF/B-VIII.0 continue to be the best ones regarding even the new published experimental data. The prompt γ-ray multiplicity Mγ = 8.57905 γ/f for ²³⁵U(n_{th},f) was also extracted from the ENDF/B-VIII.0 library, from section $MT = 18$ and file $MF = 12$. This value is based on DFGS, measured above 0.1 MeV but calculated below 0.1 MeV, and on the measured γ-ray multiplicity distributions.

The information about the ²³⁵U(n_{th},f) delayed fission gamma energy spectrum (DFGS) and γ-ray multiplicity seems to be not available in the contemporary evaluated nuclear data libraries.

Fig. 3.2 shows the prompt neutron and γ-ray energy absolute energy differential spectra (number of neutrons or gammas per energy unit and fission event *f*) from ²³⁵U(n_{th} ,f).

FIG. 3.2. The absolute energy differential spectra of the prompt and delayed γ-rays and neutrons from ²³⁵U(nth,f) available in the most recent evaluations: PFNS, DFNS – from IAEA Standards [\[15\]](#page-27-15) or ENDF/B-VIII.0 [\[17\];](#page-27-14) PFGS – **0.1** 0.2 0.4 0.6 1 2 4 6 10 20 40
 Neutron or Gamma Energy, MeV
 ENG. 3.2. The absolute energy differential spectra of the prompt and delayed y-rays and neutrons from $^{235}U(n_{th},f)$
 available in the most recent eva

3.3. Extension of 252Cf(s.f.) and 235U(nth,f) neutron and gamma spectra above 20 - 30 MeV and their processing

Figs 3.3 and 3.4 depict the known information about the prompt and delay neutron and γ-ray energy spectra from ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f). They show that the delayed radiation energy spectra are limited to around 3 MeV, the prompt ones extend up to 20 or 30 MeV. Additionally, these Figures present the cross sections for several high energy neutron dosimetry reactions ²⁰⁹Bi(n,xn) with multiplicity $x = 2$, 4 and 6 (Fig. 3.3) and corresponding competing photonuclear reactions ²⁰⁹Bi(γ,(x-1)n) (Fig. 3.4). As can be seen, if the high energy limit 20 – 30 MeV for PFNS and PFGS is sufficient for accurate estimation of the spectrum averaged cross sections (SACS) for the pair ²⁰⁹Bi(n,2n) and ²⁰⁹Bi(γ,1n), it is too small for reactions producing a larger number of neutrons.

For calculation of SACS and estimation of the (γx) impact for all neutron dosimetry reactions included in IRFFF-II, the extension of the prompt energy spectra above 20 - 30 MeV for the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) radiation sources is necessary.

For the neutron spectra there is not any experimental or theoretical information above 30 MeV. We extrapolated PFNS from 30 MeV to 100 MeV employing the exponential law which was fitted to the reference PFNS between 20 and 30 MeV. The resultant prompt fission neutron spectra for the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) sources are depicted in Figs 3.3 and 3.4.

The gamma energy spectra were extrapolated from 20 MeV in the case of ²⁵²Cf(s.f.) or from 30 MeV in the case of ²³⁵U(n_{th},f) up to 200 MeV, Figs 3.3 – 3.5. As seen, the gamma spectra from these two sources have a similar shape up to $20 - 30$ MeV. At higher energies, as it was discussed in the review [\[21\],](#page-27-16) the most relevant are the measurements of D. Pandit et al. [\[29\]](#page-28-3) for ²⁵²Cf(s.f.)γ and V. Varlachev et al. [\[30\],](#page-28-4) [\[31\]](#page-28-5) for ²³⁵U(n_{th},f)γ, Fig. 3.5. The recent experiments for ²³⁵U(n_{th} ,f) provided PFGS data only up to 19.5 MeV (H. Makii et al[. \[32\]\)](#page-28-6) or 9.5 MeV (T. Wright et al. [\[33\]\)](#page-28-7). Above $40-50$ MeV we additionally included gamma spectra originating from the π^0 decay, for more details see [\[21\].](#page-27-16)

FIG. 3.3. (Left axis) The energy spectra of the neutrons (blue curves) and γ-rays (red) from ²⁵²Cf(s.f.) up to energy 60 MeV: PFNS – Standards up to 30 MeV, above – extrapolation; DFNS - ENDF/B-VIII.0; PFGS – evaluation in range 0.1 – 20 Me[V \[21\],](#page-27-16) above – extrapolation. The minimal kinematic thresholds for the indicated competing reaction pairs are shown above X-axis.

(Right axis) Neutron cross sections from IRDFF-II for reactions: ²⁰⁹Bi(n,2n)²⁰⁸Bi, ²⁰⁹Bi(n,4n)²⁰⁶Bi and ²⁰⁹Bi(n,6n)²⁰⁵Bi

FIG. 3.4. (Left axis) The energy spectra of the neutrons (blue curve) and γ-rays (red) from ²³⁵U(nth,f) up to energy 60 MeV. PFNS – Standards up to 30 MeV, above – extrapolation; DFNS - ENDF/B-VIII.0; PFGS – ENDF/B-VIII.0. The minimal kinematic thresholds for the indicated competing reaction pairs are shown above X-axis. (Right axis) Gamma cross sections from IAEA/PN-2019.2 for: $^{209}Bi(\gamma, ln)^{208}Bi$, $^{209}Bi(\gamma, 3n)^{206}Bi$ and $^{209}Bi(\gamma, 5n)^{205}Bi$ (red *histograms), which produce the same radioisotope as* 209 *Bi(n,2n)*²⁰⁸*Bi*, 209 Bi(n,4n)²⁰⁶*Bi and* 209 Bi(n,6n)²⁰⁵*Bi* (*Fig. 3.3*).

FIG. 3.5. The high energy parts of the prompt γ-rays spectra for ²⁵²Cf(s.f.) (green curves) and ²³⁵U(nth,f) (red) from 10 to 150 MeV. Symbols: measured data available in EXFOR. Curves: GMA fit up to 20 MeV for ²⁵²Cf(s.f.)γ [\[21\]](#page-27-16) and $ENDF/B-VIII.0$ [\[17\]](#page-27-14) for $^{235}U(n_{th}f)\gamma$ (solid); exponential extrapolation between 20 and 50 MeV (dashed); gamma

As seen in Figs 3.3 and 3.4, the absolute energy spectra of gammas from both sources ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) begin to exceed the neutron spectra above the radiation energy $40 - 45$ MeV. Therefore, we may expect that contribution of the high threshold ($E_{thr} \geq 45$ MeV) gamma induced reactions to the residual production will dominate over neutron ones. It is important to underline that change of the PFGS energy shape from exponential decrease to plateau around 45 MeV relies on experimental data which provide only the upper limits, for more details see [\[21\].](#page-27-16)

The ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) neutron and γ-ray spectra were processed into the 765 energy groups up to 200 MeV by PREPRO-202[3 \[13\],](#page-27-13) i.e. to the same group structure as the neutron and gamma induced reaction cross sections.

It is worth noticing that the addition of the delayed neutron and gamma spectra to the prompt ones results in rather small (less than 1%) changes of the n-SACS and γ-SACS, even for the low threshold reactions such as induced fission or inelastic scattering.

4. Calculation of the neutron and gamma induced SACS and residual production Yields for monoisotopic targets

This Section presents the results of calculations of the neutron- and gamma-induced spectrum average cross sections, n-SACS and γ-SACS, and absolute residual production yields, n-Yield and γ-Yield, which characterize the competition between these two processes in the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) n-γ mixed fields.

n-SACS and γ -SACS were calculated with the help of the RR_UNC cod[e \[34\].](#page-28-8) The (n,x) and (γ ,x) cross sections were invoked from the latest version of the dedicated neutron dosimetry library IRDFF-II [\[1\]](#page-27-1) and photo-nuclear evaluated data libraries IAEA/PD-2019.2 [\[3\]](#page-27-3) or TENDL-2023 [\[4\]](#page-27-4) with the help of proper MF/MT/ZAP numbers, see Section 2. The ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) neutron and gamma energy spectra were composed from the reference spectra up to 20 or 30 MeV and extrapolation up to 100 – 200 MeV, see Section 3. Both cross sections and energy spectra were processed by PREPRO-2023 [\[13\]](#page-27-13) into the 765 energy group structure that has high energy cut-off 200 MeV. The normalization of the γ -ray and neutron fluxes as well as corresponding reaction rates was performed per one ²⁵²Cf spontaneous fission or ²³⁵U thermal neutron induced fission event.

The production of the same reaction observable (radioactive residual isotope or fission event) from the monoisotopic target was considered for the neutron and gamma induced reactions listed in Table 2.1: (γ, f) and (n,f) for 6 nuclei, (γ, γ') and (n,n') for 6, (γ, n) and $(n,2n)$ for 21, $(\gamma, 2n)$ and $(n,3n)$ for 3, (γ, xn) and $(n,(x-1)n)$ on ²⁰⁹Bi with multiplicity $x = 4 - 10$ for 7, (γ,p) and (n,np+d) for 1, (γ,³He) and (n,α) for 5. In total – 13 reaction pairs on 49 mono-isotope nuclei.

The relative contribution of the gamma (γ-Fraction) or neutron (n-Fraction) induced reactions to the residual production was calculated according to the following equations:

$$
\gamma - Fraction = \frac{\gamma - Yield}{(\gamma - Yield + n - Yield)} = \frac{\gamma - SACS \times My}{(\gamma - SACS \times My + n - SACS \times Mn)} \tag{4.1}
$$

$$
n - Fraction = \frac{n-Field}{(\gamma-Field + n-Field)} = \frac{n-SACS \times Mn}{(\gamma-SACS \times My + n-SACS \times Mn)}
$$
(4.2),

where:

- γ -Yield = γ -SACS × M γ the absolute gamma induced reaction residual Yield per fission event,
- $n-Yield = n-SACS \times Mn the absolute neutron induced reaction residual Yield per fission event,$
- Mγ and Mn the total (prompt +delayed) gamma and neutron Multiplicities per fission event.

Table 4.1 lists the calculated neutron and gamma median energy (E50%), spectrum averaged cross section (SACS), residual production absolute yield (Yield) and relative fraction (Fraction) for the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) γ-n mixed fields. Figs 4.1 and 4.2 show the dependence of the relative contribution (or impact) of the (γ,x) reactions on the total residual production versus the difference between the neutron and gamma median response energies (n-E50% - γ-E50%). As can be seen in these Figures, this representation discovers a certain trend: systematic increase from $\approx 0.002\%$ to $\approx 1\%$ in case of ²⁵²Cf(s.f.) source and from $\approx 0.004\%$ up to $\approx 2\%$ in case of ²³⁵U(n_{th},f). The maximum is observed for the competing reaction pairs: ⁵⁴Fe(n,2n)⁵³Fe and ⁵⁴Fe(γ ,n)⁵³Fe, 169 Tm(n,3n)¹⁶⁷Tm and 169 Tm(γ,2n)¹⁶⁷Tm.

TABLE 4.1. The γ-ray induced reactions competing with the IRDFF neutron dosimetry reactions in the total neutron or γ-ray fields produced by the ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) radiation sources.

		²⁵² Cf(s.f.) mixed n- and γ -fields			²³⁵ U(n _{th} ,f) mixed n- <u>and</u> γ -fields				
Competing Reactions	E50%,	SACS,	Yield,	Fraction,	E50%,	SACS,	Yield,	Fraction,	
	MeV	$\rm mb$	mb/f	$\%$	MeV	mb	mb	$\%$	
(n,f) and (γ,f) reactions leading to the fission and similar Fission Fragments (FF)									
$\sqrt[230]{\text{Th}(n,f)}$ FF	2.998	8.225E+01	3.099E+02	99.985	2.866	7.778E+01	1.898E+02	99.964	
²³⁰ Th(γ ,f)FF	6.428	2.361E-03	4.602E-02	0.015	6.460	7.890E-03	6.769E-02	0.036	
$\overline{^{235}U(n,f)}$ FF	1.679	1.227E+03	$4.623E + 03$	99.998	1.606	1.226E+03	2.992E+03	99.996	
$^{235}U(\gamma,f)FF$	6.820	4.754E-03	9.268E-02	0.002	6.764	1.490E-02	1.278E-01	0.004	
$\overline{^{238}}U(n,f)FF$	2.761	3.175E+02	1.196E+03	99.995	2.659	3.043E+02	7.427E+02	99.988	
$^{238}U(\gamma,f)FF$	6.482	3.196E-03	6.230E-02	0.005	6.513	1.022E-02	8.771E-02	0.012	
$\sqrt[237]{Np(n,f)}$ FF	2.038	$1.352E + 03$	5.093E+03	99.997	1.960	1.336E+03	3.261E+03	99.993	
²³⁷ Np(γ ,f)FF	6.454	8.014E-03	1.562E-01	0.003	6.506	2.615E-02	2.244E-01	0.007	
$\overline{^{239}}Pu(n,f)FF$	1.752	1.796E+03	$6.766E + 03$	99.998	1.681	1.792E+03	4.374E+03	99.996	
²³⁹ Pu(γ ,f)FF	6.489	6.836E-03	1.333E-01	0.002	6.510	2.176E-02	1.867E-01	0.004	
241 Am(n,f)FF	2.215	1.385E+03	5.218E+03	99.996	2.136	1.361E+03	3.322E+03	99.992	
²⁴¹ Am(γ,f)FF	6.393	9.700E-03	1.891E-01	0.004	6.427	3.106E-02	2.664E-01	0.008	
		(n,n') and (γ,γ') reactions on the same target and leading to production of the same isotope							
$\frac{93}{93}Nb(n,n')^{93m}Nb$	2.675	1.445E+02	5.443E+02	99.998	2.587	1.403E+02	3.425E+02	99.996	
$93Nb(\gamma,\gamma')^{93m}Nb$	3.454	5.667E-04	1.105E-02	0.002	3.753	1.479E-03	1.269E-02	0.004	
$^{103}Rh(n,n')$ ^{103m} Rh	2.363	7.188E+02	2.708E+03	99.993	2.263	7.033E+02	1.717E+03	99.989	
$^{103}Rh(\gamma,\gamma')$ ^{103m} Rh	3.578	9.458E-03	1.844E-01	0.007	3.854	2.214E-02	1.900E-01	0.011	
113 In(n,n') ^{113m} In	2.723	$1.562E + 02$	5.883E+02	99.996	2.650	1.513E+02	$3.692E + 02$	99.992	
113 In(γ , γ) ^{113m} In	3.578	1.315E-03	2.564E-02	0.004	3.854	3.490E-03	2.994E-02	0.008	
115 In(n,n') ^{115m} In	2.666	1.883E+02	7.096E+02	99.992	2.588	1.828E+02	4.461E+02	99.984	
115 In(γ , γ) ^{115m} In	3.587	2.987E-03	5.823E-02	0.008	3.881	8.104E-03	6.953E-02	0.016	
$^{199}Hg(n,n')$ ^{199m} Hg	3.089	2.922E+02	$1.101E + 03$	99.999	2.970	2.786E+02	$6.799E+02$	99.999	
$^{199}Hg(\gamma,\gamma')$ ^{199m} Hg	3.587	3.062E-04	5.968E-03	0.001	3.881	7.864E-04	6.747E-03	0.001	
$^{204}Pb(n,n')^{204m}Pb$	5.038	$2.002E + 01$	7.541E+01	99.308	4.839	1.725E+01	4.210E+01	98.531	
$^{2043}Pb(γ, γ')$ ^{204m} Pb	3.851	2.696E-02	5.256E-01	0.692	4.105	7.319E-02	6.279E-01	1.469	
			$(n,2n)$ and (γ,n) reactions leading to the same residual						
$^{19}F(n,2n)^{18}F$	14.048	1.598E-02	6.019E-02	99.842	13.911	8.061E-03	1.968E-02	99.761	
¹⁹ F(γ,n) ¹⁸ F	12.313	4.871E-06	9.495E-05	0.158	12.184	5.491E-06	4.711E-05	0.239	
$\sqrt[23]{28}$ Na(n,2n) ²² Na	15.586	8.356E-03	3.148E-02	99.885	15.483	3.934E-03	9.601E-03	99.815	
²³ Na(γ,n) ²² Na	16.508	1.853E-06	3.613E-05	0.115	16.949	2.075E-06	1.780E-05	0.185	
27 Al(n,2n) ²⁶ Al	16.140	7.511E-03	2.830E-02	99.918	16.030	3.459E-03	8.443E-03	99.853	
²⁷ Al(γ,n) ²⁶ Al	16.508	1.191E-06	2.322E-05	0.082	16.949	1.453E-06	1.246E-05	0.147	
46 Ti(n,2n) 45 Ti	16.107	1.225E-02	4.614E-02	99.716	16.005	5.648E-03	1.379E-02	99.556	
⁴⁶ Ti(γ,n) ⁴⁵ Ti	13.742	6.750E-06	1.316E-04	0.284	13.565	7.170E-06	6.151E-05	0.444	
$\frac{55}{3}Mn(n,2n)^{54}Mn$	12.915	4.630E-01	1.745E+00	99.965	12.796	2.469E-01	6.025E-01	99.949	
$55Mn(\gamma,n)$ ⁵⁴ Mn	13.742	3.122E-05	6.086E-04	0.035	13.565	3.565E-05	3.058E-04	0.051	
$54Fe(n,2n)$ $53Fe$	16.593	3.559E-03	1.341E-02	98.928	16.494	1.614E-03	3.939E-03	98.155	
$54\text{Fe}(\gamma,\text{n})$ ⁵³ Fe	16.042	7.451E-06	1.453E-04	1.072	16.504	8.631E-06	7.405E-05	1.845	
$59\text{Co}(n,2n)$ ⁵⁸ Co	13.088	3.993E-01	$1.504E + 00$	99.959	12.974	2.108E-01	5.145E-01	99.941	
$59Co(\gamma,n)$ ⁵⁸ Co	14.367	3.143E-05	6.127E-04	0.041	14.450	3.562E-05	3.056E-04	0.059	
$\overline{58}$ Ni(n,2n) ⁵⁷ Ni	14.980	8.441E-03	3.180E-02	99.534	14.879	4.077E-03	9.952E-03	99.304	
58 Ni(γ ,n) ⁵⁷ Ni	14.889	7.634E-06	1.488E-04	0.466	15.389	8.126E-06	6.972E-05	0.696	
$\overline{^{63}}Cu(n,2n)^{62}Cu$	13.838	1.945E-01	7.326E-01	99.884	13.721	9.898E-02	2.416E-01	99.836	
${}^{63}Cu(γ,n) {}^{62}Cu$	13.983	4.364E-05	8.507E-04	0.116	14.019	4.640E-05	3.981E-04	0.164	
${}^{65}Cu(n,2n){}^{64}Cu$	12.678	6.398E-01	2.411E+00	99.938	12.555	3.452E-01	8.425E-01	99.905	
⁶⁵ Cu(γ,n) ⁶⁴ Cu	12.589	7.697E-05	1.500E-03	0.062	11.964	9.370E-05	8.038E-04	0.095	
$\sqrt[75]{\text{As}}(n,2n)^{74}\text{As}$	12.913	6.073E-01	2.288E+00	99.913	12.797	3.234E-01	7.895E-01	99.875	
$^{75}As(\gamma,n)^{74}As$	13.035	1.017E-04	1.983E-03	0.087	12.651	1.156E-04	9.915E-04	0.125	

(Columns: 50% response energy (E50%), spectrum averaged cross sections (SACS), residual production yield per fission event (Yield) and relative contribution to the total production (Fraction). The photonuclear reactions are highlighted by red font for simplicity of comparison with neutron dosimetry ones.)

This tendency is valid for competing pairs $(\gamma, f)/(n, f)$, $(\gamma, x)/((n, (x+1)n)$, $(\gamma, p)/(n, np+d)$ and $(\gamma, h)/(n, \alpha)$ (the latter pair is out of the axis scales plotted in Figs 4.1 and 4.2). An exception are the inelastic scattering pairs $(\gamma, \gamma')/(\eta, n')$. We explain this overall tendency as follows: the larger neutron median energy exceeds the gamma energy, the lower should be the neutron induced n-SACS in comparison with γ-SACS since both n- and γ-spectra for the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) radiation sources quickly decrease above the energy of several MeV.

It is worth mentioning that the γ-Fraction value 1% could be considered as a "photonuclear ignorance threshold" or tolerance level. In such cases the contribution from competing photonuclear reactions to the residual production yield could be neglected, since 1% is the highest accuracy presently achievable in the neutron dosimetry measurements.

For the high threshold reactions, when kinematic threshold $E_{thr} > 30$ MeV or median response energy E50% > 50 MeV, we observe γ-Fraction approaching to 100%. In other words, the total residual production comes to be generated only by photonuclear reaction, whereas the neutron contribution can be neglected. This effect can be explained with the change of the ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) gamma energy spectra from exponentially decreasing to the "flat" distribution at the γ-ray energy around 40 MeV, whereas the neutron energy spectra continue to decrease exponentially, see Figs 3.3 - 3.5. Since the high energy part of gamma spectra from these sources are not well established yet, the saturating dependence of the γ-Fraction could vary in future as new information on PFGS will appear.

It should be noted that the competition between the extremely high threshold gamma and neutron reactions could only be estimated on bismuth, since merely the neutron cross sections $^{209}Bi(n,xn)$ with extreme large multiplicities $x = 6 - 10$ were evaluated for neutron dosimetry [\[5\]](#page-27-5) and are presently available. More generally, the similar (n,xn) sets of the high threshold reactions suitable for activation measurements are possible on other mono-isotopic targets such as ¹⁶⁹Tm, ¹⁰³Rh, ¹³⁹La, ¹⁷⁵Lu, ¹⁹⁷Au, ⁵⁹Co, ⁸⁹Y. However, the scarce experimental data and existing evaluations, which however are non-validated yet, prevent us to perform the assessment of the (γ, xn) and $(n,(x+1)n)$ competition for these targets. σ in the set targets.

FIG. 4.1 The relative contribution of the (γ,x) reaction to the total (neutron and gamma induced) production of the residuals in the ²⁵²Cf(s.f.) mixed n-γ field versus the difference between the neutron and gamma 50% response energies. The following competing reaction pairs are displayed: (γ,f) vs. (n,f), (γ,γ') vs. (n,n'), (γ,(x-1)n) vs. (n,xn) x = 2 - 4, (γ,p)

FIG. 4.2. The relative contribution of the (γ,x) reaction to the total (neutron and gamma induced) production of the residuals in the ²³⁵U(nth,f) mixed n-γ field versus the difference between the neutron and gamma 50% response energies. The following competing reaction pairs are plotted: (γ, f) *vs.* (n, f) , (γ, γ') *vs.* (n, n') , $(\gamma, (x-1)n)$ *vs.* (n, xn) $x = 2 - 4$, (γ, p) *vs. (n,np+d).*

FIG. 4.3. The relative contribution of the (γ,x) reaction to the total (neutron and gamma induced) production of the residuals in the mixed n-γ fields from the ²⁵²Cf(s.f.) and ²³⁵U(nth,f) sources for the extreme high threshold reactions versus the median response γ-ray energy γ-E50%. The results for competing reaction pairs (γ,xn) and (n,(x+1)n) on ⁵⁹Co and

5. Calculation of the neutron and gamma competition for natural elements

In the previous Section 4 the mono-isotopes as targets for the neutron and gamma induced reactions were considered. In practice, the elemental or not isotopically enriched materials are often used as the neutron dosimeters. In those cases, the photonuclear reactions on some isotopes composing the target element can be additional reaction pathways to the detectable specific residual. Analysing the content of the IRDFF-II library and the isotopic composition of the natural elements, we found 13 neutron dosimetry reactions for which the production of the same final residual by the (γ, x) reactions on other isotopes of the same chemical element is possible.

The list of those competing reactions is summarized in Table 5.1. It includes three types of the neutron dosimetry reactions $(n,2n)$, (n,p) and (n,α) on isotopes which are present in the element with natural abundance less than 100%. For (n,2n) and (n,α), the competing photonuclear reactions (γ,1n) and (γ,h) on the same target isotope are also possible and were already studied in Section 4. They are repeated in Table 5.1 (*in italics*) for comparison of the residual production yields from all possible (γ, x) reactions on all isotopes of the target element. The competition between neutron dosimetry (n,p) and various (γ,x) photonuclear reactions is only conceivable on different target isotopes. The fission reaction pairs (n,f) and (γ,f) were excluded from the present consideration, since the proper dosimeters (ionization chambers, activation foils, etc.) always use the isotopically enriched fissile materials.

The cross sections for the neutron and gamma induced reactions were taken from libraries IRDFF-II [\[1\]](#page-27-1) and IAEA/PD-2019.2 [\[3\],](#page-27-3) employing the MF/MT/ZAP combinations listed in Table 5.1. The spectrum averaged cross sections were calculated by code RR_UNC code [\[34\]](#page-28-8) using the total neutron and gamma absolute fission energy spectra ²⁵²Cf(s.f.) or ²³⁵U(n_{th} ,f) described in Section 3.

TABLE 5.1. Possible competing neutron and gamma induced reactions on the elemental targets which lead to the same residual radionuclide.

		Neutron induced reactions in IRDFF-II		Gamma induced reactions in IAEA/PD-2019.2					
Reaction	Abund,	Thresh,	Reaction	Reaction	Abund,	Thresh,	MF/MT/		
	$\%$	MT/ZAP MeV			$\%$	MeV	ZAP		
$(n,2n)$ and (γ,xn) reactions on the different target but leading to production of the same isotope									
46 Ti(n,2n) 45 Ti	8.25	13.479		⁴⁶ Ti(γ, 1n) ⁴⁵ Ti ^a	8.25	13.189	22045		
				⁴⁷ Ti(γ,2n) ⁴⁵ Ti	7.44	22.070	22045		
				⁴⁸ Ti(γ,3n) ⁴⁵ Ti	73.72	33.697	22045		
54 Fe $(n,2n)$ ⁵³ Fe	5.85	13.629	16	⁵⁴ Fe(γ, 1n) ⁵³ Fe ^a	5.85	13.378	26053		
				$56Fe(γ, 3n)$ ⁵³ Fe	91.75	33.874	26053		
58 Ni(n,2n) 57 Ni	68.08	12.429	16	⁵⁸ Ni(γ, 1n) ⁵⁷ Ni ^a	68.08	12.216	28057		
				⁶⁰ Ni(γ,3n) ⁵⁷ Ni	26.22	32.603	28057		
${}^{63}Cu(n,2n){}^{62}Cu$	30.85	11.038	16	⁶³ Cu(γ, 1n) ⁶² Cu ^a	30.85	10.864	29062		
				⁶⁵ Cu(γ,3n) ⁶² Cu	69.15	28.690	29062		
${}^{90}Zr(n,2n){}^{89}Zr$	51.45	12.103	16	$^{90}Zr(\gamma, ln)^{89}Zr^a$	51.45	11.968	10/5/1		
				$^{91}Zr(\gamma,2n)^{89}Zr$	11.22	19.162	40089g		
				${}^{92}Zr(\gamma,3n){}^{89}Zr$	17.15	27.797	40089g		
				$^{94}Zr(\gamma,5n)^{89}Zr$	17.38	42.751	40089g		
(n,p) and (γ,x) reactions on the different target but leading to production of the same isotope									
$\sqrt[46]{\text{Ti}(\text{n}, \text{p})^{46}\text{Sc}}$	8.25	1.619	103	⁴⁷ Ti(γ,p) ⁴⁶ Sc	7.44	10.465	21046		
				⁴⁸ Ti(γ,d) ⁴⁶ Sc	73.72	19.867	21046		
${}^{47}Ti(n,p){}^{47}Sc$	7.44	0.000	103	⁴⁸ Ti(γ,p) ⁴⁷ Sc	73.72	11.445	21047		
				⁴⁹ Ti(γ,d) ⁴⁷ Sc	5.41	17.363	21047		
				${}^{50}\text{Ti}(\gamma, \text{nd})$ ⁴⁷ Sc	5.18	28.302	21047		
$56Fe(n,p)$ $56Mn$	91.75	2.965	103	${}^{57}Fe(\gamma,p){}^{56}Mn$	2.12	10.560	25056		
				$58Fe(\gamma, d)$ ⁵⁶ Mn	0.28	18.379	25056		
${}^{67}Zn(n,p){}^{67}Cu$	4.04	0.000	103	${}^{68}Zn(γ,p)$ ⁶⁷ Cu	18.45	9.977	29067		
92 Mo(n,p) ^{92m} Nb	14.65	0.000	41092m	$94Mo(\gamma,d)^{92m}Nb$	9.19	15.230	41092m		
				95 Mo(γ ,nd) 92 ^m Nb	15.87	22.599	41092m		
				96 Mo(γ ,2nd) 92 mNb	16.67	31.754	41092m		

(*Columns: isotopic Abundancies (Abund) [\[35\],](#page-28-9) kinematic Thresholds (Thresh) and the file, reaction, product numbers (MF/MT/ZAP) which identify the radionuclide production in the IRDFF-I[I \[1\]](#page-27-1) and IAEA/PD-2019.2 [\[3\]](#page-27-3) libraries.)*

Note: a) the (γ,x) and (n,y) competing reactions on the same target isotope (already considered in Section 4).

The relative neutron and gamma contributions to the residual production, relative n- and γ-Fractions, on the natural target from the specific isotope *i* of the target element were calculated following the equations:

$$
n - Fraction_{i} = \frac{n-Field_{i}}{\sum_{i} \gamma - Yield_{i} + n-Field_{i}} = \frac{Abund_{i} \times n - SACS_{i} \times Mn}{\sum_{i} (Abund_{i} \times \gamma - SACS_{i}) \times My + n - SACS_{i} \times Mn}
$$
(5.1)

$$
\gamma - Fraction_{i} = \frac{\gamma - Yield_{i}}{\sum_{i} \gamma - Yield_{i} + n - Yield_{i}} = \frac{Abund_{i} \times \gamma - SACS_{i} \times M\gamma}{\sum_{i} (Abund_{i} \times \gamma - SACS_{i}) \times M\gamma + n - SACS_{i} \times Mn}
$$
(5.2),

where:

- γ-Yield_i = Abund_i × γ-SACS_i × Mγ gamma induced reaction Yield on isotope *i* of element,
- $n-Yield_i = Abund_i \times n-SACS_i \times Mn$ neutron induced reaction Yield on isotope *i* of element,
- Abund_i abundance of isotope i in natural element which is a target for neutrons or gammas,
- Mγ and Mn total gamma and neutron Multiplicities per fission event of ²⁵²Cf(s.f.) or ²³⁵U(n_{th},f).

The calculation results are listed in Table 5.2. It can be seen that the gamma induced production on all other target isotopes of the target natural element, is smaller than $\approx 10^{-4}$ % relative to the neutron induced production. These "cross-isotope" γ-Fractions are even smaller than one on the same target isotope. Such a combination occurs with the $(n,2n)$ and (n,α) neutron dosimetry reactions, but not for (n,p) .

TABLE 5.2. The γ-ray induced reactions competing with the IRDFF-II neutron dosimetry reactions on natural targets in ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) mixed n-γ radiation fields:

(Columns: 50% response energy (E50%), spectrum averaged cross section (SACS), residual production yield (Yield) per fission event, and relative contribution (Fraction) to the total residual production. The photonuclear reactions are highlighted by red font for simplicity of comparison with neutron dosimetry ones.)

6. Options to validate the extreme high energy part of $252Cf(s.f.)$ and $235U(nth.f.)$ **PFGS**

In Section 4 it was stated that γ-Yield and γ-Fraction for extremely high threshold reactions substantially depend on the absolute value and energy shape of the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) prompt fission gamma spectra, which are questionable for Eγ > 40 MeV. It may be of interest to use those reactions for the experimental determination of this energy part of PFGS. Table 6.1 lists a set of reactions (γ, xn) and $(n,(x+1)n)$, where multiplicity $x = 1 - 9$, on monoisotopic element ²⁰⁹Bi that produce unstable radionuclides ^{209-x}Bi. For the first group of reactions (when $x \le$ 4), the kinematic threshold Ethr < 30 MeV (see Table 2.1) or median response energy E50% < 38 MeV (Table 4.1). For them, the contribution of (γ,xn) to the total residual production or γ-Fraction < 3% (Table 4.1), i.e. the neutron induced production dominates. For the second group of reactions ($x \ge 5$) the situation is vice versa, i.e. the total residual yield results from the gamma induced reactions.

Table 6.1 lists the absolute total (sum of gamma and neutron induced) yields of residuals and their half-lives. The decay of residual radionuclides (all goes via the electron capture EC or positron emission β^+ modes with 100% probability) creates the daughter isotopes. The important radiation characteristics used in the activation measurements are also listed in this table: the energy of the most dominant γ-rays and absolute emission intensity per residual radionuclide decay event. The γ-ray emission rate *γ-Rate* at zero cooling time (*t = 0)* was then calculated per one ²⁵²Cf(s.f.) or ²³⁵U(n_{th} ,f) fission event:

$$
\gamma - Rate = \exp(-(t = 0) \times \ln(2) / T_{1/2} \, (Res)) \times \ln(2) / T_{1/2} \, (Res) \tag{6.1}
$$

where:

- $T_{1/2}(Res)$ half-life of the reaction residual radionuclide,
- $I_y \gamma$ -ray emission per one decay of the reaction residual.

TABLE 6.1. Reactions ²⁰⁹Bi(γ,xn) and ²⁰⁹Bi(n,(x+1)n), x = 1 – 9, that produce the same residuals (Res) ^{209-x}Bi, the total (neutron + gamma) residual yield (Yield) and residual have half-lives $T_{1/2}(Res)$.

(Decay of the residuals: their daughter isotopes (Iso), the most prominent decay γ-ray energies (Eγ) and intensities (Iγ), absolute emission gamma rate (γ-Rate) and relative rate (Rel. γ-Rate) normalized to ²⁰⁶Pb (highlighted by bold font). The last column contains further decay chains of daughter isotopes to the quasi-stable (half life > 50 000 y) or stable isotopes, in bold.)

Contributing	Reaction Residual			Daughter of Residual Decay					
γ - and n-Reactions	Res ^a	Yield, mb/f	$T_{1/2}(Res)$	Iso	E_{γ} keV	I_{γ} %	γ -Rate mb/f/s	Rel. γ -Rate	Daughter' further decay chain
$^{209}Bi(\gamma, xn)$ and $^{209}Bi(n,(x+1)n)$, x = 1 – 4, having the kinematic threshold < 30 MeV or E50% < 38 MeV									
$^{209}Bi(\gamma,1n)+(n,2n)$	^{208}Bi	$3.7E + 01$	3.7 10^{+5} y	208Pb	2614.5	99.8	$2.2E-12$	0.021	stable
$^{209}Bi(\gamma,2n)+(n,3n)$	^{207}Bi	6.9E-02	31.63 y	207Pb	569.7	97.8	4.7E-11	0.437	stable
²⁰⁹ Bi(γ,3n)+(n,4n)	^{206}Bi	8.4E-05	6.24d	206Pb	803.1	99.0	1.1E-10	1.000	stable
$^{209}Bi(\gamma,4n)+(n,5n)$	^{205}Bi	4.8E-08	14.91 d	^{205}Pb	1764.3	32.4	8.4E-14	7.9E-05	$\xrightarrow{1.7 E+7 y} 205$ TI
$^{209}Bi(\gamma, sn)$ and $^{209}Bi(n,(x+1)n)$, $x = 5 - 10$, having the kinematic threshold > 38 MeV or E50% > 46 MeV									
²⁰⁹ Bi(γ,5n)+(n,6n)	^{204}Bi	7.5E-11	11.22h	204Pb	899.2	99.0	1.3E-15	1.2E-05	stable
$^{209}Bi(\gamma, 6n)+(n, 7n)$	^{203}Bi	4.0E-12	11.76h	203Pb	820.2	29.7	2.0E-17	1.8E-07	$\stackrel{2.2}{\longrightarrow}$ 203Tl
²⁰⁹ Bi(γ,7n)+(n,8n)	^{202}Bi	2.4E-12	1.71h	202Pb	960.7	99.3	$2.6E-16$	$2.5E-06$	\longmapsto $\overset{52}{\longrightarrow}$ $\overset{ky}{\longrightarrow}$ $\overset{12}{\longrightarrow}$ $\overset{d}{\longrightarrow}$ $\overset{202}{\longrightarrow}$ \mathbf{Hg}
²⁰⁹ Bi(γ,8n)+(n,9n)	^{201}Bi	1.5E-13	1.72h	^{201}Pb	629.1	24.7	$4.0E-18$	3.8E-08	$\stackrel{9.3 \ h}{\longrightarrow}$ 201 T] $\stackrel{3.0 \ d}{\longrightarrow}$ 201 Hg
$^{209}Bi(\gamma, 9n)+(n, 10n)$	^{200}Bi	$2.7E-14$	0.61 _h	200Pb	1026.5	99.0	8.5E-18	8.0E-08	$\frac{22 h}{\longrightarrow} 200$ Tl $\frac{26 h}{\longrightarrow} 200$ Hg

Note: a) all the ²⁰⁹Bi(γ,xn) or ²⁰⁹Bi(n,(x+1)n) reaction residuals ^{209-x}Bi are unstable and decay via EC or β^+ modes.

The *relative γ-Rate* was calculated after normalization per maximal rate, i.e. per *γ-Rate* for emission of 803.1 keV from decay of ²⁰⁶Bi. This is the most intensive discrete γ-ray emission yield in the first group of reactions $^{209}Bi(\gamma, xn)$ and $^{209}Bi(n,(x+1)n)$ with multiplicity lower than 4, which could be used as a reference or scale.

For the second group of reactions ²⁰⁹Bi(γ,xn + n,(x+1)n), $x \ge 5$, the total reaction residual yields or relative gamma rates substantially depend on the value of the high energy part of PFGS. Since the relative γ-ray rate for these reactions is small and decreases from around $1 \ 10^{-5}$ to $4 \ 10^{-8}$ as neutron multiplicity *x* increases (see Table 6.1), the feasibility of activation measurements becomes questionable. To get a preliminary answer we searched the high threshold ²⁰⁹Bi(γ,xn) and ²⁰⁹Bi(n,(x+1)n) activation measurements carried out with the fission or continues neutron and gamma spectra in the literature and EXFOR databas[e \[7\].](#page-27-7)

n-SACS measured in the ²⁵²Cf(s.f.) and ²³⁵U(nth,f) fields. M. Schulc et al. [\[36\]](#page-28-10) measured n-SACS for reactions ²⁰⁹Bi(n,xn) with the highest neutron multiplicity $x = 3$ and 4 using the activation technique and employing the ²⁵²Cf(s.f.) source. They detected 569.7 keV and 1.063.7 keV γ -ray activities from decay of ²⁰⁷Bi and 803.1 keV and 122.1 keV γ-rays from ²⁰⁶Bi. This team also used the same method to measure the n-SACS for reactions ²⁰⁹Bi(n,3n)²⁰⁷Bi and ²⁰⁹Bi(n,4n)²⁰⁶Bi in the ²³⁵U(n_{th},f) prompt fission neutron spectrum which was generated at the research reactor LVR-15 [\[37\].](#page-28-11) n-SACS for $^{209}Bi(n,3n)^{207}Bi$ was also measured using the activation technique in the ²³⁹Pu(n,f) prompt fission neutron spectrum at the IBR-2 reactor loaded with plutonium dioxide fuel [\[38\].](#page-28-12)

The authors of the experiments carried out in [\[36\],](#page-28-10) [\[38\]](#page-28-12) obviously supposed as default that the impact of gamma induced reactions is negligible. The results obtained in the present work confirm this quantitively: the impact of photonuclear reactions on residual production, γ-Fraction, amounts only $\approx 0.05\%$ or 0.14% for pair $^{209}Bi(y,3n)^{206}Bi$ and $^{209}Bi(n,4n)^{206}Bi$ in the $^{252}Cf(s,f.)$ or $^{235}U(n_{th},f)$ n-y mixed fields, respectively (see Table 4.1).

n-Rates measured in the accelerator driven source (ADS) fields. J. Adam et al. measured residual decay rates for reactions ²⁰⁹Bi(n,xn) where neutron multiplicity x varied between 4 and 9 [\[39\],](#page-28-13) [\[40\].](#page-28-14) The source of neutrons was a 20 cm long lead target surrounded by a 6 cm paraffin moderator and irradiated by a 1 GeV proton beam. The bismuth samples of 2.5 mm thickness were placed at the end of lead target. Authors calculated the neutron spectrum at the Bi sample position with the help of the intranuclear cascade and transport code CASCADE up to neutron energy ≈ 600 MeV. They wrote: " *... the calculated reaction rates below a threshold energy of 30 MeV are 10 - 30% lower than the experimental reaction rates, but the reaction rates become much lower (up to factor 2) at higher neutron energies. Such a trend was observed for all samples. Although there is a deviation from this trend for Co*" [\[39\].](#page-28-13)

It should be noted that the gamma spectrum at the bismuth sample position was not considered by the authors of experiment [\[39\],](#page-28-13) [\[40\].](#page-28-14) Hence, the ignorance of photonuclear reactions in the analysis of this experiment could be a reason of the systematic underestimations for such extreme high threshold neutron reactions as 209 Bi(n,xn) with multiplicity $x = 4 - 9$ that was observed in this experiment.

γ-Yield or γ-SACS measured in the bremsstrahlung radiation produced by electron beams. A. Ermakov, S. Belyshev and co-workers measured the yields of ^{209-x}Bi produced by photonuclear reactions ²⁰⁹Bi(γ,xn) with neutron multiplicity $x = 2 - 7$ [\[41\]](#page-28-15) and $x = 2 - 6$ [\[42\]](#page-28-16) using the activation technique. The bismuth samples were exposed to the bremsstrahlung photons produced by an electron beam striking a tungsten convertor. The electrons were accelerated by microtrons up to energy 67.7 or 55.6 MeV. The authors observed good agreement between the experimental and theoretical yields of radionuclides generated by photo-neutron reactions on the 209 Bi nucleus. The theoretical yields were obtained by folding of the photonuclear cross sections calculated by reaction models and bremsstrahlung spectrum simulated by code GEANT4.

Similar measurements were performed by H. Naik et al. at the electron linear accelerator which was operated at energies in between 50 and 70 MeV [\[43\].](#page-28-17) The bremsstrahlung photons were produced in the tungsten target. The gamma induced spectrum average cross sections for reactions ²⁰⁹Bi(γ,xn) with multiplicities x = 2 – 6 were measured. They were also theoretically calculated by the nuclear model code TALYS 1.0. The distribution of the photon flux for bremsstrahlung at different electron energies was calculated by GEANT4. The authors found that the flux-weighted average theoretical cross-sections for $^{209}Bi(y,(3-6)n$) are in good agreement with the experimental values.

We would like to point out the following. The bremsstrahlung gamma spectrum produced by a beam of electrons in heavy targets has maximum at $\approx 1 \text{ MeV}$ and decreases by 3 – 4 orders of magnitude until the γ -ray end-point energy which is equal to the energy of electrons, e.g. see [\[43\].](#page-28-17) These high energy gammas may produce secondary neutrons in the target via photo-neutron reactions. Probably this two-step mechanism results in the very small fraction of neutrons in comparison with the bremsstrahlung gammas. Consequently, the contribution of neutron induced reactions to the residual production is indeed negligible in comparison with the photonuclear pathway.

Summary on feasibility of the high energy threshold ²⁰⁹Bi(γ,xn) and ²⁰⁹Bi(n,(x+1)n) measurements in the $^{252}Cf(s.f.)$ and $^{235}U(n_{th},f)$ fields.

The neutron and gamma induced spectrum averaged cross sections, yields or decay radiation rates for the highest neutron multiplicities up to $7 - 9$ were measured for bismuth at the accelerator driven sources. The radiation fields are dominated by either neutrons (charged ion induced spallation) or gammas (electron induced bremsstrahlung). Moreover, these facility energy spectra fall towards the higher energy more slowly than the neutron and gamma spectra in the case of ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f). All known measurements at the accelerate driven sources were carried out using the activation technique.

For the reactions on bismuth in the ²⁵²Cf(s.f.) and ²³⁵U(n_{th} ,f) mixed radiation fields the maximum neutron multiplicity achieved so far is only 4. The known measurements were carried out in one single lab using the activation technique. Since the residual yield or γ-decay rate decreases further by an order of magnitude per every additional neutron multiplicity, it will probably be difficult to measure the extreme high threshold photonuclear reactions which are sensitive to the shape of PFGS above \approx 45 MeV. An alternative could be the mass spectrometry analysis, e.g. see [\[44\],](#page-28-18) with which the yield of (quasi) stable isotopes eventually produced in decay chains of residuals could be measured.

7. Summary

For the first time, the systematic competition between the neutron and gamma induced reactions leading to the same residuals in the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) neutron-gamma mixed radiation fields was studied. The neutron reactions selected for this study were those included in IRFFF-II – a reference library recommended for neutron dosimetry. The competing photonuclear cross sections were taken primarily from the IAEA/PD-2019, a reference photo-nuclear library, or from TENDL-2023, a general-purpose cross section library.

The contribution of the competing reactions to the total residual production was numerically estimated employing the Spectrum Averaged Cross Sections (SACS) calculated in the neutron and gamma spectra. For the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) radiations the prompt and delayed fission neutron and gamma spectra (PFNS and DFNS, PFGS and DFGS) were considered. They were taken from the Neutron Standards or ENDF/B-VIII.0 evaluations up to radiation energies 20 - 30 MeV. For estimation of radionuclide production competition between the high threshold reactions, the radiation spectra were extrapolated up to 100 - 200 MeV following the energy trend (in case of PFNS) or using the measured upper limits (for PFGS).

For the mono isotopic targets, 39 neutron induced reactions were found in IRDFF-II, for which the (γ ,x) path-ways also exist and lead to the production of the same residuals. These reaction pairs turned out to be: (n,f) and (γ,f), (n,n') and (γ,γ'), (n,xn) and (γ,(x-1)n) where x = 2 - 5, (n,np+d) and (γ,p), (n,α) and (n,h). It was shown that the impact of (γ,x) on production, or the relative γ-Fraction, varies from around $10^{-10}\%$ to 100%. For most of the reactions considered, the γ -ray impact was shown to be lower than 1% and thus could be neglected, since this value is comparable with the highest accuracy achievable in the actual neutron dosimetry measurements. The maximum γ-Fraction, 1 - 2%, was observed for the competing reactions ⁵⁴Fe(γ,n)⁵³Fe and ⁵⁴Fe(n,2n)⁵³Fe.

For the high threshold reactions ²⁰⁹Bi(n,xn) x = 6 – 10 with kinematic threshold above 30 MeV, the γ-Fraction reaches 100%. This trend reflects the change of the ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) gamma energy spectra from exponentially decreasing to the "flat" distribution at the γ-ray energy around 40 MeV, whereas the neutron energy spectra were supposed to continue exponential falling. Since the high energy part of gamma spectra from these sources are not well established yet, the saturating dependence of the γ-Fraction could change in the future. The decreasing yield of residuals by one order of magnitude per every multiplicity makes the activation experiment not easy to realize. As an alternative, the accelerator mass spectrometry could be considered for experimental proof of the PFGS high energy tail.

In addition to the mono-isotope targets, the elemental targets were also considered. For them the (γ, x) reactions on other isotopes of element could also make a contribution to the production of residuals. 13 such elemental targets were found in the IRDFF-II library. The estimation of the photonuclear impact on residual production was found to be below than $10⁻⁴$ percent, which is insignificant in comparison with the neutron pathways to residual.

The studies performed in the present work concentrated on competition between the gamma and neutron induced reactions in the ideal ²⁵²Cf(s.f.) and ²³⁵U(n_{th},f) γ-n mixed fields (i.e. without perturbation from any surrounding materials). Within this context, we would like to refer to the recent experimental and simulation studies at the research reactors VR-1 and LR-0 [\[45\],](#page-28-19) [\[46\].](#page-28-20) There it was shown that engineering structures present in the reactor core could be a source of additional gammas which explain \approx (10 - 20)% of reaction residuals produced by neutrons [\[45\].](#page-28-19)

Acknowledgment

The author of this report should like to thank R. Capote from the IAEA Nuclear Data Section for his interest and discussions stimulating this work.

References

- [1] A. Trkov, P.J. Griffin, S.P. Simakov, et al., IRDFF-II: A New Neutron Metrology Library, [Nuclear Data](https://doi.org/10.1016/j.nds.2019.12.001) [Sheets 163 \(2020\) 1;](https://doi.org/10.1016/j.nds.2019.12.001) IRDF-II web-page: [https://www-nds.iaea.org/IRDFF/.](https://www-nds.iaea.org/IRDFF/)
- [2] S. Simakov, Manage and technical contribution of NDS to CRP on the IRDFF testing, improving and validation, in: Report [INDC\(NDS\)-0731, p. 19,](https://www-nds.iaea.org/publications/indc/indc-nds-0731.pdf#page=19) Vienna 2017.
- [3] T. Kawano, Y.S. Cho, P. Dimitriou, et al., IAEA Photonuclear Data Library 2019, [Nuclear Data Sheets](https://doi.org/10.1016/j.nds.2019.12.002) [163 \(2020\) 109;](https://doi.org/10.1016/j.nds.2019.12.002) IAEA/PD-2019 web-page: [https://www-nds.iaea.org/photonuclear/.](https://www-nds.iaea.org/photonuclear/)
- [4] A.J. Koning, D. Rochman, J. Sublet et al., TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology, [Nuclear Data Sheets 155 \(2019\) 1;](https://doi.org/10.1016/j.nds.2019.01.002) TENDL-2023 [Gamma sub-library.](https://tendl.web.psi.ch/tendl_2023/gamma_html/gamma.html)
- [5] V. Pronyaev, preliminary evaluation for $^{209}Bi(n,xn)$, $x = 3-10$, $E < 100$ MeV, on web page [https://www](https://www-nds.iaea.org/IRDFFtest/)[nds.iaea.org/IRDFFtest/.](https://www-nds.iaea.org/IRDFFtest/)
- [6] W.J. Huang, M. Wang, et al., The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures, [Chinese Phys. C45 \(2021\) 030002](https://doi.org/10.1088/1674-1137/abddb0) and M. Wang, W.J. Huang, et al., The AME 2020 atomic mass evaluation (II). Tables, graphs and references, [Chinese Phys. C45 \(2021\) 030003;](https://doi.org/10.1088/1674-1137/abddaf) AME 2020 web-page: [https://www-nds.iaea.org/amdc/.](https://www-nds.iaea.org/amdc/)
- [7] N. Otuka, E. Dupont, V. Semkova et al., Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International collaboration between Nuclear Reaction Data Centres (NRDC), [Nuclear Data Sheets 120 \(2014\) 272.](https://doi.org/10.1016/j.nds.2014.07.065)
- [8] M.S. Uddin, S. Kamada, et al., Measurements of neutron induced activation of concrete at 64.5 MeV, Ann. [Nucl. Energy 38 \(2009\) 1133.](https://doi.org/10.1016/j.anucene.2009.04.014)
- [9] E. Kim, T. Nakamura, et al., Measurements of neutron spallation cross sections of ¹²C and ²⁰⁹Bi in the 20- to 150-MeV energy range, [Nucl. Sci. and Eng. 129 \(1998\) 209](https://doi.org/10.13182/NSE98-A1977) .
- [10] J. Vrzalová, A. Krása, et al,, Excitation functions of neutron-induced threshold reactions in Au, Bi, Ta measured using 30–94 MeV quasi mono-energetic neutron sources, [Nucl. Phys. A1031 \(2023\) 122593.](https://doi.org/10.1016/j.nuclphysa.2022.122593)
- [11] NEA Nuclear data high priority request list: [HPRL](https://www.oecd-nea.org/dbdata/hprl/index.html) (dosimetry cross section request identification ID 93).
- [12] H. Kawada, J.-C. Sublet, S. Okumura, T. Kawano, Processing of the Evaluated Photonuclear Data Library (IAEA/PD-2019), [IAEA-NDS-0232,](https://www-nds.iaea.org/publications/nds/iaea-nds-0232/) Vienna 2020.
- [13] D.E. Cullen, PREPRO 2023 - ENDF/B Pre-processing Codes, Report [IAEA-NDS-0241,](https://www-nds.iaea.org/publications/nds/iaea-nds-0241/) June 2023, IAEA, Vienna; web-page: [PREPRO 2023.](https://www-nds.iaea.org/public/endf/prepro/)
- [14] W. Mannhart, Status of the ²⁵²Cf fission-neutron evaluation with regard to recent experiments, in: Proc. Consult. Meeting on Physics of Neutron Emission in Fission (24-27 May 1988, Mito Japan), H.D. Lemmel (Ed.), Report [INDC\(NDS\)-220,](https://www-nds.iaea.org/publications/indc/indc-nds-0220.pdf) IAEA, Vienna 1989, p. 305.
- [15] A.D. Carlson, V.G. Pronyaev, R. Capote, et al., Evaluation of the Neutron Data Standards, [Nuclear Data](https://doi.org/10.1016/j.nds.2018.02.002) [Sheets 148 \(2018\) 143.](https://doi.org/10.1016/j.nds.2018.02.002)
- [16] IAEA NEUTRON DATA STANDARDS: [https://www-nds.iaea.org/standards/.](https://www-nds.iaea.org/standards/)
- [17] D.A. Brown, M.B. Chadwick, R. Capote, et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, [Nuclear Data Sheets 148 \(2018\) 1.](https://doi.org/10.1016/j.nds.2018.02.001)
- [18] NEA/OECD Nuclear Data Services:<https://www.oecd-nea.org/dbdata/> .
- [19] E.J. Axton, Evaluation of the thermal constants of ²³³U, ²³⁵U, ²³⁹Pu and ²⁴¹Pu, and the fission neutron yield of ²⁵²Cf, Report **GE/PH/01/86**, Central Bureau for Nuclear Measurements, Geel, 1986.
- [20] T.R. England, ENDF/B-VIII.0 file for ²⁵²Cf(s.f.) data, MAT 3644, private communication (1990).
- [21] S. Simakov, Evaluation of the prompt gamma-ray spectrum from spontaneous fission of ²⁵²Cf, Report [INDC\(NDS\)-0887,](https://www-nds.iaea.org/publications/indc/indc-nds-0887.pdf) Feb 2024, IAEA.
- [22] D.H. Stoddard, Radiation Properties of Californium-252, Report [DP-986,](https://doi.org/10.2172/4615441) 1965, Savannah River Lab, Aiken, SC, USA.
- [23] D.H. Stoddard and H.E. Hootman, ²⁵²Cf Shielding guide, Report **DP-1246**, 1971, Savannah River Lab, Aiken, SC, USA.
- [24] A. Trkov, R. Capote, V.G. Pronyaev, Current Issues in Nuclear Data Evaluation Methodology: U-235 Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons, Nucl. Data Sheets **123** (2015) 8.
- [25] A. Trkov, R. Capote, Evaluation of the Prompt Fission Neutron Spectrum of Thermal-neutron Induced Fission in U-235, Phys. Proc. **64** (2015) 48.
- [26] I. Stetcu, P. Talou, T. Kawano and M. Jandel, Properties of prompt-fission γ rays, [Phys. Rev. C90 \(2014\)](https://doi.org/10.1103/PhysRevC.90.024617) [024617.](https://doi.org/10.1103/PhysRevC.90.024617)
- [27] A. Oberstedt, T. Belgya, R. Billnert, et al., Improved values for the characteristics of prompt-fission γ-ray spectra from the reaction ²³⁵U(n_{th} ,f), [Phys. Rev. C87 \(2013\) 051602.](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.87.051602)
- [28] I. Stetcu, M.B. Chadwick, T. Kawano, et al., Evaluation of the Prompt Fission Gamma Properties for Neutron Induced Fission of 235,238U and ²³⁹[Pu \(sciencedirectassets.com\),](https://pdf.sciencedirectassets.com/272409/1-s2.0-S0090375219X00095/1-s2.0-S0090375219300742/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEEUaCXVzLWVhc3QtMSJHMEUCIQDwBhYmAmcge%2FszS55dNeW5cIEgJrMMACj3BKRC6qn89wIgd6y3zoeFBD1QG9xFg%2FpsDYNKl0%2FHuLx420EwseeRHigqvAUIjv%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAFGgwwNTkwMDM1NDY4NjUiDA%2F1h4xoUxQ1x36XASqQBRP1%2Fl9y53UzfB%2FhS2fA3hb25H1O05w%2FH7FG2a3d3rB0EDGKmhLHtvg6XiAVo8xwRURaQwJ8jvKYCiI9zRE%2FC0TWgHhxpPaq0mphgWOkG4%2FRhyM7FAtA5nzwi2rZ4anJxmmWDePoKEX9iLU6%2B4HTsyTVZYH2bLI4qE872SDsU%2F5J0CjBlTdh2ROsDHzijLs2q%2FA1BzPeIIR9%2FwTe27w8qK6p2Et%2B%2BfDvFkuMCEUX%2FTnynUiZ59Yo0pmX9gurpGh3SRNP8ild0ZAWawv7oGV9fRyrB%2FtNpDd1wNPw93fhqreMYhiVgh6PAmGifSKD9T97P8Qncy610ngrlvos6k14EpvGSe7s9XJoGHs4SuuK3FcwH3%2Fj3XLtbDhLrLKJyt3VnUP06IkdZLT7KNrIXnp6eAe8OUVF4vP0CxLU0%2FbDcqC1v%2B0aespNR3JvgzGy%2BFBFPNiDVt4AanH6kr5Kzpt81ZwxnqPbFJOOCLnE5VGyRhgc9h2dQbgKHtdHO3uQ1KYF3rEgXftOJ0Cvg80EhtHbdbuo2oxNZs3o0TIaNznugvlpY0w%2FxZ6wrrjgMqDPOSyy1rv5gwFzzAzVc9p7TvMW3raase5VvyhsaiqJluAd1Jy4ZEhMgpYWihzoxEGwoUPD3nj101dld3prIGyoOGfUsEclZ7jLdmTjECx%2B3IHavTh7fEuIYcPJqZt7DlCQPZ1%2FaUKzNz42PsbXbnkrSSNAwWyTMgfaEfRIgpfgN8gRvlAqUcMk9GRMYTYn2ReTADYJs50ZdlBrbOp2RGatDApf16dkLWuCiTYNTRiC15MJIPZxXEzygF1vlI8cGQLzVZhRrgJN8ySPc2L0bEzJIhWTP5JJ2W5cYDqbGIFPDvVjx0DqMK3X77cGOrEBuuV5K91hsYBitJjZytexKsH5YCf4MMRENGwMVfcKAEbhwGqXCTwycyROAVjmGc85%2FYTqlf%2FTrmDe19H5Cmq1mLJ614gday%2BZcOQQUubqp7tue5vMF8csG8gCFbwPwqoY0H1pL9BFfO6dxLUIhEZdpQBlKc6%2BgDdq94CyX2dSnsw3RsIn%2BY%2BdRugW9u%2FugKkZRMnc2u%2FhqU5NspFMSianwoBmOVRTYlr2gcUJI1v9bV0o&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241001T131847Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYQVTKJWTU%2F20241001%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=ad02916cf56792da74b88e08a5c5a03f6ee46c61a9d3edb5bb0b4b1337030934&hash=5c787372ebba251a6a12b123b8269e9c6ebf7dc76f4a293a4c67d29b3e4cd213&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0090375219300742&tid=spdf-93207472-4064-4259-968f-9283c642c25d&sid=187b97f63205174e8f39d454c6f840767922gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3Q) Nuclear Data Sheets 163 (2020) 261.
- [29] D. Pandit, S. Mukhopadhyay, S. Bhattacharya, et al., Coherent bremsstrahlung and GDR width from ²⁵²Cf cold fission, Physics Letters B**690** (2010) 473.
- [30] V.A. Varlachev, G.N. Dudkin, V.N. Padalko, Study of the high-energy part spectrum of gamma-rays from the neutron-induced fission reaction, Bull. Russian Academy of Sciences - Physics 71 (2007) 1635.
- [31] V.A. Varlachev, G.N. Dudkin, V.N. Padalko, Does the Coherent Bremsstrahlung of Fission Fragments Exist ?, Zhurnal Eksper. i Teoret. Fiz., Pisma v Redakt 82 (2005) 440.
- [32] H. Makii, K. Nishio, K. Hirose, et al., Effects of the nuclear structure of fission fragments on the high-energy prompt fission gamma-ray spectrum in ²³⁵U(n_{th},f), [Phys Rev C100 \(2019\) 044610.](https://doi.org/10.1103/PhysRevC.100.044610)
- [33] T. Wright, A.G. Smith, N.V. Sosnin et al., Measurement of the prompt fission γ -rays from slow neutron-induced fission of ²³⁵U with STEFF, [Eur. Phys. J. A60 \(2024\) 70.](https://doi.org/10.1140/epja/s10050-024-01277-8)
- [34] A. Trkov, Program RR_UNC - calculates uncertainties in reaction rates and cross sections; code is available on IRDFF-II web-page: [https://www-nds.iaea.org/IRDFF/.](https://www-nds.iaea.org/IRDFF/)
- [35] Isotopic Composition of Elements from the Commission on Isotopic Abundances and Atomic Weights (CIAAW); web-page [http:/ciaaw.org/.](http://ciaaw.org/)
- [36] M. Schulc, M. Kostal, J. Simon, et al., Measurement of very high threshold reactions using ²⁵²Cf source, [Applied Radiation and Isotopes 166 \(2020\) 109355.](https://doi.org/10.1016/j.apradiso.2020.109355)
- [37] M. Schulc, M. Kostal, J. Simon, et al., Constraining high energy tail of $^{235}U(n_{th},f)$ prompt fission neutron spectrum, [Applied Radiation and Isotopes 166 \(2020\) 109313.](https://doi.org/10.1016/j.apradiso.2020.109313)
- [38] M. Schulc, M. Petrova, T. Czakoj et al., Study of ²³⁹Pu(n,f) prompt fission neutron spectrum, Radiation [Physics and Chemistry 206 \(2023\) 110804.](https://doi.org/10.1016/j.radphyschem.2023.110804)
- [39] J. Adam, A.R. Balabekyan, V.S. Barashenkov et al., Spallation neutron spectrum on a massive lead/paraffin target irradiated with 1 GeV protons, Eur. Phys. [J. A23 \(2005\) 61.](https://doi.org/10.1140/epja/i2004-10031-y)
- [40] J. Adam, V.S. Barashenkov, S. Ganesan et al., Measurement of the Neutron Fluence on the Spallation Source at Dubna, [Kerntechnik 70 \(2005\) 127.](http://dx.doi.org/10.3139/124.100234)
- [41] A.N. Ermakov, B.S. Ishkhanov, I.M. Kapitonov, et al., Photodisintegration of heavy nuclei in the energy region above the Giant Dipole Resonance, *Physics of Atomic Nuclei 73 (2010) 737*.
- [42] S.S. Belyshev, D.M. Filipescu, I. Gheoghe, et al., Multinucleon photonuclear reactions on ²⁰⁹Bi: Experiment and evaluation, [Eur. Phys. J. A51 \(2015\) 67.](https://doi.org/10.1140/epja/i2015-15067-2)
- [43] H. Naik, S. Singh, A. Goswami, et al., Measurement of photo-neutron cross-sections in ²⁰⁸Pb and ²⁰⁹Bi with 50–70 MeV bremsstrahlung, [Nucl. Instr. and Meth. in Phys. Research B269 \(2011\) 1417.](https://doi.org/10.1016/j.nimb.2011.04.008)
- [44] A. Wallner, M. Bichler, K. Buczak, et al., High-sensitivity isobar-free AMS measurements and reference materials for ⁵⁵Fe, ⁶⁸Ge and ^{202g}Pb, [Nucl. Instr. Meth. in Phys. Res. B294 \(2013\) 374.](http://dx.doi.org/10.1016/j.nimb.2012.03.029)
- [45] M. Kostal, E. Losa, S. Simakov, et al., Impact of reactor neutron spectrum on measured spectrum averaged, [Ann. of Nucl. Energy 179 \(2022\) 109418.](https://doi.org/10.1016/j.anucene.2022.109418)
- [46] M. Kostal, E. Losa, S. Simakov, et al., Measurement of spectrum averaged cross sections in LR-0 benchmark reference neutron field, [Ann. of Nucl. Energy 206 \(2024\) 110616.](https://doi.org/10.1016/j.anucene.2024.110616)

Nuclear Data Section International Atomic Energy Agency Vienna International Centre, P.O. Box 100 A-1400 Vienna, Austria

E-mail: nds.contact-point@iaea.org Fax: (43-1) 26007 Telephone: (43-1) 2600 21725 Web: http://www-nds.iaea.org