
 

INDC(NDS)-0709 

LA-UR-16-21462 

 

 

INDC International Nuclear Data Committee 

 

 

A Study of UMC in One Dimension 

 

 

 

Donald L. Smith 
Argonne Associate of Seville 

NE Division 

Argonne National Laboratory 

Coronado, CA, U.S.A  
 

Denise Neudecker 
XCP Division 

Los Alamos National Laboratory  

Los Alamos, NM, U.S.A. 
 

Roberto Capote-Noy 
Nuclear Data Section 

Division of Physical and Chemical Sciences 

International Atomic Energy Agency 

Vienna, Austria 

 

 

 

 

 

 

 

March 2016 

IAEA Nuclear Data Section 

Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selected INDC documents may be downloaded in electronic form from 

http://www-nds.iaea.org/publications 

or sent as an e-mail attachment. 

Requests for hardcopy or e-mail transmittal should be directed to  

NDS.Contact-Point@iaea.org 

or to: 

Nuclear Data Section 

International Atomic Energy Agency 

Vienna International Centre 

PO Box 100 

1400 Vienna 

Austria 

 

 

Printed by the IAEA in Austria 

March 2016 

http://www-nds.iaea.org/publications
mailto:NDS.Contact-Point@iaea.org


 

INDC(NDS)-0709 

LA-UR-16-21462  

 

 

 

A Study of UMC in One Dimension 

 

Donald L. Smith 
Argonne Associate of Seville 

NE Division 

Argonne National Laboratory 

Coronado, CA, U.S.A. 
 

Denise Neudecker 
XCP Division 

Los Alamos National Laboratory  

Los Alamos, NM, U.S.A. 
 

Roberto Capote-Noy 
Nuclear Data Section 

Division of Physical and Chemical Sciences 

International Atomic Energy Agency 

Vienna, Austria 

 

 

 

 

ABSTRACT 

This paper discusses an investigation of the Unified Monte Carlo (UMC) approach to nuclear data 

evaluation that has been conducted in the framework of a single random variable (i.e., one dimension 

or 1-D). The hypothetical data treated in this study consist of a single theoretical (model-calculated) 

value and a single experimental value, along with their respective uncorrelated uncertainties. 

Technical complications that are inevitably encountered when considering data sets involving 

multiple variables, as well as complex relationships between measured experimental data and these 

variables, are avoided by working entirely in 1-D. Among these complications are certain effects that 

arise from including ratio data and integral data. Nevertheless, even in the 1-D framework it is shown 

that issues associated with data discrepancies, non-normal prior probability function shape effects 

(e.g., skewness), and stochastic convergence that arise in applying the UMC concept could be 

investigated readily. This has led to some interesting conclusions. Extensive graphs and tables of 

numerical results serve to illustrate and quantify these findings. Three variants of the UMC approach, 

UMC-G, UMC-G+, and UMC-B, as well as the conventional generalized least-squares (GLS) 

evaluation method are considered, and their predictions are compared in this 1-D framework. Some 

general observations that may be applicable in a broader context are provided. 
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1. Introduction 

The modern era in nuclear reaction data evaluation (henceforth referred to simply as “data 

evaluation”) began in the mid 1970’s with widespread implementation of the least-squares 

method [1]. This method enables evaluators to include theoretical (model-calculated) and 

experimental data in evaluations in ways deemed to be more rigorous and objective than 

earlier techniques. The concept of least-squares has a long history that is generally thought to 

have originated with Gauss [2]. However, it was also suggested by Legendre [3] who 

disputed Gauss’s claim of discovery. More recently, this method has been justified 

mathematically, within the framework of probability theory, through the work of Shannon on 

information theory [4] and Jaynes on the Principle of Maximum Entropy [5]. Bayes Theorem 

[6], first suggested by an English clergyman, Thomas Bayes, is also an essential aspect of this 

approach. 

 

While there can be no doubt that use of the least-square method in data evaluation has 

elevated the process of data evaluation to a more objective level than previous approaches, it 

nevertheless suffers from some difficulties in its implementation. One difficulty that has been 

the object of considerable attention since the 1980’s is the so-called “Peelle’s Pertinent 

Puzzle” (PPP) phenomenon [7]. Various ad hoc “fixes” designed to minimize the negative 

impact of PPP on data evaluations that utilize the least-square method have been suggested 

[8]. Data evaluators have come to accept that problems of this sort are likely to be 

encountered in applying the least-squares method when evaluating data sets that manifest 

various combinations of large uncertainties, significant discrepancies, and non-linear 

relationships between the variables to be evaluated. Most of these difficulties can be traced to 

the fact that the least-squares method is based on linearization of more rigorous probabilistic 

formulations of the data evaluation process. 

 

It was suggested by Smith in 1991 [1] that some of the problems associated with using the 

least-squares method might be avoided by utilizing an approach to data evaluation that deals 

directly with the underlying probability functions which govern the random variables to be 

evaluated. In practice this approach would involve invoking the prescriptions of Shannon and 

Jaynes (mentioned above) to construct the prior probability and likelihood functions needed 

to apply Bayes Theorem in data evaluations, and subsequently performing difficult multi-

variable numerical integrations that involve these functions. Smith concluded that it was 

probably impractical to pursue such an approach at that time (1991) due to the inherent 

computational challenges. Furthermore, it was not clear then how the prior probability 

functions required for undertaking a Bayesian approach to data evaluation could be 

constructed in realistic situations. In 2004 [9] Smith suggested that stochastic (Monte Carlo) 

techniques might provide the means for generating information needed to construct prior 

probability functions, e.g., by propagating uncertainties from nuclear model parameters to 

calculated physical observables and even to complex systems. The rapid development of 

computer power and numerical data storage capacity between 1991 and 2004 had motivated 

Smith to reconsider the probabilistic approach to data evaluation he had mentioned thirteen 

years earlier. While this Monte Carlo approach provided a clear pathway for generating 

evaluations based solely on theory, without the consideration of experimental data [10], it 

was not evident in 2004 how both model-calculated data and experimental data could be 

included simultaneously in an evaluation scheme based entirely on Monte Carlo simulation. 

 

A suggestion as to how this might be accomplished was offered in 2007 by Smith [11]. It was 

given the name Unified Monte Carlo, or UMC as an abbreviation. This approach involves 



8 
 

implementing Bayes Theorem within a stochastic framework. Bayes Theorem specifies that 

the posterior probability function p required to perform a probabilistic evaluation be 

constructed as the product of a prior probability function p0 and a likelihood function L. The 

prior probability function p0 should represents knowledge based solely on theory (model 

calculations) while the likelihood function L provides the means for introducing experimental 

data that are assumed to be independent of the theoretical data into the evaluation process. 

 

Since most published experimental data sets provide estimated mean values and (hopefully) 

covariance data for the measurement variables, and rarely much more, an application of the 

prescriptions of Shannon and Jaynes [4] – [5] would suggest that the likelihood function L in 

applying Bayes Theorem should be a multi-variate normal distribution with respect to those 

variables that correspond explicitly to the measured data. In reality, this may be an overly 

simplistic assumption in those situations where there is good reason to expect that the 

provided data are not normally distributed, or if large data uncertainties that are clearly non-

normally distributed are involved. Furthermore, L will definitely not be normal as a function 

of the variables to be evaluated if the measured data are related in a non-linear manner to the 

physical quantities to be evaluated, e.g., as in situations where ratio data are considered. This 

will be the case even when it is reasonable to assume that L can be written explicitly as a 

normal distribution that involves the measured variables. 

 

As originally formulated [11], UMC requires that explicit analytical functions be specified 

for both p0 and L in order to construct a posterior probability function p that can be sampled 

by one or other of the schemes that have been devised for use in Monte Carlo analyses. In the 

original formulation of UMC it was also assumed that the prior probability function p0 should 

be a multi-variate normal distribution with respect to the variables to be evaluated. The mean 

values and covariances would be estimated by the Monte Carlo technique described in [9]. If 

one chooses to consider only the two lowest-order moments of the probability function, and 

overlook potentially important effects of higher-order moments, according to the Maximum 

Entropy Principle prescription, the normal distribution would indeed be the appropriate 

choice [5]. However, from the investigations that are summarized in [12] – [15] it became 

apparent that forcing the prior probability function to be normal in this manner discards 

potentially valuable shape information embodied in the higher-order moments of the actual 

probability function when it is generated by a transformation from theoretical-model 

variables to observable variables. For example, it neglects possible distribution asymmetry 

(skewness) which can have a noticeable effect on the outcome of an evaluation. Therefore, 

ways to circumvent this limitation of the original version of UMC needed to be found.  

 

There is no inherent reason, when applying Bayes Theorem, for either the prior or likelihood 

functions to necessarily be normal. The quest to avoid the limitations of the original 

formulation of UMC evolved in three different directions. One approach is the original 

version of UMC which came to be known as UMC-G. The second approach is a modest 

extension of UMC-G that seeks to provide analytical functions for p0 other than normal 

which predict skewness and kurtosis closer to those embodied in the “true” distribution 

generated by the Monte Carlo method described in [9]. For present purposes this approach is 

denoted as UMC-G+. The third approach stems from a novel suggestion by Capote et al. [15]. 

This approach came to be known as UMC-B. The historical context of the specific names 

“UMC-G” and “UMC-B” is also discussed in [15].  In UMC-B, a Markov Chain of 

observables values is generated by Monte Carlo sampling of the variables to be evaluated 

based on the prior probability function. This approach retains all features of the underlying 

probability function, associated with the derived observable variables to be evaluated, that is 
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generated by the transformation, performed by the model, from model parameters to the 

observable variables. For each of these sample values (actually vectors in realistic cases) a 

corresponding likelihood value is calculated based on experimental data. These likelihood 

values can be used to compute weighted averages that correspond to mean values, covariance 

matrix elements and, in principle, higher-order moments of the posterior function as well. 

These likelihood values can correspond to data that are normally distributed or even governed 

by other assumed probability distributions, e.g., the lognormal distribution. While the UMC-

B approach yields prior information regarding p0 that is devoid of approximations, it does not 

suggest how this information can be represented in analytical form, as required for the 

application of UMC-G+.  

 

Further investigation of these three methods is clearly worth pursuing so that the strengths 

and limitations of the various UMC approaches can be better understood. The goal of the 

present work is to explore some of these issues in one dimension (i.e., in the case of a single 

random variable). This approach strips away many of the complexities associated with the 

various UMC methods, and data evaluation in general, and it enables such important matters 

as stochastic convergence and the effects of non-normal shapes for the prior probability 

function to be investigated in the purest possible context. The work reported here involved 

numerical studies in this simplified framework aimed at gaining a better understanding of the 

evaluation process, not only of issues related to stochastic convergence but also of similarities 

and differences in the predictions of GLS, UMC-G, UMC-G+, and UMC-B for a number of 

specific examples that exhibit both “typical” and “extreme” conditions. The results of the 

present investigation are provided here in the form of both numerical and graphical 

information. For convenience this tabular and graphical material is always presented as 

“Figures”, rather than being labelled as either “Tables” or “Figures”, since both graphical and 

tabular results may well appear together rather than separately. 

2. UMC Formalism in 1-D 

This section describes formalisms in one dimension for the various UMC approaches 

mentioned in Section 1 as well as one for generalized least squares (GLS). It is assumed 

throughout that both the theoretically calculated and measured values included in the analysis 

processes are directly equivalent to the variable being evaluated. It is further assumed that the 

theoretical model M has a single variable x that is governed by a normal probability function 

r0 in the variable space S{x}. Function r0 has a mean value x0 and standard deviation sx. The 

model M maps x to a single variable y in a distinct variable space S{y} that corresponds to a 

derived observable quantity. The probability function p0 results from the mapping by M of x 

to y. It has a mean value y0 and standard deviation s0. These two values are treated as the 

model-calculated result and its uncertainty, respectively, for evaluation purposes. As 

mentioned in Section 1, p0 need not be normal. In fact, it usually will not be normal. Also, 

most realistic mappings by M from variable x to variable y lead to prior probability functions 

p0 that cannot be expressed analytically. The mapping topology described here is illustrated 

schematically in Fig. 1. Finally, be aware that in the present discussion r0, p0, L, and p are all 

continuous probability density functions. 

 

It is also assumed in this discussion that a single hypothetical “experimental” value ye with 

uncertainty (standard deviation) se is available for inclusion in the evaluation process along 

with the calculated value y0 and it standard deviation s0. The experimental quantities are 

usually treated as parameters of a single-variable normal probability function L that governs 

the measurement process. The function L has the following normalized form: 
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L(y) = exp[-0.5(y – ye)
2
/ se

2
] / (2πse

2
)
1/2

 .                                           (1) 

 

Given the data value pairs (y0,s0) and (ye,se) resulting from efforts to calculate (theoretically) 

and measure information about the observable quantity y, one can apply the generalized least-

squares (GLS) method directly to produce an evaluated solution ysol and its uncertainty 

(standard deviation) ssol as follows [1]: 

 

ysol = [(y0 / s0
2
) + (ye / se

2
)] / [(1 / s0

2
) + (1 / se

2
)] ,                                  (2) 

  

(1 / ssol
2
) = (1 / s0

2
) + (1 / se

2
) .                                                 (3) 

 

It is evident from Eqs. (2) and (3) that the evaluated result in this simple example is just the 

well-known mean value and standard deviation derived from weighted averaging of two 

independent data values, with the weighting factors defined by their respective standard 

deviations. Knowledge of the underlying probability distribution appears not to be required 

explicitly. However, this is somewhat deceptive since the validity of the GLS formalism 

relies on the assumption that the data being evaluated are indeed normally distributed [1]. 

 

In the UMC concept [11], the prior probability p0 and likelihood L functions are employed to 

construct the posterior probability function p according to Bayes Theorem [6]:  

 

p(y) = p0(y) L(y) .                                                          (4) 

 

It is convenient to assume that both p0 and L are normalized. However, the product of these 

two normalized functions, the posterior probability function p, is not normalized. Therefore, a 

normalization constant has to be determined in any applications that requires p to be 

normalized. However, the necessity to normalize p can often be avoided in practice [11] – 

[15]. The posterior probability function p embodies both the model-calculated and 

experimental information provide for evaluation purposes. The nature of function p can be 

characterized in part by its moments [1]. In particular, if a very large collection K of random 

values {yk} is generated by sampling the variable space S{y} according to probability 

function p, then the four lowest-order moments of p can be derived stochastically using the 

following formulas: 

 

m1 ≈ [Σk=1,K yk]/K ,                                                         (5) 

 

m2 ≈ [Σk=1,K (yk-m1)
2
]/K ,                                                    (6) 

 

m3 ≈ [Σk=1,K (yk-m1)
3
]/K ,                                                    (7) 

 

m4 ≈ [Σk=1,K (yk-m1)
4
]/K .                                                    (8) 

 

Approximate equality “≈” approaches true equality “=” for very large samples (i.e., very 

large K). This effect, known as stochastic convergence, has been studied extensively in the 

present work, and it is discussed in the Section 4 of this paper. The reader should be 

reminded that some definitions given in the literature for these probability function moments 

involve integers other than K, e.g., K-1, K-2, K-3 … [1]. These alternative definitions are 

appropriate in instances involving relatively small samples (i.e., small K), but the numerical 
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differences between the results obtained using these alternative formulas become negligible 

once K is large (e.g., usually K > 1000) as is generally the case in the present investigation. 

 

 

 
 

Fig. 1: Schematic diagram that shows the topology associated with mapping theoretical model 

parameter x to derived observable variable y for the UMC data evaluation concept. 

 

 

Moment m1 is called a “raw moment” while m2, m3, and m4 are called “central moments” 

because their values depend on m1, i.e., they are “centered” on m1. These four formulas are 

very important for present purposes because they provide a means for evaluating these 

moments based only on the generated collection of random sample values {yk}, without 

having to know and resort to an explicit analytic expression for p. Of course, the same 

approach can be applied to determine the moments of r0 and p0 provided that corresponding 

collections of random values of x or y, respectively, are available that are characteristic of 

these two particular probability functions. The first moment m1 is called the mean value 

(MV) of p and the second moment m2 is the variance (Var) of p. 

 

It is common to consider standard deviation (Std), skewness (Skew), and kurtosis (Kurt) as 

characteristic factors in discussing the second-, third-, and fourth-order properties of 

probability functions such as p. They are defined as follows: 

 

Std = (Var)
1/2

 = m2
1/2

 ,                                                      (9) 

 

Skew = m3/m2
3/2

 ,                                                       (10) 

 

Kurt = m4/m2
2
 .                                                        (11) 

 

It is noteworthy that both Skew and Kurt are dimensionless factors whereas m1, m2, Std, m3, 

and m4 all have dimensions. Finally, it is important to point out that these formulas 

correspond to population moments, i.e., they are characteristic of the entire population of 

possible random values associated with probability function p, not just limited samples [1]. 
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However, as mentioned above, as long as the sample size K is very large, the distinction 

between “population” and “sample” moments is negligible. So, unless mentioned otherwise, 

all moments discussed in this paper are “population” moments. Extensive use has been made 

of Eqs. (5) – (11) in numerical analyses performed in the present investigation, either directly 

or through computational algorithms included in the commercial software packages 

Microsoft EXCEL and MathWorks MATLAB.  

 

If probability function p of variable y can be expressed analytically and, most important, if it 

is appropriately scaled to be normalized, then the following formulas can be used to evaluate 

MV and Std numerically: 

 

MV = m1 = ʃ y p(y) dy ,                                                     (12) 

 

Std = [ ʃ y
2
 p(y) dy – m1

2
]

1/2
.                                                 (13) 

 

The indicated integrations extend over the entire range of space S{y} where the values of 

p(y) are non-negligible. It is clearly evident from Eq. (4) that direct applications of Eqs. (12) 

and (13) require p to be normalized and expressible analytically. In the simple case of a 

single variable the integrals indicated in Eqs. (12) and (13) usually can be calculated 

numerically without too much difficulty. One approach is deterministic (D), i.e, establish a 

fine grid of K equally spaced values {ykD} centered in corresponding contiguous, equal-width 

intervals Δyk = (ymax – ymin)/K that span the range (ymin,ymax) where the integrands are non-

vanishing. Another approach is stochastic (R), i.e., Monte-Carlo integration. This involves 

generating a large collection of K values {ykR} selected randomly from a uniform distribution 

over the same range of variable y. Depending on how yk is determined (ykD or ykR), if Q(y) is 

the integrand corresponding to a particular y, the integral can be approximated for large K by: 

 

ʃ Q(y) dy ≈ Σk=1,K Q(ykD) Δyk     (deterministic)                               (14a)   

 

ʃ Q(y) dy ≈ (Σk=1,K Q(ykR)/K) (ymax – ymin)    (stochastic)                         (14b) 

 

Eqs. (14a) and (14b) are basically the same. The deterministic approach, represented by Eq. 

(14a), is a reasonable choice if the function involved in the integration is “well-behaved” and 

does not have too long a “tail” toward either much larger or much smaller values than the 

region of maximum values. The stochastic approach, represented by Eq. (14b), is referred to 

in [11] – [15] as the “Brute Force” method of Monte Carlo integration. It is more flexible 

than the deterministic approach and it can be quite effective. However, it is relatively 

inefficient and may require a very large number K of samples. The Metropolis-Hastings 

sampling scheme [16] tends to be far more efficient in the sense that it concentrates sampling 

to values of yk that yield the largest magnitudes for Q(yk) in the range (ymin,ymax). The 

collection {yk} of these favored values of y then can be used to calculate MV{y} and Std{y} 

as well as Skew{y} and Kurt{y} if that is desired. Note that the notation MV{y}, Std{y}, 

Skew{y}, and Kurt{y} is used throughout this paper to represent stochastic determinations of 

these quantities. The approach is similar for UMC-G and UMC-G+. The only difference 

between these two variants of UMC is that in UMC-G the prior probability function p0 is 

forced to be normal, as seen in Eq. (15). 

 

p0(y) = exp[-0.5(y – y0)
2
/ s0

2
] / (2πs0

2
)
1/2

 .                                   (15) 
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The parameters y0 and s0 that characterize p0 are derived from the following formulas that 

utilize values of y from the collection {yk} generated by the transformation yk = M(xk), as is 

discussed above and illustrated in Fig. 1: 

 

y0 = MV{y} = (Σk=1,K yk)/K  ,                                              (16) 

 

s0 = Std{y} = {[(Σk=1,K yk
2
)/K] – y0

2
}

1/2
  .                                    (17) 

 

It is clear that UMC-G, originally denoted as UMC in [11], ignores any higher-order 

moments that might be embodied in the prior probability function p0 whenever the 

transformation function M involves a non-linear relationship between x and y. Although 

mentioned in Section 1, it is worthwhile to re-emphasize the distinctions between UMC-G 

and UMC-G+ to insure that confusion is avoided in the ensuing discussions. Although more 

recent studies of UMC-G have broadened the application of the original concept to include 

cases where either one or the other, or both, of the functions p0 and L might be non-normal 

[12] – [15], the term “UMC-G” continues to be viewed by many people in the nuclear data 

community solely in the context of normal distributions. To avoid confusion, in the present 

work the term “UMC-G+” signifies an application of UMC-G where L is normal but p0 is not 

necessarily normal but nevertheless can be represented in an analytical form. As mentioned in 

Section 1, Capote et al. [15] have suggested an approach to UMC referred to as UMC-B that 

does not require the prior probability p0 to be either normal or to be specified in the form of 

an analytical function. If {yk} corresponds to a collection of K theoretical values y generated 

stochastically by the transformation yk = M(xk), and {wk} represents a corresponding 

collection of K weighting factors based on experimental data and derived from the formula 

wk = L(yk), where L is given by Eq. (1), then the joint collection of value pairs {yk,wk} can be 

used for evaluation purposes to generate solution mean value ysol and its standard deviation 

ssol: 

 

ysol = (Σk=1,K wk yk)/(Σk=1,K wk),                                             (18) 

 

ssol = {[(Σk=1,K wk yk
2
)/(Σk=1,K wk)] – ysol

2
}

1/2
                                  (19) 

  

The collection of K value pairs {yk,wk} could also be used for additional calculations, e.g., 

for the analysis of physical systems whose performance is governed in part by these 

evaluated results. This would correspond to an extension of the TMC approach of Koning 

and Rochman [10] that takes into account both theoretical and experimental data information. 

It is evident from Fig. 1 that the region of space S{y} where significant weighting values wk 

would be encountered might be rather small if the model-calculated results are inconsistent 

with the experimental ones. That, in turn, would impact negatively on the stochastic 

convergence of an evaluated solution derived by the UMC-B approach. This issue is 

examined further in the present work through examples discussed in Section 5. 

3. A 1-D Model for Prior Probability 

It is of interest to explore in one dimension the influence of non-normal prior probability 

functions on evaluations that are likely to be involved in applying UMC-G, UMC-G+, and 

UMC-B. Therefore, conjuring a “toy” model M that involves a non-linear relationship 

between a single model parameter and a single derived variable is essential for such an 

investigation. To be useful for the investigation, this non-normal prior probability function 

should be expressible in analytical form and be amenable to some adjustment, by changing its 
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parameters, to produce various skewness and kurtosis values that differ significantly from the 

more constrained normal probability function (Skew = 0; Kurt = 3). Also, this prior 

probability function must be related intimately to the selected non-linear mathematical model 

M that transforms model variable x to derived variable y, i.e., y = M(x). Throughout the 

present investigation x is assumed to be normally distributed, as mentioned in Section 2. 

Therefore, it is suggested that a useful theoretical model M for the present investigations be 

defined by the exponential transformation y = exp(c x), where c is a scaling constant that is 

assumed to have no uncertainty whereas x is uncertain. If variable z is defined as z = c x, it 

will also be normally distributed. Thus, y = exp(z). It is well established that if z is normally 

distributed then y = exp(z) by necessity is lognormally distributed [1]. Can the lognormal 

function ever be considered relevant in realistic physical situations? To address this question 

in the context of nuclear data evaluation, it is informative to mention three examples in 

nuclear science where data are seen to exhibit exponential behavior, if only over limited 

ranges [17-18]. 

 

The simplest example is exponential decay of radioactivity. This model is validated 

physically, and it takes the well-known form A = A0 exp(-λt) where c = t, x = -λ, and A0 is a 

factor that defines intensity but does not affect the time dependence of radioactive decay. 

This case is discussed extensively in [18] so it is pursued no further in this paper. 

 

The second example is illustrated in Fig. 2. It shows evaluated cross-section data from 

ENDF/B-VII.1 for the 
197

Au(n,γ)
198

Au reaction from 20 – 40 keV (blue curve), along with a 

small sampling of relevant experimental data. These experimental data points scatter 

considerably with respect to the evaluated curve, but the general trend of both the evaluation 

and experimental data on a linear-log scale is linear with a negative slope over this limited 

energy range. The red curve in this plot is a straight line on a linear-log scale which is 

sketched as an eye guide to the plotted data. Expressed in terms of a neutron cross section, 

the model would be σ = σ0 exp(-γ E). Here, c = E (neutron energy), x = -γ is a model 

parameter that governs the slope, and σ0 is a normalization factor. 

 

The third example is discussed in Figs. 3 and 4. An experimental data set for the 
58

Ni(n,p)
58

Co reaction from 0.7 – 4 MeV [17] is compared in Fig. 3 with three distinct 

segments of exponential shapes (linear on a linear-log scale). This figure shows clearly the 

abrupt discontinuities in the slope of the cross section shape with energy that occur at around 

1.4 and 2.7 MeV, respectively. It happens that the first-excited state (2+) of the target nucleus 
58

Ni is situated at around 1.4 MeV while the second-excited state (4+) is situated at around 

2.5 MeV. The slopes of the three distinct line segments provided as eye guides to the data, as 

shown in Fig. 3, are all positive for this (n,p) threshold reaction, unlike the negative slope for 

the 
197

Au capture cross section, as shown in Fig. 2. These changes in cross-section shape for 

the (n,p) reaction are likely the result of abrupt variations in competition between the (n,p) 

reaction and neutron inelastic scattering due to onset of inelastic scattering contributions from 

individual discrete excited levels at incident neutron energies above their (n,n’) thresholds. 

 

The very sharp rise in the (n,p) cross section observed just above threshold can be attributed 

largely to barrier penetration considerations rather than variations in reaction channel 

competition. This effect can be understood by considering a simple application of the 

Schroedinger equation from quantum mechanics in one dimension, as described in Fig. 4. An 

incident particle with energy below the barrier height can penetrate the barrier even though 

classically this is forbidden. Uncertainty in the barrier height relative to the incident neutron 

energy translates in a non-linear manner to uncertainty in the calculated cross section. 
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The three examples discussed here suggest anecdotally that there may be situations where the 

lognormal function, or possibly a closely related analytical probability distribution, might on 

occasion be worth considering in realistic evaluation exercises even though there is no 

rigorous mathematical basis to support this view. An investigation of the extent to which the 

lognormal function and/or other analytical functions [1] might or might not be useful in 

characterizing the distributions derived by Monte Carlo in realistic applications would appear 

to merit further consideration. This exceeds the scope of the present work. However, already 

there is some evidence, from Figs. 2 and 3, as well as from other work in progress by of one 

of the present co-authors (Denise Neudecker), that simplified analytical representations, e.g., 

by the lognormal function, of the shape of prior probability distributions generated by Monte 

Carlo may be worth considering in limited instances over modest energy ranges. It is 

suggested here that it could be useful to an evaluator, as part of the evaluation process, to 

examine the skewness and kurtosis of a stochastically generated prior probability distribution 

for model-calculated data for similarities with the skewness and kurtosis of a chosen 

analytical function, e.g., a lognormal function, having the same mean value and standard 

deviation.  

 

 
 
Fig. 2: Cross-sections obtained from the National Nuclear Data Center (NNDC), Brookhaven 

National Laboratory (http://www.nndc.bnl.gov/sigma/) for the 
197

Au(n,γ)
198

Au reaction from 20 – 40 

keV. To avoid clutter, only three of the many experimental data sets available for this reaction are 

shown here. The blue curve is the ENDF/B-VII.1 evaluation. The red curve is a straight line (in 

linear-log space) drawn as an eye guide to the exhibited data. 

http://www.nndc.bnl.gov/sigma/
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Fig. 3: Experimental cross-section data [17] for the 
58

Ni(n,p)
58

Co reaction compared with 

exponential cross section shapes. The “model” parameter governs the slopes in this plot. 

 

 

 
Fig 4: Schematic diagram that illustrates quantum mechanical barrier penetration in one dimension. 

The material used to prepare this figure was acquired on-line. It is associated with the HyperPhysics 

exploration environment, Department of Physics and Astronomy, Georgia State University 

(http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/barr.html). 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/barr.html
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4. Statistical Studies 

Most of the calculations performed in the present investigation and reported in this paper are 

stochastic (MC) in nature. Furthermore, the effects sought when comparing differences in the 

predictions of UMC-G, UMC-G+, UMC-B, and GLS are expected to be relatively modest. 

So, it is essential that the calculated results reflect adequate stochastic stability (i.e., 

convergence). Consequently, the fidelity of the algorithms in EXCEL and MATLAB that are 

used in this work to generate random samples of variables needed to be verified. The results 

of these numerical investigations appear in the present section. 

 

Normal Probability Function 

As discussed in Section 3, the theoretical model M that is employed in this work is y = exp(c 

x), with x representing the variable model parameter and c being a constant. Then, y is the 

derived variable that represents an observable quantity. Variable x is assumed to be normally 

distributed. In practice the largest standard deviation that should be considered for a normal 

distribution that is employed to represent an inherently positive parameter, without 

encountering a significant number of negative sample values, is about 30% [18]. Then the 

likelihood of sampling a negative number will be < 0.1%. This should be acceptable for most 

applications since any encountered negative values can be rejected whenever they might 

impact an analysis in an unacceptable manner, e.g., by generating non-physical parameter 

values. 

 

For purposes of the present investigation, MATLAB was used to generate 8 independent sets 

of samples of a variable x with sizes K = 100, 500, 1000, 5000, 10000, 50000, 100000, and 

500000, respectively, for a normal distribution with mean value x0 = 1 and standard deviation 

sx = 0.3. The values MV{x} and Std{x} extracted from a statistical analysis of the generated 

random values of x were then compared with the input parameters of the normal distribution 

that generated these samples, i.e., x0 and sx. Adequate convergence is considered to exist if 

the moments extracted from the sample data agree with the input normal distribution 

parameters to within acceptable tolerances. The results from statistical analyses of these 8 

independent sample data sets are provided in Fig. 5 (upper left table). It is evident that 

adequate stochastic convergence for present purposes is indeed achieved. From Fig. 5 (lower 

left table) it is also evident that the derived MV{x} from 10 independent samples of size K = 

100000 or greater should vary by < 0.1% while corresponding derived values of Std{x} 

should vary by < 0.2%. It is anticipated (although it was not tested) that adequate stochastic 

convergence could likely be achieved with fewer than K = 100000 sampling histories in cases 

where the standard deviation is smaller than 30%. Then the sample values would tend to 

cluster more closely around the mean value. Thus it can be concluded that: 

 

It is possible to achieve quite a high degree of stochastic convergence in sampling fairly 

broad normal distributions (no more than 30% standard deviation) with K = 100000 

histories. However, since computational time can be very demanding in realistic UMC 

evaluation, tests should be performed by the evaluator to determine the minimum number of 

sampling histories needed to achieve the desired accuracy. 

 

To be on the safe side it was decided to employ K = 500000 histories for most of the 

stochastic calculations conducted in the present investigation. Whether or not such a large 

number of histories is necessary (or even feasible) in more realistic evaluation scenarios 

involving multiple variables needs to be investigated in specific situations. 
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Fig 5: Stochastic convergence tests for a normal probability distribution with given mean value x0 = 1 

and standard deviation sx = 0.3. The table at the upper-left-corner gives the values of stochastically 

determined MV{x} and Std{x}/0.3 for various numbers of histories K. The same information is also 

displayed in the adjacent plot. The table at the lower-left-corner gives values of stochastically 

determined MV{x} and Std{x}/0.3 for 10 independent trials with K = 100000 each. The averages and 

sample standard deviations of extracted MV{x} and Std{x} values for these 10 independent trials are 

also provided. 

 

 

Lognormal Probability Function 

Extensive use is made of the lognormal probability function in the present investigation for 

reasons that are discussed in Section 3. Therefore, it was considered essential for present 

purposes to examine the issue of statistical convergence of the stochastically derived 

moments for sampled collections of random variables generated by this function. As 

mentioned earlier, the present calculations were performed using EXCEL and MATLAB. 

 

There is risk of confusion when naming variables in exercises such as the ones discussed 

here. Therefore, for present purposes m denotes the mean value of a lognormal function and v 

denotes the variance. Unlike the case of normal distributions, m and v are not the inherent 

parameters of the lognormal distribution. Consequently, μ and σ are used to denote these 

inherent parameters. Here, y is the random variable of the lognormal distribution and ln y is 

the natural logarithm of y. The normalized lognormal prior probability function is: 

 

p0(y) = exp[-0.5 (ln y – μ)
2
/σ

2
] / (2πσ

2
y

2
)
1/2

  .                                (20) 

 

 

K MV{x} Std{x}/0.3

100 1.036926 1.156572

500 1.012324 0.992638

1000 0.989045 0.987531

5000 1.003943 0.994254

10000 0.997632 0.982841

50000 0.998188 1.00022

100000 1.000815 1.000214

500000 1.000583 0.999778

Trial MV{x} Std{x}/0.3

1 0.998746 0.998556

2 1.000192 1.000931

3 0.999761 0.996863

4 0.999987 1.001802

5 1.000308 1.000955

6 0.999504 0.99803

7 1.000613 0.999746

8 1.000645 0.997873

9 1.001314 1.000063

10 0.999512 0.999895

Average* 1.000058 0.999471

Std Dev* 0.073% 0.159%

* Sample average and

   standard deviation.
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If the mean value m and variance v are given for the lognormal function p0 of Eq. (20), the 

following formulas serve to define the relationships between m, v, μ, and σ [19] – [20]: 

 

μ = ln[m
2
/(v + m

2
)
1/2

] ,                                                   (21) 

 

σ = {ln[(v/m
2
) + 1]}

1/2
 ,                                                  (22) 

 

m = exp[μ + (σ
2
/2)] ,                                                     (23) 

 

v = exp(2μ + σ
2
) [exp(σ

2
) – 1] .                                            (24) 

 

Analytical expressions for the higher moments of lognormal p0 of interest here are: 

 

Skew = [exp(σ
2
) + 2] [exp(σ

2
) – 1]

1/2
 ,                                      (25) 

 

Kurt = exp(4σ
2
) + 2 exp(3σ

2
) + 3 exp(2σ

2
) – 3 .                              (26) 

 

Since analytical expressions do exist for all the mathematical quantities of interest for present 

purposes in studying the lognormal function, this enables direct comparisons to be made 

between exact and stochastic determinations of these quantities, providing convenient tests of 

convergence. This is one of several features of this probability function that make it very well 

suited for the present investigation. 

 

The following relationships between variables and constants are defined as in Section 3: z = c 

x; y = exp(z). As mentioned above, it is assumed that x is normally distributed with x0 = 1 

and sx = 0.3. The stochastic and analytical computations that are discussed in this section 

proceeded according to the following steps: 1) A specific constant value c is selected. 2) A 

random collection of 500000 normally distributed values {xk} is generated. 3) This collection 

is used to produce a corresponding set of 500000 values {zk} based on the magnitude of the 

constant c. 4) The collection {zk} is used to calculate a collection of 500000 derived values 

{yk}. 5) The mean value MV{y} and variance Var{y} are deduced stochastically from the 

random collection {yk}. 6) Values of skewness Skew{y} and kurtosis Kurt{y} are also 

deduced from this random collection of {yk}. 7) The values of MV{y} (which corresponds to 

m, as introduced above) and Var{y} (which corresponds to v, also introduced above) are then 

used to derive the parameters of an analytic expression for the lognormal probability, i.e., μ 

and σ, according to Eqs. (21) and (22), respectively. 8) Values of the skewness and kurtosis 

are then calculated analytically using Eqs. (25) and (26), respectively, for comparison with 

the corresponding stochastically determined values. 

 

This 8-step process was repeated 18 times for 18 distinct values of c ranging from 0.01 to 5. 

The numerical results from these computations are compiled in Fig. 6. The skewness and 

kurtosis results are also plotted in Fig. 7. 

 

Fig. 8 compares histograms for the lognormal probability functions corresponding to c = 1 

and c = 2, respectively. The distribution for c = 2 has a much longer “tail” toward high y 

values than for c = 1. The shape of the histograms for smaller values of c resemble normal 

distributions closely while those for large values c are even more strongly skewed toward 

large y values than is seen for the histograms shown in Fig. 8. 
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Fig. 6: Compiled analytical and stochastic results for a lognormal probability function. Examination 

of the MC/Calc Skew and Kurt ratios provides an indication of the quality of stochastic conversion to 

the true values of Skew and Kurt versus “c” for K = 500000 histories. 

 

 

 

 
 
Fig. 7: Plotted ratios of stochastically determined and analytically calculated skewness and kurtosis 

factors for a lognormal distribution based on values taken from the table in Fig. 6. 

 

  

c MV{y} Var{y} SD{y} (%) MC Skew{y} Calc Skew{y} Skew{y} Ratio MC Kurt{y} Calc Kurt{y} Kurt{y} Ratio

0.01 1.01005326 9.20334E-06 0.30% 0.009546661 0.009010545 1.059498754 2.986482268 3.000144338 0.995446196

0.02 1.02022148 3.7423E-05 0.60% 0.018360323 0.017988773 1.020654543 3.005848306 3.000575287 1.001757336

0.05 1.051397105 0.000249424 1.50% 0.050431397 0.045066778 1.119037124 3.012155407 3.003610913 1.002844741

0.08 1.083637273 0.000675904 2.40% 0.071290718 0.071988494 0.990307114 3.011111659 3.009214491 1.000630453

0.1 1.105688395 0.001099938 3.00% 0.092645569 0.090012521 1.029252011 3.020753971 3.014407518 1.002105373

0.2 1.223565577 0.005387621 6.00% 0.181803031 0.180182729 1.008992549 3.057862507 3.057773321 1.000029167

0.5 1.667057935 0.063333755 15.10% 0.456415656 0.456325589 1.000197376 3.3602307 3.372492876 0.996364062

0.8 2.291590108 0.310992511 24.34% 0.741827423 0.744472885 0.99644653 3.962082894 4.001402146 0.990173631

1 2.843910078 0.760982611 30.67% 0.94751543 0.949083525 0.99834778 4.635005222 4.643308251 0.998211829

1.2 3.541520673 1.745112913 37.30% 1.176602706 1.170933723 1.004841421 5.607349068 5.533123532 1.013414762

1.5 4.963403071 5.544857513 47.44% 1.548896369 1.53005045 1.012317188 7.574849791 7.432109422 1.019205903

1.8 6.997151043 16.5276669 58.10% 1.922346205 1.939168004 0.991325249 9.9361647 10.35432642 0.959614783

2 8.820263591 33.53282769 65.65% 2.248167508 2.25256838 0.998046287 12.9965565 13.1982634 0.984717164

2.5 16.16218706 196.7568843 86.79% 3.191198276 3.257395063 0.979677999 24.05191375 26.44817983 0.909397694

2.8 23.40940673 562.4538655 101.31% 3.987951017 4.079127432 0.977648059 36.86542866 42.82081823 0.860923032

3 30.16506088 1146.453619 112.25% 4.903557147 4.781641284 1.025496656 60.83093613 61.4908388 0.989268277

4 111.7935094 39579.78974 177.96% 8.860949972 10.97463575 0.807402649 172.903277 495.2832708 0.349099772

5 460.3803435 1873958.303 297.35% 24.77944123 35.21034068 0.703754657 1442.902757 11574.91814 0.124657707
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Fig. 8: Histograms of 500000 values of y, as generated with the formula y = exp(c x), for c = 1 and c 

= 2, respectively. The random values of y were generated by sampling normally-distributed x with 

mean value x0 = 1 and standard deviation sx = 0.3 (30%). 

 

 

It is evident from Fig. 7 that a stochastic (MC) analysis of 500000 values {yk} that are 

lognormally distributed yields results for Skew{y} and Kurt{y} that agree very well with the 

analytical values for c = 1 or less, with the exception of Skew{y} whenever c is close to zero. 

The reason for instability of skewness for very low values of c is that it is difficult to 

determine this factor stochastically when it is very close to zero, as is the case for small 

values of c.  The agreement between MC and analytical results for Skew{y} is adequate up to 

c = 3 but the MC/Calc ratios depart from unity toward significantly lower values at higher 

values of c. In the case of Kurt{y}, the agreement is adequate up to c = 2 but the MC/Calc 

ratios depart dramatically from unity toward lower values at values for c > 3. It should be 

apparent qualitatively from an inspection of Eqs. (5) – (8) why it is more difficult to achieve 

stochastic convergence when calculating skewness and kurtosis for functions such as the 

lognormal than it is when calculating mean values and standard deviations. This should not 

be a problem for most practical data evaluation scenarios since it is clear from Fig. 6 that the 

uncertainties (standard deviations) for the lognormal function are quite large when c > 2, and 

uncertainties of this magnitude are not very likely to be encountered in typical nuclear data 

evaluation scenarios except in specialized cases, e.g., those encountered in data pertinent to 

nuclear astrophysics. Nevertheless, evaluators should be aware that if they are required to 

deal with these more extreme situations, including those involving large uncertainties and 

discrepant data, poor overlaps between the prior and likelihood distribution functions are 

likely to signal that there will be difficulties in achieving adequate sampling of the product 

function, according to Bayes Theorem, especially when employing an evaluation approach 

such as UMC-B. This scenario could lead to questionable outcomes for their evaluations.  

 

The stability of MV{y}, Std{y}, Skew{y}, and Kurt{y} for c = 2 was investigated next by 

considering 10 independent MC trials that are all based on the same input parameters. The 

results are given in Fig. 9. 
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Fig. 9: The results of 10 independent trials of 500000 histories each that sample a lognormal 

distribution with designated fixed input mean value y0 = 8.8203 and standard deviation s0 = 5.7908. 

The averages and sample standard deviations of the 10 stochastically obtained values for MV{y}, 

Std{y}, Skew{y}, and Kurt{y} are seen at the bottom of the table. 

 

 

The preceding calculations all involve non-negative values of c. However, it has been 

determined that the same discussion is applicable if negative values of c with comparable 

magnitudes are considered. For example, the results of 500000 MC calculations employed to 

generate the moments of lognormal distributions with c = 1 and -1, respectively, are shown in 

Fig. 10. It is seen that while the absolute magnitudes of the mean values and standard 

deviations are quite different, for obvious reasons, the percent standard deviation, the 

skewness, and the kurtosis are the same within statistical uncertainties regardless of the sign 

of c. 

 

Independence of the shape of the generated lognormal probability distribution with respect to 

the sign of c is also evident from inspection of a plot of the histogram generated with c = -1, 

as shown in Fig. 11. The shape of that histogram is obviously visually the same as the one 

shown for c = 1 in Fig. 8. This outcome offers mathematical evidence that the lognormal 

function can serve as a reasonable prior probability function when the data behave 

exponentially and exhibit either positive or negative slopes when plotted on a linear-log scale. 

 

 

 
 
Fig 10: Comparison of moments of a lognormal probability function for c = 1 and c = -1. 

 

Trial # MV{y} Std{y} Std{y} % Skew{y} Kurt{y}

1 8.817378 5.788671 65.651% 2.251247 13.39604

2 8.811111 5.785255 65.659% 2.230343 12.61108

3 8.825292 5.790037 65.607% 2.21997 12.63176

4 8.806791 5.759584 65.399% 2.197635 12.39435

5 8.814009 5.801598 65.822% 2.326604 14.49515

6 8.811244 5.776718 65.561% 2.208617 12.35653

7 8.820369 5.801016 65.768% 2.273965 13.3431

8 8.805842 5.758799 65.397% 2.192463 12.2124

9 8.819524 5.788721 65.635% 2.314145 14.26671

10 8.819148 5.792554 65.682% 2.290151 13.88673

Average* 8.815071 5.784295 65.618% 2.250514 13.15938

Std Dev * 0.00632 0.015048 0.138% 0.048559 0.838972

Std Dev % 0.072% 0.260% 0.210% 2.158% 6.375%

* Sample averages and  standard deviations.

c MV{y} Std{y} Std{y} % Skew{y} Kurt{y}

-1 0.384608 0.11809 30.704% 0.96024 4.718317

1 2.843389 0.872303 30.678% 0.949703 4.644493
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Fig. 11: Histogram of the prior probability function that corresponds to c = -1. 

 

The general conclusion that can be deduced from the present exercises involving the 

lognormal distribution is as follows: 

 

Data that demonstrate a linear dependence on a logarithmic scale over a range of derived 

variables, regardless of whether the slope is positive or negative, can be described 

reasonably well statistically using a lognormal distribution, although a large number of 

histories K might be needed to compute skewness and kurtosis factors reliably when the 

percent standard deviation is relatively large. 

5. A Simple Evaluation Exercise 

This section describes the evaluation of a variable y for which there exist a model calculated 

data point (y0,s0) and an experimental data point (ye,se) to be considered. As indicated above, 

“y” denotes mean value and “s” denotes standard deviation for each of these data points. 

Furthermore, these two data points are independent. The solution results are denoted by 

(ysol,ssol). Four evaluation techniques discussed in this paper have been employed in the 

present analyses: GLS, UMC-G, UMC-G+, and UMC-B. Various combinations of numerical 

values for the input data are treated by these methods. 

 

The GLS solution is obtained using Eqs. (2) and (3). It is treated in the present investigation 

as the “benchmark” solution to which the results obtained using the three UMC methods are 

compared. GLS is not chosen as the benchmark with the assumption that it is always the 

“best” solution but rather because the GLS solution results are obtained analytically and thus 

are not affected to any extent by imprecision that is inevitably associated in calculating 

integrals numerically and/or by unpredictable stochastic effects. 

 

While UMC-G in general is conceived as a strictly Monte Carlo technique, its application for 

a single variable amounts essentially to performing Monte Carlo integration with respect 

integrands that involve the posterior probability p and various powers of the variable y. The 

same is true for UMC-G+. For present purposes, this amounts to performing the integrations 

indicated in Eqs. (12) and (13). While these calculations indeed could be performed by Monte 

Carlo, in the case of a single variable with a well-defined analytical expression for p it is 
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reasonable to evaluate these integrals using a straightforward numerical approach that 

involves defining fine integration meshes, as discussed in Section 2, knowing that this 

approach should generate essentially the same answers as Monte Carlo evaluation of the 

integrals using a large number of histories K. Of course, the use of Monte Carlo integration is 

generally a necessity in realistic multiple-variable evaluation exercises. An assumption is 

made in the present work, for both UMC-G and UMC-G+. Eqs. (27) and (28) below apply 

only when function p is normalized.  

 

MV{y} = m1 = ʃ y p(y) dy ≈ [Σi=1,N yi p(yi) / N] R ,                             (27) 

 

Std{y} = [ ʃ y
2
 p(y) dy – m1

2
]
1/2

 ≈ {[Σi=1,N yi
2
 p(yi) / N] R -  m1

2
}

1/2
 ,               (28)                                                                      

 

where yi = (i-0.5)(R/N) for (i = 1,N).  For the present investigation it was determined that N = 

1000 provided a sufficiently fine grid for calculating the integrals numerically to the accuracy 

desired. The continuous interval (0,R) for the variable y is chosen with a sufficient width so 

that the integrands of all the integrals to be evaluated are effectively negligible outside this 

range. For this to be the case, both the prior probability function p0 and the likelihood L 

function must be effectively negligible outside this range as well as the posterior function p. 

For convenience, liberty is taken here of using the nomenclature MV{y} and Std{y}, which 

elsewhere in the present report is used to denote results from stochastic analyses, to refer 

specifically to the results of deterministic calculations performed using Eqs. (27) and (28). 

 

In UMC-G, p0 is assumed to be normal whereas in UMC-G+ it can be an arbitrary probability 

function of a single variable which, nevertheless, can be expressed analytically. As discussed 

at length in Section 3, for illustrative purposes p0 is taken to be a lognormal function in the 

present investigation. As mentioned earlier, both p0 and L should be normalized to unity. 

However, their product function, p, is not automatically normalized to unity. Therefore, the 

integral ʃ p(y)dy is a useful quantitative measure of the overlap of the functions p0 and L in y 

space. In this report this integral is given the name “Overlap”. The magnitude of factor 

“Overlap” is an important consideration in applying the UMC-B approach, as is illustrated in 

Fig. 1. It is convenient that in situations where both p0 and L are normal probability functions, 

the analytic formula of Eq. (29) can be employed to give an exact value for factor “Overlap” 

that can be compared readily with the result from numerical integration [21]. However, Eq. 

(29) does not apply if either p0 or L (or both functions) are non-normal. 

 

Overlap = ʃ p(y) dy = exp[-0.5(y0-ye)
2
/(s0

2
+se

2
)] / [2π(s0

2
+se

2
)]

1/2
  .                (29) 

 

The evaluated predictions from GLS and UMC-G for several choices of (y0,s0) and (ye,se) are 

presented in Fig. 12. 
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Fig. 12: Summary of GLS and UMC-G solutions for a simple evaluation exercise with one model-

calculated value and one experimental value. MV GLS and Std GLS represent the GLS solution values 

for ysol and ssol, respectively, while MV UMC-G and Std UMC-G represent the UMC-G solution values 

for ysol and ssol, respectively. 

 
*Factor “Overlap” is calculated by integrating the posterior probability function p numerically. 

 

It is evident from Fig. 12 that the solution values for UMC-G that are calculated by numerical 

integration agree perfectly with the GLS solutions. Thus, it can be concluded that: 

 

When the variables to be evaluated are linearly related to both the prior model-calculated 

data and the experimental data, the GLS evaluation approach will yield the same results as 

can be obtained by resorting to probabilistic approaches, such as those referred to as 

“UMC”, as long as the normal distribution applies to all the input data. 

 

This is consistent with the observation from earlier investigations for evaluations that involve 

experimental data which correspond directly with the model calculated prior values of the 

variable(s) being evaluated [11] – [15]. It was also determined in the present investigation 

that the values of factor “Overlap” determined by numerical integration agree perfectly with 

those obtained from the formula in Eq. (29) when the calculations are performed with a mesh 

size N = 1000. To test the sensitivity of the calculated results for factor “Overlap” and the 

UMC-G evaluations to grid size N, these calculations were also performed using smaller grid 

sizes. It was determined that while the agreement for smaller N remains fairly good between 

the UMC-G and GLS results for coarser grids (N < 1000), they not quite as good as when the 

finer grid size (N = 1000) is employed. For interest, Fig. 13 shows plots of p0, L, and p for the 

case y0 = 30, s0 (%) = 20%, ye = 40, se (%) = 10%, and R = 80 when p0 and L are both 

normal. 

 

It should be understood that just because the evaluated results obtained from GLS and UMC-

G agree perfectly this does not guarantee that these results will be physically reasonable. If 

the prior calculated and experimental values differ significantly, based on consideration of 

their respective uncertainties (i.e., they are discrepant), then an effort should be made by the 

y0 s0 (%) ye se (%) Overlap* Eval MV GLS Eval Std GLS % Eval MV UMC-G Eval Std UMC-G %

30 20.00% 40 10.00% 0.0211503 36.92307692 9.014% 36.92307692 9.014%

40 10.00% 30 20.00% 0.0211503 36.92307692 9.014% 36.92307692 9.014%

30 20.00% 50 10.00% 0.0019245 41.80327869 9.189% 41.80327869 9.189%

50 10.00% 30 20.00% 0.0019245 41.80327869 9.189% 41.80327869 9.189%

30 20.00% 35 10.00% 0.0443251 33.73056995 8.963% 33.73056995 8.963%

35 10.00% 30 20.00% 0.0443251 33.73056995 8.963% 33.73056995 8.963%

30 20.00% 30 10.00% 0.0594708 30 8.944% 30 8.944%

30 10.00% 30 20.00% 0.0594708 30 8.944% 30 8.944%

30 10.00% 30 10.00% 0.0940316 30 7.071% 30 7.071%

30 20.00% 30 20.00% 0.0470158 30 14.142% 30 14.142%

30 20.00% 50 20.00% 0.0078609 35.29411765 14.577% 35.29411765 14.577%

50 20.00% 30 20.00% 0.0078609 35.29411765 14.577% 35.29411765 14.577%

30 10.00% 50 10.00% 0.0001908 35.29411765 7.289% 35.29411765 7.289%

50 10.00% 30 10.00% 0.0001908 35.29411765 7.289% 35.29411765 7.289%

20 5.00% 20 5.00% 0.2820948 20 3.536% 20 3.536%

20 1.00% 20 1.00% 1.410474 20 0.707% 20 0.707%
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evaluator to resolve the discrepancy. Large values of chi-square or very small values of factor 

“Overlap” are signals of potential data inconsistency that should be investigated further. 

 

 

 
 

Fig. 13: Representative plots of p0, L, and p for y0 = 30, s0 (%) = 20%, ye = 40, se (%) = 10%, and 

R = 80. All three probability density functions are normal in this example. The computed value of 

factor “Overlap” is 0.02115. 

  

 

Next, a comparison is made between the GLS solutions and the UMC-G+ solutions for the 

same input data shown in Fig. 12. The approach to the calculations is identical to that 

discussed in comparing GLS and UMC-G. The only difference for UMC-G+ lies in the fact 

that the prior probability function p0 need not be normal. In the present situation it is assumed 

to be lognormal. The results appear in Fig. 14. As mentioned above, Eq. (29) for factor 

“Overlap” applies only when two normal probability distributions are multiplied and not 

when a lognormal probability function is multiplied by a normal probability function. So the 

value of factor “Overlap” for p0 and L, i.e., the integral of the posterior function p, can be 

obtained in the case of UMC-G+ only by numerical integration, by following the procedure 

described above. These values of factor “Overlap” also appear in Fig. 14. For interest, Fig. 15 

shows plots of p0, L, and p for the case y0 = 50, s0 (%) = 10%, ye = 30, se (%) = 10%, and R = 

80 when p0 is lognormal. Since p0 and L do not overlap very well it is not possible to observe 

the product function p when it is attempted to show it on a linear plot. 
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Fig. 14 illustrates several features of the UMC-G+ results when compared with GLS for the 

same input data. One obvious feature is that when factor “Overlap” is very small, the 

differences between UMC-G+ and GLS are more noticeable. Small magnitudes of factor 

“Overlap” signifies that the two data values are relatively inconsistent, considering the 

assigned uncertainties. Another interesting feature is that the UMC-G+ results differ 

somewhat depending on whether ye > y0 or ye < y0. This unusual effect can be explained by 

the fact that the shape of p0 is different on the low-y side than it is on the high-y side. This 

affects the overlap of prior p0 with the experimental likelihood probability L. Differences in 

corresponding values of factor “Overlap” also reflect this phenomenon. 

 

 
 
Fig. 14: Summary of GLS and UMC-G+ solutions for a simple evaluation exercise with one model-

calculated value and one experimental value. MV GLS and Std GLS represent the GLS solution values 

ysol and ssol, respectively, while MV UMC-G+ and Std UMC-G+ represent the UMC-G+ solution 

values ysol and ssol, respectively. Ratios of MV and Std for UMC-G+ relative to GLS are also provided 

to show the differences in their predicted solutions. 

 

y0 s0 (%) ye se (%) Overlap* MV GLS Std GLS % MV UMC-G+ Std UMC-G+ % Ratio MV Ratio Std

30 20.00% 40 10.00% 0.0190129 36.92307692 9.014% 37.14065267 9.724% 1.005893 1.078811

40 10.00% 30 20.00% 0.0213724 36.92307692 9.014% 37.05673941 8.264% 1.00362 0.916848

30 20.00% 50 10.00% 0.0025887 41.80327869 9.189% 43.80972484 10.418% 1.047997 1.133802

50 10.00% 30 20.00% 0.0016995 41.80327869 9.189% 42.77564051 7.736% 1.02326 0.841878

30 20.00% 35 10.00% 0.0397722 33.73056995 8.963% 33.52838982 9.370% 0.994006 1.045438

35 10.00% 30 20.00% 0.044834 33.73056995 8.963% 33.69451338 8.577% 0.998931 0.957001

30 20.00% 30 10.00% 0.0602305 30 8.944% 29.71330675 9.006% 0.990444 1.006908

30 10.00% 30 20.00% 0.0595092 30 8.944% 29.92870261 8.922% 0.997623 0.997465

30 10.00% 30 10.00% 0.0942793 30 7.071% 29.88855837 7.067% 0.996285 0.999355

30 20.00% 30 20.00% 0.047499 30 14.142% 29.56654661 14.103% 0.985552 0.9972

30 20.00% 50 20.00% 0.0077665 35.29411765 14.577% 35.88095919 17.137% 1.016627 1.175593

50 20.00% 30 20.00% 0.007376 35.29411765 14.577% 36.80783716 11.875% 1.042889 0.814651

30 10.00% 50 10.00% 0.000237 35.29411765 7.289% 36.35885879 8.628% 1.030168 1.183794

50 10.00% 30 10.00% 6.366E-05 35.29411765 7.289% 37.08165446 5.941% 1.050647 0.815163

20 5.00% 20 5.00% 0.2822817 20 3.536% 19.98129435 3.535% 0.999065 0.999842

20 1.00% 20 1.00% 1.4105114 20 0.707% 19.99925007 0.707% 0.999963 0.999994

"MV" is the evaluated solution mean value "Std" is the evaluated solution standard deviation

Likelihood value is the largest - Prior value is the smallest Note: Ratio MV and Ratio Std

Likelinood value is the smallest - Prior value is the largest correspond to (UMC-G+/GLS)

Likelihood and experimental values both the same
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Fig. 15: Representative plots of p0, L, and p for y0 = 50, s0 (%) = 10%, ye = 30, se (%) = 10%, and 

R = 100. The magnitude of factor “Overlap” is very small (6.37E-05) so the posterior function p is 

not visible in this linear plot. 

It is seen from Fig. 14 is that the differences between the UMC-G+ and GLS results for the 

standard deviations (Std) are more pronounced than they are for the mean values (MV). 

While the differences appearing in Fig. 14 are generally not very large considering the given 

uncertainties, they do indicate that a prior probability function p0 that exhibits skewness (and 

possibly kurtosis) can influence the evaluated results (both mean values and standard 

deviations), even in the simple case of one variable and two data values that correspond 

directly to the variable being evaluated. Earlier studies [11] – [15] showed that the effects of 

non-linearity can be quite influential when the input data, especially experimental data, do 

not correspond directly to the evaluated variables, e.g., in the case of ratio data, but it had not 

been observed previously in the case of simple data that are directly related to the evaluated 

variables. Thus: 

One or other version of UMC should probably be employed in evaluations where the data 

being evaluated appear to be somewhat inconsistent based on the given uncertainties, or 

where it is anticipated that the prior probability function exhibits significant skewness that 

suggests a noticeable departure from a normal distribution. 
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Finally, a comparison is made in Fig. 16 between an evaluation that uses GLS, UMC-G+, and 

UMC-B with one variable, one model data value, and one experimental data value. 

 

 

Fig 16: Summary of GLS, UMC-G+, and UMC-B evaluations for test examples. 

The blocks of three sets of results shown in this figure correspond to identical input data 

(y0,s0) and (ye,se) but independent stochastic calculations using the indicated numbers of 

histories (note that NHIST = K). These repeated calculations with the same input data test 

stochastic stability for a given fixed input. There are several interesting observations to be 

made regarding Fig. 16. It is evident that the computed values MV{y} and Std{y}, labelled 

simply as MV and Std in Fig. 16, agree very well with each other within each category of 

three independently computed results, regardless of the numbers of histories. Of course, even 

NHIST = 10000 would appear to constitute a rather large number of samples. 

                            Input Data*                         UMC-B                                 UMC-G+                           GLS

y0 s0 % ye se % MV Std STD % MV Std Std % Overlap MV Std Std %

NHIST = 500000

2.721694052 5.001% 2.1 19.048% 2.658334 0.124722 4.692% 2.658321 0.124792 4.694% 0.320147 2.657183 0.128851 4.849%

2.721725317 5.005% 2.1 19.048% 2.658282 0.124793 4.694% 2.658244 0.124891 4.698% 0.320149 2.657102 0.12896 4.853%

2.721906974 5.001% 2.1 19.048% 2.658522 0.124776 4.693% 2.658502 0.124802 4.694% 0.319913 2.657362 0.128863 4.849%

2.844875516 30.687% 2.1 4.762% 2.108891 0.098666 4.679% 2.108854 0.098561 4.674% 0.432174 2.109647 0.09935 4.709%

2.721629397 5.010% 2.1 4.762% 2.349627 0.072844 3.100% 2.347617 0.073903 3.148% 0.00161 2.317433 0.080636 3.480%

2.721761597 5.003% 1.9 4.737% 2.170631 0.079175 3.648% 2.205679 0.06697 3.036% 1.35E-06 2.149851 0.075082 3.492%

2.721578319 4.999% 1.9 4.737% 2.245341 0.045357 2.020% 2.20587 0.066953 3.035% 1.34E-06 2.150068 0.075064 3.491%

2.721547224 5.003% 1.9 4.737% 2.235477 0.053426 2.390% 2.205627 0.066969 3.036% 1.36E-06 2.149826 0.075079 3.492%

NHIST = 100000

2.72206604 5.016% 2.1 19.048% 2.658241 0.12521 4.710% 2.65829 0.125135 4.707% 0.319862 2.657138 0.129229 4.863%

2.72191458 5.009% 2.1 19.048% 2.658303 0.125045 4.704% 2.658322 0.124978 4.701% 0.319971 2.657176 0.129055 4.857%

2.721592799 5.010% 2.1 19.048% 2.658023 0.125156 4.709% 2.658033 0.124977 4.702% 0.32033 2.656889 0.129054 4.857%

2.721739518 5.008% 1.9 4.737% 2.233922 0.049202 2.202% 2.205353 0.066992 3.038% 1.37E-06 2.149523 0.075103 3.494%

2.721725321 4.987% 1.9 4.737% 2.26098 0.03926 1.736% 2.206734 0.066897 3.032% 1.28E-06 2.150925 0.07501 3.487%

2.721842541 4.993% 1.9 4.737% 2.234708 0.047073 2.106% 2.206394 0.066923 3.033% 1.3E-06 2.150566 0.075036 3.489%

NHIST = 10000

2.72139842 4.890% 2.1 19.048% 2.66074 0.121955 4.583% 2.66052 0.126282 4.748% 0.319599 2.659464 0.126282 4.748%

2.722590523 5.073% 2.1 19.048% 2.657042 0.127285 4.790% 2.657468 0.12634 4.754% 0.319739 2.656269 0.130553 4.915%

2.721070041 4.961% 2.1 19.048% 2.658603 0.123726 4.654% 2.658662 0.123939 4.662% 0.320522 2.657558 0.127914 4.813%

2.72426091 5.012% 1.9 4.737% 2.27178 0.040361 1.777% 2.205784 0.067016 3.038% 1.29E-06 2.149641 0.075145 3.496%

2.721136333 5.023% 1.9 4.737% 2.257667 0.025191 1.116% 2.204099 0.067064 3.043% 1.48E-06 2.148329 0.075169 3.499%

2.720583524 5.003% 1.9 4.737% 2.278928 0.034144 1.498% 2.205323 0.066969 3.037% 1.4E-06 2.149639 0.075072 3.492%

"MV" is the evaluated solution mean value "Std" is the evaluated solution standard deviation

*Data y0 and s0 grouped in blocks of three. They were generated by Monte Carlo with model y = exp(c x) and c = 1, x 0 = 1, and Std Dev x = 0.3.

Differences seen in y0 and s0 therefore correspond to stochastic differences arising from sampling x. Three different numbers of sampling

histories K = 500000, 100000, and 10000 are used. Finally "Overlap" is calculated numerically for UMC-G+.
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Comparisons between UMC-G+ and GLS results have already been discussed, so the present 

focus is on comparing UMC-G+ and UMC-B. In principle, at least for a very large number of 

histories, the corresponding values, i.e., for MV or Std, should be nearly the same. Therefore, 

the interest is in observing the differences that arise when NHIST is not so large. The mean 

values tend to agree reasonably well in all cases, at least within <3%. The largest differences 

occur in situations that involve the smallest magnitudes of factor “Overlap”, as might be 

expected based on considering Fig. 1. However, there are significant differences between 

UMC-G+ and UMC-B seen in Fig. 16 for the predicted standard deviations. In some cases 

they amount to as much as a factor of two. 

The important point to remember here is that in UMC-B the stochastic sampling of potential 

solutions in space S{y} is governed entirely by the prior probability function p0(y) while the 

likelihood factor, based on L(y), serves only to weight these chosen possibilities for the final 

solution. On the other hand, the sampling processes in UMC-G or UMC-G+, which 

incorporate the posterior function p(y), treat both the prior probability p0(y) and the 

likelihood function L(y) on an equal footing in the sampling process. These observations, and 

the numerical results from the present investigation, suggest the following conclusions 

regarding application of the UMC-B approach to data evaluation: 

To apply UMC-B successfully with a limited number of sampling histories there needs to be a 

robust value of factor “Overlap” signifying that the data being evaluated are reasonably 

consistent. If that is not the case, a very large number of sampling histories is likely to be 

needed to insure reliability of the final solution. Again, the occurrence of a small value for 

“Overlap” signals that the data being evaluated are inconsistent and the source of the 

discrepancy should therefore be investigated by the evaluator. 

6. Summary 

The present work demonstrates that considerable insight into stochastic and probability 

function shape effects that impact on applications of three distinct approaches to data 

evaluation using Unified Monte Carlo (UMC) can be acquired from simple numerical studies 

involving just a single variable to be evaluated and two input data values, one a “theoretical” 

model-calculated one and the second an “experimental” one. Noticeable differences in the 

evaluated results, depending on circumstances, have been observed between the predictions 

of the Monte Carlo methods UMC-G+ and UMC-B and GLS. In the simple examples 

considered here, where the data and variable to be evaluated are all comparable, UMC-G, 

which assumes normal prior and likelihood probability functions, yields identical results to 

GLS. A common thread in those cases where noticeable disagreements are seen between 

UMC-G+ and/or UMC-B and comparable GLS results is that the data being evaluated have 

large uncertainties and/or are basically inconsistent, as suggested by the given uncertainties. 

Thus, there is a premium on possessing good quality, consistent data, both theoretical and 

experimental, if one hopes to produce reliable evaluated results. This observation is certainly 

consistent with common sense. 
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