

VALIDATION OF FENDL-3/A LIBRARY USING INTEGRAL MEASUREMENTS

Prepared by J. Kopecky

JUKO Research Kalmanstraat 4, 1817 HX Alkmaar The Netherlands

August 2012

IAEA Nuclear Data Section Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria

Selected INDC documents may be downloaded in electronic form from <u>http://www-nds.iaea.org/reports-new/indc-reports/</u> or sent as an e-mail attachment. Requests for hardcopu or e-mail transmittal should be directed to <u>services@iaeand.iaea.org</u> or to: Nuclear Data Section

International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna Austria

Printed by the IAEA in Austria

August 2012

INDC(NED)-011 Distr.: Web only

VALIDATION OF FENDL-3/A LIBRARY USING INTEGRAL MEASUREMENTS

Prepared by J. Kopecky

JUKO Research Kalmanstraat 4, 1817 HX Alkmaar The Netherlands

August 2012

Contents

ABSTR	ACT	7
1. FEN	NDL-3	8
2. INT 2.1	FEGRAL EXPERIMENTAL DATA BASE (IED) EFDA experiments	8 8
2.2	External experiments (outside EFDA)	8
2.3	The (n,γ) integral experiments	
 3. RE: 3.1 C 3.2 E 3.3 C 	SULTS OF EXPERIMENTAL DATA ANALYSIS Calculational method Effective cross sections C/E validation for FENDL-3/A	
4. CO	NCLUSIONS	20
ACKNO	OWLEDGEMENT	23
REFER	ENCES	23

ABSTRACT

This report describes the validation of FENDL-3/A against integral activation experiments, applying the same procedures as successfully used for validation of the last four EAF libraries (EAF-2001 [1], EAF-2003 [2] and EAF-2005 [3] and EAF-2007 [4]) with the processing code SAFEPAQ-II [5]. This was done by comparing the predictions of the EASY code system with activation measurements made on materials relevant to fusion technology in well-characterised neutron fields. If the ratio of results from Calculation (C) and Experiment (E) is close to 1 then the data are described as validated. In other cases it may be possible to change the library data to improve the C/E ratio. For the present validation of the FENDL-3 library, which is based on data from EAF-2010, an extended set of integral measurements is used. This extension is primarily made by adding the large number of values in the literature for well-defined neutron spectra.

As a part of the EFDA Fusion Technology Programme, a series of measurements on fusion relevant materials in several complementary neutron fields have been carried out over the last few years. In addition, measurements performed outside Europe and outside the fusion programme have also been considered. All these measurements form the compilation of integral activation data (IED/10) and were used in validation of the EAF libraries. The results from these measurements, which include also the pathways responsible for production of the various radionuclides, are described in detail in Ref. [4]. The pathways show the reactions that dominate the formation of the measured radionuclides. Knowing the reactions enables the activity measurements to be transformed into effective cross sections (average value of the cross section in the neutron spectrum) which can be compared with the library value calculated in the same spectrum. Analysis of all experimental data from the compilation in Ref. [4] allowed the determination of effective cross sections for 470 reactions and these are presented in tabular form and also as plots of the C/E ratio. Plots were made for all reactions and also show the EAF cross section (including the uncertainty estimate) as a function of neutron energy and the available experimental differential data. Using these graphs, an assessment was made to determine if the reaction is validated or if changes are recommended.

For the present validation exercise the FENDL-3/A data library is used. A novel approach has been tested in this work, namely the integral data base IED/10 has been extended by Maxwellian cross sections at 30 keV (MACS) as integral quantities. Only those values which are based on experimental measurements are included, any calculated MACS data are excluded. This extension concerns capture data and brings the total number of reactions analysed and validated from 470 to 804. Quality assessments will be used with other information to enable improvements to be made to future version of FENDL libraries.

1. FENDL-3

FENDL-3 has been produced as an output of an IAEA CRP (<u>http://www-nds.iaea.org/fendl3/</u>). It comprises general purpose and activation data for neutron, proton and deuteron incident particles. The energy range extends above the 20 MeV value used for previous FENDL libraries and in the case of activation data is 60 MeV. The neutron-induced activation library (FENDL-3/A) is based on EAF-2010.

2. INTEGRAL EXPERIMENTAL DATA BASE (IED)

The extended IED (IED/11) version is used in this work and includes the data sources described in the following sections.

2.1 EFDA experiments

The main contribution comes from the results of measurements of several European laboratories carried out in the EFDA Fusion Technology Programme. They are the Technical University of Dresden (TUD), the Frascati Neutron Generator (FNG) group, the Forschungszentrum Karlsruhe (FZK) group and the Řež Nuclear Physics Group. Further the contribution from the Japanese Fusion Programme by the JAERI (FNS) group belongs to these fusion dedicated experiments. In Refs. [6-25] the experimental set ups and the spectra used are described and they should be consulted for details of the spectra and the original publications. These data sources can be characterized as:

Energy classification of neutron spectra	Energy range of $\Phi(E)$	E of Φ(max)
$SNEG - (d, {}^{3}He)$ mono-energetic source	14 MeV – 14.5MeV	14 MeV
FNG, FNS, TUD $- (d,T)$ reaction	3 MeV – 14.5 MeV	14 MeV
$FZK - (p,D_2O)$ reaction	0.01 MeV – 18 MeV	14 MeV
Rez_DF - (p,D_2O) reaction	0.004 MeV – 30 MeV	20 MeV
Rez foils - (p,D_2O) or $(p,^{16}O)$ reaction	1.5 MeV – 30 MeV	flat curve

Measurements at FZK using a d-Li neutron source [15-19], similar to that proposed for IFMIF, but with much lower intensity. The source consists of a 40 MeV beam of deuterons incident on a thick lithium target (22 mm thickness enclosed in a stainless steel case). Although a 3 μ A beam of 52 MeV deuterons was used, the approximate energy of the deuterons on entering the lithium was 40 MeV. The neutron flux was about 4.3 10¹¹ ncm⁻²s⁻¹. The data have been analysed using EASY-2005. The spectrum, which extends above 20 MeV, is shown in Fig. 5.

The measurements at Řež were carried out in a neutron field produced by a cyclotron. Considerable effort has been taken to characterise the spectrum in detail. Note that this spectrum extends in energy above 20 MeV and is therefore very important in the validation of libraries such as EAF-2010 or FENDL-3/A which extend to 60 MeV. Following considerable efforts a new spectrum (rez_DF) was produced by measurement and calculation [26-28] and this is shown in Fig. 6; this spectrum was used in the analysis of the various measurements including the new chromium measurements.

2.2 External experiments (outside EFDA)

The next group are results from measurements outside the fusion programmes, here belong the large compilation of measurements at different laboratories with the spontaneous fission

of ²⁵²Cf or thermal Maxwellian data and further the results of (d,Be) measurements experiments of the Jülich Group.

Energy classification of neutron spectra	Energy range of $\Phi(E)$	E of Φ(max)
Maxw_300K - thermal spectrum	thermal spectrum	2.5 10 ⁻⁵ MeV
Spectra cf252 - spontaneous fission	0.2 – 8 MeV	2 MeV
Julich Spectra d-Be - (d,Be) reaction	10 – 40 MeV	22.5 MeV

The importance of integral data in spectra extending above 20 MeV led to a literature search for historical measurements that could be used for validation. A series of papers from the group in Jülich led by Qaim [29-40] has been used. Three different (d,Be) neutron spectra have been derived based on the work of Schweimer [41] and Meulders et al. [42]. The data have been fitted to the analytic shape shown in equation (1) below and then converted into the 211-group VITAMIN-J+ structure.

$$\phi(E) = Ca(1+y^2)^{-3/2}$$

(1)

In equation (1), $\phi(E)$ is the neutron flux at energy E, $a = (BE_d)^{-1/2}$ and $y = a(E - E_d/2 + E_s)$. E is the neutron energy, E_d is the deuteron energy, E_s and C are constants and B is the deuteron binding energy.

A typical spectrum is shown in Fig. 9. It was found that the C/E values for all reactions in the d-Be2 spectrum were large. Selecting a set of 'well-known' reactions ((n, α) reactions on ²⁷Al, ³¹P, ⁵¹V, ⁵⁵Mn, ⁵⁹Co and ⁹³Nb) it was found that the average C/E values was 2.15. It is believed that an error in the original data is present and it was decided to renormalize all the cross sections by a factor 2.15. In order to make this clear the spectrum is termed d-Be2a.

The references should be consulted for details of the spectra and the original publications. However, some typical spectra are reproduced here in order to show the shapes of the various neutron fields, see Figs. 1-9.

Fig. 1. TUD neutron spectrum at 4° and 73° normalised to unity as determined (solid line) and in VITAMIN-J group structure (dashed line).

Fig. 2. TUD neutron spectrum normalised to unity plotted in the VITAMIN-J group structure.

Neutron Energy (eV)

Fig. 3. FNG neutron spectrum as measured for the vanadium measurements in the VITAMIN-J group structure.

Fig. 4. FNS neutron spectrum for 5 minute irradiations plotted in the VITAMIN-J group structure.

Fig. 5. FZK neutron spectrum as measured in the VITAMIN-J group structure.

Fig. 6. Řež neutron spectrum used for the analyses of the measurements in the VITAMIN-J+ group structure.

Fig. 7. Maxw_300kT neutron spectrum in the VITAMIN-J+ group structure.

Fig. 8. ²⁵²Cf spontaneous fission neutron spectrum plotted in the VITAMIN-J group structure.

Fig. 9. d-Be2a neutron spectrum in the VITAMIN-J+ group structure.

2.3 The (n,γ) integral experiments

The integral cross sections at 30 keV, σ_{MACS} , mainly used as quasi mono-energetic cross sections, were for the first time interpreted as an integral quantity in Ref. [43]. The power

and features of this approach is described in detail in this paper and also visually demonstrated in Figs. 10 and 11. The theoretically calculated Maxwell-Boltzmann spectrum for kT = 30 keV is shown in Fig. 10. Note the rather broad spectrum shape.

Fig. 10. Maxwell-Boltzmann neutron spectrum for kT = 30 keV in the VITAMIN-J group structure.

The advantage of using the MACS data as integral experiments compared to the quasi monoenergetic approach is clearly demonstrated in Fig. 11. The integral data fully covers the resolved resonance region (RR) and a large part of the smooth statistical component while the mono-energetic value tests the statistical region only in one energy point. The use of all MACS data from the KADoNiS compilation [44] is described in detail in Ref. [43] and these values are added to the experimental integral data base IAED/11. This extension includes 396 reactions.

Fig. 11. The cross section (upper) and reaction rate (lower) of the ${}^{106}Pd(n,\gamma)$ reaction. The energy spread of 90% of the reaction rate spans from 10 eV to 600 keV. Both the resolved resonance region as well as the smooth reason are tested.

There is, however, another experimental quantity which can be interpreted as an integral experiment and that is the resonance integral. The resonance integral is defined in equation 2

$$I_{\gamma} = \int_{0.5eV}^{\infty} \sigma(E) d(E) / E$$
⁽²⁾

where the cross section is folded with 1/E spectrum from the Cd cut off (0.5 eV) to infinity (often the upper limit is chosen as 100 keV). The use of 1/E spectrum favours the influence of 1/v component close to E_V and the lower part of the resonance region, while the higher energy contribution becomes negligible due to the 1/E weighing. This is nicely demonstrated in Fig. 12, taken from the ENDF/B-VII.1 documentation.

Fig. 12. Different weighting neutron spectra used in validation of non-threshold reactions.

The use of this quantity looks to be a good additional test of the resonance region especially in the low energy part. The compilation of resonance integral is included in the latest barn book of Mughabghab [45]. The use of resonance integrals [45] to validate the EAF-2010 library data is described in Ref. [46], however, they are used only to derive the uncertainty factors of the resonance region. The application of resonance integrals for validation is currently in a testing phase and will be included routinely in the future.

Energy classification of neutron spectra	Energy range of Φ(E)	E of Φ(max)
MACS_theory_30keV	0.01 – 0.5 MeV	$3.0 \ 10^{-2} \text{ MeV}$
Resonance integral	0.5E-6 MeV – infinity	-

The final neutron spectra used in (n,γ) integral experiments are:

The combined use of MACS and I_{γ} data is demonstrated in the analysis of the ${}^{28}Si(n,\gamma)$ reaction comparing the FENDL-3/A and ENDF/B-VII data. The following validation ratios are available:

Ratio of integral cross section FENDL-3 vs MACS - $\langle \sigma_{30} \rangle / \sigma_{MACS} = 1.06$ Ratio of integral cross section ENDF/B-VII vs MACS - $\langle \sigma_{30} \rangle / \sigma_{MACS} = 2.54$ Ratio of resonance integral I_{γ} C/E (FENDL) = 1.08 Ratio of resonance integral I_{γ} C/E (ENDF) = 1.06

The strong discrepancy in $\langle \sigma_{30} \rangle / \sigma_{MACS}$ values between FENDL-3 and ENDF/B-VII.1 can be explained by the difference in resonance parameters (see Fig. 13) used in these two libraries (FENDL-3 = EAF-2010 = JENDL-4). However, the C/E(I_γ) values are in good agreement for both libraries. The resonance integral for ²⁸Si is based on a calculation from resonance parameters, no measurements are available. The calculated value I_γ is dominated by the four lowest resonances and the 1/*E* shape of the spectrum makes the contribution above 100 keV negligible. This may explain the good C/E(I_γ) values for both libraries, while the $\langle \sigma_{30} \rangle / \sigma_{MACS}$ ratio is in disagreement (note the difference in resonances above 100 keV between the two libraries considered).

Fig. 13. The cross sections (FENDL-3/A and ENDF/B-VII.1) and the reaction rate of the 28 Si(n, γ) reaction in the MACS_theory_30keV spectrum. The energy spread of 90% of the reaction rate extends up to 600 keV. Note the contribution above 100 keV to the reaction rate.

3. RESULTS OF EXPERIMENTAL DATA ANALYSIS

3.1 Calculational method

In Reference [4] the activity calculations were made using the EASY-2007 system [47]. Details of the experimental set-up (material composition, irradiation time, flux etc) were used to create the FISPACT input file to model each experiment. FISPACT-2007 contains options to calculate the pathways of formation of the measured radionuclides, so that the reactions involved and their importance (percentage contribution) can be easily found. The uncertainty in the calculated activity can also be obtained. This is based on the uncertainty in the reaction cross sections (uncertainty in the half-lives can be included, but typically these are insignificant). Thus for each set of measurements the experimental activities at specified decay times are tabulated and the C/E values are calculated and given in Tables 1–11 of Ref. [4] and the pathways that are important in producing the product calculated. Using the pathway information the effective cross sections were calculated for all 470 reactions. Cross section curves calculation were taken from EAF-2007 [48] and later compared with EAF-2010 [49] (used in FENDL-3/A) and adopted for this validation exercise. All 396 reactions provided with MACS cross sections have single pathways and the effective cross sections are taken from the experiments directly. The derivation procedure of the effective cross section is described in the next section.

3.2 Effective cross sections

For many of the product nuclides a single pathway dominates the production. In such cases it is possible to extract an effective cross section (cross section averaged in the neutron spectrum) that can be used directly in SAFEPAQ-II.

$$\sigma^{eff} = \int_{0}^{E} \sigma(E) \Phi(E) dE$$

Generally an integral experiment measures activity (sometimes heat production) of the target material. The following description considers the measured quantities. At a time the experiment obtains a value of the activity or heat production (H_E) . An inventory code calculates the same quantity (H_C) using library nuclear data. A comparison of the two values gives the C/E ratio (r). If only a single pathway is important at this time then:

$$H_{c} = \lambda N q = \lambda N_{0} \phi \sigma^{C} q$$

where q is the energy emitted per decay

 λ is the decay constant N_0 is the number of target atoms ϕ is the neutron flux σ^c is the cross section in the library.

Equation (3) gives the calculated activity, a similar expression applies for the experimental activity (containing the *effective cross section* σ^{E}) and the C/E ratio (*r*) is given by equation (4).

$$r = H_C / H_E \tag{4}$$

The ratio of the calculated to the effective cross section (k) is given by equation 5.

(3)

$$k = \sigma^C / \sigma^E \tag{5}$$

Then so long as the decay data (λ and q) are correct, then by using Equation (3) the two ratios are identical, k = r. It is then possible to alter the value of σ^c so that r = 1, this is termed *renormalisation*. If more than one pathway contributes to the heat production then if we make some additional assumptions using the FISPACT calculation it is still possible to extract cross section *renormalisation* data from the experiment. The detailed description of this approach is given in Refs. [2,3].

The practical essence of the present approach is as follows: If there is only one pathway (reaction) producing the nuclide (our understanding of that is given by results from FISPACT) then the conversion is trivial. But if there are two pathways giving the same daughter then what we measure and what we calculate is the (weighted) sum of contributions from both reactions. What the formalism does is, by making the assumption that for the minor reaction the cross sections are known exactly, to calculate what the spectrum averaged cross section must be so as to give the measured data.

So there is a transformation from activities (as given by all experimentalists) to effective cross sections (only given by the EASY team) so that we can directly compare with EAF data during the evaluation of a new library. This is a unique capability, if we didn't do this then we would have to wait until the new EAF library was available and then use it to rerun all the FISPACT cases and compare calculated activities with the measured ones. So this unique approach allows the integral data to be used during library development.

3.3 C/E validation for FENDL-3/A

C/E values in Table 2 have been calculated with 'Integral Data' mode of the processing code SAFEPAQ-II [5] and now includes 804 reaction channels. In this mode, the reaction effective cross sections are generated (C-calculation) and compared with the experimental ones (E-experiment), which have been input into SAFEPAQ-II. They form the integral database of activation benchmarks and can be used for validation of any evaluation. For details see Refs. [1-4].

For the validation of the 470 reactions (prior to the addition of MACS) the plots of C/E and corresponding excitation curves are included in Ref. [4] and the majority of these data are the same as the FENDL-3/A data. Therefore the user is recommended to use Ref. [4] for details. In this report only plots of those reactions which differ in EAF-2010 (FENDL-3/A) to previous EAF libraries are shown. In addition plots of reactions with severe C/E disagreements are also included. For reactions where there are several integral measurements in different neutron spectra it is useful to indicate the energies that the measurements cover. This can be done by plotting the C/E values as a function of energy. The measurement is shown at an energy that corresponds to the peak in the reaction rate and an energy 'error bar' is shown. The error bar covers energies within which 90% of the reaction rate occurs. A total of 30 such extended C/E plots are shown in this report after Table 2.

The excellent performance of the FENDL-3/A capture cross sections against MACS data is demonstrated in Fig. 14 by the $\langle \sigma_{30} \rangle / \sigma_{MACS}$ ratio taken from Ref. [43].

Fig. 14. $\langle \sigma_{30} \rangle / \sigma_{MACS}$ from EAF-2010 and KADoNiS, for the analytical Maxwell-Boltzmann neutron spectrum, as a function of *A*. The significant outliers are labelled by the target. The equation shown refers to the line of best fit.

4. CONCLUSIONS

The present report gives detailed information on the validation of activation predictions against integral experiments for the activation library FENDL-3/A and covers 804 reactions. The increase of studied reactions is the major difference with the previous validations of EAF-2007 and 2010 [4] where only 470 reactions were considered. The total number of reactions in FENDL-3/A is 66,256, but it should be noted that many of the major materials for fusion technology have been addressed by this work.

For each of the experimental irradiations the C/E values of the measured radionuclides, the dominant pathways and uncertainty information are summarised in Table 2. The detailed information of experiments is either in references [1-4] or in the publications from the various laboratories. In cases where either a single reaction pathway or one of the parallel pathways dominates the formation of a particular nuclide a measured effective cross section for the reaction was extracted. This effective cross section is directly compared with the EAF cross section averaged in the appropriate neutron spectrum. Values of the C/E ratios for the effective cross sections are studied in SAFEPAQ-II and graphs of these ratios plotted with the EAF and experimental uncertainties. From these graphs and plots of the cross section excitation function shown with the available differential experimental data, judgements were made on whether a reaction has been validated by the experimental data or whether it may be possible to improve the data for a future version of FENDL. For the validation the Quality Score (QS) classification from Ref. [4] has been used.

The energy dependent C/E plots emphasise that even when several integral measurements have been made, then typically the energy range covered is limited and only in a few cases

includes energies above 20 MeV. Thus even for reactions that are classified as 'validated' additional measurements are desirable so that cross sections at all energies in the library can be tested. The statement that a reaction has been validated by the integral and differential measurements only refers to the energy range over which experimental data are available. Note that if activation of a material is considered in a neutron spectrum very different from those studied here, then there is no guarantee that the predictions would be as accurate as indicated by the present results.

For the classification of the validation the EAF Quality Score system for differential data has been applied and extended for the use with integral data using QS = 5 and 6 assignments. It is based on the following rules of the agreement of adopted cross sections :

QS = 5 assignments: $[5_0] =$ differential data are missing and unsatisfactory agreement with integral data. $[5_1] =$ unsatisfactory agreement with differential and integral data. $[5_2] =$ satisfactory agreement with differential and unsatisfactory agreement with integral data. $[5_3] =$ differential data are missing and satisfactory agreement with integral data. $[5_4] =$ unsatisfactory agreement with differential data and satisfactory agreement with integral data.

QS = 6 assignments: [6] = differential data are in satisfactory agreement with integral data.

A few observations concerning the data QS system are presented:

- 1. The validation by integral experiments is strictly valid only for the effective range of the neutron spectrum used in the experiment.
- 2. For MACS validation the 0.7 < C/E < 1.3 range has been arbitrarily chosen to indicate a good agreement.
- 3. The differential data considered for MACS validation are average cross section measurements above E_V up to several MeV only. No differential quasi monoenergetic 30 keV data have been considered since they are used as integral information. Further no generated resonance cross section curve is taken as experimental information.
- 4. A Quality Score of 5_2 for MACS data usually gives a warning that the MACS cross section should be revisited. This assignment describes satisfactory (or good) agreement with differential and unsatisfactory agreement with integral data and often indicates a suspicious result of the integral experiment.

A total of 804 reactions have been validated by both differential and integral data and several reactions are recommended to be improved in the future. A summary of the numbers of reactions covered by the report is given in Fig 15. The growing database of integral measurements is a valuable resource for validating and improving each version of activation libraries and so maintaining the claim that EAF and FENDL libraries are the most thoroughly tested and validated activation data world-wide.

Fig. 15. Summary of reactions.

From the total of 804 reactions 560 reactions (70%) are validated with integral data and of the remaining 244 reactions 104 (Score 5_2) reactions are in agreement with the differential data but are discrepant with the integral data.

The final conclusions and practical observations of the present validation can be summarized as:

- 1. The main result of the present validation is an extension of the studied (n,γ) reactions by using the 30 keV MACS cross sections. In general it may be concluded that the majority of capture reactions are now well validated through comparisons of the cross sections at 0.0253 eV [49], resonance integrals [49] and interpretation of MACS cross sections as integral data as in the present work. Further the pre-equilibrium region was also tested through experimental data or systematic predictions [49]. A large number of differential data were visually used to clarify the agreement of the adopted excitation curves in the smooth statistical region above 1 MeV.
- 2. The overall visual improvement of the data fit with the differential data sometimes worsens the C/E value, especially if the neutron spectrum covers only a small part of the excitation curve. This explains why the C/E(EAF-2005) value is sometimes better, however, with a rather poor visual agreement. There is a very important conclusion, namely, that integral data can only test the cross section curve in the region of overlap with the neutron spectrum, which often is relatively narrow compared to the whole range of the excitation curve above the threshold.
- 3. A detail analysis of the capture data validated against MACS cross sections can be found in Ref. [43].

ACKNOWLEDGEMENT

The author expresses his thanks to Dr. R. Forrest for his continuous support of this action.

REFERENCES

Many of the references for experimental results of EFDA program, used already in Ref. [1-4], are not repeated here. In the following references some refer to the EFF-Doc series. JEFF members with the necessary password can download these documents from the NEA Data Bank web site (<u>http://www.nea.fr/html/dbdata/nds_eval_effdoc.htm</u>), the others can contact the authors.

- [1] R.A Forrest, M. Pillon, U. von Möllendorff and K. Seidel, 'Validation of EASY-2001 using integral measurements', UKAEA FUS 467, 2001.
- [2] R. A Forrest, M. Pillon, U. von Möllendorff, K. Seidel, J. Kopecky and J-Ch Sublet, 'Validation of EASY-2003 using integral measurements', UKAEA FUS 500, 2003.
- [3] R.A Forrest, J. Kopecky, M. Pillon, K. Seidel, S.P. Simakov, P. Bém, M. Honusek and E. Šimecková, 'Validation of EASY-2005 using integral measurements', UKAEA FUS 526, 2006.
- [4] R.A Forrest, J. Kopecky, M. Pillon, K. Seidel, S.P. Simakov, P. Bém, M. Honusek and E. Šimecková, 'Validation of EASY-2007 using integral measurements', UKAEA FUS 547, 2008.
- [5] R.A Forrest, 'SAFEPAQ-II: User manual', UKAEA FUS 454, Issue 7, 2007.5
- [6] M. Pillon, 'Measurements of nuclear decay heats in Rhenium and comparison with EASY-2007 predictions', EFF DOC-1025, 2007.
- [7] M. Pillon, 'Measurements of decay heat in Tin', EFF DOC-962, 2006.
- [8] M. Pillon, 'Measurements of decay heat in Tin irradiated in a first-wall like neutron spectrum. Measurement and analyses', ENEA report, FUS-TN-MA-NE-R-20, 2006.
- [9] M. Pillon, 'Nuclear decay heat in Yttrium, revised measurements and analysis', EFF DOC-903, 2004.
- [10] M. Pillon, 'Decay heat in Molybdenum irradiated in a first-wall like neutron spectrum. Measurement and analyses', ENEA Report, FUS-TN-MA-NE-R-13, December 2005.
- [11] M. Pillon, 'Decay heat in Tantalum irradiated in a first-wall like neutron spectrum. Measurement and analyses', ENEA Report, FUS-TN-MA-NE-R-11, 2005.
- [12] A. Klix, R.A. Forrest, H. Freisleben, K. Schomburg, K. Seidel and S. Unholzer, 'Validation experiment of gamma activities of La and Er irradiated in a fusion peak neutron spectrum', EFF DOC-971, 2006.
- [13] A. Klix, R.A. Forrest, H. Freiesleben, K. Schomburg, K. Seidel, and S. Unholzer, 'Validation experiment of gamma activities of Erbium irradiated in fusion peak neutron spectrum', TUD Report, **TUD-IKTP/01-2008**, 2008.
- [14] K. Seidel, R. A Forrest, H. Freiesleben, A. Klix, K. Schomburg, and S. Unholzer 'Validation experiment of gamma activities of lanthanum irradiated in fusion peak neutron spectrum', TUD Report, **TUD-IKTP/02-06**, 2006.
- [15] F. Maekawa, U. von Möllendorff, M. Wada, P. P. H. Wilson and Y. Ikeda, 'Determination of neutron spectra formed by 40-MeV deuteron bombardment of a lithium target with multi-foil activation technique', Fus. Eng. Des., **51-52**, 815-820, 2000.
- [16] U. von Möllendorff, F. Maekawa, H. Giese and P.P. H. Wilson, 'Experimental test of structural material activation in the IFMIF neutron spectrum', Fus. Eng. Des., 51-52, 919-924, 2000.

- [17] U. von Möllendorff, F. Maekawa, H. Giese and H. Feuerstein, 'A nuclear simulation experiment for the International Fusion Materials Irradiation Facility (IFMIF)', FZKA 6764, 2002.
- [18] S.P. Simakov, U. Fischer, U. von Möllendorff, I. Schmuck, H. Tsige-Tamirat and P. P.H. Wilson, 'Validation analyses of IEAF-2001 activation cross section data for SS-316 and F82H steels irradiated in a white d-Li neutron field', Int. Conf. Nuc. Data Sci Tech., AIP Conference Proceedings, 769, 2005.
- [19] U. Fischer, U. von Möllendorff, S. P. Simakov, F. Maekawa and P.P.H. Wilson, 'Validation analyses of IEAF-2001 activation cross section data for SS-316 steel', EFF DOC-859, 2003.
- [20] F. Maekawa and Y. Ikeda, 'Decay heat experiment on thirty-two fusion reactor relevant materials irradiated by 14 MeV neutrons', Fus. Eng. Des., 47, 377, 2000,
- [21] J-Ch Sublet, 'Experimental Validation of the Decay Power Calculation Code and Nuclear Databases – FISPACT-97 and EAF-97 & FENDL/A.2.0', UKAEA FUS 390, 1998.
- [22] F. Maekawa, K. Shibata, M. Wada, Y. Ikeda and H. Takeuchi, 'Comprehensive activation experiment with 14 MeV neutrons covering most of naturally existing elements 5 min irradiation experiment', J. Nuc. Sci. Tech., Supp 2, 990, 2002.
- [23] J-Ch. Sublet and F. Maekawa, 'New FNS Experimental Validation of the Decay Power Calculation Code and Nuclear Databases -FISPACT-2001 and EAF-99 & EAF-2001 & EAF-2001 decay libraries – 5 Minutes irradiation', EFF DOC-839, 2002.
- [24] J-Ch. Sublet and F. Maekawa, 'FNS Experimental Validation of the Decay Power Calculation Code and Nuclear Databases -FISPACT-2001 and EAF-99 & EAF-2001 & EAF-2001 decay libraries - 7 Hours irradiation', EFF DOC-840, 2002.
- [25] J-Ch Sublet, '*Decay power: a comprehensive experimental validation*', to be published, CEA report, **CEA-R-xxxx**, ISSN 0429-3460, 2008.
- [26] P. Bém, V.Burjan, U. Fischer, M. Honusek, M. Götz, V. Kroha, J. Novák, S.P.Simakov and E. Šimecková, 'Experimental determination of the NPI p-D₂O neutron source spectrum for activation benchmark tests', EFF DOC-944, 2005.
- [27] P. Bém, V. Burjan, M. Götz, M. Honusek, U. Fischer, V. Kroha, J. Novák, S.P. Simakov, and E. Šimečková, 'Activation experiment on chromium in the NPI p-D₂O neutron field', Final report on the EFDA task TW6-TTMN-002, D06 (2. version), Řež report, EXP(EFDA)-02/2007, 2007.
- [28] S.P. Simakov, U. Fischer, P. Bém, V. Burjan, M. Götz, M. Honusek, V. Kroha, J. Novák, and E. Šimečková, 'Pre- and post-analysis of the validation experiments for Cr activation cross sections up to 55 MeV in an IFMIF-like neutron spectrum, FZK report on the EFDA task TW6-TTMN-002, Deliverable 5, 2007.
- [29] S.M. Qaim, R. Wölfle and G. Stöcklin, 'Fast neutron induced [(n,t) + (n,nt)] reaction cross-sections in the medium and heavy mass regions', J. Inorg. Nucl. Chem., 36, 3639-3642, 1974.
- [30] S.M. Qaim and R. Wölfle, '*Triton emission in the interactions of fast neutrons with nuclei*', *Nuc. Phys.*, A295, 150-162, 1978.
- [31] C.H. Wu, R. Wölfle and S. M. Qaim, 'Activation and mass spectrometric study of ³He particle emission in the interactions of fast neutrons with medium mass nuclei', Nuc. *Phys.*, **A329**, 63-72, 1979.
- [32] S.M. Qaim, C.H. Wu and R. Wölfle, ³*He particle emission in fast neutron induced reactions*, *Nuc. Phys.*, A410, 421-428, 1983.
- [33] S.M. Qaim, S. Khatun and R. Wölfle, 'Integral cross section measurements on (n,x) reactions induced by 30 MeV d(Be) break-up neutrons on FRT wall and structural materials', BNL-NCS-51245, 539-552, 1980.
- [34] R. Wölfle, S. Khatun and S.M. Qaim, 'Triton-emission cross sections with 30 MeV d(Be) break-up neutrons', Nucl. Phys., A423, 130-138, 1984.

- [35] A. Mannan, I.H. Qureshi, M.Z. Iqbal, R. Wölfle and S.M. Qaim, 'Integral tests of differential cross sections for (n,α) and (n,2n) reactions on niobium', Radiochim. Acta, 51, 49-53, 1990.
- [36] R. Wölfle, S. Sudár and S.M. Qaim, 'Determination of excitation function of triton emission reaction on aluminium from threshold up to 30 MeV via activation in diverse neutron fields and unfolding code calculations', Nuc. Sci. Eng., **91**, 162-172, 1985.
- [37] R. Wölfle, A. Suhaimi and S.M. Qaim, 'Determination of the excitation function of the (n,xt) process on beryllium via activation in diverse neutron fields and unfolding code calculations', Nucl. Sci. Eng., **115**, 71-75, 1993.
- [38] L. Oláh, A.M. El-Megrab, A. Fenyvesi, A.D. Majdeddin, R. Dóczi, V. Semkova, S.M. Qaim and J. Csikai, '*Investigations on neutron fields produced in* ${}^{2}H(d,n)^{3}He$ and ${}^{9}Be(d,n)^{10}B$ reactions', Nuc. Inst. Meth. Phys. Research, A404, 373-380, 1998.
- [39] M. Ibn Majah, A. Chiadli, S. Sudár and S.M. Qaim, 'Cross sections of (n,p), (n,α) and (n,2n) reactions on some isotopes of zirconium in the neutron energy range of 10-12 MeV and integral test of differential cross section data using a 14 MeV d(Be) neutron spectrum', Appl. Rad. Isotop., 54, 655-662, 2001.
- [40] I. Spahn, H.H. Coenen, and S.M. Qaim, 'Enhanced production possibilities of the therapeutic radionuclides ⁶⁴Cu, ⁶⁷Cu and ⁸⁹Sr via (n,p) reactions induced by fast spectral neutrons', Radiochim. Acta, **92**, 183-186, 2004.
- [41] G.W. Schweimer, 'Fast neutron production with 54 MeV deuterons', Nuc. Phys., A100, 537-544, 1967.
- [42] J.P. Meulders, P. Leleux, P.C. Macq and C. Pirart, '*Fast neutron yields and spectra from targets of varying atomic number bombarded with deuterons from 16 to 50 MeV*', *Phys. Med. Biol.*, **20**, 235-243, 1975.
- [43] J. Kopecky and R.A. Forrest, *Capture Cross Sections at 30 keV in the activation library EAF-2010*, JRR(2012)-001, 2012.
- [44] <u>www.kadonis.org</u>, KADoNiSv0.3 data base, "*The third update of the "Karlsruhe Astrophysical Database of Nucleosynthesis in Stars*" I. Dillmann, R. Plag, F. Käppeler, T. Rauscher (2009).
- [45] S.F. Mughabghab, 'Atlas of Neutron Resonances', Elsevier, Amsterdam, 2006.
- [46] J. Kopecky, '*Resonance integrals EAF-2011*' EAF-Doc-58 (October 2010) and private communication.
- [47] R.A Forrest, '*The European Activation System: EASY-2007 overview*', UKAEA FUS 533, 2007.
- [48] R.A Forrest, J. Kopecky and J-Ch Sublet, '*The European Activation File: EAF-2007 neutron-induced cross section library*', UKAEA FUS 535, 2007.
- [49] J-Ch Sublet, L.W. Packer, J. Kopecky and R.A. Forrest '*The European Activation File:* EAF- 2010 neutron-induced cross section library', CCFE-R (10) 05, 2010.

Table 1. Summary of neutron spectra

ID	Name	Groups	Original description	Reference
1	am-be_flux	175	Standard (IAEA) spectrum from Am-Be	FO97
2	cf252_flux	175	Standard (IAEA) Cf-252 spontaneous fission spectrum	FO97
3	fission_flux	172	PWR spectrum used in FISPACT test cases	FO97
4	fusion_flux	175	EFF first wall spectrum used in FISPACT test cases	FO97
5	fng_sic.asc	175	Contains the flux FLUSSO NELL IRRAGIAMENTO SIC A FNG, supplied by M Pillon used at FNG for integral exps (175 group Vitamin-E weighting).	UKAEA-FUS-547
6	fng_f82h.asc	175	Contains the flux F82H cavity 9 foils unfol tot=2.59e-2, supplied by M Pillon used at FNG for integral exps [175 group Vitamin-E weighting].	UKAEA-FUS-547
7	fng_tung.asc	175	Contains the flux flusso per il tungsteno tot=2.74e+08, supplied by M Pillon used at FNG for integral exps [175 group Vitamin-E weighting].	UKAEA-FUS-547
8	fng_vanad.asc	175	Contains the FLUX IN VANADIUM IRRADIATION TOT=6.07E+08, supplied by M Pillon used at FNG for integral exps [175 group Vitamin-E weighting].	UKAEA-FUS-547
9	Maxwell_300K.asc	172	Maxwellian spectrum at 300 K, supplied by C. Dean using NJOY97	UKAEA-FUS-547
10	sneg_1	175	Contains the neutron spectrum at sample position 1 (4 deg), measured by TUD, supplied by K Seidel	SE98
11	sneg_2	175	Contains the neutron spectrum at sample position 2 (73 deg), measured by TUD, supplied by K Seidel	SE98
12	fzk_1	175	Contains the flux used at Karlsruhe d-Be source, supplied by U von Mollendorff at FZK for integral exps spectrum # 1 [175 group flat].	MO00
13	fzk_2	175	Contains the flux used at Karlsruhe d-Be source, supplied by U von Mollendorff at FZK for integral exps spectrum # 2 [175 group flat].	MO00
14	fng_eurofer.asc	175	Contains the flux flusso in esperimento decay-heat eurofer nuovo modello tot=2.855E+08, supplied by M Pillon used at FNG for integral exps [175 group Vitamin-E weighting].	UKAEA-FUS-547
15	fng_chromium.asc	175	Contains the flux FLUSSO CROMO LOW TOT=3.31E+08, supplied by M Pillon used at FNG for integral exps [175 group Vitamin-E	UKAEA-FUS-547
16	fng_hafnium.asc	175	Contains the flux FLUSSO CROMO HIGH TOT=4.10E+08, supplied by M Pillon used at FNG for integral exps [175 group Vitamin-E]	UKAEA-FUS-547
17	fns_7hour	175	Supplied by J-Ch Sublet from the JAERI 1996 FNS 7 hour irradiation.	SUB98
18	fns_5min	175	Supplied by J-Ch Sublet from the JAERI 1999 FNS 5 min irradiation.	SUB98
19	fng_heat	175	Contains the FLUSSO NUOVI MATERIALI TOT=9.32539E-03, supplied by M Pillon used at FNG for integral exps - decay heat measurements [175 group Vitamin-E weighting]	UKAEA-FUS-547
20	fng_cucrzr	175	Contains the Flusso CuCrZr D-T, supplied by M Pillon used at FNG for integral exps - CuCrZr measurements [175 group Vitamin-E weighting]	UKAEA-FUS-547
21	tud_cucrzr	175	Contains the spectrum used for CuCrZr used at TUD for integral exps supplied by Klaus Seidel [175 group Vitamin-E weighting]	E102
22	cf252_flux_1	175	Extracted from ENDF-B/VI	MA89
23	fng_ScSmGd	175	Contains the FLUSSO new decay heat med=6.88E+08, supplied by M Pillon used at FNG for integral exps - decay heat measurements on Sc, Sm, Gd [175 group Vitamin-E weighting]	UKAEA-FUS-547
24	fng_Dy	175	Contains the FLUSSO new decay heat med=9.18E+08, supplied by M Pillon used at FNG for integral exps - decay heat measurements on Dy [175 group Vitamin-E weighting]	UKAEA-FUS-547
25	fzk_ss316	211	Spectrum for the SS-316 cyclotron irradiation experiment of Ulrich von Moellendorff	FI03
26	fng_Y	175	Contains the FLUSSO ITTRIO med=1.307E+08, supplied by M Pillon used at FNG for integral exps - decay heat measurements on Y [175 group Vitamin-E weighting].	UKAEA-FUS-547
27	tud_Y	175	Contains the neutron spectrum qypvij, supplied by K Seidel used at TUD for integral exps - activation measurements on Y [175 group Vitamin-E weighting].	UKAEA-FUS-547
28	fng_Ta	175	Contains the flusso tantalio secondo run =2.164e+08, supplied by M Pillon used at FNG for integral exps - measurements on Ta [175 group Vitamin-E weighting].	UKAEA-FUS-547
29	Rez_foils	211	Contains the spectrum for the Rez p+D2O cyclotron irradiation experiment described in report NPI ASCR Rez: EXP(EFDA)-08/2004 supplied by P Bem [211 group flat weighting].	BE04

ID	Name	Groups	Original description	Reference
30	d-Be	211	Contains the spectrum of n produced by bombarding Be with 53 MeV d. Fit to data from Schweimer, Nuc. Phys. A100, 537-544, 1967 and used by Qaim. [211 group flat weighting].	SCH67
31	d-Be2	211	Contains the spectrum of n produced by bombarding Be with 53 MeV d. Fit as in d-Be but peak at 22.5 MeV and data down to 4 MeV. ME75. Used by Qaim. [211 group flat weighting].	ME75
32	d-Be3	211	Contains the spectrum of n produced by bombarding Be with 30 MeV deuterons. Analytical fit based on Nethaway, Used by Qaim in several papers in 1980s. [211 group flat weighting].	NE77
33	fission_PARR	175	Contains the spectrum of research reactor PARR-I produced by Mannan et al in Radiochimica Acta 51, 49-53, 1990. Used by Qaim. [175 group flat weighting].	MAN90
34	tud_Pb	175	Contains the neutron spectrum in TUD-IKTP/01-04 used at TUD for integral exps - activation measurements on Pb [175 group Vitamin-E weighting]	E104
35	fng_Mo	175	Contains the flusso molibdeno =3.993E+08, supplied by M Pillon used at FNG for integral exps - measurements on Mo (orig 211, changed to 175) [175 group Vitamin-E weighting].	UKAEA-FUS-547
36	d-Be2a	211	This is d-Be2 / 2.15, renormalised by J Kopecky based on six well measured (n,a) reactions.	ME75
37	tud_Ta	175	Contains the neutron spectrum in TUD-IKTP/01-05 used at TUD for integral exps - activation measurements on Ta	E105
38	rez_NE	211	Contains the spectrum for the Rez p+D2O cyclotron irradiation experiment supplied by Simakov for Eurofer exp (Foil #3, dia.10mm, 947.4mg, at 1.7mm)	BE04A
39	rez_DF	211	Contains the spectrum for the Rez p+D2O cyclotron irradiation experiment supplied by Simakov. Obtained by SAND code analysis of dosimetry foils.	BE04A
40	fng_Sn	175	Contains the flusso stagno =7.953E+08, supplied by M Pillon used at FNG for integral exps measurements on Sn	UKAEA-FUS-547
41	fng_Re	175	Contains the flusso renio = 4.534E+08, supplied by M Pillon used at FNG for integral exps - measurements on Re	UKAEA-FUS-547
42	tud_Er	175	Contains the neutron spectrum dtraErvij, supplied by A Klix used at TUD for integral exps - activation measurements on Er [175 group Vitamin-E weighting].	UKAEA-FUS-547
43	Maxwell_30 keV	175	30 keV spectrum calculated with MCNPX by Lee Packer	[43]
44	MACS_theory_30 keV	175	Contains a theoretical version of the 30 keV neutron spectrum, calculated by R.A. Forrest	[43]

References in Table 1

- FO97 Forrest R.A. and Simpson J.A., SAFEPAQ: User manual UKEA FUS 355, 1997.
- SE96 Seidel K. et al., EFF-DOC-683 (1998).
- MO00 Mollendorff v U. and Giese H., EFF-DOC-728 (2000).
- SUB98 Sublet J-Ch., UKAEA FUS 390 (1998).
- EI02 Eichin R. Et al., TUD report, TTMN-002-D-10 (2002).
- MA89 Mannhart W., INDC(NDS)-220/L (1989) 305.
- FI03 Fischer U., Mollendorff v U. and Simakov S.P., EFF-DOC-859 (2003).
- BE04 Bem P. et al., NPI ASCR Rez, EXP(EFDA) –XX/2004.
- SCH67 Schweimer G.W., Nucl. Phys. A100 (1967) 537.
- ME75 Meulders J.P. et al., Phys. Med. Biol. 20 (1975) 235.
- NE77 Nethaway D.R. et al., BNL-NCS-50681 (1977) 135.
- MAN90 Makarov S.P. et al., Vop. At. Nauki i Techn., Yad. Konst. 3 (1990) 39.
- EI04 Eichin R. Et al., TUD report, TUD-IKTP/01-04 (2004).
- BEO4A Bem P. Et al., EXP(EFDA)-04/2004.

Table 2. Summary of reactions with integral data

Reaction (**bold**) - new or modified data used in EAF-2010 (compared to EAF-2007), the earlier C/E values (from EAF-2005 or 2007) are shown in the Comment column for comparison, as C/E(5) C/E(7), if they differ from the present value. **Reactions** in yellow are provided with extended plots.

//Reaction (bold), spectrum (bold) - new integral data not available for validation of EAF-2007 (none at this moment.//

- (n,t) and (n,h) data - Data from all three d-Be spectra are treated as pure (n,t) and (n,h) reactions with corresponding (n,xt) for tritium counting and (n,t+) and (n,h+) for activation data. The latter C/E's are shown in the Comment. For pairs of reactions, the one that has cross section data shown is indicated by *italics*.

- (n,n'p) and (n,d) data – For most reactions $\sigma(n,n'p) > \sigma(n,d)$ and (n,n'p) data are show. The (n,d+) C/E's are given in the Comment column. For pairs of reactions, the one with cross section data shown is printed in *italics*. **QS** - the Quality Score, scores in (brackets) are not used as the total cross section (FS=99) is measured in the

integral experiment and only partial data (FS=0,1or 2) exist in the EAF data file.

Comments on QS = 5 assignments: $[5_0]$ = differential data are missing and unsatisfactory agreement with integral data. $[5_1]$ = unsatisfactory agreement with differential and integral data. $[5_2]$ = satisfactory agreement with differential and unsatisfactory agreement with integral data. $[5_3]$ = differential data are missing and satisfactory agreement with integral data. $[5_4]$ = unsatisfactory agreement with differential data and satisfactory agreement with integral data.

Comments on QS = 6 assignments: [6] = differential data are in satisfactory agreement with integral data. **Spectrum** - the irradiation spectrum.

- <u>d_Be2a data</u> - Cross sections measured with d_Be2 spectrum have been increased by a factor of 2.15, as described in the text.

- <u>Energy classification of neutron spectra</u> – range $\Phi(max)$ in <energy> and $E[\Phi(max)]$

Maxw_300K-		thermal spectrum	2.5E-5 MeV
MACS_theory_30keV	> range	<0.01 MeV - 0.5 MeV >	0.03 MeV
$\text{Sneg} - (d, ^{3}\text{He})$ monoenergetic source	>0.01 range	<14 MeV - 14.5MeV>	14 MeV
$Fzk - (p,D_2O)$ reaction	>0.01 range	<0.01 MeV - 18 MeV>	14 MeV
Rez DF - (p,D_2O) reaction (p,D)	>0.01 range	$<\!\!0.004 \text{ MeV} - 30 \text{ MeV} >$	20 MeV
Rez foils - (p,D_2O) reaction $(p, {}^{16}O)$	>0.01 range	<1.5 MeV – 30 MeV>	flat curve
Spectra cf252 - spontaneous fission -	>0.1 range	<0.2 - 8 MeV>	2 MeV
Spectra fng, fns, tud – (d,T) reaction -	>0.01 range	<3 MeV – 14.5 MeV>	14 MeV
Spectra d-Be - (d,Be) reaction -	>0.01 range	< 10 - 40 MeV >	22.5 MeV

MACS_theory_30keV is in the table denoted as MACS_30keV

 C/E^{\dagger} indicates that the integral data should be disregarded, the C/E values is either so large or small compared to other results.

C/E in green have a very large discrepancy and need further study

Comment -

- The earlier C/E values (from EAF-2005 or 2007) are shown in the Comment, as C/E(5) or C/E(7), if they are better then the present value.

- MACS - cross section calculated with NON-SMOKER code only, no measured data.

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
$H-1(n,\gamma)$	6	Maxw_300K	3.28E-01	4.00E-03	0.897	
		MACS_30keV	2.54E-04	2.00E-05	0.848	
$H-2(n,\gamma)$	6	Maxw_300K	5.08E-04	1.50E-05	0.883	
		MACS_30keV	3.00E-06	2.00E-07	0.498	
<mark>He-3(n,γ)</mark>	6	Maxw_300K	5.50E-05	3.00E-06	0.870	
		MACS_30keV	7.60E-06	6.00E-7	1.694	
Li-7(n,n α)	5 ₃	d-Be	3.92E-01	6.50E-02	0.418	C/E(5) = 0.661
$\text{Li-7}(n,\gamma)$	6	MACS_30keV	4.20E-05	3.00E-06	1.051	
Be-9(n,γ)	5 ₃	MACS_30keV	1.04E-05	1.60E-06	0.939	
Be-9(n,t)/(n,xt)	52	d-Be	4.40E-02	1.20E-02	0.531	/0.616
B-10(n,t)	6	cf252_flux_1	5.00E-02	2.50E-02	1.093	
B-11(n,t)/(n,xt)	52	d-Be	7.09E-02	1.18E-02	0.131	/0.227 C/E(5) = 0.140
$C-12(n,\gamma)$	6	MACS_30keV	1.54E-05	1.00E-06	0.847	
C-12(n,t)/(n,xt)	51	d-Be	8.60E-03	2.40E-03	0.562	/1.072
C-13(n,γ)	51	MACS_30keV	2.10E-05	4.00E-06	<mark>8.404</mark>	
$C-14(n,\gamma)$	51	MACS_30keV	8.48E-06	5.70E-06	0.295	
N-14(n,2n)	6	fns_5min	6.62E-03	9.94E-04	1.053	
$N-14(n,\gamma)$	52	cf252_flux_1	4.80E-06	2.40E-06	<mark>26.92</mark>	1/
		MACS_30keV	4.10E-05	6.00E-05	1.495	
N-14(n,t)/(n,xt)	5 ₂ /6	d-Be	3.00E-02	8.00E-03	0.311	/0.546 C/E(5) = 0.316
N-15(n,γ)	5 ₃	MACS_30keV	5.80E-06	6.00E-07	1.078	
O-16(n,γ)	5 ₃	MACS_30keV	3.80E-05	4.00E-06	0.809	
O-16(n,p)	6	fns_5min	3.23E-02	8.45E-04	1.019	C/E(5) =1.000
O-16(n,t)/(n,xt)	5 ₂ /6	d-Be	8.47E-03	1.49E-03	0.492	/0.791
O-18(n,γ)	5 ₂	MACS_30keV	8.89E-06	8.00E-07	0.274	
F-19(n,2n)	6	fns_5min	4.78E-02	2.39E-03	0.917	
		cf252_flux_1	1.08E-05	1.60E-06	1.639 [†]	
		cf252_flux_1	1.63E-05	5.00E-07	1.086	
F-19(n,γ)	5 ₂	MACS_30keV	3.20E-03	1.00E-04	1.749	
F-19(n,p)	6	fns_5min	1.62E-02	8.11E-04	1.010	
F-19(n,t)/(<i>n</i> , <i>xt</i>)	50/53	d-Be	2.70E-02	6.00E-03	0.255	/0.842
Ne-20(n,t)/(<i>n</i> , <i>xt</i>)	$5_0/5_3$	d-Be	6.82E-03	1.50E-03	0.457	/0.833
Ne-20(n,t)/($n,t+$)	$5_0/5_3$	d-Be	7.50E-03	1.50E-03	0.414	/1.932
<mark>Na-22(n,γ)</mark>	5	Maxw_300K	1.98E+02	2.24E+02	1.131	
Na-23(n,2n)	6	fns_7hour	3.90E-02	1.95E-03	0.704 [†]	C/E(5) =0.861
		fzk_1	4.60E-03	2.76E-03	1.080	
Na-23(n,γ)	(6)	cf252_flux_1	3.35E-04	1.50E-05	0.639	
		fns_7hour	3.09E-04	4.01E-05	1.033	
		fns_5min	2.92E-04	1.17E-04	1.352	
Ne 22(a.a.)	6	MACS_30keV	2.10E-03	2.00E-04	0.603	
Na-23(n,p)	0 5 / C	Ins_5min	3.03E-02	1.51E-03	1.190	/0.051
$M_{2} = 24(n, n)$	J ₂ /0	U-DC MACS 201/2V	1.4JE-02	2.30E-03	0.049	/0.931
$\frac{\text{Mg-24(n,\gamma)}}{\text{Mg-24(n,n)}}$	(5)	fng 5min	3.30E-03	4.00E-04	0.991	C/E(5) = 1.099
Wig-24(ii,p)	(3_2)	cf252 flux 1	1.37E-01 1.94E-03	0.20E.05	1.105	C/E(3) = 1.000 C/E(5) = 1.131
		cf252 flux 1	2.01E-03	6.00E-05	1 300	C/E(5) = 1.131 C/F(5) = 1.091
$M_{\sigma}-24(n t)/(n xt)$	50/50	d-Be	4 38E-03	8 11E-04	0.447	/0 697
Mg-24(n,t)/(n,t+)	50/52	d-Be	6.90E-03	1.00E-03	0.279	/2.571
$Mg-25(n.\gamma)$	52	MACS 30keV	6.50E-03	4.00E-04	0.723	
Mg-25(n,p)	6	fns 5min	5.71E-02	6.29E-03	1.000	
$Mg-26(n,\gamma)$	51	MACS 30keV	1.26E-04	9.00E-05	0.578	
M_{σ} -26(n α)	6	fns 5min	5.27E-02	5.80E-03	0.990	
115 20(11,W)	Ĭ	fng heat	8.69E-02	9.56E-03	0.622^{\dagger}	
$A1-26(n \gamma)$	5.	MACS 30keV	3.70E-03	1.85E-04	0.897	
$A1-27(n_{V})$	6	MACS 30keV	3.74E-03	3.00E-04	0.802	
Al-27(n.p)	6	fns 5min	5.71E-02	2.86E-03	1.074	
······································		cf252_flux_1	4.89E-03	1.79E-04	0.962	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
		cf252_flux_1	4.80E-03	9.00E-05	0.980	
Al-27(n,t)/(n,xt)	6	d-Be3	1.40E-03	4.20E-04	1.090	/1.189 C/E(5) =1.081
		d-Be3	1.51E-03	3.00E-04	1.011	/1.103 C/E(5) =1.002
		d-Be	7.80E-03	1.20E-03	0.557	/0.951 C/E(5) =0.546
Al-27(n,h)/(n,h+)	5	d-Be2a	3.18E-03	5.80E-04	0.157	/0.560 C/E(5) =0.089
		d-Be2a	2.80E-03	5.60E-04	0.178	/0.636 C/E(5) =0.100
Al-27(n,α)	(6)	fzk_1	3.40E-02	6.80E-03	0.876	
		fng_vanad	9.46E-02	8.92E-03	0.869	
		sneg_1	1.25E-01	2.25E-02	0.874	
		sneg_2	1.35E-01	2.29E-02	0.870	
		fng_f82h	6.66E-02	6.86E-03	1.470^{\dagger}	
		cf252_flux_1	1.01E-03	2.20E-05	1.043	C/E(5) =1.044
		cf252_flux_1	8.60E-04	5.00E-05	1.220	
		rez_DF	2.47E-02	2.90E-04	1.260	C/E(5) =1.253
		d-Be2a	4.45E-02	6.45E-03	0.757	C/E(5) =0.741
		d-Be3	4.50E-02	8.00E-03	1.189	C/E(5) =1.187
		rez_DF	1.37E-01	2.65E-03	0.227	C/E(5) =0.226
		fns_7hour	1.11E-01	6.63E-03	0.990	
Al-27(n,2nα)	5 ₃	rez_DF	3.76E-05	7.52E-06	0.331	
Si-28(n,γ)	6	MACS_30keV	6.40E-03	1.30E-04	1.063	
Si-28(n,p)	6	fns_5min	1.94E-01	1.75E-02	1.099	C/E(5) =1.078
		fng_SiC	2.10E-01	6.29E-03	0.993	
		fzk_1	6.30E-02	1.57E-02	1.529	
		sneg_1	2.79E-01	1.24E-02	0.817	
		cf252_flux_1	7.12E-03	2.35E-04	1.035	
		cf252_flux_1	9.66E-03	5.50E-04	0.763	
Si-28(n,t)/(<i>n</i> , <i>xt</i>)	$(5_0/5_3)$	d-Be	3.75E-03	8.23E-04	0.330	/0.582 C/E(5) =0.392
Si-29(n,γ)	6	MACS_30keV	6.58E-03	1.60E-04	0.828	
Si-29(n,p)	6	fns_5min	1.13E-01	9.05E-03	1.032	C/E(5) =1.047
		fng_SiC	1.16E-01	5.79E-03	0.989	
		fzk_1	3.20E-02	4.80E-03	1.213	
		sneg_1	1.32E-01	4.11E-03	0.970	
	-	cf252_flux_1	1.79E-03	7.90E-04	2.028	
S1-29(n,2p)	5 ₄	IZK_I	8.60E-06	1.03E-06	0.403	
$S_{1-30(n,\gamma)}$	\mathfrak{I}_1	MACS_30KeV	1.82E-03	3.30E-04	2.900	
S1-30(n,p)	6	sneg_1	7.35E-02	3.2/E-03	0.912	
S1-30(n,α)	0	Ins_5min	5.93E-02	4.74E-03	1.042	
		Ing_SiC	5.47E-02	2.19E-03	1.114	
D 21()	-	sneg_1	7.30E-02	4.42E-03	0.949	
$P-31(n,\gamma)$	54	MACS_SUKEV	1.74E-03	9.00E-03	0.824	
P-31(n,p)	0		3.35E-02	2.00E-03	0.918	/1.209
P-31(n,t)/(n,xt)	$\frac{3_3}{3_3}$	d De2e	7.80E-03	1.20E-03	0.705	/1.208 /1.186 C/E(5) -2.040
P-31(n,n)/(n,n+)	S_1/S_4	d-De2a	2.88E-05	3.80E-04	0.234	/1.180 C/E(3) = 2.049
$r-31(n,\alpha)$	0	IIIS_JIIIII d Do2a	1.21E-01	1.01E-02	0.870	
D 21(x 2x)	(5)	d Do2a	5.74E-02	0.45E-03	0.950	C/E(5) = 0.222
$P-31(n,2\alpha)$	(50)	d-Beza	0.45E-05	2.15E-05	10.50	C/E(3) = 9.223
$S-32(n,\gamma)$	5 ₃	MACS_30keV	4.10E-03	2.00E-04	1.224	
S-32(n,p)	6	tns_/hour	2.25E-01	1.57E-02	0.980	C/T/(5) 1.002
		$cf252_flux_1$	6.46E-02	3.80E-03	1.164	C/E(5) = 1.092
		cf252_flux_l	1.25E-02	2.95E-03	1.05/	C/E(5) = 0.9/3
$S_{22}(n+1)/(n-1)$	EIC	ci252_flux_l	0.84E-02	3.42E-04	1.099	C/E(3) = 1.031
S - 32(11, 1)/(11, Xl)	J ₂ /0	U-DC MACS 201-oV	4.13E-03	1.00E-04	0.008	/1.114
$\frac{S-3S(\Pi,\gamma)}{S-2A(\pi,\gamma)}$	<i>J</i> ₀	MACS 201V	7.40E-03	1.30E-03	0.282	
$\frac{5-34(n,\gamma)}{5-24(n,r)}$	5 ₃	IVIACS_SUKEV	2.20E-04	1.00E-05	0.855	
S-34(n,p)	0	ins_omin frag_5	1.25E-02	4.54E-03	0.9/1	
$5-34(n,\alpha)$	0	IIIS_JIIIII	1.10E-UI	0.13E-03	1.019	
$S-36(n,\gamma)$	5 ₃	IVIAUS_30keV	1./1E-04	1.40E-05	0.789	
CI-35(n,2n)m	5 ₂	tns_5min	6.32E-03	3.16E-04	1.429	C/E(5) = 1.103
$CI-35(n,\gamma)$	5_2	MACS_30keV	9.68E-03	2.10E-04	0.559	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Cl-35(n,t)/(n,xt)	53/53	d-Be	7.61E-03	1.52E-03	0.684	/1.104
Cl-36(n,γ)	53	MACS_30keV	1.20E-02	1.00E-03	0.926	
$Cl-37(n,\gamma)$	(6)	MACS_30keV	2.12E-03	7.00E-05	1.062	
Cl-37(n,p)	6	fns_5min	1.79E-02	8.94E-04	1.368	C/E(5) =1.251
						C/E(7) =1.250
						EXFOR GE00 used
Cl-37(n,α)	6	fns_5min	2.75E-02	1.37E-03	0.980	
$Ar-36(n,\gamma)$	5 ₃	MACS_30keV	9.00E-03	1.50E-03	0.877	
Ar-38(n,γ)	50	MACS_30keV	3.00E-03	3.00E-04	0.037	
Ar-39(n,γ)	50	MACS_30keV	8.00E-03	2.00E-03	<mark>8.085</mark>	
$Ar-40(n,\gamma)$	51	MACS_30keV	2.54E-03	1.00E-04	1.449	
Ar-40(n,t)/(n,xt)	$(5_0/5_3)$	d-Be	5.20E-03	1.20E-03	0.425	/0.972
Ar-40(n,t)/(n,t+)	$(5_0/5_3)$	d-Be	1.90E-02	5.00E-03	0.116	/1.342
K-39(n,2n)g	6	fns_5min	4.93E-03	2.96E-04	1.282	
K-39(n,2α)	51	d-Be2a	2.15E-04	1.08E-04	<mark>14.15</mark>	
$K-40(n,\gamma)$	50	MACS_30keV	3.10E-02	7.00E-03	0.204	
$K-41(n,\gamma)$	6	fns_7hour	9.95E-04	2.09E-04	0.794	
		MACS_30keV	2.54E-04	2.00E-05	0.848	
K-41(n,h)/(n,h+)	$5_1/5_4$	d-Be2a	1.44E-03	4.30E-04	0.329	/0.583 C/E(5) =4.313
K-41(n,p)	6	fns_5min	3.63E-02	2.18E-03	1.176	
K-41(n, α)	52	fns_5min	2.38E-02	1.43E-03	1.214	C/E(5)=1.095
$Ca-40(n,\gamma)$	6	MACS_30keV	5.73E-03	3.40E-04	0.804	
Ca-40(n,t)/(n,xt)	$(5_1/5_4)$	d-Be	4.94E-03	8.24E-04	0.338	/0.684
Ca-40(n,t)/(n,t+)	$(5_1/5_4)$	d-Be	9.50E-03	1.50E-03	0.176	/1.345
Ca-40(n,h)/(n,h+)	53/50	d-Be2a	6.02E-03	1.20E-03	0.460	/19.872
$Ca-41(n,\gamma)$	50	MACS_30keV	3.00E-02	7.00E-03	0.452	
$Ca-42(n,\gamma)$	52	MACS_30keV	1.56E-02	2.00E-03	0.722	
Ca-42(n,p)	5 ₃	fns_7hour	2.07E-01	1.65E-02	0.829	
Ca-43(n,γ)	6	MACS_30keV	5.10E-02	6.00E-03	0.609	
$Ca-44(n,\gamma)$	6	MACS_30keV	9.40E-03	1.30E-03	0.796	
Ca-44(n,p)	6	fns_5min	3.76E-02	3.01E-03	1.034	C/E(5)=1.042 C/E(7)=0.962
Ca-44(n,t)/($n,t+$)	50/53	d-Be	2.10E-02	4.00E-03	0.094	/1.376
$Ca-45(n,\gamma)$	53	MACS_30keV	1.70E-02	3.50E-03	0.795	
$Ca-46(n,\gamma)$	51	MACS_30keV	5.30E-03	5.00E-04	1.347	
Ca-48(n,2n)	6	fns_7hour	9.03E-01	1.63E-01	0.885	
$Ca-48(n,\gamma)$	51	MACS_30keV	8.70E-04	9.00E-05	0.114	
Sc-45(n,2n)g	5 ₂	fns_5min	1.69E-01	8.43E-03	1.075	
		fng_ScSmGd	1.19E-01	3.81E-04	1.630	
Sc-45(n,2n)m	6	fng_ScSmGd	1.09E-01	5.11E-03	1.090	
$Sc-45(n,\gamma)$	(6)	MACS_30keV	6.90E-02	5.00E-03	0.852	
Sc-45(n,h)/(n,h+)	$5_{1}/5_{4}$	d-Be2a	1.87E-03	4.30E-04	0.390	/1.144
		d-Be2a	3.18E-03	6.35E-04	0.230	/0.673
$Sc-45(n,\alpha)$	6	fng_ScSmGd	4.74E-02	4.13E-03	1.100	
		d-Be2a	1.38E-02	2.37E-03	1.379 [†]	C/E(5)=1.370
Ti-46(n,2n)	6	sneg_1	5.82E-02	7.57E-03	1.106	
	-	cf252_flux_1	9.30E-05	3.10E-05	0.150	C/E(5)=0.156
Ti-46(n,n't)	5 ₀	fzk_ss316	1.97E-03	5.11E-04	0.031	
$11-46(n,\gamma)$	\mathfrak{Z}_2	MACS_30keV	2.68E-02	3.20E-03	0.686	
11-46(n,p)g	6	fns_/hour	2.18E-01	1.09E-02	0.826	
11-40(n,p)	(6)	$1ZK_2$	1.21E-01	1.52E-02	0.909	
		$c_1 \angle J \angle J \angle I = 1$	1.30E-02 1.36E-02	3.00E-04	0.970	
		$cf252_flux_1$	1.30E-02	1.21E-03	1.086	
		cf252 flux 1	1.39E-02	1.21E-03	0.969	
		rez DF	6.07E-02	1.82E-03	1.713 [†]	
		sneg_1	4.31E-01	3.58E-02	0.519	
		fng_vanad	1.03E-01	6.29E-03	1.673^{\dagger}	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
		fzk_1	8.10E-02	1.10E-02	1.349	
		d-Be3	1.26E-01	2.40E-02	1.168	
		fns_7hour	2.48E-01	1.24E-02	0.914	
Ti-46(n,t)g	51	fzk_ss316	4.35E-03	6.05E-04	0.089	C/E(5)=6.018
Ti-46(n,t)m	51	fzk_ss316	2.59E-03	7.25E-04	0.042	C/E(5)=2.226
Ti-47(n,3n)	53	d-Be3	1.10E-03	2.50E-04	0.736	
Ti-47(n,γ)	5 ₂	MACS_30keV	6.44E-02	7.70E-03	0.636	
Ti-47(n,p)	6	cf252_flux_1	2.03E-02	1.10E-03	1.010	
		cf252_flux_1	1.89E-02	4.00E-04	1.085	
		cf252_flux_1	1.94E-02	9.70E-05	1.057	
		cf252_flux_1	2.20E-02	9.00E-04	0.932	
		cf252_flux_1	2.16E-02	1.18E-03	0.949	
$Ti-48(n,\gamma)$	6	MACS_30keV	3.18E-02	5.10E-03	0.938	
11-48(n,p)	6	fns_/hour	6.31E-02	3.16E-03	0.935	
		Ins_5min	5.23E-02	2.61E-03	1.053	
		ing_neat	8.55E-02	1.15E-02	0.000	
		c1252_flux_1	4.20E-04	1.00E-05	0.939	
		$c1232_IIux_1$	4.17E-04	1.39E-03	0.900	
		f7k ss316	9.52E-04	2.00E-03	2.000	
		fzk_35510	4.61E-03	4.61E-04	2.077	
$T_{i-48(n n'n)/(n d+)}$	50/50	fzk_ss316	1.37E-01	3 24E-03	0.296	/0.352
Ti-48(n,t)g/(n,t+)g	50/52	d-Be	1.16E-02	1.50E-03	0.126	/2.265
Ti-48(n,t)m/(n,t+)m	50/53	d-Be	8.20E-03	1.00E-03	0.058	/0.799
Ti-48(n,t)/(n,xt)	$(5_0/5_3)$	d-Be	9.61E-04	2.29E-04	2.939	/3.239
	(-0-5)	d-Be3	7.03E-05	2.05E-05	2.896	/2.911
Ti-49(n,γ)	52	MACS_30keV	2.21E-02	2.10E-03	0.518	
Ti-49(n,p)	6	fng heat	2.36E-02	4.25E-03	1.369	
$Ti-50(n,\gamma)$	6	MACS_30keV	3.60E-03	4.00E-04	0.769	
Ti-50(n,p)	(6)	fns_5min	1.33E-02	6.65E-04	0.971	
	· · /	fng_heat	1.34E-02	2.43E-03	1.004	
Ti-50(n,α)	52	fng_vanad	9.19E-03	2.05E-03	0.714	
$V-50(n,\gamma)$	51	MACS_30keV	5.00E-02	9.00E-03	0.569	
V-51(n,4n)	5 ₃	fzk_ss316	3.65E-04	1.47E-05	0.580	
		fzk_ss316	3.15E-04	1.25E-05	0.673	
V-51(n,n' α)	6	fzk_ss316	5.33E-03	1.27E-04	1.333	
		d-Be2a	9.03E-03	2.15E-03	2.792^{\dagger}	C/E(5)=0.534
		d-Be3	3.50E-03	8.00E-04	1.144	
		rez_DF	4.58E-03	6.01E-05	1.300	
V-51(n,γ)	6	fng_vanad	6.53E-02	3.98E-03	1.045	
		sneg_1	1.60E-03	2.40E-04	0.376	
		cf252_flux_1	2.80E-03	3.00E-04	0.748	
	-	MACS_30keV	3.80E-02	4.00E-03	0.746	
v-51(n,p)	6	Ins_5min	2.36E-02	1.18E-03	1.130	
		ing_vanad	2.01E-02	1.11E-03	1.094	
		cf252 flux 1	2.73E-02 7.10E-04	1.92E-03	1.071	
		cf252 flux 1	9 30E-04	1.10E 04	0.763	
		cf252 flux 1	7.13E-04	5 88E-05	0.705	
V-51(n,t)/(n,xt)	6	d-Be3	5.00E-04	1.50E-04	0.839	/0.922
	Ĭ	d-Be	4.40E-03	1.00E-03	0.648	/1.092
V-51(n,h)/(n,h+)	50/53	d-Be2a	1.59E-03	4.30E-04	0.319	/0.469
		d-Be2a	1.34E-03	2.69E-04	0.378	/0.555
		d-Be3	2.50E-04	8.00E-05	0.085	/0.089
V-51(n,α)	6	fns_7hour	1.72E-02	8.62E-04	0.909	
		fng_f82h	1.67E-02	4.00E-03	0.879	
		sneg_1	1.70E-02	6.38E-04	1.034	
		sneg_2	1.59E-02	7.39E-04	1.008	
		cf252_flux_1	3.88E-05	1.20E-06	1.015	
	1	tzk_ss316	6.69E-03	2.78E-04	0.847	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
		fzk_ss316	6.27E-03	1.54E-04	0.902	
		fzk_ss316	5.80E-03	1.36E-04	0.976	
		fng_vanad	1.34E-02	6.97E-04	0.933	
		d-Be2a	1.05E-02	1.72E-03	0.839	
		rez_DF	5.29E-03	9.40E-05	0.881	
V-51(n,pα)	5 ₃	fzk_ss316	3.27E-05	5.40E-06	0.415	
		fzk_ss316	3.12E-05	3.61E-06	0.434	
V-51(n,2n α)	(53)	fzk_ss316	5.25E-04	1.34E-05	0.912	
		fzk_ss316	6.66E-04	2.38E-05	0.720	
Cr-50(n,2n)	52	fng_vanad	2.29E-02	4.29E-03	0.787	C/E(5)=0.954
		fng_Cr	3.01E-02	5.82E-03	0.731	C/E(5)=0.888
		fzk_ss316	3.50E-02	1.23E-02	0.761	
		fzk_ss316	6.79E-02	1.90E-02	0.393	RPL cancelled,
		fzk_ss316	3.61E-02	1.34E-02	0.738	disproved overall fit
		rez_DF	2.27E-02	4.54E-04	0.977	
		rez_DF	2.79E-02	1.68E-03	0.793	
	-	fns_5min	4.28E-02	2.14E-03	0.513	
Cr-50(n,3n)	5_4	fzk_ss316	2.14E-04	5.36E-05	1.492	
		IZK_SS316	2.89E-04	8.68E-05	1.106	
		d-Bes	7.00E-05	3.00E-05	0.808	
		rez_DF	9.10E-03	3.10E-00	1.479	
		roz DF	0.72E-03	3.30E-03	2.005	
$C_{\pi} = 50(\pi \alpha)$	5	MACS 20koV	3.47E-03	4.38E-00	2.401	
$Cr-50(n,\gamma)$	5 J2	fal 2	4.90E-02	1.30E-02	0.521	C/E(5) = 0.012
CI-50(II,t)	J_2	12K_2 fzk_ss316	2.70E-04	3.40E-03	0.040	C/E(3)=0.912 C/E(5)=1.975
		fzk_ss316	4 33E-03	2 21E-04	0.121	C/E(5)=2.018
		rez DF	2.52E-03	5.79E-05	0.121	C/E(5)=2.802
		rez DF	2.54E-04	1.27E-05	1.704	0/2(0) 21002
$Cr-50(n,p\alpha)$	(53)		3.04E-03	2.49E-04	0.265^{\dagger}	
	,	rez DF	1.56E-03	4.08E-05	0.401	
		rez DF	1.47E-03	5.88E-05	0.426	
$Cr-51(n,\gamma)$	53	MACS_30keV	8.70E-02	1.60E-02	0.893	
Cr-52(n,2n)	6	fns 7hour	3.18E-01	1.59E-02	1.075	C/E(5)=1.000
		fzk_2	3.90E-02	5.85E-03	1.241	
		fng_Cr	3.38E-01	3.05E-02	1.044	
		fng_cucrzr	4.62E-01	3.69E-02	0.760	
		tud_cucrzr	3.27E-01	3.53E-02	1.160	
		fng_vanad	2.76E-01	2.27E-02	1.042	
		fng_f82h	3.25E-01	4.12E-02	1.024	
		ing_euroter	3.18E-01	2.26E-02	0.977	
		sneg_1	3.18E-01	1.20E-02	0.812	C/E(5) = 0.006
		12K_88310	1.79E-01	4.00E-03	1.005	C/E(5)=0.990 C/E(5)=1.008
		fzk_ss316	1.77E-01 1.98E-01	6.02E-03	0.908	C/L(J)-1.000
		rez DF	1.30E-01	9.71E-04	1 108	
		rez_DF	1.22E-01	2.44E-03	1.185	
		rez DF	1.40E-01	2.81E-03	1.032	
$Cr-52(n,\gamma)$	6	MACS_30keV	8.80E-03	2.00E-03	0.840	
Cr-52(n,p)	6	fns_5min	6.95E-02	1.56E-03	0.968	
		sneg_1	9.97E-02	4.49E-03	0.740	
		fng_Cr	7.12E-02	9.92E-03	0.941	
		cf252_flux_1	1.07E-03	7.00E-05	1.218	
		rez_DF	1.80E-02	8.30E-04	1.317	
Cr-52(n,t)/(n,xt)	53/53	d-Be3	2.03E-04	6.09E-05	1.106	/1.132
		d-Be3	1.65E-04	3.35E-05	1.341	/1.372
Cr-52(n,t)/(<i>n</i> , <i>t</i> +)	53/53	d-Be	3.05E-02	3.50E-03	0.071 [†]	/1.510
Cr-52(n,pα)	5 ₃	rez_DF	5.15E-05	1.03E-05	0.749	
		rez_DF	6.27E-05	6.27E-06	0.616	
Cr-52(n,dα)	5 ₃	fzk_ss316	4.54E-06	4.16E-07	0.858	

Reaction	QS	Spectrum	σ (b)	Δ σ (b)	C/E	Comment
Cr-53(n,3n)	5 ₃	d-Be3	1.06E-02	1.6E-03	0.769	
Cr-53(n,γ)	52	MACS_30keV	5.80E-02	1.00E-02	0.489	
Cr-54(n,γ)	5 ₂	MACS_30keV	6.70E-03	1.60E-03	0.588	
Cr-53(n,p)	6	sneg_1	5.95E-02	5.89E-03	0.811	
		cf252_flux_1	3.06E-04	2.70E-05	1.880^{\dagger}	
		rez_DF	3.84E-03	1.85E-03	3.256 [†]	
Cr-53(n,h)/(n,h+)	50/50	d-Be3	2.60E-04	8.00E-05	0.073	/0.077
Cr-54(n,α)	5 ₂	rez_DF	5.14E-04	1.54E-05	<mark>6.891</mark>	
<mark>Mn-52(n,γ)</mark>	6	Maxw_300K	6.00E+01	7.00E+00	0.806	
Mn-55(n,2n)	6	fns_7hour	7.62E-01	3.81E-02	1.023	
		cf252_flux_1	5.80E-04	1.40E-04	0.977	
		cf252_flux_1	4.08E-04	9.00E-06	1.390 [†]	C/E(5)=1.273
Mn-55(n,γ)	6	fns_7hour	8.32E-04	4.16E-05	0.980	
		fns_5min	3.97E-03	2.38E-04	1.010	
	5 ₂	MACS_30keV	3.96E-02	3.00E-03	0.648	
Mn-55(n,p)	6	fns_5min	2.85E-02	1.42E-03	1.099	
Mn-55(n,t)/(n,xt)	6	d-Be	4.90E-03	1.20E-03	0.912	/1.474
		d-Be3	6.40E-04	2.00E-04	1.532	/1.671 C/E(5)=1.484
		d-Be3	1.40E-03	2.80E-04	0.700	/0.764
Mn-55(n,h)/(n,h+)	$5_1/5_4$	d-Be2a	1.38E-03	6.88E-04	0.260	/0.474
	6	d-Be2a	1.79E-03	3.59E-04	0.200	/0.365
Mn-55(n, α)	6	Ins_5min	1.92E-02	9.62E-04	1.099	C/E(5)=1.081
M. 55(5	d-Be2a	7.31E-03	1.51E-05	1.123	C/E(5)=1.105
$\frac{\text{Mn-55(n,2\alpha)}}{\text{E}_{2} 54(n,2n)}$	J_3	u-beza	0.43E-03	4.50E-05	0.421	C/E(5) = 1.124
Fe-34(11,211)	(3_2)	sneg_1	9.23E-03	2.36E-05	2.039	C/E(3)=1.124 C/E(7)=2.039
Fe-54(n,3n)g	5 ₂	fzk_ss316	1.08E-04	5.38E-05	4.314	
		fzk_ss316	1.17E-04	1.63E-05	3.978	
		rez_DF	3.76E-05	1.09E-06	3.923	
Fe-54(n,γ)	52	MACS_30keV	2.94E-02	1.30E-03	0.659	
Fe-54(n,p)	6	fns_7hour	3.39E-01	2.04E-02	0.967	C/E(5)=0.992
		sneg_1	3.09E-01	1.54E-02	0.950	
		sneg_2	3.43E-01	1.71E-02	1.044	
		tzk_2	2.87E-01	4.30E-02	0.972	
		Ing_182h	2.69E-01	1.90E-02	1.083	
		cI252_Ilux_I	8.46E-02	2.00E-03	1.030	
		$c_{1232}_{100x_1}$	9.23E-02	3.00E-03	0.942	
		cf252 flux 1	8.76E-02	0.78E-04	0.995	
		cf252 flux 1	7 90E-02	3.00E-03	1 103	
		fzk 1	2.82E-01	2.82E-02	0.981	
		fzk_ss316	2.04E-01	4.56E-03	1.115	
		fzk ss316	1.96E-01	4.58E-03	1.164	
		rez DF	1.79E-01	1.43E-03	1.278	
		fng_eurofer	2.46E-01	1.70E-02	1.057	
		fng_vanad	2.44E-01	7.42E-02	1.021	
Fe-54(n,t)g/($n,t+$)g	52/52	d-Be	1.70E-02	4.00E-03	0.075	/1.970 C/E(5)=0.089
		rez_DF	3.23E-04	2.90E-06	0.714	/7.527 C/E(5)=1.081
T 5 4(-)		fzk_ss316	2.83E-02	7.07E-03	0.010	/0.200
$\frac{\text{Fe-54(n,t)m}}{(n,t+)m}$	$5_1/5_4$	d-Be	7.00E-03	1.00E-03	0.136	/2.281 C/E(5)=0.186
Fe-54(n,t)	(6)	IZK_2	9.00E-05	1.80E-05	0.110	C/E(5)=0.781 C/E(5)=1.117
		12K_88310	7.50E-04	2.00E-05	0.754	C/E(3) = 1.117 C/F(5) = 1.255
$Fe-54(n \alpha)$	6	fng SiC	8.22E-02	4.11E-03	0.923	C/L(J)=1.2JJ
$Fe_{-55(n v)}$	5.	MACS 30keV	7 50E-02	1 50E-02	0.723	
$Fe_{-56(n, \gamma)}$	6	MACS 30keV	1.17E_02	5.00F-04	0.863	
Fe-56(n, p)	6	fns 5min	9.05E-02	2.26E-03	1 049	C/E(5)=1.039
	0	fns 7hour	1.07E-01	5.36E-03	0.971	S/L(S)=1.037
		fng f82h	9.31E-02	6.58E-03	0.996	
		fng_SiC	9.58E-02	4.79E-03	0.973	

Reaction	OS	Spectrum	σ(b)	$\Delta \sigma$ (b)	C/E	Comment
	X ~	fng vanad	9 16E-02	1.45E-02	0.848	
		sneg 1	1.07E-01	3 27E-03	0.959	
		sneg 2	1.07E-01	4 59E-03	1 014	
		cf252 flux 1	1.10E 01 1.15E-03	8.00E-05	1.014	
		$cf252$ _flux_1	1.15E-03	6.00E-05	0.998	
		$c1252_I1ux_1$	1.45E-03	0.00E-05	0.998	
		$c_{12}c_{12}c_{11}c_{12}c_{11}c_{12}c_{1$	1.45E-05	3.30E-03	0.998	
		c1252_flux_1	1.16E-03	0.00E-05	1.227	
		$f_{z} = \frac{1232 \text{ max}^2}{16}$	1.40E-03	1.08E-03	1.034	
		$12K_{SS} = 10$	3.43E-02	9.91E-04	1.045	
		12K_\$\$510	3.30E-02	9.90E-04	1.007	
$\mathbf{F} = \mathbf{F} \mathbf{C} (\mathbf{x}, \mathbf{x}) (\mathbf{x}, \mathbf{x})$	6	rez_DF	2.32E-02	4.13E-04	1.372	(1.220 C/E(5), 1.10(
Fe-56(n,t)/(n,xt)	6	d-Be3	3.90E-04	1.1/E-04	1.287	/1.339 C/E(5)=1.196
$\mathbf{F} = \mathbf{F} \mathbf{C} (\mathbf{x}, \mathbf{x}) (\mathbf{x}, \mathbf{x})$	6	<u>d-Bes</u>	3.99E-04	7.99E-05	1.255	/1.30/ C/E(3)=1.100
Fe-56(n,t)/(n,t+)	6	d-Be	4.10E-02	6.00E-03	0.093	/1.8/5
Fe-56(n,h)/ $(n,h+)$	$5_0/5_3$	d-Be2a	5.41E-03	5.31E-04	0.138	/1.138
Fe-57(n,γ)	5 ₂	MACS_30keV	4.00E-02	4.00E-03	0.643	
Fe-57(n,p)	6	sneg_1	7.12E-02	9.26E-03	0.777	
$Fe-58(n,\gamma)$	6	fng_SiC	1.26E-03	6.30E-05	1.145	
		fng_eurofer	2.48E-02	4.27E-03	0.776	
		fng_f82h	5.98E-03	5.14E-04	0.920	
		rez_DF	1.78E-03	6.18E-05	1.027	
		MACS_30keV	1.35E-02	7.00E-03	1.292	
$Fe-59(n,\gamma)$	50	MACS_30keV	1.90E-02	5.00E-03	0.762	
$Fe-60(n,\gamma)$	50	MACS 30keV	5.15E-03	1.41E-03	2.63	
$C_0-59(n,2n)m$	6	fns 7hour	3.37E-01	1.69E-02	1.370^{\dagger}	
	-	rez DF	1.31E-01	2.62E-02	1.109	
$C_{0}-59(n 2n)$	(52)	fns 7hour	7 37E-01	3 69E-02	0.917	C/E(5)=0.956
00 09 (11,211)	(52)	cf252 flux 1	5.70E-04	3.00E-05	0.709	0,2(0) 0,500
		rez DF	1 19E-01	2.38E-02	1 787	
$C_{0}-59(n 3n)$	6	rez_DF	2 47E-02	9.89E-04	0.761	
00000	0	d_Be3	$1.12E_{-02}$	1.80E-03	0.765	
$C_{0}(n, y)$	(6)	cf252 flux 1	6.97E-03	3.40E-04	0.705	
C0-39(II, <i>j</i>)	(0)	fng_eurofer	7.25E 01	1 22E 01	0.863	
		$M_{\Lambda}CS_{30keV}$	7.25E-01 3.96E.02	2 70F 03	0.605	
$C_0 = 50(n n)$	6	$f_{252} f_{11} = 1$	1.06E.03	1.00E-05	0.040	
C0-39(II,p)	0	roz DE	1.90E-03	1.00E-03	0.809	
$C_{0} = 50(n t)/(n rt)$	6	d Po2	1.33E-02	0.13E-04	1.170	/1 248
C0-39(11,1)/(n,x1)	0	d Po2	0.40E-04	2.00E-04	1.175	/1.346
		d De	4.90E-04	9.60E-03	1.334	/1./01
$C_{2} = 50(r_{2} h)/(r_{2} h + 1)$	E /5	d De2e	3.10E-03	7.00E-04	1.044	/2.040
Co-39(n,n)/(n,n+)	$3_{1}/3_{4}$	d-De2a	1.44E-05	3.80E-04	0.310	/0.980 C/E(3)=2.910
	(d-Deza	1.4/E-03	2.44E-04	0.309	/0.964 C/E(3)=2.833
$Co-59(n,\alpha)$	0	Ins_5min	2.53E-02	1.2/E-05	1.099	
		cf252_flux_1	2.00E-04	1.00E-05	1.118	
		cf252_flux_1	2.1/E-04	1.40E-05	1.031	
		cf252_flux_1	2.22E-04	4.00E-06	1.008	
		cf252_flux_1	2.00E-04	1.00E-05	1.118	C/E(5) 1 107
		rez_DF	6.74E-03	2.70E-04	1.132	C/E(5)=1.127
	-	d-Be2a	8.39E-03	1.72E-03	1.180	C/E(5)=1.162
<u>Co-59(n,2α)</u>	53	d-Be2a	1.08E-04	6.45E-05	0.633	
Ni-58(n,2n)	6	fns_7hour	3.26E-02	1.63E-03	1.010	
		fng_f82h	3.65E-02	1.01E-02	0.891	
		IZK_2	5.42E-03	5.42E-04	0.964	
		sneg_1	4.37E-02	3.06E-03	0.964	
		sneg_2	3.27E-02	2.29E-03	0.958	
		ct252_flux_1	8.95E-06	2.80E-07	1.076	C/E(5)=1.074
		tzk_ss316	1.94E-02	1.93E-03	1.255	C/E(5)=1.238
		IZK_SS316	2.57E-02	6.16E-03	0.947	
	_	rez_DF	1.54E-02	6.45E-04	1.267	C/E(5)=1.242
Ni-58(n,3n)	5 ₃	fzk_ss316	4.48E-04	2.50E-05	0.284	
		d-Be3	2.00E-05	1.00E-05	1.219	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Ni-58(<i>n</i> , <i>n</i> ′ <i>p</i>)/(n,d+)	6	fns_7hour	6.26E-01	3.13E-02	0.946	/0.974
		fng_vanad	5.29E-01	1.07E-01	0.886	/0.913
		fzk_2	1.07E-01	1.07E-02	0.812	/0.843
		sneg_1	7.20E-01	5.04E-02	0.915	/0.943
		sneg_2	6.43E-01	3.86E-02	0.945	/0.972
		fng_f82h	5.08E-01	4.79E-02	1.085	/1.117
		fng_eurofer	4.76E-01	1.38E-01	1.056	/1.089
		fzk_ss316	2.44E-01	5.63E-03	1.028	/1.080
		rez_DF	2.13E-01	4.02E-03	0.957	/1.005 C/E(5)=0.961
Ni-58(n,γ)	6	MACS_30keV	3.87E-02	1.50E-03	0.916	
Ni-58(n,p)	(6)	fns_7hour	3.04E-01	1.52E-02	1.025	C/E(5)=0.998
		fzk_2	4.37E-01	4.37E-02	0.777	
		fng_vanad	2.72E-01	4.09E-02	0.897	
		sneg_1	2.98E-01	2.09E-02	0.932	
		cI252_Ilux_I	9.50E-02	4.50E-03	1.254	C/E(5) = 1, 110
		cI252_Ilux_I	1.05E-01	5.00E-03	1.135	C/E(5)=1.119 C/E(5)=1.026
		$c_{1232}_{100x_1}$	1.13E-01	4.80E-03	1.031	C/E(3)=1.050
		$c1232_IIux_1$	1.19E-01	0.00E-03	0.085	
		f7k ss316	2.43E-01	2.00E-03	1.081	
		fzk_ss316	2.43E-01	1.33E-02	1.001	
		rez DF	2.10E-01	2.68E-03	1.105	
Ni-58(n t)	6	fzk 2	4 40E-05	1 10E-05	0.407	C/E(5)=0.406
	Ũ	fzk ss316	2.94E-04	7.77E-06	1.290	C/E(5)=1.003
		fzk ss316	4.97E-02	1.56E-03	0.008^\dagger	C/E(5)=0.006
/(n,xt)		d-Be3	2.43E-04	8.96E-05	0.882	/0.965
/(n,xt)		d-Be3	1.79E-04	3.58E-05	1.198	/1.310 C/E(5)=0.998
Ni-58(n,t)/(<i>n</i> , <i>t</i> +)	6	d-Be	3.50E-02	6.00E-03	0.041	/1.641
		rez_DF	3.39E-03	8.25E-05	0.091^{+}	/1.604
Ni-59(n,γ)	5 ₃	MACS_30keV	8.74E-02	1.40E-02	0.992	
Ni-60(n,γ)	6	MACS_30keV	2.99E-02	7.00E-03	0.847	
Ni-60(n,p)m	6	fns_5min	6.90E-02	4.14E-03	0.917	
		fng_heat	6.45E-02	8.39E-03	1.214	
Ni-60(n,p)	(6)	fzk_2	5.52E-02	5.52E-03	0.771	
		sneg_1	1.51E-01	1.20E-02	0.857	
		sneg_2	1.62E-01	1.29E-02	0.902	
		fzk_ss316	5.56E-02	2.25E-03	0.865	
		IZK_\$\$316	1.90E+0	2.75E-01	0.025	
N: $60(n+1)/(n+1)$	(6)	d-Bes	8.20E-02	1.60E-02	0.841	/1.560.C/E(5)-0.052
NI-OO(II,t)/(n,t+) Ni $O(n,2n)$	(0)	d-De fals og216	0.10E-02	8.00E-03	0.044	/1.300 C/E(3)=0.032
Ni - 60(n, 2p)	5 5	MACS 30koV	8.02E-04	1.53E-04	0.920	
$\frac{Ni-01(\Pi,\gamma)}{Ni-61(\pi,p)}$	5	fal 2	0.28E-02	2.82E.03	1 722	
Ni $\frac{62(n n'n)}{(n d_{+})}$	5.	12K_2 fzk_ss316	6.38E.03	2.82E-03	1.722	// 887
Ni $62(n,n,p)/(n,n+)$	5 ₂	MACS 30keV	2.23E-02	1.60E-03	0.778	74.007
$Ni_{-62}(n, p)g$	53 6	fns 5min	1.87E-02	1.00E 03	1.010	
141-02(11,p)g	0	fng heat	2 22E-02	2 99E-03	0.881	
Ni-62(n p)m	6	fns 5min	1.69E-02	8 44E-04	0.001	
10 02(0,p)	Ũ	fng heat	1.85E-02	2.50E-03	0.915	
Ni-62(n α)	6	fzk 2	4.60E-03	4.60E-04	0.974	
111 02(11,00)	-	sneg 1	3.40E-02	4.11E-03	0.646	C/E(5) = 0.606
Ni-63(n , γ)	53	MACS 30keV	3.10E-02	6.00E-03	0.756	
$Ni-64(n,\gamma)$	52	MACS 30keV	8.00E-03	7.00E-04	2.276	
Cu-63(n,2n)	6	fns 5min	4.59E-01	2.30E-02	1.075	
	Ĭ	tud cucrzr	4.91E-01	5.55E-02	1.090	
		cf252_flux_1	3.00E-04	2.70E-05	0.718^{\dagger}	
		cf252_flux_1	1.83E-04	7.00E-06	1.177	
Cu-63(n,3n)	6	d-Be3	4.26E-03	1.21E-03	0.666	C/E(5)=0.818
Cu-63(n,γ)	5 ₂	cf252_flux_1	1.76E-02	1.40E-03	0.594	C/E(7)=0.591
		MACS-30keV	5.56E-02	2.20E-03	1.152	
Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
-------------------------------------	-----------------------	--------------	----------------------	----------------------	----------------------------	----------------------------------
Cu-63(n,t)/(n,xt)	53	d-Be3	8.20E-04	2.63E-04	1.748	/1.923
	6	d-Be	5.31E-03	1.43E-03	1.068	/1.719
Cu-63(n,h)/(n,h+)	$5_1/5_4$	d-Be2a	3.91E-03	7.82E-04	0.490	/0.751
Cu-63(n,α)	(6)	fns_7hour	4.70E-02	3.76E-03	0.935	C/E(5)=1.001
		fng_SiC	1.99E-02	9.94E-04	1.970^{\dagger}	
		fzk_2	1.50E-02	1.50E-03	0.843	
		fng_cucrzr	3.51E-02	3.16E-03	1.143	
		tud_cucrzr	3.44E-02	3.34E-03	1.299	
		cf252_flux_1	6.71E-04	1.80E-05	0.890	
		cf252_flux_1	7.09E-04	1.70E-05	0.843	
		tng_vanad	2.24E-02	8.93E-03	1.456	
Cu-65(n,2n)	6	fns_/hour	8.83E-01	4.42E-02	1.010	
		Ing_SiC	9.40E-01	1.88E-02	0.900	C/E(5) = 1.052
		IZK_Z	1.57E-01	1.57E-02	0.850	C/E(5)=1.055 C/E(5)=0.876
		tud overar	9.79E-01 8.16E-01	0.80E-02	0.870	C/E(3)=0.870 C/E(5)=1.151
		cf252 flux 1	6.10E-01	2.04E-01 2.30E-05	1.131	C/E(3) = 1.131 C/E(5) = 1.088
$C_{\rm H}$ 65(p a)	6	cf252_flux_1	8.00E.03	2.30E-03	0.863	C/E(J)=1.000
Cu-05(11, γ)	0	MACS 30keV	2 98E-02	1.20E-03	0.805	
$C_{\rm H}$ 65(n α)m	6	fng cucrzr	5.80E-03	8 71E-04	1.170	
Cu-05(II,W)III	0	tud cuerzr	4.83E-03	5 50E-04	1.101 1.530^{\dagger}	
		fzk 2	1.03E 03	1 94E-04	0.996	
$Cu_{-65}(n n'\alpha)$	6	fng SiC	1.21E 03	1.25E-04	1 4 3 9	
	0	fzk 2	7 10E-04	1.23E 01	1.092	
		fng_cucrzr	2.27E-03	2.27E-04	0.783	
		tud cuerzr	1 50E-03	1 36E-04	1.090	
		d-Be3	5.10E-03	1.20E-03	1.038	C/E(5)=1.017
Cu-65(n.p)	6	fng SiC	2.12E-02	1.06E-03	0.935	C/E(7)=0.935
	-	fzk 2	7.40E-03	7.40E-04	0.909	C/E (7)=0.909
		fng cucrzr	2.16E-02	1.30E-03	0.933	C/E (7)=0.933
		tud_cucrzr	1.85E-02	1.37E-03	1.190	C/E (7)=1.190
		d-Be3	1.20E-03	3.00E-03	1.005	C/E (7)=1.005
Zn-64(n,2n)	6	fns_5min	1.51E-01	7.54E-03	1.000	
$Zn-64(n,\gamma)$	6	MACS_30keV	5.90E-02	5.00E-03	0.940	
Zn-64(n,p)	6	cf252_flux_1	4.11E-02	1.30E-03	0.938	C/E(5)=1.074
		cf252_flux_1	3.82E-02	1.50E-03	1.009	
		cf252_flux_1	4.64E-02	2.30E-03	0.831	C/E(5)=0.951
		cf252_flux_1	3.94E-02	1.00E-03	0.979	
		cf252_flux_1	4.18E-02	1.75E-03	0.922	C/E(5)=1.055
		cf252_flux_1	4.13E-02	2.82E-03	0.934	C/E(5)=1.068
Zn-64(n,t)/(n,t+)	6	d-Be	6.70E-02	8.00E-03	0.098	/1.592
Zn-64(n,h)/(n,h+)	$5_0/5_3$	d-Be2a	1.94E-02	3.88E-03	0.131	/2.314
Zn-65(n,γ)	5 ₃	MACS_30keV	1.62E-01	2.70E-02	0.705	
Zn-66(n,γ)	6	MACS_30keV	3.50E-02	3.00E-03	0.830	
Zn-66(n,2α)	5 ₃	d-Be2a	6.45E-05	4.30E-05	1.032	
$Zn-67(n,\gamma)$	5 ₃	MACS_30keV	1.53E-01	1.50E-02	0.873	
Zn-67(n,h)/(n,h+)	53/53	d-Be2a	9.89E-04	2.80E-04	0.159	/0.769
$Zn-68(n,\gamma)m$	5 ₁	cf252_flux_1	1.85E-03	1.20E-04	0.246	
	51	MACS_30keV	3.40E-03	1.00E-03	0.388	
Zn-68(n,γ)	(6)	MACS_30keV	1.92E-02	2.40E-03	0.831	
Zn-68(n,h)/(n,h+)	53/53	d-Be2a	1.05E-03	3.66E-04	0.477	/0.547
Zn-68(n,α)	6	d-Be2a	4.08E-03	8.60E-04	1.373	
Zn-70(n,γ)	(50)	MACS_30keV	2.15E-02	2.00E-03	0.690	
Ga-69(n,2n)	6	fns_5min	7.82E-01	3.91E-02	1.099	
$Ga-69(n,\gamma)$	6	MACS_30keV	1.39E-01	6.00E-03	0.926	
Ga-69(n,t)/(<i>n</i> , <i>xt</i>)	53/53	d-Be	4.27E-03	8.13E-04	1.180	/2.022
Ga-71(n,2n)	6	fns_5min	8.99E-01	4.50E-02	1.088	
$Ga-71(n,\gamma)$	(6)	MACS_30keV	1.22E-01	8.00E-03	0.908	
Ge-70(n, y)	(52)	MACS_30keV	8.80E-02	5.00E-03	0.493	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Ge-72(n,γ)	50	MACS_30keV	7.30E-02	7.00E-03	0.711	
Ge-73(n,γ)	5 ₃	MACS_30keV	2.43E-01	4.7E-02	1.032	
Ge-74(n,γ)	(52)	MACS_30keV	3.76E-02	3.90E-03	0.334	
Ge-74(n,p)	(51)	fns_5min	1.32E-02	7.93E-04	1.389	
Ge-74(n,t)/($n,t+$)	50/50	d-Be	6.20E-02	1.30E-02	0.036	/0.278
Ge-76(n,2n)m	6	fns_5min	6.47E-01	4.53E-02	1.267	C/E(5)= 0.884
Ge-76(n,2n)	(6)	fns_5min	1.03E+0	7.18E-02	1.112	C/E(5)=1.100
Ge-76(n,γ)	(50)	MACS_30keV	2.15E-02	1.80E-03	0.710	
As-75(n,γ)	6	MACS_30keV	3.62E-01	1.90E-02	1.109	
As-75(n,p)m	6	fns_5min	1.05E-02	8.43E-04	0.990	
As-75(n,p)	(6)	fns_5min	1.86E-02	1.12E-03	1.177	C/E(5)=1.158
As-75(n,t)/(<i>n</i> , <i>xt</i>)	$(5_3/5_3)$	d-Be	3.80E-03	8.00E-04	1.038	/1.914
As-75(n,h)/($n,h+$)	$5_1/5_1$	d-Be2a	1.03E-03	4.30E-04	0.473	/0.587
		d-Be2a	1.49E-03	2.99E-04	0.326	/0.405
$As-75(n,\alpha)$	6	d-Be2a	4.73E-03	1.08E-03	1.147	C/E(7) = 1.104
Se-74 (n,γ)	5 ₀	MACS_30keV	2.71E-01	1.50E-02	0.723	
Se-76 (n,γ)	(5 ₃)	MACS_30keV	1.64E-01	8.00E-03	0.842	
Se-77 (n,γ)	(53)	MACS_30keV	4.18E-01	7.10E-02	1.080	
Se-78(n,2n)m	6	fns_5min	5.76E-01	5.76E-02	1.186	C/E(5)=1.087
Se-78 (n,γ)	(53)	MACS_30keV	6.01E-02	9.60E-03	0.999	
Se-79 (n,γ)	5 ₀	MACS_30keV	2.63E-01	4.60E-02	0.357	
Se-80 (n,γ)	(6)	MACS_30keV	4.20E-02	3.00E-03	0.866	
Se-80(n,t)/ $(n,t+)$	$5_0/5_0$	d-Be	5.50E-02	1.20E-02	0.040	/0.246
Se-82(n,2n)	(5_2)	fns_5min	1.00E+0	7.02E-02	1.305	
$\frac{\text{Se-82(n,\gamma)}}{Point of a local state of a local st$	(50)	MACS_30keV	9.00E-03	8.00E-03	1.493	
Br-/9(n,2n)	6	fns_5min	8.18E-01	9.00E-02	1.000	
$Br-79(n,\gamma)$	(6)	MACS_30keV	6.22E-01	3.40E-02	0.987	
$\frac{\text{Br-81(n,2n)g}}{\text{Dr-81(n,2n)g}}$	<u> </u>	Ins_5min	3.3/E-01	3./1E-02	1.1//	C/E(5)=1.069
$Br-81(n,\gamma)$	(5_2)	MACS_30KeV	2.39E-01	7.00E-03	1.508	
$Kr-/8(n,\gamma)$	(52)	MACS_30KeV	3.21E-01	2.60E-02	0.748	
$Kr-/9(n,\gamma)$	5_0	MACS_30KeV	9.59E-01	1.62E-01	0.308	
$Kr-80(n,\gamma)$	(52)	MACS_30KeV	2.0/E-01	1.40E-02	0.631	
$\frac{\text{Kr-81(n,\gamma)}}{\text{Kr-82(n)}}$	5 ₀	MACS_30KeV	0.0/E-01	1.05E-01	0.320	
$Kr-82(n,\gamma)$	\mathfrak{I}_2	MACS_30KeV	9.20E-02	0.00E-03	0.779	
$Kr-83(n,\gamma)$	0	MACS_30KeV	2.43E-01	1.50E-02	1.009	
$Kr-84(n,\gamma)$	(6)	MACS_30KeV	3.80E-02	4.00E-03	0.835	
$Kr-85(n,\gamma)$	5 ₀	MACS_30KeV	5.50E-02	4.50E-02	0.722	
$Kr-86(n,\gamma)$	\mathfrak{Z}_2	MACS_30keV	3.40E-03	3.00E-04	1.493	C/T/(7) 1.020
$\frac{\text{KD-}\delta \mathfrak{I}(\mathbf{n},\mathbf{2n})}{\text{Dh} 85(\mathbf{n},\mathbf{2n})}$	(6)	Ins_omin MACS_201V	9.19E-01	4.39E-02	1.095	C/E(7)=1.020
$\frac{KO-\delta \Im(\Pi,\gamma)}{Dh}$	(0)	MACS_30KeV	2.34E-UI	1.00E-03	0.997	
$\frac{\text{KD-80}(n,\gamma)}{\text{Pb} 87(n,2n)m}$	53 6	IVIACS_SUKEV	2.02E-01	1.03E-01	0.809	C/E(5) = 1.074
RU-0/(11,211)111	0	MACS 201-2V	4.19E-01	2.09E-02	1.130	C/E(3)=1.074
$\frac{\text{KU-0}/(11,\gamma)}{\text{Sr }84(n,2n)}$	(6)	fns 7hour	6.37E-02	3 10E 02	1.144	C/E(5) = 1.010
Sr = 84(n,20)m	(0)	$\frac{1115}{11001}$	2.42E 01	2 70F 02	1.020 0.102 [†]	C/E(J)=1.010
51-64(11, y)111	0	cf252 flux 1	2.42E-01 3.54E-02	2.70E-02	1 312	
	5.	MACS 30keV	1.90E-01	1.00E-02	0.821	
$Sr-84(n \gamma)$	(5_0)	MACS 30keV	3.00E-01	1.70E-02	0.694	
$\frac{Sr-86(n,2n)}{2}$	(6)	fns 7hour	9.93E-01	1.49E-01	1.067	C/E(5)=1.020
······································	(-)					C/E(7)=0.971
Sr-86(n,γ)m	52	cf252_flux_1	1.82E-01	2.20E-02	0.093	
Sr-86(n,γ)	(6)	MACS_30keV	6.40E-02	3.00E-03	0.951	
$Sr-87(n,\gamma)$	6	MACS_30keV	9.20E-02	4.00E-03	0.933	
Sr-88(n,2n)m	6	fns_7hour	2.53E-01	1.27E-02	0.881	
$Sr-88(n,\gamma)$		MACS_30keV	6.13E-03	1.10E-04	0.918	
Sr-88(n,p)	6	fns_5min	1.42E-02	7.09E-04	0.962	
Sr-89(n,γ)	50	MACS_30keV	1.90E-02	1.40E-02	1.371	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Y-89(n,n')m	6	fns_5min	3.60E-01	1.80E-02	1.000	
		fng_Y	3.31E-01	1.99E-02	1.042	
Y-89(n,2n)	6	fns_7hour	1.06E+0	6.35E-02	0.885	
		fns_5min	8.15E-01	1.63E-01	1.124	C/E(5)=1.111
		fng_Y	8.91E-01	8.91E-03	1.021	G/F(5) 1 100
		tud_Y	8.00E-01	9.00E-02	1.138	C/E(5)=1.130
\mathbf{V} 90(\mathbf{r} 2 \mathbf{r})	(5)	rez_DF	1.94E-01	5.82E-03	1.482	C/Tr(5) 0.594
Y 80(n t)	(52)	tud V	4.01E-02	1.38E-03	0.502	C/E(5)=0.584 C/E(5)=1.140
$Y - 89(n, \gamma)m$	0	tud_1 fng_V	3.82E-04	1.90E-04	1.157	C/E(3)=1.140 C/E(5)=1.220
$\mathbf{V}_{\mathbf{R}}(\mathbf{r},\mathbf{r})$	(6)	MACS 30koV	3.37E-04	1.07E-03	1.239	C/E(3) = 1.229
$\frac{1-89(11,\gamma)}{V_{1}}$	(0)	d Po	1.90E-02	0.00E-04	1.024	/1 270 C/E(5)-1 060
$V_{R0}(n, q)m$	(0)	fns 5min	1.83E_03	9.14E-05	1.110	/1.3/0 C/E(3)=1.000
1-09(II,0)III	0	fng V	2.03E-03	2.64E-04	0.903	
\mathbf{V} 89(n α)	(5.)	fng V	1.42E-02	2.04E-04	0.903	
$7r_{-90}(n, 2n)m$	(52)	fns 5min	1.42E 02	5.81E-03	1 220	
21-90(11,211)111	0	fng heat	1.10E-01	3.52E-03	1.220	
Zr-90(n,2n)	(6)	fns 7hour	7.11E-01	4.27E-02	0.965	C/E(5)=0.971
	(*)	fng cucrzr	9.24E-01	6.47E-02	0.750^{\dagger}	
		tud_cucrzr	6.71E-01	6.91E-02	1.120	
		cf252_flux_1	2.67E-04	1.50E-05	0.815	
		cf252_flux_1	2.21E-04	6.00E-06	0.985	
		rez_DF	1.86E-01	5.57E-03	1.504^{\dagger}	C/E(5)=1.493
		fng_Y	6.07E-01	7.28E-02	1.133	C/E(5)=1.131
Zr-90(n,γ)	6	MACS_30keV	1.93-02	9.00E-04	0.999	
Zr-90(n,p)m	6	fng_heat	9.83E-03	7.87E-04	1.189	C/E(5)=1.170
		cf252_flux_1	4.50E-05	6.00E-06	1.367 [†]	C/E(5)=1.346
Zr-90(n,t)/(n,t+)	6	d-Be	5.10E-02	1.10E-02	0.105	/1.087
Zr-91(n,γ)	6	MACS_30keV	6.20E-02	3.40E-03	0.985	
Zr-92(n,γ)	6	MACS_30keV	3.01E-02	1.70E-03	1.225	
Zr-93(n,γ)	6	MACS_30keV	9.50E-02	1.00E-02	0.944	
Zr-94(n,γ)	6	cf252_flux_1	8.75E-03	6.50E-04	0.722	
		MACS_30keV	2.60E-02	1.00E-03	1.134	
Zr-94(n,p)	6	fns_5min	6.93E-03	3.47E-04	1.031	
Zr-95(n,γ)	50	MACS_30keV	7.90E-02	1.20E-02	0.579	
Zr-96(n,2n)	6	fns_7hour	1.57E+0	7.83E-02	0.926	C/E(5)=0.943
	_	fzk_1	5.47E-01	8.21E-02	0.605	
Zr-96(n,γ)	5 ₂	cf252_flux_1	4.17E-03	2.10E-04	3.447	
	6	MACS_30keV	1.07E-02	5.00E-04	1.313	
Nb-93(n,2n)m	6	fns_/hour	4.6/E-01	2.34E-02	0.962	
		frate 2	3.93E-01	1.18E-02	1.059	
		12K_2 fzk_ss316	2.70E-01	4.14E-02	0.293	C/E(5) = 0.895
		fzk_ss316	1.07E-01	2 90E-02	1 316	C/L(3)=0.075
		rez DF	1.23E-01	3.68E-03	0.951	C/E(5)=0.956
		fng vanad	4.81E-01	6.59E-02	0.718	
		fzk 1	8.21E-02	7.80E-02	0.413 [†]	
		d-Be3	1.78E-01	2.40E-02	1.176	
		d-Be3	2.02E-01	2.40E-02	1.036	
Nb-93(n,3n)m	54	rez_DF	1.84E-02	1.66E-03	0.803	
Nb-93(n,4n)	(53)	rez_DF	1.93E-05	2.51E-06	1.032	C/E(7)=2.319
Nb-93(n,n'α)m	6	fns_5min	2.89E-03	2.02E-04	0.962	C/E(5)=1.010
Nb-93(n,γ)m	6	fns_5min	4.65E-03	2.79E-04	1.042	
		fng_heat	1.24E-02	2.10E-03	0.199†	
Nb-93(n,γ)	(6)	MACS_30keV	2.66E-01	5.00E-03	0.893	
Nb-93(n,t)/(<i>n,xt</i>)	6	d-Be3	6.10E-04	2.00E-04	0.626	/0.926
		d-Be3	4.90E-04	9.80E-05	0.780	/1.153
	- ·-	d-Be	4.10E-03	8.00E-04	0.332	/1.391
Nb-93(n,h)m/ $(n,h+)m$	54/54	d-Be2a	2.15E-04	6.45E-05	1.712	/2.179
Nb-93(n,h)/ $(n,h+)$	$(5_0/5_0)$	d-Be2a	1.61E-03	2.80E-04	0.337	/0.423 C/E(5)=1.062

Reaction	QS	Spectrum	σ(b)	Δσ (b)	C/E	Comment
		d-Be2a	1.54E-03	3.08E-04	0.353	/0.443 C/E(5)=1.112
Nb-93(n, α)g	52	fng heat	4.46E-02	7.58E-03	0.151	C/E(5)=0.157
Nb-93(n, α)m	6	fns 5min	5.16E-03	2.58E-04	1.000	
		fng SiC	4.76E-03	2.86E-04	1.070	
		d-Be2a	1.93E-03	4.30E-04	1.231	
		d-Be3	2.80E-03	3.00E-04	0.918	
Nb-93(n,α)	(6)	d-Be2a	4.09E-03	4.30E-04	1.279	
		d-Be3	3.80E-03	5.00E-04	1.575^{\dagger}	
Nb-93(n,2α)	(5_0)	d-Be2a	1.93E-04	1.08E-04	0.020	C/E(5)=0.046
Nb-94(n,γ)	(5 ₀)	MACS_30keV	4.82E-01	9.20E-02	0.559	
Nb-95(n,γ)	5 ₃	MACS_30keV	3.10E-01	6.50e-02	1.084	
Mo-92(n,2n)m	52	fns_5min	2.77E-02	1.38E-03	1.316	
Mo-92(n,2n)	(5 ₂)	fns_5min	2.23E-01	1.12E-02	1.334	C/E(5)=1.003
		fng_heat	2.14E-01	2.35E-02	1.461	C/E(5)=1.080
		fng_Mo	2.35E-01	2.83E-03	1.321	C/E(5)=0.977
Mo-92(n,3n)	5 ₃	fzk_ss316	2.92E-03	1.61E-03	1.677	
Mo-92(n,n'p)m/(n,d+)m	6	fns_7hour	1.99E-01	3.78E-02	0.710	/0.719 C/E(5)=0.951
Mo-92(n,n'α)	6	fzk_ss316	3.99E-03	2.39E-03	1.732	C/E(5)=0.430
Mo-92(n,γ)	(6)	MACS_30keV	7.20E-02	1.00E-02	0.844	
Mo-92(n,p)m	6	fns_7hour	6.37E-02	3.18E-03	0.943	C/E(5)=0.952
		fzk_ss316	3.29E-02	1.61E-03	1.228	C/E(5)=1.211
		fng_Mo	5.49E-02	2.09E-03	0.999	
Mo-92(n,p)	(51)	cf252_flux_1	1.68E-02	7.00E-04	0.761	
Mo-92(n,t)	$(5_4/5_4)$	fzk_ss316	4.91E-04	2.40E-05	1.258	C/E(7)=1.025
/(<i>n</i> , <i>xt</i>)		d-Be	4.05E-03	4.87E-04	0.686	/0.854 C/E(5)=0.703
		1.D.	2 705 02	4.005.02	0.061	C/E(7)=0.556
$\frac{Mo-92(n,t)/(n,t+)}{Mo-92(n,t)/(n,t+)}$	$(5_1/5_1)$	d-Be	3.70E-02	4.00E-03	0.061	/3.841 C/E(/)=0.061
Mo-92(n,α)	(6)	sneg_1	2.27E-02	2.04E-03	1.314	
		$c_{1252}_{Ilux_1}$	4.20E-04	2.00E-05	0.229	
		IZK_SS310	8.69E-03	3.84E-04	1.432	
$M_{0} \frac{\partial 2(n 2\alpha)m}{\partial x}$	5.	d_Be2a	2.08E-02	2.33E-03	0.010	
$M_{0} = 02(n, pq)$	5.	fzk ss316	1.51E-04	5.13E.04	0.553	
$Mo_{92}(n,p\alpha)$	53 5-	fzk_ss316	1.31E-05	115E-04	0.555	
$M_{0} = 02(n,2n,\alpha)$	(5)	fzk_ss310	1.48E-03	4.15E-00	0.119	
$M_{2} = 02(n, 2n, \alpha)$	(33)	fzk_ss310	1.30E-03	2.40E-04	0.409	
$M_{2} = 0.000$	5 ₀	MACS 20koV	1.1/E-03	2.08E-04	0.020	
$M_{0} = 0.05(n, 2n)m$	5	fals as216	1.04E-01	2.00E-02	0.044	
Mo-93(II,3II)III	53	MACS 201/2V	8.38E-03	1.39E-03	0.988	
$M_{0} = 0.05(n, \gamma)$	0	MACS_SOKEV	2.90E-01	1.20E-02	1.110	C/E(5)-1.029
M0-93(n,p)g	0	fng_vanad	2.71E-02	2.44E-03	1.252	C/E(3)=1.028
		sneg 1	4.23E-02	1.34E-02 3.32E-03	0.019	
		fng Mo	3.18E-02	2.78E-03	1.052	C/E(5)=1.055
Mo-95(n.p)m	6	cf252 flux 1	1.44E-04	1.44E-04	0.517 [†]	C/E(5)=0.569
· · · · · · · · · · · · · · · · · · ·	-	fng_Mo	7.30E-03	6.58E-04	0.997	
		fzk_ss316	5.41E-03	7.03E-04	0.642 [†]	
Mo-95(n,p)	(52)	cf252_flux_1	2.20E-02	2.00E-03	0.013	
Mo-96(n,n'p)/($n,d+$)	(6)	fzk_ss316	9.30E-03	4.15E-04	1.541	/1.925
Mo-96(n,γ)	6	MACS_30keV	1.12E-01	8.00E-03	0.834	
Mo-96(n,p)	6	sneg_1	2.08E-02	2.08E-03	1.159	
		fng_Mo	2.03E-02	1.14E-03	1.075	
Mo-97(n,γ)	6	MACS_30keV	3.39E-01	1.40E-02	0.946	
Mo-98(n,γ)	6	cf252_flux_1	2.63E-02	1.30E-03	1.045	
		MACS_30keV	9.90E-02	7.00E-03	0.894	
Mo-98(n,p)m	52	fng_heat	6.18E-03	6.80E-04	0.610	C/E(5)=0.898
Mo-98(n,t)/(<i>n</i> , <i>xt</i>)	5 ₃	d-Be3	5.04E-04	1.63E-04	1.169	/1.262
Mo-98(n,α)	5 ₃	fns_7hour	8.36E-03	1.59E-03	0.741	C/E(5)=0.878
Mo-99(n,γ)	5 ₃	MACS_30keV	2.40E-01	4.00E-02	1.041	
Mo-100(n,2n)	6	fns_7hour	1.49E+0	4.04E-02	0.962	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
		sneg_1	1.53E+0	1.22E-01	0.990	
		sneg_2	1.51E+0	1.21E-01	0.989	
		fng_vanad	1.12+E0	3.63E-01	0.988	
		fzk_ss316	4.13E-01	9.55E-03	1.063	
		fzk_ss316	3.28E-01	1.31E-01	1.337	
		fng_Mo	1.29E+0	4.04E-02	1.086	C/E(5)=1.082
Mo-100(n,γ)	6	cf252_flux_1	1.48E-02	1.11E-03	0.956	
		MACS_30keV	1.08E-01	1.40E-02	0.655	
Mo-100(n,α)	5 ₂	fzk_ss316	8.16E-02	1.71E-02	0.018	
Τc-99(n,γ)	5 ₂	MACS_30keV	9.33E-01	4.70E-02	0.744	
Ru-96(n,2n)	6	fns_5min	5.45E-01	2.73E-02	0.940	C/E(5)=1.010 C/E(7)=0.980
Ru-96(n,γ)	6	MACS_30keV	2.07E-01	8.00E-03	1.107	
Ru-98(n,γ)	50	MACS_30keV	1.73E-01	3.60E-02	0.642	
Ru-99(n,γ)	5 ₃	MACS_30keV	6.31E-01	9.90E-02	0.923	
Ru-100(n,p)	6	fns_5min	3.05E-02	3.35E-03	0.821	
Ru-100(n,γ)	6	MACS_30keV	2.06E-01	1.30E-02	0.886	
Ru-101(n,γ)	6	MACS_30keV	9.90E-01	4.00E-02	0.813	
Ru-102(n,γ)	6	MACS_30keV	1.51E-01	7.00E-03	1.129	
Ru-102(n,p)m	6	fns_5min	6.75E-03	3.37E-04	1.020	
Ru-103(n,γ)	53	MACS_30keV	3.43E-01	5.20E-02	1.200	
Ru-104(n,γ)	6	MACS_30keV	1.54E-01	6.00E-03	0.963	
Rh-103(n,n')m	5 ₂	fns_5min	7.55E-02	1.36E-02	3.846	C/E(5)=2.222
Rh-103(n,2n)g	52	rez_DF	7.05E-01	3.52E-02	0.272	
Rh-103(n,3n)m	5	rez_DF	5.51E-02	2.20E-03	1.450	
Rh-103(n,4n)	(53)	rez_DF	2.93E-04	1.17E-05	2.366	
Rh-103(n,γ)	(52)	fns_5min	2.68E-02	2.15E-03	2.504	
		MACS_30keV	8.11E-01	1.40E-02	0.957	
Rh-103(n,p)	52	rez_DF	4.75E-03	1.90E-04	1.910	
Pd-102(n,γ)	50	MACS_30keV	3.69E-01	1.70E-02	0.408	
Pd-104(n,γ)	5 ₃	MACS_30keV	2.89E-01	2.90E-02	0.867	
Pd-105(n,γ)	6	MACS_30keV	1.20E+00	6.00E-02	0.891	
Pd-106(n,γ)	(6)	MACS_30keV	2.52E-01	2.50E-02	0.767	
Pd-106(n,t)/(n,t+)	$(5_0/5_3)$	d-Be	3.60E-02	6.00E-03	0.061	/0.630 C/E(5)=0.081
Pd-107(n,γ)	6	MACS_30keV	1.34E+00	6.00E-02	0.905	
Pd-108(n,2n)m	52	fns_5min	3.35E-01	1.68E-02	1.279	C/E(5)=1.251 C/E(7)=1.283
Pd-108(n,γ)	(6)	MACS_30keV	2.03E-01	2.00E-02	0.983	
Pd-108(n,p)m	6	fns_5min	6.17E-03	3.70E-04	1.316	
Pd-110(n,2n)m	6	fns_5min	3.66E-01	2.19E-02	1.268	C/E(5)=1.112
Pd-110(n,2n)	(6)	fns_5min	1.46E+0	8.73E-02	1.156	
Pd-110(n,γ)	(5 ₂)	MACS_30keV	1.46E-01	2.00E-02	0.679	
Ag-107(n,2n)g	6	fns_5min	6.94E-01	3.47E-02	0.901	C/E(5)=0.909
	(fng_heat	7.45E-01	8.19E-02	0.870	
Ag-107(n,γ)	(6)	MACS_30keV	7.92E-01	3.00E-02	1.020	
Ag-107(n,t)/(n,xt)	$5_2/5_2$	d-Be3	4.99E-04	1.59E-04	2.782	/3.058
		d-Be	4.54E-03	8.26E-04	1.258	/2.0/9
Ag-10/(n,h)/($n,h+$)	$(5_0/5_0)$	d-Be2a	3.30E-03	6.61E-04	0.180	/0.209
$\Delta = 100(n 2n) \sigma$	6	d-De2a	2.24E-03	3.37E-04	0.203	70.308
Ag-107(11,211)g	0	fng heat	7.57E-01	3.37E-02 8 32F-02	0.000	C/E(J) = 1.007
$\Delta q_{-1} (0) (p_{-1})$	(6)	MACS 30keV	7.88E_01	3.00F_02	0.961	
$\frac{\Lambda g^{-1}(y(0,y))}{\Lambda g^{-1}(y(0,y))}$	(5)	MACS 30koV	$1.17E\pm00$	1 88F_01	0.573	
$\frac{\text{Ag-110III(II, \gamma)}}{\text{Cd} 106(p, \gamma)}$	5.	MACS 201-AV	3.02E.01	2 40F 02	1 /70	
$Cd = 100(11, \gamma)$	5	MACS 201-2V	2 02E-01	2.40E-02	0.001	
$Cd = 100(11, \gamma)$	(5)	of252 flue 1	2.02E-01	7.00E-03	0.391	
Cα-110(n,γ)	(32)	$\frac{01232_{110X_{1}}}{MACS_{20120}}$	2.04E-01 2.37E-01	7.00E-03	0.194	
Cd 111(p x)	5.	MACS 301-2V	7.5/E-01	1.00E-03	0.013	
Cu-111(11, 1)	J_2	THICS_JOKCV	1.5-L-01	1.201-02	0.135	1

	Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cd-112(n,2n)m	6	fns_5min	5.28E-01	2.64E-02	1.048	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			fng_heat	6.89E-01	2.07E-02	0.835	
	Cd-112(n,γ)	(5 ₂)	MACS_30keV	1.88E-01	1.70E-02	0.719	
	Cd-113(n,γ)	6	MACS_30keV	6.67E-01	1.10E-02	0.974	
	$Cd-113m(n,\gamma)$	50	MACS_30keV	6.82E-01	3.41E-01	0.548	
	Cd-114(n,p)	(6)	fns_5min	7.78E-03	3.89E-04	1.053	
$ \begin{array}{c} cd+15(\alpha,\gamma) & 5_{\alpha} & MACS_30keV & 290F.01 & 6.20F.02 & 1.750 \\ cd+115(\alpha,\gamma) & 5_{\alpha} & MACS_30keV & 6.01E.01 & 2.00F.01 & 0.744 \\ cd+115(\alpha,\gamma) & (5_2) & cl_252_10x,1 & 3.80F.02 & 1.40F.02 & 0.261 \\ ln+13(\alpha,2n) & (5_2) & cl_252_10x,1 & 3.80F.02 & 1.40F.03 & 0.307 \\ ln+13(\alpha,2n) & (5_2) & cl_252_10x,1 & 3.75F.03 & 1.85F.03 & 0.307 \\ ln+13(\alpha,2n) & (6) & MACS_30keV & 7.87F.01 & 7.00F.02 & 0.903 \\ ln+14m(\alpha,\gamma) & 5_{3} & MACS_30keV & 2.60F.00 & 1.30F.00 & 0.907 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 2.60F.00 & 1.30F.00 & 0.907 \\ ln+15(\alpha,2n) & (5_2) & dF.22 & 10x,1 & 1.29F.01 & 7.00F.01 & 0.10F.01 \\ ln+15(\alpha,2n) & (5_2) & dF.22 & 10x,1 & 1.29F.01 & 7.00F.01 & 0.10F.01 \\ ln+15(\alpha,2n) & (5_2) & dF.22 & 10x,1 & 1.29F.01 & 5.00F.02 & 0.546 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 6.89F.01 & 1.70F.02 & 0.633 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 6.89F.01 & 7.00F.01 & 0.30F.42 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 7.06F.01 & 7.00F.01 & 0.327 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 7.06F.01 & 7.00F.01 & 0.328 & 0.280 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 1.04F.03 & 2.14F.04 & 0.258 & 0.280 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 1.04F.03 & 2.14F.04 & 0.258 & 0.280 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 1.04F.03 & 2.14F.04 & 0.258 & 0.280 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 1.04F.03 & 2.14F.04 & 0.666 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 1.34F.01 & 1.05F.01 & 0.666 \\ ln+15(\alpha,2n) & (6) & MACS_30keV & 1.34F.01 & 1.80F.03 & 0.937 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 1.34F.01 & 1.80F.03 & 0.937 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 1.34F.01 & 1.80F.03 & 0.937 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 1.34F.01 & 1.80F.03 & 0.937 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 1.34F.01 & 1.80F.03 & 0.937 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 1.34F.01 & 1.80F.03 & 0.937 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 3.42F.01 & 8.70F.03 & 1.021 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 3.42F.01 & 8.70F.03 & 1.021 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 3.42F.01 & 8.70F.03 & 1.021 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 3.42F.01 & 1.80F.03 & 0.937 \\ ln+115(\alpha,2n) & (6) & MACS_30keV & 3.42F.01 & 0.582 \\ ln+115(\alpha,2n) &$	$Cd-114(n,\gamma)$	(6)	MACS_30keV	1.29E-01	1.30E-03	1.112	
	Cd-115(n,γ)	50	MACS_30keV	2.90E-01	6.20E-02	1.750	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Cd-115m(n,\gamma)$	50	MACS_30keV	6.01E-01	2.00E-01	0.744	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$Cd-116(n,\gamma)$	(5 ₂)	cf252_flux_1	3.80E-02	1.40E-02	0.261	
		/	MACS_30keV	7.48E-02	9.00E-04	0.920	
	In-113(n,2n)m	52	cf252_flux_1	3.75E-03	1.85E-03	0.307	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	In-113(n,2n)	(5 ₂)	cf252_flux_1	9.50E-03	4.75E-03	0.150	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	In-113(n,γ)	(6)	MACS_30keV	7.87E-01	7.00E-02	0.903	
	In-114m(n,γ)	5 ₃	MACS_30keV	2.60E+00	1.30E+00	0.907	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	In-115(n,2n)g	52	fns_5min	1.99E-01	9.93E-03	1.206	C/E(5)=1.192
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	In-115(n,n'α)	(5 ₂)	d-Be2a	3.66E-03	6.45E-04	3.179	C/E(7)=3.207
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	In-115(n,γ)m	51	cf252_flux_1	1.24E-01	3.60E-03	0.612	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			cf252_flux_1	1.39E-01	6.00E-02	0.546	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			MACS_30keV	6.89E-01	1.70E-02	0.633	
	In-115(n,γ)	(5 ₂)	fns_5min	5.18E-02	2.59E-03	3.328	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		(6)	MACS_30keV	7.06E-01	7.00E-02	0.942	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{\text{In-115(n,t)}/(n,xt)}{1}$	(6)	d-Be	3.90E-03	7.99E-04	1.032	/1.860
$\begin{array}{llllllllllllllllllllllllllllllllllll$	In-115(n,h)g/(n,h+)g	$5_4/5_4$	d-Be2a	2.15E-04	6.45E-05	0.376	/0.874
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\ln -115(n,h)/(n,h+)$	$(5_1/5_1)$	d-Be2a	1.04E-03	2.14E-04	0.258	/0.280
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>In-115(n,α)</u>	52	d-Be2a	2.58E-03	6.45E-04	1.615	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sn-112(n,2n)	6	fng_heat	1.67E+0	2.25E-01	0.666	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			fng_Sn	1.1/E+0	1.05E-01	0.947	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\text{Sn-112(n,\gamma)}}{\text{Sn-114(-2)}}$	(6)	MACS_30keV	2.10E-01	1.20E-02	0.865	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn-114(n,2n)	(5_2)	fng_Sn	1.94E+0	9.37E-02	0.620	10 514
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sn-114(n,n'p)m/(n,a+)m	$3_3/3_3$	Ing_Sn	4.23E-03	9.91E-04	0.362	/0.514
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\text{Sn-114}(n,\gamma)}{2}$	0	MACS_30keV	1.34E-01	1.80E-03	0.937	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Sn-115(n,\gamma)$	0	MACS_30keV	3.42E-01	8.70E-03	1.021	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\text{Sn-116}(n,\gamma)}{(n+1)(n+1)}$	(6)	MACS_30KeV	9.16E-02	6.00E-04	0.915	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sn-116(n,p)	(5_3)	fng_Sn	2.47E-02	7.41E-04	0.997	/0.407
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn-110(n,n,p)m/(n,a+)m	$3_0/3_0$	Ing_Sn MACS_20haW	1.10E-03	1.05E-04	0.181	/0.487
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{\text{Sn-11}/(n,\gamma)}{\text{Sn-117}(n,\gamma)}$	(0)	MACS_SUKEV	5.19E-01	4.80E-05	0.981	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{S_{11}}{S_{11}}$	(5)	fng_Sn	3.10E-03	0.39E-04	0.393	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{S_{11}-117(11,p)}{S_{11}-118(p-2p)m}$	(J ₂)	fng_511	1.96E-02	0.33E-04	0.705	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	51110(11,211)111	52	fng Sn	9.55E-01	3 27E-02	0.793	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn-118(n v)	(6)	MACS 30keV	6.21E-02	6.00E-04	0.958	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sn-118(n n)m	6	fns 5min	6.69E-03	4 02E-04	0.910	C/E(5)=0.940
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Sn-118(n \alpha)\sigma$	52	fng Sn	1.23E-03	2.37E-04	0.582	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sn = 110(n,w) Sn = 119(n w)	6	MACS 30keV	1.80E-01	1.00E-02	1.128	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn-120(n 2n)m	6	fns 7hour	5 77E-01	1.00E 02	1 1 1 3 3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{511120(11,211)111}{511120(11,211)111}$	(6)	MACS 30keV	3.60E-02	5.00E-04	0.900	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn-120(n, y) Sn-120(n p)m	(0) 50	fns 5min	4 91E-03	4 42E-04	0.500	C/E(5)=0.952
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{120(n,p)n}{\text{Sn}-120(n,q)\sigma}$	51	fng Sn	3.84E-04	5.32E-05	0.610	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{5n 120(n,\alpha)g}{5n - 120(n,\alpha)m}$	5	fng Sn	3 90E-04	6.11E-05	0.61	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sn_{120(n,w)m}$ Sn_121(n v)	52	MACS 30keV	1.67E-01	3.00E-02	0.935	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn=121(n, y) Sn=122(n v)	(5.)	MACS 30keV	2.19E-02	1 50E-03	0.535	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn-122(n, y) Sn-124(n 2n) σ	6	fns 7hour	1.191-02	1.35E 03	0.952	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	511 127(11,211)5	0	fng Sn	2.21E+0	8.96E-01	0.529 [†]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn-124(n.2n)m	6	fns 5min	4.15E-01	2.49E-02	1.150	C/E(5)=1.112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~		fng Sn	5.60E-01	1.71E-02	0.881	J. L(J) -1.112
$Sn-125(n,\gamma)$ S_0 MACS_30keV 5.90E-02 9.00E-03 1.349	$Sn-124(n.\gamma)$	(52)	MACS 30keV	1.20E-02	1.20E-03	1.389	
	Sn-125(n.v)	50	MACS 30keV	5.90E-02	9.00E-03	1.349	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Sn-126(n,γ)	50	MACS_30keV	1.00E-02	4.00E-03	0.769	
Sb-121(n,2n)g	6	fns_5min	7.79E-01	4.67E-02	1.205	
Sb-121(n,γ)	(6)	MACS_30keV	5.32E-01	1.60E-02	0.948	
Sb-121(n,t)/(n,xt)	$(5_3/5_3)$	d-Be	4.50E-03	1.36E-03	1.057	/1.944
Sb-122(n,γ)	53	MACS_30keV	9.94E-01	1.62E-01	0.789	
Sb-123(n,γ)	(6)	MACS_30keV	3.03E-01	9.00E-03	1.156	
$Sb-125(n,\gamma)$	(53)	MACS 30keV	2.60E-01	7.00E-02	0.844	
$Te-120(n,\gamma)$	(50)	MACS 30keV	5.38E-01	2.60E-02	0.676	
$Te-122(n,\gamma)$	(6)	MACS 30keV	2.95E-01	3.00E-02	0.958	
Te-123(n,y)	(6)	MACS 30keV	8.32E-01	8.00E-02	0.756	
Te-124(n,y)	(6)	MACS 30keV	1.55E-01	2.00E-03	0.885	
$Te_{-125(n,y)}$	6	MACS 30keV	4 31E-01	4 00E-03	0.861	
Te-126(n,y)	(6)	MACS 30keV	8 13E-02	1 40E-03	1 014	
$Te_{-128(n,y)}$	(5)	MACS 30keV	4 44E-02	1 30E-03	0.654	
$Te_{-128(n,t)/(n,t+)}$	(5_2)	d_Be	$250E_02$	6.00E-03	0.054	/0.528 C/F(5) = 0.094
Te-130(n,2n)g	6	fns 5min	5.64E-01	4 51E-02	1.042	70.328 C/L(3)=0.074
$Te_{-130(n,2n)g}$	(6)	MACS 30keV	1.47E-02	2 80E-03	0.950	
I = 127(n 2n)	6	cf252 flux 1	2.07E-03	7.00E-05	1.085	
$I_{127}(n,2n)$	5.	fns 5min	1.93E-02	1.16E-03	1.605	C/E(5)=1.666
1 127(11,1)	6	MACS 30keV	6.35E-01	3.00E-02	0.965	0/1000
I-127(n,h)/(n,h+)	53/53	d-Be2a	5.59E-04	1.08E-04	0.588	/0.627
$I-127(n,\alpha)/(n,\alpha+)$	$(5_0/5_3)$	d-Be2a	1.93E-03	3.23E-04	2.738	/2.924
$I = 129(n.\gamma)$	(6)	MACS 30keV	4.41E-01	2.20E-02	0.823	
$Xe-124(n \gamma)$	(50)	MACS 30keV	6.44E-01	8.30E-02	0.607	
$X_{e-126(n, y)}$	(5_0)	MACS 30keV	3.59E-01	5.10E-02	0.760	
$Xe_{-128(n, y)}$	(5_0)	MACS 30keV	2.63E-01	3 70E-03	0.651	
$Xe_{-120(n,y)}$	52	MACS 30keV	6 17E-01	1 20E-02	0.724	
$X_{e-12}(n, y)$	(6)	MACS 30keV	1.32E-01	2 10E-02	1.021	
$Xe_{-131(n,y)}$	5.	MACS 30keV	3 40E-01	6 50E-02	0.773	
$X_{e} = 137(n, y)$	(5.)	MACS 30keV	6.46E-02	5 30E-03	0.655	
$X_{e} = \frac{132(n, y)}{133(n, y)}$	(5_0)	MACS 30keV	1.27E-01	3.40E-02	0.035	
$X_{2} = \frac{134(n N)}{2}$	(5_0)	MACS 30keV	$2.02E_{-}02$	1 70E-03	1.000	
$X_{c-1,34}(n, \gamma)$	(53)	MACS 30keV	9.10E.04	8.00E.05	0.846	
$C_{s} = \frac{133(n 2n)}{2}$	50	fns 5min	9.10E-04	8.00E-03	1 225	C/E(5) = 1.100
$C_{s} = 133(n,21)$	(6)	MACS 30keV	5.09E-01	2.10E-02	0.915	C/L(J)=1.190
$C_{s} = \frac{133(n h)}{(n h \pm 1)}$	5./5.	d Bala	4.78E.04	2.10E-02	0.515	/0.648
$C_{s} 134(n \alpha)$	(6)	MACS 30keV	7.24E-04	9.02E-03	0.011	/0.040
$C_{s} = \frac{135(n, y)}{125(n, y)}$	(6)	MACS 30keV	1.60E_01	1.00E-02	1 1 27	
$C_{S-133}(n, \gamma)$	(0)	MACS 30keV	7.46E.01	1.00E-02	0.877	
$B_{a} = 130(n, \gamma)$	(5_2)	fns 7hour	1.40E-01	7.51E.01	0.077	C/E(5) = 1.042
Ba-132(n,2n) Ba-132(n,2n)	(5)	MACS 30keV	3.97E_01	1.60F_01	0.591	UL(J)-1.042
Ba-132(n, y) Ba-134(n 2n)m	6	fns 7hour	$7.14F_{-01}$	9 99F_02	1.075	
$Ba_{134(n,21)m}$	(52)	cf252 flux 1	2.55E-01	2.80E-02	0.197	
	(6)	MACS 30keV	1.76E-01	5.60E-03	1.139	
Ba-134(n,t)/ $(n,t+)$	50/53	d-Be	1.50E-02	2.00E-03	0.228	/1.269
Ba-135(n , γ)	(6)	MACS 30keV	4.55E-01	1.50E-02	0.731	
Ba-136(n.2n)m	6	fns 7hour	8.90E-01	1.25E-01	1.095	C/E(5)=1.076
$Ba-136(n,\gamma)$	(52)	cf252 flux 1	2.93E-01	2.90E-02	0.049	C/E(5)=0.197
	× 2/	MACS_30keV	6.12E-02	2.00E-03	0.812	
Ba-137(n,γ)	6	MACS_30keV	7.63E-02	2.40E-02	0.846	
Ba-138(n,2n)m	6	fns_5min	6.85E-01	5.48E-02	1.183	C/E(5)=1.099
Ba-138(n,γ)	6	cf252_flux_1	3.80E-03	4.00E-04	0.416 [†]	
		cf252_flux_1	1.30E-03	2.60E-04	1.216	
	6	MACS_30keV	4.00E-03	2.00E-04	0.920	
Ba-138(n,p)	(6)	fns_5min	2.70E-03	2.70E-04	1.099	
La-138(n, y)	50	MACS_30keV	4.19E-01	5.90E-02	0.669	
La-139(n, y)	6	tud_Er	2.48E-03	1.56E-04	0.950	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
		MACS_30keV	3.24E-02	3.10E-03	1.084	
La-139(n,p)	6	fns_5min	3.66E-03	1.46E-03	1.163	
		tud_Er	4.00E-03	9.53E-04	0.970	
La-139(n,t)/(n,xt)	(6)	d-Be	7.00E-03	1.50E-03	0.453	/0.909 C/E(5)=0.469
La-139(n,h)/ $(n,h+)$	$5_{3}/5_{3}$	d-Be2a	4.52E-04	8.60E-05	0.502	/0.525
		d-Be2a	4.65E-04	6.15E-05	0.488	/0.511
La-139(n, α)/(n, α +)	(6)	d-BeZa	2.04E-03	3.23E-04	1.38/	/1.520 C/E(5)=1.205
0.124((5)	MACS 201-2V	2.05E-03	2.05E-05	1.090	
$\frac{\text{Ce-134(n,\gamma)}}{\text{Ce-125(n-1)}}$	(33)	MACS_30KeV	9.07E-01	3.51E-01	0.220	
$\frac{\text{Ce-135(n,\gamma)}}{\text{Ce-126(n,\gamma)}}$	3_0	MACS_30KeV	1.32E+00	2.00E-01	0.708	
$Ce-136(n,\gamma)$	(33)	MACS_30keV	5.28E-01	2.10E-02	1.431	
$\frac{\text{Ce-13}/(n,\gamma)}{C-129(-1)}$	5_3	MACS_30KeV	9.73E-01	2.50E-01	0.795	
$\frac{\text{Ce-138(n,\gamma)}}{\text{Ce-120(1)}}$	(53)	MACS_30KeV	1.79E-01	5.00E-05	0.530	
$\frac{\text{Ce-139(n,\gamma)}}{\text{Ce-140(n-2n)m}}$	S_0	MACS_30KeV	2.14E-01	1.20E-01	0.524	
$C_{2} = 140(n,2n)m$	6	Ins_5min MACS_20keV	0.80E-01	4.11E-02	1.099	
$Ce-140(n,\gamma)$	0	MACS_SOKEV	1.00E-02	4.00E-04	0.810	
$Ce-140(n,\alpha)m$	0	MACE 201-2V	2.83E-03	1./1E-04	1.042	
$\frac{\text{Ce-141}(n,\gamma)}{\text{Ce-142}(n,\gamma)}$	5	MACS_30KeV	7.00E-02	3.30E-02	1.033	
$C_{2} = \frac{142(n,\gamma)}{142(n,\pi)}$	\mathcal{I}_1	fng 5min	2.00E-02	1.00E-03	0.023	
$\frac{\text{Ce-142(II,p)}}{\text{Pr }141(n 2n)}$	5	fns_5min	4.01E-03	4.01E-04	1.055	
$\Gamma 1-141(11,211)$	(6)	MACS 30koV	1.03E+0	0.21E-02	0.046	
$P_{1}^{-141(n,\gamma)}$	(0)	d Ro	0.40E.03	1.40E-03	0.940	/1 135 C/E(5)=0 805
$\mathbf{P}^{-141(1,t)/(n,xt)}$	(0)	u-De	9.40E-05	2.00E-03	0.794	C/E(3)=0.803
Pr-141(n.t) /($n.t+$)	(6)	d-Be	2.30E-02	6.00E-03	0.325	$/1.186 \text{ C/E}(7)=0.311^{\dagger}$
$Pr-142(n.\gamma)$	50	MACS 30keV	4.15E-01	1.78E-01	0.659	
$Pr-143(n,\gamma)$	53	MACS 30keV	3.50E-01	8.60E-02	0.937	
Nd-142(n,2n)m	6	fns 5min	4.22E-01	5.49E-02	1.333	
Nd-142(n,γ)	6	MACS_30keV	3.50E-02	7.00E-04	1.274	
Nd-143(n,γ)	6	MACS_30keV	2.45E-01	3.00E-03	0.996	
$Nd-144(n,\gamma)$	52	MACS_30keV	8.13E-02	6.50E-03	0.691	
Nd-145(n,γ)	6	MACS_30keV	4.25E-01	5.00E-03	0.910	
Nd-146(n,γ)	6	MACS_30keV	9.12E-02	1.00E-03	1.016	
Nd-146(n,h)/(<i>n</i> , <i>h</i> +)	5 ₃ /5 ₃	d-Be2a	2.58E-04	8.60E-05	0.719	/0.747
Nd-146(n, α)/(n, α +)	6	d-Be2a	2.15E-03	3.23E-04	1.350	/1.448
Nd-147(n,γ)	5 ₃	MACS_30keV	5.44E-01	9.00E-02	0.828	
Nd-148(n,γ)	6	MACS_30keV	1.47E-01	2.00E-03	0.813	
Nd-150(n,γ)	6	MACS_30keV	1.59E-01	1.00E-02	0.873	
Nd-150(n,2n)	52	fns_5min	8.08E-01	1.13E-01	1.829	C/E(5)=1.812
Pm-147(n,γ)	(53)	MACS_30keV	7.09E-01	1.00E-01	1.355	
Pm-148(n,γ)	52	MACS_30keV	2.97E+00	5.00E-01	0.413	
Pm-148m(n,γ)	50	MACS_30keV	2.45E+00	1.20E+00	1.414	
Pm-149(n,γ)	52	MACS_30keV	2.15E+00	7.50E-01	0.420	
<mark>Sm-144(n,2n)m</mark>	6	fns_5min	4.61E-01	5.07E-02	1.263	C/E(5)=0.984 C/E(7)=1.136
Sm-144(n,2n)	(6)	fns_5min	1.08E+0	1.19E-01	1.165	C/E(5)=1.148 C/E(7)=1.111
Sm-144(n,γ)	6	MACS_30keV	9.20E-02	6.00E-03	0.951	
Sm-147(n,γ)	6	MACS_30keV	9.74E-01	1.00E-02	1.061	
Sm-148(n,γ)	6	MACS_30keV	2.41E-01	2.00E-03	0.902	
Sm-149(n,γ)	6	MACS_30keV	1.82E+00	1.70E-02	1.034	
Sm-150(n,γ)	6	MACS_30keV	4.22E-01	4.00E-03	0.989	
Sm-150(n,p)	6	fng_ScSmGd	6.05E-03	7.26E-04	1.245	
Sm-151(n,γ)	50	MACS_30keV	3.03E+00	6.80E-02	0.723	
Sm-152(n,γ)	6	MACS_30keV	4.73E-01	4.00E-03	0.929	
Sm-152(n,α)	6	fng_ScSmGd	2.55E-03	3.06E-04	0.803	
Sm-153(n,γ)	5 ₃	MACS_30keV	1.10E+00	1.75E-01	0.975	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Sm-154(n,2n)	6	fng_ScSmGd	1.84E+00	6.42E-02	0.939	
Sm-154(n,γ)	6	MACS_30keV	2.06E-01	1.20E-02	1.101	
Eu-151(n,γ)m	5 ₂	fns_5min	1.01E-01	1.51E-02	3.452	C/E(5)=2.609
		MACS_30keV	1.56E+00	1.24E-01	0.852	
Eu-151(n,γ)	(6)	MACS_30keV	3.48E+00	7.70E-02	1.110	
Eu-152(n,γ)	50	MACS_30keV	7.60E+00	1.20E+00	0.622	
Eu-153(n,γ)	(6)	MACS_30keV	2.26E+00	4.60E-02	1.158	
Eu-154(n,γ)	50	MACS_30keV	4.42E+00	6.70E-01	0.617	
Eu-155(n,γ)	5 ₃	MACS_30keV	1.32E+00	8.40E-02	0.767	
Gd-152(n,γ)	6	MACS_30keV	1.05E+00	1.70E-02	0.845	
Gd-153(n,γ)	50	MACS_30keV	4.55E+00	7.00E-01	0.555	
Gd-154(n,γ)	52	MACS_30keV	1.03E+00	1.20E-01	0.677	
Gd-155(n,γ)	6	MACS_30keV	2.65E+00	3.00E-01	1.020	
Gd-156(n,γ)	6	MACS_30keV	6.15E-01	5.00E-03	0.834	
Gd-157(n,γ)	6	MACS_30keV	1.37E+00	1.50E-01	1.022	
Gd-158(n,γ)	6	MACS_30keV	3.24E-01	3.00E-03	0.808	
Gd-158(n,p)	6	fng_ScSmGd	3.17E-03	1.46E-04	1.170	
Gd-158(n,α)	52	fng_ScSmGd	1.11E-03	6.67E-05	2.005	
Gd-160(n,2n)	5 ₂	fns_5min	1.20E+0	2.27E-01	1.209	
	-	tng_ScSmGd	1.96E+0	6.08E-02	0.779	
<mark>Gd-160(n,γ)</mark>	6	fns_5min	3.28E-03	6.23E-04	<mark>4.106</mark>	C/E(5)=1.563
	-	MACE 201-JV	1.540.01	2.005.02	1.226	C/E(7)=1.818
Cd 160(n n)	5 5	MACS_30KeV	1.54E-01	2.00E-02	1.320	C/E(5) = 0.042
Th $150(n,p)$	5 5	fns_5min	2.24E-03	5.01E-04	0.885	C/E(3)=0.942
Tb $159(n,21)$ m	5 ₄	MACS 30keV	1.58E±00	1.50E-01	1.010	
Tb-159(n, p)	6	fns 5min	1.50E100	1.50E-01	1.010	
Tb-159(n,p) Tb-159(n t)/(n rt)	5/50	d-Re	7.90E-03	2.00E-02	0.628	/1 127
Tb-159(n, α)/(n, α +)	6	d-Be2a	1.56E-03	2.58E-04	2.827	/2.948
Tb-160(n γ)	50	MACS 30keV	3 24E+00	5 10E-01	0.586	12.910
Dy-156(n 2n)	6	fng Dy	1.53E+0	8.09E-02	1 1 2 0	
$Dy - 156(n \gamma)$	6	MACS 30keV	1.61 + E00	9.30E-02	0.854	
Dy - 158(n, 2n)	6	fng Dy	1.92E+0	7.28E-02	0.969	
$Dy-158(n,\gamma)$	53	MACS 30keV	1.06E+00	4.00E-01	0.765	
$Dy-160(n,\gamma)$	6	MACS 30keV	8.90E-01	1.20E-02	0.918	
$Dy-161(n,\gamma)$	6	MACS 30keV	1.96E+00	1.90E-02	0.896	
$Dy-162(n,\gamma)$	6	MACS 30keV	4.96E-01	4.00E-03	0.827	
Dy-162(n,p)	6	fns 5min	2.14E-03	2.79E-04	1.811 [†]	C/E(5)=1.482
		fng_Dy	4.08E-03	1.92E-04	1.000	
Dy-162(n,t)/(<i>n</i> , <i>t</i> +)	50/53	d-Be	1.60E-02	3.30E-03	0.218	/1.039
Dy-163(n,γ)		MACS_30keV	1.11E+00	1.10E-02	0.666	
Dy-163(n,p)	6	fng_Dy	3.33E-03	1.37E-04	0.957	
Dy-164(n,γ)g	54	fng_Dy	2.97E-02	1.34E-03	0.752	
Dy-164(n,γ)m	6	fns_5min	8.89E-02	1.24E-02	1.351	C/E(5)=0.852
Dy-164(n,γ)	(5 ₂)	fns_5min	6.89E-02	1.52E-02	<mark>86.629</mark>	C/E(5)=2.767
		MACS_30keV	2.12E-01	3.00E-03	0.852	C/E(7)=2.783
Dy-164(n,p)	<u>5</u> 2	fins_5min	1.64E-03	1.81E-04	1.515	C/E(5)=1.432
Ho-163(n,γ)	(5 ₀)	MACS_30keV	2.13E+00	9.50E-02	0.643	
Ho-165(n,2n)	(6)	fns_5min	1.44E+0	2.01E-01	1.102	C/E(5)=0.529 C/E(7)=1.191
Ho-165(n,2n)m	6	fns_5min	5.64E-01	7.89E-02	1.654	C/E(5)=0.485
II. 165()	(5)	MACE 201 M	1.100.00	1.005.01	1 215	C/E(/)=1.136
H0-103(n,γ)	(\mathfrak{Z}_2)	IVIACS_SUKEV	1.18E+00	1.00E-01	1.515	/0.880
Ho $165(n h)/(n,xl)$	$5_0/5_3$	d Be22	9.00E-03	2.00E-03	0.484	/0.009
$\frac{110-103(11,11)/(n,n+)}{100}$	53/53	d_{-Be2a}	1.72E-04	4.30E-03	1.024	/0.755
$Fr_{-162}(n, \alpha)/(n, \alpha+)$	6	tud Fr	1.03E-03 1.42E+0	1 10F 01	1.020	/1.112
Fr = 162(n,211)	5.	MACS 301-AV	1.+20+0 6.63E+00	1.192-01 1 24F-01	0.785	
$L_{1}-102(11, \gamma)$	53	MITCS_DORE A	0.0315+00	1.240-01	0.765	l

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Er-164(n,2n)	52	tud_Er	1.84E+00	1.73E-01	0.770	
Er-164 (n,γ)	5_{0}	MACS_30keV	1.08E+00	5.10E-02	0.590	
Er-166(n,2n)	52	fns_5min	3.75E-01	1.39E-01	4.611	C/E(5)=1.267
Er-166(n,γ)	(6)	MACS_30keV	5.36E-01	5.60E-02	1.170	
Er-166(n,p)g	6	tud_Er	3.50E-03	2.20E-04	0.893	
$\text{Er-167}(n,\gamma)$	6	MACS_30keV	1.43E+00	1.43E-01	0.942	
Er-167(n,p)	6	tud_Er	2.87E-03	1.61E-04	0.942	
$Er-168(n,\gamma)$	6	MACS_30keV	3.38E-01	4.40E-02	0.927	
Er-168(n,p)	6	fns 5min	2.47E-03	2.47E-04	1.020	C/E(5)=1.010
		tud_Er	2.39E-03	1.79E-04	0.970	
Er-169(n,γ)	50	MACS_30keV	6.53E-01	1.14E-01	0.493	
$Er-170(n,\gamma)$	6	MACS_30keV	1.70E-01	7.00E-03	1.133	
Er-170(n,p)g	54	tud Er	1.52E-03	2.84E-04	0.640	
Er-170(n,d)/(n,d+)	6	tud_Er	1.69E-04	3.97E-05	0.703	/0.890
Tm-169(n,2n)	6	fns_5min	1.98E+0	4.75E-01	0.877	
Tm-170(n,γ)	5 ₃	MACS_30keV	1.13E+00	5.60E-02	0.898	
$Tm-171(n,\gamma)$	5 ₃	MACS_30keV	1.87E+00	3.30E-01	1.024	
$Tm-169(n,\gamma)$	50	MACS_30keV	4.86E-01	1.44E-01	1.481	
Yb-168(n,2n)	6	fns_5min	1.50E+0	1.08E+0	1.124	
Yb-168(n,γ)	(50)	MACS_30keV	1.21E+00	4.90E-02	0.689	
Yb-170(n,γ)	6	MACS_30keV	7.18E-01	7.00E-03	0.857	
Yb-171(n,γ)	6	MACS_30keV	1.21E+00	1.20E-02	1.005	
Yb-172(n,γ)	6	MACS_30keV	3.41E-01	3.00E-03	1.033	
Yb-173(n,γ)	6	MACS 30keV	7.57E-01	7.00E-03	1.011	
Yb-174(n,γ)	6	MACS 30keV	1.51E-01	2.00E-03	1.003	
Yb-174(n,p)	6	fns 5min	2.22E-03	4.43E-04	1.235	
Yb-174(n,h)/(n,h+)	$5_0/5_3$	d-Be2a	2.15E-04	5.38E-05	0.411	/0.430
Yb-174(n, α)/(n, α +)	6	d-Be2a	1.93E-03	3.23E-04	1.686	/1.744
Yb-175(n,γ)	(50)	MACS_30keV	5.58E-01	8.30E-02	1.140	
Yb-176(n,γ)	(6)	MACS_30keV	1.16E-01	2.00E-03	0.836	
Lu-175(n,2n)g	52	rez_DF	5.94E-01	1.78E-02	0.634	
Lu-175(n,3n)	52	rez_DF	1.68E-01	5.04E-03	1.465	
Lu-175(n,4n)	(53)	rez_DF	1.74E-02	5.23E-04	1.362	C/E(5)=1.184
Lu-175(n,γ)m	6	fns_5min	5.01E-02	1.00E-02	1.220	C/E(5)=1.203
		MACS_30keV	1.04E+00	3.00E-02	0.753	
Lu-175(n,γ)	(6)	MACS_30keV	1.22E+00	3.00E-02	0.961	
Lu-176(n,γ)	(6)	MACS_30keV	1.64E+00	1.40E-02	0.837	
Hf-174(n,2n)	6	fng_hafnium	1.86E+0	3.73E-01	0.942	C/E(5)=1.000
Hf-174(n,γ)	6	MACS_30keV	9.84E-01	4.6E-02	0.807	
Hf-176(n,2n)	6	fng_hafnium	1.75E+0	1.96E-01	1.024	
Hf-176(n,γ)	(6)	MACS_30keV	6.26E-01	1.10E-02	0.712	
Hf-177(n,n')n	5 ₃	fing_heat	4.42E-03	7.07E-04	1.270	C/E(5)=1.124
Hf-177(n,γ)	(6)	MACS_30keV	1.54E+00	1.20E-02	0.802	
Hf-178(n,γ)	(6)	MACS_30keV	3.19E-01	3.00E-03	0.845	
Hf-178(n,p)m	6	fng_hafnium	5.94E-04	1.08E-04	1.039	
Hf-178(n,p)	(6)	fng_hafnium	3.67E-03	1.18E-03	0.781	
$Hf-179(n,\gamma)$	(6)	MACS_30keV	9.22E-01	8.00E-03	0.962	
Hf-179(n,p)	52	fng_hafnium	1.08E-02	2.51E-03	0.599	Q/T(5) 0.007
HI-180(n,n')m	6	fng_hafnium	1.14E-02	0.05E-04	1.948	C/E(3)=0.98/
ni-180(n,2n)m	0	fng best	5.42E-01 6.20E-01	3.25E-02	0.988	
$Hf 180(n \gamma)$	5.	fng hafnium	9.29E-01	1.51E-01	0.507	
111-10U(11,γ)	52	MACS 30keV	1.57E-01	2.00E-03	0.897	
Hf-180(n.p)	6	fns 5min	1.20E-03	7.18E-05	1.961 [†]	
		fng_hafnium	3.87E-03	9.36E-04	0.614	
		fng_heat	3.85E-03	6.16E-04	0.640	
Hf-181(n,γ)	(53)	MACS_30keV	1.94E-01	3.10E-02	1.124	
Hf-182(n,γ)	53	MACS_30keV	1.41E-01	8.00E-03	0.908	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Ta-179(n,γ)	(53)	MACS_30keV	1.33E+00	4.22E-01	0.749	
Τα-181(n,γ)	(6)	MACS_30keV	2.36E+00	5.80E-01	0.849	
		MACS_30keV	1.47E+00	1.10E-01	1.444	
Ta-181(n,2n)g	6	fns_7hour	7.93E-01	7.93E-02	1.409	C/E(5)=1.376
		fns_5min	1.05E+0	1.37E-01	0.990	
		fng_Ta	1.01E+0	2.32E-02	1.036	C/E(5)=1.009
		tud_Ta	8.11E-01	2.08E-01	1.227	C/E(5)=1.190
		rez_DF	2.92E-01	8.0/E-03	1.024	C/E(5)=1.008
$T_{2} = \frac{191(n n'o)}{m}$	5	roz DF	3.30E-01	3.99E-05	0.900	C/E(5) = 0.660
$T_{a} = 181(n, n'\alpha)$	(5)	roz DE	3.00E-03	1.23E-00	2.615	C/E(5)=0.000
$1a-181(n,n \alpha)$ To $181(n 4n)m$	(33)	rez_DF	4.91E-04	0.01E-00	2.013	C/E(3)=0.514
$T_{a} = 181(n,41)$	50	fng To	1.23E-02	2.30E-04	0.233	
$1a-101(11,\gamma)$	(6)	fng_urofor	1.20E-04	4.13E-03	1 1 1 9	
$1a-181(n,\gamma)$	(0)	of 252 flux 1	1.19E+0	1.79E-01	1.110	
		$cf252$ _flux_1	1.20E-01 8.92E-02	0.30E-03	0.855	
		fng Ta	4.21E-02	2 90E-03	0.876	C/E(5)=0.882
		rez DF	2.30E-01	3.27E-03	0.296 [†]	0/11(0) 0.002
		rez DF	3.38E-02	2.91E-04	2.018 [†]	
		fns_7hour	1.36E-02	2.85E-03	0.803	C/E(7)=0.734
		MACS_30keV	7.66E-01	1.50E-02	0.921	
Ta-181(n,p)	6	fns_7hour	4.43E-03	9.31E-04	0.735	
		fng_Ta	3.40E-03	4.31E-04	0.978	
		tud_Ta	2.94E-03	3.85E-04	1.010	
		rez_DF	1.74E-03	1.65E-05	1.126	
Ta-181(n,n'p)m/(n,d+)m	$5_4/5_0$	fng_Ta	1.61E-04	3.06E-05	1.030	/4.758
		tud_Ta	1.37E-04	1.61E-05	0.948	/4.831
		rez_DF	2.50E-03	3.97E-04	0.447	/0.620
T 101()	~	rez_DF	2.00E-03	3.06E-05	0.559	/0.7/6 C/E(5)=0.719
1a-181(n,t)n To $181(n,t)/(n, nt)$	\mathbf{J}_3	rez_DF	2.83E-06	6.01E-08	0.846	/0.950 C/E(5)-1.521
1a-181(11,1)/(n,xt)	(6)	d-Be	3.90E-04 4 50E-03	2.40E-04	0.694	/0.839 C/E(3)=1.331 /1.156 C/E(5)=0.761
Ta-181(n h)/(n h +)	5./5.	d-Be2a	9 20E-05	2 59E-05	1 049	/1 119
$T_{a-181(n,\alpha)g}$	5 ₄	fng Ta	1.01E-03	4 04E-04	0.440	/1.11/
$T_{a-181(n,\alpha)g}$	6	fng Ta	2 31E-04	2 77E-05	1.017	C/E(5)=1.013
14-101(11,00)11	Ū	tud Ta	2.31E 01 2.20E-04	2.30E-05	0.925	0/10/015
$T_{a-182(n v)}$	52	MACS 30keV	1.12E+00	1.80E-01	0.935	
W-180(n,2n)m	6	fzk 2	8.70E-02	2.61E-02	1.117	
W-180(n,3n)	53	fzk 2	1.71E-02	2.56E-03	1.003	
$W-180(n,\gamma)$	6	MACS 30keV	6.60E-01	5.30E-02	0.903	
W-182(n,2n)	6	fns 7hour	1.58E+0	2.21E-01	1.221	
		fng_tung	1.37E+0	1.75E-01	1.153	
		fzk_2	5.39E-01	7.24E-02	0.750	
		fng_eurofer	1.44E+0	1.66E-01	1.106	
W-182(n,γ)	(6)	MACS_30keV	2.74E-01	8.00E-02	0.960	
W-182(n,p)	(6)	sneg_1	6.30E-03	2.02E-03	0.852	C/E(5)=0.928
		fng_tung	3.73E-03	6.19E-04	1.062	
		sneg_1	44.4E-03	3.02E-04	1.028	
		sneg_2	3.87E-03	8.12E-04	1.067	O(E(5) = 0.177)
		1ZK_SS510	2.92E-02	3.80E-03	0.174	C/E(3)=0.16/
		$12K_2$	2 75E 02	1.00E-04	1 318	
W-182(n α)n/(n $\alpha \perp$)n	6	rez_DF	2.48E-05	1.10L-04	0.320	/0.320
$W_{-183(n,v)}$	6	MACS 30keV	5 15F-01	1.51E-00	0.931	, 0.520
$W_{-183(n,p)}$ W_183(n,p)	5.	sneg 1	4 42F-03	3.45F-04	1 465	
··· 105(11,p)	52	sneg 2	4.75E-03	4.51E-04	1.119	
		fng f82h	3.15E-03	2.71E-04	1.647	
W-183(n,α)m	6	fzk 2	1.80E-05	3.60E-06	0.778	
$/(n, \alpha+)m$		rez_DF	2.23E-05	6.67E-07	2.500^{\dagger}	/2.502
W-184(n,n'p)/(n,d+)	53/53	fzk_ss316	9.80E-03	1.20E-03	0.473	/0.651 C/E(5)=0.658

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
		rez_DF	2.68E-03	7.38E-05	1.226	/1.739
		rez_DF	2.65E-03	1.35E-04	1.239	/1.758
W-184(n,γ)	(6)	MACS_30keV	2.23E-01	5.00E-02	0.898	
W-184(n,p)	6	fns_7hour	2.25E-03	1.58E-04	1.136	C/E(5)=1.064
		fng_tung	2.63E-03	2.28E-04	0.911	
		fng_f82h	1.98E-03	2.94E-04	1.276	
		sneg_1	2.78E-03	1.80E-04	1.173	
		IZK_SS510	9.08E-04	5.15E-04	4.057	
		IZK_2 rez_DF	0.29E-04 1 26E-03	9.43E-05	2 361	
$W_{-184(n t)/(n t+)}$	(5./5.)	d-Be	1.20E-03	2.00E-03	0.098	/0.623 C/E(5)=0.141
$W_{-184(n,\alpha)}$	6	fng tung	6.27E-04	5 39E-05	1 234	70.023 C/E(3)=0.111
w-104(II,02)	Ŭ	fzk 2	1.66E-04	2 49E-05	1.022	
		sneg 1	7.52E-04	5.64E-05	1.394	
		sneg 2	5.35E-04	9.64E-05	1.491	
		rez_DF	3.33E-04	1.51E-05	2.015^{\dagger}	C/E(5)=1.927
W-185(n,γ)	50	MACS_30keV	5.84E-01	5.30E-02	0.422	
W-186(n,2n)m	6	fns_5min	3.36E-01	4.37E-02	1.853 [†]	
		fng_tung	5.71E-01	9.30E-02	0.943	
		sneg_1	7.83E-01	5.64E-02	0.880	
W-186(n,2n)	(6)	fns_7hour	1.38E+0	1.93E-01	1.221	
		fzk_2	4.86E-01	6.84E-02	0.872	
		fng_tung	1.34E+0	1.65E-01	0.984	
		rez_DF	5.41E-01	1.78E-02	0.802	(0.407.C) (5) 4.107
W-186(n,n'p)/(n,d+)	$5_2/5_2$	fng_tung	1.74E-04	2.50E-05	0.094	/0.42/ C/E(5)=4.18/
		IZK_2	3.38E-04	1.01E-04	0.164	/0.349 C/E(5)=0.785 /1.615 C/E(5)=0.771
W 196(n nlot)m	5	fal 2	2.73E-03	0.33E-03	1.210	/1.013 C/E(3)=0.771
w-186(n,n'α)m	\mathcal{I}_4	IZK_Z	2.00E-00	6.00E-07	1.391	C/E(3) = 1.033
W 196(ma)	6	fng f82h	4.33E-03	0.85E-00	4.190	C/E(7) = 0.926
<u>νν-180(Π,γ)</u>	0	fng_10211	1.20E+0	2.40E-02 8.20E-02	1.010	C/E(7)=0.920 C/E(7)=1.011
		sneg 1	4 34E-03	3.29E-02	11.010 11.835 [†]	C/E(7)=1.011 C/E(7)=0.931
		Sheg_1	1.5 12 05	5.702 01	11.055	PEO changed
		rez DF	1.32E-01	1.13E-03	0.167	C/E(7)=0.179 [†]
		rez_DF	3.10E-02	9.30E-04	0.709	C/E(7)=0.762
		fzk_ss316	2.28E-02	1.48E-03	0.571	C/E(7)=0.668
		MACS_30keV	2.35E-01	9.00E-03	0.842	
W-186(n,p)	6	fns_5min	1.01E-03	1.31E-04	2.041	C/E(5)=1.661
		fng_tung	1.84E-03	2.75E-04	1.005	
		tzk_2	5.44E-04	8.16E-05	1.001	
$W_{196(n,h)/(n,h+1)}$	5 /5	sneg_1	2.29E-03	3.66E-04	1.119	/0.510 C/E(5)=0.105
$W-180(\Pi,\Pi)/(\Pi,\Pi+)$	53/53	d-De2a	1.18E-04	3.23E-03	0.497	/0.319 C/E(3)=0.193
w-180(II,a)	0	fal 2	1.27E 04	1.00E.05	0.902	
		sneg 1	7 18E-04	1.90E-05	0.990	
$/(n \alpha +)$		d-Be2a	1.40E-03	2.15E-04	1.443	/1.488
$/(n, \alpha +)$		rez DF	4.62E-04	2.31E-05	1.436 [†]	/1.436
Re-185(n.2n)g	52	fns 7hour	1.64E+0	8.22E-02	0.855	
	- 2	fng heat	2.19E+0	3.28E-01	0.625	
		fng_Re	1.87E+0	2.82E-01	0.735	
Re-185(n,2n)m	6	fns_7hour	3.68E-01	2.21E-02	0.917	
		fng_Re	2.99E-01	6.46E-02	1.103	
Re-185(n,3n)	5 ₃	fng_Re	4.41E-02	1.37E-02	0.643	
Re-185(n,γ)	(52)	MACS_30keV	1.53E+00	6.20E-02	0.610	
Re-185(n,p)m	6	fns_5min	2.17E-03	2.38E-04	1.155	
		tng_heat	4.79E-03	7.81E-04	0.546	
Re-186(n,\gamma)	53	MACS_30keV	1.55E+00	2.50E-01	1.258	
Re-187(n,2n)g	6	fns_7hour	1.68E+0	1.51E-01	0.995	C/E(7)=1.112
		Ins_5min	1.50E+0	1.20E-01	0.995	C/E(7) = 1.258
I	1	ing_neat	2.00E+0	2.39E-01	0.768	U/E(/)=0.767

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
		fng_Re	1.86E+0	2.64E-01	0.836	C/E(7)=0.885
Re-187(n,γ)m	6	fng_heat	3.64E-03	5.46E-04	0.500	
		fng_Re	7.02E-03	4.46E-03	0.948	
Re-187(n,γ)	(6)	fng_Re	3.19E-01	6.93E-02	0.635	
		MACS_30keV	1.16E+00	5.70E-02	0.788	
Re-187(n,p)	6	fng_Re	4.43E-03	6.55E-04	0.919	
Re-187(n,t)/ (n,xt)	$(5_3/5_3)$	d-Be	3.30E-03	5.63E-04	0.904	/2.223
Re-187(n,α)	6	fng_Re	7.10E-04	1.59E-04	0.931	
Os-184(n,γ)	53	MACS_30keV	5.90E-01	3.90E-02	1.123	
Os-186n,γ)	6	MACS_30keV	4.10E-01	1.70E-02	0.961	
Os-187(n,γ)	6	MACS_30keV	9.66E-01	3.10E-02	0.866	
Os-188(n,γ)	52	MACS_30keV	2.93E-01	1.40E-02	1.304	
Os-189(n,γ)	(6)	MACS_30keV	1.17E+00	4.70E-02	0.843	
Os-190(n,n')m	52	fns_5min	7.04E-03	3.52E-04	2.735	C/E(5)=2.272
Os-190(n,γ)	5 ₂	MACS_30keV	2.74e-01	1.20e-03	1.361	
Os-191(n,γ)	5 ₃	MACS_30keV	1.29E+00	2.80E-01	0.954	
Os-192(n,γ)	6	MACS_30keV	1.55E-01	7.00E-03	1.224	
Ir-191(n,γ)	(6)	MACS_30keV	1.35E+00	4.3E-02	0.888	
Ir-192(n,γ)	5 ₃	MACS_30keV	2.08E+00	4.50e-01	0.897	
Ir-193(n,2n)m	5 ₂	fns_5min	2.06E-01	3.50E-02	0.869	C/E(5)=3.428 C/E(7)=2.498
Ir-193(n,γ)	(6)	MACS_30keV	9.94E-01	7.00E-02	0.796	
Pt-190(n,γ)	5 ₃	MACS_30keV	5.08E-01	4.40E-02	1.275	
Pt-192(n,γ)	5 ₃	MACS_30keV	5.90E-01	1.20E-01	1.142	
Pt-193(n,γ)	5 ₃	MACS_30keV	1.23E+00	2.40E-01	0.944	
Pt-194(n,γ)	(5 ₀)	MACS_30keV	3.65E-01	8.50E-02	0.637	
Pt-195(n,γ)	(52)	MACS_30keV	8.60E-01	2.00E-01	0.689	
Pt-196(n,γ)	(53)	MACS_30keV	1.83E-01	1.60E-02	1.198	
Pt-198(n,2n)m	6	fns_5min	7.97E-01	4.78E-02	1.307	C/E(5)=1.178 C/E(7)=1.164
Pt-198(n v)	(52)	MACS 30keV	9.22E-02	4.60E-03	1.691	
Au-197(n.n')m	52	fns 5min	1.94E-01	2.33E-02	1.667	C/E(5)=1.639
Au-197(n,2n)m	6	fns 5min	1.01E-01	1.12E-02	1.099	
Au-197(n,2n)n	6	fns_5min	9.50E-02	4.75E-03	1.370 [†]	
		rez_DF	3.46E-02	1.73E-03	1.238	C/E(5)=1.262
Au-197(n,2n)	(6)	cf252_flux_1	4.30E-03	5.00E-04	1.334 [†]	C/E(5)=1.335
		cf252_flux_1	5.27E-03	2.26E-04	1.089	
		cf252_flux_1	5.25E-03	3.10E-04	1.093	
		cf252_flux_1	5.80E-03	2.90E-04	0.989	
		cf252_flux_1	5.50E-03	1.40E-04	1.043	
A. 107(a. 2a)	5	rez_DF	4.99E-01	2.00E-02	1.086	
Au $107(n, 3n)$	(6)	IIIS_JIIIII roz_DE	1.18E-03	7.08E-03	0.012	
Au $107(n, 4n)$	(0)	roz DF	2.73E-01	1.36E-02	0.915	C/E(5) = 0.504
Au = 107(n,41)	(0)	f_{252} flux 1	2.88E-02	5.04E-04	0.520	C/E(J)=0.394
Au-197(II, y)	(0)	cf252 flux 1	7.70E-02	7 70E-05	0.075	
		cf252 flux 1	7.80E-02	3.00E-03	0.950	
		MACS 30keV	5.82E-01	9.00E-03	0.929	
Au-197(n,t)/(<i>n</i> , <i>xt</i>)	$(5_3/5_3)$	d-Be	3.90E-03	9.00E-04	0.726	/1.466 C/E(5)=1.072
Au-197(n,h)g/(n,h+)g	50/50	d-Be2a	1.07E-04	3.23E-05	0.195	/0.210
Au-197(n,h)/(n,h+)	$(5_3/5_3)$	d-Be2a	8.03E-05	1.95E-05	0.951	/1.010
Au-197(n,α)g/(n,α +)g	6	d-Be2a	1.44E-03	2.15E-04	1.631	/1.650
Au-197(n, α)m/(n, α +)m	6	d-Be2a	1.07E-04	2.15E-05	0.782	/1.433
Au-198(n,γ)	5 ₃	MACS_30keV	8.40E-01	1.47E-01	0.768	
Hg-196(n,γ)	(5 ₀)	MACS_30keV	2.04E-01	8.00E-03	3.018	
Hg-198(n,γ)	(5 ₂)	cf252_flux_1	1.68E-01	6.00E-03	0.143	
		MACS_30keV	1.73E-01	1.50E-02	0.947	
Hg-199(n,γ)	6	MACS_30keV	3.74E-01	2.30E-02	0.768	

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
Hg-200(n,2n)m	6	fns_5min	8.24E-01	6.59E-02	0.866	C/E(5)=0.870
Hg-200(n, γ)	6	MACS_30keV	1.15E-01	1.20E-02	0.899	
Hg-201(n,γ)	6	MACS_30keV	2.64E-01	1.400E-02	0.996	
Hg-202(n,γ)	6	MACS 30keV	6.33E-02	1.90E-03	1.075	
$Hg-203(n \gamma)$		MACS 30keV	9.80E-02	1.70E-02	0.347	
$Hg-204(n, \gamma)$	6	MACS 30keV	4.20E-02	4.00E-03	0.840	
$T_{12} = 201(n;p)$ T1-203(n 2n)	6	fns 5min	1.41E+0	1 84E-01	1 205	
$T_{1-203(n,2n)}$	52	MACS 30keV	1.24E-01	8.00E-03	1.455	
$T_{1-205(n, \gamma)}$	(6)	fns 5min	2.53E-03	1.27E-04	11.739	C/E(5)=0.954
	(0)		2.002.00			C/E(7)=0.793
		MACS_30keV	5.40E-02	4.00E-03	0.644	
T1-205(n,p)	6	fns_5min	1.93E-03	9.63E-05	0.787	C/E(5)=1.010
T1-205(n,t)/(<i>n</i> , <i>xt</i>)	6	d-Be3	6.07E-04	2.80E-04	1.137	/1.183
		d-Be	4.60E-03	1.35E-03	1.189	/1.640
T1-205(n,t)/(n,t+)	6	d-Be	2.00E-02	4.00E-03	0.251	/0.780
Pb-204(n,n')m	6	fns_5min	5.24E-02	1.36E-02	1.064	
		fng_heat	5.62E-02	4.49E-03	0.940	
		tud_Pb	6.19E-02	5.63E-03	0.920	
Pb-204(n,2n)m	5 ₂	fns_5min	1.51E+0	7.57E-02	0.656	C/E(5)=0.679
Pb-204(n,2n)	(6)	fns_7hour	2.20E+0	1.10E-01	0.943	
		fng_heat	2.41E+0	1.69E-01	0.839	C/E(5) = 0.070
		tud_Pb	1.94E+0	1.0/E-01	0.900	C/E(3)=0.970
Pb-204(n,γ)	(6)	MACS_30keV	8.10E-02	2.30E-03	0.788	
Pb-205(n,γ)	50	MACS_30keV	1.25E-01	2.20E-02	0.388	
Pb-206(n,γ)	(6)	MACS_30keV	1.45E-02	3.00E-04	0.771	
Pb-206(n,p)	(5 ₂)	fng_heat	1.11E-02	2.89E-03	0.256	
Pb-206(n,α)	6	tud_Pb	5.02E-04	5.42E-05	0.761	
		fns_7hour	1.29E-03	8.11E-04	0.315^{\dagger}	
Pb-207(n,γ)	6	MACS_30keV	9.90E-03	5.00E-04	0.740	
Pb-208(n,γ)	52	MACS_30keV	3.6E-04	3.00E-05	1.472	
Pb-208(n,p)	52	fns_5min	1.21E-03	6.03E-05	0.704	C/E(5)=0.771
		fng_heat	2.56E-03	4.61E-04	0.350	
		tud_Pb	8.38E-04	8.88E-05	0.864	
Pb-208(n,t)/(<i>n</i> , <i>xt</i>)	$(5_0/5_3)$	d-Be3	5.81E-04	1.76E-04	0.360	/0.407 C/E(5)=0.879
Pb-208(n,t)/(n,t+)	$(5_0/5_3)$	d-Be	1.60E-02	3.00E-03	0.126	/0.697 C/E(5)=0.193
Bi-209(n,3n)	6	rez_DF	2.96E-01	2.09E-02	0.868	
Bi-209(n,4n)	6	rez_DF	3.01E-02	8.53E-04	0.775	
Bi-209(n,γ)	(6)	MACS_30keV	2.56E-03	3.00E-04	1.020	
Bi-209(n,p)	54	fns_5min	2.01E-03	1.81E-03	0.596	C/E(7)=1.190 RN - NPL90
Bi-209(n,t)/(n,xt)	(54/54)	d-Be3	7.80E-04	2.50E-04	0.775	/0.988 C/E(5)=0.446
		d-Be	3.70E-03	7.00E-04	0.891	C/E(7)=1.258 /2.217 C/E(5)=0.374 C/E(7)=1.380
Bi-209(n,h)/(<i>n</i> , <i>h</i> +)	(54/54)	d-Be2a	6.14E-05	2.05E-05	1.727	/1.800 C/E(5)=0.688
Bi-209(n,α)	(6)	fns_5min	5.81E-04	7.56E-05	1.411	, , , , , , , , , , , , , , , , , , ,
$Bi-210(n,\gamma)$	50	MACS_30keV	6.00E-03	5.00E-03	1.263	
Th-232(n,f)	6	cf252 flux 1	8.94E-02	2.40E-03	0.915	
		cf252_flux_1	8.47E-02	4.90E-03	0.965	
Pa-231(n,f)	6	cf252_flux_1	9.70E-01	4.50E-02	0.891	
U-233(n,f)	6	cf252_flux_1	1.95E+0	3.12E-02	0.942	
		cf252_flux_1	1.89E+0	4.80E-02	0.969	
U-234(n,f)	6	cf252_flux_1	1.20E+0	1.40E-02	0.992	
U-235(n,f)	6	cf252_flux_1	1.27E+0	1.82E-02	0.962	
		cf252_flux_1	1.21E+0	2.20E-02	1.003	
		cf252_flux_1	1.22E+0	1.90E-02	1.002	
		ct252_flux_1	1.05E+0	3.10E-02	1.158	
$U_{22}(ab)$		c1252_flux_1	1.25E+0	1.70E-02	0.987	
0-230(11,1)	0	CIZ32_IIUX_I	0.12E-01	0.00E-03	0.98/	1

Reaction	QS	Spectrum	σ (b)	Δσ (b)	C/E	Comment
U-238(n,2n)	52	cf252_flux_1	1.92E-01	1.90E-03	0.106	C/E(7)= 0.106
		cf252_flux_1	1.22E-02	1.50E-03	1.670	C/E(7)= 1.670
U-238(n,f)	6	cf252_flux_1	3.29E-01	1.00E-02	0.960	
		cf252_flux_1	3.24E-01	1.40E-02	0.975	
		cf252_flux_1	2.88E-01	7.00E-03	1.096	
		cf252_flux_1	3.08E-01	1.70E-02	1.025	
		cf252_flux_1	3.32E-01	5.00E-03	0.951	
		cf252_flux_1	3.11E-01	1.40E-02	1.016	
Np-237(n,2n)m	52	cf252_flux_1	4.66E-03	4.66E-04	0.621	
Np-237(n,f)	6	cf252_flux_1	1.26E+0	6.00E-02	1.044	
		cf252_flux_1	1.38E+0	1.00E-01	0.953	
		cf252_flux_1	1.37E+0	2.00E-02	0.963	
		cf252_flux_1	1.44E+0	2.29E-02	0.912	
Pu-239(n,f)	6	cf252_flux_1	1.80E+0	6.00E-02	0.999	
		cf252_flux_1	1.84E+0	2.40E-02	0.975	
		cf252_flux_1	1.86E+0	3.01E-02	0.966	
		cf252_flux_1	1.79E+0	4.10E-02	1.004	
Pu-240(n,f)	6	cf252_flux_1	1.34E+0	3.20E-02	1.025	
		cf252_flux_1	1.31E+0	3.00E-02	1.046	
Pu-241(n,f)	6	cf252_flux_1	1.62E+0	8.00E-02	1.004	
		cf252_flux_1	1.74E+0	5.40E-02	0.930	
Am-243(n,f)	6	cf252 flux 1	1.14E+0	2.30E-02	1.001	

1/ ENDF/B-VII.1 C/E = 7.59 JENDL-4 C/E = 7.28

Integral C/E for CI-37(n,p)S-37

Cr-50(n,2n)Cr-49

Integral C/E for Mn-52(n,y)Mn-53

Integral C/E for Cu-63(n, y)Cu-64

Integral C/E for Cu-65(n,p)Ni-65

Integral C/E for Rb-85(n,2n)Rb-84

Integral C/E for Sr-86(n,2n)Sr-85

Integral C/E for Mo-92(n,t)Nb-90

Integral C/E for Pd-108(n,2n)Pd-107m

Integral C/E for In-115(n,n'a)Ag-111

Integral C/E for Pr-141(n,t)Ce-139

Integral C/E for Dy-164(n,y)Dy-165

Integral C/E for Ho-165(n,2n)Ho-164

Pt-198(n,2n)Pt-197

Integral C/E for Bi-209(n,t)Pb-207

Nuclear Data Section International Atomic Energy Agency Vienna International Centre, P.O. Box 100 A-1400 Vienna Austria e-mail: services@iaeand.iaea.org fax: (43-1) 26007 telephone: (43-1) 2600-21710 Web: http://www-nds.iaea.org