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ABSTRACT

The report describes the details of the spherical optical model code developed
by the author. The details include mathematical formulations and their methods of
solutions. The code computes differential elastic scattering cross sections for neutrons
and protons, nuclear polarization, Mott-Schwinger polarization and total cross sections
for neutrons. The code also gives volume integrals of potentials and average values of

potential radii, potential scattering length and strength functions. A comparison of the

calculations of the present code with those done using other codes is also provided.
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1. Introduction

The nuclear optical model plays a fundamental role in nuclear reaction
calculations for nuclear data. It is widely used for computation of elastic differential
scattering cross sections, polarizations, reaction cross sections, neutron total cross
sections, S-wave and P-wave strength functions, and scattering lengths. The wave
functions derived from optical model potentials are used in DWBA calculations and
penetrabilities based on optical model are used in Hauser-Feshbach calculations.
Recently due to the availability of a large amount of scattering data in positive energy
range, a considerable interest has been shown in determining an optical model
potential nuclear mean field that can explain experimental data in both positive and
negative energy ranges giving rise to dispersive optical model analysis [1-5]. However
the basis of these calculations still remains the phenomenological optical model
analysis which also constitutes the theme of the present report. The report provides the
details of the optical rﬁlodel code developed by the author. At this stage it does not
have the facility for optiimization of optical model parameters. It gives elastic differential
scattering cross sections, neutron total cross sections, nuclear and Mott-Schwinger
polarization for neutrons, reaction cross sections, S-wave, P-wave and D-wave neutron
strength functions and;scattering lengths. It also gives volume integrals of real and
imaginary potentials as well as the root mean square values of potential radii. The
code has already beeri used in the analysis of 14 MeV neutron scattering data [6-7]
and forms a part of the Hauser-Feshbach code developed by the author that will be
used for nuclear data} calculations. Therefore, it is considered very appropriate to
publish the details of the mathematical formulations and the methods of their solutions
used in the present code.

2. Mathematical Formulation
2.1 The Optical Model Potential
The optical model regards a nucleus as a ‘cloudy crystal ball' that partly

transmits and partly absorbs the incident nuclear radiations. The partial absorption of
the nuclear radiations is achieved by making the two body nuclear potential a complex

one. The imaginary component of the potential gives rise to the absorption of the




incident radiation which results in the compoLmd elastic and non-elastic processes. The
details of the model and its historical development could be found in the literature [8-
11]. The nuclear optical model potential is taken as

V(r) = V,(r)-Uf(r)—i [W,f(r) + Wog(r)] - (U, +iW,) h(r) £o )

where r is the separation of the two interacting particles. V.(r) is the Coulomb potential
and it is taken to be that of a charged sphere of radius R. = r¢ AR

ZZ 2 2
v, = 252 [3-%)@ r < R,
° (2

= — for r > R,

where U, W, and Wp, are the real, imaginary volume and imaginary surface components
of the central potential respectively. Us and W, are the real and imaginary spin-
dependent potential. Evidence for spin-dependence of nuclear forces comes from the
nuclear shell model and observation of the phenomenon of polarization of particles

scattered from nuclei. £ and ¢ are the orbital and Pauli spin operators for spin—-1/2

particles. The scattering of spin-1/2 particles from nuclei with zero ground state spin is
considered in the present code. The f(r), g(r) and h(r) are Saxon-Woods, Saxon-Woods
derivative and Thomas-type geometrical form factor that give variation of the potential
with the radius of the nucieus. These have the following forms

0= — ®
1 + exp (—j
a
on) = ~4a T @
[a T 1 df(r)
hr) = —Lm,,c rodr (5)
_. _o 1 df()
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where r, a are in fermis.




2.2  Solution of the Schrodinger Equation

The determination of the cross section is carried out employing the method of
partial wave phase shift analysis [12] using the Schrodinger equation

vy 4+ %—ﬁ‘- E-V{O)y = 0 ©)

where p and E are the reduced mass and the centre-of-mass energy of the incident
particle. The total wave function y is expressed in terms of radial wave function,

spherical harmonics and spin wave function as follows.

= X =l )ZC',':M yr (6,6) X" (7)

jim

where Cf':m is Clebsch-Gordan coefficient. The eigen values of £ . ¢ for the spin of the

particle being parallel and antiparallel corresponding to the two j-values of (£ +1/2) and
(£-1/2) are £ and -(£ +1) that correspond to the radial wave functions u; (r) and u; (r)

respectively. The two wave functions are solution of the following two equations.

duzp) [, Velo) , Uf(p)+ioalp)+Wif(p)
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duy(p) [, Velp)  Uf(p) +Noolp) +W,f(p)

dp? E E 8(b
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E 2 J (p)=0

where p=Kr, k being the wave number given by

k= ———"2715 = 0.218728(n E)*fm™" (9)

E, the centre of mass energy, is the energy in MeV and p, the reduced mass, is given

by Ai Ai/ (Ai+ A); A and A, are the masses of the incident and target nuclei in amu.




The radial wave functions are zero at the origin and beyond the nuclear field they tend

asymptotically to the forms

u; (p) = F,(p)+iG,(p)+S;(F,(p)-iG,(p)) (10)
where

S; = exp(2i5;) } (11)

are the complex elements of the scattering matrix. F,(p) and G,(p) are regular and

iregular wave functions which are the solutions of eq. (8) without the nuclear
potentials. These functions are taken to have the asymptotic forms

F,(p) = sin [p—n |n(2p)—£g+o,} (12)
[ T
G,(p) =, cos Lp—n In(2p)-£§+c,_| (13)
where
2
n = —“Z'khi;e— = 015745422, (A,/E,)" (14)

where E, is the energy of incident particle in the laboratory system and is expressed in
MeV. Z, and Zr represent the charge states of the incident and target nuclei. o, is the

Coulomb phase-shift of the ¢th partial wave. The non spin-flip and the spin flip
scattering amplitudes are given by

A(0) = f(e)+( )Z{(zm)swes —(2¢+1)}P,(cosB)exp(2ic,)  (15)

2ik

B(®) = (2 k) 2{S; - S; P} (cos6)exp(2ic,) (16)

where P,(cos) and P}(cos®) are Legendre polynomials and associated Legendre

functions. f,(6) is Coulomb scattering amplitude and it is given by

f.(0) = (21?() cosec (%) exp [2ioo—2in In {sin (%)}] (17)



2.3 Nuclear Scattering Cross Sections and Polarization

The differential scattering cross section is given by

o(0) = |a@)" + Be)’ (18)

The polarization of the elastically scattered particles is given by

2lm (AB’)

"0 e

(19)

where
_ K, x K, 20)
|k X K ]

The total absorption cross section is given by

o = e+ -

+

s; ’)+e(1-|s;|2)} 21)

If the incident particles are uncharged, V,(p), f.(6) and o, are all zero and the total

elastic cross section is finite and given by

o =5 e+ D 1-8; + ¢fr-5;[) 22)
K® =0
The total cross section is given by
- —’2—‘2{(u1)(1—Re S:)+£(1-Re S;)} 23)
£=0

In practice only a finite number of partial waves are included in the above
summation and higher partial waves whose contributions are negligible are excluded.

2.4 Mott-Schwinger Polarization

Neutrons get also polarized due to their magnetic moment while moving in the
Coulomb field of the nucleus. Schwinger [13] using Born approximation gave the




following expression for the neutron polarization while assuming no nuclear spin orbit
potential.

P (6= =2 cot(8/2) Im(A(8))
" A®) [P + v2 cot?(812)

(24)

where A(6) is the nuclear scattering amplitude with no-spin orbit potential and y is given
by

u, Ze?
y=

= e = 1462 10°1m (25)

Here u, is the numerical value of the magnetic moment (1.91) in the units of Bohr

nuclear magnetons. M is the mass of the neutron and ¢ is the velocity of light.

2.5 Volume Integrals and Average Potential Radii

The formulas for volume integrals of potentials, and average potential radii are
derived in the appendix using approximations given by Elton [14]. The volume integral
of the real potential is given by

- 4n 24r = AT 3( ("_a)z\
J, = AIU(r)r dr = 3 " L1+ R JUO (26)

where a Saxon-Woods geometrical form factor is used. U, is the strength of the
potential, a is the diffusness parameter and R = r, A",

The volume integral of the surface imaginary potential is given by

4n ) 16nR? | 1(1ra)2-]
= — rrédr = W, Sl = 27
Jw AIW( red A al\lol.1+3 R J 27)
where W, is the strength of surface potential. Volume integral of the imaginary potential
representing volume absorption is given by eq. (26) with V, replaced by W, and R=r;
A'R,




The mean square radius of potential assuming Saxon-Woods geometrical factor
is given by

o)1)

, 3 3(R,) T3R,

5 v na 2
@)

The average mean square radius of the potential of the surface absorption

o] e

(28)

nature is given by

<> = R2 29)
X6
L 3 \R i
2.6 Strength Functions and Scattering Length
Below 100 KeV the total cross section for S-wave neutron is written as
2n
or = 17 S, +4nR?2, (30)

where the first term represents the absorption cross section and the second term
represents the potential or shape elastic scattering. S, is the S-wave strength function
and Ry is potential scattering length. In general the normalized strength function for ¢ -
wave is defined as

T, 1 E,)"z
5= 2 Y, (E (31)

v, = Penetrability of centrifugal barrier for a neutron having orbital
angular momentum quantum number ¢

E, = Energy of the incident particie




E] = 1eV

T, 1-|s, [

The strength functions, S,, S; and S, for S-, P- and D- wave neutrons

respectively are

]
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So
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T 2n/\ k*R?* J\E,
. - (_T;) (9+3k2R2+k4R4)(5)y2
2 2 k*R* E,
Rpot is given by

G;
R = —E 32
pot ‘/ an (32)

Here k is the wave number and R=1.35A"

3. Methods of Computations

The methods of computations described in Refs.[15-16] were adopted in the
present code. The determination of all observable quantities involves the knowledge of
scattering matrix S, which is calculated by equating the logarithmic derivative of the
internal and external wave functions at the boundary of the nucleus or matching radius.
The external wave function contains regular and irregular Coulomb wave functions. The
regular Coulomb wave functions have been determined by Miller's method [17]. This
method sets F,.(p)=0andF,(p)= e where € is a very small number. Here

£={mx+10 is considered adequate where ¢ ., is the maximum partial wave

contributing to the cross sections. o is a constant which is determined using the

Wronskian

F: (p) G(p) - F,(p) Gi(p) = 1 (33)




All the lower values of regular Coulomb wave functions were determined from

the following recurrence relation

[112+€2]1’2 ’ [ n 1] I—{T]2+(f+1)2}1/2-l
—_e—. F"1(p)=(2£+1)l_f(£+1)+;_| Fl(p)—[ ?+1 JF1+1(p) (34)

and F(p) was calculated from the recurrence relation

[n? +(2+1)?]
£+1

12

{-ﬂ"? + f—;ﬂ F,(p)-F(p) = Fr.a(p) (35)

G, (p) and G/ (p) were calculated as describe below.

The irregular Coulomb wave functions and their derivatives were determined

using the following expressions.

G,(p)=s cos -tsind (36)
G.(p)=Scos6-T sin 6
where
8=-nIn(2p)+p+o,
s,t, Sand T are given by_
25 25 25 25
s=2s, t=)t, §S=28, T=2.T (37)
n=0 n=0 n=0 n=0

The required terms in the above series are calculated from the following
relations

(38)

where




A, =(2n+1)n
A, =2p (n+1)n
A, =n’-n(n+1)

with the following initial values

n .
s, =1, s1=2—p, S,=0,
S - 713 -712 _i
1 2p2 2p ’
2 . (39)
n .
t,=0, t1=§-5, T°=1—-5
2
-n . n
T, = +—
1 p2 2p !
The summations s, S, t and T are required to satisfy the following relation
sT-St=1 (40)

Since the convergence of the above series improves as p increases, a value of
p substantially greater than p, must be used. To ensure accuracy, p is first set to a
suitable starting value and the series are summed. If the eq. (40) is satisfied to 1 part in
10*, the values are accepted if not p is increased in steps until the relation is satisfied
in the required accuracy limit. since the values of G,(p) and G's(p) are calculated at a
distance greater than the matching radius pn, the values of Go(p) and G'(p) at the
matching radius are obtained by integrating numerically in the inward direction the
following equation

d?u,(p) [, 2n £+1)]
a0 U 2 |u(P)=0

du(p) [, 2n #e+1)]
@ -7 2 Juz(p) (41)

u"(p)=F(pu,)
u"(p) = Alp) u,(p)

10




In the present case £ =0 and u,(¢) = G,(p)and u(p) = G, (p). We drop ¢ from
u’'s. The inward integration is done using Runge-Kutta method [18]. Given the function
and its derivative at the ith step, the function and its derivative at the (i+1)th step are

calculated as follows.

h

ul, =F(p;, u;y) U, = U, +5ui”

, h h?
u, =F | p +§: U, Us =U, +—4'ui.1
us, =F (pi +§, Ui,s) Uis =U;, +§ui'.1 +'—2—u{2 (42)
ul, =F(p;+h u,)

h2

Upqg = Ui + —é-—(u;j1 +ul, + u;j3) +hui,

i
u... =u +D(u" +2u”, +2u”, +u” )
1,1 i1 6 i1 i,2 i3 i4

Where h is the basic integrating step.

G,(p) and G,(pm) were calculated using the relationship expressed by the eq.
(34).

The values of the internal wave functions at the matching radius are obtained by
integrating eq. 8 numerically up to p,=kR+7ka where R is the maximum value of the
radius of the potential (R=r,A"). The Fox-Goodwin method [19] was used for the

numerical integration of eq. 8 for internal region.

{2+§h2Ai(p)} u;(p) ‘[1_:]_;'Ai-1(9)} u(p)

1—[19;—] Aii(p)

As the technique does not involve the evaluation of the first order differential

U,.+(p) (43)

during the integration it is to be evaluated by using the following expression

|
|
i
|
|
1
J

11




u.’( P) = (’6“2%) [45(‘-"»1(9) - ui—1(p)) - g(unz(p) - ui—2(p)) +(U'H3(p) - ua-s(p))] (44)

The initial values are taken as u,(p)=0, ui(p)=C where C is a small number with

the stipulation that A (p)u (p)=0 for £=1 and A_(p)u(p)=2 for £=1.

4. Comparison with other Codes

In order to check on any serious mistakes in the present code it is necessary to
compare the calculations done using the present code with published calculations
based on other codes. Such a comparison is provided for 17 MeV protons scattered
from Gold in table 1. The calculations of the present code are in good agreement with
calculations reported by Buck et al [15]. The present code was run on VAX/780. In
table 2 a comparison of the present calculations of 3.5 MeV neutrons scattered from
Ni is provided with those done using ‘ABAREX CODE’ [21] and SCAT2 Code [22].
Similarly table 3 lists a comparison of these codes for 10 keV neutrons scattered from
*Fe. The ‘ABAREX’ results of cross sections given in the laboratory system have been
converted for comparison to centre of mass system by using appropriate solid angle-
ratio values. The results of the present calculations are in a good agreement with the
calculations of the codes included for the comparison.

12
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Table 1

Comparison of the results of the present computer programme with those reported earlier [15]
for 17 MeV protons on gold, with U=48 MeV, W=8 MeV, r,=1.3 fm, r.=1.3 fm, a=0.5 fm, A=1
amu, A1=197 amu. No spin-orbit potentials were used. Both form factors are Saxon-Woods. All
cross sections are in barn/sr.

o (cm.) :—g [Buck et al] g—g [Melkanoff] —ad% [Present]
20 32.03 32.02 32.10
40 1.549 1.549 1.554
60 0.295 0.295 0.295
80 0.07624 0.06728 0.0684
120' 0.01458 0.01460 0.01476
160 0.00781 0.00782 0.00792
Or 0.9847 barn 0.9852 barn 0.985 barn
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Table 2
Comparison of scattering cross sections of 3.5 MeV neutrons on BNi with the following
parameters. U=45.1 MeV, r,=1.298 fm, a,=0.638 fm, W,=0, Ws=11.3 MeV, r,=1.30 fm,

a,=0.334 fm, Us=5.5 MeV, r.=1.005 fm, a,=0.650 fm. All cross sections are in barn and angles
in degrees. ABAREX calculations are taken from Ref. [21] and apply to angles given in

brackets.

Oem Edg— [ABAREX] (6cm.) dd—g [SCAT2] g—g[Present]
0 1.520 (0.0) 1.513 1.529
20 1.129 (20.3) . 1.135 1.147
40 0.427 (40.6) 0.443 0.447

60 0.0457 (60.9) 0.0523 0.0525
80 0.0198 (81.1) - 0.0175 0.0173
100 0.0813 (101.0) 0.0802 0.0801
120 0.0681 (120.9) 0.0703 0.0702
140 0.0179 (140.6) 0.0190 0.0187
160 0.0179 (160.3) 0.0179 0.0179
180 0.0364 (180.0) 0.0370 0.0373
Ce 2.070 barn 2.061 barn 2.077 barn
ORr 1.512 bam 1.513 barn 1.1612 barn
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Table 3

Comparison of the calculations of the observables of 0.01 MeV neutrons scattered from %Fe.
The following parameters were used. A=1.01 amu, Ar=55.94 amu, V=46 MeV, r,=1.317fm,
a,~=0.62 fm, W,=0, Ws=14 MeV, r,=1.447 fm a,=0.25 fm, Us=7.0 MeV, W=0, r:=1.317 fm
a,=0.62 fm. All cross sections are in barn. The differential cross sections are in barn/sr and
angles are in degrees. Comments in Table 2 for ABAREX apply here too.

0 cm do do : do
o —_— AT2 — [ABAREX])(0 — [Present
0 0.4227 0.4491 (0.0) 0.4490
15 0.4223 0.4487 (15.3) 0.4489
30 ' 0.4213 0.4481 (30.5) 0.4480
45 0.4201 0.4466 (45.7) 0.4468
60 0.4185 0.4454 (60.5) 0.4451
75 0.4166 0.4433 (76.0) 0.4433
90 0.4146 0.4412 (91.0) 0.4413
105 0.4127 0.4391 (106) 0.4393
120 0.4108 0.4374 (120.9) 0.4375
135 0.4093 '0.4360 (135.7) 0.4360
150 0.4081 0.4349 (150.5) 0.4348
165 0.4073 0.4339 (165.3) 0.4340
180 0.4071 0.4340 (180.0) 0.4338
Quantity | SCAT2 ABAREX Present
OR 15.205 bam 14.387 barn 14.381 barn
OE 5.219 barn 5.547 barmn 5.5460 barn
So 3.609 x 10™ 3.835x 107 3.325 x 10
S 0.3535 x 10™ 0.3465 x 10™ 0.3255 x 10
R 6.439 fm 6.508 fm 6.643 fm
Ju 499.39 MeV -fm* 505.980 MeV -fm>  505.979 MeV -fm®
Jw 97.52 MeV -fm® 96.936 MeV -fm° 96.966 MeV -fm*

17




Appendix

In the appendix we give calculations of the mean square radii of the potentials with
Saxon-Woods and Saxon-Wood derivative geometrical form factors. We also give the
details of the calculations of the volume integrals of potentials per nuclear for the two
types of geometrical form factors.

1. Mean Square Radius for Saxon-Woods geometrical Form Factor
ridr
47CI (r _ Rv )
1+exp a
<r?>qy = > (A1)
redr
4nT

%1+ex (r_RVj
+exp | —

we put x=r/a which gives dr=adx

4
Numerator = 41:]i rar =4na T
A 0 (r - Rv j
1+exp

— = 4na°F (k) (A2)

where

kn+1
F= 0SSy e *3)

n+1 m=1 r=0

for n=4, r=1 and 3 contribute and we get

k5 J1 1 1 ] (1 1 1
F,(k)=—+8k |_12 EEYREY] +....J+48k|‘14 BT —J
k5 a0 7n'
-5 - — A4
F,(k) +8k 12+48k720 (A4)

Rf 2R 7 R,
F4(k)=g+——+— 4

Therefore the

18




r.2
Denominator = 41:T
°1+exp ( . )

Numerator=%tRf|T1 13?(“3) ( ) }
= reson

1+ exp(x K) (A5)

= 4ma®F, (k)

x“dx
where F,(k)= T1+expx K)

Now using eq. A3, we get

k2 1 1 1 ]

P = Ak mortgrt ]

!
+
H
~
r—l

K* 2 k¥ nk
. kKo ar Kok AB
3 K= (A®)

Therefore the denominator becomes

47ta

Denominator = [k® +n%K]
[ (ra)]
= 4nR3L1+(n—a) | (A7)
R,
)4
. 3., 3 \R, 3\R,
Thus <r?>,, = —R? (A8)
R
1+
RV
2. Mean Square Radius for Derivative Form Factor

The mean square radius for the distribution of derivative form factor is given by

19




= A9
<r > sWD ) (r-—Rd) . ( )
r<exp = dr

[reom (5]

After putting r = ax and K=R4/a we get for the numerator of eq. (A9)

x* exp (x-k) dx
Numerator = 47a°
um T I 1+exp (x-Kk)

Integrating by parts the numerator becomes

3
5 X _ 5
16na S Trexp (xR =16na> F,(Kk)

From eq. (A3) we get

k* 1+ 1 1 7 .1 1 1 ]

Fa(k) 7+6k2 L1—2—§{+’é—2—+...J+12I_F—E;+3—4....J

k* . ,m 7n’
= 2 +6k 1—2—+12720

4 21,2
S S (A10)

= 5 ~-—d_
Numerator = 16na L4a4 * 552 Teo”
[ 2 V]
= 4 a —7-(E A11
4naRdl.1+2(RJ +15(R,, J (A11)

,Tx?exp (x-k) dx
o(1+exp (x-K))*

4ra

Denominator

Integration by parts gives




X
1+e

= 81ca3T —dx = 8na’ F,(k)
0

k2 1 1 1 1 ]

Now F1(k) ?+2LT;-27+‘37—Z{+J

- K kKT | (A12)

Therefore the denominator becomes
2

7
Denomenator = 41ta3Lk2 +?J

| 1( a 2]
= 4naR§[1+§(R—J J (A13)

Hence

naz 7 1ca4
”Z(E:J +1—5[§J

<r? >owp = Rz 2 (A14)
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3. Volume Integral of Potential with Saxon-Woods Geometrical Factors

The volume integral per nucleon J, is defined as

1 4 ridr
Jy = KT‘“‘ V(r) ridr = X"VJ R
° °1+exp ( j

R
Putting as before x=r/a and k=?" we get

_4nv @ x’dx  4nVa’

S A l+exp(x-k) A

Fo(k)

Now from eq. (A6)

k® n%k
Fz(k) = —3'-+—3—
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and

; ) 4nv.a* [ R® +'n_2&1
v A |3 3 aJ
_ uLHT
) 3 A| \R, J
anv, | (na)”
- ° = A15
3N [1+ R J (A15)
4. Volume Integral of Potential with Saxon-Woods Derivative Form
Factor

e [T-R,
a

r R
Which after putting x = 3 andk = ?" becomes

0

L1 +exp

167W, 2 x? exp(x - k)dx
A o[t+exp(x-k)?

Jw =

Integrating by parts

320W, ,F  xdx 321w,
d = 27 2R (k
A ek~ A 2nW

Now from eq. (A12), we get

N 32nW,a [n_(f_ Nl }

A 126
L (s}
- ——16""/\("*“[1%(%‘1” (A16)
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