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Abstract

The report describes a computer code which is based on Hauser-Feshbach and
Moldauer theory. It considers the calculation of compound elastic, inelastic, (n,p)
and (n,a) cross sections as one-step process and (n,2n), (n,np) and (n,pn) cross
sections as a two-step process. The competition of photons with particles for
emission is included in the second step of the reaction only. The available

calculations of the elastic and inelastic scattering cross sections with similar codes

are compared with the calculations based on the present code.
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1. Introduction

The calculations of nuclear reactions are in general very difficult to carry out partly due to the
lack of exact knowledge of nuclear potential and partly due to the involvement of a large number
of nucleons in such reactions. The most popular potential used in nuclear reaction calculations is
the optical model complex potential [1,2]. The real part of this complex potential gives shape
elastic or potential scattering cross section and the imaginary part gives compound elastic and
non-elastic cross sections. The nuclear reaction models that represent gradually an increasing
degree of complexity of involvement of nucleons in a reaction are direct reaction, pre-equilibrium
reaction and fully equilibrated compound nucleus reaction [3-7]. The equilibrium processes taking
place through door way states are treated statistically using multistep statistical compound
nucleus theories [8-9]. Similarly more complicated direct processes are calculated using multistep
statistical direct reaction theories [10]. However, the contribution of pre-equilibrium and
multistep statistical processes is small compared with fully equilibrated compound nucleus process
in the neutron energy range of 0-14 MeV relevant to fission and fusion technology. The expertise
in nuclear reaction calculations using the compound nucleus reaction model is highly desirable.
The present code describes a computer code developed by the author for nuclear reaction
calculations. It uses Hauser-Feshbach and Moldauer theory [11-12] which is based on the concept
of fully equilibrated compound nucleus model. According to this model the incident particle is
captured by the target nucleus. It shares its energy with all other nucleons of the nucleus and a
thermodynamical equilibrium is attained A fraction of particles possessing energies in excess of
their binding energies have a probability of escape and compete with each other including photons
for emission from the nucleus. Hauser and Feshbach showed that if the process of formation and
decay of the compound nucleus are assumed independent then the use of reciprocity theorem
allows the cross sections in all allowed exit channels to be calculated. The calculation requires the
transmission coefficients for the incident channels and all allowed exit channels which are
computed using appropriate optical model parameters. The present code can be used for the
computation of compound elastic, inelastic, (n,p) and (n,o) cross sections as a one-step process
and (n,pn), (n,np) and (n,2n) cross sections as a two-step process. The code has a provision for
computation of elastic and inelastic scattering cross sections with width fluctuation correction
using Moldauer theory. The competition of photons with particle emission has only been
considered in the second step of the reaction for the emission of second particle. The reported
calculations of elastic and inelastic nuclear scattering cross sections by similar codes have been
compared with calculations carried out using the present code. The theoretical details of the code

are presented in the following sections.




2.0 Theoretical Formulation

2.1 Hauser-Feshbach Theory

The expression for differential nuclear cross sections on the basis of Hauser-Feshbach is written as

follows:
) [s(z@e+ ) A (Gei19TI TR | '
R | £ 4 1
c(6,n,m) = —; Z| 3 | 1)
(21, + )21, +1) JPL > TH _|
[”j'lq

where q labels all the allowed outgoing channels, n refers to the incident channel and m refers to
the exit channel for which calculation is desired. The spins of the channels are restricted as
follows.
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Where I, and i, are the spins of the target and the incident particle. I, and i are the spins of the
residual and outgoing particles of interest for calculations. I, and iy are spins of the residual nuclei
and outgoing particles in all the allowed channels for a given compound nucleus state having spin
J and parity P. The lower summation depends only on J and P. It is calculated only once for each
set of these parameters and it is done in a subroutine of the main programme.

The angle integrated cross section from channel n to m is given by
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where C and W denote Clebsch-Gordan coefficient and Racah coefficient respectively. The L is
defined by 0<L <min(2¢,2¢',2]) such that it is even. Both C and W are calculated using the

recurrence relationships [13].
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2.2 Moldauer Theory

For low incident energies the compound nucleus is characterized by low density of levels and a
small number of exit channels. The correlations of partial widths necessitates computation of
width fluctuation correction to the cross sections calculated using Hauser-Feshbach theory.
Moldauer gave the following formula for nuclear cross sections on the basis of compound nucleus
cross section model [14]

~
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v, is the degree of freedom that characterizes the distribution of partial widths. The value of vq is
given by [15]

vg = 1.78 + (T} — 0.78) exp (-02287T) (15)

where T, is the transmission coefficient in the incident channel ¢ through which compound

nucleus is formed in the state having spin and parity J".

The G, 1s written as
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The integral is evaluated [16] by putting

1 vq T [1 j
= _ = ~_1 17
BT O T .

vqT

where Ty is the maximum transmission coefficient in the reaction.

The transformed integral becomes
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2.3 Particle Transmission Coefficients

The transmission coefficients of neutrons, protons, and alpha-particles required for Hauser-
Feshbach calculations can be read as a part of input data or calculated internally with the help of a
subroutine based on the optical model code [17] by feeding appropriate optical model parameters.
If opted the code uses global optical model parameters recommended by Becchetti and Greenless

[18] for the calculations of transmission coefficients.

2.4 Photons Transmission Coefficients

The gamma-ray transmission coefficient T} (E) of multipole-type XL and transition energy E is
. related to gamma-ray strength function f}, (E) in the following way [19].

Ty (E) = 2nE*' 1 (E) (19)

where
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where A refers to the initial state and f to the final state of the transition. The average gamma-ray
width f;?.?f‘ and the average level spacing D, are given in eV and the gamma-ray energy, E, is
given in MeV. Brink [20] and Axel [21] have assumed that E1 giant dipole resonance is described
by a classical Lorentzian line shape and thus partial with, T,,, of the state A for transition to the
ground state is given by
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where G, is the peak resonance cross section and equals 13A/I’; mb. The transition energy E, the
giant dipole resonance energy E, and the resonance width I'; are in MeV. The average level
spacing D, and width f;‘yo are in eV. The above expression holds for a unit spin of the state A and
a zero spin of the ground state. In order to generalize the above expression to arbitrary spin-
values, we rewrite the above expression in the fellowing form:
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The calculated values of the transmission coefficients for E1 transilens are normalized using a

measured value of the gamma-ray width. The measured E1 transition width is also used to
normalize the widths calculated on the basis of single particle model [22-23]. The following
expressions have been used for calculation of wid0.ths on the basis of the single particle model
[22].
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where I and D, are in eV and the gamma-ray energy E and D, in MeV. A value of 15 MeV for
D, has been used.

2.5 Energy Level Densities

- The knowledge of energy level densities is needed in nuclear cross section calculations involving
energy regions where the number of levels is high and the information on their spins and parties is
poor. The energy level densities play a very crucial role in these calculations. There are two types
of energy level density formulas currently being used in the nuclear cross section calculations.
Both of these have been included in the present code. The details of these formulas are given in
the following sections.

2.5.1 Gilbert-Cameron Composite Formula

The density of levels per MeV of energy E, spin J at high energies is given by [24]
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Here P(z) and P(N) are pairing energies listed by Gilbert and Cameron [24]. The value of the level
density parameter a (MeV™) is calculated from the following expression for the undeformed
nuclei.

a/A =0.00917S + 0.142 (26)

and for deformed nuclei it is given by

a/A=0.00917S + 0.120 (27)




where S is given by
S =8(z) + S(N)

S(z) and S(N) are shell corrections in MeV tabulated by Gilbert and Cameron. The level density
per MeV, of all I’s is given by
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The nuclear temperature T in MeV is given by
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The above formulas for level density are used for energies greater than E; (MeV) where
E; =Ux + P(z) + P(N)
and Uy=2.5+150/A (30)
Below E; the following simple formula for level density is used.
p1 (E) = %p[E 'TE°] G31)
The temperature T and E, are determined by fitting p, and p; at E = Ex (32)
T=1(Uy
and
E, =E, - T log. (T p; (Uy)) (33)

2.5.2 Back-shifted Fermi-gas Model Formula

The back-shifted Fermi-gas model formula is based on two empirically fitted parameters a and A.
The level density formula is given by [25].
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and the total density p per MeV is given by
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The thermodynamic temperature t in MeV is given by
U-A=at’-t

G is the spin cut-off parameter and it is given by

o’=g<mj>t

Here < mj-z > is the average squared projection of spins and g is the density of single particle
states near the Fermi level. From theoretical arguments o’ is expected to approach at high

excitations the value

t
Origia = Liigia ~3 = 00150 At (38)
where ILiga = 2/5 MR? is the rigid body moment of inertia and a nucleus radius 1.25 A" fm is
assumed.

3.0 Comparison with other Codes

The differential elastic and inelastic scattering cross sections of 3.3 MeV neutrons scattered from
**Ni calculated using the present code are compared with the available calculations of ABAREX
code [26] in table 1. The ABAREX code calculations given in the laboratory system have been
converted to the centre-of-mass system. As the calculated cross sections are symmetric about 90
degree in the centre-of-mass system, cross sections for comparison have been included only upto
90 degree. The Hauser-Feshbach calculations are given under the columns headed by H.F. The
cross sections corrected for width fluctuation are given in the columns under Moldauer. The
integrated elastic and inelastic scattering cross sections of different levels are listed in table 2. The
following optical model parameters with derivative Woods-Saxon form factor for imaginary
potential and Thomas form factor for the spin orbit potential have been used.

Real potential well depth = 45.1 MeV
Real potential well radius = 1.2975 A'” fm
Real potential well diffuseness = 0.6380 fm




Imaginary potential well depth = 11.7 MeV

Imaginary well radius = 1.302 A'® fm

Imaginary potential well diffuseness = 0.3344 fm ’
Real spin-orbit potential well depth = 5.5 MeV ' .
Real spin-orbit potential well radius = 1.005 A'® MeV

Real spin-orbit potential well diffuseness = 0.65 fm

The calculations for differential elastic, inelastic and integrated cross sections of 0.072 MeV
neutrons scattered from >*U carried out using the present code are compared with the
calculations of Wilmore code [16] in table 3. The transmission coefficients of neutrons used are
also listed in table 3. There is a very good agreement between the calculations carried out using
the present code and the available calculations of the ABAREX code and Wilmore code.
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Table 1. Comparison of the calculati%ns of differential elastic and inelastic scattering cross sections
of 3.3 MeV neutrons from “"Ni carried out using the present code and ABAREX code.
The differential cross sections are in c.m. system and given in mb/steradian.

HF Moldauer
Ex Oc.m ABAREX PRESENT ABAREX PRESENT
am Code Code Code Code
0.0 455 44.25 83.60 82.05
15.0 39.61 72.84
153 40.38 73.60
300 2957 53.28
30.5 29.55 52.95
0.0 45.0 20.92 37.02
(0+) 457 21.06 37.07
60.0 16.44 28.94
60.9 16.93 29.66
75.0 14.86 26.14
76.0 15.02 26.33
90.0 14.56 25.49
91.0 14.40 25.22
0.0 44.79 448 37.0 37.26
15.0 45.46 37.78
153 4543 37.57
300 46.56 38.79
30.7 46.65 38.67
145 450 47.11 39.23
(2+) 459 46.99 39.0
60.0 46.56 38.70
612 46.64 38.39
75.0 45.50 37.74
76.3 45.22 37.45
90.0 4498 37.28
913 44.79 37.07
0.0 10.96 -10.92 9.67 981
15.0 11.11 9.99
155 11.18 9.85
30.0 11.59 10.44
31.0 11.70 10.31
450 12.18 10.98
2('13)9 46.4 12.39 10.90
60.0 12.68 11.45
61.7 12.99 11.43
75.0 12.99 11.75
76.9 13.41 11.80
90.0 13.10 11.85
92.0 13.50 11.88
0.0 17.57 17.66 15.20 15.39
15.0 17.71 5.43
15.7 17.62 15.24
30.0 17.81 15.51
313 17.67 15.30
450 17.84 15.51
2(273)6 46.8 17.62 15.25
60.0 17.74 15.41
623 17.44 15.08
75.0 17.63 15.27
77.5 17.23 14.89
90.0 17.56 15.20
92.6 17.50 14.80




Table 1 continued ...

0.0 11.90 11.72 10.17 10.04
15.0 11.61 9.94
15.5 11.78 10.05
30.0 11.32 9.65
315 11.50 9.77
450 10.91 9.26
2(199)2 47.2 11.13 9.41
60.0 10.50 8.87
62.6 10.76 8.61
75.0 10.20 8.58
71.9 10.52 8.82
90.0 10.08 8.47
93.0 10.54 8.75
0.0 5.50 5.52 4.59 4.60
15.0 538 : 4.47
15.8 5.34 4.44
30.0 5.01 4.13
316 4.95 4.08
45.0 4.59 375
2(33)2 46.3 4.54 3.70
60.0 4.27 3.46
62.8 4.24 3.44
75.0 4.09 3.30
78.1 4.09 3.31
90.0 4.03 3.26
93.1 4.05 3.28
0.0 11.56 11.59 10.04 10.12
15.0 11.60 10.12
16.0 11.56 10.04
30.0 11.60 10.11
320 11.54 10.03
45.0 11.59 10.10
3('?%8 4738 11.49 9.98
60.0 11.56 10.05
63.4 11.42 9.90
75.0 11.53 10.01
78.8 11.36 9.84
90.0 11.52 10.0
93.9 11.32 9.81
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Table 2. Comparison of integrated elastic and inelastic scattering cross sections of 3.3 MeV
neutrons from i. All cross sections are in millibarns and energies of the levels are in

MeV.
. Hauser - Feshbach Moldauer

Level J ABAREX PRESENT ABAREX PRESENT
Code Code Code Code
0.0 0" 257.0 2524 4555 4492
“ 145 2" 5774 5793 478.5 4814
2.459 4" 159.6 156.6 140.5 1414
2.776 2 219.1 222.7 189.5 193.3
2.902 1" 137.4 133.6 115.9 113.1
2.942 0" 558 557 455 453
3.038 2" 143.7 145.3 124.6 126.3

Total cross section:
ABAREX code: 1550.0 mb
Present code; 1550.0 mb




Table 3. Com%arison of the elastic and inelastic scatteirng cross sections of 0.072 MeV neutrons
from 238y computed using Wilmore code and present code. The transmission coefficients
in the order of ¢=0, ¢=1, etc. for the ground state are 0.23827, 0.12472, 0.00170, 0.0004
and for the first excited state are 0.15838, 0.03598, 0.00018. The differential cross sections
are in millibarn per steradian and energies are in MeV.

Hauser - Feshbach Moldauer Integrated Cross Sections .
Ex Bcm Wilmore | Present | Wilmore | Present
dd Code Code Code Code
A. Hauser-Feshbach ’ »
0.0 4576 453.1 522.1 516.5
Wilmore Code : 4353 mb
150 446.4 442.1 508.0 502.6
Present Code : 4310mb
30.0 4159 4118 469.6 464.7
0.0
(0+) 450 3742 370.5 4174 413.0
B. Moldauer
60.0 3325 329.2 365.3 361.4
Wilmore Code : 4810 mb
750 302.0 299.0 327.3 323.7
Present Code : 4758 mb
90.0 290.8 2878 313.4 310.0
A. Hauser-Feshbach
0.0 70.9 70.2 418 410
Wilmore Code : 1132 mb
15.0 728 72.2 42.90 42.1
Present Code : 1121 mb
30.5 78.1 774 459 45.1
0.045
(2+) 45.0 853 84.5 50.1 493
B. Moldauer
60.0 925 91.6 543 53.4
Wilmore Code : 664 mb
75.0 97.7 96.8 573 56.4
Present Code : 654 mb
90.0 99.7 98.7 58.4
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