INSTITUTE OF NUCLEAR RESEARCH

INR -- 1197

REPORT No 1197/I/PL

PROGRESS REPORT

ON NUCLEAR DATA RESEARCH IN FOLAND

/May 1969 - April 1970/

Gathered by

Andrzej Marcinkowski

INDC(POL)-003/L

No 1197/I/PL

This report has been reproduced directly from the best available copy

Распространяет:

информационный центр по ядерной энергии при Уполномоченном Правительства ПНР по Использованию Ядерной Энергии

> Дворец Культуры и Науки Вагшава, Польша

Available from: NUCLEAR ENERGY INFORMATION CENTER of the Polish Government Commissioner for Use of Nuclear Energy

> Palace of Culture and Science Warsaw. Poland

Drukuje i rozprowadza:

OŚRODEK INFORMACJI O ENERGII JADROWEJ przy Pełnomocniku Rządu dla Spraw Wykorzystania Energii Jądrowej Warszawa, Pałac Kultury i Nauki

Wydaje

Instytut Badań Jądrowych

Nakiad 540 egz., Objętość ark. wyd. 1,66 Ark. druk 2,75, Data złożenia maszynopisu przez autora 9. V. 1970, Oddano do druku 19. V. 1970 Druk ukończono VI 1970. SP-09/250/66 Zam. nr 245/70

Editor's Note

This progress Report on nuclear date research in Poland /May 1969 - April 1970/ contains only information on research, which is closely related to the activities of the International Data Committee of the International Atomic Energy Agency in the field of neutron physics. It does not include any information about other nuclear research as for example in the field of charged particles nuclear physics or the use of neutrons for solid state physics studies.

The individual reports are not intended to be complete or formal, and must not be quoted in publications without the permission of the authors.

Uwagi od wydawcy

Raport ten zawiera wyłącznie informacje o badaniach w zakresie fizyki neutronowej przeprowadzonych w Polsce /maj 1969 - kwiecień 1970/ i związanych z działalnością Komitetu Danych Jądrowych Międzynarodowej Agencji Energii Atomowej.

Pominięto wyniki badań w innych dziedzinach fizyki jądrowej, w tym również badań prowadzonych przy użyciu cząstek naładowanych oraz w zakresie fizyki ciała stałego przy użyciu neutronów.

Poszczególne prace zawierają wstępne omówienie wyników badań nie wyczerpujące poruszanych tematów i nie powinny być cytowane bez użyskania zgody autorów.

Замечания от редакции

Ссорных этот содержит иныь сообщения о проведенных в Польне в первод от мая 1969 до апреля 1970 исследованиях в области нейтронной физики, связанных с дентельностью Комятета по Ядерным Данным Международного Агенства Атомной Энергии. В данкый сборных не включены результаты работ из других областей ядерной физики а именно результаты исследований с поновые зараженых частиц а также результаты исследований в области твердого тела с применением нейтронов.

Докладн эти не являются полными и поэтому не реконсидируется ссилаться на них без особого согласия авторов.

1.	Investigation of the nuclear surface by means of	
	/n, of reactions	3
2.	Energy spectra of alpha particles from the /n,«	
	reactions induced by 14.2 MeV neutrons in dyspro-	
	sium isotopes	6
3.	Isomeric cross section ratios and total cross	
	sections for the 11^{j} In/n,2n/ $112g$, ^m In and	
	¹¹⁵ In/n,2n/ ^{114g,m} In reactions	10
4.	Cross sections for the ¹¹³ In/n,n'/ ^{113m} In,	
	¹¹⁵ In/n,n'/ ^{115m} In, ²⁰⁴ Pb/n,n'/ ^{204m} Fb and	
	204 Fb/n, 2n/ 203 Pb reactions in the neutron energy	
	range 13 - 18 MeV	18
5.	Measurement of High-energy J-ray spectra in	
	strong neutron flux	26
6.	Excitation of short-living isomeric activities	
	in 77 Se, 122 So, 137 Ba, 167 Er, and 179 Hf using	
	14.4 MeV neutrons	29
7.	The code MINIGASKET	35
8.	Estimation of quality factor /QS/ in tissue-like	
	phantom irradiated with 14.8 , 5.0 , 3.3 MeV	
	neutrons	36
9.	Peneration of a two-dimensional fission barrier	

.

•

Investigation of the Nuclear Surface by Means of (n, CA) Reactions. N.Jaskóła, W.Osakiewicz, J.Turkiewicz.

Institute of Nuclear Research, Warsaw,

and

Institute of Experimental Physics of Warsaw University

The cluster structure of the nuclear surface has been investigated using the $(n, 0^{\prime})$ reactions, induced by the 14 MeV neutrons. The use of such reactions as a tool for investigating the nuclear surface has been proposed in our earlier works (1), (2). This method has been successfully used in several works (3), (4),(5), (5), to obtain the information about alpha clustering at the surface of heavy nuclei. In our model the $(n, 0^{\prime})$ reaction is assumed to take place only in a thin nuclear surface layer because of small mean free path of alpha particles in nuclear matter. The dominance knock-out mechanism in this reaction is also supposed. If the cross section and the energy spectrum of emitted alpha particles are known it is possible to extract the alpha clustering probability at the nuclear surface.

Following the notation used in (2) the cross section for the (n,cl) reaction can be writen as:

where ρ is the fraction of the time the surface nucleon spends as a part of an alpha substructure. Recently we performed the calculations of the factor ρ for the following nuclei : ${}^{122}\text{Te}$, ${}^{159}\text{Tb}$, ${}^{162}\text{Dy}$, ${}^{168}\text{Er}$ and ${}^{169}\text{Tm}$. The results are presented in Fig.1 in which are also presented our earlier results $/{}^{139}\text{La}$, ${}^{181}\text{Ta}$, ${}^{197}\text{Au}$ / together with values obtained by other authors.

Calculations taking into account, the deformations of nuclei are in progress.

- 1. W.Osakiewicz, J.Turkiewicz, Z.Wilhelmi, M.Jaskóła, Rep. IBJ 515/1/1964/
- 2. W.Osakiewicz, J.Turkiewicz, Z,Wilhelmi, M.Jaskóła, Nuclear Physics <u>66</u>, 361 /1965/
- 3. P.Kulisić, N.Cindro, P.Strohal, B.Lalović, Nuclear Physics 73, 548 /1965/
- 4. N.Cindro, Rev.Mod.Phys. 38, 391 /1966/
- D.Veselić, J.Tudorić Ghemo,
 Nuclear Physics <u>A 110</u>, 225 /1968/
- M.Jurcević, F.Kulisić, J.Tudorić Ghemo Fizyka 2, 27/1970/
- 7. P.E.Eodgson, Nuclear Physics 8, 1 /1958/

Fig.1. The tendency to alpha clustering at the nuclear surface in its dependence on the mass number; this work; + ref./3/; 4 ref./5/; * ref./6/; • ref./7/.

Energy Spectra of Alpha Particles from the (n, oc)Reactions Induced by 14.2 MeV Meutrons in Dysprosium Isotopes.

M.Jaskóła, M.Madej, W.Osakiewicz, A.Stodolska, J.Turkiewicz, L.Zenło.

Institute of Nuclear Research, Warsaw

and

Institute of Experimental Physics, University of Warsaw.

The studies of the (n, α) reactions induced by fast neutrons in heavy nuclei, results of which were earlier described /1/, /2/; /3/, have been continued. The energy distributions of alpha particles from the ${}^{161}\text{Dy}(n, \alpha){}^{158}\text{Gd}, {}^{163}\text{Dy}(n, \alpha){}^{160}\text{Gd}$ and ${}^{164}\text{Dy}(n, \alpha){}^{161}\text{Gd}$ reactions at 14.2 MeV have been measured using semiconductor detectors as alpha particle spectrometers. The dysprosium targets were made of oxides and deposited on the thick aluminium backings by means of sedimentation from the suspension in isopropyl alcohol.

The results of the measurements are shown in Figs.1 - 2. All the spectra were measured for the forward angles. The error bars in the figures refer to statistical errors only.

Fig.1 shows also the theoretical predictions obtained by applying the Weisskopf-Ewing formula. The values used for inverse cross sections were taken from the calculations of Huizenga and Igo /4/. The energy dependence of the level density was assumed in the form: $\rho(U) \sim U^{-2} exp(2/aD)$,

with the density parameter <u>a</u> taken from Erba et al./5/. The calculated curves are not normalized and are given to indicate the shape and the position of the evaporation spectra only.

The theoretical analysis is not yet finished and further calculations are in progress.

- 1. M.Jaskóża, W.Osakiewicz, J.Turkiewicz, Z.Wilhelmi, Nuclear Physics 53, 270 (1964)
- 2. M.Jaskóła, W.Osakiewicz, J.Turkiewicz, Z.Wilhelmi, Nuclear Physics <u>A110</u>, 11 (1968)
- 3. M. Jaskóła, W.Osekiewicz, Z.Roguski, J.Turkiewicz, L.Zemło, Rep. IBJ 1175/I/PL (1970)
- 4. J.R.Huizenga, G. Igo, Nuclear Physics 29, 462 (1962)
- 5. E.Erba, U.Facchini, E.Saetta-Manichella, Nuovo Cimento <u>22</u>, 1237 (1961)

the predictions of the statistical theory.

\$

Isomeric Cross Section Ratios and Total Gross Sections for the ¹¹³In(n,2n)^{112g,m} for int ¹¹⁵In(n,2n)^{114g,m} In Reactions

W.Grochulski, J.Karolyi^{E)}, A.Marcinkowski, J.Piotrowski, E.Saad^{ME)}, K.Siwek and Z.Wilhelmi

1. INTRODUCTION

The application of the nuclear level density based on the superconductivity model ⁽¹⁾ for calculating the cross section ratios and total cross sections was presented in ref./2/,/3/. To collect more experimental material for confirming the correctness of the description of isomeric ratios by the superconductivity model the cross sections for the $113_{In(n,2n)}112g,m_{In}$ and $115_{In(n,2n)}114g,m$ reactions were measured in the neutron energy range from 13.1 MeV to 18.2MeV. The results obtained were compared with the statistical model predictions calculated as in ref. /2/.

2. EXPERIMENTAL PROCEDURE

Samples of spectrally pure indian were irradiated with neutrons obtained in the ${}^{3}H(d,n)^{4}He$ reaction. The deuterons were accelerated in a 3 MeV Van de Graaff accelerator. The changes of the neutron flux during irradiation were determi-

ms) on leave from the Atomic Energy Establishment of UAR

a) on leave from the Institute of Nuclear Research, Debrecen, Hungary,

ned by counting in a Caf scintillator the protons recoiled from a polyethylene foil.

The gamma activity of the irradiated samples was measured using the spectrometer with a single 3 x 3 inch. NaI(T1) crystal. The photo-peak efficiencies of the spectrometer were taken from tables of Crouthanel /4/. The $\{b^{-}\}$ were measured using a GM counter. In the case of the $^{113}\text{In}(n,2n)^{112}\text{g},m_{\text{In}}$ reaction the 34.3 m and 20.7 m $\{b^{+}\}$ activities allowed to determine the isomeric ratio by measuring the annihilation quanta. The cross section \mathfrak{S}_m for the population of the metastable state was measured relative to the known cross section of the $^{64}\text{Zn}(n,2n)^{63}\text{Zn}$ reaction. Having \mathfrak{S}_m and the isomeric ratio the total cross section was determined.

In the case of the $^{115}In(n,2n)^{114g,m}In$ reaction \mathfrak{S}_{m} was determined by measuring the 51 d activity of the 191 keV \mathcal{N} - rays relative to the cross section of the $^{204}Pb(n,2n)^{203}Pb$ /5/ reaction. The attenuation of the gamma rays in the samples was taken into account. The $\mathfrak{S}_{\mathfrak{S}}$ cross section for the population of the ground state was determined by measuring the 72s - \mathcal{N} activity referring to the 51d- \mathcal{N} activity resulting from the decay of the ^{114m}In state.

3. RESULTS

The results of measurements of the isomeric ratios and total cross section are shown in Table ? and in Figs. from 1 to 4. The experimental errors are statistical errors only. The neutron energy spread was determined according to

the method described in ref. /2/.

The results of the isomeric ratios for the 113In(n,2n) $112g_{3}$ T_{In} reaction confirm the single measurement at $E_n = 14.7$ MeV done by Rötzer /7/ who obtained the value $5/G_{me} = 0.2$. The result obtained in ref. /6/ is much higher.

The total cross section values presented in ref. /6/ and ref. /7/ agree within the experimental errors with our measurements.

Results for the $^{115}In(n,2n)^{114g,m}$ In reaction agree well with the isomeric ratio for 14.7 MeV neutrons given in ref. /6/ and ref. /7/ and the cross sections measured by Prestwood and Bayhurst /8/ but differs considerably from those obtained by Menlove et.al. /9/.

4. COMPARISON OF THE EXPERIMENTAL RESULTS WITH THE STATISTICAL THEORY

The theoretical calculations were performed according to the statistical method described in detailes in ref./2/. The optical model transmission coefficients were taken from the tables of Mani, Melkanoff and Iori /10/.

Because of the high excitation energies involved in both reactions the level density was used for describing the excited states. The nuclear level density was calculated using the superconductivity model. This model refers to doubly even nuclei. For an odd-odd or odd-mass nucleus the excitation energy was shifted in the way presented in chapter 5 of ref. /3/.

Table 1

E (Nev)	¹¹³ In(n,2	n) ^{112g,#} In	¹¹⁵ In(n,2n) ^{114g,m} In		
גייבביי <u>מר</u> י	64/6m	Gtot (mb)	Se /Gm	$G_{tot}(mb)$	
12.98 ± 0.15	0.23±0.06	1359 ± 137	0.191±0.011	1394±166	
13.33 ± 0.10	0.13±0.01	1356 ± 68	0.155 [±] 0.003	1623± 68	
13.86 ± 0.09	0.1520.01	1503 ± 7 4	0 .173[±]0.00 3	1748± 82	
14.52 ± 0.12	0.06±0.01	1527± 56	0 .191[±]0. 003	1805[±]21 8	
15.15 ± 0.14			0.225 <u>+</u> 0.004	17 27± 78	
15.17 ± 0.14	0.06±0.01	1557 [‡] 37			
15.44 ± 0.16	·	1725 [±] 49	0.173-0.003	1670 ± 73	
15.95 ± 0.19				1745 ± 178	
15.98 ± 0.19	0.10±0.02	1489 [±] 99		•	
16.28 ± 0.16	0.13 ±0.0 2	1377 ± 101			
16.59 ± 0.09	-		0.188±0.015	1785 ±2 73	
16.86 ± 0.25		· .	0.188 [±] 0.009	1 794± 186	
16.87 ± 0.25	0.17±0.04	1462 ± 219			
17.35 ± 0.24			0.185±0.017	1929\$298	
17.37 ± 0.24	0 . 15 ± 0.03	1408 [±] 158		•	
17.82 ± 0.17			0.147±0.009	2014±326	
17.83 ± 0.13	0.14-0.02	1445-139		-	

Figs.1 and 2 present the measured and the calculated isomeric ratios for the $^{113}In(n,2n)^{1139,m}In$ and $^{115}In(n,2n)^{1159,m}In$ reactions, respectively. The theoretic cal results (solid lings) describe correctly the measured values. The systematical enhancement of the theoretical total cross sections over the experimental ones (Figs.3 and 4) is less pronounced here as in the cases of (n,2n) reactions on lighter target nuclei /2/, /3/.

This behaviour could indicate that the competition between the emission of the second neutron and gamma deercitation in the excitation energy region near to the threshold for the emission of the third neutron (about 17,5 MeV for the reactions considered) is less important.

List of References

- 1. P.Decowski, W.Grochulski, A.Marcinkowski, K.Siwek and Z.Wilhelmi, Nucl. Phys. <u>A</u>119 (1968) 129.
- P.Decowski, W.Grochulski, A.Marcinkowski, K.Siwek,
 I.Śledzińska and Z.Wilhelmi, Nucl. Phys. <u>A112</u> (1968)513
- 3. A.Abboud, P.Decowski, W.Grochulski, A.Marcinkowski, J.Piotrovski, K.Siwek and Z.Wilhelmi, Nucl.Phys. <u>A139</u> (1969)42
- 4. C.E.Crouthanel, Applied Gamma-Ray Spectrometry, Pergamon Press (1960)
- 5. W.Grochulski, J.Karolyi, A.Marcinkowski, J.Piotrowski, E.Saad and Z.Wilhelmi, unpublished.
- 6. T.Kozłowski, Z.Moroz, E.Rurarz and J.Wojtkowska, Acta Phys. Polonica XXVIII (1968)409
 - 7. H.Rötzer, Nucl. Phys. A109 (1968)694
 - 8. R.J. Prestwood, B.P. Bayhurst, Phys. Rev. 121 (1961)1438
 - 9. H.O.Menlove, K.L.Coop, H.A.Grench, R.Sher, Phys.Rev. <u>163</u> (1967)1308
- 10. G.S.Mani, M.A.Melkanoff and I.Iori, CEA Reports no 2379, 2380

Fig.1 The isomeric ratios for the $^{113}In(n,2n)^{112g,m}In$ reaction. • - our results; A - result of ref. /7/. The solid line presents the statistical calculations based on the superconductivity model of the level density.

Fig.2 The isomeric ratios for the ¹¹⁵In(n,2n)^{1143,E}In reaction. • -our results; A -result of ref./7/; o - result of ref. /6/. The solid line presents the statistical calculations.

Fig.3 The cross sections for the ¹¹³In(n,2n)¹¹²In reaction.
e - our results; a - the result of ref. /6/;
A - the result of ref. /7/. The solid line presents the statistical calculations.

Fig.4 The cross sections for the ¹¹⁵In(n,2n)¹¹⁴In reaction. • • our results. The solid line presents statistics. calculations.

Cross Sections for the ${}^{113}In(n,n'){}^{113m}In$, ${}^{115}In(n,n'){}^{115m}In$, ${}^{204}Fb(n,n'){}^{204m}Pb$ and ${}^{204}Fb(n,2n){}^{203}Pb$ Reactions in the Neutron Energy Range 13 - 18 MeV.

P.Decowski, W.Grochulski, A.Marcifikowski, J.Karolyi, J.Piotrowski, E.Saad, K.Siwek-Wilczyńska, I.M.Turkiewicz, Z.Wilhelmi.

University of Warsaw and Institute of Nuclear Research Warsaw, Poland.

The absolute cross sections for the $^{113}In(n,n^{\circ})^{113m}In$ $^{115}In(n,n^{\circ})^{115m}In$, $^{204}Pb(n,n^{\circ})^{204m}Pb$ and $^{204}Pb(n,2n)^{203}Pb$ reactions were evaluated from the \mathcal{J} -activity measurements with the use of the scintillation spectrometer. The reaction final products were identified by their characteristic \mathcal{J} -ray transitions and the least square analysis of the decay curves. The neutrons were obtained in the Van de Graaff accelerator from the $^{3}T(d,n)^{4}$ He reaction. The proper choice of the irradiation angle and the deuteron energy allowed to get neutrons in the energy range 13 - 18 MeV. The measurements were refered to the well known cross reactions of the $^{56}Fe(n,p)^{56}Hn$ reaction¹⁾ except the $^{115}In(n,n^{\circ})^{115m}In$ case in which the cross sections were related to the cross sections of the $^{64}Zn(n,2n)^{63}Zn$ reaction²⁾.

Special care was taken about the influence of low energy neutrons from the ${}^{2}D(d,n)^{3}He$ reaction on deuterons gathered in the tritium target during the deuteron bombardment. To take into account this effect a target made from the same material as the tritium target but not containing tritium was bombarded with deuterons and the activity induced in the irradiated samples was investigated. Correction connected with this effect were significant for the highert deuteron energies and small angles of neutron emission.

The results are shown in Tables 1 - 4 and in Figs.1 - 4.

References

1)	D.C.Santryand J.P.Butler.	Can.J.Phys. <u>42</u> (1964) 1030
	H.Lisken and A.Paulsen,	J.Nuclear Energy <u>19</u> (1965) 73
2)	D.R.Kochler and W.L.Alferd	, Phys.Rev. <u>119</u> (1960) <i>3</i> 11
	C.A.Rayburn,	Phys.Rev. <u>130</u> (1963) 73

Table 1

Cross Sections for the ¹¹³In(n,n')^{153m}In Reaction

En Mov

104 ± 21
62 🕹 9
37 ± 7
42 ± 6
30 ± 6
27 ± 4
19 ± 3
38 ± 6
45 ± 9
34 ± 29

Table 2

Cross Sections for the ¹¹⁵In(n,n')^{115m}In Reaction

En

MeV

12.98 불 ().15
13.33 ± (0.10
13.84 ± (0.09
14.52 土 ().12
15.14 🛨 ().14
15.98 ± (0.19
16.28 ± (0.16
?6.87 ± (0.25
17.37 2:),24
17.83 2 (0.13

шþ

172.0	±1	4,	3
104.1	÷.	^ .	9
83.5	÷	1.	5
83.8	+	1.	2
65.0	+ ~	0.	5 [°]
64.5	+ •	2.	3
55.8	*	5°	9
51.6	+	11	.4
62.6	÷1	2.	9
60.8	+	12	.4

Table 3

Cross Sections for the ²⁰⁴Pb(n,n')^{204m}Pb

ďm			
80.9 ± 1.9			
71.8 ± 1.7			
80 .1 ± 1.0			
63.3 ± 0.5			
56 . 8 ± 0.4			
48.8 ± 0.3			
40 . 1 ± 0.4			
41.9 ± 0.4			
33.2 ± 7.7			

Table 4

Cross Sections for the ²⁰⁴Pb(n,2n)²⁰³Pb Reaction

En

mb
1966 ± 60
1963 ± 19
1856 🕹 18
1830 ± 17
1759 ± 17
1874 ± 90
1998 ± 57
2010 ± 73
1896 ± 67

j.

•

Fig. 1. Cross sections for the ¹¹³In/n,n²/^{113m}In reaction.

ź

Ø

Fig.2. Cross sections for the ¹¹⁵In/n,n'/^{115m}In reaction.

ł

S

Measurement of High-energy X -ray Spectra

in Strong Neutron Flux

J.S.Brzosko, E.Gierlik, A.Soltan Jr., and Z.Wilbelmi

"Stefan Pieńkowski" Institute of Experimental Physics, University of Warsaw

and

Institute of Nuclear Research

Figure 1 shows the geometrical arrangement of the system measuring high energy & -ray emitted in fast neutron capture. The NaI(T1) (4"x4") crystal was placed in a lead cylinder with walls 10 cm thick, enclosed in a 20 cm paraffin layer containing boron carbide; the target side, where the NaI crystal was not shielded with lead, paraffin with lithium hydride was used.

A significant reduction of the background was achieved owing to the use of a pulsed proton beam. After a series of test it was found that the following conditions of beam pulsation are optimal: length of the current pulse 30 μ s, repetition time 1.2 ms, and pulse height analyser opening time 0-30 μ s. In our experiments ${}^{3}\text{H}(\text{pn}){}^{3}\text{He}$ reaction served as source of neutrons.

The tritium targets consisted of a copper backing on which 15 μ m silver and subsequently 0.45 mg/cm² of titanium with 0.8 Ci tritium absorbed were deposited. Such a construction of the target allowed to limit the number of δ -quanta from

the (n,gamma) and (p,gamma) in the target backing itself.

In Fig 2 å-spectra for the reactions $In(n,\delta)$, ¹⁸¹Ta(n, δ) and ¹⁹⁷Au(n, δ) measured by this method are given as an example.

Fig. 1

Fig. 2

Excitation of Smort-living Isomeric Activities in 77_{Se} , 122_{Sb} , 137_{Ba} , 167_{Er} and 179_{Hf} using 14.5 MeV Neutrons.

E.Rurarz, Z.Haratym, M.Pietrzykowski and A.Sulik Institute of Nuclear Research, Department of Physics /IA/ Świerk near Otwock

Abstract

The cross-sections for the production of short-living isomeric states in 77 Se, 122 Sb, 137 Ba, 167 Er and 179 Hf through the /n,2n/ and /n,n'/ reactions using 14.5 MeV neutrons have been measured. The contribution due to the second reaction may be studied using natural and enriched samples.

In our work isotopically enriched samples were used $/78_{se}$, 123_{sb} , 137_{Ba} , 168_{Er} , $180_{Hf/.}$

For Se, Ba and Er the contribution of the /n,n' \mathcal{T} / reaction for 14.5 MeV neutron energy was estimated.

The measured cross-sections and the spectroscopic data used in the evaluation of the cross-sections are summarized in Table I.

Target, reactions and isomeric nucleus	Half life of product /sec/ ref.		Energy of gamma .transi- tion		Conver- sion coeffi- cient	Cross-sec- tions mea- sured in our work		
			/keV/	ref.		ref.	E _n =14.5	Me
78 _{Se/n,2n/^{77m}Se 77_{Se/n,n},7^{7m}Se}	17•5	[1]	161	[1]	0.79 <u>+</u> 0.0	06 [2]	703 <u>+</u> 70 593 <u>+</u> 60	
¹²³ Sb/n,2n/ ^{122m} Sb	249	[1]	60	[1]	0.65	[2]	731 <u>÷</u> 73	
¹³⁸ Ba/n, 2n/ ^{137m} Ba ¹³⁷ Ba/n, n'/ ^{137m} Ba	153•5	[3]	661	[1]	0.098	[2]	1048 <u>+</u> 10 365 <u>+</u> 36	 D
¹⁶⁸ Er/n,2n/ ^{167m} Er ¹⁶⁷ Er/n,n ² / ^{167m} Er	2.3	[1]	208	[1]	0,46	[2]	.403 <u>+</u> 40 343 <u>+</u> 34	
¹⁸⁰ Hf/n,2n/ ^{179m} Hf	18,7	 [1]	217	[1]	0.055/t	ot/[2] 690 <u>+</u> 70	

Table I

If we assume a compound-nucleus mechanism for the /n,2n/ reaction and the spins of the isomers considered, the isomeric ratio should yield information about the spin cut-off parameter /which characterizes the spin dependence of the assumed nuclear level-density /.

The method of Huizenga and Vandenbosch [5] was applied in computations for the nuclei investigated. The values of penetrability factors for neutrons were taken by us from Mani and Melkanoff [6] . The composite model

for nuclear level densities proposed by Gilbert and Cameron [7] was used.

In table II a comparison is made between the calculated and experimental isomeric cross-section ratios. The accordance is satisfactory for Se, Sb, Ba, Ce and Nd. We point out however that in calculations for these nuclei the spin cut-off parameter obtained simply from Gilbert and Cameron model was used. It seems that the method of Huizenga and Vandenbosch and Cameron level density model is quite useful for some nuclei. Experimental results for Sm, Er and Hf seem to suggest a different values of spin cut-off parameter than predicted by Gilbert and Cameron model. Theisomericratio for Sm /for which exist experimental values of 6_m and 6_p [8] / Er and Hf were calculated for different spin cut-off parameters and different V of the \mathcal{T} -rays emitted in the de-excitation processes. The spin cut-off parameter was considered energy independent. Results are given in Fig.1. The experimental isomeric cross-section ratio was defined as the ratio of the cross-section \mathcal{O}_l for the population of the lower spin state to the cross-section

 O_h for the population of the higher spin state. The mean values of the spin cut-off parameter can be evaluated:

 $/3,8\pm0,3/$ for 143 Sm, $/2,5\pm0,3/$ for 167 Er and $/2,4\pm0,3/$ for 179 Hf. These values are lower than the calculated ones obtained from the formula given in [7]. Further study of rare-earth region /for which scare information can be found/ might lead to more examples of this type.

	1						Spin cut	-off pa-
Reaction	I _m	Ig	Om exp [mb]	5 _{tot} esti- from [9] [== b]		(Cm)	rameter fr cricement [7]	estinated on a our exp.
⁷⁸ se/n,2n/ ⁷⁷ se	7/2	1/2	703	1030	0.70	0.82	3.6	ن ت .
123 _{8b/n,2n/} 122 _{Sb}	8	2	731	1750	0.42	0.44	4.35	
138 _{Ba/n} ,2n/ ¹³⁷ Ba	11/2	3/2	1105	1900	0.60	0.63	4.6	
¹⁴⁰ Ce/n,2n/ ¹³⁹ Ce	11/2	3/2	1280	1850	0.69	0.57	3.74	6 .9
142Nd/n,2n/ ¹⁴¹ Nd	11/2	3/2	1069	1720	0.62	0.65	4.83	000
144 _{8m/n,2n/143_{8m}}	11/2	3/2	564	15 30	0.37	0.65	5	3.8 <u>+</u> 0.3
168 _{Er/n,2n/} 167 _{Er}	1/2	7/2	403	2150	0.19	0.10	4.6	2 •5<u>+</u>0• 3
180 _{Ef/n, 2n/} 179 _{Hf}	1/2	9/2	680	1900	0.36	0.17	4.75	2 .4<u>+</u>0. 3
1999, 1999, 499, 659, 979, 199, 499, 499, 4	90 474 and 1			600 esa 1) 2021 423 424444444444444444444444444444444

References

- 1. P. Dupont-Gautier, S. Chantebot and N. Moisson, CEA-R 2830 /1967/, France
- 2. J.Hamilton et al., Nuclear Data, Section A vol. 1, Nr 6, 1966
- 3. V.Middelboe, Mat.Fys.Medd.Dan.Vid.Selsk. 35, 8 /1966/
- 4. E.Rurarz, Z.Haratym and A.Sulik, Nukleonika, <u>14</u>, 933-39 /1969/ and I.N.R. Report P-1054/IA/PL
- 5, J.R.Huizenga and R.Vandenbosch, Phys.Rev. <u>120</u>, 305 /1960/ ibid. <u>120</u>, 1313 /1960/
- 6. G.S. Mani, M.A. Melkanoff and I.Iori, CEA Report No 2380 /1953/, France
- 7. A.Gilbert and A.G.W. Cameron, Can.J. Phys. 43, 1446 /1965/
- 8. M.Bormann, A. Behrend, I.Richle and O.Vogel, Nucl.Phys. <u>A115</u>, 309-320 /1968/
- 9. S.Pearlstein, BNL Report No 897/Pec.1964 and Nuclear Data section A, vol. 3, Nr 3, Oct. 1967.

Figure captions

1. Comparison of the measured isomeric cross-section ratios with the theoretical curves plotted in terms of the spin cut-off parameter () and the multiplicity of gamma rays in the cascade.

J. Arkuszewski

Institute of Nuclear Research, Swierk

The MINIGASKET code reported previously, has became operational .The code which is based on the Gulf General Atomic code GASKET computes the thermal scattering law $S_g(x,y)$ in incoherent approximation for polycrystels. Reliable data for isotopic graphite with Koppel-Young phonon distribution has been obtained.The code is to be supplemented with a FLANGE code, which calculates single and double differential cross sections and its moments, involving the elastic coherent component.

IBJ/1184/XXI/PR.Report.

Estimation of Quality Factor /QF/ in Tisuue-like Phantom Irradiated with 14.8, 5, 3.3 MeV Neutrons.

S.Pszona

Institute of Nuclear Research , Świerk

The dependence of the light cutput of the NE102A plastic scintillator upon the LET of the charged particle has been applicated to quality factor estimation at different depth of a tissue like phantom. [1].

A cylindrical TE phantom /30 cm. dia. x 60 cm./ was exposed to 14.8, 5, 3.3 MeV neutrons from D/dn/³Ke reaction. The set of the detectors consists of a TE ionization chamber and NE102A scintillator optically connected with EMI 95248 photomultiplier. The set of the detectors were moved accross the phantom and the currents from ionization chamber and scintillation counter were simultaneously measured.

The quality factor was estimated from the approximated formula [1] :

$$\overline{Q} = 11/1 - 0.91 \frac{J_{f}}{K}$$

where $J_f - current$ of the scintillation counter $J_k - current$ of the ionization chamber K - factor, which normalizes $\frac{J_f}{K} = 1$ for gamma rays of $\frac{60}{Co}$.

The results of the measurements were illustrated on Fig.1 and compared with Snyder's calculations.

[1] S.Pszona, Health Physics, <u>16</u>, 9, 1969

[2] W.S.Snyder, N.B.S. Handbook 63, 1959 .

36 -

Penenetration of a Two-dimensional Fission Barrier

Z.Szymański, A.Sobiczewski, M. Zielińska-Pfabé

Institute for Nuclear Research and University of Warsaw, Warsaw, Poland

Summany

The understanding of the nuclear fission phenomenon requires a knowledge of the potential and kinetic energy of the nucleus in a fairly extensive region of nuclear deformation 1,2. The description of the process in terms of the quadrupole ($\lambda = 2$) deformation parameter only, proves to be insufficient. The role of the other deformation modes such as hexadecapole ($\lambda = 4$) and octupole ($\lambda = 3$) have been proved to be very important as well. In this paper we focus our attent tion on the dynamical aspects of fission treated as a two dimensional process with two degrees of freedom: quadrupole and hexadecapole. In this case the collective nuclear Hamiltonian can be written as

$$H = V(\mathcal{E}_{2}, \mathcal{E}_{4}) + \frac{1}{2} B_{\mathcal{E}_{2} \mathcal{E}_{2}} \dot{\mathcal{E}}_{2}^{2} + B_{\mathcal{E}_{2} \mathcal{E}_{4}} \dot{\mathcal{E}}_{2}^{2} \mathcal{E}_{4}^{2} + \frac{1}{2} B_{\mathcal{E}_{4} \mathcal{E}_{4}} \dot{\mathcal{E}}_{4}^{2}$$
(1)

38 _

where the potential energy V and the inertial parameters ^BELEj are treated as functions of the quadrupole and hexadecapole deformation parameters \mathcal{E}_2 and \mathcal{E}_4 . The potential energy surface $V(\mathcal{E}_2, \mathcal{E}_4)$ that exhibits a saddle point (or two saddle points) has been calculated earlier ¹. In the present paper the three inertial parameters $B_{\mathcal{E}_2 \mathcal{E}_4}$, $B_{\mathcal{E}_2 \mathcal{E}_4}$ and $B_{\mathcal{E}_4 \mathcal{E}_4}$ are calculated of the microscopic methods $\mathcal{E}_2 \mathcal{E}_4$ Then the effect of the existence of the two degrees of freedom \mathcal{E}_2 and \mathcal{E}_4 on fission dynamics are discussed. The conside-

rations involve essentially the penetration problem of a two dimensional potential barrier. One of the possibilities discussed consists in performing the penetration calculation along the "steepest descent" path in the potential energy surface. The problem can then be reduced to the one - dimensional penetration of the barrier in the appropriate direction in the ξ_2 , ξ_4 plane.

Another possibility that is believed to be more fundamental is then discussed. It consists in diagonalising first the kinetic energy term in eq. (1) and then facing a two dimensional penetration problem. A rigorous solution of the last problem (i.e. without the WKB approximation) may be obtained in a simple case when the potential energy V(x,y) (where x,yare deformation parameters after diagonalisation) is separable:

$$\mathbf{V}(\mathbf{x},\mathbf{y}) = \mathbf{f}(\mathbf{y}) + \mathbf{g}(\mathbf{x}) \tag{2}$$

and the inertial parameters are independent of the deformation. In the particular case of the second-order polynomial form of the potential

×39

$$V(x,y) = \frac{1}{2} (B_{yy} \omega_{tr}^2 y^2 - B_{xx} \omega_{long}^2 x^2)$$
(3)

the solution of the penetration problem is a straightforward generalisation into a two-dimentional case of the well-known Hill-Wheeler solution for the parabolic barrier 4.

In the present state it is difficult to estimate the final effect of the inclusion of the second degree of freedom. Very preliminary calculations show that diagonalisation of the kinetic energy tends to lower the logarithm of the spontaneous fission life time by a factor of 20 to 30 %, roughly.

In the case of the separable potential the hight of the potential barrier is not affected by the second dimention. The zero-point energies for the equilibrium and saddle points are the same in this case and they do not need to be taken into account in the penetration problem.

References

S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymański,
 S. Wycech, C. Gustafson, I.L. Lamm, P. Möller,

B. Nilsson, Nucl. Phys. A131 (1969),1.

- A. Sobiczewski, Z. Szymański, S. Wycech, S.G. Nilsson,
 J.R. Nix, C.F. Tsang, C. Gustarson, P. Möller, B. Nilsson,
 Nucl. Phys. A131 (1969),67 .
- A. Bohr, B. Mottelson, Nuclear Structure V.3
 W.A. Benjamin Inc. to be published.
- 4 D.L., Hill, J.A. Wheeler, Phys. Rev. 89 (1953),1102