COMPARISON OF SOME MULTIGROUP NUCLEAR DATA SETS
ON EXISTING FAST NEUTRON ASSEMBLIES
V. Cuculeanu, D. Mocioiu, D. Constantinescu

Institute of Nuclear Power Reactors Bucharest-Magurele, Romania

Reproduced by the IAEA in Austria
January 1979

COMPARISON OF SOME MULTIGROUP NUCLEAR DATA SETS
ON EXISTING FAST NEUTRON ASSEMBLIES
V. Cuculeanu, D. Mocioiu, D. Constantinescu
Institute of Nuclear Power Reactors
Bucharest-Magurele, Romania

COMPARISON OF SOME MULTIGROUP NUCLEAR DATA SETS

ON EXISTING FAST NEUTRON ASSEMBLIES
V.Cuculeanu, D. Mocioiu, D.Constantinescu

Institute of Nuclear Power Reactors
P.O. Box 5204

Bucharest-Magurele 7000, ROMANIA

ABSTRACT

In the present paper some multigroup nuclear data sets are analysed in terms of the neutronic parameters of some existing fast assemblies.

I. INTRODUCTION

It is well known the importance of nuclear data in providing design parameters for a nuclear reactor. In the last time some multigroup nuclear data sets for fast reactor studies were published $11,2,13 /$. In this paper an analysis of neutronic parameters of existing fast assemblies is done by using the sets published in $/ 1,2 /$, comparatively with the elder set of Abagyan et al. /3/.

The following approximations have been used: homogeneous and heterogeneous fundamental mode and one-dimensional diffusion and transport.

II. THE MULTIGROUP DATA SETS ANALYSED

II.1. ABBN - 1964 set / $3 /$

This set is very known. It was used in many fast reactor calculations and contains the majority of elements entering in fast reactor compositions.
II.2. The Modified $A B B N$ set / //

The basic data of this set are those from the ABBN-1964 set excepting for $U-235, U-238$ and Pu-239 isotopes which have
been reevaluated. For $U-235$ and $P u-239$, the cross sections for infinite dilution only have been reevaluated, the selfshielding factors being the same as in ABBN-1964 set.
II.3. The UKNDF set /2/

We call UKNDF set, the microscopic multigroup data set in $A B B N$ scheme obtained by Menapace et al / $/$ / using the English nuclear data file (UKNDF), version 1970.

The selfshielding factors in the unresolved resonance region were calculated by making use of ENDF/B data library, version 2 (1970). The set contains the majority of fissile elements and structural materials for fast reactors.

III. FAST ASSEMBLIES

In order to draw as complete as possible conclusions, many types of reactors varying as geometry, dimensions, fuel type and enrichment, neutron spectrum and core structure have been analysed.

To meet this end, a selection of twelve plutonium and uranium based fast critical assemblies was made for criticality studies.

The considered assemblies are: JEZEBEL, ZPR-III-48, ZEBRA-6A, ZEBRA-3, ZPR-6-7, GODIVA, SUAK UH 1B, ZPR-III-10, ZPR-III-25, SNEAK-3A1, MINERVE and PROTEUS cells.

A part of these assemblies were selected by the Cross Section Evaluation Working Group fll/ and others were taken from the papers of E.Kiefhaber and J.J.Schmidt /4/, J. Bouchardet al. /7/ and S.Sethet al. /8/.

The selected assemblies cover a wide range of neutron spectra: from very soft to very hard ones. Therefore, they are indicated for testing the group cross-section sets in the kev to MeV energy range. The main characteristics of the assemblies and the references used are presented in the Table I.

IV. THE TYPE OF CALCULATIONS

IV. 1. Homogeneous fundamental mode

The homogeneous fundamental mode equation mainly gives the material buckling for a composition, the neutron spectrum and neutron balance. In this paper the material bucking is to be compared for the multigroup data sets under study. It is known that
the material buckling gives information about the critical dimension of the homogeneous composition.

The code EROS /5/ with the macroscopic data prepared with the code PRESEC /6/ have been used in order to calculate the material bucking for the following reactors: SUAK-UH 1B (compo-
 ZPR-III-48 (composition 1), ZEBRA-6A (composition 1), SNEAK-3A1 (composition 4).

IV.2. Heterogeneous fundamental mode

Neutronic parameters given by the heterogeneous fundamental mode equation and used in the present analysis are the followings:

- infinite medium neutron multiplication coefficient, $K_{\infty}\left(B_{m}^{2}=0\right)$,
- the neutron multiplication coefficient for the infinite medium with leakage, $K^{*}\left(B_{m}^{2} \neq 0\right)$,
- cell material bucking, Bm,
- the neutron multiplication coefficient for the infinite medium with leakage, taking into account the ($n, 2 n$) reactions, $K_{n, 2 n}$,
- the migration area, M^{2},
- the one group diffusion coefficient, D,
- the total balance for the cell normalized for a neutron production equals 1 ,
- reaction rates in the fuel for the main fissile isotopes.

The above parametes have been calculated for two cells with uranium and two with plutonium, studied in the coupled fastthermal experience ERMINE /7/.

Besides, a cell with uranium and plutonium, studied in the coupled fast-thermal reactor PROTEUS /8/, has been investigated.

By their compositions the five cells cover a wide range of neutron spectra specific to the fast reactors. A simple cylindrical geometry allowing a two regions cell calculation (fuel and diluent) is the main advantage of these cells.

The spectrum of a sodium cooled power fast reactor is simulated by ERMINE cells and of a gas cooled fast reactor by PROTEUS cell.

ERMINE lattice is consisting of uranium fuel rods with 30% enrichment and $U-P u-F e$ alloy introduced in a graphite matrix with different pitches. PROTEUS lattice is a hexagonal one with the pitch of 1 cm .

Calculations were performed by means of the code TRIZON /9/ with the macroscopic cross sections prepared with the code PRESEC.
IV.3. One dimensional diffusion calculations

One dimensional multigroup diffusion equation has been used for calculating the neutron effective multiplication factor, keff.

The following assemblies with different neutron spectra have been studied: SUAK UH 1B, 2PR-III-10, ZPR-III-25, ZPR-III-48, 2PR-6 6A, ZEBRA-6A, SNEAK-3A1, ZPR-6-7, ZEBRA-3.

Geometry data, transversal bucklings, boundary conditions, number of zones, zone dimensions and number of mesh intervals have been taken from the mentioned references.

The keff - values have been obtained using the code CAIN / 10/ with macroscopic data calculated with the code PRESEC. IV.4. One dimensional transport calculations

Using one dimensional transport equation, $k_{\text {eff }}$ and central spectral indices have been computed for ten assembies (except for MINERVE and PROTEUS cells) in spherical geometry.

Reactor composition, geometrical dimensions and boundary conditions were taken from the respective references.

In the present calculations the code ANISN / $12 /$ was used with the options recommended in the references for the studied assemblies.

V. THE METHOD OF ANALYSIS

In order to analyse the results obtained the procedures presented bellow have been used:

- comparison of the values calculated using the multigroup sets with the experimental results;
- if there are no experimental values, the results obtained using the multigroup cross section sets have been analysed by comparison with the results obtained by means of other multigroup sets considered as standard ones or which have been tested on experimental measurements.

One has to point out two limitations of these procedures:

- the experimental data for ERMINE and PROTEUS cells which are to be compared with those obtained in heterogeneous fundamental mode approximation should be corrected with factors calculated by using multigroup cross section sets available in the respective center,
- the computing codes used in the present work are different from that used in the papers we are comparing with.
VI. RESULTS OBTAINED
VI.1. Homogeneous fundamental mode

The values for the material bucking are given in the Table II. In the last column the values for SNEAK cross section sets are presented. One can see from the Table II a systematic agreement between the results obtained with $A B B N-70$ and UKNDF sets.

The difference between $A B B N-70$ and $A B B N-64$ results are greater (up to 19%) than those between UKNDF and ABBN-70 (about 15%). One can observe that the greatest deviations are for ZPR-III-48 and ZEBRA-6A. This is normal because the two assemblies have plutonium fuel and as was noticed above the plutonium cross sections were reevaluated. The results obtained with $A B B N-70$ and $A B B N-64$ sets for the hard spectrum reactors (SUAK-UH 1B) are close, due to the fact that the reevaluation has been done especially in the intermediate range of the spectrum.
VI.2. Heterogeneous fundamental mode

In the Tables III - VI are presented the results for ERMINE (U1, U2, P1, P2) cells and for PROTEUS cell in the Table VII.

Concerning the capture contribution to the total balance, the discrepancies were less than 5% for uranium containing ERMINE cells, but become large for plutonium ERMINE cells, in the order of more than 15.6% for $A B B N-64$ and $A B B N-70$.

However an agreement of $\sim 2.5 \%$ between $A B B N-70$ and UKNDF sets can be observed.

For the PROTEUS cell a discrepancy of 11.5% between ABBN-64 and ABBN-70 appears, especially due to the Pu-239 capture cross sections because for the uranium cells the discrepancies were smaller.

The results for K_{∞}, K^{*} and $B \frac{2}{m}$, from the Tables III VII, show a satisfactory agreement between $A B B N-70$ and UKNDF for all the analyzed cells. The discrepancies between ABBN-64 and ABBN-70 are in order of 6% for K_{∞} and K^{*} and 19% for B呈 for the plutonium cells.

Discrepancies can be observed for the cpture reaction rates in $\mathrm{U}-235, \mathrm{U}-238, \mathrm{Pu}-239$ and mainly in $\mathrm{Pu}-240$.

The greatest discrepancies can be seen for the high isotopes of Pu , thus the cross sections for these elements have to be reevaluated.

A comparison of our results and the theoretical and experimental results from the literature /7, 8 / is presented in Tables VIII, IX and X.

The principal quantities to be compared are:

- The neutron multiplication coefficient, K *,

This parameter is presented only for the ERMINE cells.
A good agreement between our results and the results published at Fontenay-aux-Roses (F.A.R.) was found; the differencies are in the range of 3% for uranium cells, and for the plutonium cells in the range of 6.7% for $A B B N-64$ sets.

A general remark for the sets used in this paper is their over reactive character by comparison with F.A.R. results, especially for the plutonium cells.

The parameter K for PROTEUS cell is presented in the literature /8/ without the specification as being an infinite medium value $\left(B_{m}^{2}=0\right)$ or an infinite medium with leakage.
K_{∞} and $K *$ are close to the values for K_{K} for other cross section sets and a greater value is obtained with ABBN-64 set, according to the known over reactive character of this set.

- The material buckiing, $B \frac{2}{m}$,

The results obtained with the $A B B N-70$ and UKNDF
sets are in good agreement with those published by
 for the UKNDF set.

A great dispersion is found for the PROTEUS cell, the maximum deviation is of the order of 30% but the values obtained with the $A B B N-70$ cross sections set are yet in the range of 7% by comparison with the other sets.

- The spectral index $\left(28 f_{f} / 25_{f}\right)$ in fuel and diluent

It is an important quantity, mainly for Ul and U2 cells, the uranium being the only contributor to the production and the principal contributor to the absorption (60\%). Differences up to 14% are found for the ABBN-64 set, comparing with the F.A.R. results, for the cells Ul and $U 2$.

It is interesting to observe the better agrement, for some cases, between $A B B N-70$ and UKNDF sets and the experimental values, comparing with the F.A.R. results. It was observed, sistematically, greater discrepancies between our results and F.A.R. ones for the diluent values than for the fuel. This could be mainly due to a poor knowledge of the spectrum in the diluent than a difference in cross sections.

- The spectral index ($28 \mathrm{c} / 25_{\mathrm{f}}$)

Significant differences are to be observed, for the cross section sets under study and between calculated and experimental results. This is consistent with the different values for U-238 capture cross section for various sets and suggest both the necessity of reevaluation of $U-238$ and the improvement of the treatment for the resonance self-shielding.

- The spectral index (49f(25f)

An analysis of the calculated results points out the relative good agreement between $A B B N-70$ and UKNDF sets.

VI.3. One dimensional calculations

The neutron multiplication factors calculated in the diffusion and transport approximations are presented in the Tables XI and XII respectively.

As far as plutonium based assemblies are concerned the maximum deviation between $A B B N-64$ and $A B B N-70$ results is of the order of 6.6% whereas between $A B B N-70$ and UKNDF is 2.9% only.

For hard spectrum assemblies the deviations are smaller what sems to indicate the plutonium nuclear data in the high energy range are consistent in the nuclear data libraries underlying the analized sets.

The main differences sem to arise in the intermediate energy range.

For uranium based assemblies the same tendency has been observed: the discrepancies between ABBN 64 and $A B B N-70$ are greater than those for $A B B N-70$ and UKNDF.

Generally, the values of the deviations are smaller than those for plutonium based assemblies. Spectral indices calculated with the analized sets are given in Table XIII.
VII. CONCLUSIONS

It should be point out the agreement of the results obtained with $A B B N-70$ and UKNDF sets for the main part of calculation types. One can see the well known over-reactive character of $A B B N-64$ set.

Also, the calculations show the over-reactive character of the $A B B N-64, A B B N-70$ and UKNDF sets in comparison with F.A.R. set.

Discrepancies among the data sets and between calculation and experiments can be observed for capture reaction rates and spectral indices, especially for U-238.

It seems the capture cross section for $U-238$ to be underestimated. Thus, a new evaluation for $U-238$ appears to be necessary. A similar conclusion was revealed in / $13 /$.

There are great deviations among the capture and fission reaction rates for $\mathrm{Pu}-240, \mathrm{Pu}-241, \mathrm{Pu}-242$. It is known that in different works it was recommended the reevaluation of nuclear data for the high isotopes of plutonium /14/.

The present work indicates the necessity of this reevaluation.

For hard spectrum assemblies $A B B N-64$ and $A B B N-70$ give comparable results because the reevaluated data in ABBN $\mathbf{- 7 0}$ are mainly in the intermediate energy range.

The ABBN-70 set seems to be appropriate for calculating neutronic parameters of power fast reactors.

REFERENCES

```
/1/. V.V. Orlovet al.: F.E.I. - 306, Obninsk, 1972
/2/. E. Menapace et al.: RT/FI(73) 15, Roma,. 1973
/3/. L.P. Abagyan et al.: Group constants for nuclear reactor
                                    calculations,
                                    Consultants Bureau, New York, 1964
/4/. E. Riefhaber, J.J. Schmidt : KFK-969, september 1970
/5/. S. Boeriu et al. : IFA-FR-1972, Bucharest, Romania
/6/. D. Mocioiu et al.: IFA-FR-1975, Bucharest, Romania
/7/. J. Bouchard et al.: CEA-R-4246
/8/. S. Seth et al. : Conf. on Cross-sections and Technology,
                                    Washington D.C., March 3-7, 1975
/9/. D. Mocioiu: IRNE-120, november 1976, Romania
/10/. S. Boeriu et al. : IFA-FR-95-1972
/11/. ENDF-202: - Cross-section Evaluation Working Group Benchmark
                                    Specifications, november 1974
                                    BNL 19302 (ENDF-202)
/12/. W.W. Engle, Jr. : ANISN, A One Dimensional Discrete
                    Ordinates Transport Code,
                        K-1693, 1967
                    /13/. S.G. Carg and V.K. Shulka: INDC(IND) - 22/G, October 1977
                    /14/. L. P. Abagyan and L.V. Petrova : TRG Report 2133(R), 1971
/15/. R. Richmond et al. : Proc. of the Conf. on Advanced Reactors:
                                    Physics, Design and Economics,
                                    Atlanta, Georgia, september 8-11, 1974
```

TABLE I: CHARACTERISTICS OF THE ANALYZED ASSEMBLIES

Assembly	Characteristics	Reference
1	2	3
JEZEBEL	A bare core assembly of plutonium metal with a very hard neutron spectrum	/ 11 /
2PR-3-48	A plutonium fueled small fast critical assembly with a soft spectrum and other characte ristics reprezentative of current LMFBR designs	/4/
ZEBRA-6A	A small plutonium assembly with a fuel enri chment of about 24%; Na and C added to in fluence the neutron spectrum in the desired manner	$14 /$
VERA-11A	A cylindrically shaped critical assembly fueled with plutonium and diluted with graphite	/ 11 /
ZPR-6-7	A large plutonium oxide fueled fast critical assembly with a soft spectrum and other characteristics reprezentative of current LMFBR designs	
GODIVA	A bare sphere of enriched uranium metal	/11/
SUAK UH1B	A metal uranium fueled assembly containing a relative large amount of hydrogen in foils of polyethylene	/4/
ZPR-3-10	A metal uranium fueled assembly with a rather small core surrounded by a relatively large reflector of depleted uranium	/4/
ZPR-3-25	A large core with uranium metal fuel	/4/
SNEAK-3A 1	It was built to simulate the core of a fast steam cooled power reactor	/4/

TABLE I: CHARACTERISTICS OF THE ANALYZED ASSEMBLIES (Continuation)

1	2	3
2PR-6-6A	A uranium oxide fueled fast critical assembly with a soft spectrum	/4/
ZEBRA-3	A9:1 uranium/plutonium metal assembly with hard spectrum	/4/
ERMINE	Two of the four cells studied in the ERMINE-	
U1, U2	II assembly, U2 and P2, are similar with	
P1, P2	these used for the reactor MASURCA and Ul and $P 1$ are uranium-graphite and plutonium graphite cells	/7/
PROTEUS	Fast reactor cell with uranium and pluto nium, studied in the coupled fast-thermal reactor PROTEUS	/8/

TABLE II: RESULTS CALCULATED IN FUNDAMENTAL MODE APPROXIMATION

SET	ABBN-64	ABBN-70	UKNDF	KFK REACTOR
SUAK UH1B	$0.1753 \mathrm{E}-01$	$0.1740 \mathrm{E}-01$	$0.1873 \mathrm{E}-01$	$0.2053 \mathrm{E}-01$
ZPR-III-10	$0.8307 \mathrm{E}-02$	$0.7710 \mathrm{E}-02$	$0.7743 \mathrm{E}-02$	$0.8137 \mathrm{E}-02$
ZPR-III-25	$0.3017 \mathrm{E}-02$	$0.2725 \mathrm{E}-02$	$0.2315 \mathrm{E}-02$	$0.3172 \mathrm{E}-02$
ZPR-III-48	$0.2811 \mathrm{E}-02$	$0.2362 \mathrm{E}-02$	$0.2289 \mathrm{E}-02$	$0.2701 \mathrm{E}-02$
ZEBRA-6A	$0.3514 \mathrm{E}-02$	$0.3028 \mathrm{E}-02$	$0.3028 \mathrm{E}-02$	$0.3459 \mathrm{E}-02$
SNEAK 3A1	$0.2301 \mathrm{E}-02$	$0.2111 \mathrm{E}-02$	$0.2191 \mathrm{E}-02$	$0.2201 \mathrm{E}-02$

	ABBN-64	ABBN-70	UKNDF	$\begin{aligned} & \text { CALC. } \\ & \text { F.A.R. } \end{aligned}$
k_{∞}	1.5462	1.5537	1.5852	
Bm^{2}	0.00378	0.00368	0.00399	0.00361
K*	1.5935	1.5965	1.6240	1.5743
$K(n, 2 n)$	1.59708	1.60021	1.62760	
$\overline{\mathrm{D}}$	1.36512	1.35277	1.31687	
M^{2}	158	163	157	
C	0.2267	0.2251	0.2156	
F	0.4008	0.4012	0.4002	
A	0.6275	0.6263	0.6158	
L	0.3738	0.3750	0.3856	
$\emptyset_{0} \mathrm{f} 5$	164.06	164.76	164.65	
¢ocs	54.927	50.590	46.722	
Quof5	404.73	406.24	407.72	
$\emptyset \sigma \mathrm{f} 8$	6.3572	6.1274	5.9765	
¢ oce 8	18.877	20.387	19.827	
¢ vo f 8	17.842	17.185	16.543	

C, F, A and L stand for capture, fission, absorbtion and leakage contributions to the total balance.

TABLE IV: CALCULATED NEUTRONIC PARAMETERS OF THE CELL U2

	ABBN-64	ABBN-70	UKNDF	CALC. F.A.R.
K_{∞}	1.5617	1.5663	1.5966	
Bm 2	0.00426	0.00411	0.00445	0.00406
$\mathrm{~K}^{*}$	1.6115	1.6122	1.6387	1.5966
$\mathrm{~K}(\mathrm{n}, 2 \mathrm{n})$	1.61546	1.61617	1.64193	
\bar{D}	1.3476	1.33452	1.29757	
M^{2}	144	149	144	
C	0.2203	0.2197	0.2109	
F	0.4001	0.4005	0.3996	
A	0.6205	0.6202	0.6105	
L	0.3809	0.3812	0.3909	
$\emptyset \sigma \mathrm{f} 5$	144.92	145.54	145.53	
$\emptyset \sigma \mathrm{c} 5$	46.713	43.361	40.171	
$\emptyset v \sigma \mathrm{f} 5$	357.92	359.28	360.75	
$\emptyset \sigma \mathrm{f} 8$	5.9661	5.7609	5.6053	
$\emptyset \sigma \mathrm{c} 8$	16.861	18.152	17.733	
$\emptyset v \sigma \mathrm{f} 8$	16.749	16.161	15.521	

TABLE V: CALCULATED NEUTRONIC PARAMETERS OF THE CELL P1

	ABBN-64	ABBN-70	UKNDF	$\begin{aligned} & \text { CALC. } \\ & \text { F.A.R. } \end{aligned}$
K_{∞}	1.5993	1.5106	1.5323	
Bm^{2}	0.00362	0.00309	0.00332	0.00319
K^{*}	1.6935	1.5950	1.6083	1.5707
$K(n, 2 n)$	1.69651	1.59776	1.61153	
$\overline{\mathrm{D}}$	1.32395	1.31241	1.27509	
m^{2}	192	193	184	
C	0.2481	0.2856	0.2791	
F	0.3423	0.3414	0.3425	
A	0.5905	0.6269	0.6217	
L	0.4107	0.3743	0.3797	
¢0f5	87.48	296.46	296.16	
$\emptyset_{0} 0^{\prime}$	29.29	114.99	109.25	
\emptyset vof 5	704.01	725.74	728.73	
$\emptyset 0 \mathrm{f} 8$	6.8514	6.7355	6.5498	
$\emptyset_{0} \mathrm{c} 8$	26.395	29.685	28.552	
\emptyset vof 8	19.260	18.919	18.157	
$\emptyset \sigma \mathrm{f} 9$	208.07	207.22	208.84	
\emptyset oc9	68.219	82.173	86.276	
\emptyset vof 9	610.54	610.11	613.27	

	ABBN-64	ABBN-70	UKNDF	$\begin{aligned} & \text { CALC. } \\ & \text { F.A.R. } \end{aligned}$
$\emptyset \sigma \mathrm{fo}$	41.727	43.210	46.453	
$\emptyset_{0} c 0$	115.07	126.50	47.676	
$\emptyset \cup 0 \mathrm{fo}$	126.61	131.05	143.17	
$\theta \sigma_{1} 1$	430.09	467.46	415.80	
$\phi \sigma^{c} 1$	87.225	94.865	69.590	
$\emptyset v \sigma$ f 1	1283.7	1394.7	1189.6	
$\phi \sigma^{\prime} 2$	31.536	32.625	30.151	
$\emptyset \sigma \mathrm{c} 2$	161.39	175.49	167.47	
\emptyset vof2	97.727	101.07	93.541	

TABLE VI: CALCULATED NEUTRONIC PARAMETERS OF THE CELL P2

	ABBN-64	ABBN-70	UKNDF	$\begin{aligned} & \text { CALC. } \\ & \text { F.A.R. } \end{aligned}$
1	2	3	4	5
K_{∞}	1.6417	1.5497	1.5657	
Bm^{2}	0.00434	0.00373	0.00394	0.00380
K^{*}	1.74792	1.6483	1.65491	1.6368
$K(n, 2 n)$	1.75182	1.65190	1.65901	
$\overline{\mathrm{D}}$	1.31987	1.30817	1.26917	
M^{2}	173	175	167	
C	0.2304	0.2659	0.2623	
F	0.3417	0.3407	0.3419	
A	0.5721	0.6069	0.6043	
L	0.4292	0.3947	0.3973	
Øof 5	226.52	232.94	235.78	
¢oc5	95.688	85.298	82.286	
0 ขof 5	555.76	571.34	581.05	
$\emptyset 0$ ¢ 8	6.2976	6.2036	6.0140	
$\emptyset \sigma \mathrm{c} 8$	21.7009	24.429	23.836	
¢ vof 8	17.713	17.435	16.684	
¢0 99	172.707	172.00	173.38	
$\emptyset 0<9$	51.805	62.893	66.173	
¢ vof9	507.92	507.60	510.35	

TABLE VI: CALCULATED NEUTRONIC PARAMETERS OF THE CELL P2 (Continuation)

1	2	3	4	5
$\emptyset \sigma \mathrm{fO}$	38.083	39.520	42.207	
$\emptyset \sigma 00$	84.435	92.405	38.102	
\emptyset vofo	115.61	119.92	130.18	
$\emptyset \sigma \mathrm{f} 1$	329.73	357.45	322.96	
$\emptyset \sigma \subset 1$	63.739	68.969	50.824	
$\emptyset \mathrm{V} \mathbf{f} 1$	985.75	1068.2	918.30	
$\emptyset 092$	28.787	29.845	27.564	
$\emptyset \mathrm{oc} 2$	105.332	111.09	110.21	
\emptyset vof2	'89.254	92.499	85.556	

TABLE VII: CALCULATED NEUTRONIC PARAMETERS OF THE CELL PROTEUS

	ABBN-64	ABBN-70	UKNDF
$K \infty$	1.4362	1.3611	1.3571
Bm^{2}	0.00144	0.00119	0.00109
K*	1.5403	1.4644	1.4416
$K\left(\begin{array}{ll}\mathrm{n} & 2 \mathrm{n}\end{array}\right)$	1.5454	1.4692	1.4467
$\overline{\mathrm{D}}$	2.0929	2.0660	2.1695
M^{2}	378	395	408
C	0.3063	0.3408	0.3498
F	0.3428	0.3419	0.3438
A	0.6492	0.6828	0.6936
L	0.3529	0.3193	0.3088
¢ 0f5	227.79	235.33	245.89
Øoc5	65.357	64.557	65.327
¢00 55	562.23	580.56	608.28
$\emptyset 0 \mathrm{f} 8$	7.4931	7.3853	7.3093
$\emptyset 0 \mathrm{c} 8$	28.340	31.399	32.821
¢ จof 8	21.114	20.792	20.318
$\emptyset 0$ f9	224.15	221.79	223.53
$\emptyset_{0} \mathrm{c} 9$	43.100	48.645	54.065
\emptyset vof9	660.11	655.55	658.98

TABLE VII: CALCULATED NEUTRONIC PARAMETERS OF THE CELL

 PROTEUS(Continuation)

	ABBN-64	ABBN-70	UKNDF
$\emptyset \sigma \mathrm{fO}$	52.236	54.373	58.755
$\emptyset \sigma_{\mathrm{c} 0}$	67.199	77.949	39.882
$\emptyset \sigma_{\mathrm{f} 0}$	157.55	163.89	180.26
$\emptyset \sigma_{\mathrm{f} 1}$	298.37	343.01	320.82
$\emptyset \sigma_{\mathrm{c} 1}$	41.960	49.245	42.217
$\emptyset \sigma_{\mathrm{f} 1} 1$	896.86	1029.6	907.14

TABLE VIII: EXPERIMENTAL - CALCULATION COMPARISON FOR

 SPECTRAL INDICES OF THE CELLS U1, U2, P1, P2| U1 | ABBN-64 | ABBN-70 | UKNDF | $\begin{aligned} & \text { CALC. } \\ & \text { F.A.R. } \end{aligned}$ | $\begin{aligned} & \text { EXP. } \\ & \text { F.A.R. } \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left({ }^{28} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\mathrm{F}}$ | 0.0387 | 0.0372 | 0.0363 | 0.0338 | $0.0363 \pm$ | 0.001 |
| $\left({ }^{28} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\text {D }}$ | 0.0308 | 0.0297 | 0.0288 | 0.0280 | $0.0296 \pm$ | 0.0006 |
| U2 | | | | | | |
| $\left({ }^{28} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\mathrm{F}}$ | 0.0412 | 0.0396 | 0.0385 | 0.0360 | $0.0357 \pm$ | 0.0007 |
| $\left({ }^{28} \mathrm{c} /{ }^{25} \mathrm{f}\right)^{\mathrm{F}}$ | 0.1163 | 0.1247 | 0.1220 | 0.124 | $0.138 \pm$ | 0.004 |
| $\left({ }^{28} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\text {D }}$ | 0.0339 | 0.0324 | 0.0311 | 0.0306 | $0.0322 \pm$ | 0.0005 |
| P1 | | | | | | |
| $\left({ }^{28} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\mathrm{F}}$ | 0.0238 | 0.0227 | 0.0221 | 0.0243 | - | |
| $\left({ }^{28} c /{ }^{25} f\right)^{\text {F }}$ | 0.0918 | 0.1001 | 0.0998 | 0.1201 | - | |
| $\left({ }^{49} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\mathrm{F}}$ | 0.723 | 0.699 | 0.705 | 0.863 | $0.95 \pm$ | 0.001 |
| $\left({ }^{28} \mathrm{c} /{ }^{25} \mathrm{f}\right)^{\text {D }}$ | 0.0190 | 0.0182 | 0.0179 | 0.0206 | $0.0213 \pm$ | 0.0004 |
| $\left({ }^{49} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\text {D }}$ | 0.929 | 0.928 | 0.944 | 0.966 | - | |

P2
$\left.\begin{array}{lllllll}\left({ }^{28} f\right. \\ f\end{array}{ }^{25} f\right)^{F} \quad 0.0278 \quad 0.0266 \quad 0.0251 \quad 0.0281 \quad 0.0297 \pm 0.0007$ $\left(\begin{array}{lllll}(28 \\ c\end{array} /^{25} \mathrm{f}\right)^{\mathrm{F}} \quad 0.0958 \quad 0.1049 \quad 0.1011 \quad 0.1195 \quad 0.130 \pm 0.004$ $\begin{array}{llllll}\left({ }^{49} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\mathrm{F}} & 0.7525 & 0.7384 & 0.7353 & 0.880 & -\end{array}$ $\left.\begin{array}{llllll}\left({ }^{28} f /{ }^{25} f\right.\end{array}\right)^{\mathrm{D}} \quad 0.0226 \quad 0.0221 \quad 0.0212 \quad 0.0240 \quad 0.0248 \pm 0.0005$ $\left(\begin{array}{llllll}\left.{ }^{49} \mathrm{f} /{ }^{25} \mathrm{f}\right)^{\mathrm{D}} & 0.925 & 0.912 & 0.924 & 0.959 & 0.95\end{array}\right.$

TABLE IX: COMPARISON OF CALCULATED NEUTRONIC
PARAMETERS FOR PROTEUS CELL /15/

	ENDFB/3		$\begin{aligned} & \text { ASEA } \\ & \text { ATOM } \end{aligned}$	$\begin{aligned} & \mathrm{KFK} \\ & \mathrm{INR} \end{aligned}$	$\underset{4}{\text { FGL }}$	$\begin{aligned} & \text { CAD } \\ & \text { III } \end{aligned}$	$\begin{gathered} \text { ABBN } \\ 64 \end{gathered}$	$\begin{gathered} \text { ABBN } \\ 70 \end{gathered}$	UKNDF
	GGC5	SPENG							
K \quad	1.436	1.437	1.490	1.486	1.501	1.519	1.436	1.361	1.357
$\mathrm{Bm}{ }^{2}$		12.87	12.98	13.17	13.65	13.01	14.46	11.87	10.94
K*							1.540	1.464	1.441
$\mathrm{K}(\mathrm{n}, 2 \mathrm{n})$							1.545	1.469	1.446
$\overline{\mathrm{D}}$							2.093	2.066	2.170
M^{2}		340	378	369	367	397	378	394	408

TABLE X: COMPARISON OF EXPERIMENTAL AND CALCULATED (C/E)
VALUE OF THE SPECTRAL INDICES FOR PROTEUS CELL /8/

	ENDFB/3		$\begin{aligned} & \text { ASEA } \\ & \text { ATOM } \end{aligned}$	$\begin{aligned} & \text { KFK } \\ & \text { INR } \end{aligned}$	$\underset{4}{\text { FGI }}$	$\begin{aligned} & \text { CAD } \\ & \text { III } \end{aligned}$	$\begin{gathered} \text { ABBN } \\ 64 \end{gathered}$	$\begin{gathered} \text { ABBN } \\ 70 \end{gathered}$	UKNDF	$\begin{aligned} & \text { EXP } \\ & / 8 / \end{aligned}$
	GGC5	SPENG								
$28 \mathrm{c} /{ }^{49} \mathrm{p}$	1.057	1.082	1.042	1.030	0.980	0.975	0.942	1.0557	1.095	0.1341
${ }^{28} \mathrm{c} /{ }^{49} \mathrm{f}$	0.955	0.969	0.981	1.005	0.963	1.023	1.072	1.068	1.049	0.0312
$25 p / 49$	1.018	1.030	0.993	1.009	1.019	1.004	1.003	1.046	1.085	1.0137

TABLE XI: ONE DIMENSIONAL DIFFUSION CALCULATIONS FOR k eff (spherical model)

Reactor	ABBN-64	ABBN-70	UKNDF	KFK/4/
SUAK UH1B	0.93234	0.92732	0.94990	0.8808
ZPR-III-10	0.99758	0.97568	0.97044	0.9752
ZPR-III-25	0.99285	0.97800	0.95455	0.9700
SNEAK-3A1	1.01659	0.99237	1.00295	0.9911
ZPR-6-6A	1.02614	1.00090	0.99952	-
ZPR-III-48	1.01882	0.95942	0.94441	-
ZEBRA-6A	1.01831	0.95714	0.95289	0.9630
ZPR-6-7	1.03562	0.97112	0.95012	-
ZEBRA-3	0.98580	0.95685	0.92914	-

TABLE XII: ONE DIMENSIONAL TRANSPORT CALCULATIONS FOR k Ef

| Reactor | Set | ABBN-64 | ABBN-70 |
| :--- | :--- | :--- | :--- | UKNDF

TABLE XIII: SPECTRAL INDICES CALCULATED WITH ANISN

	JEZEBEL .				2PR-3-48			
$\begin{aligned} & \text { SPECTRAL } \\ & \text { INDEX } \end{aligned}$	ABBN-64	ABBN-70	UKNDF	EXP	ABBN-64	ABBN-70	UKNDF	EXP
$28_{f} / 2{ }^{25}$. 1924	. 1889	. 1892	$\begin{aligned} & .205 \pm \\ & .008 \end{aligned}$. 0332	. 0333	. 0316	$\begin{aligned} & .0321 \pm \\ & .0076 \end{aligned}$
${ }^{28} \mathrm{c} /{ }^{25} \mathrm{f}$. 0765	. 0773	. 0821	-	. 1284	. 1380	. 1381	$\begin{aligned} & .131 \pm \\ & .007 \end{aligned}$
${ }^{49} \mathrm{f} /{ }^{25} \mathrm{f}$	1.3860	1.3769	1.3713	$\begin{aligned} & 1.49 \pm \\ & 0.03 \end{aligned}$. 9660	. 9368	.9064	-
		GODIVA			ZEBRA-3			
${ }^{28} \mathrm{f} /{ }^{25} \mathrm{f}$. 0846	.1478	. 1566	$\begin{aligned} & .156 \pm \\ & .005 \end{aligned}$. 0440	. 0434	. 0398	$\begin{aligned} & .0461 \pm \\ & .0008 \end{aligned}$
${ }^{28} \mathrm{c} /{ }^{25} \mathrm{f}$. 1050	. 0861	. 0885	-	. 1141	. 1137	. 1206	-
${ }^{49} f /{ }^{25} f$	1.1857	1.3349	1.3479	$\begin{aligned} & 1.42 \pm \\ & 0.02 \end{aligned}$	1.1777	1.1525	1.1182	$\begin{aligned} & 1.190 \pm \\ & 0.014 \end{aligned}$

