Request for v Measurements

A Discussion of the Requests in EANDC 55"U"

Ъ

H Condé, Research Institute of National Defence, Stockholm 80 and

A Starfelt, AB Atomenergi, Studsvik, Nyköping

Introduction

EANDC 55"U" contains 38 requests for $\bar{\nu}$ measurements. In nine of these requests the required accuracy is 1% or better. These high accuracy requests present the most difficult problems in the present attempt to evaluate the situation. We stcott et al (1) have made a very careful evaluation of the 2200 m/s constants for four fissile nuclides. They also include $\bar{\nu}$ for spontaneous fission of Cf²⁵². The accuracies in their recommended $\bar{\nu}$ -values are 0.4%, 0.3%, 0.5%, 0.8% and 0.4% for U²³³, U²³⁵, Pu²³⁹, Pu²⁴¹ and Cf²⁵², respectively. Absolute measurements of $\bar{\nu}$ of Cf²⁵² have given values which differ by up to 2% (1).

In our discussion of the requests for $\bar{\nu}$ measurements we have, in some cases, given alternative recommendations based on one of the following assumptions

- A. \vec{v} given by Westcott et al.
- B. No \bar{v} is known with better accuracy than 1 %.

Measurements at a certain energy on different isotopes of the same element have always given $\bar{\nu}$ results which differ by less than 5 %. Requests for measurements with accuracy worse than 10 % for the less common isotopes can probably be fulfilled by the use of the experimental results for another isotope of the same element. A request which is considered to be fulfilled in this meaning is denoted by C.

No.	Isotope	Energy range	Accuracy	Comment
582	_U 233	Thermal region	1/2%	A: fulfilled (1) B: more work required
583	_U 233	10 eV - 1 keV	3%, at worst 5% in n	. fulfilled (2)(3)(4)
584	_U 233	10 eV to 1 keV	3% in η	fulfilled (2)(3)(4)
585, 86	_U 233	1 - 30 keV	2% in n	fulfilled (2)(3)(4)
587	_Ū 233	1 keV to 10 MeV	1%	more work required
588	_Մ 233	30 keV to 10MeV	0.5% in n	more work required
589	_Մ 233	40 keV to 5 MeV	1%	more work required
590	_Մ 233	2 - 7 MeV	2% in n	more work required above 4 MeV
591	_Մ 233	7 - 14 MeV		cannot be discussed because no accuracy stated
611	Մ ²³⁴	Threshold to 10 MeV	15%	C: fulfilled experiments planned by Condé et al
612	U ²³⁴	100 keV	10%	C: fulfilled experiments planned by Condé et al
613	_U 234	500keV - 14 MeV		cannot be discussed because no accuracy stated
657	_U 235	Thermal region	1/2%	A: fulfilled (1) B: more work required
680	_U 236	Threshold to 10 MeV	20%	C: fulfilled experiments planned by Conde et al
681	_U 236	500keV - 14 MeV		cannot be discussed because no accuracy stated
690	_U 237	500keV - 14 MeV		cannot be discussed because no accuracy stated
719	_ປ 238	Threshold - 5 MeV	0.5%	more work required (3)(5)
720	_U 238	500keV - 14 MeV		cannot be discussed because no accuracy stated

No.	Isotope	Energy range	Accuracy	Comment
721	_U 238	7 to 15 MeV	. 2%	measurements only at 7.5 and 14 MeV (5) but interpolation probably fulfils requirement
725	U ²³⁹	500keV -14 MeV		cannot be discussed because no accuracy stated
731	Pu ²³⁸	100keV- 10 MeV	5% or at worst 10%	C: fulfilled, but one point should be measured
732	Pu ²³⁸	500keV- 14 MeV		cannot be discussed because no accuracy stated
780	Pu ²³⁹	Thermal region	1/2%	A: fulfilled (1) B: more work required
781	Pu ²³⁹	40 keV - 4 MeV	1/2%	more work required (2)(3)
782	Pu ²³⁹	5 - 14 MeV		cannot be discussed because no accuracy stated
783	Pu ²³⁹	5MeV to 15MeV	10%	fulfilled by interpolation (3)
784	Pu ²³⁹	5MeV to 15MeV	2%	more work required experiments planned by Condé et al
822	Pu ²⁴⁰	Threshold - 5 MeV	2%	more work required, difficult because of spontaneous fission
823	Pu ²⁴⁰	Thermal - 14 MeV	3%	more work required, difficult because of spontaneous fission
824	Pu ²⁴⁰	1 keV to 1 MeV	10%	fulfilled, C and (6)
825, 2	6 Pu ²⁴⁰	100 keV to 15 MeV	5%	more work required (6)
856, 5	7 Pu ²⁴¹	1 keV to 14 MeV	5%	fulfilled (7)
858	Pu ²⁴¹	40 keV- 4 MeV	5%	fulfilled (7)
872	Pu ²⁴²	500keV - 14MeV		cannot be discussed because no accuracy stated
875	Cf	Spontaneous fission	1/4%	much more work required.

Conclusions

Accepting assumption B above 15 requests are still left without appropriate actions. Out of these 588 for U²³³, 719 for U²³⁸, 781 for Pu²³⁹, 822 and 823 for Pu²⁴⁰ and 875 for Cf²⁵² would require a large experimental effort. The need of these measurements and the possibility of initiating experiments should be thoroughly studied. These requests should be transmitted through IAEA to Australia and USSR.

References

- 1. Westcott et al, Atomic Energy Review 3, No. 2 (1965)
- 2. J.C. Hopkins and B.C. Diven, Nucl. Phys. 48, 433 (1963)
- 3. D.S. Mather, B. Fieldhouse and A. Moat, Nucl. Phys. <u>66</u>, 149 (1965)
- 4. D.W. Colvin and M.G. Sowerby, Physics and Chemistry of Fission 2
 IAEA, Vienna (1965)
- 5. I. Asplund-Nilsson, H. Condé and N. Starfelt, Nucl. Sci. Eng. 20, 527 (1964)
- 6. M. De Vroey, A.T.G. Ferguson and N. Starfelt, J. of Nucl. Energy Parts A/B 20, 191 (1966)
- 7. H. Condé, J. Hansén and M. Holmberg, Conference on Nuclear Data Microscopic Cross-Sections and other Data Basic for Reactors, Paris, 17-21 October, 1966, paper No. 19.