THIS DOCUMENT IS INTENDED FOR PUBLICATION IN THE OPEN LITE Until it is published, it may not be circulated, abstracted or referred to or organisations to which copies have been sent. INDC(UK)-19/L EANDC(UK)-150/L

R 7394

United Kingdom Atomic Energy Authority RESEARCH GROUP

Report

FISSION PRODUCT CHAIN YIELDS FROM EXPERIMENTS IN REACTORS AND ACCELERATORS PRODUCING FAST NEUTRONS OF ENERGIES UP TO 14 MeV

E. A. C. CROUCH

NDS LIBRARY COPY

The contents of this paper have been examined and recommended by the United Kingdom Chemical Nuclear Data Committee

> Chemistry Division, Atomic Energy Research Establishment, Harwell, Berkshire.

> > 1973

C. 4

Enquiries about copyright and reproduction should be addressed to the Scientific Administration Office, Atomic Energy Research Establishment, Harwell, Didcot, Berkshire, England. .

.

FISSION PRODUCT CHAIN YIELDS FROM EXPERIMENTS IN REACTORS AND ACCELERATORS PRODUCING FAST NEUTRONS OF ENERGIES UP TO 14 MeV

by

E. A. C. Crouch

The contents of this paper have been examined and recommended by the United Kingdom Chemical Nuclear Data Committee.

ABSTRACT

Published values of the yields of fission products from reactor fast neutron fission of 232 Th, 233 U, 235 U, 237 Np, 238 U and 239 Pu; from the 14 MeV neutron induced fission of 231 Pa, 232 Th, 233 U, 235 U, 237 Np, 238 U, 239 Pu and 241 Pu, and from the fission of 231 Pa, 232 Th, 235 T, 237 Np, 238 U and 239 Pu induced by neutrons of intermediate energies, have been assessed and recommended values for the chain yields listed. Very few predicted or interpolated values of fission product yields are included, but this compilation is part of the experimental basis for the construction of complete sets of adjusted yields to be published later.

Chemistry Division, U.K.A.E.A. Research Group, Atomic Energy Research Establishment, <u>HARWELL</u>

May 1973

/PS

HL73/2110(C4)

CONTENTS

:	÷		Page No.
1.	Intr	oduction	1
2.	Basi	s of Assessment	1
3.	The .	Assessed Yields	4
4.	Refe	rences	6
5.	Expl	anation of the Tables	6
		TABLES	
Tabl	e 1	²³¹ Pa 3.0 MeV Neutron Induced Fission	8
Tabl	e 2	²³¹ Pa 14 MeV Neutron Induced Fission	8
Tabl	e 3	²³² Th Fast Neutron Induced Fission	8
Tabl	e 4	²³² Th 3.0 MeV Neutron Induced Fission	9
Tabl	e 5	²³² Th 11 MeV Neutron Induced Fission	9
Tabl	e 6	²³² Th 14 MeV Neutron Induced Fission	9
Tabl	e 7	²³³ U Fast Neutron Induced Fission	11
Tabl	e 8	²³³ U 14 MeV Neutron Induced Fission	11
Tabl	e 9	²³⁵ U Fast Neutron Induced Fission	12
Tabl	e 10	8 MeV Neutron Induced Fission of ²³⁵ U	14
Tabl	e 11	Neutron Induced Fission of 235 U at Various Energies	14
Tabl	e 12	14 MeV Neutron Induced Fission of ²³⁵ U	14
Tabl	e 13	Fast Neutron Fission of ²³⁷ Np	16
Tabl	e 14	Fission of ²³⁷ Np by 1.1 MeV Neutrons	16
Tabl	e 15	14 MeV Neutron Induced Fission of $^{237}_{ m Np}$	16
Tabl	e 16	Fast Neutron Fission of 238 U	16
Tabl	e 17	Fission of ²³⁸ U at Various Neutron Energies	18
Tabl	.e 18	14 MeV Neutron Fission of 238 U	18
Tabl	e 19	Fast Neutron Fission of ²³⁹ Pu	20
Tabl	e 20	Fission of ²³⁹ Pu at Various Energies	22
Tabl	.e 21	14 MeV Neutron Fission of 239 Pu	23
Tabl	e 22	14 MeV Neutron Fission of ²⁴¹ Pu	23
Tabl	e 23	Reference List of Fission Yield Literature	24

1. Introduction

This assessment of fission product chain yields from fission induced by neutrons of energies above thermal and up to 14 MeV, is really a continuation of the thermal neutron fission yields assessment (Ref. 1), and the reasons for the work are the same. Briefly, it is hoped it will be possible to assess future published fission product yields together with those already recorded, by means of suitable computer programmes.

As in the case of thermal yields, there are gaps in the experimentally determined chain yields for fast fission, much wider gaps. Only about 50% of the chain yields for the mass range 70 - 170, in fast fission of 235 U have been experimentally determined and none at all for the fast fission of 240 Pu which will be a major component of fast reactor fuels. There is however, a need for complete sets of fission yields since designers and operators of nuclear reactors must have estimates of parameters which are undetermined experimentally. This paper contains a few interpolated chain yield estimates but not enough for design purposes and based on simple linear interpolation in regions removed from fine structure. The assessed yields of this work together with assessed thermal neutron induced fission product yields (Ref. 1), will be made the basis of the construction of complete sets of fission product chain yields from particular nuclear reactions, adjusted to conform with the basic physical conservation laws.

It is difficult in work of this kind to avoid errors, and the author will be extremely grateful if readers will draw his attention to any errors they may find.

2. Basis of Assessment

(i) The definitions of 'Independent', 'Cumulative' and 'Chain' yields as used in this work have been given before (Ref. 1).

(ii) Treatment of the published results; yield adjustments

The published data for this assessment were stored in a computer file and for each fissile isotope an interrogation routine caused all cumulative and chain yields to be printed out (Ref. 2,3). It was assumed that the printed list contained no duplicate values because during compilation of the library only experimental results, not assessed values, were included. All entries were checked to ensure that values previously reported by the same author(s) were omitted if the new entry were a recalculation of the previous work and not a new determination. The interrogation programme produced a printed output (Ref. 3), containing the published results for one particular reaction and these were used to hand calculate the corrections if any.

- 1 -

As previously explained (Ref. 1,2), there are three ways of classifying fission product yields depending on what corrections or adjustment have to be made to them before they can be consistently combined with other similar results to give an average value. 'One-nuclide' yields are those yields relative to 140 Ba or 99 Mo etc; then if the reference yield is known the others can be adjusted to it.

'Other' yields (i.e. other than 'one-nuclide' or (see below) 'R-value'), are yields which have been determined absolutely or effectively absolutely, and which do not require or are not amenable to adjustment. In some cases the absolute number of fissions will have been measured corresponding to the absolute determination of the fission products formed; in other cases the yields will be effectively absolute because after measurement of the relative yields of a sufficient number of fission products a curve has been drawn of fission yield versus mass-number and the yields will have been multiplied by a factor which forces the area under the curve to 200%.

'R-value' yields are calculated as follows:

$$y_1^{X} = y_2^{X} \begin{bmatrix} \frac{A_1^{X}A_2^{R}}{A_2^{X}A_1^{R}} \end{bmatrix} \frac{y_1^{R}}{y_2^{R}}$$

where y is a yield and A an activity

X refers to the nuclide of interest

- R refers to the reference nuclide, usually 99 Mo
- 1 refers to the nuclear reaction of interest
- 2 refers to the reference nuclear reaction, thermal fission usually of 235 U, sometimes of 239 Pu.

The term in brackets in the above expression is called an 'R-value' and is made up of measured radioactivities derived from the reaction of interest and from a simultaneous standard reaction irradiation. The other components of the right hand side in the equation must be absolutely determined or assumed. For each fissile element the assessment process started with the assembly of all 'Other' fission yields. Mean values for the reference nuclide (e.g. 140 Ba, 99 Mo and 97 Zr), were calculated, and all the 'one-nuclide' results were corrected. Finally the 'R-value' results were adjusted using the results of Ref. (1) as standard reaction yields. Finally the mean value for all the results from a given reaction at a given mass number was calculated including in this the recommended value, all those cumulative yields eligible (see

- 2 -

later), for inclusion as chain yields. Where the number of results for a given reaction is too small for the above procedure to be applied, those results available are given in the tables of results along with values of the reference yields used.

(iii) Treatment of published results: Error estimates

The uncertainties to be associated with a given measurement are reported by the authors in a variety of ways, and frequently not at all. Usually a mean value is given together with limits expressed as yield X \pm x, where x may be a standard deviation corresponding to the precision of the measurement only, not to the absolute accuracy of the measurement.

In this work two methods of expressing the experimental uncertainty or 'error' (the word being used in no pejorative sense) were used. In the first method the error (considered as a standard error) used in this paper (as opposed to the figure reported by the author) has been adjusted if necessary to what seemed to be a reasonable estimate of the absolute accuracy. Thus a yield given in an original paper as being subject to an error of \pm 0.1% of the mean value, has been attributed a much larger error even if the yield were determined by mass-spectrometry. For this purpose no reported yield has been attributed a standard error of less than \pm 3% of the mean value unless very good reason was shown in the paper. Likewise a yield reported without an estimate of its accuracy was attributed a standard error of \pm 15% if the yield was determined radioachemically and \pm 10% if by mass-spectrometry. There were occasions when better accuracy was attributed because there seemed good cause. Of course in those cases where reasonable errors were attributed to their results by the authors themselves, they were used unchanged.

The weighted mean of all the reported yields (after adjustment) for a given mass number in a given fission reaction was then calculated using the reciprocal of the square of the attributed standard error as weight for each result, together with the standard error of the weighted mean as follows:-

Weighted mean yield =
$$\sum_{n=1}^{\infty} \left(\frac{Y_n}{s_n^2}\right) \sum_{n=1}^{\infty} \left(\frac{1}{s_n^2}\right)$$

where Y_n is the nth yield and S_n is its attributed standard error.

Standard error of the weighted mean yield = $\left| \sum_{n} \left(\frac{1}{s_n^2} \right) \right|^{-\frac{1}{2}}$.

- 3 -

The weighted sum of squares of the deviations of each included yield from the weighted mean (which should be distributed as χ^2) was then calculated,

where \bar{Y}_{W} is the weighted mean yield. If in fact it was significantly different from χ^2 then either the fission yields were inconsistent or the attributed errors were unrealistically small. An extraordinary result was easily indicated by its contribution to this sum and its weight adjusted appropriately rather than reject it outright.

The second method of expressing the experimental uncertainty was simply to use the reported yields for a given mass number after adjustment, to calculate a simple mean and standard deviation directly. These two figures should agree with the weighted values found as described above. If they agreed then the attributed errors were realistic and the yields consistent, but if they differed then either the yields were inconsistent or the attributed errors were smaller than the errors indicated by the variations about the simple mean. It was also possible to find the attributed error larger than that calculated from the simple mean in cases whose only two or three reported results fortuitously agreed closely, although it was known that the experimental method was subject to larger error.

Finally the weighted mean yield was taken as the required assessed yield and the uncertainty (expressed as a standard error) was taken as the greater of the standard error of the weighted mean yield (see above), or the simple standard error calculated 'as

where \overline{Y} is the simple mean yield.

3. The Assessed Yields

The assessed yields are set out in Tables 1 - 22, and the list of references on which the table reference numbers are based is given in Table 23. Table 23 is in fact the same table as Table 16 (Ref. 1). The experimental results which constitute the basis of Tables 1 - 22 have been obtained from reactions conducted in accelerators producing neutrons of known energy up to 14 MeV, and in nuclear reactors under conditions which give rise to what is commonly called "fast neutron fission". Taking first reactions conducted in accelerators it is usually true that the neutrons are not uniformly of the nominal energy; there appears always to be some energy distribution great or small about which authors are not very explicit. However, as fission yields do not appear to vary very quickly with neutron energy in the few MeV region perhaps this is not important. Failure to take precautions against fissions caused by neutrons which have been moderated by the surroundings may not be unimportant and if the reader is interested in such possible effects he should consult the original literature.

In the case of "fast fission" in nuclear reactors the results have been mainly obtained in a few fast reactors the neutron energy distribution in which are probably well known. Typically the energy distribution peaks at ~ 400 keV and there are very few neutrons of energy less than 10 keV. Some of the results have been obtained by irradiations in thermal reactors usually inside hollow fuel elements and shielded from thermal neutrons by capsules made of materials which strongly capture them.

The assessed "fast fission" yields are based on results from all these sources and thus it is possible that the calculated errors may include some real variation due to neutron energy difference. However, the author feels justified in combining the results in the "fast fission" tables on the evidence afforded by two papers (Ref. 4,5) the results of which were not included in the Fission Product Library at the beginning of this work, but they have been included in Tables 9, 16 and 19.

In Ref. (4) it is shown experimentally that ratios to 140 Ba of 95 Zr, 103 Ru and 131 I do not vary in irradiations made at various positions in the Argonne ZPR-3 reactor, but the ratios differ for 103 Ru and 131 I, from those found at thermal energies. It is asserted that the absolute yields of 140 Ba in 235 U and 239 Pu fast fission differ from the thermal yields by less than 2% and thus all the observed differences between thermal and fast yields must occur at energies below those found in ZPR-3 (said to be between 150 and 450 keV).

The assessments of Ref. (1) and this work do not support the assertion that 140 Ba absolute yields from 235 U and 239 Pu fission change less than 2% between thermal and fast fission. However it is found that 95 Zr absolute yields are virtually the same in thermal and fast fission of 235 U and 239 Pu so that the argument is still valid. No variation is found in the ratios to 95 Zr of 103 Ru, 131 I and 140 Ba across the ZPR-3 reactor, but it is known on the basis of Ref. (1) and this work that the ratios change between "thermal" and "fast" fission. Thus all the variation occurs at neutron energies less than those found in the ZPR-3 reactor.

- 5 -

Note that the tables show yields which are determined as chain-yields and also cumulative yields which can be taken as chain-yields because the independent yields of nuclides of the same mass number but greater atomic number, are negligible. An indication of the admissibility of cumulative yields for this purpose may be gleamed from Ref. (6) which tabulates independent yields. In general no cumulative yields have been used unless they account for 99.00% of the chain yield as calculated in Ref. (6).

4. References

- E. A. C. Crouch. "Fission product chain yields from experiments in thermal reactors", AERE - R 7209, Jan. 1973 and IAEA/SM-170/94, "Proceedings of the IAEA Symposium on Applications of Neutron Data in Science and Technology", Paris, March 1973.
- E. A. C. Crouch. "A library of neutron induced fission product yields maintained and interrogated by computer methods. Part 1. Establishment of the library", AERE - R 6642, December 1970.
- E. A. C. Crouch. "A library of neutron induced fission product yields maintained and interrogated by computer methods. Part 2. Interrogation of the library", AERE - R 7207, August 1972.
- 4. R. P. Larsen et al. Trans. Am. Nucl. Soc. 14 (1971) p.380.
- 5. R. P. Larsen et al. Trans. Am. Nucl. Soc. 15 (1972) p.483.
- 6. E.A.C. Crouch. "Calculated independent yields in thermal reaction fission of 233 U, 235 U, 239 Pu, 241 Pu, and in fission of 232 Th, 238 U and 240 Pu", AERE R 6056, March 1969.
- 7. N. Holden and F. W. Walker. "Chart of the Nuclides", General Electric Company, Knolls Atomic Power Laboratory, Tenth Edition, December 1968.
- 5. Explanation of the Tables-

Mass Number (Col. 1)

This entry gives the mass-number of the fission product decay chain.

Element (Col. 2)

The symbol of the element used to estimate the chain yield. Several entries in this column does not imply that all were used in the calculation of the chain yield. Chain yields determined as "chain yields" are entered as such. A figure in brackets alongside an element symbol indicates that the nuclide is isomeric and the isomeric yield is given, the number is the order of the isomer in the 'Chart of the Nuclides', Ref. (7).

Literature Reference (Col. 3)

The number given in Column 3 gives the literature reference as set out in Table 23.

Corrected Value and Error (Col. 4)

Column 4 gives the adjusted yield as a percentage followed by the error as a standard deviation expressed as a percentage of the yield. Thus the first entry for Br Table 1 is

- 6 -

to be read "2.58 \pm 0.23%". The author's estimates of error are stated when they are given, otherwise an arbitrary default value is inserted (see para. 2(iii) above). If the authors' estimates were considered too low, the value actually used to compute Column 5 entries is given.

Means: Weighted and Simple (Col. 5)

The two figures entered on one line in Column 5 are the mean as a percentage yield, the error as a percentage of the yield. The types of mean are differentiated by (w) for weighted and (s) for simple. Each mean is based on the values given in Column 4 as segregated by the horizontal lines. In some cases, usually when only two results are given in Column 4, the weighted mean only or the simple mean only appears in Column 5. This is because in the former case the weights are not equal and there would be no point in calculating a simple mean, or in the latter case there would be no point in calculating a weighted mean when the weights are equal or nearly so.

In those tables containing results from reactions at various neutron energies, Columns 4 and 5 contain the neutron energy and the reference nuclide yield.

Recommended Chain Yields (Col. 6)

Column 6 lists the recommended chain yield on the same line as the mass-number of the first column. The figures given in brackets are the indicators of yields still undetermined experimentally and they are interpolated values found by curve drawing through the neighbouring points. No attempt has been made to interpolate values when insufficient results are available to draw a smooth curve, or in regions where fine structure is likely to exist.

			TABLE	<u> </u>	
²³¹ Pa	3.0	MeV	Neutron	Induced	Fission

1	2	3	4		5	. 6	
83	Br	77	2.58	9.0*		2.58	9
84	Br	77	3.91	4.0*		3.91	4
91	Sr	77	5.89	1.5*		5.89	5
97	Zr	77	3,96	3.0*		3,96	5
99	Mo	77	2.57	- *		2.57	*
105	Ru	77	0.24	8.3*		0.24	9
113	Ag	77	0.072	14.0*		0.072	14
129	Sb	77	0.92	5.4*		0.92	6
143	Ce	77	5.2	1.7*		5.2	5
145	Pr	77	3.22	6.0*		3.22	6

*99 Mo assumed to be 2.57%

TABLE 2

231 Pa 14 MeV Neutron Induced Fission

1	2	,3	. 4			5		6	
84 91 93 99 105 112 113 129 131	Br Sr Y Mo Ru Ag Ag Sb I	655 655 655 655 655 655 655 655 172	2.78 5.56 6.63 3.21 1.31 2.05 2.46 0.58 3.37	3.4* 5.4* 3.9* 6.2* 7.3* 3.0* 5.0* 9.5*				2.78 5.56 6.63 3.21 1.31 2.05 2.46 0.58 3.37	5 5 - 6 8 5 5 5 10
132	Те I	655 172	4.88 4.72	5.0* 5.0*	(S)	4.80	5	4.80	5
133	I Xe	172 172	5.74 6.20	5.0* 5.0*	(S)	5.97	5	5.97	5
134 135 143	I Xe Ce	172 172 655	9.18 6.80 3.35	5.0* 6.0* 4.0*				9.18 6.90 3.35	5 6 5

*99 Mo assumed to be 3.21%

TABLE 3

232 Th Fast Neutron Induced Fission*

1	2	3		4		5		6	
83	Kr(2) Chain	241 369	2.00 2.06	10 10	(5)	2.03	7	2.03	7
84	Kr Chain	241 369	3.65 3.78	10 10	(S)	3.72	7	3,72	7
85	Kr Chain	241 369	3.88 4.07	10 10	(S)	3.95	7	3.95	7
86	Kr Chain	241 369	6.00 6.21	10 10	(S)	6.11	7	6.11	7
87 88 90 99	Chain Chain Sr Mo	369 369 389 -	6.57 6.92 6.99 2.78	10 10 5 _*	a de la companya de l			6.57 6.92 6.99 2.78	10 10 5 -
131	I Xe Chain	389 241 369	2.13 1.62 1.56	5 10 10	(W) (S)	1.87 1.77	4.5 11	1.87	11
132	Xe Chain	241 369	2.87 2.76	10 10	(S)	2.82	7	2.82	7
133	Chain	369	3.75	10	;		-	3.75	10
134	Xe Chain	241 369	5.78 5.18	10 10	(S)	5.48	7	5,48	7
135	Chain	369	4.66	10	•	-		4.00	10
136	Xe Chain	241 369	5.65 5.44	10 10	(s)	5.55	7	5.55	7
137	Cs Chain	389 369	6.59 4.60	5 t O	(W) (S)	5.92 5.60	5 18	5.92	18
1 39 1 40 1 41 1 43 1 44 1 45 1 46 1 48	Chain Ba Ce Chain Ce Chain Chain Chain	369 389 389 369 389 369 369 369 369	7.00 7.72 7.26 6.79 7.98 5.52 4.73 2.08	10 5 5 10 5 10 10 10				7.00 7.72 7.26 6.79 7.98 5.52 4.73 2.08	10 5 5 10 5 10 10 10

*All results were found using $99_{MO} = 2.78\%$

1 s 1

TABLE 4 232_{Th} 3.0 MeV Neutron Induced Fission*

1	2	3	4			5		6	
77 78 79 81 83 84	As As As Se Br Br	642 642 642 642 630 630	0.01 0.036 0.075 0.5 2.13 3.23	50 10 10 10 10 10 10		-		0.01 0.036 0.075 0.5 2.13 3.23	50 10 10 10 10 10
91	Sr Y	51 642	6.19 6.90	10 10	(S)	6.55	7	6.55	7
92 93 97 113 129 131	Sr Y Zr Ag Sb I	51 642 630 51 630 51	6.40 7.35 5.35 0.0455 0.160 1.11	10 9 10 19 10 12				6.40 7.35 5.35 0.0455 0.160 1.11	10 9 10 19 10 12
132	Te 1	630 51	3.37 2.42	10 8	(S)	2.90	7	2.90	7.
133 134 135 139 141	I I Ba Ce	51 51 51 51 642	3.15 7.89 5.39 6.56 6.60	10 11 11 7.5 11				3.15 7.89 5.39 6.56 6.60	10 11 11 8 11
143	Ce	630 642	6.69 6.00	10 10	(S)	6.35	7	6.35	7
145	Pr	630 642	5.33 4.70	10 11	(S)	5.02	7	5.02	7
147 149 151 153 156	Nd Pm Pm Sm Sm	642 642 642 642 642 642	2.20 1.00 0.1 0.03 0.0013	10 10 20 13 38				2.20 1.00 0.1 0.03 0.0013	10 10 20 13 40

$^{*99}_{Mo}$ assumed = 3.00% for all values

TABLE 5

232 Th 11 MeV Neutron Induced Fission*

1	2	3	4	ł	5	6	
77 91 97 99	Ge(2) Sr Zr Mo	622 622 622 622 622	2.2 5.60 4.95 3.10	20 20 20 20 20		- 5.60 4.95 3.10	20 20 20

TABLE 5 (cont'd)

1	2	3		4	5		6
103 106 111 115 117 131 132 139 144	Ru Ru Ag Cd(2) Cd(2) I Te Ba Ce	622 622 622 622 622 622 622 622 622 622	0.51 0.53 0.63 0.76 0.37 2.30 1.80 9.0 7.2	50 20 20 20 50 20 50 20 20 20 20		0.51 0.53 0.63 - - 2.30 1.80 9.0 7.2	50 20 20 20 20 50 20 20

 $^{*89}\mathrm{Sr}$ assumed to be = 0.70% for all values

TABLE 6

232 Th 14 MeV Neutron Induced Fission

1	2	3	4			5		6	
66 67 72 73	Ni Cu Zn Ga	352 -352 352 595	0.000131 0.00026 0.0070 0.0076	10 23 8.6 25				0:000131 0.00026 0.0070 0.0076	10 23 8.6 25
77	Ge(2) As	595 595	0.067 0.124	28 15		_		0.124	15
78	Ge As(2)	595 595	0.105 0.295	27 16				0.295	16
79 81	As Se(2)	595 595	0.903 1.15	16 17				0.903 1.15	16 17
83	Br	357 358 629	1.45 1.60 1.64	22 18 10	(W) (S)	1.60 1.56	8.5 4	1.60	8.5
84	Br	357 629	1.86 2.34	6.5 5	(W)	2.08	4	2.08	4
85 88	Kr(1) Kr	664 664	4.11 4.28	10 10				- 4.28	10
89	Sr	358 50	5.70 5.85	14 8	(W)	5.81	7	5.81	7
90	Sr	50	5.54	14				5.54	14
91	Sr Y	357 50 664 358	6.50 5.35 4.81 5.20	10 10 15 15	(W) (S)	5.50 5.47	6 7	5.50	7
92	Sr	50	5.41	9.5				5.41	10

1 9 1 TABLE 6 (cont'd)

1 2 3 , 4 5 6 93 Y 352 5.30 9.4 (W) 5.60 6 5,60 6 357 5.80 7 95 Zr 358 6.70 22 6.70 22 (S) 3.32 11 3.32 11 97 Zr 357 3,80 15 629 2.84 15 99 Мо 1.84 (W) 1.90 1.90 4 357 5 4 (S) 1.95 2.00 10 358 3 359 2.00 7 101 Мо 617 1.52 13 1.52 13 102 Mo 617 0.67 21 0.67 21 103 (W) 0.794 5.5 (S) 0.803 4.5 0.75 0,794 Ru 359 17 6 0.79 362 6 664 0,87 15 105 Ru 1.21 357 8.3 (W) 1.02 5.5 1.02 9 359 0.92 (S) 1.03 11 9 . 362 0.95 9 106 Ru 359 1.07 9 1.07 9 (W) 1.14 7.5 109 Pd 359 1.10 9 7.5 1.14 362 1.22 12 111 1.50 (W) 1.22 1.22 Ag 357 13 4.5 7 358 1.27 12 (S) 1.30 7 359 1.50 10 50 1.10 10 362 1.15 7 112 1.25 (W) 1.29 1.29 9 Pd 362 6 4.5 (S) 1.39 664 1.75 15 9 357 1.29 Ag 7.8 50 1.28 13 113 Ag 1.26 357 5.5 (W) 1.18 3.5 1.18 4 1.20 (5) 1.18 359 8 4 50 1.06 7.3 362 1.20 6 115 Cd(2) 358 1.07 11 (W) 1.11 7 1.37 10 362 1.14 8 3591.24 16 (W) 1.37 10 Ag 50 1.67 29Chain 2661.43 13 1.21 Sn 264 0.95 0 0.915 7 0.915 7 10 362 0.88 10 125 Sn 264 0.55 (W) 0.50 7.5 0.50 8 17 362 0.49 8

.

TABLE 6 (cont'd)

1	2	3	4			5	_	6	
127	Sb	264 664	1.15 1.14	17 15	(s)	1.14	11	-	·
129	Sb Te	357 629 358 264	1.19 0.90 0.73 1.52	7.6 7 21 6	(S) (W)	1.05	5 6.5	-	
131	I	50 629 664	1.54 2.37 2.18	13 7 15	(W) (S)	2.05 2.03	6 13	2.05	13
132	Te I	357 358 264 50 664	3.05 2.80 2.09 3.00 3.49	6.6 21 9 5 15	(W) (S)	2.78 2.89	4 8	2.78	8
133	I	50 664	3.66 5.07	5 15	(W)	3.79	5	3.79	5
134 135	I I	50 50	6.49 4.59	5.4 5				6.49 4.59	6 5
139	Ва	50 357	5.18 6.02	7 5.5	(W)	5.64	4.5	5,64	5
140	Ba	50 362	5.79 5.80	6 6	(S)	5.80	4.5	-5,80	5
141	Ce	358	5,90	14				5,90	14
143	Ce	357 664	5.44 4.68	7.5 15	(W)	5.25	7	5.25	. 1
144 147 153 159 161 166 169	Pr Nd Sm Gd Tb Dy Er	629 352 352 352 352 352 352 352	2.31 1.81 0.086 0.0044 0.0016 0.000029 0.000023	10 7.2 10.5 9.1 5.7 7 35				2,31 1,81 0,086 0,0044 .0016 .000029 .000023	10 8 11 10 6 7 35

- 10

.

TABLE 7

²³³U Fast Neutron Induced Fission

1	2	3	4			5		6	
89	Sr	62 30	6.3 5.88	5 15	(W)	6.25	5	6.25	5
91 99	Y Mo	30 62	6.59 4.75	15 7.4				6.59 4.75	15 8
103	Ru	62 44*	0.413 1.40	11 6	(W) (S)	.633 .907	6.8 55	.633	55
106	Ru	62 44*	0.16 0.154	12,5 6	(W)	.155	6	.155	6
111	Ag	62 30 61	.0847 0.116 .0174	9,4 15 21	(W) (S)	.0322 .0727	10.5 40	.322	40
115	Cd(2) Chain	62 30 61 62	.052 .098 .014 .056	11.5 15 10 10.7	(s)	•0546	45	.056	11
118 119 120 122 124 126	Sn Sn Sn Sn Sn Sn	247 247 247 247 247 247 247	0.06^{ϕ} 0.074^{ϕ} 0.083^{ϕ} 0.083^{ϕ} 0.12^{ϕ} 0.286^{ϕ}	10 12 11 11 10 10				0.06 0.074 0.083 0.083 0.12 0.286	10 12 11 11 10 10
129	Te(1) Chain	62 62	0.602 1.57	8.3 15				1.57	15
132	Те	62 30	4.36 4.96	9.2 15	(W)	4.50	8	-	
137	Cs	62 44	6.28 6.82*	8 6	(w)	6.60	5	6.60	5
140	Ba	62	6.31	7.92				6.31	8
141	Ce	62 30	6.77 6.01	8.9 15	(w)	6.54	8	6.54	8
143 144 147 149 151 153 157 159 161	Pr Ce Nd Pm Pm Sm Eu Gd Tb	30 330 30 30 30 30 30 30 30 30	4.83 3.94 1.59 0.747 0.32 0.103 0.0115 0.00172 0.000474	15 15 15 15 15 15 15 15 15 15				4.83 3.94 1.59 0.75 0.32 0.103 0.0115 0.00172 0.000474	15 15 15 15 15 15 15 15 15

TABLE	8

²³³U 14 MeV Neutron Induced Fission

1	2	3	4		5			6	
66 67 72 83 84 89	Ni Cu Zn Br Br Sr	572 572 572 73 73 73 73	0.00077 0.0018 0.0146 1.33* 2.02* 4.82*	10 10 4 6 5 10				0.00077 0.0018 0.0146 1.33 2.02 4.82	10 10 10 6 5 10
91	Sr	73 665	5.62* 4.2¢	5 15	(W)	5.41	5	5.41	5
92 93 95 97	Sr Y Zr Zr	73 572 572 572 572	5.72* 6.00 5.60 5.20	6.5 10 3.6 5.8				5.72 6.00 5.60 5.20	7 10 5 6
99	Мо	63 572 73	3.50 4.10 3.64*	10 10 6	(W) (S)	3.69 3.75	5 5	3.69	5
103	Ru	63	2.31	13				2.31	13
105	Rh Ru	572 73	2.20 1.63	10 12	(W) (S)	1.88	8 15	1.88	15
106 109	Ru Pd	63 73	1.52 1.20	13 10				1.52 1.20	13 10
111	Ag	63 572 73	1.22 1.85 1.21*	10 16 12	(W) (S)	1.27 1.43	7 15	1.27	15
112	Pd Ag	572 665 73	1.90 1.80 [¢] 1.08*	5.8 15 9	(W) (S)	1.46 1.59	5 17	1•43	17
113	Ag	73	1.06*	12				1.06	12
115	Ag Cd(1) Cd(2) Chain	73 572 63 572 63	1.03* 0.138 0.98 1.56 1.05	10 11 18 10 10	(w)	1.03	<u>10</u> 9	1.31	9
121 125	Sn(2) Sn	73 73	1.06* 1.51*	7 6				1.06 1.51	10 10
127	Sb	73 665	2.20 * 1.73¢	6 15		2.10 1.97	6 12	2.10 ·	·· 12
131	I	73	3.40*	7.4				3.4	10

I

-11

.

TABLE 8 (cont'd)

TABLE 9 (cont'd)

1	2	3	4			5		6	
132	Te I	63 572 73 665	3.98 3.50 3.95* 3.70 [¢]	10 12 8 15	(W) (S)	3.82 3.78	6 3	3.82	6
133	I	73 665	4.63* 4.44¢	7 15	(W)	4.37	6.5	4.37	7
134 135 137 139	I I Cs Ba	73 73 63 73	4.65* 4.96* 4.70 5.79*	5 7 10 4				4.65 4.96 4.70 5.79	5 7 10 5
140	La Ba	665 572	5.65 [¢] 4.30	15 4.7	(W)	4.37	5	4.37	5
141	Ce Ce	63 572	5.00 4.50	10 9	(W)	4.70	7	4,70	7
143 144 147 153 159 161 166 169 172 175	Ce Ce Nd Sm Gd Tb Dy Er Er Yb	572 572 572 572 572 572 572 572 572 572	$\overline{3.60}$ 2.60 1.29 0.156 0.0116 0.005 0.00026 0.0491 0.0411 0.0521	6 12 7 8.3 10 6 12 7 14 14				3.60 2.60 1.29 0.156 0.0116 0.005 - - -	6 12 7 9 10 6

*Assuming 140 mass chain yield = 5.6% $\phi^{Assuming} = \frac{97}{2}$ r yield = 4.5%

TABLE 9

²³⁵U Fast Neutron Induced Fission

1	2	3	4 *		5			6	
83 84	Chain Chain	248 248	0.615 1.07	30 3				0.615 1.07	30 3
85	Rb Chain	420 420 248	1.34 1.30 1.49	5 5 3	(W) (S)	1.41 1.38	3.5 4.5	1.41	5
86	Chain	248	1.93	3				1.93	3
87	Rb Chain	420 420 248	2.41 2.38 2.66	5 5 3	(W) (S)	2.54 2.48	2.5 4	2.54	4

1	2	3	¦	4		5			6	
88	Chain	248	3.63	3				3.63		3
89	Sr	1 164 415 633 106	5.60 4.40 4.22 4.49 4.02	10 9 5 5 10	(W) (S)	4.39 4.55	3 6	4.39		6
90	Sr Chain	6 173 415 633 284	5.02 5.51 4.83 4.84 5.48	10 5 6 6 10	(W) (S)	5.10 5.14	3 3	5.10		3
95	Zr Chain	1 164 415 633 633 * * / 248	7.70 5.85 6.24 6.45 6.56 6.41 6.50 6.43 6.47	8 9 5 8 12 3.5 3.5 3 3 3	(w) (S)	6.44 6.51	1•5 2•5	6.44		2.5
97	Zr Chain	164 415 633 * * 248	6.55 5.93 5.67 5.53 6.13 6.13	11 5 10 3 3 3	(W) (S)	5.91 5.99	1.6 2.5	5.91		2.5
98	Chain	248	6.04	3				6.04		3
99	Mo Chain	1 35 164 415 633 * 409	6.40 6.10 5.90 5.46 5.33 5.70 5.80 5.23	6 15- 7 7 3 3 7	(W) (S)	5.55 5.74	1.3 2.5	5.55		2.5
100 101 102	Chain Chain Chain	248 248 248	6.35 5.46 4.65	3 3 3				6.35 5.46 4.65		3 5 3
103	Ru	164 67 * *	3.75 2.82 3.29 3.54 3.14	15 19 3.1 3.1 3	(w) (s)	3.30 3.31	1.75 5.5	3.30		5.5
104 105	Chain Ru	248 164	2.35 1.45	3 10				2.35 1.45	i	3 10

- 12 -

TABLE 9 (cont'd)

TABLE 9 (cont'd)

.

1	2	3	4			5		6	
106	Ru	164 67 420 423	1.19 .626 .425 .423	12 15 5 4	(W) (S)	.437 .665	4 27	.437	27
111	Ag Chain	1 164 415 633 106 195 248	0.031 0.035 0.0315 0.0314 0.0482 0.0184 0.046	7 20 7 7 7 7 5	(W) (S)	0.028 0.0345	3 11	0.028	11
112 113 114	Chain - Chain Chain	248 248 248	0.0391 0.0342 0.0342	5 5 5				0.0391 0.0342 0.0342	5 5 5
115	Cd(1) Cd(11) Chain	164 633 195 164 633 106 1	0.0022 0.0049 0.0008 0.0304 0.0196 0.0309 0.022	15 75 15 20 20 10 9	(W) (S)	.022 .026	10 15	0.022	15
116 125 129 130	Chain Chain Te	248 248 164	0.036 0.073 0.055	5 12 11				0.036 0.073 0.055 (1.4)	5 12 11
131	I Chain	* /- 248	3.44 3.19 3.15	3.1 3 2.5	(W) (S)	3.23 3.26	2 3	3.23	3
132	Te Chain	164 633 * 248	5.35 4.15 4.77 4.45	9 8 6 4	(W) (S)	4.54 4.68	3 5.5	4.54	6
133	Cs Chain	420 420 248	6.44 6.39 6.69	5 5 3	(W) (S)	6.57 6.51	2.5 1.5	6.57	3
134	Chain	248	7.09	3				7.09	3
135	Cs Chain	420 420 248	6.08 5.81 6.54	5 5 3	(W) (S)	6.26 6.14	2.5 3.5	6.26	3.5
136	Chain	248	5.93	3				5.93	3

1	2	3		4		5			6
137	Cs Chain	173 238 633 420 420 248	6.55 6.87 4.75 5.67 5.38 6.20	5 10 34 5 5 3	(W) (S)	5.99 5.90	2.5 5.5	5.99	5.5
138	Chain	248	6.60	3				6.60	3
140	Ba Chain	1 164 415 633 633 678 106 * * 248	6.0 5.0 5.75 5.80 6.01 6.10 5.38 5.67 5.69 6.21	8 8 5 4 10 5 5 2.9 2.9 3	(w) (S)	5.78 5.76	1.32 2	5.78	2
141	Ce Pr	164 415 633 633 287	6.10 5.69 6.40 6.21 5.85	10 5 5 7 5	(W) (S)	5.99 6.05	3 2.5	5,99	3
142	Chain	248	5.82	3				5.82	3
143	Nd Chain	173 669 248	5.98 5.64 5.80	5 5 3	(w) (s)	5.80 5.81	2.5 2	5.80	3
144	Ce Nd Chain	35 173 415 633 633 106 420 424 248	4.64 5.22 5.22 3.52 5.57 4.19 5.94 5.48 5.26	15 5 4 6 8 5 5 5 5 3	(W) (S)	4.94 5.00	2 5	4.94	5
145	Nd Chain	173 669 420 420 248	3.93 3.75 3.78 3.76 3.85	5 5 5 5 3	(W) (S)	3.82 3.81	2 1	3.82	2
146	Nd Chain	173 669 420 420 248	3.06 2.89 2.90 2.90 3.00	5 5 5 . 5 3	(W) (S)	2.96	2	2.96	2

.

.

TABLE 9 (cont'd)

1	2	3	4			5		6	
147	Nd	35 106	2.09 1.98	15 5	(W)	1.99	5	1.99	5
148	Nd Chain	173 669 420 420 248	1.75 1.72 1.66 1.60 1.75	5 5 5 5 3	(W) (S)	1.71 1.70	2 2	1.71	2
149	Pm Chain	35 248	1.04 1.09	15 3	(W) (S)	1.09 1.07	3 2.5	1.09	3
1 50	Nd Chain	173 669 420 420 248	0.73 0.722 0.701 0.620 0.832	5 5 5 5 5	(S)	0.72	5	0.72	5
1 51 1 52 1 53 1 54 1 55	Chain Chain Sm Chain	248 248 35 248 -	0.438 0.309 0.198 0.098 -	3 3 15 3				0.44 0.309 0.198 0.098 (0.035)	3 3 15 3
156	Eu	35 633 106	0.0265 0.0132 0.0236	15 7 10	(W) (S)	0.0151 0.0211	6 20	0.0151	20
1 5 9	Gd	35	0.0031	t 5				0.0031	15
161	Gđ Tb	35 106	0.000468 0.000325	15 15	(S)	0,0004	20	0.0004	20

*R. P. Larsen et al. Trans. Am. Nucl. Soc. <u>15</u> (1972) p.483.
[∠]ibid. <u>14</u> (1971) p.370.

TABLE 10

8 MeV Neutron Induced Fission of 235U

1	2	3	4		5	6	. <u>.</u>
99 111 115 144 147 149 153 156 159 161	Mo Ag Cd(2) Ce Nd Pm Sm Eu Gd Tb	36 202 202 36 36 36 36 36 36 36 36 36	5.4 0.357 0.239 3.21 1.74 1.00 0.198 0.0404 0.0057 0.00201	15 5 15 15 15 15 15 15 15		5.4 0.357 - 3.21 1.74 1.00 0.20 -0.0404 0.0057 0.00201	15 5 15 15 15 15 15 15 15

TABLE 11 Neutron Induced Fission of 235U at Various Energies

1	2	5	4		5	6
97	Zr	89	5.84	5	(125 keV)	
99	Mo	317	6.10	3	(950 keV)	
		319	5.45	3	(4.85 MeV)	
111	Ag	201	.1306	10	(5 MeV)	
115	Cd(2)	89	0.0075	8	(125 keV)	
		201	0.0891	10	(5 MeV)	
		200	0.0175	10	(1.2 MeV)	
113	Ag	89	.005	20	(65 keV)	
			.0059	13	(125 keV)	
			.0103	20	(200 keV)	
			.0103	13	(305 keV)	
			.0121	12	(540 keV)	
			.0118	12	(1 MeV)	
143	Ce	201	4.72	10	(5 MeV)	

TABLE 12

<u>14 MeV Neutron Induced Fission of 235U</u>

1	2	3	4	5	6
66	Ní	353 408	.00028 10 .00041 15	(S) .000345 20	.000345 20
67 68 69 70 71	Cu - - -	353 - - -	.00065 14 - - - -		.00065 14 (.001) (.0016) (.0026) (.004)
72	Zn	353 . 408	.0063 10 .0080 15	(W) .0067 8	.0067 8
73 74 75 76	- - - -				(.0085) (.017) (.027) (.043)
77	As	408	.069 15		.069 15
78 79 80		- -	- - -	- - -	(.105) (.17) (.255)
81	Se(1) Se(2)	408 408	.052 15 0.31 15		0.362 15
82	-	-	-		(.62)
83	Ga Br	408 206 408	0.0117 15 1.09 15 0.85 15	(5) 0,97 12	0.97 12

.

TABLE 12 (cont'd)

1	2	3		4		5			6
84 85 86 87 88	Br 	408 - - -	1.05	15 -		- - - -		1.05 (1.5) (2.0) (2.7) (3.5)	15
89	Sr	165 206 105 284	4.2 4.37 4,14 5.54	10 10 10 10	(S) (W)	4.31 4.31	2.1 5	4.31	5
90	Sr	5	4.4	10				4.4	10
91	Sr	206 284	4.89 5.07	10 10	(S) (W)	4.98 4.98	27	4.98	7
93	Y	353	5.40	10				5.40	10
95	Zr	165 284	4.30 5.12	10 10	(₩) (S)	4.71 4.71	7 9	4.71	9
97	Zr	165 206 284	4.4 5.21 6.12	10 10 10	(S)	5.24	10	5.24	10
99	Мо	165 206 625	5.65 5.17 5.01	10 10 10	(S) (W)	5.28 5.28	4 6	5.28	6
103	Ru	165 206	3.25 3.52	9.2 10	(W) (S)	3.40 3.40	7 4	3.40	7
105	Ru	165 206 284	2.95 1.94 1.48	10 10 10	(W) (S)	2.12 2.12	6 20	2.12	20
106	Ru	165 206	2.30 1.59	13 10	(W) (S)	1.75 1.95	10 20	1.75	20
109	Pd	206	1.47	10				1.47	10
11	Ag	135 206 105 284	1.05 1.09 1.09 1.16	10 10 10 10	(W) (S)	1.10 1.10	5 2	1.10	5
112	Pd Ag	206 284	0.617	10	(S)	0.89	30	0.89	30
113	Ag	94	6.922	11				0.922	11

TABLE 12 (cont'd)

1	2	3	4			5		6	
115	Cd(1) Cd(2)	165 105 165 206 105 284	0.06 0.0647 0.95 0.82 0.81 1.64	10 10 10 10 10 10	(S) (S)	0.062	4	1.12	20
121	Sn	165 206	1.10 0.95	10 10	(S)	1.025	8	1.025	8
125	Sn	206	1.91	10				1.91	10
126 127	Sb Sb	206 206	3.20 4.33	6 10				3.20 4.33	6 10
129	Sb Te(1)	206 165	2.28 1.58	12 8				-	
1 31	I	206 284 400	3.89 4.38 4.31	10 10 10	(s)	4.19	4	4.19	4
132	Te I	165 206 400	4.20 4.05 4.86	10 10 10	(s)	4.37	6	4.37	6
133 134 135 137 139	I I Cs Ba	400 400 400 165 206	5.56 5.14 4.55 5.9 4.83	10 · 10 10 10 10				5.56 5.14 4.55 5.90 4.83	10 10 10 10 10
140	Ba	165 206 353 106 284	4.2 4.61 4.25 4.75 4.54	10 10 10 10 10	(s)	4.47	5	.4.47	5
141	Ce	165	3.80	10				3.80	10
143	Ce	206 105	3.81 3.93	10 10	(S) (W)	3.87 3.87	5 7	3.87	7
144	Ce	206 105	3.00 3.18	10 10	(W) (S)	3.09 3.09	7 3	3.09	7
147	Nd	353 105	1.64 1.65	10 10	(S) (W)	1.65	0.5 7	1.65	7,
1 53 1 54 1 55	Sm _	353 - -	0.22 - -	9		-	-	0.) (.0)14))85)
1 56	Eu	206 105	0.061 0.063	10 10	(W)	0.062	7	0.062	7

- 15 -

TABLE 12 (cont'd)

1	2	3	4	4		5	6		
157 158		-	-	-			(.036) (.022)		
159 160	Gd -	353 -	0.0127 -	10		-	-	0.0127 (.0074	10 +)
161 166 169 172	Tb Dy Er Er	353 105 353 353 353 353	0.0056 0.0046 0.0028 0.00008 0.000018	16 10 10 10 10	(\$)	0.0051	10	0.0051 0.0028 0.00008 0.000018	10 10 10 11

<u>TABLE 13</u> Fast Neutron Fission of ²³⁷Np*

1	2	3	4		5	6	6	
1 93 95 97 99 111 115 131 132 133 135 141	2 Y Zr Zr Mo Ag Cd(2) I Te I Xe Ce	3 314 314 314 314 314 314 314 314 314 31	4 5.97 5.96 6.05 6.90 0.110 0.0522 3.20 6.12 6.29 5.52 6.36	10 10 10 10 10 10 12 10 12 10 12 10	5	5.97 5.96 6.05 6.90 0.110 - 3.20 6.12 6.29 5.52 6.36	10 10 10 10 10 12 10 12 10 12	
143 144 147 149 151 153	Ce Ce Nd Pm Pm Sm	314 314 314 314 314 314 314 314	5.70 4.54 2.64 1.74 0.99 0.442	10 10 12 12 12 12 19		5.70 4.54 2.64 1.74 0.99 0.442	10 10 12 12 12 12 19	

*140 Ba yield was assumed to be 6.35%

 $\frac{\text{TABLE 14}}{\text{of }^{237}\text{Np by 1 + MeV N}}$

Fission of -	<u>Np by 1</u> .1	MeV Neutrons*

			<u> </u>		<u> </u>	
1	2	3	4		5	6
89 97 111 115 125 127 132	Sr Zr Ag Cd(2) Sn Sb Te	205 205 205 205 205 205 205 205	1.30 6.09 0.09 0.033 1.39 0.321 4.88	15 15 15 15 15 15 15 15	(1.1 MeV) (1.1 MeV) (1.1 MeV) (1.1 MeV) (1.1 MeV) (1.1 MeV) (1.1 MeV)	

TABLE 14 (cont'd)

1.	2	3.	4	5	6
140	Ba	205	5.03 15	(1.1 MeV)	
144	Ce	205	4.04 15	(1.1 MeV)	
156	Eu	205	0.125 15	(1.1 MeV)	

*Yield of $\frac{99}{Mo}$ assumed to be 6.14%

TABLE 15

14 MeV Neutrons Induced Fission of 237Np

1	1	2	3		4	5		3
1	91	Sr	623	2.71	10		2.71	10
	93	Y	623	4.94	5		4.94	5
	97	Zr	623	5.43	9		5.43	9
	99	Мо	623	4.94	4	(4.94	4
	105	Rh	623	3.50	6		3.50	6
- (109	Pd	623	1.48	17		1.48	17
1	111	Ag	623	1.23	4		1.25	4
	112	Pd	623	1.23	4	1	1.23	4
l	115	Cd(2)	623	1.23	4		_	_
]	127	Sb	623	2.52	6		2.52	6
	131	Ť	623	3.55	17	14 m	3.55	17
	132	Te	623	4.29	17		4.29	17
	139	Ва	623	4.84	7	1	4.84	7
	140	Ba	623	4.89	7		4.89	7
	143	Ce	623	3.60	21	ļ	3.60	21
	147	Nd	623	1.73	14		1.73	14
	153	Sm	623	0.32		i	0.32	. 1
	157	Eu	623	0.094	32		0.094	32

TABLE 16

Fast Neutron Fission of 238

1	2	3	4	4		5	6		
77	As	179 234	.0035 .0040	15 25	(W)	.00361	13	.00361	13
89	Sr	2 166 634 179 234 108	3.7 4.40 3.17 3.23 2.97 2.81	8.1 9.1 6 15 11 6	(W) (S)	3.16 3.38	3.5 7.5	3.16	8
90	Sr	9	3.14	10				3.14	10

TABLE 16 (cont'd)

TABLE 16 (cont'd)

1	2	3	4			5		6	
95	Zr	2 166 634 179 234 *	6.5 5.00 7.35 6.46 5.16 5.47	9.2 10 18 15 15 3.5	(W) (S)	5.54 5.99	3 6	5.54	6
97	Zr	166 634 *	5.20 6.10 5.91	11.5 6.1 3	(W) (S)	5.89 5.74	2.6 5	5.89	5
99	Мо	2 166 634 174 234 *	6.6 7.0 6.09 5.77 7.03 6.14	6.1 10 13 15 11 3	(W) (S)	6.27 6.44	2.5 3.3	6.27	3.5
103	Ru	166 179 234 *	3.9 7.34 6.92 6.26	13 15 16 3.1	(W) (S)	6.01 6.11	2.93 12.6	6.01	13
105	Ru	166	3.50	11.4				3.5	12
106	Ru	166 234	2.65 3.18	11 10	(W) (S)	2.90 2.92	8 9	2.90	9
1 09	Pd	166	0.13	15				0.13	15
111	Ag	2 166 634 179 234 108	0.094 0.094 0.059 0.070 0.070 0.079	8.5 12.8 19 15 8.6 8	(W) (S)	0.0774 0.0760	5 7	0.0774	7
112	Pd	166	0.07	15				0.07	15
115	Cd(1) Cd(2)	166 179 234 166 634 179 234 108	0.603 0.0068 0.0027 0.046 0.033 0.059 0.035 0.035	15 15 12 15 15 15 15 17 15	(W) (S) (W) (S)	0.0032 .00417 0.0375 0.0411	11 32 7 12	0.0407	
125	Sn	166	0.078	26				0.078	26
127	Sb	166 179 234	0.26 0.12 0.14	12 15 23	(W) (S)	0.154 0.173	9 31	0.154	31
129 131	Te I	166 *	0.26 3.62	12				0.26 3.62	12 5

1	2	3	4			5		6	
132	Те	166 634 234 *	4.10 4.30 5.16 5.27	10 8 1,5 6	(W) (S)	4.67 4.71	4.2 6.3	4.67	7
137	Cs	166 634 179 234	6.10 7.80 7.04 7.80	12 22 15 10	(W) (S)	7.13 7.19	7 6	7.13	7
140	Ba	2 157 166 634 680 108 *	6.70 6.03 5.80 6.30 6.34 6.06 5.96	7.5 10 8.6 7 6.5 8 3	(W) (S)	6.08 6.17	2.1 1.84	6.08	2.5
143	Nđ	667	5.21	10				5.21	10
144	Ce	234 37 108	5.38 3.97 4.41	10 15 10	(W) (S)	4.60 4.60	6.5 9.5	4.60	10
145 146	Nd Nd	667 667	4.25 3.94	10 10				4.25 3.94	10 10
147	Nd	37 108	2.48 2.72	15 10	(W)	2.64	9	2.64	6
148 149 150 153	Nd Pm Nd	667 37 667 37	2.40 1.78 1.49 0.43	-8 15 10 15				2.40 1.78 1.49 0.43	8 15 10 15
156	Eu	634 179 234 37 108	0.043 0.063 0.080 0.085 0.080	19 15 14 15 10	(W) (S)	0.0670 0.0702	6.5 11	0.067	41
159	Gđ	37	0.00828	15				0.00828	15
161	Tb	37 108	0.00181 0.00117	15 15	(5)	0.00149	11	0.00149	11

*R. P. Larsen et al. Trans. Am. Nucl. Soc. 15 (1972) p.483

.

. •

- 17 -

.

TABLE 17 Fission of ²³⁸U at Various Neutron Energies

1	2	3	4		5	6	
77	As	370 371 372 373 374 375 376 377 378	.0027 .0035 .0084 .018 .014 .028 .036 .039 .034	15 15 15 15 15 15 15 15 15	$\begin{pmatrix} 99\\ Mo = 6.20 \\ (99Mo = 6.20) \\ (99Mo = 6.$	(1.5 MeV) (2.0 MeV) (3.0 MeV) (3.9 MeV) (4.8 MeV) (13.0 MeV) (15.0 MeV) (16.4 MeV) (17.7 MeV)	
91 93	Chain Chain	411 .411	3.50 4.77	5 5	(99Mo = 6.32) (99Mo = 6.32)	(3.0 MeV) (3.0 MeV)	
99	Мо	38 322 324	6.20 6.19 6.45	15 5 5		(8.0 MeV) (1.55 MeV) (4.85 MeV)	
105 107	Chain Chain	411 411	3.81 1.36	6 10	$(\frac{99}{MO} = 6.32)$ $(\frac{99}{MO} = 6.32)$	(3.0 MeV) (3.0 MeV)	
111	Ag	370 371 372 373 374 375 376 377 378	0.021 0.030 0.648 0.086 0.12 0.82 0.96 1.07 0.87	15 15 15 15 15 15 15 15 15	$\begin{array}{l} \left(\begin{array}{c} 99 \\ 90 \\ 99 \\ 0 \end{array} = \begin{array}{c} 6.20 \\ 0 \end{array}$	(1.5 MeV) (2.0 MeV) (3.0 MeV) (3.9 MeV) (4.8 MeV) (13.0 MeV) (15.0 MeV) (16.4 MeV) (17.7 MeV)	
115	Cả(2)	370 371 372 373 374 375 376 377 378	0.00074 0.013 0.024 0.045 0.065 0.651 0.95 0.97 0.81	15 15 15 15 15 15 15 15 15	$\begin{array}{l} (99\text{Mo} = 6.2) \\ \end{array}$	(1.5 MeV) (2.0 MeV) (3.0 MeV) (3.9 MeV) (4.8 MeV) (13.0 MeV) (15.0 MeV) (16.4 MeV) (17.7 MeV)	
129 131 143 144 145 147 149 153 156 159 161	Chain Chain Chain Ce Chain Nd Pm Sm Eu Gd Tb	411 411 38 411 38 38 38 38 38 38 38 38 38 38	0.41 3.1 5.14 3.66 4.08 2.30 1.52 0.44 0.103 0.0155 0.00443	5 5 5 15 5 15 15 15 15 15 15 15	$({}^{99}Mo = 6.32)$ $({}^{99}Mo = 6.32)$ $({}^{99}Mo = 6.32)$ $({}^{99}Mo = 6.32)$	(3.0 MeV) (3.0 MeV) (3.0 MeV) (8.0 MeV) (8.0 MeV) (8.0 MeV) (8.0 MeV) (8.0 MeV) (8.0 MeV) (8.0 MeV) (8.0 MeV) (8.0 MeV)	

TABLE 18

<u>14 MeV Neutron Fission of 238 U</u>

1	2	3	4			5	6		
66 67 72 73	Ni Cu Zn Ga	354 354 354 594	0.000085 0.00014 0.003 0.005	11 30 13 17				0.000085 0.00014 0.003 0.005	11 30 13 17
77	Ge As	594 376 594 375	0.031 0.0338 0.031 0.026	17 15 17 15	(W) (S)	0.0298 0.0305	8 6	0.0298	8
78	Ge As	594 594	0.041 0.042	12 24	(W)	0.0412	11	0.0412	11
79 81	As Se	594 594	0.19 0.34	17 15				0.19 0.34	17 15
83	Br Cnain	356 368	0.68 0.75	8 6	(W)	0,722	5	0.722	5
84	Br Chain	356 368	1.33 1.26	3 6	(W)	1.315	2.7	1.315	3
85	Kr(1) Chain	666 368	0.98 1.12	15 5				1.12	5
86 88	Chain Kr	368 666	1.76 1.41	6 15				1.76	6 -
89	Sr	81 167 285 49 107 207	2.3 3.3 3.19 2.14 2.99 3.04	5.2 9.1 5.5 10 10 5	(W) (S)	2.70 2.83	3 7	2.70	7
90	Sr	8 49	3.06 3.64	3.9 8.8	(w)	3.13	4	3.13	4
91	Sr Y Chain	285 49 666 685 81 368	3.77 2.78 3.78 3.68 2.78 3.66	7.7 11.5 15 7.8 5 8	(W) (S)	3.14 3.41	3.5 6	3.14	6
93	Y	354 356	4.4 4.11	9 5	(W)	4.14	3.5	4.14	4
95	Zr	167 285 659	4.6 5.4 6.21	9 4.3 9.8	(W) (S)	5.31 5.40	4 9	5.31	9

- 81.-

TABLE 18 (cont'd)

TABLE 18 (cont'd)

1	2	3		4		5			6
97	Zr Chain	167 - 356 285 654 654 659 207 368	4.9 5.97 5.92 5.54 6.0 4.78 5.22 5.27	8.2 6 5 5 8 10.6 5 8	(W) (S)	5.49 5.45	2 4	5.49	4
99	Mo Chain	81 167 325 356 207 626 368	5.58 6.50 5.68 6.47 5.70 5.86 5.50	10 8 5 10 10 5 6	(W) (S)	5.81 5.90	3 3.5	5.81	4
101	Мо	285 618	5.74 6.58	4 5	(W)	6.02	3.5	6.02	4
102	Мо	285 618	4.12 2.95	11 11	(s)	3.54	8	3.54	8
103	Ru Chain	167 354 666 368	3.0 4.56 4.86 5.15	10 5 15 10	(W) (S)	4.16 4.39	4 11	4.16	11
105	Ru Rh	167 356 285 364 654 685 207	3.30 2.65 2.26 3.11 2.10 3.78 3.61	9.1 6.1 8 5 7 11.4 7	(W) (S)	2.69 2.97	3 9	2.69	6
106 107	Ru Rh	167 685	2.40 1.78	13 30				2.40 1.78	13 30
109	Pd	356 364 685	1.20 1.59 1.59	17 10 7.5	(W) (S)	1.52 1.46	6 9	1.52	9
111	Pd Ag	356 81 167 356 285 364 376 49 107 207 375	0.65 0.81 1.06 0.98 1.04 1.14 0.89 0.64 0.996 1.05 0.77	12 5 11 6 5 15 17 70 7 15	(W) (S)	0.917 0.911	3 6	0.917	6

1	2	3	4			5		6	 3
112	Pd Ag	167 306 364 666 285	0.70 0.79 1.28 1.36 0.93	15 10 5 15 6	(W) (S)	0.993 1.012	4 13	0.993	13.
113	Ag	356 354 654 654 49	0.87 0.91 0.70 0.90 0.64	7 6 30 17 31	(W) (S)	0.877 0.804	4.5 7	0.877	7
115	Cd(1)	81 167 107	0.06 0.06 0.0588	16 15 10	(s)	0.0596	8.	0.741	7
	Ag(2) Cd(2)	356 81 167 285 364 107 207 375	0.64 0.58 0.80 0.93 0.89 0.663 0.663 0.613	8 5.2 11 6 10 10 7 15	(W) (S)	0.681 0.744	3 7		
121	Sn(2)	364 207	1.18 0.76	10 7	(S)	0.97	7	0.97	7
125	Sn(2)	364 207	0.88 1.07	10 10	(S)	0.925	7		-
127	Sb	666 685 207	1.47 1.57 1.37	15 13 7	(W) (S)	1.415 1.47	6 4	1.42	· 6
129	Sb Te	365 685 167	1.18 1.73 1.22	10 12 7.1	(W) (S)	1.26 1.38	5.4 13	1.26	13
131	I Xe Chain	356 285 49 666 685 407 648 348	4.6 5.28 2.89 4.53 3.69 3.50 3.81 4.02	9 5.5 7.4 15 17 10 5 10	(W) (S)	3.83 4.04	3 7	3.83	7
132	Te I Xe Chain	167 207 49 666 407 368	4.4 4.58 4.50 5.14 5.04 4.94	7 7 8.9 15 10 10	(W) (S)	4.68 4.82	4 3	4.68	4

1 19 -

TABLE 18 (cont'd)

	1	2	3		4	5			6
	133	I Xe Chain I	666 356 368 49	6.83 6.65 6.08 2.78	15 5 10 200	(W) 6.54 (S) 6.52 (omitted)	4.5 3.5	6.54	5
	134	I Xe Chain	49 407 648 368	5.03 7.01 6.45 6.50	30 10 5 5	(omitted) (W) 6.53 (S) 6.65	3.5 3	6.53	4
	135	I Xe Chain	49 356 368	5.35 5.59 5.89	10 5 10	(W) 5.65	5	5.65	5
	136	Xe Chain	407 648 368	6.24 5.43 5.74	10 5 5	(W) 5.64 (S) 5.80	3.5 4.4	5.64	5
	137	Cs Chain	167 368	6.60 5.08	9 10	(S) 5.84	7.5	5.84	8
	138	Ва	49	4.71	11.4			4.71	12
	139	Ba Chain	356 368	4.92 5.02	18 7	(W) 5.00	7	5.00	7
20 -	140	Ba La Chain	81 167 354 356 285 107 207 666 368	4.41 4.90 4.46 4.67 4.64 4.84 4.70 5.34 4.54	10 8 8 10 5 8 7 15 12	(W) 4.67 (S) 4.72	3 2	4.67	3
	1.41	Ce Chain	167 257 368	5.80 4.17 4.82	10 10 8	(W) 4.77 (S) 4.93	5.5 10	4.77	10
	143	Ce Pr Chain	81 355 257 666 685 107 81 368	3.91 3.51 4.60 3.93 4.74 3.98 3.16 4.26	7.2 20 11 15 8 5 5 10	(W) 3.72 (S) 4.01	3 5	3.72	5
	144	Ce	81 257 107 207	2.68 4.28 3.67 3.78	6 50 5 8	(W) 3.21 (S) 3.60	4 9.5	3.21	10
ſ	145	Pr	685	3.18	5			3.18	5

TABLE 18 (cont'd)

1	2	3	4			5		6	
147	Nd Pm Chain	81 354 107 257 368	2.0 2.2 2.15 2.46 2.03	5 7 5 13 12	(W) (S)	2.10 2.17	3 4	2.10	4
153	Sm	81 354	0.39 0.42	5 10	(W)	0.40	5	0.40	5
1 56	Eu	81 107 207	0.13 0.098 0.124	15 8 8	(W) (S)	0.11 0.117	5.5 8.5	0.11	9
159	Gd	354	0.026	12				0.026	12
161	Тb	354 107	0.0089 0.0077	6 6	(S)	0.0083	5	0.0083	5
166 169 172	Dy Er Er	354 354	0.00063 0.00013 0.000021	10 7 35				0.00063 0.00013 0.000021	10 7 33

TABLE 19

Fast Neutron Fission of ²³⁹Pu

1	2	3	4			5		6	
72	Zn	327	0.000074	5				0.000074	5
77	As	160 631 632	0.0129 0.0120 0.0295	4.8 13 10.2	(W) (S)	0.0134 0.0181	4.5 32	0.0134	32
78	As	160	0.035	5				0.035	5
83	Br Chain	160 249	0.314 0.366	7.4 3	(W) (S)	0.36 0.34	3 8	0.36	8
84 85 86 87 88	Chain Chain Chain Chain Chain	249 249 249 249 249 249	0.56 0.672 0.882 1.16 1.44	5 5 5 5 5 5				0.56 0.672 0.882 1.16 1.44	5 5 5 5 5
89	Sr	3 635 161	1.80 1.88 1.91	11 6.9 10	(W) (S)	1.87	5.5 2	1.87	6
90	Sr Chain	12 174 635 249	2.12 2.01 3.45 2.24	4.2 5 11 3	(W) (S)	2.18 2.46	2.5 14	2.18	14

- 20 -

TABLE 19 (cont'd)

2 4 5 6 1 3 91 Chain 249 2.58 5 2.58 5 92 Chain 249 3.13 5 3.13 5 Chain 93 249 3.91 5 3.91 5 94 Chain 249 4.40 5 4.40 5 95 5.30 (W) 4.84 1.3 4.84 3 Zr 3 9.4 345 5.80 6.4 (S) 5.31 3.3 345 5.72 6.1 161 5.52 5.1 350 5.91 15 * 4.77 3.5 4,70 1.7 Chain 249 4.78 5 96 Chain 249 5.11 5 5.11 5 97 Zr 635 5.84 6.2 (W) 5.32 2.0 5.32 2.5 161 5.56 5 (S) 5.46 2.2 350 5.49 15 631 5.70 6 632 5.35 5.8 4.83 3.5 Chain 249 5.47 3 98 Chain 249 5.81 5 5.81 5 99 Мо 3 5,50 7.3 (W) 5.81 2.5 5.81 3 5.90 (S) 5.88 64 10.2 2.5 635 5,96 5 627 5.80 3 350 6.23 15 100 Chain 249 6.76 5 6.76 5 101 249 6.88 6.88 Chain 5 5 102 Chain 249 6.97 5 6.97 5 103 6.0 12 (W) 6.79 1.5 6.79 4.5 Ru 64 66 6.01 18 (S) 6.46 4.5 * 7.05 3.1 6.76 7 1.5 104 Chain 249 6.77 5 6.77 5 106 Ru 64 4,80 13 (W) 4.82 10 4.82 10 66 4.85 17 109 Pd(2) 350 1.80 15 1.80 15 111 0.45 6.7 (S) 0.439 0.439 14 Ag 3 14 64 0.55 10.9 635 0.37 4.9 161 0.196 4.3 6.31 0.423 5.2 632 0.711 5 Chain 249 0.376 3

5 6 1 2 3 4 112 Pd 327 0.067 5 (S) 0.137 51 0.137 51 Chain 249 0.207 3 113 0.05 (S) 0.0915 45 0.0915 45 Ag 161 6.4 Chain 249 0.133 3 114 Chain 249 0.099 • 5 0.099 5 115 Cd(1) 635 0.005 20 ¢(S) 0.115 66 0.115 70 631 0.0049 4.1 632 0.016 90 Cd(2) 3 0.098 8.2 0.090 64 11.1 635 0.060 5 56 0.14 5 299 0.0144 6 327 0.0188 5 631 0.0712 4 632 0.219 9.1 Chain 64 0.095 10.5 Calculated from the chain (sum) values 0.064 116 Chain 249 0.064 5 3 121 Sn(2) 56 0.0169 5 (S) .0169 3 0.0169 3 299 0.0169 5 125 Sn(2) 56 0.061 4 (S) 0.061 4 0.19 11 299 0.061 3.4 Chain 249 0.19 10.5 129 Te(1) 64 0.45 20 1.17 15 Chain 64 1.17 15 4.45 5 131 Ι 1 4.77 3.1 (W) 4.45 1.5 4.44 1.5 (S) 4.42 5 Chain 249 4.06 5 132 Те 64 3.5 29 (S) 4.35 5.42 5 20 635 5.19 6.9 . Chain 249 5.42 5 133 Chain 249 6.91 5 6.91 5~ 134 Chain 249 7.35 5 7.35 5 135 Chain 249 7.54 5 7.54 5 136 Chain 249 6.92 5 6.92 5 137 Cs6.47 5 (W) 6.69 6.69 174 2.5 10 2397.45 5 (S) 6.31 10 635 4.74 31 Chain 249 6.58 3 138 Chain 249 4.97 5 4.97 5

TABLE 19 (cont'd)

- 21 -

TABLE 19 (cont'd)

1	2	3		4		5			6
139	Ва	631 632	6.26 6.05	7.8 5	(W)	6.11	5	6.11	5
140	Ba Chain	3 64 635 635 627 631 632 * 249	4.90 5.40 5.45 5.53 5.00 5.18 5.15 5.25 5.59	8.2 9.3 5 10 3 8.5 7.7 2.9 3	(w) (S)	5.26 5.27	1.5 1.5	5.26	1.5
141	Ce	635 635 161 631 632	5.88 5.76 5.64 5.98 5.14	6 6.9 6 10.4 14	(W) (S)	5.84 5.68	3.5 3	5.84	4
142	Chain	249	4.95	5				4.95	5
143	Ce Nd Chain	161 631 632 174 668 249	5.08 4.67 4.48 4.41 4.38 4.30	5 8.1 8.0 5 5 3	(W) (S)	4.45 4.55	2 3	4.45	3
	Ce Chain	174 635 635 631 632 249	3.49 2.78 3.98 4.25 5.37 3.49	5 6.1 8 29 10 5	(W) (S)	3.51 3.93	2.5 9.5	3.51	10
145	Nd Chain	174 668 249	3.05 3.05 3.04	5 5 3	(W)	3.05	2.3	3.05	2.5
146	Nd Chain	174 668 249	2.53 2.52 2.52	5 5 3	(W)	2.52	2.3	2.52	2.5
148	Nd Chain	1 74 658 249	1.69 1.74 1.73	5 3.5 3	(W) (S)	1.73 1.72	2.5 1	1.73	2.5
149	Chain	249	1.36	5				1.36	5
1 50	Nd Chain	1 74 668 249	1.01 1.06 1.06	5 5 3	(W) (S)	1.05 1.04	2.5 2	1.05	2.5

TABLE 19 (cont'd)

1	2	3	·	4		5		(3
1 51 1 52 1 53 1 54	Chain Chain Sm Chain	249 249 350 249	0.84 0.683 0.51 0.324	5 5 15 5				0.84 0.683 0.51 0.324	5 5 15 5
156	Eu	635 631 632	0.19 0.117 0.142	5 10.2 13.4	(W) (S)	0.159 0.150	4.5 14.5	0.159	15
157	Eu	631 632	0.104 0.109	8.7 3.7	(W) (S)	0.108 0.107	4 2.5	0.108	4

*R. P. Larsen et al. Trans. Am. Nucl. Soc. 15 (1972) p.483. / " " " " " " " " 14 (1971) p.370.

<u>TABLE 20</u> Fission of 239Pu at Various Energies

1	2	3	4		5	6
111	Ag	95 96 97 98 99 100 101 102	0.132 0.133 0.194 0.174 0.239 0.256 0.220 0.859	20 5,2 12 12 12 12 12 12 12 12 12	$\begin{array}{l} (99\text{Mo} = 6.06) \\ \end{array}$	(30 keV) (60 keV) (120 keV) (200 keV) (300 keV) (500 keV) (1 MeV) (6 MeV)
113	Ag	95 96 97 98 99 100 101 102	0.0263 0.0342 0.0396 0.0431 0.0497 0.0528 0.0631 0.269	37 27 12 12.3 12.2 12.2 12.7 12.7 12	$\begin{array}{l} (99Mo = 6.06) \\ (99Mo = 6.06) \end{array}$	(30 keV) (60 keV) (120 keV) (200 keV) (300 keV) (500 keV) (1 MeV) (6 MeV)
115	Cd(2)	52 53 54 55	.0279 .0143 .0124 .0115	4.3 5.5 8.4 4.2	$\begin{array}{l} (99\text{Mo} = 6.18) \\ (99\text{Mo} = 6.18) \\ (99\text{Mo} = 6.18) \\ (99\text{Mo} = 6.18) \\ (99\text{Mo} = 6.18) \end{array}$	(0.06 eV) (0.22 eV) (0.297 eV) (0.36 eV)
121	Sn(2)	52 53 54 55	.0334 .0149 .0128 .0131	3.8 10 8.5 7.1	$\begin{array}{l} (99Mo = 6.18) \\ (99Mo = 6.18) \\ (99Mo = 6.18) \\ (99Mo = 6.18) \\ (99Mo = 6.18) \end{array}$	(0.06 eV) (0.22 eV) (0.297 eV) (0.36 eV)
125	Sn (2)	52 53 54 55	0.100 0.0628 0.0566 0.0508	3.4 9 3.3 3.3	$\begin{array}{l} (99 \text{Mo} = 6.18) \\ (99 \text{Mo} = 6.18) \\ (99 \text{Mo} = 6.18) \\ (99 \text{Mo} = 6.18) \end{array}$	(0.06 eV) (0.22 eV) (0.297 eV) (0.36 eV)

- 22 -

TABLE 21

14 MeV Neutron Fission of 239 Pu

<u>TABLE 22</u> <u>14 MeV Neutron Fission of ²⁴¹Pu*</u>

1	2	3 '	4			5		6	
89	Sr	286 109	1.83 1.61	4.5 5	(W) (S)	1.72 1.72	3.5 6.5	1.72	7
91 97 99 103 106	Sr Zr Mo Ru Ru	286 286 65 65 65	2.04 3.99 4.16 6.25 4.16	6.1 4.2 9.6 12.8 12				2.04 3.99 *4.16 6.25 4.16	6 5 10 13 12
111	Ag	65 286 105 109	1.46 1.83 1.46 1.39	10.3 4.5 12 5	(W) (S)	1.55 1.54	3.5 8.0	1.55	8
113	Ag	103	1.09	12				1.09	12
115	Cd(2) Chain	65 286 109 65	1.23 1.16 0.86 1.30	8.1 7.2 10 10	(W) (S)	1.07 1.08	5 11	1.30	10
132 137	Te Cs	65 65	4.58 5.10	11 16				4.58 5.10	11 16
140	Ва	65 286 109	4.35 2.66 3.22	9.2 4.7 10	(W) (S)	2.86 3.41	4 15	2.86	15
144 147 156 161	Ce Nd Eu Tb	109 109 109 109	2.17 1.41 0.02 .000138	10 10 10 15				2.17 1.41 0.02 .000138	10 10 10 15

*99 Mo = 4.16 was used to correct other results

1	2	3	4			5		6	
115	Cd(2)	57 300	0.036 10 0.036 10	0	(S)	0.036	7	-	-
121	Sn(2)	57 300	0.0494 10 0.0485 10	0 0	(S)	0.0499	7	0.0499	7
125	S n(2)	57 300	0.0417 1 0.0417 1	5 5	(S)	0.0417	11	0.0417	11

*99 Mo taken as 6.14%

- 23 -

1_	3.	K A PETRZHAK ET AL. AEG TR 4696
4_	12.	8 P BAYHURST. TID 5797
13.	CE ANL 5	CROUTHAMEL, P KAFALAS, D STUPEGIAS. 5789
14.	H V V AD 52	NEISS, W L REICHERT. 27027, TR 943.
15.	J M (IS 55	CRODK, A F VOIGHT. 58
16.	RN J.NU	IVANOV, V K GORSCHKOV, M P ANIKINA, G M KUKAVADZE, B V ERSCHLER. JCL. ENERGY, 9, (1959), P46.
17.	M P J J. NI	ANIKINA, R N IVANOV, G M KUKAVADZE, B V ERSCHLER. JCL. ENERGY. 9, 11959), P167.
18_	21.	M P ANIKINA, ET AL. P2040 MOL. 15, SECOND GENEVA CONF.
22_	26.	D C ALMANN, K F FLYNN, J E GINDLER, L E GLENDENIN. JINC., 31, (1969), P1935.
27.	N K JINC	ARAS, G E GORDON. ., 28, (1966), P763.
28.	M P J. Ni	ANIKINA, B V ERSCHLER. UCL. ENERGY., 6, (1957), P169.
29.	A T ' Can.	PLADES, W H FLEMING, H G THODE. J. CHEM., 34, (1956), P233.
30.	L R JINC	BUNNEY, E M SCADDEN. . 27, (1965), P1183.
31.	D BI Radi	RGUL, S J LYLE. Ochim. Acta., 8, (1967), P9
32_	33.	R M BARTHOLOMEW, J S MARTIN, A P BAERG. Can. J. Chem., 37, (1959), P660.
34.	A P Can.	BAERG, R M BARTHOLOMEW. J. Chem., 35, (1957), P980.
35_	38.	L R BUNNEY, E M SCADDEN, J O ABRIAM, N E BALLOU. A/CONF15/P643 SECOND GENEVA CONFERENCE, VOL 15, P449.
39_	40.	B P BAYHURST, ET AL. Phys. Rev. 107, (1957), P325.
41_	44.	L BALCARCZYK, P KERATSCHEV, E LANZEL. NUKLEONIK, 7, (1965), P169.
45.	R M CAN.	BARTHOLQMEW, A P BAERG. J. CHEM., 34, (1956), P201.
46.	R M CAN.	BARTHOLOMEW, F BROWN, R C HAWKINGS, W F MERRITT, L YAFFE. J. CHEM., 31, (1953), P120.
47.	F BR	OWN. ., 1, (1955), P248.
48.	F BRI CAN.	OWN, L YAFFE. J. CHEM., 31, (1953), P242.
49.	K M PHYS	BRODM. • REV., 126, (1962), P627.
50_	51.	K BROOM. PHYS. REV., 133, (1964), PB874.
52_	61.	W H BURGUS. IDD_16797, TID_4500.
62_	65.	E K BONYUSHKIN, ET AL. Sov. J. At. Energy, 10, (1961), pic.
66_	67.	M A BAK, ET AL. SOV. J. ATOM. ENERGY, 6, (1959), P429
68.	L R JINC	BUNNEY, E M SCADDEN. •• 27. (1965). P1183.

- 24 -

TABLE 23 (Cont'd) Reference List of Fission Yield Literature J G BAYLY, M F DURET, N B POULSEN, R H TOMLINSON. CAN. J. PHYS., 39, (1961), P1391. 69. D R BIDINOSTI, H R FICKEL, R H TOMLINSON. A/CONF.15/P201 SECOND GENEVA CONFERENCE. VOL. 15 P459. 70 72. K D BORDEN, P K KURODA. JINC., 31, (1969), P2623. 73. D R BIDINOSTI, D E IRISH, R H TOMLINSON. CAN. J. CHEM., 39, (1961), P628. 74. L R BUNNEY, E M SCADDEN. JINC., 27, (1965), P273. 75_ 76. 77. O RIRGUL, S J LYLE. RADIOCHIM. ACTA., 11, (1969), P108. A E GREENDALE, A A DELUCCHI. 78. AD 586041 79. J G CUNINGHAME. JINC., 6, (1958), P181. 30. J G CUNINGHAME. JINC., 4, (1957), P1. J G CUNINGHAME. 81. JINC., 5, (1957), P1 82. J 3 CUNINGHAME. JINC., 5, (1957), P1. I F CROALL, H H WILLIS. JINC., 24, (1962), P221. 83_ 86. I F CROALL, H H WILLIS. JINC., 25, (1963), P1213. 87. J G CUNINGHAME, G P KITT, E R RAE. NUCL. PHY., 27, (1961), P154. 88_ 94. J G CUNINGHAME, K FRITZE, J E LYNN, C B WEBSTER. NUCL. PHY., 84, (1966), P49. 95_ 103. I F CROALL, H H WILLIS. AERE/R/6154. 104. 105_ 110. PRIVATE CONMUNICATION 111_ 146. G A COWAN, B P BAYHURST, R J PRESTWOOD. PNE_114F YUNG YEE CHU. 147_ 153. UCRL_8926 L CIUFFOLOTTI. ENERGIA NUCLEARE, 15, (1968), P272. 154_ 157. J G CUNINGHAME. PHIL. MAG., 44, (1953), P900. 158. 159_ 161. I F CROALL, H H WILLIS. AERE_R4723. A A DELUCCHI, A E GREENDALE, P O STROM. PHYS. REV., 173, (1968), P1159. 162. H O DENSCHLAG. JINC., 31, (1969), P1873. 163. 164_ 167. E K BONYUSHKIN. AEC TR 4682 W R DANIELS, D C HOFFMAN. PHYS. REV., 145, (1966), P145. 168_ 171. D BIRGUL, S J LYLE, J SELLARS. RADIOCHIMICA ACTA, 12, (1969), P66., 172. 173_ 174. W DAVIES. RADIOCHIMICA ACTA, 12, (1969), P173. B R ERDAL, J C WILLIAMS, A C WAHL. JINC., 31, (1969), P2993. 175. B R ERDAL, A C WAHL, B J DROPESKY. JINC., 31, (1969), P3005. 176.

- 25 -

D ENGELKEMLIR, M S FREEDMAN, E P STEINBERG, J A SEILER, L WINSBERG. 177_ 179. ANI 4927 H R FICKEL, R H TOMLINSON. CAN. J. PHYS., 37, (1959), P926. 180. H R FICKEL, R H TOMLINSON. 181. CAN. J. PHYS., 37, (1959), P916. W H FLEMING, H & THODE. CAN. J. CHEM., 34, (1956), P193. 182. E C FREILING, L' R BUNNEY, N E BALLOU. 183. PHY. REV., 96, (1954), P102. 184. G P FORD. AECD_3597,LADC_1200 185_ 195. K T FALER, R L TROMP. PHYS. REV., 131, (1963), P1746. 196. K FRITZE, C C MCMULLEN, H G THODE. A/CONF.15/P187 SECOND GENEVA COFERENCE. 197_ 207. G P FORD, J S GILMORE. LA_1997. K F FLYNN, H R VON GUNTEN. HELV. CHIM. ACTA., 52, (1969), P2216. 208. 209. W FLEMING, R H TOMLINSON, H G THODE. CAN. J. PHYS., 32, (1954), P522. H FARRAR, H R FICKEL, R H TOMLINSON. Can. J. Phys., 40, (1962), P1017. 210. K F FLYNN, H R VON GUNTEN. SM_122/1 SYMPOSIUM ON THE PHYSICS AND CHEMISTRY OF FISSION 211. 212. H FARRAR, W & CLARKE, H G THODE, R H TOMLINSON. CAN. J. PHYS., 42, (1964), P2063. 213_ 214. W E GRUMMITT, G W MILTON. JINC., 5, (1957), P93. V K GORSHKOV, R N IVANOV, G M KUKAVADZE, I A REFORMATSKY. Atomniya Energiya, 3, (1957), P11. 215. 216. H & VON GUNTEN, H HERMANN. Radiochim. Acta, 8, (1967), P112. W E GRUMMITT, G M MILTON. JINC., 20, (1961), P6. 217_ 219. 220. V K GORSHKOV, M P ANIKINA. ATOMNIYA ENERGIYA, 7, (1959), P144. L E GLENDENIN, E P STEINBERG. 221. JINC., 1, (1955), P45. W H HARDWICK. PHYS. REV., 92, (1953), P1072. 222_ 223. E HAGEBD. JINC., 25, (1963), P615. 224. J D HASTINGS, D E TROUTNER. RADIOCHIM. ACTA, 11, (1969), P51. 225. J W HARVEY, W B CLARKE, H G THODE, R H TOMLINSON. CAN. J. PHYS., 44, (1966), P1011. 226_ 227. R H IYER, C K MATTHEWS, N RAVINDRAN, K RENGAN, D V SINGH, M V RAMANIAH ETC. JINC., 25, (1963), P465. 228. 229_ 231. R S IYER, H C JAIN, M N NAMBOUDIRI, M RAJAGOPALAN, RAKISHORE, ETC. PHYSICS AND CHEM. DF FISSION, SALZBURG 1965. A V JADHAV, M V RAMANIAH, C L RAD, C J SHAHANI, NUKLEONIK, 9, (1967), P43. 232. S KATCOFF, W RUBINSON. PHYS. REV., 91, (1953), P1458. 233. R N KELLER, E P STEINBERG, L E GLENDENIN. PHYS. REV., 94, (1954), P969. 234.

235_ 236. L M KRIZHANSKII, Y MALYI, A N MURIN, B K PREOBRAZHENSKII. J. NUCL. ENERGY, 6, (1957), P260.

TABLE 23 (Cont'd) Reference List of Fission Yield Literature L M KRIZHANSKII, A N MURIN. SOV. J. AT. ENERGY, 4, (1958), P95. 237. P KAFALAS, C E CROUTHAMEL. JINC., 4, (1957), P239. 238_ 239. J D KNIGHT, D C HOFFMAN, B J DROPESKY, D L FRASCO. JINC., 10, (1959), P183. 240 -T J KENNETT, H G THODE. 241. CAN. J. PHYS., 35, (1957), P969 A KJELRERG, A C PAPPAS. JINC., 11, (1959), P173. 242. S KATCOFF, W RUBINSON. JINC., 27, (1965), P1447. 243_ 244. J B LAIDLER, F BROWN. 245. AWRE_49/61. J R DE LAETER, H G THODE. CAN. J. PHYS., 47, (1969), P1409. 246_ 247. F L LISMAN, W J MAECK, ET AL. 248_ 253. IN_1277 254. P DEL MARMOL. JINC., 30, (1968), 02873. J MACNAMARA, C B COLLINS, H G THODE. PHYS. REV., 78, (1950), P129. 255. M P MENON, P K KURODA. JINC., 26, (1964), P401. 256_ 257. E A MELAIKA, M J PARKER, J A PETRUSKA, R H TOMLINSON. CAN. J. CHEM., 33, (1955), P830. 258_ 261. J A MARINSKY, E EICHLER. JINC., 12, (1960), P223. 262. 263. D A MARSDEN, L YAFFE. CAN. J. CHEM., 43, (1965), P249. TIN MO, M N RAD. JINC., 30, (1968), P345. . 264. R MUNTZE, H GROSSE_RUYKEN, G/WAGNER. KERNENERGIE, 12, (1969), P380. 265. W E NERVIK. PHYS. REV., 119, (1960), P1685. 266. L H NIECE. DISS. ABSTR., 27, (1966), P1249. 267_ 268. A OKAZAKI, W H WALKER, C B BIGHAM. CAN. J. PHYS., 44, (1966), P237. 269_ 272. A OKAZAKI, W H WALKER. Can. J. Phys., 43, (1965), P1036. 273_ 278. J A PETRUSKA, E A MELAIKA, R H TOMLINSON. CAN. J. PHYS., 33, (1955), P640. 279. J A PETRUSKA, H G THODE, R H TOMLINSON. CAN. J. PHYS., 33, (1955), P693. 280_ 281. H G PETROW, G ROCCO. PHYS. REV., 96, (1954), P1614. 282. A C PAPPAS, D R WILES. JINC., 2, (1956), P69. 283. A N PROTOPOPOV, G M TOLMACHEV, ET AL. J. NUCL. ENERGY, A, 10, (1959), P80. 284_ 286. K K S PILLAY, R J MEYER, R P LARSEN. J. RADIDANALYT. CHEM., 3, (1969), P233. 287. G W REED. 288. PHYS. REV., 98, (1955), P1327. G W REED, A TURKEVICH. 289. PHYS. REV., 92, (1953), P1473. G M KUKAVADZE, M P ANIKINA, L L GOLDIN, B V ERSCHLER. AEC_TR_2435. 290.

- 27 -

N G RUNNALS, D E TROUTNER, R L FERGUSOL. PHYS. REV., 179, (1969), P1288. 291. R B REGIER, W H BURGUS, R L TROMP. 292_ 294. PHYS. REV., 113, (1959), P1589. R B REGIER, W H BURGUS, R L TROMP, B H SORENSEN. PHYS. REV., 119, (1960), P2017. 295_ 300. R R RICKARD, C F GDEKING, E I WYATT. NUCL. SC. ENG., 23, (1965), P115. 301. M N RAD, P K KURODA. 302. PHYS. REV., 147, (1966), P884. 303. M N RAD. RADIOCHIM. ACTA, 8, (1967), P12. N RAVINDRAN, K F FLYNN, L E GLENDENIN. 304. JINC., 28, (1966), P921. D C SANTRY, L YAFFE, CAN. J. CHEM., 38, (1960), P464. 305. A F STEHNEY, N SUGARMAN. PHYS. REV., 89, (1953), P194. 306. 307. N SUGARMAN. PHYS. REV., 89, (1953), P570. J E SATTIZAHN, J D KNIGHT, M KAHN. JINC., 12, (1960), P206. 308. . 309. D C SANTRY, L YAFFE. CAN. J. CHEM., 38, (1960), P421. B SRINIVASAN, E C ALEXANDER, O K MANUEL, D E TROUTNER. PHYS. REV., 179, (1969), P1166. 310. P D STROM, D L LOVE, A E GREENDALE, A A DELUCCHI, D SAM, N E BALLOU. PHYS. REV., 144, (1966), P984. 311. P C STROM, G R GRANT, A C PAPPAS. CAN. J. CHEM., 43, (1965), P2493. 312. E OHYOSHI, A OHYOSHI, M SHINAGANA. RADIOCHEM. RADIOANAL. LTRS., 3, (1970), P1. 313. R STELLA, L G MORETTO, V MAXIA, M DI CASA, V CRESPI, M A ROLLIER. JINC., 31, (1969), P3779. 314. G P TERCHO, J A MARINSKY. 315. JINC., (1964), P1129. J TERRELL, W E SCOTT, S GILMORE, C D MINKKINEN. PHYS. REV., 92, (1953), P1091. 316_ 325. 326. A TURKEVITCH, J B NIDAY. PHYS. REV., 84, (1951), P52. S L TONG, K FRITZE. TRADIOCHIM. ACTA, 12, (1969), P179. 327. D E TROUTNER, R L FERGUSON, G D OKELLEY. PHYS. REV., 130, (1963), P1466. 328. 329_ 330. G W WETHERILL. PHYS. REV., 92, (1953), P907. D R WILES, C D CORYELL. PHYS. REV., 96, (1954), P696. 331_ 334. A C WAHL, N A BONNER. 335. PHYS. REV., 85, (1952), P570. 336_ 337. H V WEISS, N E BALLOU. SALZBURG SYMPOSIUM, 1965. H YOSHIDA, Y PAISS, S AMIEL. 338. IA_1128 339_ 340. M F ROCHE. TID_24500. L R BUNNEY, E M SCADDEN, J O ABRIAM, N E BALLOU. SECOND GENEVA CONF., VOL. 15, P444. 341. 342_ 350.

342_ 350. C.D.CORYELL, N.SUGARMAN. RADIDCHEMICAL STUDIES: THE FISSION PRODUCTS. VOL. 2.

- 351. H R VON GUNTEN, K F FLYNN, L E GLENDENIN. JINC., 31, (1969), P3357.
- 352_ 354. D R NETHAWAY, B MENDOZA, T E VOSS. PHYS. REV., 182, (1969), P1251.
- 355. M THEIN, M N RAD, P K KURODA. JINC., 30, (1968), P1145.
- 356. R H JAMES, G R MARTIN, D J SILVESTER. RADIOCHIM. ACTA., 3, (1964), P76.
- 357. S J LYLE, G R MARTIN, J E WHITELEY. Radiochim. Acta, 3, (1964), pro.
- 358. V A VLÁSOV, YU A ZYSIN, I S KIRIN, A A LBOV, L I OSYAEVA, L I SELCHENKOV. $\tilde{/}$ Aec_tr_4665
- 359. R GANAPATHY, P K KURODA. JINC., 28, (1966), P2071.
- 360. TIN MO, M N RAD. JINC., 30, (1968), P345.
- 361. H FARRAR, R H TOMLINSON. NUCL. PHYS., 34, (1962), P367.
- 362_ 364. CUMULATIVE YIELDS IN THE 14MEV NEUTRON FISSION OF 232TH AND 238U IN THE ETC. CAN. J. CHEM., 48, (1970), P641.
- 365. M N RAD. JINC., 29, (1967), P863.
- 366_ 367. M BRESESTI, G BUREI, P FERRARI, L MORETTO. JINC., 29, (1967), P1189.
- 368. D J GORMAN, R H TOMLINSON. CAN. J. CHEM., 46, (1965), P1663.
- 369. J W HARVEY, W B CLARKE, D J GORMAN, R H TOMLINSON. CAN. J. CHEM., 46, (1968), P2911.
- 370_ 378. N I BORISOVA, S M DUBROVINA, ET AL. SOV. J. NUCL. PHYS., 6, (1968), P331.
- 379_ 382. B F RIDER, J P PETERSON, C PRUIZ, F R SMITH. GEAP_5356.
- 383. R S ONDREJCIN. JINC., 28, (1966), P1763.
- 384. B G YOUNG, H G THODE. CAN. J. PHY., 38, (1960), P1.
- 385. L YAFFE, A E DAY, B A GREER. CAN. J. CHEM., 31, (1953), P48.
- 386. L YAFFE, H G THODE, W F MERRITT, R C HAWKINGS, F BROWN, AND R M BARTHOLOMEW. CAN. J. CHEM., 32, (1954), P1017.
- 387. H V WEISS, J L ELZIE, J M FRESCO. PHYS. REV., 172, (1968), P1269.
- 388. L WISH. PHYS. REV., 172, (1968), P1262.
- 389. A WYTTENBACH, H R VON GUNTEN, H DULAKAS. RADIOCHIM. ACTA, 3, (1964), P118.
- 390. H V WEISS, N E BALLOU. JINC., 27, (1965), P1917.
- 391. H V WEISS. PHYS. REV., 139, (1965), P3304.
- 392. A C WAHL, D R NETHAWAY. PHYS. REV., 131, (1963), P830.
- 393_ 396. A C WAHL, R L FERGUSDN, D R NETHAWAY, D E TROUTNER, K WOLFSBURG. PHYS. REV., 126, (1962), P1112.
- 397. A C WAHL. JINC., 6, (1958), P263.
- 398. D M WILES, J A PETRUSKA, R H TOMLINSON. CAN. J. CHEM., 34, (1956), P227.
- 399. K WOLFSBERG, D R NETHAWAY, H P MALAN, A C WAHL. JINC., 12, (1960), P201.

A C WAHL. PHYS. REV., 99, (1955), P730. 400_ 402. D R WILES, 9 W SMITH, R HORSLEY, H G THODE. CAN. J. PHYS., 31, (1953), P419. 403 405. R K WANLESS, H G THODE. CAN. J. PHYS., 33, (1955), P541. 406_ 407. D G VALLIS, A O THOMAS. Awre report 0_50/61. 408. F L LISMAN ET AL. 409. LA_4430_MS P16. H V WEISS, N E-BALLOU, J L ELZIE, J M FRESCO. PHYS. REV., 188, (1969), P1893. 410. S J LYLE, R WELLUM. RADIOCHIM. ACTA, 13, (1970), P167. 411. L H NIECE, D E TROUTNER, R L FERGUSON. PHYS. REV. C, 1, (1970), P312. 412_ 413. N G RUNNALLS, D E TRDUTNER. PHYS. REV. C, 1, (1970), P316. 414. P J BOWLES, H H WILLIS. 415. TRIVITZ COLMUNICATION J BLACHOT, L C CARRAZ, P CAVALLINI, A GADELLE, A MOUSSA. VIENNA SYMPOSIUM ON CHEM., PHYS. OF FISSION 1969. 416_ 418. 419. CHIEN_CHANG LIN, A C WAHL. JINC., 32, (1970), P2501. E A C CROUCH, M BROWNSWORD, I C MCKEAN. 420_ 421. PRIV/ PE CONNUMICATION B L TRACY, H G THODE. CAN. J. PHYS., 48, (1970), P1708. 422_ 427. G A COWAN, R P BAYHURST, R J PRESTWOOD, J S GILMORE, G W KNOBELOCH. Phys. Rev., 144, (1966), P979. 428_ 490. D E TROUTNER, M EICHOR, C PACE. 491. PHYS.REV.C.,(1970),P1044. A C WAHL, A E NORRIS, R A ROUSE, J C WILLIAMS. 2ND SYMPOSIUM ON THE CHEM AND PHYS OF FISSION. VIENNA 1969. 492. G A COWAN, B P BAYHURST, R J PRESTWOOD, J S GILMORE, G W KNOBELOCH. ANS SYMP. ON ENGINEERING WITH NUCL. EXPLOSIVES. 493_ 560. K BACHMANN. Radiochim. Acta. 9, (1968), P27. 561. A P BAERG, R M BARTHOLOMEW, R H BETTS. CAN. J. CHEM., 38, (1960), P2147. 562_ 563. D E TROUTNER, A C WAHL, R L FERGUSON. PHYS. REV., 134, (1964), 91027. 564. J A MCHUGH. JINC., 28, (1966), P1787. 565_ 566. B PARSA, G E GORDON, A WENZEL. JINC., 31, (1969), P585. 567. L TOMLINSON, M H HURDUS. JINC., 30, (1968), P1995. 568. I F CROALL. JINC., 16, (1961), P358. 569_ 571. D R NETHAWAY, 8 MENDOZA. PHYS. REV. C, 2, (1970), P2289. 572. S M QAIM, H O DENSCHLAG. JINC., 32, (1970), P1767. 573_ 574. K WOLFSBERG, G P FORD. 575_ 576. LA_DC_12142 K WOLFSBERG. 577_ 580. PHYS. REV., 137, (1965), PB929. 581_ 584. R M HARBOUR, D & TROUTNER.

JINC., 33, (1971), P1.

	TABLE 25 (Cont'd) Reference List of Fission Yield Literature
585_	586. J V KRATZ, G HERMANN. JINC., 32, (1970), P3713.
587.	J KEMMER, J I KIM, H J BORN. Radiochim. acta., 13, (1970), P181.
538.	K WOLFSBERG. JINC. 33, (1971), P587.
589.	L FORMAN, S J BALESTRINI, K WOLFSBERG, T R JETER. LA_DC 11500
590_	593. F L LISMAN, R M ABERNATHEY, R E FOSTER, W J MAECK. JINC. 33, {1971}, P643.
594_	595. D L SWINDLE, R J WRIGHT, T E WARD, P K KURODA. JINC. 33, (1971), P651.
596.	D L SWINDLE, R J WRIGHT, P K KURDDA. JINC., 33, (1971), P876.
597.	P K KURDDA, M P MENON. Nucl. Sc. Eng., 10, P70.
598.	P L PARKER, P K KURODA. JINC., 5, (1958), P153.
599.	F T ASHIZAWA, P K KURODA. JINC., 5, (1957), P12.
600.	H R HEYDEGGER, P K KURODA. JINC., 12, (1959), P12.
601_	602. N V SKOVORODKIN, ET AL. SOV. RADIOCHEM., 12, (1970), P458.
603_	604. N V SKOVORODKIN, ET AL. SOV. RADIOCHEM., 12, (1970), P453.
605.	J KEMMER, J I KIM, H J BORN. Radiochim. acta, 15, (1971), P113.
696_	607. R M HARBOUR, M EICHOR, D E TROUTNER. RADIOCHIM. ACTA, 15, (1971), P146.
608.	R DIERCKX, G MARACCI, F RUSTIGHELLI. J. NUCL. EN., 25, (1971), P85.
609.	G E GORDON, J W HARVEY, H NAKAHARA. NUCLEONICS 24, (1966), P62.
. 610.	S P DANGE, H C JAIN ET AL. IAEA SYMP. PHYS AND CHEM OF FISSION, (1969), P741.
611.	J FAHLAND, G LANGE, G HERMANN. JINC., 32, (1970), P3149.
. 612_	615. R C HAWKINGS, W J EDWARDS, W J DLMSTEAD. Can. J. Phy., 49, (1971), p785.
616.	M EICHDR, D E TROUTNER. JINC., 33, (1971), P1543.
617_	618. R GANAPATHY, H ITOCHI. JINC., 28, (1966), P3071.
619.	F WUNDERLICH. Radinchim. Acta, 7, (1967), P105.
620.	H MENKE, G HERMANN. Radiochim. Acta, 6, {1966}, p76.
621.	E P STEINBERG, L E GLENDENIN. PHYS. REV., 95, (1954), P431.
622.	A TURKEVICH, J B NIDAY, A TOMPKINS. Phys. Rev., 89, (1953), P552.
623.	R F COLEMAN, B R HAWKER, J L PERKIN. JINC., 14, (1960), P8.
624.	T ISHIMORI, K UEND, K KIMURA ET AL. Radiochim. Acta, 7, (1967), P95.
625_	626. P C STEVENSON, H G HICKS, J C ARMSTRONG, S R GUNN. PHYS.REV., 117, (1960), P186.

.

-

627. R J ARMANI, R GOLD, R P LARŠEN, J H ROBERTS. TRANS.AMER.NUCL.SDC., 13, (1970), P90.

H R VONGUNTEN, K F FLYNN, L E GLENDENIN. Phys. Rev., 161, (1967), P1192. 628. S J LYLE, G R MARTIN, M M RAHMAN. RADIOCHIM. ACTA, 9, (1968), P90. 629_ 630. J & CUNINGHAME, J & B GOODALL, H H WILLIS. 631_ 632. FRIVATE COLMUNICATION J G CUNINGHAME, J A B GOODALL, H H WILLIS. 633_ 635. AERE_R_6862. T P MCLAUGHLIN. UNIV. ARIZONA THESIS, 1971, 71_14509. 636. H NAKAHARA, I FUJIWARA, H OKAMOTO, N IMANISHI, M ISHIBASHI, T NISHI. JINC., 33, (1971), P3239. 637_ 639. D E TROUTNER, N G RUNNALLS. 640. JINC., 33, (1971), P2271. P DEL MARMOL, D C PERRICOS. JINC., 32, (1970), P705. 641. D L SWINDLE, N T MOORE, J N BECK, P K KURDDA. JINC, 33, (1971), P3643. 642. H O DENSCHLAG, S M QAIM. JINC., 33, (1971), P3649. 643_ 644. V A VLASOV ET AL. AEC_TR_6665. 645. G P FORD, C W STANLEY. 646. AECD_3551 D R NETHAWAY, H & LEVY. Phy. Rev., 139, (1965), P81505. 647. K & PETRZHAK, V F TEPLYKH, M.G PAN'YAN. SDV. J. NUCL. PHY., 11, (1970), P654. 648. N I BORISOVA ET AL. SOV. J. NUCL. PHY., 8, (1969), P404. 649. D G SARANTITES, G E GORDON, C D CORYELL. PHY. REV., 138, (1965), PB353. 650_ 651. A V BAECKMANN, H FEUERSTEIN. RADIOCHIM. ACTA, 5, (1966), P234. 652_ 653. 654_ 655. M G BROWN, S J LYLE, G R MARTIN. Radiochim. Acta, 6, (1966), P16. A S RAD, M N RAD, P K KURODA. 656 657. JINC., 31, (1969), P591. 658_ 659. T MO, P K KURODA. JINC., 27, (1965), P503. H ARINO, P K KURODA. JINC.. 30, (1968), P677. 660. M N NAMBOODIRI, ET AL. JINC., 30, (1968), P2305. 661_ 662. L TOMLINSON, M H HURDUS. JINC., 33, (1971), P3609. 663. M RGBIN, J BOUCHARD, M DARROUZET. INT. CONF. CHEM. NUCL. DATA, CANTERBURY, 1971. 664_ 670. 671. G HERRMANN, F STRASSMANN. ZEIT. NATURFORSCH., 11A, (1956), P946. 672. R GANAPATHY, P K KURODA. EARTH AND PLAN. SC. LETTERS, 3, (1967), P89. T J KENNETT, H G THODE. PHYS. REV., 103, (1956), P323. 673_ 675.

.

.

676. J MALY, V KNOBLOCH, D IMBRISOVA, Z PRASIL, Z URBANEC. Coll. Czech. Chem. comm., 23, (1958), P1886.

677_ 680. W KRAPPEL, H SEUFERT, D STEGEMANN. NUCL. TECH., 12, (1971), P226.
681_ 692. M V RAMANIAH, H C JAIN, K A MATHEW, G V N AVADHANY. MADRAS CONF., 1970.
683_ 684. M F ROCHE, D E TROUTNER. RADIOCHIM. ACTA, 16, (1971), P66.
685. O BIRGUL, S J LYLE. R WELLUM. RADIOCHIM. ACTA, 16, (1971), P104.
686. D E TROUTNER, R M HARBOUR. JINC., 34, (1972), P801.
687_ 688. A V SOROKINA, ET AL. ATOM. ENERG., 31, (1971), P99.