619
 AEEW - M 1249
 EANDC(UK) 154 AL INDC(Uk) 22 G

NOT-FOR-PUBLICATION

UNITED KINGDOM ATOMIC ENERGY AUTHORITY

Reactor Group

NUCLEAR DATA REQUIREMENTS FOR THE REACTOR PROGRAMME IN THE UNITED KINGDOM - MARCH 1973
A. L. POPE
 i

Fast Reactor Physics Division

[^0]
NUCLEAR DATA REQUIREMENTS FOR THE REACTOR

PROGRAMME IN THE UNITLD KINGDOM - MARCH 1973

A. I. POPE

ABOTRACT

The lists of nuclear data requirements presented in this report are the outcome of a full review in March 1973 of the preceding nuclear data request list.

Table 1 lists the needs for new data measurements for fission reactors, while Table 2 lists the needs for evaluations of existing data; some additional data needs for fusion reactors are listed in Table 3. The work described as 'evaluation' is intended to include not only the review and assessment of available information, experimental and theoretical, but also the derivation of preferred values and their incorporation into computer data files in the standard format of the UK nuclear data library.

AEE
Winfrith
January 1974
W10659

> In the interest of paper economy this document has been printed to a reduced standard.
Page
INTRODUCTION I
STRUCTURE OF THE REQUEST LIST II
MAIN SHORTCOMINGS AMONG EXISTING DATA II
ACCURACY RERUIREMENTS III
CATEGORIZATION OF PRIORITIES VI
REQUESTERS VI
REFERENCES VIII
Nomenclature 1
Table 1 - Measurements neoded 3
Table 2 - Evaluations needed 13
Table 3 - Additional items needed for fusion 22 reactors
Table 4 - Items removed from previous 24 measurement request list
Table 5 - Items removed from previous 26 evaluation request list
Appendix - Fundamental accuracy requirements 33 for fast neutron reactors

INTRODUCTION

The lists of nuclear data requirements presented in this report are the outcome of a complete review of those presented in the preceding edition (Ref. 1) which is now superceded.

Nuclear data requiremnts are listed for fission reactors. Some of these are also relevant to fusion reactor development, and some additional requirements for fusion reactors are listed in a separate table (Ref. 2). In general however the requirements for chemical nuclear data are not included, such as fission product yields for example; these have been separately reviewed and are listed in references 3 and 4.

Neutron reaction measurements usually take a long time to prepare and to complete, so that measurement requirements must be identified many years before need for the data becomes acute. It was for this reason that a preliminary statement of the most probable future data requirements for the UK fission reactor programme was prepared some 14 years ago. The continuing validity of the requests, the accuracy needed, and the progress of the measurements have been reviewed periodically since that time so that the revised lists presented in this report are based on sereral years of careful deliberation. A survey of the detailed considerations underlying the specification of nuclear data requirements for thermal neutron reactor calculations was given by Kinchin (1966), Ref. 5 and for fast reactors by Smith (1966) and by Campbell and Rowlands (1970), Refs. 6 and 7. More recently the nuclear data requirements for fusion reactor development were considered at the International Working Sessions on Fusion Reactor Technology held at Oak Ridge, from 28 June to 2 July 1971.

STRUC'URE OF THE REQUEST LIST

This report contains five tables:-
Table 1 of 'Measurements needed for fission reactors' has 67 requests.
Table 2 of 'Evaluation needed for fission reactors' has 50 requests.
Table 3 of 'Additional needs for fusion reactors' has 15 requests.
Table 4 of 'Items removed from the previous measurement request list" shows 18 removals.

Table 5 of 'Items removed from the previous evaluation request list' shows 71 removals.

A sixth table of 'High accuracy measurements' is presented as an appendix and lists, for interest, in Category 3, ten desiderata whose accuracy is at present unattainable with the existing techniques of differential measurement.

Notice in particular that present requirements for fission reactors are listed in two main tables, data measurement needs in Table 1, and data evaluation needs in Table 2. The work described as 'eva?uation' is intended to include not only the review and assessment of available information, experimental and theoretical, but also the derivation of preferred values and their incorporation intc computer data files in the standard format of the UK nuclear data library.

There follows a summary of the numbers of items in each of the main Tables and in each category. Each of the 67 items in the measurement list

Table No.	Category 1	Category 2	Category 3	Totals
1	26	16	25	67
2	18	17	15	50
3	0	0	15	15
4	0	2	16	18
5	4	3	64	71
Totals:	48	38	135	221

in Table 1 relates to a single parameter only, but in some instances more than one experiment may be needed to cover the energy rerige. Some of the 50 evaluation requirements in Table 2 contain more than one parameter: so that there are 69 items in all.

The previous measurement and evaluation request lists cited at the head of Table 4 and Table 5 are those given in reference 1. Tables 4 and 5 seem to show that the speed with which measurement and evaluation requirements are being satisfied is disappointingly small. It should be borne in mind however that in addition to requestis which are completely fulfilled, and which are then transferred to Table 4 or Table 5, a good many others have been partially satisfied - over part of the energy range for example: this work can be identified only from the comments in Tables 1 and 2.

MAIN SHORTCOMINGS AMONG EXISTING DATA

A few comments may be in order on some of the main areas of inadequacy of presently available neutron reaction data:
a) Confidence in our knowledge of the energy dependencies of the spectra of fission neutrons from the principal fissile materials - U235, U238 and Pu239 - is still at a low ebb.
b) Confidence in the fast neutron fission cross-sections of the same nuclides is still rather low and further measurements in several laboratories are desirable.
c) There appears to be discrepancy of about 10 to 20% between direct measurements of the $\mathrm{U} 238(n, \gamma) / \mathrm{U} 235(\mathrm{n}, \mathrm{F})$ cross-section ratio in the range 100 to 800 keV and the ratio of absolute measurements of these two cross-sections.
d) There is still a need for improvements in the fast neutron capture crosssection data for the main structural materials. The use of separated isotopes appears necessary for resolution of the complex resonance structure.
e) There is no convenient and reliable reference standard for neutron flux calibrations in the fast neutron region above 90 keV . The fission crossusection of $U 235$ has been much used for this purpose in the past but even the energy dependence of this crosssection seems still too uncertain for complete confidence.

ACCURACY RERUIREMENTS

The accuracy requirements for nuclear data for thermal reactors have been determined by prescribing the accuracy with which reactivity and reactivity coefficients (such as temperature and power coefficients) should be determined. The most i:nportant criterion is the reactivity accuracy of about ± 1 per cent, and it is unlikely that a substantially more stringent requirement will arise, if only because it is difficult to determine the inventory and geometry of a thermal reactor with such precision as to justify a greater degree of confidence in the predictions. No two thermal reactors are sensitive to data uncertainties in quite the name way and the nuclear data accuracies have been arrived at by considering a range of reactors with different spectrum hardness.

The fundamental accuracy requirements for nuclear data for fast reactors were first of all determined so that if the requested accuracies are attained it would be possible to calculate reactivities and breeding ratios to ± 1 per cent and ± 2 per cent respectively. Interest in the Doppler coefficient of reactivity leads to a need for more accurate knowledge of the low energy neutron spectrum than is necessary for either critical size or breeding ratio calculations.

In formulating the requirements for differential cross-section measurements, account has been taken of the use of integral measurements made in experimental reactors. These integral measurements play an important part in particular in meeting the data requirements for the calculation of reactivities, and result in a reaxation of the very high accuracy requirements for the principal reactions which are given in the appendix, to the more modest and attainable accuracies given in Tables 1 and 2.

As a general rule the uncertainty associated with each request should be regarded as the standard error of the parameter named. For some requests the uncertainty quoted represents the mean error over a range; between E and 2 E for example. It is difficult to present in a compact way the accuracy requirements for functions of two or more parameters, such as angular distributions of scattered neutrons, or energy spectra of secondary neutrons. It is hoped that the following commentaries may shed some light on these questions.

Accuracy requirements for secondary neutron distributions

The scattering cross-secctions determine the transport and moderating properties of the medium; these properties affect the reactivity and the neutron spectrum in a reactor; however, the transport cross-section affects the reactivity more directly, while moderation plays the important role in determining the neutron spectrum. The accuracy requested in the tables for data on $\sigma_{n}(E, \theta), \sigma_{n}\left(E, E^{\prime}\right)$
 angle, but the following comments may help to show where there is most need for accuracy and where the requirements can be relaxed.
(a) Angular distributions. The measurement of angular distributions is not likely to prove very onerous for several reasons which are given below:
(i) It is not necessary to explore the scattering angular distribution in detail at each resonance; usually a poor resolution is quite adequate as was pointed out earlier by Goldstein.
(ii) At low energies the angular distribution is approximately linear; that is to say it is approximately proportional to $1+\mu^{\prime}, b(E)$ where μ^{\prime} is the cosine of the scattering angle . the centre of mase frame of reference. The elastic contributions to neutron transport and neutron moderation will both be adequately determined if

$$
\sigma_{n n}(E) \cdot\left[1-\bar{\mu}^{\prime}\{1+2 /(3 A)\}\right]
$$

can be calculated from the data to the requested accuracy. In addition the information available should suffice to determine $\sigma_{n, n}$ (E) to the same degree of accuracy and to confirm the approximate linearity of the angular distribution.
(iii) At Kigher energies the elastic angular distribution may be sharply peaked in the forward direction, so that more detailed information becomes necessary. However it is probable that the optical model can be used for interpolation if measurements are made at a few energies.
(iv) The contribution of inelantic scattering to the transport cross-section is usually smaller than the elastic component, and the anisotropy of inelastic scattering is usually small and so the contribution to neutron transport will certainly be adequately determined if

$$
\sigma_{n, n^{\prime}}(E) \cdot\left[1-\bar{\mu}^{\prime}\{1+2 / 3 A\}\right]
$$

can be calculated from the data to the accuracy which has been requested for the elastic crosssection. Moderation by inelastic scattering is determined mainly by the reaction Q value, and is nearly independent of the angular distribution.
(b) Spectrum of inelastic neutrons. The neutron spectrum in a fast reactor depends very strongly on the inelastic scattering $\sigma_{n, \eta^{\prime}}\left(E, E^{\prime}\right)$, and very extensive measurements would be neede ${ }^{n}$ ' if it were not usually possible to extend the experimental information sufficiently accurately by using optical model and statistical theories. At present it is not clear what energy resolution will ultimately be needed; current limitations of computing power suggest a resolution of about 20 per cent in E and E^{\prime}. However for many materials it is quite practicable to resolve the inelastic scattering components to the discrete energy levels of the target nucleus, and this would provide a firmer basis for theoretical extrapolations.

A minimum requirement on the crossmsection data is that

$$
\int_{0}^{E} 0_{n, n^{\prime}}\left(E, E^{\prime}\right) \ln \left(E / E^{\prime}\right) d E^{\prime}
$$

should be determined to the requested accruacy. The accuracy required for the component crossmsections for scattering to individual levels depends on the relative contribution of each component to this integral. This expression shows that the partial cross-section is relatively more important when the energy change E / E ' is large; however it may be noted the percentage accuracy requirement may be relaxed close to the threshold, because the cross-section is small when $E-E_{T}$ is small, where E_{T} is the threshold energy.
(c) Accuracy requirements for fission neutron spectra. In reactor calculations the spectrum of secondary neutrons from all reactions (elastic and inelastic scattering, fission, etc) need not be resolved into its components. However it is very convenient to resolve it into the component spectra of the individual reactions, because separately they have simpler properties and interpolation is then simpler and more reliable. The spectrum of fission neutrons varies little with the energy of the incident neutron and the secondary neutrons may have higher energies than the incident neutrons; the oprosite is true for scattering spectra. The secondary neutrons from fission and inelastic scattering are distributed approximately isotropiczily, whereas elastic scattering is strongly anisotropic at the higher energies.

When it is difficult to separate the spectra of neutrons from fission and inelastic scattering the set of accuracy requirements should be understood as applying to the combined spectrum. For fissile nuclides the fission neutron spectrum assumed by the measurers when deriving an inelastic scattering spectrum should be specified.

The requirements on the fission spectrum were first considered in terms of the fraction of neutrons emitted per unit lethargy interval, since the neutron importance varies more smoothly with lethargy than with energy. The requirement for Pu239, for example is that the fraction of fission neutrons emitted in any unit lethargy interval should be determined to 1 per cent of the total spectrum.

Currently it is believed that a good measurement of the spectrum at one incident energy E (about 100 keV) will suffice, and that theory will then be adequate for extrapolation to other values of E . With regard to the secondary neutrons it is felt that the fissioin spectrum can be adequately characterised if the mean energy E^{*} of the spectrum of neutrons emitted from fission is known to 2%, and the in'cegrated tails of the spectrum above 5 MeV and below 0.25 MeV are both known to 10\%. These tails are each believed to contain about 5% of the total spectrum.

Another characteristic of the fission spectrum which is closely related to the information required for reactor calculations is the fission spectrum averaged value of the U238 fission cross-section.

CATEGORIZATION OF PRIORITIES

Priorities have been assigned according to the following priority definitions:

PRIORITY 1

Nuclear data which satisfy the criteria of Priority 2 and which have been selected for maximum practicable attention taking into account the urgency of nuclear energy program requirements ${ }^{1}$.

PRIORITY 2

Nuclear data that will be required during the next few years in the applied nuclear energy program (for example in the design of a reactor or fuel processing plant; data needed to make the best use of reactor fuel and construction materials such os neutron moderators, absorbers and radiation shields, space application and biomedical studies; data required for better understanding of some significant aspect of reactor behaviour).

PRIORITY 3

Nuclear data of more general interest and data required to fill out the body of information needed for nuclear technology.

REQUESTERS

The requesters whose names are mentioned in the list, are stationed at the following United Kingdom Atomic Energy Authority establishments:-

[^1]
NOT FOR PUBLICATION

REFBRENCES

1. POPE A. L. \& STMRY J. S. (Oct. 1972) AEEW-M1144 $=\operatorname{EANDC(UK)-144~AL~}$
2. FERGUSON A. T. G. (March 1973) DIDWP(73)P4, unpublished
3. CUNINGHAME J G (July 1973)

CNDC(73)P5
4. BAKER A R (Apr 1973) DIDWP(73)P6, unpublished
5. KINCHIN G H (Oct 1966) IAEA Paris Conf. on nuclear data for reactors 1, 13.

7. CAMPBELL © G \& ROWLANDS J L (June 1970) IAEA Helsinki Conf. on nuclear data for reactors 2 , 391.

```
RETCTION CROSSNSECTIOAS
            SGACT(EG) = CROSS-SECTION FIR THE PHCTCN IVDUCED REACTIOS
                    LEADING TO A SPEGIFIED RADIOACTIVE RUGLINE
            SM(E).= GEUTRON ABSOADTIO:G CROSSOSECTION
            SNACT(X) = CROSSOSECTIGY FOR THE REAGTIOV LEADISG PO THE ACPIVE
                    1$OVER (X)
    SNAGPHA(E) OROSSOSECTIDYFOH (V,AGOHA) REACTIC:S
    S:ALDHAG(E) - GROSSOSECTIUN FGA (NAADOHA GAHMA) REACTIONS
            SVF(E).- &EUTRCN INOUCED FISSIQN CROSSOSECIIUY
            S:{G(E) = GROSSOSECTIUNFOR RADJAYIYE CAPYURE
```



```
                            GY ALL YOH-ELASTIC SEUTROY REACTIONS
        SIGT(EGET,G) SYGT(E,EG) HITH AHGUGAR DISTAIBJTIG:G FTR GAV:AMAMYS
            SV:(E) 'EUTAON ELASTIC SCATTERING GAOSS-SECTIC:G
```



```
            SHV*(E) - |MTEGRATED VEUTGCN INELASTIC SCATTERING CRCSSNSECTIC:
        SH:*(E,E*) JIFFEREMTIAL CROSS=3E:TIC& FOR YEUTH:N I'IELASYIC
                            SGATTERIYG
```



```
                            GY vEDTRO% [NELASTIC SCATTERIVG
```



```
            SN**T(E) = C?CSS-SEGTIGS FOQ (V,`*T)
        S\4*3ALP:M4-CR:SS-SECTION FOR (Y,V*3AbPHA)
            S(O(E) - EROSS=SEGTIGN FGR (V,P) FENCTIONS
            ST(E) = TOTAL NE!TRJ' CROSSaSECTICN
            SO2(E) G COSSESEGTLUN FOR (Y,2M) PEACTIT:S
```



```
    TSL(E,E*,L) - THERUAL NELTROV SCATTERING baG
            EO m IVCIDENT AEJTRJ: EJERGY OF H.J2S3E%
```



```
    RESI:TTOCT - AGTIVATJON 2ESONANCE INTEJRAL
    RESIVTIA - ABSORPTIGN RESOUANGE INTEGRAG
    RESINT:F - FISSION RESOUAVCE INTEGRAL
    RESIIG:G - FADIATIVE GAPTURE RESONANGE IVTEGHAL
```


nomencbature (continued)

```
gpectral Distributgons
    G SPEG FROH 'm SPECTRUM OF PROMPY DHCTONS FRON F!SSION INDUCED bY
        NF{E,EG} NEUTRONS OF ENERGY E
    G SPEG FROM - SPECTRUY OF RROMPT PHOTONS EMITTED IN RGL PRCCESSES
        NGT(E,EG) INOUCED BY NEUTRONS OF ENERGY
    G SPEg FROM - SpEgTRUM OF prohpt photons from the inebastic
        NN*(E,Eg) SCATtERING OF NEUTRONS OF ENERGY E
    N Spec from im spectrum of Neutaons from the inelastic
        NN*(E,E*) SGATTERING OF NEUTRONS OF ENERGY E:
    N SPEG FROM.m SPECTAUM OF NEUTRONS FRON FISSION INDUGED BY
        NF(E,E*) NEUTRONS OF ENERGY E
    N SPEC from: Spectaun of meuprons fron (N,2N) reactions fnduceo ay
        N2N(E,E*) NEUTRONS DF ENERGY E
ctHER Parameters
Agpha(e) = the capture to fissicn ratid por Incidevt
    NgUTROAS OF ENERGY E
        ETA(E):= THE AVERAGE NUNGER OF NELTRONS EVOLVED DER NELTRON CF
    energy e absgrbed
Nubap(e) t the average number of neutrons evobved per fission
    IVOUCED BY WEUTRONS OF ENERGY E
```


ITEN MATE	$\text { NO. } 8$ $R!A!$	PARAMETER	ENERGY RAVGE	$\begin{aligned} & \text { PABLE } \\ & 4 \\ & \text { ERROA } \end{aligned}$	I- MEASUREMENTS NEEOEO g OAT5 REQUBSTERS NAME GORY 3 COMMONTS	STATUS OF HORK
8	v	Sing (E)	100EV-100KEV	10 PC	1 G.G.GAMREEGGEFOR FAST REACTORS.	New meagurenefts planned after phe REGAGIBRATION OF IMPROVED APPARATUS COATESOAERE. THEN EYAL, NEEDED.
9	$6 R$	SNG(E)	100EV-100KEV	2090	$\begin{aligned} & 1 \text { C.G.CAMPBELG } \\ & \text {-FOR FAST REACTORS. } \end{aligned}$	IN orogress moxonalere. Neh measurements planived after the qecabigration of lnproved apparatus COATESAAERE, THEN EVAL. NEEDED.
10	CR	Sip	$\begin{aligned} & \text { FISS.SPEG. } \\ & \text { AVERAGE } \end{aligned}$	$30 P 6$	3. C.G.CAMPBELLEFOR FASt REACTORS.	AVAILABLE ESTIMATES OIfFER By factor 5a maln uncertality due TO (RSO (N, P). NO UK WORK PLAYNED.
11	NNS 5	SNG(E)	100EVM100KEV	2006	1 C.G.CAMP日ELLAFDA FAST REAGTORS.	accuracy pequireneyp not met. Nem measurements phanneo after the regaligration cf improved apparatus COATESEAERE, THEN EVAK. NEEDED.
12	FE	S4:C* (E,E*, 6)	$\begin{gathered} \text { THQESHOLO } \\ \text {-4MEV } \\ 4=10 \text { HEV } \end{gathered}$	$\begin{aligned} & 5 P C \\ & 5.10 P C \end{aligned}$	3 G.G.CAMPBELL, J. SUTLER: FCR FAST PEACTORS ANO SHIELTING.	accuracy qequirement not met.
13	$F E$	$\operatorname{sing}(E)$	100EK-100KEV 100KEV-1MEV	$\begin{aligned} & 10 P C \\ & 20 P G \end{aligned}$	1 G.G.CAMP日EbLIFOR FAST REACTORS.	evabuaticn indicates about 20 PER CENT ULICERTAINTY BELCW pookev. FURTHER MEASUREMEATS PLANNET, CGAYESGAERE, ALSO SNT(E) some data avallable pattegicen. AERERR 7425 (APR: 1973).

1TEN MATE	$\begin{aligned} & { }^{1} N O .8 \\ & R I A L \end{aligned}$	PARAMETER	ENERGY RANGE	$\begin{aligned} & \text { PABLE } \\ & 4 \text { ERROR } \end{aligned}$	$\begin{aligned} & 1 \text { O } \\ & 5 \\ & \text { CAT } \\ & \text { QOR } \end{aligned}$	$\begin{aligned} & \text { MEASUREMENT3 NEEDED } \\ & \text { Sの GEQUESTEAS NAME } \\ & Y \quad \text { \& COMMENTS } \end{aligned}$	$\begin{array}{r} \text { PAGE } 10 \\ \text { STATUS OF WORK } \end{array}$
51	PU239	$\begin{aligned} & \text { DELAYED } \\ & \text { NEUT. YIELD } \end{aligned}$	RBOUT 100kE!	596	2	C, G.GAMPBELGFOR FAST REACTORS.	SEW TTEM.
52	PY239	$\begin{array}{r} E T A(E) / \\ E T A(E O) \end{array}$	0.01EV-0.5EV	$\begin{array}{r} 0.75 P C \\ (0.020 E V \\ S T E P S) \end{array}$	1	J.G.TYRGROFOR YEVPERATIAE CGEFFIGJENT HCRK.	FEASIBILITY ASSESSNeNT IN Frogress, SOHERBY AND PAFTENDENGAERE.
53	PU239	AbPHA(E)	20.100KEV	$\begin{aligned} & 10 P C \\ & (5 \mathrm{E} 2 \mathrm{E}) \end{aligned}$	3	C.G.GAMPBELLGFOR FAST REACTORS.	note reduceo energy range. data evaluation coupleted, sowerby AND KONSHIN ATEENREV. 10, 4, 453. ADEQUATE BELCW ZOKEV.
54	PU239	N SFEC FRGM NF(E*)	$\text { ABCUT } 100 \mathrm{KEV}$	$\begin{aligned} & 2 P G O N \\ & \text { MEAN E } \\ & \text { DN1, DN2 } \\ & \text { TO } 10 P G \end{aligned}$	1	C.G.GAYPBELGGFOR FAST REACPORS, A.WHITTAKER AND S.B.WKIGHT.PGR REAGTION aATE ANALYSIS. SWHERE DNT : No. OF NEUTRONS ABDVE SMEV, AND DNZAYC. BELOL (i.25NEV):	NOTE JNGREASED PRIORITY. INTEGRAG AGD DIFFERENTIAL OATA ARE DISGREPANT, PRCVIBICNAG DATA AVAJLABLE, J. RCSE EY AL, SCUTH BAN. POGYTEGHNIC AND AERE.
55	P 4240	$\begin{aligned} & G \text { SPEC FRCM } \\ & \text { NITT\{EG) } \end{aligned}$	AEOUT 120<EV CH FESOLUTION ADEDJATE	20F6	3	C.G.GAYP8ELLAFOR STUDY OF ACTIVATIO' AND HEAT RELEASE IV CORE.	
56	PU240	SNN* (E, E*, S $^{\text {c }}$	$\begin{array}{r} \text { THRESHOLS } \\ \text {-4UE: } \end{array}$	4096	2	G.G.GAMPBEGLGFOR FAST REACTORS.	SOME data AVA!bABLE, A, B, SMITH ET Abeanib. EVAlUATION UEEDEO.
57	PU240	HU日AR(E)	$\begin{array}{r} \text { PURESHOLJ } \\ \text { SMEV } \end{array}$	$2 P C$		C.G.GANPBELGFOR FAST REACTORS.	AGCURACY REQUIREMENT NOT mET, gUT preglminary data ayallable frehaly GRUYERE LE CHATTEG.

ITEN MAT	$\begin{aligned} & 1 \\ & \text { NO, } 8 \\ & \text { RIA! } \end{aligned}$	PARAMETER	ENERGY RANGE	$\begin{aligned} & \text { TABLE Z } \\ & \text { ERROR } \end{aligned}$	$\begin{aligned} & \text { CEVA } \\ & S \\ & \text { CATE } \\ & \text { OORY } \end{aligned}$	abuations negded. AEGUESTERS NAME 8 COMMENTS	status of wcak
26	P8	SNN* (E,E*)	6MEV-10HEV	5 DC	3	J.BUTGERFFOR REAGTOR SHIELDING.	Curgent cata fibe needs
							IMPROVEMENT BUT ACCURACY
		SN2N(E)	THRESHOLD $-1 / 4 E V$	10P6			requiremeit may not be met by
							AVALLABLE EXPERIMENTAG OATA.
							No पork flanneo, but evofibi file
							MAY SUFFICE, PEREYORNLI
27	TH232	SNF(E)	$\begin{aligned} & \text { THRESHOGD } \\ & \text { - } 5 \text { SEV } \end{aligned}$	SPG	3	C.G.CAMPBELLIFOR FAST REACTORS.	ACCDRACY peguiremeny may not be MET BY AVAlLABLE EXPERIMEMTAL DATA.
28	4233	ETA(2) / ETA(EO)	0.01-0.2EV	$\begin{aligned} & 0.5 P C \\ & (.02 E V \\ & 9 \text { TEPS } \end{aligned}$		d.G.TYROR. FOR THEAMAL REACTCRS	CurRENT DATA file needs IMFROVEME:Y BUT ACCLRAEY requirement vay net be ret by AVAlGAELE EXPERINENTAL OATA, SO
27	U235	$S N N=(E, E *, W)$	$\begin{aligned} & \text { THRESHOLD } \\ & \text { WMEY } \end{aligned}$	2000		G.G.CAMPBELL.FgR FAST REACTORS.	CURZENT DTTA FIGE SEEDS REISIC:. dVAlGABLE EXPERIMEMTAL DATA ARE prcbably ajeguateg
3.$)$	4235	SNF(E)	100EV-5MEV	306	1	G.G. CAMP日EGLEFOR FAST REACTORS, YHIS EVALUATION WILL EE USED TO OBTAIN UZ38 FISSICN DATA FROM relative measugemevts.	CURZENTGY LHQER REVISIOH.EVALUATIOA
							GELOA $2 S K E X$ EY JANES ET abemAEEN, EABAC(UK) 1516 P.43 NEW EYAGUATIC: REQUREJ TO TAKE
							accouvt cf Neasurenents receitby COMPLETED.

TABLE 2qEVALLATIOVS NEEDED.

ITEM HATE	$\begin{aligned} & 1 \\ & \text { NO. } 8 \\ & \text { RIAL } \end{aligned}$	$\stackrel{?}{\text { PARAMETER }}$	ENEQGY RANGE	ERRCR	$\begin{aligned} & 5 \\ & \text { CAT } \\ & \text { GOA } \end{aligned}$	reguesters Name 8 COMMENTS	$\stackrel{7}{\text { STAYUS CF WORK }}$
37	PU237	ALPHA(E)	$0.1-100$ KEV	$\begin{aligned} & 10 P G \\ & (E \cdot 2 E) \end{aligned}$	3	C.G.CAMPBELLIFOR FAST REACTORS.	NEW ITEM.
38	PU240	$\sin (E, E *, 6)$	$\begin{aligned} & \text { THRESHOG7 } \\ & \text {-4 } 414 \mathrm{E} \end{aligned}$	$40^{\circ} 6$	2	$\begin{aligned} & \text { C.G.CAMPBELLOFCR FAST } \\ & \text { REACTORS. } \end{aligned}$	SOME DRTA AVAILABLE, A. $3, S$ SITH ET AL, EANb. EVAbUATIC' YEEDED.
39	PU240	SHG(E)	100EV-4tSEV	$\begin{aligned} & E P C \\ & (E=\langle E) \end{aligned}$	2	G.G.GAUPBELLGF:R FAST REACTORS.	HEW ITEM.
40	PU240	$\begin{aligned} & \text { SHG(E) JR } \\ & A \operatorname{PH} A(E) \end{aligned}$	$40^{*} E \searrow=111 E^{\prime \prime}$	10\%C	3	C.G.CAMP日ELGOFOA FAST reactors.	NEW ITEU.) ISEREPANCIES RESJLVED, YOXCNGAERE. NEW EVALLATION PETUIAED.
41	PU24 1	$\begin{aligned} & E T H(E) / \\ & E T: M(E O) \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{AE} \\ & 1.15 \mathrm{EV} \end{aligned}$	$\begin{aligned} & 2 P C \\ & A P C \end{aligned}$	2	$\begin{aligned} & \text { J.GAYRCR -FOQ.THERMAL } \\ & \text { REACTCRS. } \end{aligned}$	CURZENT DATA FIGE NEEDG IMP:ONEMEST BUT ACCLRACY REGDIREMETT IS TUT NET BY SVATLAGLE EXPERINENTAL DATA, SS MEASUREMEITS REGUESTED.
42	Pu242	StIJ($¢$	0.01-4.0E:	$10^{\circ 6}$	2	J.G.pYROR-FOR STJOLES AF FLUTCIIUM FECYGLE	M1 MORK ELANAEO.
43	$A^{1 / 241}$	$\begin{gathered} \text { SNA } \\ \text { RESINTNA } \end{gathered}$	$\begin{gathered} \text { THERMAL } \\ 0.55 E V=2 \text { EVE } \end{gathered}$	$\begin{aligned} & 10 F 5 \\ & 10 F C \end{aligned}$	2	J.G.TYZCR-FCR STUDIES OF FLitciluv RECYCLE	SOAERBY ET AL,EAMJC(UK) 151 L P. 29
44	Ai 242	$\begin{aligned} & \text { SN: } \\ & \text { RESINTNA } \end{aligned}$	$\begin{gathered} \text { THERYAK } \\ 0.35 E v=24 E \% \end{gathered}$	$\begin{aligned} & 100 C \\ & 100 \mathrm{C} \end{aligned}$	2	J. G.TYRCR-FCR STUJIES DF FGUTOIIU" REGYCEE	soye data afallible, sfaezay et úh. AERE. EAKOC(UK)151 L P.29.
45	AM242	$\begin{aligned} & \text { SNF } \\ & \text { RESINTNF } \end{aligned}$	$\begin{gathered} \text { THEPVAL } \\ 0.55 E V-2 \mathrm{HEV} \end{gathered}$	$\begin{aligned} & 10 p 6 \\ & 1008 \end{aligned}$	2	J.G.TYMCR-FGR STADIES OF PLUTO\&IU AECYCbE	SOWERBY ET AG: EANDC(UX) 151 b P. 293

the previolds edition of the uk request bist livgluded in the same table goth FISSION AND FUSIDN REDUIREMENTS．THIS PROGEEDURE ADPEARS TO MAVE GEEN SOIIEWHAT PAEGIPITATE IN VIEH OF THE UNDEFINED NATURE OF THCSE PROBLEMS ASSCGIATED WIP FUSION REAETCRS．AGCORDINGGY，IT WAS OECIDED TO PRESENT PHE PUSION REQUIGEMENTS as a separate table，and after sone deligeration，the bist of fision qegijests has aEEN SUBSTANTIAGUY REVISED．
the current bist is presenpeo as table 3 of yhis report．soye pajns here pakeh to ioentify the more important nuchear reqijirementsohongyer phe avaibajbe oata SHGUGD AE FULGY ASSESSE！IN EAGH CASE BEFORE ASSERYING THAT EXOERIMENTAL measurements are essentiah．

TABLE 3 （m ROLITAENENTS FOR FLSION REACTORS．

1	6！	$\operatorname{SNN}(E, 6)$	1 KEV － $1514 \mathrm{E}^{\circ}$	2096	3	R．Hascosman	CTR	HJJK．
2	616	$S N N *(E *, ~ 6) ~$	TMAESH－13HEV	$20 F C$	3	R． 4 A SCJx－F9\％	CTA	102k．
3	1.16	$\begin{aligned} & N \text { SDGG ERGM } \\ & N N *(E, E *) \end{aligned}$	TuRESH－154SV	2000	3	R．Hancox－min	CTA	WJRK4

4	1.17	SNN（E，し）	15Vの15\％V	15：9	3	R．MANCOX－FOA	GT9 WIRK．
5	617	N SPEG FRDM $N N *(E, E *)$	THRESH－15MEJ	20.9	3	R．itancoxama	CTR WORK．
6	3E9	3N2N（E）	THRESH－15MEV	2000	3	2．Hatcox．F刀a	CTA NARK．
7	$F 19$	SHA（E）		$10^{\circ} \mathrm{C}$	3	R．TANCSX＝FOR	CTR WJak．
8	$F 19$	SNN＊（E）		20.0	3	Q．HANCDX－FOR	GTR HORK．
9	$F 19$	SH2N（E）	THPESH－15ME＇	2096	3	R．HAllGXXFOR	CTR WORK．
11）	FE	SNN＊（E，E＊，${ }^{\text {a }}$ ）	TH2Esta 15 MEV	2000	3	R．HANCOX FOR	CTR JORK．

TABLE 5 . ITE"S RE'HO'VED FROM PREVIOUS EVAGUATICV REQUEST LIST.

42	NI	G SPEC RROM $N N *$ (EG)	14MEV	2080	3	S.B60h@FOR	CTR WORK.	Withdaawn afper reassessment of fusion requirements. SEE TABLE 3.
43	$N!$	$\operatorname{SN} 2 N(E *, b)$	14MEV	$10 F C$	5	S.BLOHEPOR	CTR 'ARKK.	Wifhorawn after reassessment cb FUSiON REQUIREMENTS. SEE TABLE 3.
44	NI	SNG(E)	THERMAL-14MEV	10 FC	3	S.BLOHEFOR	CTR WURK.	WITHDRAWN AFTER REASSESSMENY CF Fusion requirements. see tanle 3.
45	N1	SNP(E)	THRESH. 14 ME -	2090	3	S.BLOWafor	CTR SORK.	WITHTRANN AFTER REASSESSMEST CF fusion requiqeveints. SEE fible 3.
46	111	SNALPHA(E)	THZESH-14NEV	$20^{\circ} \mathrm{C}$	3	S.3LOAmFOR	CPR KORK.	WITHDAANN AFTER REASSESSiACY FUSICN REQUIRENENTS, SEE TA:

47	cu	G SPEG FRON NGT(EG)	14 MEY	2080	3	S.GLOM.f0?	CYR	WORK,	WITHOAANN AFTER REASSESSMENT OF FuSici Requigevents. see pable 3.
48	cu	$\begin{aligned} & G \text { SPEG FROM } \\ & N N *(E G) \end{aligned}$	14MEV	$20 P 6$	3	S.BLOH-FGR	cra	WORX.	WIthDRAAN AFtER REASSEgSMENT Cf FuSion requjreyenis. SEE pable 3.
49	cu	SN2N(E*, W) .	14MEV	$10^{\circ} \mathrm{C}$	3	S.aLOWGFOA	679	WDRK.	WITHSAANN AFTER REASSESSMENT ©F FUSic.v REQUIREMENTS. SEE TABGE 3.
50	Cu	SNS(E)	THERMAL-14MEV	10PC	3	S.860W-FOP	CTA	WORK.	WITHDRANN AFTER REASSESSMEAT CF Fusion requirejents. SEE table 3.
51	cu	SNP(E)	THRESHE14ME't	2056	3	S.B60taran	CTR	WORK.	hithorain after aeasgessment cf FUSION REQUIRENENTS. SEE TABLE 3.
52	CU	SNAGPHA(E)	THFES4.14MEV	2086	3	S.8104.F08	ETR	WORK.	W! ITORAN AFPER REASSESSMEAT OF FUSICV REQUIREMENTS. SEE TABLE 3.

Distribution:

EANDC Distribution List 'A'

Dr 0 J Eder (2)	Head of the Institute for Physics, OSGAE Seibersdorf, Austria
Dr M Neve de Mevergnies	Chef du Department de Physique de Neutron CEN/SCK., B-2400 Mol, Bel.gium
Dr W G Cross	Biology and Health Division, Atomic Energy of Canada Ltd., Chalk River, Ontario, Canada
Dr w B Lewis	Senior Vice~President, Science, Atomic Energy of Canada Ltd, Chalk River, Ontario Canada
Dr H B Móller	Head, Physics Department, Research Establishment Risf Roskilde, Denmark.
Dr R Batchelor	Bureau Central de Mesures Nucleaires, Communauté Européenne de l'Energie Atomique, Steenweg naar Retie, Geel, Belgium
Dr R Joly	Chef du Service de la Métrologie et de la Physique Neutroniques Fondamentales, Commissariat è l' Energie Atomique, Centre d'Etudes Nucléaires de Saclay, BP No 2, 91 GIF-sur-YVETTE, France.
Dr S Cierjacks	Institut für Angewandte Kernphysik, Kernforschungszentrum Karlsruhe, Postfach 3640, D-7500 Karlsruhe, FR Germany
Dr B Goel	Institut für Neutronenphysik und Reaktortechnick, Kernforschungszentrum Karlsruhe, Postfach 3640, D-7500 Karlsruhe, FR Germany
Miss S Dritsa	Physics Division, Nuclear Research Center "Democritos", Aghia Paraskevi Attikis, Athens, Greece.
Professor Magnus Magnusson	University of Iceland, Reykjavik, Iceland
Professor T A Nevin, D.Sc	Physics Department, University College, Belfield, Dublin 4, Ireland
Professor V Benzi	Centro di Calcolo, Comitato Nazionale per l'Energia Nucleare, Via Mazzini 2, Bologna, Italy
Dr K Tsukada	Head, Division of Physics, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai-Mura, Ibaraki-ken, 319-11 Japan
Dr T Momota	Department of Nuclear Engineering, Faculty of Engineering, Tohoku University, Sendai-shi, Miyagi-ken 980, Japan

Mr M Bustraan	Head of the Physics Department, Reactor Centrum, Nederland, Petten, The Netherlands
Mr E Anderson	Physics Division, Institutt for Atomenergi, PO Box 40, N-2007 Kjeller, Norway
Mr J A G Rosen	Head of Nuclear Information Division, OECD Nuclear Energy Agency, 38 Boulevard Suchet, F-75016 Paris, France
Dr J G Royen	EANDC Secretariat, Nuclear Information Division, OECD Nuclear Energy Agency, 38 Boulevard Suchet, F-75016 Paris, France
Dr F Gama Carvalho	Laboratorio de Fisica e Engenharia Nucleares, Junta de Energia Nuclear, Estrada Nacional 10, Sacavem, Portugal.
Dr F Verdaguer	Head of Reactor Physics Division, Junta de Energia Nuclear, Ciudad Universitaria, Madrid 3, Spain
Dr H Condé	Research Institute of National Defence, FOA 4, S-104 50 Stockholm 80,Sweden.
Dr T Hürlimann	Eidgenössisches Institut für Reaktorforschung, $\mathrm{CH}-3503$, Wurenlingen, Switzerland
Professor F Domanic	Reaktör Fizigi Laboratuvari, Fen Fakültesi, Ankara, Turkey
Dr C Ertek	Chekmece Nuclear Research and Training Centre PO Box, 1, Hava Alani, Istanbul, Turkey
Dr M G Sowerby	NP., 418, AERE
Dr G L Rogosa	Acting Assistant Director for Nuclear Sciences Divisi on of Physical Research, US Atomic Energy Commission, Washington DC 20545, USA
Dr H E Jackson	Argonne National Laboratory 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
INDC Distribution	not in the EANDC)
Dr G Ricabarra	Comision Nacional de Energia Atomica, Avda. del Libertador 8250, Buenos Aires, Argentina
Mr W Gemmell	AAEC Research Establishment, Private Mail Bag, Sutherland, NSW,Australia
Dr A Michaudon	BP No 2, F-91 120 Montrouge, France
Dr A S Divatia	Bhabha Atomic Research Centre, Trombay, Bombay-85, India

Dr K Nishimura	Japan Atomic Energy Research Institute, Tokai-Mura, Naka-gun, Ibaraki-ken, Japan
Dr H T Motz	Los Alamos Sicientific Laboratory, 10 Box 1663 Los Alamos New Mexico 87544, USA
Dr A B Smith	Argonne National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439, USA
Dr S I Sukoruchkin	Institute Teoreticheskoj i Eksperimentalnoj Fiziki, Moscow, USSR
Dr G B Yankov	Institute Atomnoi Energii IV Kurchatova, 46 Ulitsa Kurchatova, Moscow, D-182, USSR
Professor L N Usachev	Fiziko-Energeticheskij Institut, Obninsk, Kaluga Region, USSR.
Dr B Rose	NP.. 8, AERE
Mr J L Rowlands	334/A32,
Dr I Slaus	Nuclear Physics Department, Institut Ruder Boskovic, 41001 Zagreb, Yugoslavia
Dr H Liskien	Bureau Central de Mesures Nucléaires, CCE., Steenweg naar Retie, Geel, Belgium
Dr F Fröhner	Nuclear Energy Agency, Neutron Data Compilation Centre, BP No 9, F-91190 GIF-sur-YVETTE, France
INDC Secretariat (5)	Nuclear Data Section, International Atomic Energy Agency, Kärntner Ring 11, A-1010 Vienna, Austria
Dr J J Schmidt	Nuclear Data Section, International Atomic Energy Agency, Karntner Ring 11, A-1010 Vienna, Austria
Dr W C Marshall	329.2, AERE,
Mr E A C Crouch	220 "
Dr V S Crocker	521, "
Mr J G Cuninghame	220, "
Mr F W Fenning	329.2, "
Dr A T D Ferguson	NP., 8 "
Mr J H Freeman	7, "
Dr D Gibbons	10, "
Dr R Hancox	Culham Laboratory
Dr N R Large	220, "
Dr J E Lynn	NP., $418^{\prime \prime}$
Dr M C Moxon	NP., $418{ }^{\prime \prime}$
Mr N J Pattenden	" "
Dr P H Patrick	" " "
Mr J Williams	329.2, "
Dr S B Wright	521.1, "

Dr D S Mather
Dr A C Douglas
Dr J W Weale
Mr A C Tyrrell
Dr R S Pease
Mr P W Mummery
Mr E W Etherington
Dr A R Baker
Mr F R Farmer
Mr G H Kinchin
Dr R D Smith
Mr A Whittaker
Mr H Cartwright
Dr J ER Holmes
Dr J R Askew
Mr A F Avery
Dr J Butler
Dr C G Campbell
Mr J Fell
Dr F J Fayers
Mr M F James
Mr I Johnstone
Mr A L Pope (20)
Dr J E Sanders
Mr J Smith
Mr J S Story (5)
Mr J G Tyror

Dr E J Axton
Dr P Campion
Dr J Reid

N69, ANRE
N56, AWRE
A70.2, "
A8.1 AWRE
Culham Laboratory
DERE
DNO40/12 DERE
E454, Risley
SRD Culcheth
SRD Culcheth
Y526, Risley
B229, Windscale
370/A32, AEEW 372/A32, AEFW 105/A32 AEEW 122/B21, AEEW 166/B21, AEEW 326/A32, AEEW 272/A32, AEEW 164/A32, AEEW 342/A32, AE;W 220/B21, AEEW 348/A32, AEEW 108/D53, AEEW 230/A32, AEEW 349/A32, AEEW 130/A32, AEEW

National Physical Laboratory, Teddington, Middx.
in in in it

Kelvin Laboratory, Scottish Research Reactor Centre, East Kilbride

[^0]: The intormation contained in thic document is mot to ho onmminfated, either directiy or indiof:ly to the wras or Lo any unamthorised person without the furmi soion of the Wintrith Secrentariat. Nomic Energy $1 . i$ athlishment, Winfrith. Dorchester, ionerti.
 and reproms tion abould be aderéaed.

[^1]: ${ }^{1}$ For example, the highest priority woula $i e$ given to requests for nuclear data for reactors to be built in the near future if:

 These data are still necessary to predict the different reactor properties after all information from integral experiments and operating reactors has been used.
 or - information on an important reactor parareter is in principle attainable through mathematical calculation from nuclear data only;
 or - these data are needed for materials required in reactor physics measurements.

