UNCLASSIFIED (LIMITED CIRCULATION)

(INDSWG -62) EANDC (UK) 45

1NDSWG-62 INDC(UK)*009/G

PRIVATE COMMUNICATION

Not to be quoted, abstracted, reproduced or transmitted to libraries. The information contained, which may be only of a preliminary nature, should be used with discretion.

Elastic and Inelastic Neutron Scattering from U²³⁸ in the Energy Range .075 MeV - 1.6 MeV.

E. Barnard A.T.G. Ferguson R. McMurray I.J. Van Heerden

A.E.R.E. Harwell. July 1964.

MASTER COPY

000065

in the energy range .075 MeV - 1.6 MeV

E. Barnarde, A.T.G. Ferguson, R. McMurray and I.J. Van Heerden

This paper summarizes the results of measurements of cross-sections for elastic and inelastic neutron scattering from U^{238} made by the authors using the IBIS pulsed Van de Graaff time of flight facility at Harwell. It is primarily for the information of compilers of neutron cross-sections and others to whom the cross sections may be useful. These are the final results of the measurements, fully corrected for multiple scattering and flux attenuation in the sample. A full account of the measurements and comparison of the results with calculated cross sections is in course of preparation for submission to a journal.

Angular distributions of elestically scattered neutrons were measured at emergies between 75 keV and 600 keV. These are shown in fig. 1. At 550 keV and 157 keV angular distributions were measured for neutrons exciting the 45 keV level. These are shown in fig. 2.

At 90° excitation functions were obtained for inelastic scattering through levels up to 1470 keV. At each incident neutron energy an independent estimate was made of the level positions. A summary of these is contained in Table I and compared with the conclusions of earlier workers in fig. 3. Tables II, III and IV summarize the cross-sections observed for the excitation of these levels as a function of neutron energy.

*Present Address: South African Atomic Energy Board, Pretoria, South Africa.

Present Address: Southern Universities Nuclear Institute, Faure, C.P., South Africa.

Captions

- Table IExperimentally determined positions of energy levels in UTable IIDifferential Cross-Sections for neutrons inelastically
scattered through 90° from the 45 keV (2+) and 146 keV (4+)
levels in U
- <u>Table III</u> Differential cross sections for neutrons inelastically scattered through 90° from the higher levels in U²³⁸.
- <u>Table IV</u> Differential Cross Sections near threshold for the excitation of the octupole vibration band in U²³⁸.
- Fig. 1. Angular distributions of neutrons elastically scattered from U²³⁸. The dashed line shows the data before correction for multiple scattering.
- Fig. 2. Angular distributions of neutrons of initial energies 550 keV and 157 keV scattering inelastically through the level at 45 keV.
- Fig. 3. Summary of energy levels in U²³⁸ found in present experiment compared with those found in Coulomb excitation by Elbeck et al UCRL-9566 (1960) and by Neutron excitation. A.B. Smith, Nuclear Physics 47, 633 (1963).

Table I (energies in keV)

Incident					Energy Levels obtained		
lleutron Energy (keV)	I	II	III	IV	7	VI	VII
814 847 903	684 684 687 687 681	- 737 740 737 732	Ň				
953 1005 1081 1126 1129	680 685 683 683 690 679 680 678	731 730 728 734 740 733 726 735	844 839	. 938 932	968 962	1008 997	1034
1198 1251 1292 1368	679 668 679 680	730 71 7 726 741	847 819 843 838	946 · 925 945 950	976 959 967 977	1 C12 995 1 007 1 018	1054 1040 1052 1053
Averages	681 <u>+</u> 2	732 <u>+</u> 3	838 <u>+</u> 5	939 <u>+</u> 5	968 <u>+</u> 6	1006 <u>+</u> 6	104 7 <u>+</u> 7
Incident Neutron Energy 520 keV	Energy Level XII	s obtained a XIII	t En = 1620 XIV	keV XV	XVI	XVII	XVIII
	1210 <u>+</u> 10	1246 <u>+</u> 12	1272 <u>+</u> 12	1313 <u>+</u> 15	1361 <u>+</u> 17	1401 <u>+</u> 20	1437 <u>+</u> 22
	•					•	

SECTION 1

4

۰,

.

- 3 -

Table I	(onerfies	in	keV)
In the second	and the second s	_	

. . . .

. .

IV	Ener/	ev Levels ofte VI	vined .	VIII	ĨX	X	XI
	·······		·				
						•	
. 938	968	1008					
932 946	962 976	997 1012	1034 1054	1077			
925 945	959 967	995 1007	1040 1052	1069 1077	1113 1126	1150	1192
950 	511	1010	1055	1079	11.30	1150	1107
939 <u>+</u> 5	968 <u>+</u> 6	1006 <u>+</u> 6	104 7 <u>+</u> 7	1076 <u>+</u> 7	1123 <u>+</u> 8	1150 <u>+</u> 3	11 <u>90 ±</u> 10
œV							
xv	XVI	XVII	XVIII .	XIX			
1313 <u>+</u> 15	1 361 <u>+</u> 17	1401 <u>+</u> 20	1437 <u>+</u> 22	1470 <u>+</u> 25			

TALL OF

- 3 -

.

SECTION 2

Table II

Incident Neutron Energy keV	dơ đơ. 45 keV level mb/ster	<u>dcr</u> dA 145 keV level mb/ster
107	40 <u>+</u> 10	
120	58 <u>+</u> 18	
140	68 <u>+</u> 8	
155	78 <u>+</u> 8	
200	79 <u>+</u> 6	
250	85 <u>+</u> 8 .	
. 405	106 <u>+</u> 7	
450	122 <u>+</u> 10	24 <u>+</u> 6.
550	125 ± 5	23 <u>+</u> 3
650.	125 <u>+</u> 15	
720	-	· 30 <u>+</u> 5
750	110 <u>+</u> 10	32 <u>+</u> 5

Table III

$\frac{dG}{d\Omega}(90^{\circ})$ - Corrected for flux attenuation & energy efficiency

Energy	Neutron Energy (keV)								
level	1 081	1129	1198	` <u>1</u> 251	1 292	1 368	: 620		
681 732 838 939 568 1006 1123 1150 1210 1210 1210 1210 1210 1210 1210	$24.9 \pm 0.8 21.4 \pm 0.8 3.3 \pm 0.7 16.7 \pm 1.8 11.9 \pm 2.0 3.7 \pm 1.6$	25.2 ± 1.4 22.5 ± 1.2 4.9 ± 1.4 22.4 ± 1.9 13.8 ± 1.7 12.5 ± 2.9 $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	$\begin{array}{c} 21.7 \pm 1.1 \\ 21.4 \pm 1.1 \\ 6.6 \pm 1.1 \\ 19.3 \pm 1.1 \\ 17.5 \pm 1.5 \\ 12.0 \pm 1.5 \\ 10.8 \pm 1.6 \\ 13.1 \pm 1.8 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} 19.0 \pm 1.0 \\ 21.2 \pm 1.1 \\ 3.9 \pm 0.8 \\ 17.2 \pm 1.1 \\ 18.4 \pm 1.3 \\ 14.5 \pm 1.4 \\ 15.0 \pm 1.4 \\ 14.8 \pm 1.5 \\ 3.7 \pm 1.4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} 19.5 \pm 1.4 \\ 18.4 \pm 1.5 \\ 6.8 \pm 1.5 \\ 18.4 \pm 1.7 \\ 21.1 \pm 1.7 \\ 14.8 \pm 1.7 \\ 14.8 \pm 1.9 \\ 19.1 \pm 1.9 \\ 9.0 \pm 1.7 \\ $	$\begin{array}{c} 17.8 \pm 1.4 \\ 18.6 \pm 1.3 \\ 7.5 \pm 1.4 \\ 22.4 \pm 1.6 \\ 17.2 \pm 1.4 \\ 22.4 \pm 1.6 \\ 17.2 5.6 \pm 1.7 \\ 25.6 \\ 12.2 \pm 1.9 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ + + + + + + + + + + + + + + + + + +$		

;

Table IV

 $\frac{d6}{dn}$ (90°)

En	681 keV level	732 keV level	838 keV level	
·				
814	17.3 <u>+</u> 2.2	-	-	
847	214.4 <u>+</u> 1.2	12.7 <u>+</u> 1.7	-	
<u> </u>	24.9 <u>+</u> 1.2	14.7 <u>+</u> 2.0	-	
953	29.0 <u>+</u> 1.8	19.1 <u>+</u> 1.8	. –	
1005	24.8 <u>+</u> 1.7	17.0 <u>+</u> 2.1	. –	
1126	28.2 <u>+</u> 2.6	19.3 <u>+</u> 4.0	-	
1495	16.1 <u>+</u> 2.0	15.7 <u>+</u> 2.0	7.0 <u>+</u> 2.1	

•

•••

