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ABSTRACT 

The suitability of the "Sl^n) cross section as a primary 

standard for neutron flux measurements in the energy range 

above 100 keV is examined. The use of the ^(n^n) cross sec-

tion in relative measurements, in proton recoil devices, and 

in counter calibration applications is discussed. The total 

cross section is well known but the differential elastic cross 

section is very poorly known. A prescription is given for the 

calculation of the differential cross section at all energies. 

The conclusion is that the ̂ H(n,n) cross section would be a 

suitable primary standard for energies above 100 keV. A recom-

mendation is made for action in three areas: l) The techniques 

for flux measurement should be improved; 2) an accurate differ-

ential cross section measurement should be made; and 3) a 

serious theoretical study should be made to calculate the 

differential and total cross sections from known phase shifts. 



1. INTRODUCTION 

It has "been proposed that the HH(n,n) cross section, at energies above 

100 keV, be used as a primary standard for neutron flux measurement (l). 

The purpose of this report is to examine that proposal in some detail. 

First, however, I will define what I mean by standard and then outline the 

scope of this report. 

By cross-section standard I mean a nuclear cross section, accepted as 

being correct within small but well-defined limits and serving as an accep-

ted value for comparison or as a basis for measurement. The n,n) cross 

section will be examined within this framework. The use of this cross 

section as a standard is discussed in Section 2. Section 3 examines perti-

nent data along with some semiempirical fits. Section 4 contains a pres-

cription for obtaining the differential cross sections from theoretical 

Finally, Section 5 gives a brief overall review and a three-point recom-

mendation for future Investigations. 

We shall see that although more work is desirable in all phases of 

the "*~H(n,n) cross-section program, the most serious stumbling block is our 

inability to measure a neutron flux accurately with the cross-section data 

that are available. 

There are several criteria for judging the relative merits of various 

possible standards; The cross section should be accurately known; it 

should have a reasonably smooth variation with energy; it should have some 

theoretical basis for interpolation and extrapolation to regions where accu-

rate measurements are lacking; and, finally, the cross section should be 

work on the nucleon-nucleon 
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large compared to competing reactions. 

Other characteristics that should be considered are: The material should 

be easy to obtain and prepare; it should be easy to assay both chemically 

and isotopicallyj and, it should be chemically stable (for example, it should 

not be affected by air, water, or vacuum). 

One or several simple standard detectors should be available. For flux 

measurements the recoil proton may be detected in a gas proportional counter, 

telescope, or a polyethylene radiator semiconductor counter (2,3,4,5). For 

these measurements, standard detectors with well-known efficiencies and cor-

rections would be desirable. 

How accurate do the standard cross sections need to be? There are two 

answers to this question. From the experimentalist's standpoint they need 

not be much better, say a factor of 4, than his tools with which to use them. 

For example, if his standard cross sections are known to 0.5 percent but he 

cannot measure a cross section more accurately than 2 percent then he should 

devote his energy to improving his flux measuring technique. On the other 

hand, if we take the viewpoint of the reactor designer who may require, for 

example, a fission cross section to 0.5 percent, we immediately see that the 

standard should be 2 to 5 times better, or .1 to .3 percent. 

Spaepen has reviewed the accuracy needed from the reactor designer's 

viewpoint (l). The most stringent accuracies pertain to the fission cross 

sections. Apparently 0.5 percent accuracy is requested whereas 2 percent 

would be welcome. Using these figures, Spaepen arrives at a standards accu-

racy of 0.1 to 0.3 percent for the requested accuracy and 0.4 to 1 percent 

for the acceptable accuracy. 
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2.1 "̂ (n,!!)1!! as a Standard Cross Section for Relative Measurements 

Neutron cross sections, measured with time-of-flight techniques, 

have usually been made relative to some well-known scattering cross section 

Above 2 MeV the 1H(n,n) cross section is the most satisfactory. 

This is not a flux measurement per se; however the ̂ H(n,n) cross section 

does play the role of a standard. In these cases the accuracy of the mea-

sured cross section can be no better than the uncertainty in the differen-

tial "*"H(n,n) cross section. 

2.2 Proton Recoil Methods 

2.2.1 Proton Recoil Telescope 

Proton recoil telescopes have been used for making accurate 

neutron flux measurements. Complete descriptions and other references can 

be found in the papers by Bame et al. (4), Perry (3), Johnson (2), and 

White (5). A telescope consists of a hydrogenous radiator and one or more 

counters which detect protons recoiling within a well-defined solid angle. 

Above a few MeV the main problem associated with the ^ H ^ n ) 

cross section in a telescope measurement is the anisotropy. This feature 

is discussed at length in Sections 3 and Briefly, however, the total 

cross section is well known whereas the differential cross section is very 

poorly known. The cross section has been assumed to be isotropic below 10 

MeV and symmetric about 90°(c.m.) above 10 MeV, with a form following a 

very simple relationship. These are not good assumptions when one is aim-

ing for the accuracies that are necessary for a nuclear standard. Note 

that telescope measurements, which involve l80° scattering, see the maximum 

anisotropy. 

Table I gives the sources of error in the telescope measure-

ment of neutron flux (4). Look first at the 1 to 3 MeV region. The total 
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standard deviation, to two significant figures, is 2.8 percent. If there 

were no uncertainty in the n-p cross section or anisotropy then the error 

would be reduced to 2.7 percent. In the 3-10 MeV region the total uncertainty 

is 2.k percent and without any uncertainties in the anisotropy or H(n,n) 

cross section the resulting error would be 2.1 percent. Above 10 MeV the un-

certainty in the anisotropy dominates the total uncertainty and a substantial 

overall improvement would be obtained with a precisely known differential 

cross section. 

2.2.2 Other Proton Recoil Counters 

White has recently obtained very high precision using hydrogen 

and methane gas proportional counters and a polyethylene radiator semiconduc-

tor counter as neutron flux measuring instruments (5 ). One advantage of these 

devices over the telescope is that they are less sensitive to the anisotropy 

of the recoil proton distribution. Table II shows the estimated errors for 

the hydrogen gas recoil counter as used by White. Obviously an improvement 

in the ̂ H(n,n) cross section without a simultaneous improvement in all of the 

remaining factors will not substantially increase the accuracy of a flux mea-

surement . 

The accuracy of these various flux measuring devices can only be 

checked by an.intercomparison of one device against another. Bame et al. (4) 

have reported a comparison between the proton recoil telescope and the asso-

ciated particle technique for a flux measurement of MeV neutrons from the 
A 

T(d,n) He reaction. The standard deviation for each measurement was believed 

to be ±3 percent. The telescope measurement of the flux was 4 percent higher 

than that given by the alpha monitor. 

White (5) has recently reported an intercomparison of his three 

detectors and a comparison of one of these with the associated alpha particle 
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technique and one with a calibrated long counter. Table III gives these inter-

comparisons . These results should be considered extraordinarily good, and 

are the result of meticulous attention to detail. The conclusion is that with 

great care one can measure fluxes, with the proton recoil technique, to 2 or 

2.5 percent. 

It should be pointed out here that these techniques become im-

practical below about 100 keV because of the difficulty in detecting the re-

coil protons. This is the reason for suggesting that the 1H(n,n) reaction be 

used as a standard only above 100 keV. 

2.2.3 Plastic and Liquid Scintillators 

Fast neutron time-of-flight experiments usually employ a plastic 

or liquid scintillator as a detector (7). The efficiency of this detector, 

and its associated electronics, must be determined as a function of neutron 

energy. If a cross section is measured relative to some known cross section, 

only the relative efficiency need be established. This efficiency can be cal-

culated or measured (17 ,18). In any case it is almost always related to the 

"SlC^n) cross section. Plastic and liquid scintillators consist of a mixture 

of hydrogen and carbon atoms in the ratio of about 1.2 to 1. The effect of 

the carbon must be included to make the most accurate calculation of the effi-

ciency. This requires a knowledge of the cross sections at all energies up 

to and including the incident neutron energy. The 1H(n,n) cross section is 

known with sufficient accuracy to satisfy this need, at least up to 20 MeV. 

The carbon cross sections, however, may be regarded as unknown above 5 MeV. 

Any effect of anisotropy of the 1H(n,n) cross section would be totally negli-

gible, at least up to 20 MeV. 

If we neglect the carbon contribution the efficiency for a 
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thin scintillator, is given by 

E(E) = nhor (l - |) (l) 
•a 

where n is the number of hydrogen atoms per cm of scintillator, 

h is the thickness of the scintillator, 

0 is the total ̂ H(n,n) cross section, 

B is the counter bias in MeV, and 

E is the neutron energy in MeV. 

This formula is approximately correct up to 4 or 5 MeV. 

The efficiency calculations axe not gocd enough to rely on without 

somo confirmation from experiment. The most accurate technique for determin-

ing the relative efficiency of a detector is to measure the V n,n) differ-

ential scattering cross section. 

In the laboratory system, the differential cross section is 

= ^ cos ip . (2) 

The energy of the scattered neutron is 

En(Lab) = Ej cos2 $ , (3) 

where E^ is the incident neutron energy. 

This method is good'at low energies, where the ̂ H(n,n) cross section 

is isotropic. Any uncertainty in the anisotropy reflects itself as an un-

certainty in the efficiency and subsequently in the cross section to be 

measured. 

Other techniques for measuring efficiency involve measuring the angu-

lar distribution or spectrum of various source reactions (19,20). Unfortu-

nately, however, none are known with an accuracy of only a few percent. 
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3. DATA AND EMPIRICAL FITS 

Cross-section requirements for reactor work do not normally extend 

above 15 MeV. For the evaluation of data, however, it will be instructive 

to examine the cross sections, particularly the differential cross sections, 

at considerably higher energies. 

3.1 Compilations and Evaluations 

The Computer Index of Neutron Data (CINDA) contains a fairly com-

plete compilation of all of the neutron cross-section references ( 9 ) . 

Horsley, at Aldermaston, has recently published (10) an evaluation in the 

energy range up to 20 MeV. Schmidt, at Karlsruhe, has prepared an extensive 

evaluation (ll) which includes the 1H(n,n) cross section up to 10 MeV. The 

Sigma Center, at the Brookhaven National Laboratory, has two compilations 

of '̂ H(n,n) cross-section data (12,13). Hess, at Livermore, has compiled 

the pre 1958 "hi^n) scattering data (14,15) above 10 MeV. Gammel has pub-

lished a thorough review (16) of the theoretical aspects of the n,n) 

total and differential cross sections up to 40 MeV, though it is not a com-

pilation or evaluation as such. 

3.2 Cross Sections 

The "4i(n,n) cross section is relatively simple and well understood, 

not in fine detail perhaps, but in its gross features. This is a very im-

portant consideration when choosing a nuclear standard. 

The total cross section is equal to the elastic cross section plus 

the capture cross section. We will see that the capture cross section is 

insignificant and our concern will be with elastic scattering. We will 

examine these separately. 
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3.2.1 Total Cross Section 

Gammel (l6) has found an analytical form based upon a fit to 

the data, using the effective range theory. The fit is 

an(E) = 3* [1.206E + (-1.86 + O.O9IH5E + O . O O O W ) 2 ] " 1 

+ * [1.206E + (0.4223 + 0.13E)2]"1 (4) 

where a
n(E) i s the total cross section, and 

E is the laboratory energy. 

The effective range expansion parameters which were derived from this fit 

are given in Section 4. 

This fit is as good as the data that went into it. As new, 

more accurate, data become available the parameters should be improved. 

Table IV shows some new data that were not available when Gamfiel made his 

fit. However, a word of caution is in order. The data of Engelke and 

Lebowitz (21,22) imply a very low singlet effective range. Noyes shows (24) 

that this is inconsistent with the expected magnitude of charge dependent 

effects in the two nucleon system. Moreover, the data of Engelke and of 

Lebowitz came from the same laboratory (Columbia). These considerations 

indicate the need for other experiments, preferably from several laboratories, 

in the energy region below 5 MeV. 

Table V shows a sample of the uncertainties in the cross sec-

tions measured by Engelke (21), due to various experimental factors. Note 

that there are 12 factors with an average uncertainty of a few hundredths 

of a percent, contributing independently to yield a total uncertainty of a 

few tenths of a percent. The main point here is that these are very diffi-

cult experiments. Any improvement will require a large expenditure of 

scientific effort. 
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3.2.2 Capture Cross Section 
-5 The capture cross section varies smoothly between 10 times 

the elastic cross section at 100 keV to 5 x 1 0 t i m e s the elastic cross 

sections at 20 MeV. For most purposes this cross section could be neglected. 

There are cases, of course, where capture is very important. An example 

would be neutrons that are thermalized, as in a large liquid scintillator 

tank, and then eventually captured. Here, however, the neutrons are not 

captured at energies above 100 keV. 

Data on the H(n,7)D reaction are sparse. Much better numbers 

exist for the inverse reaction, D(?,n)H, the photodisintegration of the deu-

teron. The two cross sections are related by the relationship 

cj (E ) = a (E ) (5) n,7 n gg.2 7,nv y' 

where k and K are, respectively, the wave numbers of the 7-ray and neutron 

in the center of mass system. Horsley (10) quotes an expression for the 

capture cross section which he judges to be good to 2$: 
1 o 

a (E) = 0.0528E 2(1 + 0.2244E)(1 + O.OIOSE)* n, 7 
x (1 + 7.46E + 0.158E2)"1 + 0.143E®(4.46 + E)"1 (6) 

in mb (10). E is the laboratory energy in MeV. 

3.2.2 Differential Elastic Cross Section 

The elastic scattering cross section, integrated over angle, 

is approximately equal to the total cross section. This value is reasonably 

well determined. In this section we will investigate the shape of the dif-

ferential cross-section curve. 

The usual argument is that we can only have S wave interaction 

up to 9 or 10 MeV (l0,ll) . Above this energy Horsley recommends using the 

Gammel expression, based perhaps upon the observation that the 90 MeV data 
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(25) are symmetric about 90°. The center of mass system will always be used 

here. 
The Gammel expression is 

*(e,En) = ^ (1 + b cos2 6)(1 + | b)"1 , (7) 

where 

b = 2(E/90)2 

and E is the laboratory energy in MeV (16). 

Gammel also offered an extreme expression 

cr(6,E) = -jj| (1 - b/2 cos 6 + b/2 cos29)(l + ̂  b)"1 . (8) 

This looks extreme because the data seem to indicate that 

a(0°,E) > a(90°,E) . 

The actual form of these expressions is important. For flux 

measurements using a telescope the counting rate must be multiplied by the 

ratio of CTt(e) /bn to a(l80°,E) . If either of the Gammel formulas gives re-

sults of even approximate validity below 10 MeV, then the anisotropy must 

be included down to 3 MeV or less to obtain telescope flux measurements to 

a few tenths of a percent. 

A knowledge of the anisotropy is necessary for relative crî ss-

section measurements (see Section 2.l) and for relative efficiency counter 

calibrations (see Section 2.2.3). 

In either of Gammel's two expressions for the differential cross 

section, the ratio of o(l80°,E) to a(90°,E) is 1 + 2(^)2. Figure 1 shows 
E 2 

a plot of 2(^) versus E on a log-log scale with most of the available data. 

Measurements were ignored only if they were subsequently superseded by more 

accurate data at or near the same energy. The points attributed to the data 



of Scanlon et al. (26) were computed "by me. I assumed smooth curves through 

their data. No errors were assigned to these ratios. 

The agreement between Gammel's empirical ratio and the experi-

mental data Is impressive. If we take this as evidence that one or the 

other of Gammel's expressions is right, then we're left with the question: 

which one is correct in which energy region. Above 30 MeV the data are con-

sistent with a symmetric differential cross section and are not consistent 

with the extreme expression. 

Figure 2 shows the error that would be made in a telescope flux 

measurement by assuming that one of the two Gammel expressions was correct 

but that the data were corrected by the wrong expression. This is a log-log 

plot of the ratio of the l8o° cross sections for the two expressions. The 

maximum percent uncertainty in the l80° cross section is given by 

i - 100 Cl/3(|o)2] [1 + l/Stfo)2]-1 • <9) 

There is not much theoretical justification for this procedure. 

It is only intended as a measure of the state of the ignorance. It can per-

haps give some idea of what has to be studied further. For example, Figure 

2 says that regardless of which expression we use for the anisotropy we still 

have 0.1 percent uncertainty due to this anisotropy at 5 MeV. 

Figure 3 shows the data on the differential cross section at 

14.1 MeV. Stewart (27) has pointed out that all of these data have been 

normalized in some fashion to the total cross section, but that none, with 

the possible exception of Seagrave's (28) integrate co a value close to the 

correct value of 689±5 mb. The errors shown are those quoted by the authors. 

Also shown on this figure are the cross sections predicted by the Gammel 

expression and by the extreme expression. The so-called extreme, however, 
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turns out not to give as large a a(l80°)/a(90°) ratio au the 1960 calculation 

by Nakamura ( 29 ). With suitable arbitrary normalization, we could probably 

favor one prediction over another. The value of any such tinkering is open 

to question. 

Figure 4 shows the differential cross section at 22.5 MeV. The 

solid curve is the fit to the unpublished preliminary data of Leland et al. 

(30). The expression for this fit is 
P 

ff(e) = a q + a^ cos e + a 2 cos e , 

where = _ Q # o 6 9 ± 0 > 0 3 9 ^ ^ 
Ao 
V = 0,154 ± 0.057 . 
A 
o 

The standard deviations are statistical errors only. The curve 

in Figure 4 has the normalization constant A q = 31.2. Taken together, these 

three sets of data are consistent with Gammel's symmetric formula. 

In summary, I would like to make two points: l) None of the dif-

ferential cross-section data are inconsistent with Gammel's expression for a 

symmetric distribution, and 2) for 0.1 percent accuracy in a flux measurement 

we must know something about the anisotropy below 10 MeV. 
4. CALCULATION OF " V ^ n ) CROSS SECTIONS FROM 

NUCLEON-NUCLEON INTERACTION THEORY 

This section contains a prescription for the calculations of the "4l(n,n) 

differential cross sections. The derivations of the formulas can be traced 

through the references cited. 

A phase shift analysis of nucleon-nucleon scattering experiments has 

yielded the differential cross-section expression (31) 
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o(e,B) = | m^ ML 00 
2 1 

+ n M ss M. 10 

• I M, 01 2 + l M. 1-1 (10) 

where the M's are the matrix elements in spin space. The subscripts 1, 0, 

-1, s on the matrix elements refer to the three triplet states S^ = +1, 0, 

-1 and to the singlet state, respectively. 

The matrix elements for "4l(n,n) scattering are given by: 

a-1 

M ss 

,1 

M, 00 

M, 01 

"lO • 

(t 1) al,i-l - I o 1 + 1 - £ C(i-I)i]i a 4 " 1 } 

+ \ [ 8 + 1 ) ^ + 2 ) ]* a 1 + 1 + I C t e - I U F a 1 - 1 } 

+ q (jg-p*. q 

Stapp et al. have labeled the differential cross section IQ. With this 

exception the notation here will be that of the authors quoted. 
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" ( u a + i ) ) (h)a£fi-i 

- £ [(£+1) U + 2 ) r i - J [(i-l)ir 4 a ^ ' 1 } , 

where the matrix elements of a may be expressed 

<XjL= e - 1 , 

a ^ = e2UJLd - 1 , for i = J , 

and if we restrict ourselves to the nuclear bar phase shifts, then (31) 

aJ±l,J = C O s 2 ej 6X11 (2i6j±l,J) ' a n d 

- 1 sin 2 ^ exp C K s ^ + 6 ^ ) 3 . 

Complete sets of phase shifts have been reported ( 32 ) . Phase shifts, 

however, change and are updated frequently, as new experimental data are ana-

lyzed. To make the best calculations the most accurate phase shifts should 

be used. 

If we restrict ourselves now to S waves, we see that the elastic scat-

tering is isotropic and the total cross section is just tat a(6) elastic. 

This is then given by 

aT = sin26t + - £ sin26s , (ll) 
k k 

where is the S wave triplet phase shift, 

6 is the S wave singlet phase shift, s 
k is the neutron wave number, and 

k 2 = 0.01206 E x 1026 cm"2 lab 



A useful parametric representation of the S wave n(n,n) total cross-

section data can he obtained by expansion of the quantity k cot 6 as a power 
2 

series in k . The same type of expansion can be made for both triplet and 

singlet phase shifts. If three terms are retained in the two expansions, the 

total S wave ^H(n,n) cross section can be written in terms of six parameters 

(21): 

a n 3« tk2 + [l/at - (k2/2) rot(l - S P ^ J ^ f } ' 1 

+ « tk2 + [l/as - (k2/2) ros(l - 2Psros
2k2)]23-1 . (12) 

The six parameters are: 
V triplet scattering length 

V singlet scattering length 

rot: triplet effective range 

ros: singlet effective range 

pt: triplet shape parameter 

Ps; singlet shape parameter 

The results of many experiments must be combined and evaluated to arrive 

at a set of parameters. Table VI gives the parameters determined or recommen-

ded by several authors (11,16,21,22,33). This table is not complete. It is 

intended only to give an idea on agreement between the various authors. The 

most accurate are probably the values of Noyes (33). The first column gives 

the values that were obtained by Gammel from his fit (Eq. 4) to the experi-

mental values of the total cross sections (16). The second column gives the 

best values at the time (1958). The two reasons that the values in column 

one do not agree with the values in column two are: l) that in working out 

the fit the contributions to the total cross section of states with L £ 1, 
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were ignored, and 2) the fact that the triplet parameters are not independent 

of each other was ignored. All that was required of the numerical coeffi-

cients was that the values of the effective range exy^nsion parameters should 

be roughly realistic, as they are. The values in the column labeled Schmidt 

are the "best values" available In 1952. These give a reasonable fit to the 

total cross section below 10 MeV, but they are obsolete and there is no good 

reason to retain them. 

S wave scattering will always give an isotropic differential cross section. 

Partial waves with an orbital angular momentum greater than zero must be in-

cluded to investigate the anisotropy in the cross section. The main problem 

boils down to selecting the proper phase shifts. 

The effective range expansion is useful for calculating the singlet and 

triplet S wave phase shifts. The mixing parameter, e^, is calculated using 

the technique of Wong (3^). The triplet P phase shifts can be determined from 

a recent analysis of the p-p scattering parameters (35)• A k dependence of 

the P wave phase shifts is used to extrapolate these values to low energies. 

The D wave phase shifts, which are small at low energies, are given at 10 MeV 

by Hamada and Johnston (32). A k^ dependence of the D wave phase shifts is 

invoked to extrapolate these to low energies. 

5. SUMMARY AND RECOMMENDATIONS 

The 
n,n) cross section would be a suitable cross-section standard for 

neutron flux measurements above 100 keV. Up to 7 or 8 MeV the cross sections 

are known to an accuracy higher than the flux measuring techniques justify. 

Above 7 or 8 MeV the telescope measurements could be limited by the uncertain-

ties in the differential cross section. The total'cross section (Eq. 4) is 

known more accurately than 2 percent in the region up to 30 MeV. The differ-

ential cross section can be assumed to follow Gammel's semiempirical form - 17 -



(Eq. 7), at least around 14 MeV, with an uncertainty of half of the aniso-

tropy from 90° to l80° and equal to the anisotropy from 0° to 9°°. 

There are three lines of attack that I think should be pursued: 

1) The techniques for measuring flux should be improved. This is by 

far the most difficult task. 

2) A good differential cross-section measurement should be made between 

10 MeV and 20 MeV. The relative accuracy should be at least 1 percent at 

10 MeV and 3 percent at 20 MeV. This should not be a telescope measurement. 

It should cover both forward and backward angles. A measurement at less than 

10 MeV would be worthwhile if sufficient accuracy were attainable. This is 

not likely at the present time. 

3) A serious effort to calculate differential and total cross sections 

from phase shift analysis is needed. Gamaliel's 1957 semi empirical fit (Eq. 4) 

could certainly be improved upon in light of the newer data. With no addi-

tional data the present total cross sections could be determined better 

than 1 percent and the anisotropics in the differential cross sections perhaps 

to 30 percent at all energies. 
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TABLE I: Sources of error in telescope measurement of neutron flux, 
for several energies of neutron energy. From Bame et al. (4). 

Standard Error (percent) 

Source of error 1-3 MeV 3-10 MeV 10-20 MeV 20-30 MeV 

Total n-p cross section 0.5 0.5 0.7 1.5 

Anisotropy of n-p scattering 0.2 1.0 2.0 3.0 
o Protons per cm of radiator 0.5 0.5 0.5 0.5 

Geometry of counter and 
source 1.0 1.0 ' 1.0 1.0 

Scattering and attenuation 
of neutrons 1.3 1.0 0.5 0.5 

Various "backgrounds 2.0 1.5 1.0 2.0 
2 — [ I (Standard error) ]3 2.8 2.k 2.6 k.l 
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TABLE II: Estimated error in the flux measurement introduced by various 

factors. Hydrogen gas recoil counter. Neutron energy 150 keV. 

From White (5). 

Source of Uncertainty 

Determination of recoil counter 
volume 

Determination of recoil counter 
pressure 

Statistical error on theoretical 
recoil proton spectrum. 

Error in fitting recoil proton 
spectrum 

Recoil counter scattering corrections 

Distance measurements 

Air attenuation 

"̂H(n,n) scattering cross section 

Percent Uncertainty 

0.2 

0.5 

0.7 

1.2 
0.4 

1.0 
0.3 

0.5 

Total 2.1 
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TABLE III: Intereomparison of neutron flux counters. Prom White (5). 

Counters 
Energy 
(MeV) 

Ratio 
Flux from 1st counter 
Flux from 2nd counter 

Hg gas recoil counter vs. CH^ gas 
recoil counter 0.500 0.98 ± 0.02 

CH^ gas recoil counter vs. semi-
conductor recoil counter 1.0 0.93 ± 0.04 

CH^ gas recoil counter vs. semi-
conductor recoil counter 2.25 0.975± 0.03 

Semiconductor recoil counter vs. recoil 
telescope 5.0 1.03 ± 0.05 

Recoil telescope vs. a-particle yield 
from the d-T reaction l4.1 O.98 ± 0.03 

Hg gas recoil counter vs. calibrated 
long counter 0.200 1.01 ± 0.03 
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TABLE IV: Hydrogen total cross sections part of table from Spaepen (l). 

Reference Energy 
(MeV) 

Measured a n,n 
barns 

Calculated 0 
n,n 

(Gammel fit) 
Discrep. * 

Engelke (21) 0.4926 6.202 ± O.I856 6.209 -0.11 

Engelke (2l) 3.205 2.206 ± 0.31^ 2 . 1 8 7 +0.86 

Lebowitz (22) 3.204 2,212 ± O.I796 2.187 +1.13 
Lebowitz (22) 5.858 1.465 ± 0.16$ 1.446 +1.3 
Groce (23) 19.565 0.493 ± .49f> 0.496 - .61 

Groce (23) 23.951 0.397 ± .43^ 0.400 - .76 

Groce (23) 27.950 0.338 ± .62$ 0.336 + . 6 0 
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TABLE V: Uncertainties in the measured total cross section due to various 

experimental factors. From Engelke et al. (2l). 

At At 
0.4926 3.205 
MeV MeV 

(percent) (percent) 

(1) Counting statistics ±0.095 ±0.15 

(2) Ifeutron energy uncertainty ±0.067 ±0.13 

(3) Inscattering correction uncertainty ±0.101 ±0.20 

(4) Length of sample uncertainty ±0.05 ±0.03 

(5) Heptane average density uncertainty ±0.05 ±0.05 

(6) Graphite blank density uncertainty ±0.02 ±0.02 

(7) Gamma-ray background uncertainty ±0.02 ±0.00 

(8) Neutron background -uncertainty ±0.02 ±0.03 

(9) heptane purity uncertainty ±0.01 ±0.01 

(10) Rate dependence uncertainty ±0.01 i-0.10 

(11) Multiple inscattering uncertainty ±0.005 ±0.10 

(12) Uncertainty due to measurement of 
difference in end wall thickness 
of same holder and blank holder ±0.02 ±0.05 

Net uncertainty ±0.l8 ±0.31 
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TABLE VI: Various S wave scattering parameters, determined or 

recommended by various authors. 

Gammel (16) 
Pit 

Gammel (l6) 
Best Values 

Schmidt (11) Engelke (21) 
Lebowitz (22) 

Noyes (33) 

at 5.376 f 5.40 f 5.37&t .020 f 5.396±0.011 f 
a s -23.68 f -23.75 f -23.69 ± .05 f -23.678±0«028 f 

rot 1.56 f 1.7562 f 1.7 ±0.03 f 1.726±0.01^ f 

ros 2.156 f 2.60 f 2.7 ±0.5 f 2.46±0.12 2 . 5 1 ± 0 . 1 1 f 

pt -0.03 -0.04 0 

p s 0 -0.02 0 
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FIGURE CAPTIONS 

Figure 1. In either of Gammel's two expressions for the differential 

cross section, the ratio of cr(l80°,E) to <j(90°,E) is l+2(E/90)2. 
E 2 This figure shows a plot of 2 (TST) versus E on a log-log scale 
yo 

with most of the available data (16) . 

Figure 2. This figure shows the error that would be made in a telescope 

flux measurement by assuming that one of the two Gammel ex-

pressions was correct but that the data were corrected by the 

wrong expression. This is a log log plot of the ratio of the 

l80° cross sections for the two expressions. 

Figure 3. The data on the differential cross section at 14.1 MeV. 

Figure The data on the differential cross section at 22.5 MeV. 
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