ITV AEC AUUCLEAR CROSS SECTIONS HWVSORY COMMITEEE

Cheeting th

hWRENCE RADIATIOR LABORATORY IMERMORF: CAHFORNIA

liecemijer 1-3, 1970

Compiled by . . .
P.E. Chrien, Secrenary, NCssC

The reports in this document were submitted to the AEC Nuclear Cross Sections Advisory Comittee (NCSAC) at the meeting at Livermore, California, on December 1-3, 1970. The reporting laboratories are those having a substantial effort in measuring neutron and nuclear cross sections of relevance to the U. S. applied nuclear energy program. The material contained in these reports is to be regarded as comprised of informal statements of recent developments and preliminary data. Appropriate. subjects are listed as follows:

1. Microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent.are included.
2. Charged particle cross sections, where they are relevant to 1) above, and where relevant to developing and testing nuclear models.
3. Gama-ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs.
4. Proton and alpha-particle cross sections, at energies of up to 1 GeV , which are of interest to the space program.

These reports cannot be regarded as a complete summary of the nuclear research effort of the AEC. A number of laboratories, whose research is less programatically oriented do not submit reports; neither do the submitted reports reflect all the work related to nuclear cross sections in. progress at the submitting laboratory. Budgetary limitations have made it mandatory to follow more strictly the subject guidelines described above and therefore to restrict the size of this document.

Persons wishing to make use of these data should contact the individual experimenter for futher details. The data which appear in this document should be guoted only by permission of the contributor and should be referenced as private communication, and not by this document number.

This compilation has been produced almost completely from master copies prepared by the individual contributors listed in the Table of Contents. It is a pleasure to acknowledge their help in the preparation of these reports.
R. E. Chrien

Secretary, NCSAC
Brookhaven National Laboratory Upton, New York 11973

TABLE OF CONTENTS

1. ARGONNE NATIONAL LABORATORY 1
H. E. Jackson, Jr.
2. RROOKHAVEN NATIONAL LABORATORY 16
R. E. Chrien
3. CASE WESTERN RESERVE UNIVERSITY 34
P. R. Bevington
4. COLUMBIA UNIVERSITY 41
W. W. Havens
5. GULF RADIATION TECHNOLOGY 65A. D. Carlson
6. IDAHO NUCLEAR CORPORATION 87
R. M. Brugger
7. LAWRENCE RADIATION LABORATORY (LIVERMORE) 102C. D. Bowman
8. LOCKHEED PALO ALTO RESEARCH LABORATORY. 113L. F. Chase, Jr. and H. A. Grench
9. LOS ALAMOS SCIENTIFIC. LABORATORY. 126
M. S. Moore
10. NATIONAL BUREAU OF STANDARDS. 162
H. H. Landon
11. NUCLEAR EFFECTS LABORATORY, U. S. ARMY. 164
D. Eccleshall
12. OAK RIDGE NATIONAL LABORATORY 165W. F. Good
13. RENSSELAER POLYTECHNIC INSTITUTE. 191
R. C. Block
14. RICE UNIVERSITY 219G. C. Phillips
15. TEXAS NUCLEAR CORPORATION 226
P. S. Buchanan
16. TRIANGLE UNIVERSITIES NUCLEAR IABORATORY. 230
H. W. Newson
17. YALE UNIVERSITY 244
H. L. Schultz

The following is an index to measurements in NCSAC-33 pertinent to requests listed in WASH 1144, draft version, "Compilation of Requests fo: Nuclear Cross Section Measurements" (November 1969). A CINDA-type index has been prepared by L. T. Whitehead of the Division of Technical Information Extension, and follows on page vii.

WASH 1144 Request No.
Material

2	H
4	T
8	HE-3
17	LI-7
27	B-10
31,33	c
32	C
39,40	N-14
43	N-14
44	0
47	0
55	NA
61	AL
64	AL
66,67	SI
73,74	CA
80,81	TI
89	V
92,93,96	CR
98	MN
99,100	FE
101	FE
104,105,106	FE
122	NI
224	MO
228	RH-103
254	SM-152
265,266	EU-151
267	EU-153
274,276	GD
277	GD-154
287,288,289	GD-158
290	GD-160
291	GD-160
294	ER-166
295	ER-167
300	TM-169
318	TA
325	W-182
327	W-184
330	W-186
331	AU
343	TH-232
344	TH-232
353	U-233
356	U-233

K-Section	NCSAC 33 page
ELAStic	144
ELASTIC	148
$\mathrm{N}-\mathrm{P}$	78
TOTAL	200
ELASIIC	6
ELASTIC	164
ELASTIC	191
ELASTIC	226,164
GAMMA PROD	226
ELASTIC	227,164
GAMMA PROD	226
total	191,41
ELASTIC	227
GAMMA PROD	75
ELASTIC	227
ELASTIC	227
GAMMA PROD	171
ABS	202
CAPT, RES PAR.	202
CAMMA PROD	95
ELASTIC	227,164
INELASTIC	227,208
GAMMA PROD	75,176
RES INT	202
CAP SPECTRA	21,16
N-GAMMA	65,44,41,90
N-GAMMA	41
N-GAMMA	41
N-GAMMA	41
N-GAMMA	68
RES PAR	41.
$\{$ N-GAMMA	41,90
Lres Par.	
RES INT	90
RES PAR	41
N-GAMMA	41
N-camma	41
N-GAMMA	44
N-CAMMA	68,90
RES PAR	41
RES PAR	41
RES PAR	41
N-GAMMA	68,113
N-GAMMA	44,126
ABS	41,44
FISSION	59,12.
NU BAR	12

NASH 1144 Request No.	Material	X-Section	NCSAC 33 page
358	U-233	ALPHA	12
361	U-233	dELAYED NEUT	155
382, 382	U-235	FISSION	182
385	U-235	ETA	87,12
386	U-235	ALPHA	209,182,12
388	U-235	NU	12
389	U-235	FISS YIELD	123,5
390	U-235	DELAYED NEUT	155
391	U-235	CAP SPECTRA	24,152,28
405	U-238	ELASTIC	2
406	U-2.38	INELASTIC	2
412	U-238	DELAYED NEUT	155
413,414	U-238	N-GAMMA	68,44,182
419	U-238	RES PAR	41,44,21
424	NP-237	N-CAMMA	41,59
441	PU-239.	FISSION	12
442	PU-239	FISSION	126
446	PU-239	ETA	12
447	PU-239	ALPHA	126
-	PU-239	NU-BAR	185
459	PU-240	N-GAMMA	203
461	PU-240	RES PAR	203
479	PU-242	N-GAMMA	132
492	AM-243	total	167
499	CM-244	TOTAL	136
501	CM-244	FISSION	148
503,504	CM-244	N-GAMMA	136.
505	CM-245	TOTAL	136
506,507	CM-245	FISSION	$136{ }^{\circ}$
509,510,511	CM-246	FISSION, N-GAMMA	136
512,513,514	CM-247	FISSION, N-GAMMA	136
516,517,518	CM-248.	FISSION, N-GAMMA	136
521	CF-249	FISSION	136
528	CF-252	NU	12

$\underset{S}{\operatorname{ELE}} \underset{A}{ }$	Quantity	TYPE		NERGY max		$\text { REF } \begin{gathered} \text { OOCUME } \\ \text { VOL } \end{gathered}$	$\begin{gathered} \text { ENTA } \\ \text { PA } \end{gathered}$	Nate	Lab	COMMENTS	$\begin{gathered} \text { SERIAL } \\ \text { NO. } \end{gathered}$
na 023	TOTAL XSECT	EXPT－PREG	NaG			NSCSAC－33	41	0／70	col	Camardat．trans，no data given	53177
NA 023	total xsect	EXPT－PRDG	5． 5	54.	7	．NC 5AC－33	191	．0／70	RPI	CLEMENT＋，LINAC，CURVS，MUCH Struc ture	53309
NA 023	inelst gamma	Expt－Prog	3． 5	1.5	6	NCSAC－33	5	0／70	ANL	Shith，Ge（LI）det，no data given	53217
NA 023	inelst gamma	EXPT－PROG	NOG			NCSAC－33	176	D／70	ORL	perey＋，Scint det，to be completed，ndg	53325
MG	total xsect	EXPT－PROG	NOG			NCSAC－33	41	0／70	col	camardat，trans， ND data given	53176
AL 027	total xsect	EXPT－PROG	NDG			NCSAC－33	41	D／70	COL	camardat，trans，no data given	53175
AL 027	DIfF ELASTIC	EXPT－PROG	9.6	$6 \quad 1.1$	7	NCSAC－33	227	D／70	TNG	hilliamst，anal to be compl．，No data	53264
AL 027	diff inelast	EXPT－PROG	9.6	61.1	7	NC 5AC－33	227	D／70	TNC	hill iamst，anal to ee compl，no data	53265
AL 027	inelst gamma	EXPT－PROG	8.6	51.6	7	NC SAC－33	75	D／70	$6:$	ORPHAN＋，GE（LI），CURV FOR 1013KEV GAM	53032
St	OIFF Elastic	EXPT－PROG	9． 6	61.1	7	NCSAC－33	227	D／70	TNC	HILLIAMS＋，ANAL TO 日E COMPL，NO DATA	53268
SI	diff tnelast	EXPT－PROG	9.6	6 1：1	7	NCSAC－33	227	$0 / 70$	TNC	Willtamst，anal to be compl，nd data	53269
St	inelst gamma	EXPT－PROG	NOG			NC SAC－33	176	D／70	ORL	PEREY＋，SCINT DET，TO BE COMPLETED，NDG	53324
5	total Xsect	EXPT－PROG	NDG			NC SAC－33	41	D／70	COL	Gamardat，transmission，no data given	53174
S	diff elastic	EXPT－PROG	NOG			NC SAC－33	164	D／70	NEL	BUCHER＋，TO BE DONE，SMALL－ANGLE SCAT	53344
Cl	total XSECT	EXPT－PROG	nog			NCSAC－33	41	D／70	COL	Gamaroan，transmission，no data given	53169
K	total XSECt	EXPT－PREG	NDG			NCSAC－33	41	D／70	COL	Camardat，transaission，no data given	53170
K 040	SPECT ngamma	EXPT－PROG	thr			NC SAC－33	148	D／70	Las	SHERA＋，GE（LI），K4．LVLStGAM ES SHOWN	53375
CA	diff elastic	EXPT－PROG	9.6	61.1	7	NCSAC－33	227	0／70	TNC	hililamst，Anal to be compl，no data	53263
CA	DIfF inelast	EXPT－PROG	9.6	61.1	7	NCSAC－33	227	D／70	TNG	hillianst，anal to be compl，ho data	53267
TI	diff elastic	EXPT－PROG	1.5	51.	6	NC 5AC－33	1	0／70	ANL	5MITH＋，ANAL TO BE COMPLETED，NO data	53238
TI	diff inelast	EXPT－PROG	1． 5	51.5	6	NC SAC－33	1.	D／70	ANL	SMITh＋，ANAL TO BE COMPLETED，No data	53239
TI	n，gamma	EXPT－PROG	3．	43.	6	NC SAC－33	171	D／70	ORL	allen＋，anal to be completed，no data	53332
Tr	SPECT NGAmma	EXPT－PROG	3． 4	43.	6	NC 5AC－33	171	D／70	DRL	allen＋，relative gamma ylo shown	53331
v	RESON Params	EXPT－PROG	1.	22.	5	NC SAC－33	202	D／70	RPI	block + ，wn wg correlatn coefs given	53288
v	RESON Params	EXPT－PROG	1.	22.	5	NC SAC－33	202	$0 / 70$	RPI	STIEGLITZ＋，CAPT＋TRANS MEASTS，TBP，NDG	53294
v	STRNTH FNCTM	EXPT－PROG	1.	23.	5	NC SAC－33	202	0／70	RPI	STIEGLIT2＋，CAPT＋TRANS MEASTS，NDG，TBP	53301
v	inelst gamma	EXPT－PROG	nog			NCSAC ${ }^{\text {c }} 3$	176	D／70	ORL	PEREY＋，SCINT DET，TOF SPEC GIVEN，TBC	53323
v	RES INT ABS	EXPT－PROG	1.	23.	5	NCSAC－33	202.	D／70	RPI	Stieglitz＋，CAPT＋trans measts，ndg，tbp	532.95
v	n，GAMMA	EXPT－PROG	1.	22.	5	NC SAC－33	202	D／70	RPI	STIEGLIT2＋，0．6NS／M RESOL，NDG，TBP NP	53246
Y 051	RESON Params	EVAL－Prog	4.2	3．8．8	4	NC SAC－33	213	D／70	RPI	LUBERT＋，ST IEGLIT 2 data，J＋wn GIVEN	53254
$\vee 051$	StRNTH FNCTN	EVAL－PROG	4.2	38.8	4	NCSAC－33	213	0／70	QPI	Lubert＋，stieglitz data，values given	53255
ce． 050	RESON sarams	EXPT－PROG	1.	22.	5	NC SAC－33	202	$0 / 70$	RPI	block＋，hn wg correlatn coefs given	53286
CP． 050	RESOn Params	EXPT－PROG	1.	22.	5	NC SAC－33	202	0／70	RPI	STIEGLITZ＋，CAPT＋TRANS MEASTS，TtP，NDG	53292
CR 050	STRNTH FNCTN	EXPT－PROG	1.	23.	5	SAL－33	202	0／70	RPI	StIEGLItz＋，CAPT＋TRANS measts，ndg，tep	53306
CP． 050	res int abs	EXPT－PROG	1.	23.	5	NC 5AC－33	202	D／70	RPI	STIEGLITZ＋，CAPT＋TRANS MEASTS，NDG，TBP	53300
c： 050	n，gamma	EXPT－PROG	1.	22.	5	NCSAC－33	202	D／70	RPI	STIEGLIT $2+0.6$ NS／M RESOL，NDG，TBP NP	53241
cri 052	RESON Params	EXPT－PROG	1.	22.	5	NCSAC－33	202	0／70	RPI	blocktohn wg correlatn coefs given	53285
Cr． 052	RESON Params	EXPY－PROG	1.	22.	5	NCSAC－33	202	D／70	RPI	StIEGLIT $2+$, CAPT＋TRANS measts，tBP，nog	53291
CR 052	StRNTH FNCTN	Expt－prog	牫。	23.	5	NC SAC－33	202	0870	RPI	StIEGLITZ＋，CAPT＋TRANS MEASTS，NOG，tBP	53305
Cn 052	RES INT ABS	EXPt－prog	1.	23.	5	NCSAC－33	202	$0 / 70$	RPI	StIEGLITZ＋，CAPT＋TRANS MEASTS，NOG．TSP	53299
CR 052	N，gamma	EXPT－PROG	1.	2 2．	5	NCSAC－33	202	D／70	RPI	STIEGLITZ＋，O．6NS／M PESOL，NDG，TBP NP	53245
CR 053	RESON PARAMS	EXPT－PROG	1.	22.	5	NCSAC－33	202	0／70	RPI	block＋，hn hg correlatn coems given	53284
CR 053	qeson params	EXPT－PROS	$1 \times$	22.	5	NE SAC－33	202	0／70	RPI	Stieglitit，CAPT＋trans measts，tbp，nog	53290
CR 053	Strnth fnctn	EXPT－PROG	1.	23.	5	NCSAC－33	202	0770	RPt	StIEGLITZ＋，CAPT＋TRANS MEASTS，NOG，tBP＊	53304
CR 053	RES INT ABS	EXPT－PROG	1.	23.	5	NC SAC－33	202	$0 / 70$	RPI	STIEGLITZ＊，CAPT＋TRANS MEASTS，NDG，TBP	53298
CR 053	n，gamma	EXPT－PP．OG	1.	22.	5	NC SAC－33	202	D／70	RPI	STIEGLITZ＊，O．6NS／M RESOL，NDG，TBP NP	53244

－viii

$\underset{S}{\text { ELEMENT }}$	quantiry	trpe	$\underset{\text { MIN }}{\text { ENE }}$	NER	$\underset{\text { MAX }}{ }$		documentati ref vol page	$\begin{aligned} & \text { N } \\ & \text { OATE } \end{aligned}$	Lab	COMMENTS	$\begin{aligned} & \text { SERIAL } \\ & \text { NO. } \end{aligned}$
CR 054	rfion params	EXPT-PROG	1. 2	2	2.		NCSAC-33 202	0/70	RPI	block + wn wg correlatn coefs given	53283
ce. 054	reson pagams	EXPT-PROG	1. 2	2			NCSAC-33 202	D/70	RPI	STIEGLITZ+, CAPT+TRANS MEASTS,TBP, NDG	53289
CR 054	strnth fncta	EXPT-PROG	1. 2	2	3.	5	Csac-33 202	0/70	RPI	Stieglirle, CAPT+TPANS MEASTS,NDG.tbp	53303
CR 054	res int abs	EXPT-PRGG	1. 2	2	3.	5	NCSAC-33 202	$0 / 7$	RPI	StIEGLITIt, CAPT+TRANS	53297
CR 054	N, gamma	EXPT-PROG	1. 2	2	2.	5	SAC-33 202	$0 / 70$	RPI	STIEGLITZ+,0.6NS/M RESOL, NOG,TBP NP	532以
MN 055	SPECT NGAmma	EXPT-PROG	THR		2.	3	395	0/70	HTR	GREENHOOO+, 2ES.TBL 3.0-7.3MEV GAMMAS	53405
FE	olff Elastic	EXPT-PROG	9. 6	6	1.	7	227	D/70	TNE	ta	53262
FE	diff elastic	EXPT-PROG	NDG				NCSAT-33 164	D/70	NEL	BUCHER+,TO BE done, Small-angle scat	53343
FE	Diff inelast	EXPT-PROG	9.6	6	1.1	7	NCSAC-33 227	0/70	INC	HILLIAMS + , ANAL TO BE COMPL, ND DATA	53263
FE	diff inelast	EXPT-PROG		3			NCsaC-33 208	0170	RPI	ZUHR+, TOF, SCINT DET, TO BE COMPL, NDG	53279
FE	inelst gamma	EXPT-PROG	8.85	5	1.6	7	NCSAL-33 75	0,70	GA	ORPHAN+,GE(LI), CURV FOR 847KEV GAM	53033
FE	inelst gamma	EXPT-PROG	NOG				NC SAC-33 176	D/	ORL	PEREY+,SIINT DEt,tof spec given,tbl	53322
FE 054	diff elastic	EXPT-PROG	4.06	6	5.6	6	NCSAC-33 34	01	CSE	80SChung + ,tbp in np, no data given	52997
FE 054	diff inelast	EXPT-Prog	6	6	5.6	6	CSAC-33 34	0	CSE	Ung+,tap in np, no data given	52993
FE 0.54	$\begin{aligned} & \text { INELST GAMMA } \\ & 2 \end{aligned}$	EXPT-PRDG	5.36	6	9.0	6	NC5AC-33 178	$\mathrm{D} / 7$	ORL LL EXP	DICKENS+,BNEUT ES,SIGS FOR 2GAMS GUN PT SEE ORNL-4592	$\begin{aligned} & 53319 \\ & 53318 \end{aligned}$
FE 056	TOTAL XSECT	EVAL-PROG	1.56	6	2.0	6	NCSAC-33 63	$0 / 70$	COL	traubetzkoy, strong fluttuation, ndg	53045
FE 056	Elastic	EVAL-PROG	6	6	2.0	6	NCSAC-33 63	$0 /$	COL	OUSETZKO\%, STRONG FLUCTUATION,NDG	53044
FE 056	DIFF ELASTIC	EVAL-Prog	6	6	2.0	6	SAC-33 63	0770	COL	IUEETLKOY, STRONG FLUCTUATION+NDG	53043
FE 056	diff inelast	EVAL-	6	6	2.0	\square	Csac-33 63	$0 / 70$	COL	troubetzkoy, -85meV lvL, no data givn	53042
FE 56	inelst gamma	EXPT-PROG	8.65	5	1.6	7	CSAC-33 75	$0 /$	GA		53031
FE 056	$\underset{2}{\text { inelst gamma }}$	EXPT-PROG	5.36	6	9.0	6	NCSAC-33 178		XP	DICKENS+, θ NEUT ES,TABLE+CURVES PT SEE ORNL-4592	$\begin{aligned} & 53321 \\ & 53320 \end{aligned}$
CO 059	total XSECt	PT	3. 5	5		6	SAC-33 123	$0 / 70$	LOK	ER+,DFFORMATN EFFECT, CURVE, TBC	53362
CO 059	rotal xsect	EXPT-PRO	3. 5	5	8.	6	NCSAC-33 123	$0 /$	LOK	SHER +, SPIN-SPIN EFFECT, OPTMDL ANAL	53363
N1	diff InELAST	EXPT-PROG		3			NCSAC-33 208	$0 / 7$	RPI	ZIHRR + ,SCINT DET, TOF SPECT GIVEN, TBC	53278
N1 058	drff Elastic	EXPT-PROG	6	6	5.6	6	CSAC-33 34		CSE	boschung+, tip in np,no data given	52996
N1 058	diff inelast	EXPT	4.06	6	5.6	6	NCSAC-33 34	D/	CSE	boschung , tbp in np, no data given	52992
N1 060	RESON PARAMS	EXPT-PROG	1. 2	2	2.	5	NCSAC-33 202	017	RPI	block + hn hg correlatn coefs given	53287
NI 060.	RESON P	EXPT-PRO	1.2	2	2.	5	5AC-33 202	0	RPI	STIEGLITL+, CAPT+TRANS MEASTS,TBP, NDG	53293
NI 060	STRNTH	EXPT	1. 2	2	3.	5	3	0	RPI	teglttie,Caft+trans measts,nog.tbp	302
NI 060	diff elastic	PT-	06	6	5.6	6	SAC-33 34	0	CSE	SChung +,tbP in np, no data given	52995
NI 060	diff InElASt	PT-PROG	0	6	5.6	5	CSAC-33 34	70	CSE	bP in np,no data given	52991
NI 060	RES INT AaS	EXPT-PRDG	1.	2	3.	5	3		RPI	EGLIT $2+, \mathrm{CAPT}+$ TRANS MEASTS,NOG,TBP	53298
NI 080	N, gamma	EXPT-PROO	1.	2	2.	5	NCSAC-33 202	D/70	RPI	IEGL.ITZ+,0.6NS/H RESOL, NDG,TBP NP	53242
Cu	diff elastic	EXPT-PROG	NOG				CSAC-33 164	D/70	NEL	BUCHER+,TO BE DONE,SMALL-ANGLE SCAT	53342
CU	spect ngamma	EXPT-PROG	1.4	7			SAC-33 64	0	Cal	amatelatost, no data given,tbp	52990
Cu	SPECT NGAMMA	EXPT-PROG	thr		2.	3	NCSAC-33 95	$0 / 70$	MTR	ENHOOOL, 2ES, TBL +CURV..58-7.9MEV G	53406
CU 063	RES INT ABS	EXPT-PROG	PILE				NCSAC-33 90	0/70	MTR	SCOVILLE+, FASt spectra, value given	53 ClB
AS 075	inelst gamma	FXPT-PROG	3.	5	1.5	6	NCSAC-33 5	0/70	ANL	Smith,gellil det, no data given	53216
SE	total Xsect	EXPT-PROG	NDG				NCSAC-33 41	D/70	COL	Camardat,transmission, no data given	53171
Y 089	RES INT ABS	EXPT-PROG	PILE				NCSAC-33 90	$0 / 70$	MTR	SCOVILLE+,FAST SPECTPA, VALUE GIVEN	53017
2R	SPECT ngamma	EXPT-prog	1.4	7			NCSAC-33 64	0/70	0 COL	stamatelatos , no data given, tbp	52989
NB 093	reson params	EXPT-PRQG	3.4	1	1.0	4	NC. SAC-33 226.	D/70	Las	HARLOH+, NUCL SHOT, FROM N,G. NO DATA	53300
N8 093	RES INT ABS	EXPT-PROG	PILE				NCSAC-33 90	$0 / 70$	MTR	SCOVILLE+rfast. SPECTRA, VALUE GIVEN	53016
N8 093	SPECT NGAMMA	EXPT-PROG	3.4			4	NCSAC-33 126	D/70	0 LAS	Harloht, nucl shot, moxon-rae det, ndg	53361

$\underset{S}{\text { ELEMENT }}$	Quantity	TYPE	$\begin{aligned} & \text { ENER } \\ & \text { MIN } \end{aligned}$	$\operatorname{ERGY}_{\text {MAX }}$	documentation REF VOL PAGE	$\text { DATE }_{\text {DAB }}$	COMMENTS.	$\begin{gathered} \text { SERIAL } \\ \text { NO. } \end{gathered}$
M	n, gamma	EXPT-PP.OC	1. 3	1. 6	NCSAC-33 68	0,70 GA		53037
M0 092	total xsect	EXPT-PRGG	1.	1.66	NCSAC-33	O/70 ANL	SMITH+, HO DATA,ANAL TO BE COMPLETED	53237
MO 092	diff elastic	Expt-prag	1. 5	1.66	NCSAC-33 1	D/TO ANL	SMITH, NO DATA,ANAL TO BE COMPLETED	53232
MO 092	diff inelast	P1	1.	1.66	NCSAC-33 1	D/70 ANL.	SMITH+,NO DATA,ANAL TO BE COMPLETED	53227
к0 094	total xsect	EXPT-PRDG	1. 5	1.66	NC SAC-33 1	D/70 ANL	SMITH+,NO DATA,ANAL TO BE CCMPLETED	53236
M0 094	dtff elastic	EXPT-PROS	1. 5	66	NCSAL-33 1	D/to anl	Smitht, no data,aral to be Completed	53231
M0 094	diff inelast	PT	1. 5	6	NCSAC-33 1	D/70 ANL	SMITH, NO OATA, ANAL TO be completed	53226
M0 095	total xsect	EXPT-PREG	1. 5	1.66	NCSAC-33 1	D/70 ANL	SMITH+,NO data, anal to be completed	53235
40096	diff elastic	EXPT-PROG	1. 5	2.65	NCSAC-33 1	D/70 ANL	Smithe, ND oata,anal to be completed	53230
M0 096	diff inelast	T-Prag	1. 5	6	NCSAC-33 1	D/70 ANL	SMITHi+,NO DATA,ANAL to be ccmpleted	53225
M0 098	total xsect	EXPT-prog	5	1.66	NCSAC-33 1	D/70 ANL	Smith+, NO data, anal to be CCmpleted	53234
K0 098	diff elastic	EXPT-PROG	1. 5	1.66	NCSAC-33 1	D/70 ANL	Smithe, ND data, anal to ae campleted	53229
M0 098	OIff Inelast	EXPT-PRDG	5	6	NGSAC-33 1	D/70 ANL	no data,anal to be completed	53224
MD 098	RES INT ABS	EXPT-PROG	PILE		NCSAC-33 90	0/70 MTR	SCOVILLE+,FAST SPECTRA, VALUE GIVEN	53015
M0 098	SPECT NGAMMA	EXPT-PROG		1.23	NCSAC-33 21	0/70 8NL	CHRIEN+, SPECT FRJM 6RES, ONLY 2SHOHN	5318 B
Mo 098	SPECT NGAMMA	EXPT-PROG	1.21		NCSAC-33 16	D/70 BNL	Ghrien, absol gamma ! ${ }_{\text {dentensity rel au }}$	53197
MO. 100	total xsect	Expt-prog	1. 5	1.66	NCSAC-33 1	D/70 ANL	SMITH+, NO DATA,ANAL TO BE COMPLETED	53233
K0 100	diff elastic	EXPT-Prog	1. 5	1.66	NCSAC-33 1	D/70 ANL	SMITH+,NO DATA,ANAL TO BE COMPLETED	53228
Mo 100	diff inelast	EXPT-PRQG	5	1.66	NCSAC-33 1	D/70 ANL	SMITH+iNO DATA, ANAL TO EE COMPLETED	53223
RH 103	total XSECT	EXPT-PRGG	NDG		NCSAC-33 41	D/70 col	Camardat,transmission, no data given	53149
RH 103	RESON Params	EXPT-PROG	1.30	8.42	NCSAC-33 65	D/70 GA	CARLSON+,2G*HN HG J FOR 19 RESON	53041
RH 103	reson params	Expt-prog	3		NCSAC-33 44	0 col	RAHN+,FROM N, G. anal tbl, NO data gin	53054
RH 103	reson params	Expt-prag	nog		NCSAC-33 41	0 CBL	CAMAROA+, TRANSMISSION, NO DATA GIVEN	53131
RH 103	RES INT ABS	EXPT-PROG	PILE		NCSAC-33 90	0/70 MTR	SCOVILLE+,f:St spectra, value given	53014
RH 103	n, gamma	EXPT-PROG	3		NCSAC-33 44	0/70 COL	RAHN+, MOXON-RAE, ANAL TBC, NO DATA	53060
RH 103	n,gamma	EXPT-Prog	1. 3	1. 6	NCSAC-33 65	D/70 GA	CARLSON+,CURVE, CFD OTHEP. DATA	53078
CO	total xsect	EXPT-Prog	NOG		NCSAC-33 41	0/70 col	CAmardat, transmission, no data given	53168
CD 110	total xsect	EXPT-PROG	NDG		NCSAC-33 41	170 COL	Camaroat transmission.no data given	53164
CD 110	reson params	EXPT-PROG	NOG		NCSAC-33 41	D/70 col	Camardat, transmission, no oata given	53146
CD 111	reson params	EXPT-Prog	6.1		NCSAC-33 17	70 BNL .	Chrien+, Prelim J given, AnAL tbe	53195
CD 111	SPECT NGAMMA	Expt-prog	1. 1	53	NCSAC-33 17	D/70 BNL	CHRIEN+,ANAL TO BE COMPLETED	53196
CD 111	Spect ngamma	EXPT-PROG	2.81		NCSAC-33 16	0 日NL	Chrien+,absol gamma intensity rel au	53198
Co 112	TOTAL XSECT	EXPT-PROG	NDG		NC 5AC-33 41	0/70 cal	Camaroat, transmission,	53163
C0 112	RESON Params	EXPT-PREG	NOG		NCSAC-33 41	D/70 col	Camardat ;transmiss ion,	53145
CD 114	TOTAL XSECT	EXPT-Prog	NDG		NC 5AC-33 41	O/70 COL	CAMARDA , TAANSMISSION, NO DATA GIVEN	53162
CD 114	Reson params	EXPT-Prog	NOG		NCSAC-33 41°	0/70 col	Camardat, Transhission, no data given	53144
CO 116	total XSECt	Expt-prog	NOG		NCSAC-33 41	0/70 cal	CAMARDA+, TRANSMISSION, NO OATA GIVEN	53161
CO 116	RESON Params	EXPT-PROG	NDG		NCSAC-33 41	D/70 COL	CAMARDA+, TRANSHISSION, NO DATA GIVEN	53143
IM 113	reson params	EXPT-PROG	-	2.03	NCSAC-33 41	D/70 COL	CAMARDAT; 1968 measts,avg D 48 lVLS	53112
IN 113	StRNTH FNCTA	Expt-prog		2.03	NCSAC-33 41	D/70 col	CAMARDA+ 1968 MEASTS, SO GIVEN	53091
IN 115	geson params	Expt-prog	2.31	2.52	NCSAC-33 41	D/70 col	CAMARDA, 1968 MEASTS, G*WN, IG 15 RESON	53081
IH 115	reson params	EXPT-PRUGG	2.31	$2.0{ }^{\circ} 3$	NCSAC-33 41	0/70 col	CAMARDA+ 1968 meaststin for many res	53088
IN 115	RESON Params	EXFT-PROG	2.21	2.03	NCSAC-33 42	0/70 col	CAMARDA+,1968 MEASTS,AVG D 145 LVLS	53111
IN 115	STRNTH FNCTN	EXPT-PROG	2.2	2.03	NCSAC-33 41	D/70 COL	CAMARDA +1968 MEASTS, SO GIVEN	53090
So	spect ngamma	EXPT-PROG	'1.4. 7		NCSAC-33 64	D/70 col	stamatelatos + , no data given,tbp	52988

$\begin{aligned} & \text { ELEMENT } \\ & S_{a} \end{aligned}$	quantity	type	MIN	MAX	documentation pef vol page	ONTE LAB	comments	$\begin{gathered} \text { SERIAL } \\ \text { NO. } \end{gathered}$
XE 124	Spect ngamma	EXPT-Prog	5.20		NCSAC-33 30	D/70 BNL	kanet,te be completedino data given	53181
LA 139	qeson params	EXPT-PROG	6.02	1.04	NC5AC-33 41	0/70 cal	CAMARDA+,1968 MEASTS,AVG D 66 LVLS	53110
LA 139	Strnth fncta	EXPT-PROG	6.02	1.04	NCSAC-33 41	0/70 cal	camardatri968 measts, SO GIVEN	53089
La 139	RES INT ABS	EXPT-PROG	PILE		NCSAC-33 90	D/70 MTR	SCOVILLE+,fast spectra, value given	53013
CE 140	total xsect	EXPT-PROG	NOG		NCSAC-33 41	D/70 COL	Camardat,transmission, no oata given	53160
CE 140	reson params	EXPT-PROG	nog		NCSAC-33 41	D/70 col	Camaroat, Transmission.nd data given	53142
CE 140	res int abs	EXPT-PROG	PILE		NCSAC-33 90	$0 / 70$ MTR	SCOVILLE+, fast spectra, Value given	53012
CE 142	RES INT ABS	EXPT-PROG	-ILE		NCSAC-33 90	D/70 MTR	SCOVILLE+,FAST SPECTRA,VALUE GIVEN	53010
Pq 141	RES int abs	EXPT-PROG	PILE		NCSAC-33 90	$0 / 70$ MTR	Scovillet,fast spectra, value given	53011
SM 149	reson params	EXPT-PROG	6.50		NCSAC-33 27	$0 / 70$ BNL	grunhart+,NUCLEAR POL EXPT PLANNED	53185
SH 149	reson params	EXPT-PRDG	9.8-2	3.41	NCSAC-33 17	D/70 8NL	CHRIEN+,J FOR 16RES+PARTIAL HG DIST	53193
SM 149	spect ngamma	EXPT-PROG	2. -2	5. 1	NCSAC-33 17	O/TO BNL	Chrien+rresonance params only given	53194
54 152	reson params	EXPT-PROG	8.81	1.33	NC.SAC-33 41	D/70 COL	CAMARDA+, 1968 MEASTS,G*HN, HG \& RESON.	53077
SM 152	reson params	EXPT-PROG		1.53	NCSAC-33 41	D/70 COL	camardat, 1968 measts,avg d 29 LVLS	53117
SM 152	Strnth fnctn	EXPT-PROG		1.53	NCSAC-33 41	0/70 COL	Camardat, 1968 MEASTS, 50 GIVEN	53096
SM 152	RES INT ABS	EXPT-PROG	-1	UP	NCSAC-33 41	D/70 COL	CAMARDA+ .444 AND .55 CONER LIMITS	53073
SM 154	reson params	EXPT-PROG	3.42	1.23	NCSAC-33 41	0/70 col	CAMARDA+,1968 MEASTS,G*HN, HG 3 RESON	53076
SM 154	RESDN PAqAMS	EXPT-prog		2.53	NCSAC-33 41	0/70 col	CAMARDA, 1988 MEASTS,AVG D 20 LVLS	53118
SH 154	strnth fnctn	EXPT-PRDG		2.53	NCSAC-33 41	$0 / 70 \mathrm{COL}$	Camardat, 1968 measts,so given	53095
SM 154	RES INT ABS	EXPT-PROG	-1	UP	NCSAC-33 41	0/70 COL	CAMARDA+,.414 AND. 55 LOWER LIMITS	53072
EU 151	reson params	EXPT-PROG	2.70	9.91	NCSAC-33 41	$0 / 70 \mathrm{col}$	CAMARDA+, 1968 measts.gathn, hg TORES	53080
EU 151	reson params	EXPT-PROG		9.9 .1	NCSAC-33 41	0/70 col	CAMARDA +1968 MEASTS,AVG 0 88 LVLS	53119
EU 151	STRNTH FNCTN	EXPT-PROG		9.91	NCSAC-33 41	0/70 cal	CAMARDA +1968 MEASTS,50 GIVEN	53098
EU $15 ?$	res int abs	EXPT-Prog	-1	UP	NCSAC-33 41	$0 / 70$ col	CAMARDA +..414 AND .55 LOHER LIMITS	53075
EU 253	reson params	EXPT-PROG	1.70	9.81	iNCSAC-33 41	0/70 COL	CAMARDA+, 1968 MEASTS,G*HN, WG 47 TRESON	53079
EU 153	RESON Params	EXPT-PROG		9.81	NCSAC-33 41	0/70 col	CAMARDA+,1968 MEASTS,AVG D 68 LVLS	53118
EU 153	Strnth fncte	Expt-prog		9.81	NCSAC-33 41	70 col	Camardat, 1968 measts, so given	53097
EU 153	RES INT ABS	EXPT-PRDG	-1	UP	NCSAC-33 41	$0 / 70 \mathrm{COL}$	CAMARDA+,.414 AND . 55 LOHER LIMITS	53074
GD	N, gamma	EXPT-PROG	1. 3	2. 6	NCSAC-33 68	0/70 Ga	FRICKE+, CURVE,CFD OTHER OATA	53038
GD 154	RESON Params	EXPT-PRQG		3.23	NCSAC-33 41	$0 / 70 \mathrm{COL}$	CAMARDA+, 1968 MEASTS,AVG D 344 LVLS	53114
G0 154	Strnth fncte	EXPT-PROG		3.23	NCSAC-33 41	D/70 COL	CAMARDA+,1968 MEASTSISO GIVEN	53093
G0 158	total xsect	EXPT-PROG	ndg		NCSAC-33 41	d/70 COL	Camardat, transmission, no data given	53159
60158	reson params	EXPT-PROG	3		NCSAC-33 44	0/70 COL	RAHN+,FROM N, G. ANAL TBC, NO data gVn	53052
GD 158	RESON Params	EXPT-PROG	1.61	3.03	NCSAC-33 41	0/70 COL	CAMARDA+, 1968 MEASTS,AVG 041 LVLS	53113
GD 158	reson params	EXPT-PROG	nag		NESAC-33 41	D/70 COL	Camaroat, transmission, no data given	53141
GD 158	STRNTH FNCTN	EXPT-PREG	1.61	3.03	NCSAC-33 41	$0 / 70 \mathrm{col}$	Camaroat 2988 measts,so given - -	53092
60158	RES INT ABS	EXPT-PROG	PILE		NCSAC-33 90	D/70 MTR	SCOVILLE+,FAST Spectra, Value given	53009
GO 158	n,gamma	Expr-Prog	3		NCSAC-33 44	D/70 COL	RAHN+,MOXON-RAE,ANAL TBC,NO DATA	53058
G0 160.	TOTAL XSECT	EXPY-PROG	NDG		NCSAC-33 41	0/70 col	Camardat, transmission, no data given	53158
GD 160	peson params	EXPT-PROG	NDG		NCSAC-33 41	D/70 COL	Camardat,transmission, no data given.	53140
GD 160	RES INT ABS	EXPT-PROG	Pile		NCSAC-33 90	D/70 MTR	SCOVIllet,fast spectra, value given	53419
TB 159	RES INT ASS	EXPT-PROG	pile		NCSAC-33 90	O/70 Mtr	SCOVILLE+,FAST SPECTRA,VALUE GIVEN	53420
OY 160	total xsect	EXPT-PROG	NOG		NCSAC-33 41	0/70 COL	Camardat, transmission, no data given	53157
DY 160	Reson params	EXPT-PRŨG	NDG		NCSAC-33 41	D/70 COL	camardat,transmissien, no data given	53139

$\underset{C}{E E Y E N T}$	quantity	type	MIN	${\underset{M A X}{ }}^{R G Y}$	documentat REF VOL PaG	$O_{D A T E} \mathrm{ZAB}$	COMMENTS	$\begin{gathered} \text { SERIAL } \\ \text { ND. } \end{gathered}$
OY 161	total XSECT	EXPT-PROG	NDG		NCSAC-33 41	$0 / 70 \mathrm{cal}$	CAMARDA+,transmission, no data given	53156
or 161	reson params	EXPT-PROG	3		NESAC-33 44	D/70 col	RAHN+,FROM n,G. Anal tbe, no data gvn	53051
or 161	reson papams	EXPT-prog	nog		NCSAC-33 41	$0 / 70 \mathrm{col}$	Camardat, transmission, no data given	53138
or 161	n, gamba	EXPT-PROG	3		NCSAC-33 44	$0 / 70 \mathrm{COL}$	RAHN+, MDXON-RAE,ANAL TBC,NO DATA	53057
DY 162	TOTAL XSECT	EXPT-PRDG	NDG		NCSAC-33 41	D/70 col	Camardat,transmission, no data given	53155
OY 162	RESON PaRAMS	EXPT-PROG	NDC		NCSAC-33 41	$0 / 70 \mathrm{col}$	Camardat,transmission. no data given	53137
DY 163	TOTAL XSECT	EXPT-PROG	NDG		NCSAC-33 41	$0 / 70$ COL	Camardat,transmission, no data given	53154
DY 163	reson params	EXPT-PRGG	nog		NCSAC-33 41	$0 / 70 \mathrm{COL}$	CAMardat, TRANSHISSION, NO DATA GIVEN	53136
DY 163	reson params	EXPT-PROG		3.22	NCSAC-33 21	0/70 8NL	CHRIEN+pARTIAL WG DISt Shown	53189
DY 163	spect ngamma	EXPT-PROG		3.22	NCSAC-33 21	0/70 8NL	CHRIEN+,SPECT FROH 23RESON,NO DATA	53290
Or 164	total xsect	EXPT-PROG	NDG		NCSAC-33 41	0/70 col	Camardatrtransmission, ND data given	53153
DY 164	preson params	EXPT-PROG	NOG		NCSAC-33 42	$0 / 70 \mathrm{COL}$	Camardat,transmission, no data given	53135
H0 165	total xsect	EXPT-PROG	1. 5	1.56	NCSAC-33 1	d/70 anl	SMIth+, ND DATA GIVEN,T0 be publ ifp	53008
H0 165	DIFt ELGStic	EXPT-PROG	3. 5	1.56	NCSAC-33 1	O/to anl	SMITH+,ND OATA GIVEN,TO BE PUBL LFP	53007
HO 165	diff inelast	EXPT-PROG	3. 5	1.55	NCSAC-33 1	0/70 ANL	Smitht, no data given,to be publ zfp	53006
HO 165	RES INT ABS	EXPT-PRDG	pile		NCSAC-33 90	d/70 mtr	Scovilley, fast spectra, value given	53418
ER 166	RESO: PARAMS	EXPT-PROG	1.61	3.52	NC SAC-33 41	$0 / 70 \mathrm{col}$	CAMARDA+ 1968 MEASTS,G*WN, hG a Reson	53087
ER 166	RESON Params	EXPT-PROG		9.53	NCSAC-33 41	0/70 COL	CAMARDA+ 1968 measts, avg o ith lves	53130
ER 166	Strnth fnctn	EXPT-PROG		9.53	NC SAC-33 4	$0 / 70 \mathrm{col}$	Camardat, 1968 measts, So given	53109
ER 166	RES INT ABS	EXPT-PROG	-1	UP	NCSAC-33 41	D/70 COL	CAMARDA+,. 414 AND . 55 LOMER LIMITS	53071
ER 167	RESON PARAMS	EXPT-PROG		1.73	NCSAC-33 41	$0 / 70$ col	CAMARDA+ 1968 MEASTS,AVG 0268 LVLS	53127
ER 167	Strnth fnctn	EXPT-PROG		1.73	NCSAC-33 4	0 cal	CAMARUA+,1968 MEASTS,SO GIVEN	53100
ER. 167	res int abs	EXPT-PRDG	-1	UP	NCSAC-33 41	0/70 cal	CAMARDA4., 414 AND . 55 LOHER LIMITS	53070
ER 108	reson params	EXPT-PROG	8.01	1.92	NCSAC-33 41	D/70 COL	Camardat, 1968 measts, , hn, hg 2 RESON	53086
ER 168	reson params	EXPT-PROG		1.54	NCSAC-33 41	$0 / 70 \mathrm{cal}$	CAmARGA+, 2988 measts,avg 0 l 107 LVLS	53128
EF. 168	STRNTH FNCTN	EXPT-PROG		1.54	NCSAC-33 4	D/70 COL	Camardat, 2968 measts,so and si given	53107
ER. 168	RES INT ABS	EXPT-PROG	-1	UP	NC5AC-33 41	70 col	CAMARDA +.414 And . 55 LOHER L.IMIts	53089
ER. 170	pesson params	EXPT-FRDG		2.44	CSAC-33 41	COL	CAMARDAT, 1968 measts,avg d 94 LVLS	53127
ER. 170	Strnth fncta	EXPY-PROG		2.44	NCSAC-33 4	70 COL	CAMARDA+,1968 measts, SO AND SI GIVEN	53106
TM 169	reson params	EXPT-PROG	3		NCSAC-33 44	0870 COL	RAHN+,FROM N,G. ANAL TBC, NO data gin	53053
Ti 169	n,gamMa	EXPT-PROG	3		NCSAC-33 44	0/70 COL	RAHN+, MOXON-RAE, ANAL TBC, NO OATA	53059
YB 171	RESON papams	EXPT-PPOG	7.90	6.32	NCSAC-33 41	0/70 COL	CAMARDA+, 1968 MEASTS,G*HiN,HG 4IRESON	53085
YB 171	reson params	EXPT-PROG		1.73	NCSAC-33 41	0/70 COL	CAMARUA+,1968 MEASTS,AVG D 165 LVLS	53126
YB 171	StRnth fncte	EXPT-PROG		1.73	NCSAC-33 4	D/70 COL	CAMARDA+,1968 MEASTS,SO GIVEN	53105
$Y 8171$	RES INT ABS	EXPT-PROG	-1	up	NSSAC-33 41	170 col	CAMARDA+..414 AND . 55 LOHER LIMITS	53068
Y8 172	reson params	EXPT-PREG	1.42	5.12	NCSAC-33 41	70 cal	CAMARDA+,1968 MEASTS,G*RN, WG 4 RESON	53084
YB 172	reson params	EXPT-PROG		1.04	NCSAC-33 41	d/70 cal	CAMARDA+,1968 MEASTS,AVG D 95 LVLS	53125
Y® 172	Strith fnctn	EXPT-Prog		1.04	NCSAC-33 4	$0 / 70 \mathrm{col}$	CAMARDA+ 1968 MEASTS,SO GIVEN	53104
YB. 172	res int abs	EXPT-PROG	-1	UP	NCSAC-33 41	d/70 COL	CAMARDA +,.414.AND . ES LOMER LIMITS	53067
YE 174	reson params	EXPT-PROG	3.42	8.82	NGSAC-33 41	0/70 COL	CAMARDA +1968 MEASTS,G*HN,HG 3 RESON	53083
YB 174	reson params	EXPT-PRUG		2.54	NCSAC-33 41	. $\mathrm{Dr70} \mathrm{COL}$	CAMARDA 21968 MEASTS,AVG D 95 LVLS	53124
Y8 174	Strinth fncta	EXPT-PROG		2.54	NCSAC-33 4	D/70 col	Camardat, 1968 measis, ${ }^{\text {c }}$ GIVEN	53103
YB 174	RES INT ABS	EXPT-PROG	-1	UP	NCSAC-33 41	d/70 col	CAMAROA+., 414 ANO . 55 LOWER LIMITS	53068
Y8 176	reson params	Expt-prag	1.52		NCSAC-33 41	$0 / 70 \mathrm{col}$	CAMARDA+, 1968 MEASTS,G*WN, HG	53082
$Y 9176$	reson parzms	EXPT-PROG		2.64	NCSAC-33 41	D/70 COL	CAMARDA+, 1968 MEASTS, AVG D 77 LVLS	53123
YB 176	Strnth fnctn	EXPT-PROG		2.64	NCSAC-33 41	0/70 COL	CAMARDA+, 1968 measts, 50 GIVEN	53102

$\underset{S}{\text { ELEMENT }}$	QUANTITY	TYPE	MIN	GY MAX		$\underset{\text { REF }}{\text { DOCUME }} \text { VOL }$	$\begin{gathered} \text { NTATIO } \\ \text { PAGE } \end{gathered}$	DATE	LAB	COMMENTS	$\begin{aligned} & \text { SER IAL } \\ & \text { ND. } \end{aligned}$
LU	TOTAL XSECT	EXPT-PROG	THR			NCSAC-33	89	0/70	MTR	Young,fast chopper,value given	53023
LU	n,gamma	EXPT-PROG	THR			NCSAC-33	89	D/70	MTR	Ydung.fast chopper, Value given	53020
LU 175	total xsect	EXPT-PROG	THR			NCSAC-33	89	0/70	MTR	Young, fast chopper, value given	53025
LU 175	reson params	EXPT-Prog		1.23	3	NCSAC-33	41	D/70	COL	CAMARDAT,1968 MEASTS,AVG D 214 LVLS	53115
LU 175	StRnth fnctin	EXPT-PROG		1.23	3	NCSAC-33	41	0/70	CDL	CAMARDAF, 1968 MEASTS, SO GIVEN	53094
LU 175	n,gamma	EXPT-PROG	THR			NCSAC-33	89	0/70	MTR	youn. - ASt Chopper,value given	53022
LU 176	total xsect	EXPT-Prdog	THR			NCSAC-33	89	$0 / 70$	MTR	young,fast chopper,value given	53024
LU 176	n, gamma	EXPT-PROG	THR			NCSAC-33	89	D870	MTR	young,fast chopper,value given	53021
TA 181	res int abs	EXPT-PRROG	Pile			NCSAC-33	90	-170	MTR	SCovilleet,fast spectra, value given	53417
TA 181	n, gamma	EXPT-PROG	1. 3	1. 6		NCSAC-33	68	$0 / 70$	GA	FRICKE+, CURVE,CFO OTHER OATA	53036
W	N, gamma	EXPT-PROG	1. 3	1.	6	NCSAC-33	68	0/70	GA	FRICKE+, CURVE,CFD Other data	53035
H 182	reson params	EXPT-prog	2.11	1.34		NCSAC-33	41	$0 / 70$	COL	CAMARDA +1968 measts, mN MANY RE SCN	53065
H 182	reson params	EXPT-PROG		1.34	4	NCSAC-33	41	D/70	col	Camardat, 1968 measts,avg D 141 LVLS	53122
W 182	STRNTH FNCTN	EXPT-PROG		1.3	4	NCSAC-33	41	$0 / 70$	col	Camardat, 1968 Measts,50 Given	53101
H 184	reson params	EXPT-PROG	1.02	1.6	4	NCSAC-33	41	0/70.	col	Camardat, 1968 MEASTS, hn many rescn	53064
H 184	reson params	EXPT-PROG		1.5	4	NCSAC-33	41	0/70	COL	CAMARDA+,1968 MEASTS,AVG D 125 LVLS	53121
H 184	Strnth fnctin	EXPT-PROG		1.5	4	NC SAC-33	41	0/70	COL	CAMARDA+, 1968 measts, SO GIVEN	53100
H 186	RESON PARAMS	EXPT-PROG	1.91	1.7	4	NC SAC-33	41	$0 / 70$	COL	. Camardat, 1968 measts,hn Many rescn	53063
H 186	RESON PARAMS	EXPT-prag		1.7	4	NCSAC-33	41	0/70	col	CAMAROA+,1968 MEASTS,AVG D 102 LVL.S	53120
H 186	Strnth fncta	EXPT-PRCG		1.7	4	NCSAC-33	41.	$0 / 70$	COL	CAMAROA+, 1968 MEASTS,SO GIVEN	53099
H 186	RES INT ABS	EXPT-PROG	PILE			NCSAC-33	90	0/70	MTR	Scoville +, fast spectra, value given	53416
RE	N, gamma	EXPT-PROG	1. 3	1.	6	NC SAC-33	68	D/70	GA	FRICKE+, CURVE,CFD OTher data	53034
PT 195	SPECT NGAMMA	EXPT-PROG	1.21			NCSAC-33	16	D/70	BNL	CHRIEN+, ABSOL GAMMA INTENSITY REL AU	53200
AU 197	total xsect	EXPT-PROG	NOG			NCSAC-33	41	$0 / 70$	COL	CAMARDA+, TRANSMISSIOH, ND data given	53173
AU 197	activation	EXPT-PROG	2.54			NC SAC-33	100	D/70	MTR	tromp,no data given	53407°
AU 197	n, gamma	EXPT-PROG	1. 3	1.	6	NC SAC-33	68	0/70	GA	fricket, CURVE, cfo other data	53040
AU 197	N,gamma	EXPT-PROG	1. 4	5.4	6	NC5AC-33	113	D/70	Lok	VAUGHN+,DETAILED DESCRIPTICN,CRV+TBL	53411
TL	total xsect	EXPT-PROG	NDG			NCSAC-33	31	D/70	COL	CAMARDA+, TRANSMISSION, ND DATA GIVEN	53167
TL 203	total xsect	EXPT-PROG	ndg			NCSAC-33	41	0170	COL	CAMARDA+, TRANSMISSTON, ND DATA GIVEN	53152
TL. 203	RESON PARAMS	EXPT-PROG	nog			NCSAC-33	41	0/70	COL	CAMARDA+, TRANSMISSION, ND DATA GIVEN	53134
TL 205	total xsect	EXPT-PROG	NDG			NCSAC-33	41	D/70	COL	CAmARDA+, TRANSMISSION, No data given	53151
TL 205	reson params	EXPT-Prog	NDG			NCSAC-33	31	0870	COL	CAMARDA+, TRANSMISSION, ND data given	53133
PB	total xsect	EXPT-PROG	5. 5	2.0	7	NCSAC-33	162	D/70	NBS	SCHWARTZ+,1PC ABSOL ACCURACY,CURVE	53369
PB	diff Elastic	EXPT-PROG	NDG			NCSAC-33	164	0/70	NEL	BUCHER +, TO BE DONE, SMALL-ANGLE SCAT	53341
PB	diff inelast	EXPT-PROG	3			NCSAC-33	208	D/70	RPI	ZUHR+,SCINT DET, TOF SMECT GIVEN, TBC	53277
PB 204	n, gamma	EXPT-rROG	2. 3			NCSAC-33	393	D/70	MTR	GREENHOOD+, TBL OF PARTIAL SIGS SHOWN	53415
PB 204	Spect ngamma	EXPT-PROG	2. 3			NC SAC-33	393	D/70	MTR	GREENHODO+,HIGH-E PROMPT GAMS SHOHN	53413
P8 208	total xsect	EXPT-PROG	1.36	1.9	6	NCSAC-33	230	D/70	DKE	MALAN+,C12(D,N) SOURCE, ANAL TBC, NDG	53270
PB 207	n,gamma	EXPT-PROG	2.54	5.	4	NC SAC-33	3171	D/70	ORL	ALLEN+, Linac, anal tbe, no data given	53330
PB 207	N,gAMMA	EXPT-PROC	2. 3			NCSAC-33	393	0/70	MTR	GREENHOOD+, NO DATA GIVEN	53414
PB 207	SPECT NGAmMa	EXPT-PROG	2.54	5.	4	NC SAC-33	3171	$0 / 70$	ORL	ALLEN+, LINAC,GAMMA YLD SHOHN	53329
TH 229	reson params	EXPT-PROG	6.1-1	5.1	1	NCSAC-33	360	0/70	COL	FELVINCI+, SO*HF for zoreson given	53240
TH 229	fission	EXPT-PROG	-2		1	NCSAC-33	360	0/70	COL	FELVINCIt, SO*HF FOR 29RESON GIVEN	53046

$\underset{S}{\text { ELEAENT }}$		quantity	trpe	ENERGY			doclmentation la			COMMENTS	$\begin{aligned} & \text { SER IAL } \\ & \mathrm{NO} . \end{aligned}$	
		MIN		tax								
TH	232		TOTAL XSECT	EXPT-PROG	nog			NCSAC-33	41	$0 / 70 \mathrm{COL}$	Camardat, transmission, no data given	53165
TH	232	resor params	EXPT-PRDG	3			HCSAC-33	44	D/70 col	RaHN+,from npg. anal tbcino data gyn	53055	
TH	232	reson params	EXPT-PREG	NDG			NCSAC-33	41	0/70 COL	Camardat, transmissicn, no data given	53147	
TH	232	reson params	EXPT-PROG	2. 1	2. 3		ncsac-3]	126	0/70 las	formant, NUCL Shot. from n,g. hg tabl	53359	
TH	232	n, gamma	EXPT-Prag	3			nCsac-33	44	$0 / 70 \mathrm{COL}$	RAHN+,MOXOR-RAE,ANAL TBC,NO DATA	53061	
U	233	rission	EXPT-PROG	nog			NCSAC-33	59	0/70 COL	FELVINCIt,ANAL to be completeo, ndg	53049	
u	233	fission	eval-prog	2.5-?			NCSAC-33	12	0/70 ANL.	de volpippreliminary value given	53251	
4	233	ETA	EXPT-PREG	6. -2	2.6-1		NCSAC-33	87	$0 / 70$ MTR	SMITH+,4 ES, CURVE+TABLE	53028	
u	233	eta	EVAL-Prog	2.5-2			NCSAC-33	12	O/70 ANL.	DE Volpl,preliminary value given	52.488	
U	233	AL PHA	EVAL-PROG	2.5-2			NCSAC-33	12	0/70 ANL	de valplipreliminary value given	53249	
u	233	nu	EVAL-PROG	2.5-2			NCSAC-33	12	0/70 ANL	de volpi,preliminary value given	53247	
4	233	delayo neuts	EXPT-PRDG	1. 5	7. 6		NCSAC-33	155	d/70 las	KRICK+, CURV ABSOL NEUT YLD VS. E	53370	
u	233	ab Sorp tion	EVAL-prog	2.5-2			NCSAC-33	12	0/70 ANL	de volpi, preliminary value given	53215	
u	233	n, gamma	EVAL-PROG	2.5-2			NCSAC-33	12	$0 / 70$ ANL	de volpi,preliminary value given	53250	
U	23.4	FISSION	EXPT-PROG	7. 5	2. 6		NCSAC-33	187	0/70 ORL	ROSLER+,LINAC, TO BE COMPLETED, NOG	53311	
U	235	scattering	EVAL-PROG	2.5-2			NCSAC-33	12	0/70 ANL	de volpi, preliminary value given	53208	
U	235	fissian	EVAL-Prgg	2.5-2			NCSAC-33	12	D/70 ANL	de volpi,preliminary value given	53213	
U	235	fission	theo-prog		2.53		NCSAC-33	209	$0 / 70$ RPI	Shea, avg sig calcto,dos expt,no eata	53252	
0	235	fission	theo-prog	1.81	6.01		NC SAC-33	209	$0 / 70$ RPI	SHEA,TRIPLET APPROX, OXS EXPT, NO DATA	53276	
\cup	235	FISSION	EXPT-PRDG		1. 5		NC SAC-33	182	0/TO ORL	de saussuret, no data given,tbl	53314	
u	$2 \cdot 35$	eta	EXPT-PROG	6. -2	1.8-1		NCSAC-33	87	0/70 MTR	smithe, 2 es,values given	53027	
U	335	ETA	EVAL-PROG	2.5-2			NCSAC-33	12	D/70 ANL	de volpi, preliminiri' value given	53210	
U	235	al.rha.	EVAL Prog	2.5-2			NCSAC-33	12	D/TO ANL	of volpi, preliminary value given	53211	
u	235	ALPHA	THEG-PROG		2.53		NCSAC-33	209	0/70 RPI	Shea, avg alfa calcto, oks expt,ndg	53253	
u	235	ALPHA	EXPT-PROS		1.. 5		NCSAC-33	182	OTTO ORL	de saussuret, no data given,tbe	53315	
u	235	NU	EVAL-RSIOG	2.5-2			NCSAC-33	12	O/70.ANL	de volpi,	53209	
U	235	oflayd neuts	EXPT-PRGG	1. 5	7. 6	6	NCSAC-33	155	0/70 LAS	KRICK+,CURV ABSCL NEUT YLD VS. E	53371	
u	235	SPECT FISS N	EXPT-PROG	nag			NC5AC-33	5	.0170 ANL	SMITH, ANALYSIS TO BE COMPL, NO DATA	53219	
u	235	SPECT FISS 6	EXPT-PROG	THR			NCSAC-33	185	0/70 ORL	pleasonton, prelim total ylote given.	53312	
u	235	FISS YIELD	EXPT-PROG	THR	1.57	7	NCSAC-33	123	0/70 LOK	imhofe, 11 Es,no data given	53403	
u	235	FISS PROD GS	EXPT-PROG	THR		1	NCSAC-33	27	0/70 BNL	Sailort, delayed gam yldo to be measd	53184	
u	235	Fiss prod gs	EXPT-Prog	thr	1.57	7	NCSAC-33	123	0/70 LOK	imhofa,gesill oet, no data given	53412	
u	235	RES int fiss	THEO-PRDG	1.81	6.61	1	NCSAC-33	209	D/70 RPI	SHEA, PRIPLET APPROA, OKS EXPT, NO DATA	53275	
U	235	AB SDRPTION	EVAL-PRDG	2.5-2			NCSAC-33	12	D/70 ANL	de volpirpreliminary value given	53214	
\cup	235	Nigamma	EVAL-PROG	2.5-2			NCSAC-33	12	D/70 ANL	de volpi,preliminary value given	53212	
u	235	n, gamma	THEO-PROG		2.53	3	NCSAC-33	209	0/70 RPI	Shearavg sig calctoroks expt, no cata	53274	
u	235	N, gamma	EXPT-PRDG		1.	5	NCSAC-33	182	0/70 ORL	de saussure+, no data given.tbc	53316	
u	235	SPECt ngamma	EXPT-PROG	1.10	6.40	0	NC SAC-33	28	$0 / 70$ BNL.	kane,table spectra for 4 reson es	53182	
u	235	SPECT NGAMMA	EXPT-PROG	2. 0	3.41	1	NCSAC-33	24	D/70 BNL	CHRIEN+,642KEV TRANSITION SHOHN	53186	
u	235	SPECT NGAMMA	EXPT-PROG	THR			NCSAC-33	152	$0 / 70$ LAS	JURNEY, PRELIM GAM ES 4.4-6.8MEV GIVN	53374	
u	236	FISSIISN	EXPT-PROG	7. 5	2.	6	NCSAC-33	187	O/70 ORL.	ROSLER+,LINAC,TO BE COMPLETSD,NDG	53310	
\cup	238	total XSECT	EXTH-Prog	1. 5	1.7	7	NCSAC-33	2	0/70 ANL.	SMITH+,NO DATA,TO BE PUBL IN NSE	53005	
U	238	TOTAL XSECT	EXPT-PRQG	NDG			NCSAC-33	41	$0 / 70 \mathrm{col}$	Camardat, transmission, no data given	53166	
\checkmark	238	RESON Params	EXPT-PROG	3			NCSAC-33	44	D/70 col.	RAHN+,FRDM N.G. ANAL TBC, NO Data gVn	53056	
u	238	resom params	EXPY-prog	Nog			NCSAC-33	41	0/70 col	CAMARDA+,TRANSMISSION, NG DATA GIVEN	53148	

$\underset{S}{\text { ELEMENT }}$		quantity	TYPE	EMERGY			documentation			Lab	COMAENTS	$\begin{gathered} \text { SER IAL } \\ \text { ND. } \end{gathered}$
u	238	reson params	EXPT-PROG	1		2	NCSAC-33	21	0/70	8NL	Chitent,partial hg dist, no data givn	53191
v	238	elastic	EXTH-PROG	1. 5	1.7	7	NC5AC-33	2	D/70	AHL	Smithe, NO data,to be publ in nse	53003
u	238	TOT INELASTC	EXTH-PROG	1. 5	1. 7	7	NC SAC-33	2	0170	ANL	Smitht, CURVE TO 2 mev.tbp in nse	53004
u	238	oelgyo neuts	EXPT-prog	1. 5	7. ${ }^{\text {c }}$	6	NC5AC-33	155	$0 / 70$	Las	KRICK+,CURV ABSOL NEUT VLO VS. E	53372
U	238	FISS PROD GS	EXPT-PROG	THR		1	NCSAC-33	27	0170	BNL	SAILORt, DELAYED GAM YLDS to be measd	53183
u	238	n.gamma	EXPT-PROG	1. 3	1. 6	6	NCSAC-33	68	D/70	64	fricket, CURVE,cFo gTher gala	53039
U	238	nigamma	EXPT-prog	3			NCSAC-33	44	or70	COL	RAHN+, MOXON-RAE, ANAL TBC, ND OATA	53062
u	238	n, gamma	EXPT-PROG	5. 2	I.	5	NCSAC-33	182	$0 / 70$	ORL	de SAUSSURE+,TABLE+CURVE,tbC	53317
u	238	spect ngamma	EXPT-prog	5.60	4.0	5	NCSAC-33	82	D/70	GA_{4}	JOHN+, GECLII-NAICTLI SPECT, CURVES	53029
\cup	238	SPECT NGAmma	EXPT-PROG	0		2	NCSAC-33	59	0/70	COL	OERENGOHSKIt, GE DET,1-2MEY GAMS, NDG	53050
u	238	spect ngamma	EXPT-PROG	5. 0	1.3	3	NCSAC-33	21	0/70	日NL	CHRIEN+, SUMMED SPECT G-GOOEV SHOKN	53192
u	238	spect ngamma	EXPT-PROG	6.70			NCSAC-33	16	$0 / 70$	BNL	Chrient,absol gamma intensity rex au	53199
u	238	SPECT ngamma	EXPT-PROG		6.	2	NCSAC-33	174	0170	ORL	WASSON+, GEILII, TOF SPECTRA SHOWN	53327
NP	237	total xsect	EXPT-PROG	NDG			NCSAC-33	42	0170	COL	CAMARDA+, TRANSMISSICN, NO DATA GIVEN	53150
$N \mathrm{~N}$	237	RESON PARAMS	EXPT-PROG	3.91			NCSAC-33	59	$0 / 70$	col	FELVINCIt. PRELIM HF GVN, ANAL TRC	53047
NP	237	qESON PARAMS	EXPT-prog	nog			NC SAC-33	41	D170	COL	CAMARDA+, TRANSMISSION, Mo dLta given	53132
NP	237	FISSION	EXPT-PRDG	0		1	NCSAC-33	59	D/70	COL	FELVIMCI+,RESON AT 39.07EV,ANAL TBC	53048
PU	239	Scattering	EXPT-PRDG	2. 1	6.	3	NCSSAC-33	126	D/70	LAS	FARRELL+, NUCL SHOT, CURV 20-b0EV	53354
PU	239	fission	EYAL-PRDG	2.5-2			NCSAC-33	12	D/70	ANL	de volpi,preliminary val.ue given	53206
PU	239	fission	EXPT-PROG	2. 1	3.	3	NCSAC-33	126	D/70	Las	FARRELL+, NUCL SHDT, TABLE+CURVE	53358
PU	239	ETA	EVAL-PRDG	2.5-2			NCSAC-33	12	D/70	ANL	de volpl, Preliminary value given	53203
PU	239	AL PHA	EVAL-PROG	2.5-2			NCSAC-33	12	D/70	ANL	. De valpi,preliminary value given	53204
PU	239	ALPHA	EXPT-PROG	1. 2	1.	4	NCSAC-33	126	$0 / 70$	las	FARRELL+,NUCL SHOT, TBL+CRV, CFO OTHRS	53357
PU	239	NU	EVAL-PRDG	2.5-2			NCSAC-33	12	$0 / 70$	ANL	de volpi, preliminary value given	53202
	239	NU	EXPT-PROG	-	1.	2	NCSAC-33	155	0/70	ORL	WESTON+, PRELIMINARY CURV SHOWN,TEC	53313
Hu	239	SPECT FISS N	EXPT-PROG	NDG			NCSAC-33	5	$0 / 70$	ANL	SMITH,ANALYSIS TO BE COMPL, NO DATA	53218
PU	239	FISS YIELD	EXPT-PROG	THR	1.5	7	NCSAC-33	123	D/70	LOK	IMHOFt, 11 ES, NO OATA GIVEN	53402
pú	239	FISS PROD GS	EXPT-PROG	thr	1.5	7	NCSAC-33	123	D/70	Lok	IMHOF+,GE(LI) DET, NO DATA GIVEN	53404
PU	239	AB SORPTİ	EVAL-Prog	2.5-2			NCSAC-33	12	0170	ank	de volpigreliminary value given	53207
PU	239	n,gamma	eval-prog	2.5-2			NCSAC-33	12	0/70	ANL.	de volpig preliminary value given	53205
Pu	239	SPECT NGAmma	EXPT-PROG	3. -1	5.8	1	NCSAC-33	24	D/70	BNL	ChRIEN+,LOW-E GAMS GIVN far 12 RESCN	53187
PU	239	SPECT NGAmma	EXPT-PROG	THR			NCSAC-33	152	$0 / 70$	las	JURNEY, PRELIT GAM ES 4.4-6.8MEV GIVN	53373
Pu	240	total XSECT	EXPT-PROG	1. -2	3. -	1	NCSAC-33	89	Of10	htr	KROGER+,FAST CHOPPER,ANAL TBC,NAG	53019
PU	240	total xsect	EXPT-prog	1. . 5	1.5	6	NC SAC-33	2	D/70	ANL	Smitht,anal to be completed, curve	53222
PU	240	RESON Params	EXPT-PRDG	4. 3	3.	4	NCSAC-33	203	$0 / 70$	RPI	HOCKENBURY+, CAPT+FISS MEASTS,NO CATA	53280
Pu	240	elastic	EXPT-PROG	3. 5	1.5	6	NCSAL-33	2	0/70	ANL	Smitht,anal to be completec, curve	53221
Pu	240	tot inelastc	EXPT-PRDG	3. 5	1.5	6	NCSAC-33	2	0/70	ANL	Smitht, anal to be completed, no data	53220
PU	240	Fission	EXPT-PROG.	4. 3	3.	4	NCSAC-33	203	0/70	RPI	HECKENBURY+,FISS YLOS+SIG CURVS GIVN	53281
PU	240	n,gamma	EXPT-PRDG	4. 3	3.	4	NCSAC-33	203	D/70	RPI	HOCKENBURY+,CAPT YLOS+SIG CURVS GIVN	53282
PU	241	Eta	EXPT-PRDG	6. -2	$9.1-$		NCSAC-33	87	0/70	MTR	SMITH+, 3 ES,VALUES GIVEN	53026
PU	242	reson params	EXPT-prog	3.72	4.6	4	NCSAC-33	132	$0 / 70$	las	bergent, NUCL SHOT.TBL SUM Fissn area	53353
Pu	242	FISSION	EXPT-PROS	2. 1	8.	6	NCSAC-33	132	D/70	las	BERGEN+,NUCL SHOT,CURY 0.2-GMEV	53356
PU	244	PESON PARAMS	EXPT-PROG	1.23	1.8	4	NCSAC-33	132	D/70	las	BERGEN+,NUCL SHOT,TBL SUM FISSN AREA	53352
PU	244	FISSION	EXPT-PROG	2. 1	8.	3	NCSAC-33	132	$0 / 70$	las	BERGEN+,NUCL SHCT, CURY D.2-BMEV	53355

ARGONNE NATIONAL LABORATORY

ACCELERATOR PROGRAMS

A. Fast Neutron Physics

1. Fast Neutron Cross Sections of Titanium
(A. Smith, P. Moldauer, J. Whalen, E: Barnard; ${ }^{*}$ J. deVilliers, ${ }^{*}$ and D. Reitmann*)

All measurements have been completed and the results incorporated in a revised version of the ENDF/B evaluated file. This revised file has been formally transmitted to the NNCSC, BNL. Final theoretical interpretation of the data is nearing completion employing a picket fence model.
2. Fast Neutron Cross Sections of ${ }^{165}$ Ho
(A. Smith, J. Whalen, J. Meadows and T. Beynon ${ }^{* *}$)

This work has been completed and a formal manuscript submitted for publication in Zeits. für Physik.
3. Fast Neutron Total and Scattering Cross Sections of the Even Molybdenum Isotopes
(P. Lambropoulos, J. Whalen, and A. Smith)

The elastic and inelastic scattering cross sections and the total cross sections of the isotopes Mo-92, 94, 96,98 and 100 were determined from incident neutron energies of 0.1 to 1.6 MeV . A detailed analysis of these experimental results has been undertaken based on the Davydov-Fillippov model. The cross sections have been calculated using the optical model computer code ABACUS-2. Spins have been assigned to the experimentally observed excited states. The results are consistent with the theoretical model as well as with γ-ray experi-

[^0]mental results and analyses recently reported by other authors. Several. new levels have been observed. (Pertinent to request \#221, WASH-1144)
4. Fast Neutron Total and Scattering Cross Sections of ${ }^{238} \mathrm{U}$ (P. Lambropoulos, A. Smith, J. Whalen, and J. Meadows)

The results of recent measurements are complete and, combined with previously reported values, have been interpreted from 0.1 to 10.0 MeV in terms of a local, energy-dependent, spherical optical potential with spin orbit coupling. Total cross sections and elastic and inelastic scattering cross sections were calculated and compared in detail with the experimental results. The statistical model was used in calculating elastic and inelastic scattering processes and capture and fission reactions were taken into account. The effects of resonance width iluctuations and correlations, and of deformation were examined. Generally, satisfactory agreement was achieved between calculation and experiment. An interesting result of the work was the conclusion that the inelastic scattering cross section in the region near 1.5 MeV is appreciably smaller than that given in some of the more widely used evaluations. This is illustrated in Fig. A-1. Shown is the total inelastic scattering cross section of ${ }^{238} \mathrm{U}$: The solid curve indicates the results of the present work. The other curves indicate the values given in various evaluations, particularly, —...-...ENDF/B, and - - . ENDF/B, version II.

A formal report of the above work has been submitted for publication in Nuclear Science and Engineering. (Pertinent to request \#405 and 406, WASH-1144)
5. Fast Neutron Total and Scattering Cross Sections of Pu-240;
0.1 to 1.5 MeV
(P. Lambropoulos, J. Whalen, and A. Smith)

Experimental determination of the total cross sections and of the elastic and inelastic scattering cross sections of Pu-240 has been completed for neutron energies from 0.1 to 1.5 MeV .

Representative experimental results are shown in Fig. A-2; namely, total and elastic scattering cross sections of Fu-240. The dashed curves indicate "eye guides" through the experimental points. The solid curve is the result of preliminary optical-model analysis. The total cross section displays appreciable structure: This effect is believed anomalous, arising from the contribution of aluminum reson-

DATA NOT FOR QUOTATION

Fig. A-1

DATA NOT FOR QUOTATION

DATA NOT FOR QUOTATION
ances. Corrections were applied but small differences in energy resolution and/or incident energy calibration can easily lead to the structured behavior. Averages over energy intervals large compared to that of the structure should result in reliable average cross section values. The figure also indicates the measured elastic scattering cross sections. These, combined with the measured inelastic scattering cross sections, are consistent with the observed total cross sections. A preliminary result of theoretical interpretation based on the opticalmodel is indicated on the figure. Further analysis now in progress is based upon the compound nucleus processes, chamel coupling effects and resonance interference properties. The measurements and the interpretation constitute the only known detailed study of fast neutron processes in Pu-240, a major constituent of many fast reactor systems.
6. $\frac{\text { Prompt Fission Neutron Spectra of }{ }^{235} \mathrm{U} \text { and }{ }^{239} \text { Pu }}{\text { (A. Smith) }}$

The final reduction of the experimental results is nearing completion: The ratio of the spectral distribution from 235 U and ${ }^{239} \mathrm{Pu}$ are very clearly defined and the absolute spectral shapes derived to neutron energies of 1.5 MeV . All data are presently in the form of energy spectra which must be combined to obtain the final values. Careful assay of the accuracy of the results is difficult and has slowed the analysis of the experimental values. (Pertinent to request \#389, WASH-1144)

7. Fast Neutron Inelastic Gamma Ray Studies in Arsenic and Sodium (D. L. Smith)

Inelastic neutron scattering gamma-ray production measurements for ${ }^{75} \mathrm{As}$ and ${ }^{23} \mathrm{Na}$ were made at several neutron energies between 300 keV and 1500 keV with the $\mathrm{Ge}(\mathrm{Li})$ detector at 90° to the incident neutron flux.

Angular distribution measurements were made for the 440 keV gamma ray from the ${ }^{23} \mathrm{Na}\left(\mathrm{n}, \mathrm{n}^{\prime} \gamma\right.$) reaction at neutron energies of 780 , 910 , 1070, 1150 and 1230 keV . Preliminary experimental results are available from the author.
8. Resonance Scattering of Neutrons by B ${ }^{10}$ and B^{11}
(J. L. Adams,* R. O. Lane, ${ }^{*}$ S. L. Hausladen, ${ }^{*}$ C. E. Nelson, ${ }^{*}$ A. J. Elwyn, J. E. Monahan, F. P. Mooring, and A. Langsdorf, Jr.)

The polarization and differential cross sections for neutrons scattered by B^{10} and B^{11} for energies in the interval $0.075-2.2 \mathrm{MeV}$ were measured at Argome several years ago. Recently we have analyzed these data to obtain spectroscopic information about the resonances excited in these reactions. One report of this work is in press, ${ }^{*}$ and another is in preparation. In the case of neutron scattering from B^{11}, an attempt has been made to interpret the spectra in terms of particlehole shell model configurations. In the case of neutron scattering from B^{10}, the results of most of the neutron scattering, (n, a) reaction cross sections, and total cross sections have been interpreted in one. consistent R-matrix calculation. Furthermore, quantitative explanation of the large $1 / \mathrm{v}^{10}(\mathrm{n}, \mathrm{a}) \mathrm{Li}{ }^{7}$ cross section as well as the a_{0} / a_{1} branching ratio is given. (Pertinent to request \#27, WASH-1144)

9. Facilities
 (Applied Nuclear Physics Division)

The Dynamitron Tandem Accelerator is now fully operational. The de proton beam current obtained at 8.0 MeV is $\sim 55 \mu \mathrm{~A}$. Peak pulsed proton and deuteron currents measured with a fast Faraday cup are $>1000 \mu \mathrm{~A}$ at 1.3 nsec FWHM and $700 \mu \mathrm{~A}$ at 2.0 nsec FWHM, respectively. Beam energy stability ($\Delta \mathrm{E} / \mathrm{E}$) is less than 140 eV at 1.88 MeV and 820 eV at 6.00 MeV as indicated by the thin target yield of ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n}){ }^{7} \mathrm{Be}$ and ${ }^{27} \mathrm{Al}(\mathrm{p}, \mathrm{n})^{27} \mathrm{Si}$.

The facility is in routine production at this time. New instrumentation includes a 7 meter rotary collimator system permitting the determination on scattered neutron angular distributions at ten angles concurrently and a large liquid scintillation tank for capture

[^1]gamma-ray measurements. A complement of on-line computers has been put into operation including two 16 k 24 bit machines and two 12 bit machines with a total of 24 k words of cort storage. Software development has progressed to the point of production use.

10. Facilities
 (Physics Division)

Installation of a nanosecond beam-pulsing system in the high voltage terminal of the $4-\mathrm{MeV}$ Dynamitron has been completed. The ORTEC system passed its acceptance tests early in 1970. The system consists of three basic parts -a conventional duoplasmatron ion source followed by a beam chopper and finally a Klystron buncher. Without bunching beam pulses as short as 14 nsec FWHM and with peak currents up to $800 \mu \mathrm{~A}$ have been produced. Typically such pulses, when bunched, shorten to $1.3-1.5 \mathrm{nsec} \mathfrak{F H M}$ with peak currents of 2-3 mA. The shortest pulses produced to date were $1.0 \mathrm{nsec} F W H M$, with a peak current of 1.6 mA . The repetition rate can be varied by successive factors of $\frac{1}{2}$ from 2 MHz down to 31.25 KHz . The system is now being used routinely in a series of investigations of nuclear properties.
B. Charged Particle Physics

1. Neutron Differential Cross Sections in the ${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n}){ }^{48} \mathrm{Sc}$ Reaction
(A. J. Elwyn, F. T. Kuchnir, F. P. Mooring, J. Lemming, and W. G. Stoppenhagen)

We have measured the relative differential cross sections to a number of final states in ${ }^{48} \mathrm{Sc}$ in the ${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{n})^{48} \mathrm{Sc}$ reaction at proton energies near 2 MeV . This range of proton energies corresponds to the excitation of the $T=\frac{9}{2}$ state in ${ }^{49} \mathrm{Sc}$ at 11.56 MeV which is the analog of the ${ }^{49} \mathrm{Ca}$ ground state. The yields of neutrons leading to the $0.131,0.252,0.624$, and 1.140 MeV states in ${ }^{48} \mathrm{Sc}$ have been obtained at 7 angles between 0 and 135° and at 11 proton energies from 1.95 to 2.0 MeV . The newly-installed pulsed and bunched source of the $4-\mathrm{MeV}$ Dynamitron producing proton beam bursts $4.3-1.5 \mathrm{nsec}$ wide with peak currents of about 2.2 mA was used and the various neutron groups were separated by measuring the time-of-flight over a 1 m flight path. Neutrons were detected simultaneously at 4 angles using $2^{\prime \prime}$ diameter by $1^{\prime \prime}$ thick stilbene scintillators coupled to

RCA 8575 photo tubes. Pulse-shape discrimination was employed to suppress the gamma rays. The energy resolution was 7% and 6% (FWHM) for neutron energies of 300 keV and 1.2 MeV , respectively. Analysis of the observed angular distributions in terms of the partial waves involved in the reaction i.s in progress.

$$
\begin{aligned}
& \text { 2. } \frac{R u^{103,105} \text { States Observed in the Reactions } R u^{102,104}(\mathrm{~d}, \mathrm{p})}{\text { (H. T. Fortune, G. C. Morison, J. A. Nolen, Jr., }} \\
& \text { and P. Kienle) }
\end{aligned}
$$

The (d, p) reaction on $\mathrm{Ru}{ }^{102}$ and Ru^{104} has been studied at an incident deuteron energy of 14 MeV . Proton spectra were recorded in a broad-range magnetic spectrograph. Transferred ℓ values and spectroscopic factors were obtained by comparing the measured angular.distributions with DWBA predictions. The summed spectroscopic factors give information on the extent of filling of the neutron orbitals in the targets, and these results are in reasonable agreement with results from the (d, t) reaction and for other nuclei in this region.

C. Threshold Photoneutr on Studies
 1. Possible Nonresonant (γ, n) cross section in ${ }^{207} \mathrm{~Pb}$ and 208 pb

Using the ANL high-intensity photoneutron source (see NCSAC-31,
page 10, for a brief description) we have attempted to verify the existence of an anomously large non-resonant (γ, n) cross section near threshold in ${ }^{208} \mathrm{~Pb}$ reported earlier in Livermore measurements. *. The shape of the 40.4 keV resonance in the reaction $208 \mathrm{~Pb}(\mathrm{Y}, \mathrm{n})^{207} \mathrm{~Pb}$ was examined for evidence of resonance-non-resonant amplitude interference and a direct measurement of the non-resonant cross section was made at 25 keV in both ${ }^{207} \mathrm{~Pb}$ and ${ }^{208} \mathrm{~Pb}$. The direct measurement was made by inserting an iron filter in the photoneutron beam near the ${ }^{208} \mathrm{~Pb}$ target and observing-the strength of the transmis sion dip in the neutron time-of-flight spectrum at 27.9 keV . This dip, due to a strong resonance in the iron filter at that energy, * Bowman, Baglan, and Berman, Phys. Rev. Letters 23, 796 (1969).

DATA NOT FOR QUOTATION

is assumed to arise from the attenuation of the neutron continuum produced by the non-resonant (γ, n) amplitude. Although the shape of 40.4 keV resonance is distinctly different from that of earlier experiments, the results for ${ }^{208} \mathrm{~Pb}$ are consistent with a nonresonant amplitude of $1-1.5 \mathrm{mb} / \mathrm{sr}$. in the range $25-40 \mathrm{keV}$. fíowever, no detectable non-resonant amplitude is observed for ${ }^{207} \mathrm{~Pb}(\gamma, n)$ in the same energy range. Three points suggest that the non-resonant cross section reported for ${ }^{208} \mathrm{~Pb}$ is in fact an instrumental effect:1) the value observed at 25 keV for ${ }^{208} \mathrm{~Pb}$ is an order of magnitude larger than the upper limit inferred from the 25 keV capture cross section for ${ }^{20} \overbrace{\mathrm{~Pb}}$, 2) The observed ${ }^{208}{ }^{\mathrm{Pb}}$ cross sections when extrapolated to thermal are not consistent with the known cioss section for the inverse process, ${ }^{207} \mathrm{~Pb}\left(\mathrm{n}, \gamma_{0}\right)$, 3) Although a similar phenomenon is expected for the other Pb isotopes none is observed for ${ }^{207} \mathrm{~Pb}$. Efforts to understand the (γ, n) results are continuing.

2. M1 Radiative Strength in ${ }^{53} \mathrm{Cr}$

(H. E. Jackson)

We have studied the reaction ${ }^{53} \operatorname{Cr}(\mathrm{Y}, \mathrm{n})$ near threshold. Time-of-flight spectra for the photoneutron spectra were observed for neutrons emitted at 90° and 135° to the incident photon beam and from the observed angular distributions angular momentum assignments of the resonances shown in table C-1 were made. The spectra for $\theta=135^{\circ}$ are shown in fig. $C-1$. The data are characterized by an intense p-wave component which suggests exceptionally strong M1 radiative transitions. A report of this work is in preparation.

$$
\begin{aligned}
& \text { 3. Monte Carlo Program for }{ }^{6} \text { Li Glass Detectors } \\
& \text { (E. N. Strait, W. J. Snow, and J. W. Tippie) } \\
& \text { The capture of neutrons in a }{ }^{6} \text { Li glass scintillator has }
\end{aligned}
$$ been investigated by a Monte Carlo computer program. The program randomizes the neutron point of entry at the face of a finite geometry cylindrical detector and traces its progress via scattering, which is assumed to be isotropic, until capture or escape from the glass. Ten incident energies have been treated in the range 10 keV to 800 keV with sufficient number of neutrons to produce 5000 captures in each case. At each energy the output of the program gives spectra of the transport times within the glass for neutrons which are captures before scattering, for those captured after one or more scattering

Fig. C-1

DATA NOT FOR QUOTATION

E_{n} (MeV)	E_{n}		
	J	(MeV)	J
. 373	$\frac{1}{2}$. 169	-••
. 350	$\frac{3}{2}$. 146	$\frac{1}{2}$
. 333	$\frac{1}{2}$. 133	$\frac{3}{2}$
. 317	$\frac{3}{2}$. 125	$\frac{3}{2}$
. 315	$\frac{1}{2}^{+}$. 117	$\frac{1}{2}^{+}$
. 294	$\frac{1}{2}$. 107	$\frac{3}{2}$
. 274	$\frac{3}{2}$. 105	$\frac{3}{2}$
. 241	$\frac{3}{2}$. 101	$\frac{3}{2}$
. 233	$\frac{1}{2}$. 092	$\frac{1}{2}^{+}$
. 226	$\frac{1}{2}+$. 0546	-. .
. 196	$\frac{3}{2}$. 0477	$\frac{1}{2}^{+}$
. 193	$\frac{1}{2}$. 0455	-••
. 182	$\frac{1}{2}$. 0214	-••
. 177	-•		

Table C-1. Angular momentum assignments for resonances in the reaction ${ }^{53} \mathrm{Cr}(\mathrm{y}, \mathrm{n})$.
events, the composite time spectrum of these two types of histories, the efficiency of the detector, and the number of scatterings from each nuclide within the glass. The program contains options for various neutron source geometries. For a parallel beam of neutrons incident normally upon the face of a 0.375 inch thick by 5 inch diameter NE913 scintillator ($18 \%{ }^{6} \mathrm{Li}_{2} \mathrm{O}, 1 \%{ }^{7} \mathrm{Li}_{2} \mathrm{O}, 76 \% \mathrm{SiO}_{2}$, $5 \% \mathrm{CeO}_{3}$) efficiencies range between 0.9% and 4.8% in the energy range treated. Multiple scattering is significant, contributing 20\% to 35% of the events leading to capture.

4. Photoneutrons from ${ }^{235} \mathrm{U}$
 (H. E. Jackson)

The use of the threshold photoneutron technique has been proposed as a possible means of nondestructive analysis for fissile material. In a scarch for a possible prominent spectral feature which could serve as a signature for ${ }^{235} \mathrm{U}$ we irradiated a 200 g sample of 235 U with a pulsed bremsstrahlung beam whose end point energy was 7.0 MeV . The photoneutron spectrum was measured by time-of-flight over a 5 meter flight path at a emission angle of 135°. Initial results are negative. No detectable evidence for photoneutron resonances was observed in an 8 hour run with an average electron beam of approximately 20 microamps.

D. Slow Neutron Physics

1. CP-5 Reactor

The CP-5 reactor returned to normal operation in October after an extended shutdown for extensive modification and rehabilitation. Research activity has been limited in this period to analysis of data obtained before the shutdown.

2. Current Values of the Fundamental Fission Parameters, The $2200 \mathrm{~m} / \mathrm{s}$ Constants (A. De Volpi).

A review* has been made of the status of $2200 \mathrm{~m} / \mathrm{s}$ fission constants, focused mainly on ${ }^{235} \mathrm{~J},{ }^{239} \mathrm{Pu}$, and ${ }^{233} \mathrm{U}$. The most recent work in this field has been by the IAEA published in 1969. Depending very much on a partially subjective view towards experimental credibility, a significantly different set of parameters can be developed. The points of departure are the acceptance by the reviewer of the more recent low measurements of the ${ }^{233} U$ and ${ }^{234} U$ half-lives and of reduced downweighting of some absolute measurements of $v\left({ }^{252} \mathrm{Cf}\right)$ which have been the object of extensive verification procedures. This results in 1% lower ν values for the fissile isotopes. In addition, some reductions in η values are experimentally justified. The half-life revisions augment evidence that the fission cross-sections for ${ }^{233} \mathrm{U}$ and ${ }^{2.35} \mathrm{U}$ should be higher than the IAEA
*
for Reactor Technology

DATA NOT FOR QUOTATION

average. As a result of this study, an adjusted set of fission parameters has been generated with substantive support from the revised experimental input data, see Table D-1. A uniform constraint of constant product $\nu \sigma_{f}=\eta \sigma_{a}$ is applied, which makes most integral experiments insensitive to the modifications. The ${ }^{239} \mathrm{Pu}$ set has additional ambiguities due to inadequate input data.

Table D-1. Revised Values for $2200 \mathrm{~m} / \mathrm{s}$ constants **

	Experiment	Adjusted	Experiment	Adjusted
σ_{a}	$\begin{aligned} & 575.6 \pm 1.6 \\ & (0 \%)^{* * *} \end{aligned}$	$\begin{aligned} & 582.5 \pm 1.8 \\ & (+0.85 \%) \end{aligned}$	$\begin{aligned} & 680.5 \pm 2.7 \\ & (+0.15 \%) \end{aligned}$	$\begin{aligned} & 683.0 \pm 1.9 \\ & (+0.66 \%) \end{aligned}$
σ_{f}	$\begin{aligned} & 539.3 \pm 4.8 \\ & (+1.6 \%) \end{aligned}$	$\begin{aligned} & 537.9 \pm 1.9 \\ & (+1.0 \%) \end{aligned}$	$\begin{aligned} & 587.4 \pm 2.5 \\ & (+1.0 \%) \end{aligned}$	$\begin{aligned} & 585.7 \pm 1.8 \\ & (+0.95 \%) \end{aligned}$
${ }^{\sigma} \gamma$	$\begin{aligned} & 50.6 \pm 3.2 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 44.6 \pm 0.9 \\ & (-12 \%) \end{aligned}$	-	$\begin{aligned} & 97.3 \pm 1.1 \\ & (-1.0 \%) \end{aligned}$
a	$\begin{aligned} & 0.0900 \pm 0.0004 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 0.0830 \pm 0.0018 \\ & (-6.6 \%) \end{aligned}$	$\begin{aligned} & 0.1691 \pm 0.0021 \\ & (-0.59 \%) \end{aligned}$	$\begin{aligned} & 0.1661 \pm 0.00 \\ & (-2.0 \%) \end{aligned}$
η	$\begin{aligned} & 2.278 \pm 0.008 \\ & (-0.44 \%) \end{aligned}$	$\begin{aligned} & 2.265 \pm 0.006 \\ & (-0.86 \%) \end{aligned}$	$\begin{aligned} & 2.067 \pm 0.009 \\ & (-0.48 \%) \end{aligned}$	$\begin{aligned} & 2.058 \pm 0.006 \\ & (-0.68 \%) \end{aligned}$
ν_{t}	$\frac{2.453 \pm 0.050}{-}$	$\frac{2.453 \pm 0.007}{(-1.4 \%)}$	$\frac{2.393 \pm 0.008}{}$	$\frac{2.400 \pm 0.007}{(-0.92 \%)}$
σ_{s}	-		$\begin{aligned} & 14.3 \pm 0.5 \\ & (-7.0 \%) \end{aligned}$	13.6 ± 1.5 -
*Preliminary, 7 October 1970				
In parentheses are percentage differences comparing Hanna et al. (1970) inputerimental and output-adjusted data.				

	Experiment	Adjustment ${ }^{\text {* }}$	Adjustment B^{*}
σ_{a}	$\begin{aligned} & 1012.1 \pm 6.2 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 1021.6 \\ & (+0.86 \%) \end{aligned}$	$\begin{aligned} & 1013.4 \pm 4.6 \\ & (0.13 \%) \end{aligned}$
σ_{f}	$\begin{aligned} & 742.5 \pm 2.8 \\ & (+0.26 \%) \end{aligned}$	$\begin{aligned} & 742.5 \\ & (+0.26 \%) \end{aligned}$	$\begin{aligned} & 742.5 \pm 3.1 \\ & (+0.26 \%) \end{aligned}$
${ }_{\boldsymbol{\gamma}}{ }_{\gamma}$	$\begin{aligned} & 275.5 \pm 7.8 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 279.1 \\ & (+2.9 \%) \end{aligned}$	$\begin{aligned} & 270.9 \pm 2.6 \\ & (-1.7 \%) \end{aligned}$
a	$\begin{aligned} & 0.3598 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 0.376 \\ & (+2.8 \%) \end{aligned}$	$\begin{aligned} & 0.365 \pm 0.004 \\ & (+1.4 \%) \end{aligned}$
η	$\begin{aligned} & 2.100 \pm 0.009 \\ & (-0.48 \%) \end{aligned}$	$\begin{aligned} & 2.091 \\ & (-0.84 \%) \end{aligned}$	$\begin{aligned} & 2.091 \pm 0.007 \\ & (-0.84 \%) \end{aligned}$
v_{t}	$\xrightarrow{2.854 \pm 0.008}$	$\frac{2.877}{(-0.10 \%)}$	$\frac{2.854 \pm 0.007}{(-0.91 \%)}$

${ }^{*}$ For ${ }^{239} P_{u}$ Adjustment $A, \nu_{t}\left({ }^{239} P_{u}\right) \sigma_{f}\left({ }^{239} \mathrm{Pu}\right)=2136.2$ (as Hanna et al., 1970); for B the product is 2119.1.

$$
\begin{aligned}
& \nu_{t}\left({ }^{252} \mathrm{Cf}\right)= 3.730 \pm 0.008 \text { (Experiment) }(-0.35 \%) \\
& 3.730 \pm 0.008 \text { (Adjusted) } \quad(-0.94 \%) \\
&\left.\sigma_{f} f^{239} \mathrm{Pu}^{235} \mathrm{U}\right)= 1.2615 \pm 0.0081 \text { (Experiment) }(-1.6 \%) \\
& 1.2615 \pm 0.0081 \text { (Adjusted) } \quad(-1.3 \%)
\end{aligned}
$$

$$
\tau_{1 / 2}\left({ }^{233} \mathrm{U}\right)=1.554 \pm 0.003 \times 10^{5} y(-2.5 \%)
$$

$$
\tau_{1 / 2}\left({ }^{234} \mathrm{U}\right)=2.444 \pm 0.005 \times 10^{5} \mathrm{y}(-1.8 \%)
$$

Table D-1 (continued)

BROOKHAVEN NATIONAL LABCRATORY

A. NEUTRON PHYSICS

1. Fast Chopper (R. E. Chrien, O. A. Wasson, G. Cole, R. G. Graves, M. R. Bhat,* S. F. Mughabghab,* S. Dritsa,t F. Becvar, $\dagger \dagger$
R. Moreh, $\dagger+\dagger$ P. Liaud $\dagger+\dagger \dagger$
a) Instrumental

Development of a spectrometer to measure the resonant neutron capture γ rays in the fissile nuclei continues. A special Ge(Li) γ-ray detector is surrounded by an annular liquid scintillator, which detects fission neutrons, and thereby separates capture from fission events. Events detected in the $G e(\mathrm{Li})$ detector are tagged if the events from the fission detector occur in coincidence. The tagged and untagged events are written in tape and sorted off-line. Tests of the fission detection efficiency of the liquid scintillator using resonant neutron absorption in U^{235} are in progress.
b) Experimental

- 238 1) Measurement of absolute γ-ray intensities in resonances of $\mathrm{U}^{238}, \mathrm{Pt}{ }^{195}, \mathrm{Mo} 98$, and CdIII relative to Aulig8. In order to determine absolute γ-ray intensities for those elements for which thermal capture spectra are difficult to obtain due to isotopic contamination or low cross sections, we have measured these intensities relative to those of the 4.9 eV resonance in gold. Since it is known in our previous work that the summed γ-ray intensities for $E_{Y}>6200 \mathrm{keV}$ are the same for capture of both thermal and 4.9 eV neutrons, we have used as a standard the value of 10.6 photons per 100 captures measured for these γ-rays in thermal capture by Groshev et al. We have run composite samples of different elements using the measured neutron flux shape and the known resonance parameters to calculate the number of neutrons absorbed in each resonance. The resultant γ-ray intensities for the lowest energy resonances in these nuclei are listed in Table I.

[^2]Absoiute γ-ray Intensities Relative to Gold

Target	$\mathrm{E}_{\boldsymbol{Y}}(\mathrm{eV})$	${ }_{\underline{E}}^{\mathrm{y}_{\boldsymbol{Y}}(\mathrm{MeV})}$	${ }^{\text {I }}$ (${ }^{\text {(photons }}$ per capture)
Au^{198}	人20.	6.2-6.5	0.106
Pt^{195}	15 \%	7.92	$0.062 \pm .006$
u^{238}	$\because \because$	$3.991+3.982$	$0.039 \pm .004$
Cd^{111}	2\%\%..	$\begin{aligned} & 6.888 \\ & 6.565 \end{aligned}$	$\begin{aligned} & 0.0059 \pm .001 \\ & 0.119 \pm .002 \end{aligned}$
Mo ${ }^{98}$	12.0	$\begin{aligned} & 5.926 \\ & 5.575 \\ & 5.379 \\ & 5.133 \end{aligned}$	$\begin{aligned} & 0.031 \pm .006 \\ & 0.021 \pm .006 \\ & 0.028 \pm .007 \\ & 0.053 \pm .008 \end{aligned}$

The results for U^{238} are significantly lower than reported in previous BNL chopper measurements (D. L. Price et al, Nuc. Phys. Al2l, 630-654 (1968), and are now in good agreement with measurements at Gulf General Atrmic (GGA Report GA-10186)
2) Resonant neutron capture in ${ }^{111} \mathrm{Cd}(\mathrm{n}, \gamma){ }^{112} \mathrm{Cd}$. Analysis of a previous experiment using the ${ }^{112} \mathrm{Cd}\left(\gamma, \gamma^{\prime}\right)^{112} \mathrm{Cd}$ reaction demonstrated a correlation between the γ-ray transition rates from a negative parity level near 7.6 MeV excitation to low-lying positive parity states and the (d, p) spectroscopic factors of the final states. A search for a similar correlation from the higher excited states above the neutron binding energy formed by P-wave neutron capture in ${ }^{111} \mathrm{Cd}$ was undertaken using the Fast Chopper at BNL. The neutron energy region extended from 10 to 1500 eV , yielding γ-ray spectra from 5 resolved neutron resonasces below 200 eV as well as from the unresolved region at higher enerqias. There is strong evidence that the spin of the 86 eV resonance is $0 . \because$ fin average γ-ray intensities from the unresolved neutron energy करण above 300 eV are at nearly equal strength for transitions to boin pusiztive and negative parity final states, suggesting the presence of both S-and P-wave resonances in that energy region. A determination of the correlation coefficient is in progress.
3) Study of resonance neutron capture in ${ }^{149}$ Sm. The capture γ-ray spectrum from an enriched sample in ${ }^{149}{ }^{5} \mathrm{Sm}$ was studied throughout the neutron energy interval from 0.02 to 50 eV . The resonance spins were determined from the γ-ray decay of the capturing states and are listed in Table II. In addition to the spectra measured

Figure 1
on the resonances, the intensity variation of 41γ-rays were also measured in the off-resonance region from 0.02 to 10.0 eV . A representative intensity variation for the primary transition to a final state at 223 keV is shown in Fig. I where the arrows indicate the positions of the resonances. The variation results from resonance-resonance interference. The importance of postulating a 3 - bound level is apparent from the curve. From the interference analysis, the partial radiation widths for 41γ-rays from the bound level were determined and found to follow the same fluctuations as the positive energy resonances. An analysis of the statistical properties of the partial radiation widths from 16 positive energy resonances to 41 final states was done. The distribution of partial widths is shown in Fig. 2 and was fitted to a chi-squared distribution with $1.64_{-0.18}^{+0.23}$ degrees of freedom which is inconsistent with the predicted value of 1.0 . However there is no significant correlation between either resonant neutron widths and partial radiation widths or between pairs of partial radiation widths, which is in agreement with the predictions of the statistical mode1.

TABLE II

Figure 2

4）Distribution of Partial Radiation Widths in ${ }^{238} U(n, y)^{239} U$ ． （In collaboration with G．G．Slaughter and J．A．Harvey of Oak Ridge National Laboratory）The neutron capture γ－ray spectra from U^{238} were measured throughout the neutron energy interval from 5 to 1300 eV using ORELA．Relow 600 eV 23 of the resolved resonances were strong enough to determine the intensities of the high energy γ－rays．The summed spectrum from 6 to 600 eV for the 10 day run is shown in Fig． 3 where the double escape peaks of the uranium γ－rays are indicated by vertical lines．The distribution of partial radiation widths was fitted to a chi squared distribution function with a variable number of degrees of freedom．The γ－rays below 4.0 MeV are consistent with 1 degree of freedom while the γ－rays at higher energy are not．The departures from 1 degree of freedom are apparently not dependent on the multipolarity of the $\gamma-r a y$ transi－ tion but depend only on γ－ray energy．In addition the intensities of the 3991 and $3982 \mathrm{keV} \gamma$－rays are strongly correlated over resonances while the remaining γ－rays show no correlations．（Pertinent to Request $⿰ ⿰ 三 丨 ⿰ 丨 三 415$ WASH 1144）

5）Non－Statistical Effects in ${ }^{163} \mathrm{Dy}(\mathrm{n}, \gamma)^{164} \mathrm{Dy}$ ．The capture y－ray spectra from 23 resonances below 325 eV were measured．The γ－ray intensities from 17 resonances with $J=3$ to 22 final states in ${ }^{164} \mathrm{Dy}$ reveal that these are significant correlations between partial radiation widths and resonant reduced neutron widths as was first observed in ${ }^{169} \mathrm{Tm}$ ．However no correlation is observed for the 8 resonances of spin 2．The average correlation coefficient of +0.223 for the entire set of γ－rays from $J=3$ resonances is shown in Fig． 4 where the histogram represents the distribution for zero correlation． This correlation in the $J=3$ channel is attributed to non－statistical effects produced by both channel capture and the presence of doorway states near the neutron binding energy．

6）Non－Statistical Effects in P－Wave Neutron Capture in
$98_{\text {Mo }}$ ．The capture γ－ray spectra from P－wave neutron capture in 6 resonances of 98 Mo below 1200 eV were obtained at the 48 m flight path of the Fast Chopper．The spectra from the 612 eV and 429 eV resonances （Fig．5）are strikingly similar suggesting a strong correlation between pairs of γ－ray intensities．The resulting average correlation coefficient between pairs of γ－rays for the 4 p－wave resonances and 5 lowest lying states is +0.54 and is highly significant．In addition the γ－ray reduced intensities are strongly correlated with the（ d, p ）spectroscopic factors of the final states．These results are similar to those reported for 92 Mo and 93 Nb and suggests that doorway states are influencing P－wave neutron capture in this mass region．
（Pertinent to Requests 224，225，WASH 1144）

Figure 3

Figure 4

Figure 5

73 Low energy γ－rays from thermal and resonance capture in 239 Pu and 235 U ．Low energy gamma rays following neutron capture in 235 J and 239 Pu have been examined．In the 235 U case most resonances between 2 and 34 eV were adequately separated．However，due to the high fission gamma ray background，only a few radiative transitions to the ground state band were observed．The intensity of these transitions fluctuates from resonance to resonance and is roughly proportional to the ratio of capture to fission width．An attempt to correlate the spin of the capturing resonances to the values of the relative intensity of a certain transition gave negative results．Namely for the 642 keV transition，from the 2^{-}leve1 at 687 keV to the first excited 2^{+}state， no grouping was observed according to the spin values，as is shown in Fig．6．In the case of ${ }^{239} \mathrm{Pu}$ where the radiative transitions are stronger a number of resonances from 0.3 eV to 58 eV were examined． For one resonance，the 7.8 eV ，measurements were also taken with the crystal neutron diffraction monochromator，and the results were compared with those from the Fast Chopper measurements．Several transitions were observed strongly in most of the resonances examined．These transitions populate energy levels of ${ }^{240} \mathrm{Pu}$ known from the decays of neighboring nuclei．The relative intensities of the stronger transitions are listed in Table III．These intensities have been normalized against the mean value intensity for each resonance．（Pertinent to Request $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 391，WhSH 1144）

8）Neutron capture γ－rays from the 2.85 keV Na resonance． It has been recently reported by workers at RPI and Harwell that the radiation width of the 2.85 keV resonance in Na^{23} is too large to be consistent with the known thermal capture cross section， 0.534 ± 0.005 barns．For example，the RPI result $\Gamma_{\gamma}=0.47 \mathrm{eV}$ ，is about 50% larger than is expected．To determine whether multilevel interference effects in the radiative channels can be responsible for this departure，we have measured the spectrum from the 2.85 keV resonance and compared it to thermal capture．Although the background，caused by the high ratio of scattering to capture，is high，we have been able to determine that quantitative differences in the spectra do exist，particularly for the 6395.1 －ray，which has a 20% intensity at thermal．Destructive inter－ ference for this transition could depress the cross section sufficiently to account for the discrepancy．The interfering amplitude does not appear to result from a bound state，hence direct capture is a plausible alternative．A direct capture cross section of 77 mb at $\mathrm{E}=0.0253$ could be consistent with the observed results．

1．Yanamuro et al，Nuc．Sci．\＆Engineering 41， 445 （1970）
2．Moxon and Pattenden，Proc．Conf．on Nuc．Data for Reactors， IAEA Vienna，paper $\mathrm{CN}-23 / 27$（1967）

Table III
Low Energy γ－Ray Intensities from ${ }^{239} \mathrm{Pu}(\mathrm{n}, \gamma){ }^{240} \mathrm{Pu}$ Relative Intensities

$\mathrm{E}_{\mathrm{y}}(\mathrm{keV})$	0.3	Resonance Energy，eV				
		7.8	10.95	11.9	14.68	17.7
554 ± 1.5	$2.75 \pm .24$	$2.96 \pm .16$	$2.80 \pm .24$	$3.30 \pm .36$	$2.20 \pm .26$	$2.84 \pm .46$
597	$2.23 \pm .23$	$2.00 \pm .36$	$1.68 \pm .56$	$2.30 \pm .43$	$2.13 \pm .25$	$1.90 \pm .31$
607	$1.21 \pm .13$	$1.21 \pm .25$	$1.30 \pm .50$	$2.10 \pm .37$	$1.50 \pm .20$	． $65 \pm .18$
814	． $77 \pm .20$	． $56 \pm .03$	． $81 \pm .07$	． $25 \pm .04$	． $81 \pm .16$	． $54 \pm .10$
916	1．10土．08	． $63 \pm .16$	． $82 \pm .22$			
937		1．50土， 13	． $37 \pm .09$	$1.52 \pm .21$	． $87 \pm .18$	$1.40 \pm .33$
973	． $54 \pm .10$	－	． $65 \pm .16$	． $10 \pm .04$	． $62 \pm .24$	． $33 \pm .08$
986	． $70 \pm .10$	．954． 23	． $62 \pm .19$	． $82 \pm .13$	$1.0 \pm .23$	$1.24 \pm .38$
1131	． $85 \pm .08$	． $37 \pm .11$	． $91 \pm .21$		． $50 \pm .13$	． $18 \pm .06$
1134	． $75 \pm .05$	． $31 \pm .10$	－－－－－－－－	． $28 \pm .07$	． $53 \pm .12$	． $77 \pm .15$
1216	． $45 \pm .06$	． $66 \pm .20$	． $63 \pm .23$	． $33 \pm .10$	． $67 \pm .25$	． $71 \pm .12$
1220	．44土． 06	． $53 \pm .18$	$1.42 \pm .27$	． $36 \pm .11$	． $46 \pm .08$	． $68 \pm .12$

${ }_{\sim}^{E_{\gamma}(\mathrm{keV})}$	22.2	26．2	41.7	44.	52.7	58.
554 ± 1.5	$3.00 \pm .57$	2．35土．41	$3.34 \pm .56$	$3.54 \pm .40$	$3.23 \pm .59$	$2.21 \pm .38$
597	$2.32 \pm .33$	$2.46 \pm .66$	$1.90 \pm .41$	$1.50 \pm .30$	$2.21 \pm .32$	$2.66 \pm .50$
607	$1.60 \pm .27$	$1.50 \pm .50$	$1.40 \pm .32$	$1.15 \pm .25$	$1.03 \pm .21$	$1.10 \pm .33$
814	． $93 \pm .40$	$2.22 \pm .55$	－－．－－－－－－	$1.11 \pm .23$	． $62 \pm .21$	$1.18 \pm .20$
916	－－－－－－－－	－－－－－－－－－	$1.61 \pm .43$	． $82 \pm .20$	$1.40 \pm .23$	
937	． $60 \pm .20$	$1.04 \pm .19$	$1.42 \pm .29$	$1.00 \pm .23$	． $80 \pm .12$	－－－－－－－
973	$2.03 \pm .68$	． $48 \pm .14$	． $18 \pm .06$	$1.00 \pm .23$	． $35 \pm .11$	． $92 \pm .33$
986	． $31 \pm .05$	－－．－．－－－－	$1.04 \pm .31$	． $60 \pm .08$	． $90 \pm .14$	． $28 \pm .07$
1131	． $40 \pm .06$	－	． $30 \pm .06$	$1.16 \pm .30$	． $32 \pm .08$	． $65 \pm .20$
1134	． $20 \pm .06$	． $50 \pm .20$	． $32 \pm .06$	． $66 \pm .24$	． $38 \pm .08$	． $51 \pm .18$
1216	． $40 \pm .16$		． $23 \pm .06$	． $38 \pm .05$	． $54 \pm .05$	． $40 \pm .10$
1220	$1.04 \pm .25$	－－－－－－－－	． $26 \pm .04$	． $12 \pm .02$		$1.09 \pm .26$

Figure 6

2. Nuclear Cryogenics

a) Multiple scattering corrections in neutron capture cross section measurements (G. Brunhart and S.S. Malik)

A simple approximate correction method for multiple scattering in neutron capture cross sections has been developed for slab geometries assuming only incoherent, elastic, and isotropic scattering. The method is applicable whenever the capture cross section is a slowly varying function of the incident neutron energy, i.e. in the non-resonant region and in between resonances. The accuracy of the method is discussed in terms of Monte Carlo and analytical calculations that are performed under the same restricting assumptions given above.
b) Slow neutron capture cross section measurements (G. Brunhart, S. S. Malik, D. C. Rorer and V. L. Sailor)

An extensive study of the practicality of using a simple Moxon-Rae detector for precisjon measurements of slow neutron capture cross sections has been made." A continuation of this work is planned and is to include measurements on separated isotopes pertinent to requests listed in WASH 1144.
*S.S. Malik, G. Brunhart, F. J. Shore and V. L. Sailor, Nucl. Instr. and Meth. 86, 83 (1970).
c) Spin assignment of Sm^{149} neutron resonances by nuclear polarization (G. Brunhart, D. C. Rorer, V. L. Sailor)
Recent neutron resonance capture studies* of Sm^{149} have led to a disagreement with earlier spin assignments of the 6.48 eV neutron resonance.** It is planned to do a polarization measurement with a Sm-Ho alloy target in order to resolve the discrepancy. There is previous evidence that large nuclear polarizations of otherwise antiferromagnetic samarium in a Sm-Ho alloy can be achieved.
*F. Becvar, Contributed paper at APS Meeting, Houston, Oct. 1970.
**H. Marshak, H. Postma, V. L. Sailor, and C. A. Reynolds, Phys. Rev. 128, 1287 (1962).
d) Delayed gamma-ray yield from U^{235} and U^{238} (V. L. Sailor, G. Brunhart, and D. C. Rorer)

Plans are being made for the measurement of the delayed gamma-ray yield induced in U^{235} and U^{238} targets irradiated in a
monochromatic neutron beam of energies in the thermal and eV region. These measurements are pertinent to requests 392 and 417, WASH 1144.

3. Nuclear Structure

a) Gamma-Rays from Resonances in ${ }^{235}$ U. (W. R. Kane)

The HFBR crystal diffraction neutron monochromater has been used to study high and low energy capture γ-rays following capture in resonances of 235 U . In addition to known levels at 149 and 688 keV , six previously unobserved levels are populated, four of which appear to be members of the beta and gamma vibrational bonds. The neutron separation energy of ${ }^{236} \mathrm{U}$ is $6545 \pm 2 \mathrm{keV}$. Direct transition to spin 2 final states indicate that the 2.04 and 6 c 39 eV resonances have spin 3 . For the 4.845 eV resonance, the absence of transitions to spin 2 final states suggests that a $J \pi=4^{-}$assignment is likely.

The deduced level scheme for ${ }^{236}$ U derived from the resonance capture data and internal conversion data is shown in fig. 7 . The intensities of the high energy lines are shown in Table IV.
(Pertinent to Request 391, WASH 1144)

1. A. Backlin, B. Fogelberg and E. Falkström - Lund, Proc. Intern, Symposium on Neutron Capture Gamma Ray Spectroscopy, Studsvik (IAEA, Vienna 1969) p. 141.

Table IV.
High energy gamma rays from resonance neutron capture in U^{235}. Gamma-ray intensities are given relative to the 642 keV transition in U^{236}.

1.135 eV	2.040 eV	4.845 eV	6.39 eV	Assignment
0.05	0.03	0.3	----	$6545 \rightarrow 148.7$
----	----	---	0.09	$6545 \rightarrow 687.7$
---	1.2	---	0.5	$6545 \rightarrow 956$ or
----	----	---	0.7	$6545 \rightarrow 1001$
1.7	0.3	0.4	0.3	Fission
----	----	0.8	----	$6545 \rightarrow 1051$
----	0.9	- - -	----	$6545 \rightarrow 1058$
3.1	0.9	0.6	0.6	Fission
1.8	0.6	0.6	0.7	Fission
-	0.7	0.5	----	$6545 \rightarrow 1256$
-	1.0	---	--	$6545 \rightarrow 1340$

Figure 7
b) Neutron Capture in the $\frac{5.16 \mathrm{eV} \text { Resonance of Xe }}{\text { W. Gelletly, and D. R. MacKenzie.t }}$ (W. R. Kane,

In a continuation of work on neutron capture by xenon isotopes in the resonance region (see status report to the NCSAC, May 1970) the gama rays emitted after neutron capture in the 5.16 eV resonance of Xe^{124} are being investigated. Although Xe^{124} is only $\sim 0.1 \%$ abundant in the normal $\mathrm{Na}_{4} \mathrm{XeO}$ target employed in this work, so that the target contains only $\sim 2 \mathrm{mg}$. of Xe^{124}, the sensitivity of the neutron monochromator system is such that a number of gamma rays attributable to the product nucleus Xe ${ }^{125}$ are observed at the 5.16 eV resonance. In addition, since the monochromator provides a continuous beam of neutrons at one energy, the data obtained are readily normalized to the gamma rays from the $X e^{125} \rightarrow I^{125}$ decay, aiding further in the unambiguous identification of the Xe ${ }^{124}$ capture gamma rays. These results should be particularly interesting with respect to the level structure of Xe 125 since this nucleus lies at the edge of a region of deformation. So far, only high spin levels of Xellat are known, from studies of the Tel23($\alpha, 2 n$) Xe ${ }^{125}$ reaction.
B. NATIONAL NEUTRON CROSS SECTION CENTER (S. Pearlstein, M. D: Goldberg, M. K. Drake, D. E. Cullen, T. J. Krieger, J. R. Stehn, M. R. Bhat, H. R. Connell, D. I. Garber, W. H. Kropp, B. A. Mugurno, V. May, S. F. Mughabghab, O. Ozer, A. Prince, F. M. Scheffel, H. Takahashi, M. Raymund)

After a trial exchange of tapes, formal transmission of data in an international exchange format (EXFOR) began July 1 , 1970. At the recent 4 -Center meeting in Paris the NNCSC transmission was exanined in detail. No serious problems in the transmission of experimental data have been noted so far.

Trial transmission of data from experimenters in a format approximating EXFOR are underway at AEC laboratories. These procedures will minimize the time required for the generation of author proofs and the entry of data into the files.

The compilation BNL-400, "Angular Distributions in NeutronInduced Reactions, Volume $I, Z=1$ to $20^{\prime \prime}$ has been issued. Volume II is in press. Computerized techniques were used in preparation of the material for publication. These techniques will reduce the costs and time required for future publications.

Version II of the ENDF/B library has been distributed. An intensive effort to test the data in benchmark calculations is being performed by the Cross Section Evaluation Working Group, a cooperative effort among several laboratories. An ENDF Formats and Procedures

Manual will be issued soon.
Programming has been started on a physics checking code, PSYCHE, for ENDF data. The code will use a library of basic data, such as masses, spin, decay properties, etc., to check input data. In addition statistical properties and spectrum averages will be calculated from the data file for comparison with experimental values such as strength functions, resonances integrals, fission and Maxwellian spectrum averages, etc.

Increasing attention is being given to nuclear model codes for use in evaluation studies. The NNCSC is attempting to assist studies that will determine the availability, code size, programming language, capabilities, and documentation of useful codes.

The PDP-10 computer has been operating with two disc-pack units allowing sixty (60) million bytes of on-line fast storage. The evaluated data library is now stored on discs. Steps are being taken to also place the experimental library on disc pacs. Interactive graphics equipment is scheduled for delivery in December 1970.

C. BROOKHAVEN LINAC ISOTOPE PRODUCER (L. G. Stang)

Planned for construction at Brookhaven is a facility to be known as the Brookhaven Linac Isotope Producer (BLIP). It will be located adjacent to the 200 MeV proton LINAC that is being constructed for use as an injector for the Alternating Gradient Synchrotron. The LTNAC is expected to provide the BLIP with a time-averaged DC current of 180 microamperes of $200-\mathrm{MeV}$ protons in the form of nine $200-\mathrm{micro-}$ second pulses per second on a continuous 24 hr/day, 7 days/week basis.

The BLIP will provide for the irradiation of a variety of targets, each selected to be the optimum for producing specific products of interest. The number and thickness of each target will be such that virtually all of the protons are absorbed in the targets at all times with essentially none of the protons being wasted. For example, when short-lived products (requiring only short-term irradiations) are not being produced their places will be taken by targets requiring longterm irradiations (for producing long-lived products).

An idea of the capacity of this facility can be had by noting that the following amounts could be made sequentially, provided that the entire beam is used for producing each of the products one at a time; (proportionately, less would, of course, be available if several different targets were irradiated simultaneously, which is the actual mode of operation proposed, the amount of each depending on the fraction of the beam that each target intercepts):

Isotope	Half-Life	Production Rate
Ta-179	1.7 years	100 curies/year
Ar-42	33 years	200 millicuries/year
A1-26	740,000 years	30 milligrams/year
Y-88	107 days	3 curies/day
Ga-67	78 hours	280 curies/day
Mg-28	21.3 hours	16 curies/day
I-123	13 hours	800 curies/day
$\mathrm{Fe}-52$	8.3 hours	4 curies/day
C-11	20.5 minutes	100 curies/20 minutes
N-13	9.96 minutes	85 curies/10 minutes

The above are just a few examples of some of the products. It will be noticed that most, but not all, of them are neutron-deficient. This is because most, but not all, of the production reactions to be utilized are spallation reactions, although spallation reactions will also be used to produce neutron-rich isotopes such as magnesium-28, their most effective utilization involves production of neutron-deficient nuclides. All of the products will be virtually carrier-free. Product mass numbers can range from one up to the mass number of the target used, and the atomic numbers of the products can range from one up to one more than the atomic number of the target, although the optimum yields decrease as the product nuclide of interest gets farther from the line of stability. In many cases by proper choice of irradiation and cooling times, method of processing, production route, etc. it will be possible to produce particular nuclides free of other isotopes of the same element, although there will, of course, be some cases in which objectionable by-product isotopes can not be excluded.

Although it is still too early to predict schedules with certainty, the first irradiations might commence as early as October 1971. A more likely estimate is some time in 1972.

It would be helpful for planning purposes if people needing specific nuclides that can not be made in satisfactory quantity or purity by present methods would contact Lou Stang, Brookhaven. Although the primary objectives of the BLIP are to assist in an exploratory program at Brookhaven involved in developing medical applications of isotopes and isotopes for medical applications, it may well be possible to provide other kinds of isotopes, especially with proper scheduling.

D. TANDEM VAN DE GRAAFF (H. E. Wegner)

The new 30 MeV three-stage tandem is now in operation and various research programs have been initiated. The facility can provide

30 MeV protons with utilization of all three stages and many types of heavy ions at various energies with two stage acceleration. At present, special modifications are being made in the terminal ion source so that all two-stage ions presently available will also be available on a three-stage basis with ion energies $20-40 \mathrm{MeV}$ higher than the maximum possible with two-stage acceleration.

Many types of heavy ion reactions are presently under study and in a number of cases the heavy ion is used to bombard a light target of deuterium, tritium, helium-3, or helium-4. This technique allows nuclear reactions customarily carried out with the light particle being accelerated to be accomplished by accelerating the target into the light particle. The accelerated target is automatically magnetically analyzed by the energy control system of the accelerator, thereby providing. a 100% pure isotopic target and in addition the gamma background from the interaction of the accelerated target particles with other parts of the apparatus such as collimators and Faraday cups is reduced to almost zero in most cases. For example, in the ${ }^{32} \mathrm{~S}(\mathrm{~d}, \mathrm{n}){ }^{33} \mathrm{Cl}$ reaction the deuterons produce neutrons and gamma rays from many parts of the apparatus and from contaminants in the ${ }^{32}$ S target while with the $\mathrm{d}\left({ }^{32} \mathrm{~S},{ }^{33} \mathrm{Cl}\right) \mathrm{n}$ reaction at energies like 50 or 60 MeV the only neutrons produced are from this specific reaction with no background of any kind.

There are no immediate plans for any specific neutron cross-section-type measurements; however, fast pulse systems are being planned for the facility and almost any type of nuclear cross section will be measurable in the future. It is possible that certain nuclear cross sections important to the AEC could be measured with this facility in a unique way. However, the facility will have to be further instrumented in a more complete fashion than it is at present in order to carry out sophisticated and special measurements more easily here than at other existing laboratories.

CASE WESTERN RESERVE UNIVERSITY

A. NEUTRON PHYSICS

1. Elastic and Inelastic Neutron Scattering (P. Boschung*,
J. T. Lindow**, and E. F. Shrader**)

Accurate differential elastic (typically 3 to 5%) and inelastic (typically 10 to 20%) neutron scattering cross sections have been determined for ${ }^{12} \mathrm{C},{ }^{54} \mathrm{Fe},{ }^{58} \mathrm{Ni}$, and ${ }^{60} \mathrm{Ni}$ between 4.0 and 5.6 MeV . The iron and nickel elastic cross sections have been compared with predictions of the optical model using standard sets of parameters for the potential. ${ }^{1}$ Calculations using the average potential of Rosen et al. predict the differential cross sections fairly well, with agreement somewhat better for the two nickel isotopes. Coupled-channel calculations for the elastic scattering of neutrons by carbon agree very well with the measurements.

Inelastic scattering to single levels in the residual nucleus can be described adequately with the statistical model. In the case of the first excited levels of the nickel and iron isotopes, which are 2^{+} collective states, there is significant evidence for the existence of direct reaction contributions. The data for these states agree well with the sum of predictions of the statistical model and DWBA calculations of direct reaction contributions.

This work is now complete, and a paper titled "scattering of Fast Neutrons by ${ }^{12} \mathrm{C},{ }^{54} \mathrm{Fe},{ }^{56} \mathrm{Fe},{ }^{58} \mathrm{Ni}$ and ${ }^{60} \mathrm{Ni}$ " has been accepted for publication in Nuclear Physics. A Ph.D. dissertation ${ }^{2}$ describing the work has been accepted by the university.

[^3]2. Normalization of Neutron Scattering Cross Sections
(J. T. Lindow, P. Boschung, and E. F. Shrader)

Work has been completed on a technique for absolute normalization of the cross section data from neutron scattering. A paper titled "Absolute Normalization of Neutron Scattering Cross Section Data Using Organic Scintillators as Scatterers"l has been published.

B. STRIPPING REACTIONS AND POLARIZATION

1. Polarization of Neutrons from the ${ }^{13} \mathrm{C}(\mathrm{d}, \mathrm{n})$ Reaction (W. W. Lindstrom* and E. F. Shrader)

The reduction of data from measurements of the polarization of neutrons produced by the ${ }^{13} \mathrm{C}(\mathrm{d}, \mathrm{n})$ reaction is now completed. The feasibility of analyzing the data by comparison with DWBA calculations is being investigated.

A Ph.D. dissertation ${ }^{2}$ describing the experimental methods and results has been accepted by the university.

2. ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{n})^{17} \mathrm{~F}$ Differential Cross Sections (D. E. Velkley, B. D. Anderson, and H. B. Willard)

Preparations are almost complete for a measurement of the absolute differential cross sections for excitation of the ground and first excited state of ${ }^{17_{F}}$ via the ${ }^{16} 0(d, n){ }^{17}$ F reaction over the deuteron energy range of 2.8 to 3.8 MeV . Excitation functions will be measured at two angles in intervals of 100 keV , and angular distributions will be taken at average deuteron energies of $3.05,3.34$ and 3.60 MeV , corresponding to the same incident deuteron energies and target thickness as the polarization measurements described below. These results are expected to provide additional information regarding the reaction mechanism which may be pertinent to interpretation of the

[^4]polarization results. Measurements of cross sections in this energy region have been reported ${ }^{l}$ but not at the exact energies and angles appropriate for the desired analysis.

The necessary equipment including an oxygen gas target chamber and neutron detection system has been assembled and the measurements are expected to be made in the very near future.

> 3. Polarization of Neutrons from the $160(\mathrm{~d}, \mathrm{n}) 17_{\mathrm{F}}$ Reaction
> (B. D. Anderson, D. E. Velkley, R. C. Nerbun, Jr., and H. B. Willard)

Experimental data have been taken to determine the polarization of neutrons from the ${ }^{16} O(d, n){ }^{17}{ }^{1}$ reaction. Asymmetries in the scattering by helium of the ground and first excited state neutron groups have been measured for a deuteron energy range of 3 to 4 MeV . Three angular distributions and one excitation function have been measured in this region. The experimental apparatus used has been described previously.

As in previous ${ }^{13} \mathrm{C}(\mathrm{d}, \mathrm{n})$ neutron polarization measurements performed at this laboratory, the data were stored in a two-dimensional array. The first dimension was time-of-flight (TOF) from the target to a He-Xe cell and the second dimension was the pulse height output of the He-Xe cell derived from the alpha recoils produced by the neutrons scattered into side detectors. Periodic checks for false asymmetries were performed throughout the data taking and were consilared to be satisfactory in all cases.

An existing program to determine effective average analyzing power has been modified to take into account a change in the side detector scintillators from NE-213 to NE-102. This modification consists of an improved calculation of the absolute neutron detection efficiencies and was aided by comparison with the results of a Monte-Carlo code which simulates events in a proton-recoil neutron detector.

[^5]It is expected that polarizations will be determined late this fall. A DWBA analysis with the program DWUCK ${ }^{l}$ is in preliminary stages.
4. Detector. Efficiency Measurements and Calculations
(W. W. Lindstrom, B. D. Anderson, and E. F. Shrader)

Relative neutron detection efficiencies of cylinders of NE-102 and NE-213 uniformly illuminated perpendicular to their axes have been measured. The $T(p, n)^{3} \mathrm{He}$ reaction was the source of neutrons. ${ }^{2}$ Data were obtained for both scintillators simultaneously with the same target filling of tritium gas, thus determining the relative ratios of NE-102 and NE-213 detection efficiencies consistently. Data were obtained using time-of-flight techniques with a discriminator bias to reject all events producing a linear output from the detector smaller than a minimum pulse height.

A published proton recoil detector efficiency code ${ }^{3}$ has been modified to include the effects of $C(n, n)$ angular distribution and scintillator photomultiplier resolution. New data for recoil-proton light output of Smith et al. ${ }^{4}$ were used. Carbon recoil pulse heights were obtained by extrapolation of data of Steuer and Wenzel. 5 This code was used to fit the observed data described above. The scale factor for the experimental data and the program parameter of "average photoelectrons per light unit" were varied until the rapid rise near "cutoff" was reproduced for the $N E-213$ data. The $N E-102$ data were then reproduced by changing the scintillator density, the H / C ratio, and the relative light output curves in the code. The scale factor was not changed. The results for NE-l02 are shown below.
$\overline{I_{P} . ~ D . ~ K u n z, ~ U n i v e r s i t y ~ o f ~ C o l o r a d o . ~}$
${ }^{2}$ G. A. Jarvis, A. Hemmendinger, H. V. Argo and R. F. Taschek, Phys. Rev. 79 (1950) 929-935.

3 B. Gustafisson and 0. Aspelund, Nucl. Instr. and Meth. 48 (1967) 77-86.
${ }^{4}$ D. I. Smith, R. G. Polk, and T. G. Miller, Nucl. Instr. and Meth. 64 (1968) 157-166.

5M. F. Steuer and B. E. Wenzel, Nucl. Instr. and Meth. 33 (1965) 131-135.

This figure shows the comparison of measured relative efficiency (data points) and calculated absolute efficiency (solid lines) for a 5.08 cm dia. $x 5.08 \mathrm{~cm}$ high cylinder. The agreement of the code with the observed data is seen to be excellent. The accurate simulation of efficiencies for different scintillators and different discriminator biases indicates that most of the major physical processes are being handled correctly.

5. Cross Section Measurements of the $\left({ }^{3} \mathrm{He}, \mathrm{n}\right)$ Reaction

(S.K. Bose, A. Kogan, and P. R. Bevington)

An investigation of the cross sections for (${ }^{3} \mathrm{He}, \mathrm{n}$) reactions for target nuclei in the s-d shell region is in progress. Almost all modifications to existing apparatus necessary for these measurements have been completed. Measurements of ${ }^{20} \mathrm{Ne}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)$ cross sections are scheduled to begin in February, 1971.

A liquid NE-213 bubble-free scintillator 5 in. in diameter and 3 in. long has been obtained which is larger than that used in preliminary measurements and is expected to increase the counting rate by nearly an order of magnitude. The complete assembly of scintillator, photomultiplier tube; and electronics is being constructed with low mass

data not for quotation

and with considerable attention to optimizing scintillator response.
For timing with double charged ${ }^{3} \mathrm{He}^{++}$ions at energies above 4 MeV , a pick-up loop to synchronize external bunching of the beam with internal burst times has been installed ahead of the energy-stabilizing magnet; it takes advantage of the higher current of the single charged ${ }^{3} \mathrm{He}^{+}$ions in the beam before they are separated out by the magnet.

One of the experimental problems encountered in preliminary measurements of (${ }^{3} \mathrm{He}, \mathrm{n}$) cross sections was that of carbon contamination of the target system, including apertures and target backings. Various methods of cleaning Ta were evaluated, using the ${ }^{12} \mathrm{C}(\mathrm{d}, \mathrm{n})$ yield to determine the level of contamination. Best results were achieved by dipping the Ta into a mixture of nitric, sulfuric, and hydrofluoric acids in the proportion 9:24:8 for about fifteen seconds. Apertures in the gas target have been cleaned and enlarged to reduce contributions from carbon in (${ }^{3} \mathrm{He}, \mathrm{n}$) spectra.

$$
\text { 6. Polarization of Neutrons from (} 3 \text { He, } n \text {) Reactions }
$$

A thorough study was undertaken of s-d shell nuclei as targets for diproton stripping via (${ }^{3} \mathrm{He}, \mathrm{n}$) reactions. Simulated time-of-flight (TOF) spectra were observed on the oscilloscope of the CWRUNCH computer calculated by the program RATE (Reaction Analyzer for Time-ofFlight vs. Energy). The reaction ${ }^{20} \mathrm{Ne}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{22} \mathrm{Mg}$ was found to have well resolved neutron groups. Preliminary work is now under way to measure the neutron polarization for this reaction.
7. $\frac{\text { Study of the }\left({ }^{4} \mathrm{He}, 6 \mathrm{He}\right) \text { Reaction on } \text { s-d Shell Nuclei }}{\text { (J. Arnold }}$

The (${ }^{4} \mathrm{He},{ }^{6} \mathrm{He}$) reaction on $s-d$ shell nuclei was investigated by measuring the energy spectra of ${ }^{6} \mathrm{He}$ nuclei emitted after bombardment of various targets by alpha particles. Targets of ${ }^{18} \mathrm{O},{ }^{22} \mathrm{Ne}$, and ${ }^{26} \mathrm{Mg}$ were bombarded with the 42 MeV alpha particle beam from the 60 -inch fixed-energy cyclotron of the Lewis Research Center of NASA ${ }^{1}$. Energy spectra were measured over the angular range of 15° to 70° in steps of 2.5° using a particle-identifier system containing four detectors. Cross sections accurate to about 10% were extracted from the data with the help of an interactive display program written for the CWRUNCH computer.

[^6]Angular distributions for half of the energy groups detected appear quite smooth, varying by only about one order of magnitude over the angular range studied, while the rest of the angular distributions are quite oscillatory in nature, with very pronounced minima. In general, those for the excited states tend to have less structure. The average magnitude of all cross sections for states in the same nucleus are approximately the same. That is, no one state is excited preferentially over the angular range studied, and in particular the ground state cross section is of the same order of magnitude as that of the first several excited states, which is not the case for (p, t) stripping reactions. This difference may be attributable to the effects of inelastic scattering in the entrance and exit channels, or the structure of the neutron pair in the outgoing particle.

DWBA predictions were calculated for two-neutron pickup on ${ }^{18} 0$ using a computer code ${ }^{l}$ for zero-range approximation and one-particle transfer, modified by the inclusion of a form factor describing the nuclear structure information. Given a Woods-Saxon potential which reproduces the single-particle levels in ${ }^{17} 0$, a set of two-particle states were found, and the residual interaction (of Yukawa form) was diagonalized in this set of states. Optical potential parameters for ${ }^{6}$ He were extrapolated from data for elastic scattering of ${ }^{6} \mathrm{Li}$, but the resulting ${ }^{6} \mathrm{He}-{ }^{16} 0$ potential, which is the least reliable potential used in the calculations, appears to have the most influence on the calculated angular distributions.

DWBA predictions for the ${ }^{18} 0\left({ }^{4} \mathrm{He},{ }^{6} \mathrm{He}\right)^{16} 0$ reaction could not even reproduce qualitatively the main features of the experimental data, even with considerable freedom in choice of the ${ }^{6}$ He parameters, although this $0^{+}-0^{+}$transition should be the simplest to describe. Possible reasons for the discrepancy include: 1) finite-range effects may be important for two-nucleon transfer; 2) correlations of the transferred neutrons with the alpha particle may be important; 3) shell model continuum states included in the calculation of two-particle form factors may significantly alter their shape in the region extending outward from the nuclear surface; and 4) there may be a sizable compound nuclear contribution to the reaction.

A Ph.D. disseriaition ${ }^{2}$ describing the work has been accepted by the university.

[^7]COLUMBIA UNIVERSITY

A. FAST NEUTRON SPECTROSCOPY

Total Cross Section of 0^{16} at 2.362 Mev. (J. Kalyna, Ivor Taylor L. J. Lidofsky)

The experiment has been completed and a first analysis of all data completed. After making corrections for known effects (in scattering, isotopic composition of sample, sample holder, 2nd energy group, etc.) the resultant cross sections for 0^{16} for the minimum of the 2.362 Mev dip lie between 60 and 80 mb . The final analysis is nearly complete and a paper is being prepared for publication. Our present best value for the cross section at the minimum is $70 \pm 15 \mathrm{mb}$.for 0^{16} and $80 \pm 15 \mathrm{mb}$ for normal oxygen.

B. SLON NEUTRON PHYSICS

1. Neutron Resonance Cross Section Measurements (H. Camarda, G. Hacken, F. Rahn, H.I. Liou, S. Wynchank, M. Slagowitz, W.W. Havens, Jr., and J. Rainwater)

a. New Data

The 1970 neutron spectrometer run produced a large amount of new data for both natural samples and separated isotopes. The first part of the run used $3^{\prime \prime} \times 4^{\prime \prime}$ iron as a reference sample. The iron reference sample has large sharp structure features which can be used to give the transmission of other samples in the energy region of the iron structure without need of further normalization. Other reference samples used were $1 / 2^{\prime \prime}$ Co and $1 / 2^{\prime \prime} \mathrm{Cu}$. This made it possible to determine the transmission of various samples under investigation at places where the cross section was not rapidly varying and provided systematic information for later use in data normalization and background corrections. Also it was possible to run U.1" Ta as a reference sample with D-only samples to get T values at the Ta resonance for the sample in 40 meter runs.

The natural samples studied were $\mathrm{F}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{S}, \mathrm{Au}, \mathrm{Ne}, \mathrm{Se}$, K, C1, Cd, and T1. Highly enriched samples obtained from ORNL of the following separated isotopes were run U^{238}, Th232, Cdllo, 112,114,116, $\mathrm{Ce}^{140}, \mathrm{Gd}^{158,160}$, Dy $160,161,162,163,164, \mathrm{~T} 1203,205, \mathrm{~Np}^{237}$, and Rh^{103}. Many new resonances were observed, especially in the separated isotopes, and the data obtained are analyzed for the resonance parameters to higher energies than previously reported. The data were obtained by a new time of flight system, capable of 16,000 channels,
operating in conjunction with the on-line EMR-6130 computer. The best resolution obtained was .1 n sec/meter at the 200 meter station and $.5 \mathrm{n} \mathrm{sec} /$ meter at the 40 meter station. A display scope was used to study portions of the histogram during data taking, in order to insure the proper functioning of experimental equipment and to allow planning of the experiment as the data were received.

At present, the Nevis synchrocyclotron is under modification. The machine is being converted to a three-fold symmetry spiral sector focusing AVF synchrocyclotron, with a long duty factor 550 MeV beam. The time averagedexternal beam intensity will increase to between 5 and 40 нa. The modification program is scheduled for completion late in 1971.
b. Analysis of Results

During 1970 much work was done in completing the analysis of results obtained from the 1968 run, especially for isotopes in the mass region $140 \leq \mathrm{A} \leq 186$. This region is especially interesting in that it corresponds to a maximum in S_{0} and it is expected to have a minimum in S_{1}. There are many even-even $I=0$ nuclei having strong resonances suitably spaced for observation of essentially all resonances over a large energy range. From this is obtained a large sample size of single population $\ell=0$ resonances, with few $\ell=1$ resonances. We have found an especially clean test case to be Er ${ }^{166}$.

The new results are summarized in Table I, which shows the energy interval investigated for each isotope and the number of analyzed resonances. The < D> values are generally best estimates for the $\ell=0$ population. The $\ell=0$ strength, S_{0}, is not sensitive to missing weak levels, so a larger range can be used for it than for detailed statistical tests where one would like to include all $\ell=0$ resonances.

Table II lists the $\mathrm{gr}_{\mathrm{n}}^{0}$ values for In^{115} and Table III gives information for cases in which $\Gamma^{r} \gamma$ and some spin values J were obtained in the isotopes $\mathrm{Er}{ }^{166}$, 868 , $\mathrm{Yb} 171,172,174,176$, $\mathrm{Eu} 151,153$, $\mathrm{Sm} 152,154$, and In 115. The infinite dilution capture integrals for Eul51,153,' $\mathrm{Sm}^{152}, 154^{\circ}$, $\mathrm{Er}^{166,167,168}$, and $\mathrm{Yb}^{171,172,174}$ are presented in Table $\mathrm{IV}_{1}{ }^{1}$ Table V lists values of $\mathrm{r}_{\mathrm{H}}^{\mathrm{O}}$ for the tungsten isotopes $\mathrm{w}^{182}, 184$; 186.
$\mathrm{I}_{\text {Resonance Capture }}$ Integrals of $\mathrm{Er}^{166,167,168}$ and $\mathrm{Yb}^{171,172,174}$, H.
Liou et.al., American Nuclear Society Summer Meeting, 1970.

For nearest neighbor level spacings, the Wigner distribution is expected to apply. This predicts the distribution of level spacings near the mean, but does not predict the covariance of a given nearest level spacing and adjacent, or further removed spacings. Thus the Wigner function inplies a variance of $n \pi / 4$ in n if n levels are observed in an energy interval $\Delta \mathrm{E}$. By treating random matrices, it has been shown by Porter, Rosenzweig, Gunson, Kahn, Garrison, and others that the covariance of neighboring level spacings should be about (-0.25), which implies a longer range ordering of level spacings.

Dyson and Dyson and Mehta ${ }^{2}$ formulated a test in which a prediction was made as to the expected mean square deviation between observed level number $N(E)$, for $\leq E$ and a best fit straight line

$$
\Delta=\min _{A, B} 1 / E \iint_{0}^{E}[N(E)-A E-B]^{2} d E
$$

Dyson and Mehta obtained the predicted results for large n

$$
\begin{aligned}
& \langle n\rangle=n \\
& v_{n}=0.2026(\ln n+2.181) \\
& \langle\Delta\rangle=1 / \pi^{2}(\ln n-0.0687) \\
& v_{\Delta}=1.1690 / \pi^{4}
\end{aligned}
$$

where V is the variance. The small value of $\langle\Delta\rangle$ for large n increasing only as ($\ell n \quad n$) implies an almost crystal lattice long range ordering of level positions.

For the Er ${ }^{166}$ isotope, with 109 observed levels up to $E=4200$ eV ., the observed histogram of the number of levels N seen up to an energy E (vs. E) gives an excellent ladder for a match with DysonMehta long range order. ($\Delta_{\exp }=0.4545$ compared with a predicted value of Dyson $=0.4684$). It was found that the quantity $\left[\mathrm{C}_{\mathrm{ov}}+\right.$ 4] where $C_{o v}$ is the covariance $\left(S_{j}, S_{j+1}\right)$ is a more sensitive quantity for testing the theory. For an uncorrelated sequence of Wigner distributed spacings, the expecced $\mathrm{C}_{\mathrm{OV}}=0.0 \pm \sqrt{1 / \mathrm{m}}$ where m is the number of adjacent spacing pairs. For Er^{166}, the experimental C_{OV} was -0.22 and the observed $\left(C_{o v}+\Delta\right)$ was 0.2345. The probability of achieving less than this observed ($C_{\text {ov }}+\Delta$) with an uncorrelated Wigner distribution is 0.00055 . Other test cases in the rare earth region are being completed.

[^8]Preliminary processing of the $D y^{160,161,162,163,164 ~ i s o t o p e s ~ h a s ~}$ been completed. The total cross section and resonance parameters are in the final stages of evaluation. The energy range covered for the parameter evaluation is greater by a factor of ten than for previously available information and extends to greater than 3 kev . Measurements of the total neutron cross sections of U 238 and Th 232 have been completed. These isotopes have been investigated in far greater detail than before, with a considerable amount of 1970 running time being devoted to obtaining a complete set of transmission, and self-indication measurements. In view of the interest in the Γ_{γ} values of these isotopes, these measurements were combined with capture measurements to determine as accurately as possible the value Γ_{γ} in as many resonances as possible and its fluctuation from resonance to resonance.
2. Radiative Capture Cross Section Measurements in the Low KeV.
$\frac{\text { Region (F. Rahn, J. Rainwater, C. Ho, E. Melkonian: J. Arbo, }}{\text { J. Felvinci, and W. W. Havens, Jr.) }}$.

The latest series of experiments at the Nevis neutron velocity spectrometer obtained capture cross section data for the isotopes U^{238}, Th232, $R h^{103}$, $\operatorname{Tm} 169, G d^{158}$, and Dyl61. These data were of high quality, with a good signal to noise ratio. The $\Gamma(n, \gamma)$ of Th232 was successfully measured despite the high gamma background from the Th228 decay product. In addition to the above isotopes, an extensive amount of running time was used on $B 10, C$, and $A u^{197}$ samples in order to determine accurately open beam and background spectra, and, in the case of $A u^{197}$, to establish the "saturated open" beam times the detector efficiency at a given neutron energy. This energy dependent count rate, which would result from the total capture of all the neutrons in the sample, is determined by looking at the resonances in Au197 for which the resonance parameters are accurately known. The running of the sample of interest simultaneously with the Aul97 samples gives the relative normalization for this sample. As a cross check, a saturated open can be determined by assuming an average $\left.<\Gamma_{\gamma}\right\rangle$ for the sample being studied, and by relying on previously obtained values of grn. As a further check, this is compared with peaks corrected for multiple scattering which have been saturated in various sample thicknesses.

The calibration of detection efficiency vs gamma ray energy for the Moxan-Rae detectors is still being refined. Previously reported measurements made on a single detector unit showed efficiency to be linear with gamma energy from 0.5 to 4 MeV . A calibration point taken with the single detectors at 7.367 MeV using a $\mathrm{Pb}-207$ target in a thermal

TABIE T. (1968 Mcasurement:s)
Partial Summary of Information Obtained from Analyses

Isotope	Encrgy Interval (kcV)	No. Of Levels	$\begin{aligned} & <\mathrm{D}\rangle \\ & (\mathrm{cV}) \end{aligned}$	$\begin{array}{r} 10^{4} \\ S_{0} \end{array}$	$\begin{array}{r} 10^{4} \\ 5_{1} \end{array}$
$E r^{166}$	0-9.5	174	38.3*	1.70 ± 0.24	-
Er ${ }^{167}$	0-1.7	268	4.10*	1.89 ± 0.22	-
$E r^{168}$	0-15.0	107	95.6*	1.50 ± 0.25	0.9 ± 0.3
$E r^{170}$	0-24.0	94	152*	1.44 ± 0.25	1.4 ± 0.4
Yb^{168}	0-1.0	6	-	-	-
Yb^{170}	0-1.3	20	-	-	-
Yb^{171}	0-1.7	165	6.3*	1.86 ± 0.24	-
Yb^{172}	0-10.1	95	64.7*	1.48 ± 0.24	-
Yb^{174}	0-25.0	95	180*	1.36t0.24	-
Yb^{176}	0-26. 2	77	196*	1.90土0.37	-
w^{182}	$0 \sim 13$	141	66.4*	2.42 ± 0.29	-
w^{184}	$0 \sim 15$	125	94.8*	2.37 ± 0.30	-
W^{186}	$0 \sim 17$	102	123.0*	2.22 ± 0.29	-
Eu ${ }^{151}$	0-0.0986	88	1.04	3.25 ± 0.51	
Eu ${ }^{153}$	0-0.0976	68	1.45	2.42 ± 0.47	
Sm ${ }^{152}$	0-1.501	29	52.5	2.72 ± 0.83	
Sm ${ }^{154}$	0-2.492	20	125.	1.90 ± 0.66	
Lu ${ }^{175}$	0-1. 20	214	5.6	1. 36 ± 0.32	
Gd^{154}	0-3.20	344	9.2		
Ga ${ }^{158}$	0.016-3.00	41	71.0		.
In^{113}	0-2.0	48	~11 *	0.28 ± 0.06	
In^{115}	0.022-1.98	145	10.7*	0.24 ± 0.04	
La ${ }^{139}$	0.60-10.23	36	148	0.67 ± 0.12	

* Best evaluation for $\ell=0$ population including comparison with Wigner and Porter-Thomas distributions.

INBTAE LIT

E	$\triangle \mathrm{E}$	gr_{n}	$\Delta \mathrm{gr} \mathrm{n}_{\mathrm{n}}$	E	$\triangle \mathrm{E}$	gr_{n}	$\Delta \mathrm{gr}{ }^{\circ} \mathrm{n}$
22.733	0.012	0.51	0.020	551.10	0.35	0.84	0.05
26.777	0.015	0.005	0.001	562.61	0.36	0.47	0.04
39.599	0.027	2.1	0.1.	571.86	0.37	17.8	1.0
46.363	0.035	0.125	0.005	580.19	0.38	4.0	0.2
48.142	0.037	0.25	0.05	582.87	0.38	2.5	0.1
62.976	0.027	0.37	0.05	589.09	0.39	3.3	0.1
69.491	0.032	0.20	0.05	602.22	0.40	1.04	0.21
80.874	0.04	0.75	0.05	609.99	0.41	0.42	0.03
83.276	0.042	3.3	0.4	614.13	0.42	18.8	1.0
94.341	0.05	1.45	0.15	619.59	0.42	8.36	0.52
120.71	0.073	0.004	0.002	643.93	0.45	2.4	0.1
125.89	0.077	1.9	0.1	654.81	0.46	4.5	0.1
132.81	0.084	2.7	0.5	674.03	0.48	5.64	0.11
138.88	0.090	0.011	0.003	633.23	0.49	1.6	0.1
150.29	0.10	2.3	0.1	694.62	0.50	2.1	0.1
164.67	0.12	9.0	0.5	704.75	0.51	1.15	0.10
168.08	0.12	1.05	0.05	707.83	0.52	2.9	0.5
177.92	0.13	1.5	0.3	719.85	0.53	1.57	0.1
186.955	0.14	10.	1.	727.84	0.54	1.67	0.1
205.60	0.16	11.5	3.	733.25	0.54	6.17	0.1
224.03	0.18	16.	3.	752.66	0.57	1.15	0.1
226.81	0.19	0.66	0.40	769.91	0.59	1.67	0.1
250.17	0.22	30.	2.	774.02	0.59	10.5	1.0
266.955	0.12	2.	0.1	783.54	0.60	7.94	0.21
288.88	0.13	10.	1.	785.35	0.60	0.92	0.02
294.34	0.14	22.	5.	789.58	$0.61{ }^{\text { }}$	8.36	0.52
319.49	0.16	7.5	0.5	815.73	0.64	1.67	0.31
339.795	0.17	0.95	0.05	819.41	0.32	4.2	0.5
354.13	0.18	3.1	1.0	829.79	0.33	5.4	0.3
362.10	0.19	5.4	0.2	836.70	0.33	8.9	0.3
370.94	0.20	3.4	0.2	853.52	0.34	29.3	2.1
379.095	0.20	0.31	0.05	861.08	0.35	11.5	2.1
384.20	0.21	2.9	0.3	863.85	0.35	9.4	2.1
402.345	0.22	15.6	3.1	875.09	0.35	3.45	0.21
411.56	0.23	15.7	3.1	891.62	0.37	7.94	0.21
423.00	0.24	5.2	0.5	898.96	0.37	1.78	0.21
437.16	0.25	0.52	0.05	913.90	0.38	6.9	0.3
448.90	0.26	6.3	1.0	923.43	0.38	3.1	0.7
453.89	0.27	10.4	2.1	948.12	0.40	26.1	1.0
456.82	0.27	9.6	1.0	956.57	0.40	15.7	1.0
469.65	0.28	2.7	0.3	977.99	0.42	18.3	1.0
477.55	0.29	1.6	0.1	997.97	0.43	16.7	1.0
498.20	0.30	1.46	0.11	1035.7	0.46	3.45	0.52
503.73	0.31	12.5	2.1	1043.0	0.46	26.1	2.1
511.56	0.32	0.89	0.11	1049.1	0.46	2.6	0.3
515.38	0.32	1.67	0.10	1060.3	0.47	6.5	0.3
525.46	0.33	7.1	1.0	1075.1	0.48	17.7	2.1
530.11	0.33	0.47	0.05	1085.8	0.49	16.7	1.0
544.78	0.35	1.88	0.10	1111.7	0.51	6.6	0.3
547.92	0.35	2.7	0.1	1140.2	0.53	9.61	0.42

DATA NOT FOR QUOTATION

INALEE II (Continued)

E	$\Delta \mathrm{E}$	$g \Gamma_{n}$	$\Delta \mathrm{gr}$
1170.3	0.55	8.36	1.05
1179.7	0.56	9.6	0.3
1190.8	0.56	1.67	0.21
1213.1	0.58	24.0	3.1
1224.2	0.59	19.9	2.1
1230.0	0.59	2.51	0.21
1243.1	0.60	10.5	1.
1281.2	0.63	8.26	0.31
1309.3	0.65	7.12	0.31
1325.0	0.66	5.7	2.1
1330.9	0.66	6.5	0.4
1334.3	0.67	3.97	0.31
1342.3	0.67	4.08	0.31
1349.8	0.68	14.6	2.1
1357.9	0.69	3.7	0.3
1389.3	0.71	5.1	0.42
1397.9	0.72	6.5	0.5
1402.2	0.72	3.66	0.21
1415.9	0.73	12.5	1.
1448.6	0.76	1.57	0.31
1468.4	0.77	14.6	2.1
1480.0	0.78	3.4	0.3
1520.6	0.81	22.0	1.0
1546.1	0.83	13.6	1.0
1567.1	0.85	10.5	1.0
1595.5	0.87	15.7	1.
1614.0	0.89	18.8	2.1
1619.3	0.89	94.1	10.5
1640.9	0.91	23.0	1.
1664.8	0.93	78.4	3.
1679.8	0.94	7.1	0.21
1688.4	0.95	83.6	1.0
1711.4	0.97	29.3	3.1
1724.1	0.98	4.5	0.21
1735.9	0.99	36.6	5.2
1780.3	1.0	2.6	0.2
1796.8	1.0	19.9	1.0
1854.5	1.1	27.2	3.1
1865.5	1.1	6.8	0.5
1891.1	1.1	64.8	3.1
1918.5	1.1	17.8	3.1
1946.4	1.2	16.7	1.0
1959.4	1.2	15.7	1.0
1967.7	1.2	8.4	2.1
1980.9	1.2	20.9	3.4

TMmos jus
Resonanc:c Javel:s for which r_{γ} is also evaluated

E(cV)	$\underline{\mathrm{gr}} \mathrm{n}^{(\mathrm{MOV})}$	$\mathrm{Nr}_{\mathrm{n}}(\mathrm{MeV})$	$\mathrm{I}_{\gamma}(\mathrm{MeV})$	$\Delta r_{\gamma}(\mathrm{McV})$		
Er^{166}						
15.56	2.2	0.2	88	10		
73.79	62	4	82	16		
81.74	10	0.5	85	10		
154.15	7.0	0.4	88	12		
243.59	30	3	110	25		
301.15	195	15	100	18		
315.70	360	30	95	20		
352.23	91	7	90	15		
Er^{168}						
79.70	38	2	82	15		
188.94	78	4	87	12		
Yb^{171}						
7.91	1.7	0.1	75	10		
13.04	2.5	0.2	82	10		
28.13	1.8	0.1	79	10		
34.54	3.6	0.2	84	8	($J=0$)	
41.36	7.6	0.3	64	10	($\mathrm{J}=0$)	
52.87	5.0	0.2	77	14	($\mathrm{J}=1$)	
54.07	15.5	1.0	75	12	$(\mathrm{J}=1)$	
60.09	4.2	0.2	78	10	($\mathrm{J}=0$)	
64.70	7.1	0.2	80	12	($\mathrm{J}=1$)	
76.94	9.6	0.7	71	12	($\mathrm{J}=1$)	
96.05	2.8	0.2	74	15	($\mathrm{J}=0$)	
107.61	37	2	80	12	($\mathrm{J}=1$)	
112.10	16.0	1.5	85	14	($\mathrm{J}=0$)	
127.57	15.	1.	70	14	($\mathrm{J}=1$)	
145.90	7.3	0.3	60	18	$(\mathrm{J}=1$)	
160.41	63	5	80	14	$(\mathrm{J}=1$)	
164.61	39	2	70	10	($\mathrm{J}=1$)	
175.61	11	1	68	15	($\mathrm{J}=1$)	
226.81	21	2	74	10	($J=1$)	
250.06	24	3	82	12	($J=1$)	
255.26	28.5	4.0	95	20	($J=1$)	
287.49	17.2	2	79	20	($J=1$)	
290.58	82	6	86	20	($J=1$)	
302.32	20.3	3.0	58	18	($J=1$)	
310.10	32	4	84	15	($J=0$)	
341.61	15	3	80	20	($J=0$)	
354.41	165	25	82	14	($J=1$)	
387.21	125	15	100	25	($J=0$)	

TNBLE LII
(Continued)

			90		
434.56	42.	5	90	25	$(J=0)$
444.78	61	7	78	14	($J=1$)
470.78	30	3	67	12	($\mathrm{J}=1$)
483.62	23	3	60	15	($J=1$)
499.12	83	9	76	20	($J=1$)
512.86	93	10	80	20	($J=1$)
524.80	63	7	75	18	$(\mathrm{J}=1$)
538.90	239	30	74	15	($J=0$)
577.74	43	5	67	15	($J=1$)
598.23	31	5	88	25	(J=1)
603.88	67	9	72	22	($J=1$)
612.50	43	5	66	20	($\mathrm{J}=1$)
628.58	62	8	85	22	($\mathrm{J}=1$)
Yb ${ }^{172}$					
139.82	130	8	64	15	
180.28	215	14	72	20	
201.48	12.5	0.9	90	18	
508.72	240	15	60	20	
Yb^{174}					
342.98	450	30	80	20	
585.42	105	10	72	18	
880.23	420	30	88	20	
Yb^{176}					
148.45	8.6	0.7	82	15	
In^{115}					
22.733	0.51	0.02	81	5	
39.599	2.1	0.1	76	5	
48.142	0.25	0.05	90	5	
62.976	0.37	0.05	95	10	
80.874	0.75	0.05	70	10	
83.276	3.3	0.4	73	5	
94.341	1.45	0.15	90	10	
125.89	1.9	0.1	65	20	
132.81	2.7	0.5	180	50	
150.29	2.3	0.1	85	10	
164.67	9.0	0.5	82	10	
177.92	1.5	0.3	80	20	
186.955	10.	1.	100	20	
224.03	16.	3.	60	15	
250.17	30.	2.	85	10	

TABLE IIJ

DATA NOT FOR QUOTATION

TABTES III
(Continued)

71.41	3.0	0.3	84	10
72.41	1.1	0.2	93	11
75.76	2.1	0.3	90	11
77.45	4.4	0.3	99	10
78.66	8.5	0.8	73	9
79.51	2.8	0.4	64	13
80.29	4.1	0.5	81	10
81.08	12.	1.	101	13
83.07	1.6	0.2	95	11
84.00	7.4	0.4	99	12
85.67	2.4	0.3	84	18
89.34	7.3	0.4	104	13
90.18	2.5	0.3	85	14
91.13	2.4	0.3	94	11
93.36	14.	1.	112	13
96.29	9.2	1.0	112	13
98.61	7.7	0.5	108	13

$\underset{\text { TMinles III }}{\text { Continued) }}$

66.94	1.9	0.3	86	17
68.15	2.6	0.3	87	12
70.04	1.5	0.2	100	14
76.93	7.2	0.3	105	13
80.29	2.4	0.3	103	19
81.24	2.0	0.3	96	14
82:99	1.8	0.3	86	9
86.99	6.2	0.3	68	8
87.70	2.4	0.2	105	16
90.75	2.1	0.2	79	13
93.26	25.	2.	105	25
97.60	13.	3.	101	15
Sm^{152}				
8.06	1.30	5^{*}	60	11
87.70	205	18	65	25
154.1	142	18	93	23
185.2	19	2	51	10
385.1	40	6	45	9
415.8	57	5	58	10
587.1	159	16	81	24
792.5	115	8	60	14
1314.4	245	20	73	25
* BNL-325 value assumed in analysis				
Sm^{154}				
341.5	15	3	65	15
457.3	160	20	90	25
1181.5	72	4	83	23

TABLE IV
RESONANCE CAPTURE INTEGRALS

ISOTOPE	$\mathrm{I}_{\mathrm{c}} 0.414$	$\mathrm{I}_{\mathrm{c}} 0.55$	I_{c} comparison
$E u^{151}$	6559+687	3300+350	3741^{1}
$E u^{153}$	2332+205	2198+175	1833^{1}
Sm^{152}	2644+604	2635+541	$3100^{2}, 3163^{3}, 2850^{4}$
Sm^{154}	54+14	$50+14$	----
Er ${ }^{166}$	123 ± 13	- $122+13$	$56.5+11.3^{6}$
Er ${ }^{167}$	4899+605	2524+308	-.--
$E r^{168}$	$36+7$	35+7	---
Yb^{171}	345+39	$343+39$	313^{5}
Yb^{172}	26+6	26+6	$23^{5}, 18+7^{6}$
Yb^{174}	27 ± 6	25+6	$33.8{ }^{5}$

In
Resonance Parimeters W^{102}

$E(c v)$	$\triangle \mathrm{E}$	Γ_{n}^{0}	$\Delta \Gamma_{n}{ }^{\circ}$	E(cv)	$\Delta \mathrm{E}$	Γ_{0}^{0}	$\Delta \Gamma_{n}{ }^{0}$
21.03	. 06	7.85	1.09	3494.	1.4	28.93	2.54
114.4	. 13	22.91	2.81	3523.	1.5	8.59	1.01
212.8	. 18	. 17	. 034	3564.	1.5	7.20	. 67
248.0	. 22	57.15	3.81	3602.	1.5	20.83	2.50
341.6	. 35	. 314	. 054	3786.	1.6	1.54	. 33
376.2	. 40	7.42	1.03	3846.	1.7	74.17	9.68
428.5	. 25	12.08	1.21	3879.	1.7	31.31	4.01
484.2	. 30	20.00	1.82	3975.	1.7	26.57	3.17
578.2	. 39	11.23	1.04	3996.	1.7	4.59	. 79
655.2	. 46	5.16	. 78	4062.	1.8	17.89	2.75
759.4	. 58	3.52	. 73	4212.	1.9	4.47	. 46
781.7	. 60	. 329	. 089	4266.	1.9	3.22	. 46
862.8	. 34	. 14	. 051	4313.	2.0	30.45	3.05
918.8	. 38	11.38	1.32	4367.	2.0	1.29	. 30
947.3	. 40	64.98	6.50	4431.	2.0	43.81	3.76
1007.	0.4	16.07	1.58	4492.	2.0	6.57	. 75
1095.	0.5	43.67	6.04	4715.	2.2	13.84	1.46
1161.	0.6	14.21	. 73	4832.	2.3	43.16	5.04
1275.	0.6	1.09	. 17	4846.	2.3	2.20	. 50
1287.	0.7	2.51	. 56	4911.	2.4	19.41	2.85
1326.	0.7	. 69	. 22	4961:	2.4	5:40	. 71
1408.	0.7	3.47	. 80	5138.	2.5	15.53	2.09
1502.	0.8	11.35	. 77	5199.	2.6	72.40	5.55
1514.	0.8	10.54	1.54	5435.	2.8	85.46	8.14
1582.	0.9	1.96	. 38	5538.	2.9	7.73	2.02
1646.	0.9	1.53	. 37	5563.	2.9	9.39	1.34
1772.	0.5	71.23	5.94	5656.	3.0	186.15	26.59
1793.	0.5	5.90	. 95	5884.	3.1	5.02	1.30
1921.	2.0			6019.	3.2	3.09	1.29
2006.	0.6	31.82	3.35	6189.	3.4	57.84	5.09
2061.	0.7	29.19	3.30	6259.	3.4	32.74	3.79
2104.	0.7	6.89	. 55	6404.	3.5	47.49	5.00
2180.	0.7	12.74	1.07	6514.	3.6	11.26	1.86
2226.	0.7	16.96	1.70	6536.	3.6	23.38	2.47
2328.	0.8	11.67	1.24	6605.	3.7	4.68	. 98
2384.	0.8	18.95	2.05	6667.	3.8	58.79	6.12
2412.	0.8	4.34	. 61	6732.	3.8	5.67	1.22
2530.	0.9	4.47	. 60	6743.	3.8	7.71	1.22
2576.	0.9	17.73	1.97	6858.	3.9	15.09	1.81
2607.	0.9	4.11	. 59	6961.	4.0	33.56	3.60
2790.	1.0	53.96	4.73	7012.	4.0	7.05	1.19
2871.	1.1	4.72	. 75	7102.	4.1	5.76	1.19
2941.	1.1	5.44	. 74	7155.	4.1	24.00	3.55
3048.	1.2	26.45	2.72	7243.	4.2	12.69	1.76
3119.	1.2	2.95	. 54	7286.	4.3	4.03.	1.17.
3203.	1.3	5.12	. 53	7472.	4.4	45.12	3.47
3257.	1.3	10.51	. 88	7552.	4.5	38.55	3.45
3306.	1.3	27.22	2.61	7586.	4.5	6.20	1.15
3343.	1.3	2.94	. 52	7694.	4.7	44.46	3.42
3413.	1.4	44.85	5.14	7745.	4.8	14.03	1.70

TABLE V
Resonance Paramcters W^{182}

E(cv)	ΔE	$\Gamma_{n}{ }^{\circ}$	$\Delta \Gamma_{n}{ }^{\circ}$
		4.8	33.95
8810.	4.8	2.83	
7834.	4.8	14.69	2.83
8013.	4.9	14.75	2.23
8192.	5.1	18.12	2.21
8394.	5.3	19.87	2.73
8506.	5.3	6.61	1.63
8533.	5.3	6.55	1.62
8725.	5.5	47.96	4.28
8815.	5.7	20.02	2.66
9005.	5.9	9.06	1.58
9231.	6.1	42.15	4.16
9454.	6.3	36.51	4.63
9472.	6.3	12.84	3.60
9823.	6.6	25.22	2.52
9896.	6.6	16.49	2.01
9944.	6.7	6.62	2.00
9998.	6.8	32.00	6.00
10025.	6.9	32.96	6.00
10140.	7.0	16.49	1.99
10260.	7.1	36.73	3.46
10630.	7.5	18.23	2.43
10900.	7.7	8.52	2.87
11000.	7.9	17.50	1.91
11174.	8.0	12.30	2.37
11310.	8.3	29.62	2.82
11380.	8.4	56.25	5.62
11560.	8.4	23.76	2.79
11710.	8.6	34.56	3.23
11780.	8.6	5.90	1.38
11820.	8.7	25.20	2.76
11890.	8.8	28.89	2.75
11910.	8.8	23.27	2.75
12210.	9.1	17.56	2.72
12361.	9.3	9.89	2.70
12490.	9.5	28.63	2.68
12540.	9.5	25.54	2.68
12680.	9.7	17.76	2.66
13057.	10.0	26.69	2.63
13180.	10.3	43.55	6.10
13253.	10.4	28.67	3.04

'INHTは, V
Reromance lisumoters w^{184}

$E(c v)$	$\triangle \mathrm{E}$	Γ_{n}^{0}	$\Delta \Gamma_{n}^{0}$	$E(e v)$	$\Delta \mathrm{E}$	Γ_{n}^{0}	$\Delta \Gamma_{n}{ }^{0}$
101.7	. 12	. 357	. 050	5807.	3.0	5.91	. 98
184.2	. 14	81.05	7.37	5884.	3.1	67.01	9.12
242.8	. 21	. 128	. 026	6067.	3.2	5.07	. 77
310.7	.30	4.26	. 34	6127.	3.3	145.64	31.94
422.8	. 24	2.14	. 24	6232.	3.4	12.16	2.53
681.2	. 49	24.90	1.92	6411.	3.5	2.75	1.00
703.7	. 51	. 237	. 038	6475.	3.6	9.32	1.24
784.1	. 60	. 57	. 11	6548.	3.6	8.40	1.24
799.3	. 62	62.25	5.31	6789.	3.8	12.02	1.82
957.3	. 40	45.25	4.85	6913.	3.9	4.45	1.20
998.5	. 43	2.60	. 32	6964.	4.0	21.62	1.80
1086.	0.5	94.07	9.10	7049.	4.0	73.85	8.34
1132.	0.5	10.11	1.49	7122.	4.1	18.60	3.56
1261.	0.6	36.61	2.82	7205.	4.2	5.13	1.18
1335.	0.7	. 421	. 109	7303.	4.3	21.53	2.93
1400.	0.7	85.52	5.35	7334.	4.4	9.81	1.75
1424.	0.8	20.14	1.33	7472.	4.5	75.77	6.94
1514.	0.8	36.75	3.86	7552.	4.5	71.35	6.90
1552.	0.9	2.16	1.02	7777.	4.7	13.50	2.84
1655.	0.9	6.39	. 74	8167.	5.0	40.39	4.43
1792.	0.5	28.58	3.54	8310.	5.1	1.6 .62	2.74
1920.	0.6	5.48	. 69	8458.	5.3	58.17	6.52
2045.	0.6	26.54	2.21	8549.	5.4	54.62	5.41
2092.	0.7	101.23	8.75	8603.	5.5	12.29	2.16
2211.	0.7	5.85	. 64	8741.	5.6	11.66	2.14
2252.	0.7	10.54	. 84	8889.	5.7	19.94	2.12
2411.	0.8	26.99	3.06	6987.	5.9	12.66	2.64
2459.	0.8	11.80	1.41	9046.	5.9	89.96	7.36
2540.	0.9	13.10	1.59	9286.	6.1	21.59	2.59
2621.	0.9	25.20	1.95	9372.	6.2	66.42	6.20
2836.	2.0			9665.	6.5	6.05	1.53
2922.	1.1	38.85	3.70	9816.	6.6	14.74	3.53
2982.	1.1	15.20	1.65	9843.	6.7	33.46	4.03
3133.	1.2	8.04	1.07	10050.	6.9	49.88	4.99
3182.	1.2	17.73	2.66	10250.	7.1	101.74	8.89
3203.	1.2	38.70	3.53	10420.	7.3	10.87	2.45
3232.	1.3	5.81	. 53	10680.	7.5	32.51	3.87
3457.	1.4	38.78	3.40	10740.	7.6	8.88	2.41
3539.	1.4	22.02	2.52	11070.	7.9	86.49	9.50
3596.	1.5	1.42	. 33	11280.	8.2	29.66	3.77
3736.	1.6	52.76	4.09	11370.	8.3	9.10	2.35
3807.	1.6	67.26	6.48	11450.	8.4	8.41	2.34
3941.	1.8	4.46	. 80	11650.	8.5	10.56	1.85
4008.	1.8	6.16	1.58	11710.	8.6	63.76	6.47
4186.	1.8	39.57	3.86	11820.	8.7	50.13	6.44
4249.	1.9	16.26	2.30	11850.	8.7	83.60	9.19
4547 .	2.1	8.75	1.48	12020.	8.9	10.22	3.19
4614.	2.2	4.86	. 88	21270.	9.2	12.15	2.27
4802.	2.3	26.70	2.89	12430.	9.4	20.63	2.24
4928.	2.3	24.22	3.56	12660.	9.6	13.73	2.22
5053.	2.4	6.68	. 99	13000.	10.0	36.83	3.51
5090.	2.5	39.25	4.21	13080.	10.0	8.39	2.19
5189.	2.6	22.49	2.78	13200.	10.3	174.08	21.76

DATA NOT FOR QUOTATION

		'1NHLEV v		
$E(c v)$	$\Delta \mathrm{E}$	Γ_{n}^{0}	$\Delta r_{\mathrm{n}}{ }^{\mathrm{o}}$	
13360.	5.2	29.42	3.46	
13390.	5.3	31.76	4.32	
13480.	5.3	60.29	7.75	
13500.	5.3	3.62	1.38	
13610.	5.4	6.69	1.71	
13680.	5.4	14.88	2.14	
13930.	5.5	30.50	3.39	
14420.	5.9	91.60	12.49	
14860.	6.1	50.04	5.74	
15070.	6.2	11.32	2.04	
15170.	6.4	16.24	2.03	
15250.	6.4	18.22	2.02	
15350.	6.5	14.53	2.02	
15450.	6.5	74.02	12.07	
15630.	6.6	151.98	20.00	
15970.	6.8	87.04	15.83	
16200.	7.0	28.68	3.14	
16320.	7.1	31.31	3.91	
16450.	7.2	14.97	2.34	

TAMIf,j: v
Resonance Pirameters W^{186}

E(cv)	$\Delta \mathrm{E}$	$\Gamma_{n}{ }^{0}$	$\Delta \Gamma_{n}{ }^{\circ}$
18.76	. 06	73.88	6.93
170.7	. 12	2.07	. 31
217.5	. 18	32.55	3.39
286.7	. 27	1.89	. 41
405.7	. 45	4.47	. 40
509.6	. 32	4.08	. 44
541.3	. 35	21.06	1.72
663.1	98	23.88	1.36
719.8	- 53	76.41	5.59
831.0	. 33	1.11	. 14
963.4	. 41	33.19	3.22
1071.	. 48	15.74	1.83
1121.	. 52	11.50	1.20
1187.	. 56	25.54	2.32
1418.	0.7	2.34	. 27
1500.	0.8	32.53	2.58
1795.	0.5	. 64	. 19
1933.	0.6	17.74	1.82
2025.	0.6	12.56	1.44
2105.	0.7	3.81	. 76
2349.	0.8	4.95	. 62
2515.	0.9	14.96	1.50
2590.	0.9	20.24	1.97
2659.	1.0	94.06	5.82
2779.	1.0	8.16	1.33
2876.	1.1	18.65	1.87
2976.	1.1	2.09	. 55
3039.	1.6	202.26	21.77
3158.	1.2	42.71	3.56
3312.	1.3	13.55	1.56
3423.	1.4	59.82	5.13
3541.	1.5	8.40	1.01
3713.	1.5	2.71	. 82
3768.	1.6	25.41	2.44
3871.	1.6	52.24	4.82
3963.	1.7	11.12	1.11
4165.	1.8	23.71	2.32
4221.	1.9	42.48	3.85
4395.	2.0	28.66	3.02
4540.	2.1	33.25	2.97
4805.	2.3	87.28	4.33
4976.	2.4	6.38	1.70
5158.	2.5	37.59	3.48
5282.	2.7	5.71	. 83
5383.	2.7	14.45	2.04
5402.	2.7	7.35	. 82
5667.	2.9	70.40	5.31
5777.	3.0	68.42	5.26
6293.	3.4	17.02	1.89
6386.	3.5	21.90	2.50
6489.	3.6	63.00	4.97
6698.	3.8	2.99	. 73

$E(e v)$	$\Delta \mathrm{E}$	$\Gamma_{n}{ }^{\circ}$	$\Delta \Gamma_{n}{ }^{0}$
6754.	3.8	49.89	4.26
6949.	4.0	13.20	1.80
6968.	4.0	21.30	2.15
7114.	4.1	6.88	1.07
7176.	4.1	16.53	1.77
7324.	4.3	7.95	1.17
7472.	4.4	63.63	5.78
7634.	4.6	19.92	2.29
7712.	4.7	26.87	2.85
7844.	4.8	11.29	2.26
7978.	4.9	11.76	1.68
8132.	5.0	8.65	2.11
8295.	5.2	28.55	3.29
8347.	5.2	9.63	2.19
8625.	5.5	9.42	1.88
8669.	5.6	6.87	1.72
9177.	6.0	42.80	4.18
9201.	6.0	2.82	1.04
9286.	6.1	88.21	9.34
9410.	6.2	93.81	9.28
9542.	6.3	30.71	6.14
9587.	6.3	278.82	30.64
9843.	6.6	23.69	2.52
10270.	7.2	20.53	2.96
10350.	7.2	81.59	8.85
10580.	7.4	10.31	2.43
10630.	7.5	28.81	3.88
10770.	7.6	33.73	3.85
10850.	7.7	105.60	14.40
11750.	8.6	33.21	3.69
11870.	8.7	10.46	3.67
12310.	9.4	72.10	13.52
12410.	9.5	100.09	17.95
12590.	9.6	37.43	8.91
12620.	9.6	71.21	15.13
13200.	10.4	26.98	3.92
13320.	10.5	17.76	4.33
13570.	5.4	50.65	7.73
14020.	5.6	30.40	5.07
15200.	6.4	66.11	9.73
15440.	6.6	49.09	12.07
15480.	6.6	47.02	12.06
15650.	6.7	151.88	23.98
15720.	6.7	22.13	4.79
16490.	7.2	67.75	11.68
16630.	7.3	75.22	11.63
16930.	7.4	61.48	9.22
17060.	7.5	11.48	4.59
17300.	7.7	44.86	7.60
17340.	7.7	9.49	3.04

neutron beam at the Brookhaven National Laboratory HFBR ${ }^{1}$ gave an unreasonably high value for the efficiency. The high value was ascribed to direct detection of the pair-electron flux from the $\mathrm{Pb}-207$ target because of an insufficiently thick first-stage converter on the detector. A new calibration was done using the entire array of eight detector units with the same thicker first-stage converter and in the same configuration as used during the Nevis run. This recent calibration confirms the linearity of detector efficiency from 0.5 to 4 MeV . While not yet final, results for the 7.367 MeV . point using the $\mathrm{Pb}-207$ target, as well as for "total energy" points at 4.8 MeV . and $6.9 \mathrm{Mev.} ,\mathrm{using} \mathrm{U-23S} \mathrm{and} \mathrm{Au-197}$ targets indicate a linear response over the high energy range. As operated during the Nevis run, the detector array had a total efficiency (including geometry) of about $0.6 \% / \mathrm{MeV}$.

The results from this most recent run are in the process of being analyzed. The resonance parameters are first being obtained by means of the area method. The capture area is the sum of the counts under a capture peak, corrected for multiple scattering effects. This area can then be related to the resonance parameters through the "saturated open" count rate. Because the Moxon-Rae experiments are relatively low counting rate by nature, the data are combined with the transmission data, and selfindication data obtained by the NVS group where ever possible(see preceeding section). The NVS self-indication data has better statistics due to the higher counting rate obtainable, and the use of these data with the Moxon-Rae data, which are independent of the gamma ray cascade which occurs from resonance to resonance, leads to an accurate determination of the resonance parameters.

The first isotope to be analyzed was U^{238}, due to its importance in the fast breeder program, and in view of the recent uncertainty arising in its Γ_{γ} values. Results on $T h 23$ are in the initial stages of preparation. The preliminary report of the $\mathrm{U}^{2} 38$ data up to 1.5 keV will be presented at the February 1971 meeting of the American Physical Society while the complete analysis to greater than 5 keV will be ready for the Knoxville meeting of the Neutron Cross Section and Technology Conference.

[^9]For the purpose of obtaining some preliminary information concerning the discrepancies in Γ_{γ} 's between the Los Alamos and Geel groups, four large levels near 1000 eV were examined for the relative magnitudes of Γ_{γ}. The results showed considerably better agreement with the Geel values with respect to the relative variations in the values of $\Gamma_{\gamma}{ }^{\prime} s$. The absolute values of Γ_{γ} were not determined in the initial investigation.
3. Gamma Ray Spectra from Radiative Capture in the Resonance Region (M. Derengowski, J. Felvinci, C. Ho, E. Melkonian, F. Rahn, and W. W. Havens, Jr.)

An experiment has been run at the Nevis cyclotron, in which a germanium detector was used to study the gamma rays between 1 and 8 MeV . emitted by a U^{235} target after capture of resonance energy neutrons. Preliminary analysis of the data has been done on the PDP-8 computer. Comparison of target-in and target-out data integrated over all neutron energies shows several weak transitions attributable to uranium. We are now analyzing the spectra at separate resonances, in an effort to reduce the effects of background, to separate the capture gamma rays from those associated with fission, and to look for differences in the capture gamma ray spectra from resonance to resonance.
4. Resonance Spin Determination in Fissioning Nuclei (J. P. Felvinci and E. Melkonian)

The planned experiment with the Nevis neutron beam took place in late Spring, 1970 and resulted in a large quanity of data. Due to the number of experiments run simultaneously and the complexity of data reduction, most of the elapsed time was spent in a preliminary survey of the data and in writing programs for analysis. It was decided to analyze the experiments sequentially, and thus, we report here on one of them (Th229) in detail and summarize the others briefly.

The analysis of the U^{233} cross section continues with the additional data taken during this run. It is hoped that yield curves as a function of cuts in the single fragment kinetic energy spectrum will be available in the very near future.

The Np^{237} subthreshold fission cross section obtained is quite similar to that measured by Paya et al. ${ }^{1}$ There is indication though,

[^10]that the 39.07 ev resonance, not seen in fission previously, has a fission width of approximately 1 MeV . (The 39.9 ev resonance has $\Gamma_{f}=$ 6 MeV).

Preliminary analysis of the $\gamma-\gamma$ coincidence technique applied to Np 237 indicates differences in yield between resonances as a function of average γ-ray energy.
5. Slow Neutron Fission Cross Section of Th 229 (J. P. Felvinci, J. R. Toraskar, and E. Melkonian)

Neutrons produced by the Columbia symchrocyclotron were used to measure the fission cross section of Th^{229} relative to U^{235}. Fission fragments from a thin, $21 \mu \mathrm{~g} / \mathrm{cm}^{2} \mathrm{Th}^{229}$ target of high, 99.94% isotopic purity were detected by a solid state detector. The time-of-flight of the neutron causing the fission and the energy of the single fission fragment were recorded.

Table I gives the resonance energies and the calculated $\sigma_{0} \Gamma_{f}$ values for Th^{229}. At resonances where σ_{0} is known. r_{f} was also calculated. Additional resonances to these reported by Bollinger et all were found at $5.95,10.8,13.3,23.3,25.9,29.7,35.0,39.3,43.2,46.5$, 48.5 , and $51.0 \mathrm{ev}$. . The yield at 0.07 ev was directly compared with the yield of U^{235} and from this measurement the thermal (0.0253 ev) cross section was caiculated assuming a $1 / v$ dependence. The result, 7 barns is much lower than the presently accepted value of 30.5 barns. ${ }^{2}$ From the $\sigma_{0} \Gamma_{f}$ values of the measured resonances, the obtained thermal cross section is only about 3 barns. This may indicate the presence of a negative level (It may be noted, that approximately 4% of U 233 contamination could account for the 30 barn thermal cross section).

The three very low energy resonances reported by Konakhovich and Pevsner 3 were not observed in this experiment.

[^11]Table 1
Th^{229} results

$E_{0}(\mathrm{eV}$.	$\sigma_{0} \Gamma_{f}(\mathrm{eVb}$		$\sigma_{0} \mathrm{Barns}^{\dagger}$	$\Gamma_{f} \mathrm{mV}$
0.610	$2.61 \pm$	0.24	6000 ± 460	0.435
1.26	$13.3 \pm$	0.71	4600 ± 1800	2.9
1.44	$1.68 \pm$	0.26		
1.72	$2.47 \pm$	0.35	1500 ± 950	1.65
1.96	$5.41 \pm$	0.5	2150 ± 850	2.51
3.18	$5.15 \pm$	0.6		
4.23*	$49.58 \pm$	21.2	3200 ± 830	15.5
5.58	$3.03 \pm$	0.6		
5.95	$2.04 \pm$	0.5		
6.95	$3.88 \pm$	0.7		
8.27	$0.98 \pm$	0.4		
9.15	$5.00 \pm$	0.9		
9.6	$3.51 \pm$	0.8		
10.4	$3.54 \pm$	0.8		
10.8	$1.82 \pm$	0.6		
12.6	$4.80 \pm$	1.0		
13.3	$1.91 \pm$	0.7		
14.6	$4.10 \pm$	1.0		
15.4	$8.28 \pm$	1.5		
16.8	$5.72 \pm$	1.3		
23.3	$5.54 \pm$	1.4		
25.9	$5.61 \pm$	1.5		
29.7	$15.2 \pm$	2.6		
35.0	$8.11 \pm$	2.0		
39.3	$16.6 \pm$	3.0		
43.2	$14.9 \pm$	3.0		
46.5	$11.4 \pm$	2.7		
48.5	$9.85 \pm$	2.5		
51.0	$4.08 \pm$	1.6		

*Probably several levels.
†From BNL 325 2nd Ed. Supplement No. 2 (1965).

C. NEUTRON AND GAMMA RAYS

1. Sensitivity of Transport Calculations to Microscopic Cross Sections (E. Oblow, P. Soran, J. Ching, L. Lidofsky, and H. Goldstein)

The program for studying the importance of cross section features in deep neutron penetration has continued along the lines described in the previous report. Calculations on Be and BeO have been completed at least in so far as they concern the infinite medium spectrum and the age. Results have been reported at the November 1970 ANS meeting in a paper by Weisbin, Goldstein, and Lidofsky. ${ }^{1}$ The most important cross section uncertainties in Be revealed by the calculations are in the keV: total cross section of Be (for age calculations) and in the energy distribution of neutrons from the ($n, 2 n$) reactions induced by neutrons of energy above 4 MeV . (for problems involving 14 Mev sources). Work on the carbon benchmarks problem has also been completed and is now being written up. The discrepancy at high energies mentioned in the previous report has been traced to incorrect treatment of the ($n, n \cdot 3 \alpha$) reaction in the GGA and ORNL calculations. This experience emphasizes the importance of apparently "exotic" reactions in specific transport problems.

Most of the effort in the interval has been concentrated on studies of neutron transport in iron. Considerable time was spent in cleaning up details of work previously reported. It appears that we were unduly optimistic about finding a suitable "weighting flux" for calculating multigroup cross sections in iron. It has not yet been possible to define a space-independent weighting flux suitable for coarse groups which suitably balances the emphasis on the region of the minima with adequate recognition of the flux of neutrons locally scattered out of the minima. It has been also found that the method of computing the scattering integral used in a discrete energy solution of the Boltzmann equation needs at least 5 to 10 closely spaced energy points in the immediate high-energy side of a deep cross section minimum. Preliminary calculations with synthetic iron cross sections (see following section) indicate that fluctuations in the inelastic cross section below 2 MeV . are not large enough to effect the penetration significantly. On the other hand, they suggest that resolution effects may be noticeable in the measured total cross sections even below 2 MeV . The actual cross section structure of iron may be even more strongly fluctuating than the GGA measurements indicate, with corresponding affects on the deep penetration of neutrons in this energy range.
${ }^{1}$ Trans ANS $13,758$.

.... 2. - Generation of Synthetic Fluctuating Neutron Cross Sections For Fe ${ }^{56}$ (E.S. Troubetzkoy)

High resolution measurements for Fe^{56} cross sections in the MeV range have been made only for the total cross section. To see what fluctuations might exist for other cross sections, particularly the inelastic and the differential elastic, synthetic iron cross section sets have best coistructed. Statistical ensembles of R-matrix paramestrs trave 2.4 gisnerated by random selection from appropriate probaWhetzesisthisons. The required nuclear parameters (strength func--ivã, level gensties, etc.) have been deduced from whatever data are arain ral... 0 one 500-1000 poles of the R-matrix have been taken into , inversion in channel space. On this basis sets of the total, elastic, differential elastic, and inelastic (0.85 MeV . level) cross sections have been calculated in the range $1.5-2.0 \mathrm{MeV} .$, all exhibit a strongly fluctuating character. Energy-averages of these sets agree well with measured vlaues, and the statistical properties of the total cross section values (when folded into a resolution function) are reasonably similar to those measured for iron. It is therefore felt that the statistical properties predicted here for the cross sections not presently amenable to measurement correspond well enough to nature that their effect on neutron penetration can be studied adequately.
> $\because \cdot:$ Effects of Truncating Representations of the Elastic Angular Distribution (J. Wagschal, E. Oblow, L.J. Lidofsky, and H. Goldstein)

> Almost all methods of transport computation represent the angular distribution for elastic scattering by a suitable sum of Legendre polynomials. Several years ago, ozer investigated the effect of arbitrarily truncating the representation at various order polynomials. Truncation to P_{3} or even P_{5} would greatly simplify the calculations and also reduce the complexity of the cross section measurements needed. He found that an expansion through P_{3} was suffirient in all the instances he examined for predicting deep penetrations. ${ }^{1}$ The ions maviaitiable. Ozer's results have been verified for monoenerwe mand and analic justifications have been obtained in their case. In the more realistic transport problems with slowing down, however, the angular distribution of elastic scattering affects not only the geometry of the particle transport but also the energy distribution of the scattered neutrons. There can be circumstances where

[^12]singly-scattered neutrons form a large part of the neutron flux, e.g. close to the energy of a monoenergetic source, either an actual source or a virtual source. In such cases truncation of the angular distribution representation at low orders may have significant effect on the spectrum at least locally. The effect on the overall spectrum still remains small.
4. Gamma Spectra Following the Capture of 14 MeV . Neutrons by Cu, Zr, and Sb (M. Stamatelatos, Bo Lawergren, L.J. Lidofsky)

The project is essentially conplete and a paper is being prepared for publication. The spectra observed have particular features peaks which we have interpreted as being due to the position of the giant resonance and of single particle states in the mass region of the target nucleus. The magnitude of the capture cross sections are in reasonable agreement with those determined by activation measurements. As a consequence we may deduce that capture reactions induced by 14 MeV . neutrons are characterized by the emission of a first gamma ray with $\mathrm{E}_{\gamma}>14 \mathrm{MeV}$. This is plausible since emission of a lower energy gamma would lead to the formation of an unbound state which with high probability would decay by particle emission i.e. ($n, \gamma n$) and would constitute an inelastic rather than a capture reaction.

GULF RADIATION TECHNOLOGY
A Division of Gulf Energy and Environmental Systems Incorporated San Diego, California

A. NEUTRON CROSS SESTIONS

1. Rhodium Resonance Parameters and Average Capture Cross Section (A, D. Carlson, M. P. Fricke and S. J. Friesenhanim

The analysis of Rh capture and self-indication data for resonance parameters is continuing. The results obtained are shown in Table A-1. Area analysis has been employed for the determination of the width parameters. For the relatively strong levels, spin determinations are possible from a combined area and shape analysis. For strong resonances, the shape analysis is elmost unnecessary since the radiation width obtained for the wrong spin value is quite different. from the average radiation width for the other levels. The shape analysis in this case verifies the constancy of the radiation width from level to level. The spin assignments obtained agree with those of King, ${ }^{1}$ Ribon ${ }^{2}$ and except for the levels at 272.4 eV and 319.5 eV with those of Wang. ${ }^{3}$

Ribon has also obtained radiation widths from shape analysis of his transmission data. Though there is generally agreement within the sum of the error bars between these and the present results for each level, the average radiation width determined for the levels by Ribon, 171 meV , is more than 10% higher than that obtained in the investigation. Yet the estimated uncertainties in these average radiation widths are only $2-3 \%$ for both data sets.

In Fig. A-1 measurements of the capture cross section of Rh from about l to 1000 keV are shown. The smooth curve is that recommended by Poenitz at the Paris Conference in 1966. All data
${ }^{1}$ T. J. King and R. C. Block, Nucl. Phys. Al38, 556 (1969). ${ }^{2}$ P. Ribon, J. Girard and J. Trochon, Nucl. Phys. Al43, 130 (1970). ${ }^{3}$ Nai-yen Wang et al. , Sov. Phys. -JETP 18, 1194 (1964).

DATA NOT FOR QUOTATION

TABLEA-1
Rhodium Resonance Parameters

$\mathrm{E}_{\mathrm{O}}(\mathrm{eV})$	$2 \mathrm{~g} \Gamma_{\mathrm{n}}(\mathrm{meV})$	$\Gamma_{\gamma}(\mathrm{meV})$	J
1. 259	0.774 ± 0.01	154 ± 3	-
34.4	0.024 ± 0.001	--	-
46.8	0.80 ± 0.05	143 ± 30	
68.4	0.30 ± 0.02	--	-
95.7	3.5 ± 0.2	155 ± 15	-
125. 6	11.0 ± 0.5	141 ± 25	-
154.2	$\Gamma_{\mathrm{n}}=21 i \pm 20$	148 ± 10	0
187.0	$\Gamma_{n}=36 \pm 3$	133 ± 18	1
253.9	$\Gamma_{n}=31 \pm 4$	160 ± 14	1
263.2	2.1 ± 0.3	--	-
272.4	$\Gamma_{n}=61 \pm 7$	159 ± 9	1
319.5	$\Gamma_{n}=93 \pm 15$	148 ± 20	1
406.1	21.0 ± 3	165 ± 30	-
435.3	$\Gamma_{\mathrm{n}}=190 \pm 60$	140 ± 20	1
555. 1	$\Gamma_{n}=90 \pm 20$	150 ± 15	1
581.5	4.3 ± 0.5	--	-
620.5	$\Gamma_{\mathrm{n}}=9.5 \pm 1.5$	--	-
741.2	4.5 ± 1.5	--	-
844.5	$\Gamma_{\mathrm{n}}=186 \pm 45$	153 ± 13	1

DATA NOT FOR QUOTATION

Figure A-1. Measurements of the Rh capture cross section from 1 keV to 1 MeV .
shown here are contained in the latest BNL-325 except those of Moxon (68), ${ }^{4}$ Mackin (67) ${ }^{5}$ and the present measurements. Some of the techniques employed in obtaining the present data are indicated in the following section.

Above 100 keV there is agreement with the present data within the uncertainties of the previous measurements. Below 100 keV there are differences in normalization. The data of Block and Weston are relative measurements with shapes which are similar to that of the present data and therefore represent no disagreement within the uncertainties. The data of Moxon however are absolute measurements which are as much as $\approx 20 \%$ lower than the present measurements. (This work is pertinent to request No. 228 in WASH1144.)
2. Fast Neutron Radiative Capture (M. P. Fricke, S. J. Friesenhahn, A. D. Carlson)

A program supported in part by the NASA and the USAEC has recently been completed at GRT to develop the techniques necessary to measure radiative capture cross sections over a continuous neutron energy range spanning the full eight orders of magnitude of prime interest in reactor programs, thermal to 1 MeV . In particular, this capability allows (n, γ) measurements in the upperkeV region to be normalized directly to saturated resonances in the eV region. In many cases this self-calibration method results in a normalization accurate to $1-2 \%$, and the method does not rely on the value of any standard cross section. The incident neutron flux spectrum (and hence the energy variation of the average capture cross section) is measured relative to the hydrogen scattering cross section above 80 keV and relative to ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{a})$ at lower energies. The flux can be measured in this way with an overall uncertainty of $\leq 5 \%$ over the full energy range.

Two neutron flight paths of length 20 and 230 meters are used in a complementary fashion to optimize data accumulation. A 4000-liter liquid scintillator is used with the 20-meter flight path, and a newly constructed 2400 -liter scintillator is used with the 230 -

[^13]meter flight path. Data for eight elements have been obtained to date, and the average cross sections from $\sim 1-1000 \mathrm{keV}$ were reported at the Helsinki Conference. ${ }^{6}$ These data have been forwarded to the National Neutron Cross Section Center and are illustrated and discussed briefly below. (This work is pertinent to request Nos. 223, 228, $274,318,331,413$ and 414 in WASH-1144.)

a. $\quad \mathrm{Au}(\mathrm{n}, \gamma)$

The GRT data for this important standard cross section are shown together with the most recent results of other measurements in Fig. A-2. The solid curve in the figure is the recent evaluation of Vaughn and Grench, 7 and the broken curve is that obtained by Moxon 8 from a strength-function fit to his data. The GRT results are considered to establish the shape of the excitation function to $\sim \pm 5 \%$ above the region of strong fluctuations, say $\geqslant 20 \mathrm{keV}$, and our data also agree within 4% and 1% with recent, high-accuracy results at $24 \mathrm{keV}^{10}$ and $30 \mathrm{keV}, 9$ respectively.

The average $A u(n, \gamma)$ cross section can probably now be considered established to $\leqslant 10 \%$ throughout the energy region illustrated, and more monoenergetic experiments of high accuracy in the region above 100 keV might permit an evaluation of the existing data which would produce a useful standard cross section known to about $\pm 5 \%$ everywhere in the region $\sim 10-1000 \mathrm{keV}$.

b. $\quad{ }^{238}{ }_{U(n, \gamma)}$

The ${ }^{238} \mathrm{U}$ capture cross section from 1 keV to 1 MeV is considered to be extremely important to fast reactor calculations, and knowledge of this cross section has been improved in the last year.

[^14]

Figure A-2. Recent capture dato for gold. The GRT results are shown by the darkened circles in the top figure.

Prior to this time three of the absolute cross-section sets widely considered "best" were discrepant at energies where they overlapped by amounts larger than their estimated uncertainties. The scintillator data of Menlove and Poenitz, ${ }^{11}$ obtained with a grey (flat-response) neutron flux detector, spanned the energy region $25-500 \mathrm{keV}$. Between 25 and 100 keV these data were $\sim 15 \%$ higher than those obtained by Moxon ${ }^{8}$ using a Moxon-Rae detector and a flux measurement relative to ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{a}, \mathrm{y})$; and between 130 and 500 keV the data of Menlove and Poenitz were $\sim 15 \%$ lower than the activation data of Barry et al., 12 who measured the flux with a fission counter calibrated against $n+p$. The latter data extend to higher energies, and recent evaluations follow these data closely in the region $\sim 100-1000 \mathrm{keV}$.

Two new absolute measurements made with large liquid scintillators have been.reported in the last year. The results from this laboratory span the region $\sim 1-800 \mathrm{keV}$ and thus connect all three data sets discussed above. Our data are normalized to the saturated resonance at 6.7 eV , and the flux shape is relative to $\mathrm{n}+\mathrm{p}$ and ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{a})$ above and below 80 keV , respectively. The other new data are the preliminary results from 0.5 to 100 keV reported by deSaussure et al. 13 These are normalized to the resonance integral from 30-90 eV , and the flux shape is relative to ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{a})$. The two new measurements use similar methods to detect the capture gamma rays and incident neutrons, and (except perhaps for normalization) one would expect the uncertainties in the cross-section values to be comparable.

The two new data sets and the three previous results are shown in Fig. A-3. The dotted curve shown above 100 keV in this figure is representative of recent evaluations. In the region $20-90 \mathrm{keV}$ the two new data sets agree with each other and with the results of Menlove and Poenitz within $\sim 5 \%$; all three data sets are significantly higher at these energies than the results of Moxon. In the region $\sim 100-500 \mathrm{keV}$, the GRT data agree excellently with the results of Menlove and Poenitz and do not support the older data of Barry et al. (nor the evaluations which follow these data). In the region below 20

[^15]

Figure A-3. Capture data for ${ }^{238}$ U. The GRT data are shown by the darkened circles. The data of Moxon (Ref. 8) are reported at very small energy intervais; only a few typical points are shown in this figure.

DATA NOT FOR QUOTATION
keV the two new data sets disagree significantly, and by amounts as large as 20% near 6 keV . This difference lies well outside that which might be expected from uncertainties in the resonance self-protection correction at these energies.

Thus, from the standpoint of sheer numerical agreement, there is now good confirmation of the Menlove and Poenitz results from $\sim 25-100 \mathrm{keV}$ by both new measurements and from 100 keV to 500 keV by the one new measurement that spans this region. In the decade $10-100 \mathrm{keV}$ the behavior of the cross section has often been discussed in regard to the existence of a "dip" due to competition from (n, n^{\prime}) to the $45-\mathrm{keV}$ lovel of ${ }^{238} \mathrm{U}$. However, this competition is a iather useless discriminant in resolving differences $\sim 10 \%$ since, without it, the capture cross section near 100 keV would be approximately doubled (but one does not know the factor exactly).

The remaining discrepancies in the ${ }^{238} \mathrm{U}$ capture cross section are not confined to the large differences below 20 keV . When the four data sets discussed here with points below 100 keV are averaged over similar energy intervals, a dichotomy in the overall shape of the excitation function appears between 1 and 100 keV . Our data agree in this manner very well with those of Menlove and Poenitz, and the data of deSaussure et al. with those of Moxon. This is particularly curious since such a division cannot readily be made on the basis of either the method used to detect the capture events or that used to determine the neutron flux distribution. A similar disagreement in shape, but of varying degree, can be observed between the GRT results and those of Moxon for all the elements common to the two experiments ($\mathrm{Rh}, \mathrm{Ta}, \mathrm{Au}$ and ${ }^{238} \mathrm{U}$), and the agreement between our data and those of Poenitz et al.? also exists for $\operatorname{Au}(n, \gamma)$.

c. Other Results

The six other elements studied include Gd, Rh (discussed above) and the four refractory metals Mo, Ta, W and Re. Our results for these elements are plotted together with other data in Fig. A-4. In addition to its applicability to high-temperature space reactor systems, Ta is also of interest as a possible capture cross-section standard. The various results for $\mathrm{Ta}(\mathrm{n}, \gamma)$ are now thought ${ }^{14}$ to establish this cross section to $\sim 10 \%$ throughout the region $10-1000 \mathrm{keV}$.

14 A. D. Carlson, Proceedings of the EANDC Symposium on Neutron Standards and Flux Normalization, Chicago (1970).

Figure A-4. Capture data for Mo, $R h, G d, T a, W$, and Re. The GRT data are shown by the large darkened circles.
3. Gamma-Ray Production Cross Sections for Fe and Al

Gamma-xay production cross sections have been measured for natoral Fe and Al over the neutron energy range, $0.86 \mathrm{MeV} \leq \mathrm{E}_{\mathrm{n}} \leq$ 16 MeV . The GRT LINAC was used to produce a pulsed source of neutrons having a continuous distribution of energies. The gamma rays were detected with an $80-\mathrm{cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector operated as a total absorption spectrometer. The corresponding neutron energies were determined by the time-of-flight (TOF) technique. The experimental apparatus and computerized two-parameter data acquisition system have been described elsewhere. ${ }^{15}$ The $F e$ and Al data are currently being analyzed to determine average gamma-ray production cross sections for the discrete lines and continum for about 20 neutron energy groups covering the above energy range.

Our two-parameter data have been sorted to obtain TOF spectra corresponding to gamma-ray energy intervals encompassing strong gamma-ray lines. High resolution gamma-ray production cross sections have been deduced from these data for several lines in Fe and Al . The neutron energy resolution was about 1% at 1 MeV using a $20-\mathrm{nsec}$ burst width and a 50 -meter neutron flight path. It should be possible to achieve about an order-of-magnitude better resolution by optimizing LINAC parameters and using a 200 -meter flight path

Preliminary results are shown in Fig. A-5 for the gammaray production cross section for the $847-\mathrm{keV}$ gamma ray produced by the ${ }^{56} \mathrm{Fe}\left(n, n^{\prime} \gamma\right)$ reaction. The cross section displays considerable structure which is in reasonably good agreement with several high resolution studies ${ }^{16,17}$ from threshold to 1500 keV neutron energy. The neutron energy resolution is indicated at selected neutron energies by the FWHM of the triangles shown in Fig. A-5. Previous data, measured with monoenergetic neutron sources, are shown for comparison. The agreement with the previous data is quite good in most cases; however, the present data are 20 to 25% lower than the values of

[^16]

Figure A-5. Gamma-ray production cross section for the $847-\mathrm{keV}$ gamma ray from the ${ }^{56} \mathrm{Fe}\left(n, n^{\prime} \gamma\right)$ reaction for neutron energy range, 0.86 MeV to 16 MeV .

Figure A-6. Gamma-ray production cross section for the 1013-keV. gamma ray from the ${ }^{27} \mathrm{Al}\left(\mathrm{n}, \mathrm{n}^{\prime} \mathrm{y}\right)$ reaction for neutron energy range 1.01 MeV to 16 MeV .

Drake et al. ${ }^{18}$ at $5.74,7.2$, and 7.67 MeV . Also, the present data are about 50% lower than the TNC measurement ${ }^{19}$ at 14.8 MeV .

Figure A-6 shows preliminary data for the $1013-\mathrm{keV}$ gamma ray from the ${ }^{27} \mathrm{Al}\left(\mathrm{n}, \mathrm{n}^{\prime} \gamma\right.$) reaction compared to previous measurements. The agreement with most previous data is good. Consistent with the observation made for the Fecross section in Fig. A-5, the present data are 20 to 25% lower than Drake's values at 6.0 and 7. 5 MeV . However, as was true in the case of Fe , the present result agrees closely with that of Drake et al. at 4.0 MeV .

The data shown in Figs. A-5 and A-6 should be regarded as preliminary. Corrections have been applied for the background contribution of neutrons scattered from the sample into the detector, for gamma-ray self-absorption in the sample, and for neutron attenuation and multiple scattering in the sample. The latter corrections were made in an approximate manner and a more rigorous method of correcting the data will be applied in the near future. However, these refinements are expected to alter the cross sections by no more than 5%. (These measurements are pertinent to request Nos. 64, 104, 105 and 106 in WASH-1144:)
4. ${ }^{3} \mathrm{He}(\mathrm{n}, \mathrm{p}) \mathrm{T}$ Cross Section from 80 keV to 500 keV
(D. G. Costello, M. P. Fricke, A. D. Carlson, and S. J. Friesenhahn)

In the past the usefulness of the ${ }^{3} \mathrm{He}(\mathrm{n}, \mathrm{p}) \mathrm{T}$ reaction has been hampered by the lack of accurate direct experimental measurements between 10 keV and 1 MeV . To remedy this situation, new direct measurements of this reaction have been made at Gulf Radiation Technology in this energy range, and good agreement has been obtained with the indirect measurements by Gibbons and Macklin ${ }^{20,} 21$ which were deduced by reciprocity from the $T(p, n)^{3}$ He reaction.
D. M. Drake et al. , Nucl. Sci. Eng. 40, 294 (1970). ${ }^{19}$ P. S. Buchanan, ORO 2791-28, Texas Nuclear Corporation (1969). ${ }^{20}$ J. H. Gibbons and R. L. Macklin, Phys. Rev. 114, 571 (1959). $21_{\text {R. L. Macklin and J. H. Gibbons, International Conference on the }}$ Study of Nuclear Structure with Neutrons, Antwerp, 1965, EANDC-50-S, Vol. 1, Paper 13.

Four one-in. diameter by six in. long (active length) ${ }^{3} \mathrm{He}$ proportional counters were used in these measurements. Neutrons were obtained from a LINAC-pulsed neutron source, and time-offlight techniques were used with a 220-meter neutron flight path. The neutron flux was determined by a CH_{4} proportional counter. Further details of these flux measurements are given in Ref. 22. The wall effect corrections to the bias efficiency for the ${ }^{3}$ He proportional counters were obtained by a Monte Carlo calculation.

Since the density of the ${ }^{3}$ He gas in the proportional counters was not known accurately, it was necessary to normalize the present results to our previous measurements ${ }^{23}$ which were obtained from pulse height spectra. The previous measurements were based on the total ${ }^{3} \mathrm{He}$ cross section and were independent of the ${ }^{3} \mathrm{He}$ gas density. The present data have been normalized at 515 keV to a crosssection value of 0.890 barn.

The preliminary results of the present measurements are given in Table A-2. The flux shape determined by the CH_{4} proportional counter is estimated to be known to better than 5%, and the error introduced by the normalization is estimated to be 5%; thus the total error of the present cross-section measurements is approximately 10% and is so listed in Table A-Z.

In Fig. A-7 our results are compared to previous data. The present data are in good agreement with the indirect measurements and generally support the evaluated cross section of AlsNielson ${ }^{24}$ who placed greater weight on the indirect results. (These measurements are pertinent to request No. 8 in WASH-1l44.)

[^17]TABLE A-2
${ }^{3} \mathrm{He}(\mathrm{n}, \mathrm{p}) \mathrm{T}$ Cross Section

Incident Neutron Energy (keV)	Present Measured Cross_Section (b)	Als-Nielsen Evaluated Cross Section (b)
84.7	2.35 ± 0.24	2.22
93.1	2.34 ± 0.22	2.09
103	1.99 ± 0.20	1.95
114	1.92 ± 0.19	1.82
127	1.78 ± 0.18	1.76
142	1.71 ± 0.17	1.62
161	1.58 ± 0.16	1.50
183	1.43 ± 0.14	1.41
210	1.19 ± 0.12	1.32
284	1.10 ± 0.11	1.21
343	1.01 ± 0.10	1.12
416	0.93 ± 0.09	1.04
515	0.89	0.96

Figure A-7. Measurements of the $3^{3} \mathrm{He}(\mathrm{n}, \mathrm{p}) \mathrm{T}$ reaction.

5. Epithermal Neutron Capture Gamma Rays from Shield Materials: Depleted Uranium (Joseph John, V. J. Orphan and C. G. Hoot)

Studies of thermal and epithermal neutron capture gamma rays in tungsten have been reported previously. ${ }^{25}$ Measurements have now been made of gamma rays from resonant capture in ${ }^{238} \mathrm{U}$ of neutrons up to 100 keV using the capture gamma-ray facility. 26 An electron LINAC was used to produce a beam of pulsed neutrons from a cylindrical uranium target: The neutrons were moderated by an inch of polyethylene and were incident on a 6-in. diameter depleted uranium sample located at the end of a l6-meter flight path. The gamma rays were detected using a $\mathrm{Ge}(\mathrm{Li})-\mathrm{NaI}(\mathrm{Tl})$ spectrometer operated simultaneously as a three-crystal pair spectrometer and an antiCompton spectrometer. The energy of the captured neutrons was measured by the time-of-flight technique.

Gamma-ray pulse height spectra were generated from the two-parameter data for fifteen neutron energy groups which covered individual resonances wherever possible. The spectra were corrected for analyzer deadtime effects and background radiations. They have been unfolded to remove spectrometer responses and intensities of capture gamma rays have been deduced. These intensities are grouped into $0.25-\mathrm{MeV}$ wide gamma-ray energy bins suitable for shielding calculations.

The intensities of gamma rays and the observed radiated energy are summarized in Figs. A-8 and A-9 for the fifteen neutron energy groups. The shaded regions in the histograms represent the calculated uncertainties. The total radiated energy in the resolved resonance region is within $\pm 15 \%$ of the known neutron binding energy. Further details are given elsewhere. ${ }^{27}$ (This work is pertinent to request no. 415 in WASH-1144.)
${ }^{25}$ V. J. Orphan and Joseph John, Gulf General Atomic Report GA-9121, December 31, 1968.
V. J. Orphan, C. G. Hoot, A. D. Carlson, Joseph John and J. R. Beyster, Nucl. Instr. Meth. 72, 254 (1969).
${ }^{27}$ Joseph John and V. J. Orphan, Gulf General Atomic Report GA10186, June 15, 1970.

DATA NOT FOR QUOTATION

DATA

Figure A-8. Intensities of capture gamma rays grouped into $0.25-\mathrm{MeV}$ bins. The fractional radiated energy are also shown. The shading represents the uncertainties in these quantities.

DATA
 $\underset{-1}{2}$
 NOILYIONO yO

Figure A-9. Intensities of gamma rays and radiated energy for the high neutron energy groups.

6. Line and Continuum Gamma-Ray Yields from Thermal Neutron Capture in 75 Elements (V. J. Orphan, N. C. Rasmussen* and T. L. Harper ${ }^{*}$)

Thermal neutron capture gamma-ray spectral data for 75 natural elements obtained at the MIT thermal capture gamma-ray facility ${ }^{28}$ using a $\mathrm{Ge}(\mathrm{Li})-\mathrm{NaI}$ spectrometer have been analyzed to obtain the yield of continuum gamma rays. The results of a previous analysis of this data to determine the yield of discrete lines has been reported. 29 In the present analysis an unfolding technique ${ }^{30}$ was applied to three-crystal pair spectrometer data to obtain the continuum yield for gamma-ray energies greater than $\sim 1.5 \mathrm{MeV}$. For 27 elements (usually for Z less than ~ 30) 70% or more of the expected gamma-ray energy was observed in the resolved lines and the continuum contribution could be assumed negligible. For the remaining elements, the continuum contribution varied from 19% of the binding energy for cobalt to as much as 98% of the binding energy for europium. For over two-thirds of the elements studied, the percent of the total binding energy observed was within $100 \pm 20 \%$. The sum of the line and continuum yields were aormalized to the known average binding energy for each element in order to produce a consistent set of data. The normalized yield data grouped into $250-\mathrm{keV}$ bins, has been placed on magnetic tape and appropriately documented. 31

7. Numerical and Experimental Studies of Spectral Unfolding (M. Sperling, L. Harris and H. Kendrick)

Theoretical studies of unfolding have yielded new approaches to (1) spectral estimates, (2) smoothing, and (3) errors. New numerical techniques have been developed to implement these approaches. A new unfolding code, MAZE1, has been written and tested with Monte

[^18]Carlo data. This code is applicable to continuum unfolding in the approximate range of 4 to 200 channels. Running time for the Univac 1108 computer is about one minute for a hundred-dimensional spectrum. Positivity is strictly obeyed. Smoothing is adjusted automatically on the basis of the data error estimate. Upper and lower errors are computed separately and may be asymmetric about the spectrum. Lower error is strictly positive. The primary advance that MAZEI represents is the ability to unfold spectral detail with higher resolution than was heretofore possible with a given detector. Experimental tests are now in progress to compare spectra unfolded with MAZEl to spectra measured by time-of-flight. Neutrons are passed through uranium, concrete, and graphite filters and the resulting spectra are measured simultaneously by 2-in, and 5-in. NE-213 detectors in unfolding and time-of-flight modes.

IDAHO NUCJEAR CORPORATION
A. LOW ENERGY ETA MEASUREAENTS (J. R. Smith, S. D. Reeder)

The ${ }^{233} \mathrm{U}$ eta measurement at 0.26 eV , which was made with the . Phoenix Core, showed much more scatter than was expectr.?. Therefore, a set of four irradiations was performed, during the tws-day Pheasant Core run of the $1=0 \mathrm{~S}$, to measure the relative value of eta for ${ }^{233} \mathrm{U}$ at 0.26 eV . Thesers irradiations included one run each with sample in and sample out, slong with their corresponding backgrounds. Since no run was repeated, no check on reproducibility is possible, but the determination of eta agreed well with the average value from the Phoenix Sore data.

The results of the measurements are shown in Table A-I. These data are the same as those shown in the previous NCSAC report, except that the ${ }^{241} \mathrm{Pu}$ data have been added. The ${ }^{241} \mathrm{Pu}$ data are being re-examined

TABLE A-I

	Relative Values of Eta		
Energy (eV)	$\frac{n(233 \mathrm{U})}{1.000}$	$\frac{n(235 \mathrm{U})}{1.000}$	$\frac{\mathrm{n}(241 \mathrm{Pu})}{1.00}$
0.060	0.993 ± 0.005		
0.095	0.966 ± 0.005	0.997 ± 0.005	1.05
0.260	0.993 ± 0.013		0.91

to determine whether the rather astonishing change between 0.16 eV and 0.26 eV can be due to miscalculation of the effects of ${ }^{241} \mathrm{Am}$ in the samples. The ${ }^{233} \mathrm{U}$ points are also shown plotted along with previous measurements ${ }^{1}, 2$ in Figure $A-1$. In the figure the points have been normalized to the ENDF/B value of 2.293 at 0.06 eV . The latter value is probably a little"nigh; 2.288 is a more likely number. The current set of measurements agree surprisingly well with the evaluated curve. (Pertinent to requests 358,385 and 446, WASH 1144.)

1. J. R. Smith and E. Fast, "Conference on Neutron Cross Sections Technology", Vol. 2, p. 919; CONF 660303, USAEC (1966).
2. L. W. Weston, et al., "Neutron Fission and Capture Cross-Section Measurements for ${ }^{233} \mathrm{U}$ in the Energy Region 0.02 to I eV ", ORNL-TM-2353, (Feb. 1, "1.969).

Figure A-1 The low-energy variation of eta for ${ }^{233} \mathrm{U}$. The large squares represent relative measurements by the manganese bath technique, normalized to the ENDF/B evaluated curve at 0.06 eV .

B. NEUTRON TOTAL CROSS SECTION OF ${ }^{175} \mathrm{Lu},{ }^{176} \mathrm{Lu}$ AND NATURAL Lu

(T, E. Young)
Analysis of MTR fast chopper neutron transmission measurements of natural lutetium samples and samples enriched in ${ }^{175} \mathrm{Lu}$ and ${ }^{176} \mathrm{Lu}$ have yielded values of the ${ }^{175} \mathrm{Lu}$ and natural Lu cross sections which are significantly different from those previously reported. A comparison of values obtained in this measurement and those shown in BNL-325 (August 2966) is given in Table B-I. These values were determined by assuming potential scattering cross sections of 8.26 barns for both ${ }^{175} \mathrm{Lu}$ and ${ }^{176} \mathrm{Lu}$. Corrections for water contamination and scattering by particles of the oxide samples were used to fit the data near 1.0 eV

TABLE B-I

Thermal Cross Section Values for Lu

	$\sigma_{n T}(\mathrm{~b})$		$\sigma_{n \gamma}(\mathrm{~b})$	
	MTTR	BNI-325	MTR	BNL-325
Iu (natural)	-71-6	118 ± 1	$65+6$ -2	208 ± 5
${ }^{175}$	$\begin{array}{r}\text { 21.5 }\end{array}+4.0$	~31 (graph)	$15.5+4.0$ -1.0	23 ± 3
${ }^{176} \mathrm{Lu}$	2134 ± 60		2129 ± 60	2100 ± 150

and 0.01 eV , respectively. A discussion of corrections of this type has been given in Nucl. Sci. and Engr., 40, 389 (1970). Metal samples are needed to determine if the corrections made are valid in this case.
C. SEARCH FOR THE PROPOSED 0.3-V ISOMER IN 241 Pu (L. A. Kroger, C. W. Reich, I. D. McIsaac, S. D. Reeder, D. K. Oestreich, J. R. Berreth, O. D. Simpson, F. B. Simpson)

The search for the proposed $0.3-\mathrm{y}$ isomeric state in ${ }^{241} \mathrm{Pu}$ continues. Conclusive proof that the reactivity effect observed by Nisle and Stepan ${ }^{1}$ (if indeed it is a real one) does not arise from spontaneous fission has been provided by a radiochemical analysis. If the reactivity effect is indeed due to spontaneous fission, long-lived fission products should be present in the sample. Fortunately, several samples of the shavings produced during the fabrication of the original sample of Nisle and Stepan (and hence not irradiated during their measurements) were available. Radiochemical analysis of these shavings for ${ }^{137} \mathrm{Cs}$ and ${ }^{144} \mathrm{Ce}-{ }^{144} \mathrm{Pr}$ was performed. In two of the samples ${ }^{137} \mathrm{Cs}$ in approximately the expected amount ($\approx 10^{10}$ atoms) was detected

1. R. G. Nisle and I. E. Stepan, Nucl. Sci. and Engr. 39, 257 (1970).
but no evidence was found for the expected ${ }^{144} \mathrm{Pr}$ (from the decay of $285-d^{144} \mathrm{Ce}$). Analysis of a third sample, however, carried out under special conditions to avoid possible ${ }^{137}$ Cs contamination from external sources, revealed no detectable ${ }^{137} \mathrm{Cs}$ ($<1 / 100$ the concentration expected from the magnitude of the reactivity effect). Consequently, it must be concluded that the effect, if real, observed by Nisle and Stepan does not arise from spontaneous fission.

In order to investigate the remaining possible explanation for the effect (i.e. the existence of a sample component with a large thermalneutron cross section) measurements of the low-energy ($0.01-0.3 \mathrm{eV}$) total cross section of a $0.4-\mathrm{g}$ portion of a "freshly" irradiated sample of ${ }^{240} \mathrm{Pu}$ were carried out. The ${ }^{240} \mathrm{Pu}$ sample enclosed in a thick (0.2^{11}) Cd covering, had been irradiated for $\chi 6$ weeks in the core of the ETR. After irradiation, the sample was chemically purified and an isotopic analysis was performed. The isotopic composition of the Pu in the sample is as follows: ${ }^{239} \mathrm{Pu}(0.74 \%) ;{ }^{240} \mathrm{Pu}(96.15 \%) ;{ }^{241} \mathrm{Pu}(2.93 \%)$; and ${ }^{242} \mathrm{Pu}$ (0.19%). Two cross-section measurements were made approximately four months apart using the MTR fast chopper, beginning roughly six months after the irradiation. The analysis of these data is currently in progress, and the results may shed some light on the question of the existence of an isomer with a large slow-neutron cross section. (Pertinent to request 470 , WASH 1144.)
C. CROSS SECTIONS FITTING TECHNIQUES (O. D. Simpson, N. H. Marshell, J. R. Smith)

The Automated Cross Sections Analysis Program (ACSAP) has been modified to increase its speed and to improve its versatility in the analysis of different types of data. A movie was produced to illustrate the operation of ACSAP in conjunction with the graphic display system SC \varnothing RE.
D. INTEGRAL CROSS SECTION MEASUREMENTS IN THE CFRMF (J. J. Scoville, Y. D. Harker, D. A. Millsap, R. G. Nisle, D. A. Pearson, J". W. Rogers)

The Coupled Fast Reactivity Measurement Facility (CFRMF) was designed and built for the purpose of measuring integral cross sections in an energy region important to fast reactor designs. The spectrum in the facility has been extensively studied by proton-recoil spectrometry, multiple foil techniques and caiculations employing both transport and diffusion theory reactor codes. The results of these studies are plotted in Figure D-1. It should also be noted that the proton-recoil data above 1 MeV are subject to wall and edge effects in the proportional counter which have not as yet been corrected for: With these two considerations in mind, it is possible to say that the calculated spectrum is in quite good agreement with that determined by experiment.

Figure D-1 CFRMF neutron spectrum as determined by foil activation, proton-recoil and diffusion calculations.

Relative reaction rates, considering gold as a standard, have been measured by activation analysis in this facility. These same reaction integrals may be calculated by numerically integrating the materials capture cross section over the CFRMF spectrum. Results and comparisons are given in Table D-I. The materials chosen for this initial series of measurements are either fission products or reactor structural materials that are readily activated and analyzed by gamma spectroscopy techniques. The calculated values listed under the column heading, CCDN-NW/l0 are determined from the work of Benzi, et al. reported through the EANDC consisting of capture cross sections as predicted by nuclear model considerations.

Reactivity measurements on an assortment of materials were made as a test of both the ENDF/B data available for these materials, and the mathematical modei used in the CFRMF analysis. Table D-II lists these results. The calculated values were determined by the eigenvalue difference technique. Because of the complexity of the reactivity calculation, it is difficult to relate discrepancies between measured and calculated values to specific cross section errors. However, the

TABLE D-I

Reaction	Relative Reaction Integrals			Comments
	Measured	BNL-325	CCDN-NW/10	
	0.085			Secondary Standard
${ }^{89} Y(n, \gamma){ }^{90} m_{Y}$	8.8×10^{-4}		0.034	Metal Chips
$9^{3} \mathrm{Nb}(\mathrm{n}, \mathrm{Y})^{94} \mathrm{Nb}$	0.42	0.36	0.33	\{ Metal. Powder
	0.46			$\{5 \mathrm{mil}$ Foil
${ }^{98} \mathrm{Mo}(\mathrm{n}, \gamma)^{99} \mathrm{Mo}$	0.137	0.18	0.14	Metal Powder
$103 \mathrm{Rh}(\mathrm{n}, \gamma){ }^{104 \mathrm{~m}_{\mathrm{Rh}}}$	0.081 \}	0.84		$\{10 \mathrm{mil}$ Wire
$103 \mathrm{Rh}(\mathrm{n}, \gamma){ }^{104 g_{\mathrm{Rh}}}$	0.86 \}	0.84	0.89	$\{20 \mathrm{mil}$ Wire
$139 \mathrm{La}(n, \gamma){ }^{140} \mathrm{La}$	0.046	0.061	0.055	Oxide Powder
$140 \mathrm{Ce}(\mathrm{n}, \gamma)^{141} \mathrm{Ce}$	2.2×10^{-3}		0.047	Oxide Powder
$141 \operatorname{Pr}(\mathrm{n}, \gamma)^{142} \operatorname{Pr}$	0.19	0.16	0.14	Oxide Powder
${ }^{142} \mathrm{Ce}(\mathrm{n}, \gamma)^{143} \mathrm{Ce}$	0.046		0.074	Oxide Powder
$158 \mathrm{Gd}(\mathrm{n}, \gamma)^{159} \mathrm{Gd}$	0.45	0.53	0.56	2 mil Foil
${ }^{159} \mathrm{~Tb}(n, \gamma) 160^{\text {TV }}$	2.22		2.27	Oxide Powder
${ }^{160} \mathrm{Gd}(\mathrm{n}, r)^{161} \mathrm{Gd}$	0.23		0.35	2 mil Foil
$165 \mathrm{Ho}(\mathrm{n}, r){ }^{166 \mathrm{gHo}}$	1.50	2.04		Oxide Powder
${ }^{181} \mathrm{Ta}(\mathrm{n}, \gamma){ }^{182 \mathrm{Ta}}$	1.23	1.00		Metal Powder
${ }^{186} \mathrm{~W}(\mathrm{n}, \gamma){ }^{186} \mathrm{~W}$	0.36	0.23		5 mil Foil

TABLE D-II

SAMPLE	SAMPLE REACTIVITY, $\frac{\Delta \mathrm{K}}{\mathrm{K}} \times 10^{-6}$	
	$\frac{\text { Calculated }}{}$	$\frac{\text { Measured }}{}$
Be	-103.2	-103.0
C	-54.7	-49.3
Mg	-42.2	-20.3
Al	-20.2	-19.1
Mo	-33.6	-35.3
Pb	-9.6	-11.8
Bi	-9.9	-9.2
Au	-18.79	-18.85

importance of this kind of measurement is illustrated in the fact that seven of the eight materials are predicted quite well. An obvious, though still preliminary conclusion is that there is an error in the magnesium data included in ENDF/B. A more general conclusion is that the CFRMF offers a new and inexpensive method of data testing in a well-known FBRtype reactor spectrum, through the use of both activation and reactivity measurements.
E. ELECTROMAGNETIC MASS SEPARATOR (J. J. SCOville, Y. D. Harker)

The electromagnetic mass separator for the Fast Reactor Constants program has been ordered. In September 1970, Nucletec, S.A. of Geneva, Switzerland was awarded the contract to construct two mass separators, one for LASL and one for Idaho Nuclear Corporation. Our share of the purchase price is approximately $\$ 85,000.00$ excluding shipping and installation charges.

Our separator is a 90° sector magnet, line focusing machine capable of beam currents in the hundreds of microamps. At these currents the resolving power will be at least 2000. Recent developments at CERN are being incorporated into the design; these improvements will eliminate aberrations in the ion lens systems and the need for continual alignment adjustments.

The machine will be used primarily to separate radioactive isotopes of the fission products. The separated samples will then be used to measure the integral absorption cross sections of the isotopes in the fast neutron spectrum of the Coupled Fast Reactivity Measurement Facility. These integral cross sections will be used to check the experimental differential neutron cross section data and theoretical calculations in the 100 keV neutron energy region.
F. CROSS SECTIONS OF THE ${ }^{204} \mathrm{~Pb}(\mathrm{n}, \gamma)$ AND ${ }^{207} \mathrm{~Pb}(\mathrm{n}, \gamma)$ REACTIONS FOR 2-keV NEUTRONS (R. C. Greenwood, C. W. Reich)

Analysis of the $2-\mathrm{keV}$ neutron capture gamma-ray spectrum obtained with a natural lead target has been completed.

In order to obtain absolute capture cross sections for lead we had used ${ }^{10} \mathrm{~B}_{\mathrm{B}}$ and. ${ }^{197} \mathrm{Au}$ monitor foils in the experiments. However, using a cross section value of 13.8 barns for the ${ }^{10}{ }_{B}(n, \alpha)$ reaction, and a value of 4.8 barns for the ${ }^{197} \mathrm{Au}(\mathrm{n}, \gamma)$ reaction, we found that the neutron flux values obtained from the two monitors were in serious disagreement. Since there are significant discrepancies between the keV neutron capture cross sections measured at various laboratories for ${ }^{197} \mathrm{Au}$, and since recent neutron transmission measurements of 197 Au have shown definite resonance structure in this energy region, we have chosen the ${ }^{10} \mathrm{~B}$ flux monitor as standard and used our experimental comparisons to provide a measurement of the ${ }^{197} \mathrm{Au}(\mathrm{n}, \gamma)$ reaction cross section in the $2-\mathrm{keV}$ MTR beam facility. From these data we obtain a value of (3.2 ± 0.5) barns for $2-\mathrm{keV}$ neutron capture in a 5 -mil thick gold foil.

The isotonic ratios of ${ }^{204} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb} /{ }^{207} \mathrm{~Pb} /{ }^{208} \mathrm{~Pb}$ in the target were measured by mass spectroscopy to be 1.34/2ti.8/21.2/52.7 weight percent; and emission spectroscopic analysis showed that the sample contained no significant impurities ($>0.1 \%$). Both ${ }^{204} \mathrm{~Pb}(\mathrm{n}, \gamma)$ and ${ }^{207} \mathrm{~Pb}(\mathrm{n}, \gamma)$ prompt gamma-ray lines are observed in the $2-\mathrm{keV}$ neutron-capture spectrum. The capture cross section for the ${ }^{207} \mathrm{~Pb}(n, \gamma)$ reaction is simply obtained from this prompt gamma-ray spectrum because the $7.37-\mathrm{MeV}$ ground-state transition is the only El transition which can occur as a result of s-wave capture in ${ }^{207} \mathrm{~Pb}$. Consequently the $7.37-\mathrm{MeV}$ ground-state
transition is emitted in essentially all of the thermal-neutron captures and captures into the $42-k e V$ resonance. From these measurements, a cross-section value of (3.4 ± 1.2) mb was obtained for $2-k e V$ neutron capture in ${ }^{207} \mathrm{~Pb}$.

Detailed studies of the thermal-neutron capture gamma rays from ${ }^{204} \mathrm{~Pb}$ have been reported by Jurney et al. 1 Comparison of our $2-\mathrm{keV}$ and these thermal-neutron capture data show gross differences in the features of the spectra. Although many of the same primary gamma-ray transitions are seen in both spectra their relative intensities are quite different. For example, a $6157-k e V$ transition populating the $576-\mathrm{keV}$ level in ${ }^{205} \mathrm{~Pb}$ is one of the strongest transitions observed with $2-\mathrm{keV}$ capture but is absent in the thermal-neutron capture spectrum. The prompt gamma rays resulting from $2-\mathrm{keV}$ neutron capture in ${ }^{204} \mathrm{~Pb}$ are shown in Table F-I together with their partial production cross sections, $\sigma_{\gamma j}$. Since the transitions shown probabiy represent the ma,jority of the primary transitions we can estimate the $2-\mathrm{keV}$ neutron capture cross section in ${ }^{204} \mathrm{~Pb}$ as (1.6 ± 0.4) b. Such a large crosssection value is reasonable since the $2-\mathrm{keV}$ neutron energy distribution (700 eV FWHM) overlaps two strong resonances in 204 Pb at 1.68 keV and 2.48 keV .
I. E. T. Jurney, H. T. Motz and S. H. Vegors, Jr., Nucl. Phys. A94, 351 (1967).

TABIE F-I
High Energy Prompt Gamma Rays Resulting From 2-keV Neutron Capture in ${ }^{204} \mathrm{~Pb}$

Gamma-Ray Transition Energy $(\mathrm{keV})^{\mathrm{a}}$	Gamma-Ray Intensity ${ }^{\text {a }}$	```Partial Production Cross Section (barns)a```	Level Energy $(\mathrm{keV})^{\mathrm{a}}$
6731.2 (7)	100 (3)	0.40 (8)	2.3
6471.6 (10)	9 (2)	0.04 (1)	261:9 (8)
6157.2 (8)	58 (5)	0.23 (5)	576.3 (3)
5929.2 (12)	28 (4)	0.11 (2)	804.3 (10)
(5361) ${ }^{\text {b }}$	<13	<0.05	
5115.8 (8)	34 (4)	0.14 (2)	1617.7 (4)
4985.3 (8) (?)	45 (5)	0.18 (2)	1748.2 (4) (?)
$(4922)^{\text {b }}$	<13	<0.05	
4815.1 (9)	22 (3)	0.09 (1)	1918.4 (6)
(4647) ${ }^{\text {b }}$	<13	<0.05	
4615.8 (11)	15 (3)	0.06 (1)	2117.7 (9)
(4382) ${ }^{\text {b }}$	<13	<0.05	
$(4372)^{\text {b }}$	<13	<0.05	
$(4247)^{\text {b }}$	<16	<0.06	
$(4180)^{\text {b }}$	<16	<0.06	
$(4168){ }^{\text {b }}$	<16	<0.06	
(4101) ${ }^{\text {b }}$	<23	<0.09	
$(3574)^{\text {b }}$	<23	<0.09	

DATA NOT FOR QUOTATION

a Uncertainties in the last digit (or digits) are shown in parentheses after each value.
b These transitions were observed in thermal-neutron capture (ref. I). However, here we are only able to assign upper limits on their intensities.
G. NEUTRON CAPTURE GAMMA-RAY STUDIES USIITG THE 2-kEV NEUTRON BEAM FACILITY (R. C. Greenwood, C. W. Reich)

The measuman of neutron capture gammaray spectra to obtain data relevant to pwisens of fast reactor shielding is continuing. The primary tool thms far used in these studies has been the $2-\mathrm{keV}$ neutron beam facility of the Materials Testing Reactor.

The $2-\mathrm{keV}$ neutron capture gamma-ray spectrum of manganese has been shown in a previous report ${ }^{1}$. As shown in Table G-I absolute prompt gamma-ray intensities have now been determined by using the $846-\mathrm{keV}$ gamma ray emitted in the β^{-}decay of $2.58-\mathrm{hr}{ }^{56} \mathrm{Mn}$ as an intensity standard. The thermal neutron capture gamma-ray intensities shown in Table G-I are in generally good agreement with earlier measurements. In all cases where the thermal and $2-\mathrm{keV}$ capture lines are both seen, it was observed that the $2-k e V$ capture line had an energy which was approximately $2-\mathrm{keV}$ higher than that of the thermal capture line, confirming that these lines are indeed primary transitions. From summing these primary gamma-ray intensities we find that 87% of the thermal and 70% of the $2-\mathrm{keV}$ primary transition strength is accounted for by the transitions listed in Table G-I. These are the primary transitions that generally constitute the hard gamma-ray component and are therefore most difficult to shield against. Another method of quantitatively identifying the fraction of capture gamma-ray intensity which has been measured in a spectrum is to define

$$
\text { Percentage of total transition intensity }=\frac{1}{E_{B}} \sum I_{\gamma} E_{\gamma}
$$

where E_{B} is the capturing state energy and I_{γ} and E_{γ} are the absolute intensity and energy of a prompt gamma ray. Using this definition, one finds that the percentage of total transition intensity, from Table G-I, for thermal and $2-\mathrm{keV}$ neutron capture are 70% and 60%, respectively.

The $2-\mathrm{keV}$ and thermal neutron capture gamma-ray data from copper have now been analyzed. Figure G-l shows a comparison of these spectra. In Table G-II their relative prompt gamma-ray intensities are compared. In this table the relative prompt gamma-ray intensities have been normalized in the following two ways:

1. such that $I_{\gamma}=100$ for the same gamma-ray transition in both thermal and $2-\mathrm{keV}$ neutron capture,
2. R. C. Greenwood, R. A. Harlan, C. W. Reich, IN-1317, p. 116 (1970).

TABLE G-I
Comparison of Prompt Gamma-Ray Intensities Resulting From 2-keV and Thermal Neutron Capture in Manganese

$\begin{aligned} & \text { Gamma-Ray } \\ & \text { Energy } \\ & \text { (kev) }^{\text {a }} \end{aligned}$	$\mathrm{I}_{\gamma} \quad$ (γ 's per 100Neutrons Captured)		$\begin{aligned} & \text { Gamua-Ray } \\ & \text { Energy } \\ & \text { (kev)a } \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{Y}} \quad$ ($\boldsymbol{\gamma}^{\prime} \mathrm{s}$ per 100	
	Thermal	2-keV		Thermal	2-keV
	Neutron	Neutron		Neutron	Neutron
	Capture	Capture		Capture	Capture
7270.3	3.6	1.4	4949.6	1.7	
7243.6	11.9	0.4	4907.6	0.8	0.6
7159.7	5.6		4875.0	0.6	
7057.9	10.8	21.8	4841.4	0.6	
6929.0	2.3	3.0	4833.8	0.8	
$6817.9{ }^{\text {b }}$		5.1	4827.8	0.9	
6784.0	3.1	3.9	4725.0	2.5	0.7
$6731.6^{\text {b }}$		0.7	4689.4	0.9	1.1
$6554{ }^{\text {b }}$		0.6	4643.7	0.8	
6430.2	0.7	3.1	4588.7	0.4	
$6276{ }^{\text {b (}}$ ()		0.2	4566.7	1.8	
6104.4	1.8		4550.3	0.6	1.0
6031.1	0.6	1.4	4445.5	0.5	1.7
5921.0	0.8	0.6	$4440.5{ }^{\text {b }}$		0.6
5761.4	1.8	1.9	4267.8	0.5	
5527.1	6.3	7.6	4253.6		0.7
5437.6	1.0		4230.0	0.3	
5432.6	0.9	1.4	4222.8	0.6	
54.44 .0	0.4	0.7	3927.4	0.4	1.2
5254.0	1.2	2.6	3920.1	0.3	
5198.6	0.8		3820.3	0.4	
$5192.2^{\text {b }}$		1.1	3814.1	0.8	
5181.1	3.5	0.9	3685.6	0.9	
5111.4	0.3	1.4	3408.5	2.7	
5067.7	2.7		3002.3	0.6	
5034.6	- 0.9	0.9			
5014.6	5.5	1.6			.

a. The thermal neutron capture gamma-ray energies are listed here, the corresponding $2-k e V$ neutron capture gamma rays have energies which are $\dot{2} \mathrm{keV}$ higher than these.
b. These energies are those determined from the $2-k e V$ capture gammaray data only.

TABLE G-II
Comparison of Prorpt Gamma-Ray Intensities Resulting From $2-\mathrm{keV}$ and Thermal Neutron Capture in Copper

$\begin{gathered} \text { Gamma-Ray } \\ \text { Energy } \\ \text { (keV)a } \\ \hline \end{gathered}$	Relative Intensities			$\begin{aligned} & \text { Gamma-Ray } \\ & \text { Energy } \\ & \text { (keV) } \\ & \hline \end{aligned}$	Relative Intensities		
	Thermal Neutron	2-keV Neutron Capture			Thermal Neutron	$\begin{gathered} 2-\mathrm{keV} \\ \mathrm{Cap} \\ \hline \end{gathered}$	Neutron
	Capture	$\overline{\mathrm{I}}$ (I$)$	$\underline{I_{\gamma}(2)^{5}}$		Capture	Ir (1)	$\underline{\mathrm{Iy}}(2)^{\text {b }}$
7916.8	100	100	17.6	5259.6	3.0		
7757.7	5.5			5246.8	4.0		
7638.8	50	115	20.3	5190.4	2.3		
7573.1	5.8	17	3.0	5045.0 (D)	4.2		
7308.3	28.0	130	22.9	5021.9 ${ }^{\text {c }}$		29	5.1
7254.2	12.7			4986.4c		19	3.3
$7188.5^{\text {c }}$		19	3.3	4902.1	2.4	64	11.3
7177.7	7.7	88	15.5	$4794.4{ }^{\text {c }}$		78	13.8
7041.00		90	15.9	4731.4 c		27	4.8
6990.0	10.3			4659.6	2.5	25	4.4
6792.6	1.3			4477.6	1.7	62	10.9
6681.6	7.3	11	1.9	4444.9c		18	3.2
6676.4	5.9	114	20.1	4386.2	2.1		
6619.2	3.2	70	12.3	4327.5	1.3	13	2.3
\{6599.0c		177	31.2	4321.4	4.5	30	5.3
6601.7(D)	8.2			4314.1	1.3		
$6481.3^{\text {c }}$		26	4.6	$4207.1{ }^{\text {c }}$		19	3.3
$6419.9{ }^{\text {c }}$		115	20.3	$3712.0{ }^{\circ}$		37	6.5
6396.1	4.4	41	7.2	3616.0	1.1		
6322.5	1.2			3590.7	1.6		
6244.6	1.4			1559.7	3.4		
6064.9	1.9	23	4.1	1320.4	3.3	137	24.2
6012.4	4.9	53	9.3	1159.5	3.0		
5855.6	1.2			1039.4	6.3		
5772.9	1.8	22	3.9	878.4	4.2	91	16.0
5731.4 c		44	7.8	822.4	2.7		
5637.2	1.3	12	2.1	767.8	2.6		
5616.6	1.4	8	1.4	663.0	7.2		
$5531.0{ }^{\text {c }}$		22	3.9	648.9	8.9	64	11.3
5419.6	5.7			608.9	23.8	266	47
$5414.0{ }^{\text {c }}$		25	2.6	579.9	7.4	1.03	18.2
5321.5	3.4						

a. Thermal neutron capture gamma-ray energies are listed here for $\mathrm{E}_{\gamma}>3.5 \mathrm{MeV}$ the corresponding $2-\mathrm{keV}$ neutron capture gamma rays have energies which are 2 keV higher than these, while for $\mathrm{E}_{\gamma}<3.5 \mathrm{MeV}$ the energies are all identical.
b. Normalized so that $\Sigma I_{\gamma}(2)$ for $E_{\gamma}>3.5 \mathrm{MeV}$ is identical to the corresponding intensity sum for thermal neutron capture.
c. Energy value determined from the $2-\mathrm{keV}$ capture gamma-ray data only.

Figure G-1 A comparison of the high energy portions of the prompt gamma-ray spectra resulting from $2-\mathrm{keV}$ and thermal neutron capture in copper. The energies shown for the peaks in this spectrum are the double-escape peak energies obtained for the thermal neutron capture data, except for those lines which are seen only in the $2-k e V$ spectrum.
2. such that $\sum I_{\gamma}$ for $E_{Y}>3.5 \mathrm{MeV}$ is identical in both thermal and $2-k e V$ neutron capture data.

Since, in this case, the prompt gamna-ray transitions shown in Table G-II with $\mathrm{E}_{\gamma}>3.5 \mathrm{MeV}$ are probably all (or nearly all) primary transitions and should represent most of the total primary capture gamma-ray intensity, this second comparison of relative intensities should provide a more realistic comparison of the prompt gamma-ray intensity distributions. This comparison shows that the gamma-ray intensity distributions in the thermal and $2-\mathrm{keV}$ neutron cepture gamma-ray spectra are significantly different. In the former case much of the gamma-ray intensity (approximately 60%) is concentrated in a few gamma-ray transitions with $\mathrm{E}_{\mathrm{Y}}>7.0 \mathrm{MeV}$ while in the latter case the gamna-ray spectrum is somewhat softer. It is interesting to note that the $2-\mathrm{keV}$ neutron capture gammaray spectrum in Figure G-l appears to result almost entirely from the ${ }^{63} \mathrm{Cu}(\mathrm{n}, \gamma)$ reaction. No lines have been identified in this spectrum which can positively be associated with the ${ }^{65} \mathrm{Cu}(\mathrm{n}, \gamma)$ reaction. This dominance of the ${ }^{63} \mathrm{Cu}(\mathrm{n}, \gamma)$ reaction is probably quite reasonable because there is a major ${ }^{63} \mathrm{Cu}(\mathrm{n}, \gamma)$ resonance at 2.06 keV while the closest ${ }^{65} \mathrm{Cu}(\mathrm{n}, \gamma)$ resonance is at 2.55 keV , that is just outside the range of the neutron energy distribution in the $2-\mathrm{keV}$ beam.
H. FIITERED BEAMS AS STANDARD SOURCES OF keV NEUTRONS (O. D. Simpson, J. R. Smith)

The important properties of the scandium, iron and silicon filtered beams are summarized in Table $H-1$. Beam intensities listed are for installation in a high-flux beam hole of the Materials Testing Reactor with reactor power at 40 MW . Some departures from the listed values may be expected when final optimization of the filters is realized.

	TABLE H-1 Scandium	Preliminary Values Iron	Silicon
Energy (keV)	2	24.5	144
FWHM (keV)	0.7	1.8	30-50
$\begin{aligned} & \text { Beam Diameter } \\ & \text { (in.) } \end{aligned}$	$1 / 8$ to 1	1/4 to 4	1/4 to 4
Maximum Intensity (neut/sec)	1×20^{7}	4×10^{7}	$\sim 10^{9}$
$\begin{aligned} & \text { Flux } \\ & \left(\text { neut } / \mathrm{sec} / \mathrm{cm}^{2}\right) \end{aligned}$	5×10^{6}	6×10^{5}	$\sim 10^{7}$
$\begin{aligned} & \text { Gamma Intensity } \\ & (\mathrm{mR} / \mathrm{hr}) \end{aligned}$	<1	<2	~ 500
```Filter Thickness (in.)```	$\begin{aligned} & 42 \mathrm{Sc}(99.9 \%) \\ & 9 / 16 \mathrm{Ti} \end{aligned}$	$\begin{aligned} & 26.84 \mathrm{Fe}(99.7 \%) \\ & 8.22 \mathrm{Al} \\ & 2.31 \mathrm{~S} \end{aligned}$	

These filtered beans constitute a distinctive set of sources for the keV noutron region. They. offer constant, collimated neutron beams of high intensity for their energy region. They comprise a matched set of sources for internormalization of measurements in three important sectors of the keV energy ranges, $2,24.5$ and 144 keV . This means that effects of temperature changes and sample thickness variations can be studied with excellent statistical precision. While the energy resolution. is wider than that of some facilities, there is no instrument capable of resolving all the detailed structure encountered in the keV region. The filtered beams really represent an intermediate case between differential and integral measurements, and will be of great hetp in resolving discrepancies between these two types of measurements.

A high intensity neutron radiography and rabbit irradiation facility is under construction for the Advanced Testing Reactor (ATR). This facility will also be available for filtered beam experiments. Neutron beam intensities should be similar to those given in Table I-l. With the availability of the ATR we will soon be in a position to offer the facilities as true standards for the keV energy region.

## I. ACTIVATION CROSS SECTION MEASUREMENTS FOR Au AT 25 keV <br> (R. L. Tromp)

Activation cross section measurements for Au have been made in the MITR 25 keV neutron filtered beam. Stacks of gold foils were activated in the beam and then the individual foils were gamma-counted to obtain specific activity as a function of sample thickness. These results showed appreciable resonance self-shielding. The purpose of these measurements was to see if theoretical predictions could describe the resonance self-shielding effects. Figure $I-I$ shows the comparison of the experimental data with the theoretical predictions of the FACE ${ }^{l}$ code. Good agreement was obtained. It would also be interesting to do similar measurements as a function of temperature.
I. W. R. Bohl and W. K. Foell, Integral-Transport Analysis of Resonance Absorption Measurements in Neutron Beams, presented at the ANS November 1970 Meeting.


Figure I-1 Activation of stacked gold foils as a function of sample thickness vs. "FACE" code theoretical prediction.

## DATA NOT FOR QUOTATION

## LAWRENCE RADIATION LABORATORY

## A. NEW FACILITIES

1. 100 MeV Livermore Electron Acolerator Facility

The Livermore linear accelerator has met or exceeded all specifications with the exception of performance as a positron accelerator. The tests for positron performance have not yet begun. Full power ( 45 kW ) electron beans are available for production of neutrons for both the below-ground and the above-ground paths. More than $95 \%$ of the beam can be transported to the above-ground neutron cell and focused to a 8 mm diameter spot. The 66 and 256 M flight paths above ground and the $4-20$ meter stations below ground are now operational and neutron experiments have begun.

The electron-positron beam transport system for the photonuclear system is now being tested and alighned. Electron beam has been obtained in both photonuclear experimental caves. Photonuclear experiments will begin in January 1971.

The "rabbit" facility, for isotope production and activation analysis by the ( $\gamma, \mathrm{n}$ ) process, is installed and experiments with it are planned for December 1970.

The accelerator is now operated from 4 P.M. to 8 A.M. for experiments five days a week. The time from 8 A.M. to 4 P.M. is devoted primarily to set-up of experiments and maintenance.

## 2. Cyclograaff Facility

The LRL Cyclograaff is in the final stage of assembly and beam injection from the cyclotron through the tandem accelerator is planned for March, 1971. The LRL Cyclograaff, the second to be operational within the U.S., differs from the Triangle Universities Nuclear Laboratory accelerator slightly in that the tandem accelerator is a type E-N High Voltage Engineering Corporation accelerator. This will assure proton beam energies up to 27 MeV . The present $90^{\prime \prime}$ cyclotron will cease operations in January, 1971, and its removal will make space available for a split pole spectrograph and other experimental apparatus. The present general purpose experimental pit associated with the 901 cyclotron will continue in use, primarily for neutron time-offlight experiments. The Cyclograaff is installed at ground level. The beam will be transported to a horizontal center line 18 feet below the

Cyclograaff center line, which passes through the adjoining experimental cells. Initial operation of the facility is planned for the fourth quarter of FY 1971. The cyclotron injector is expected to play a dual role -- that of Cyclograaff ion source, and also a general purpose activation facility for Laboratory users who have employed the $90 "$ cyclotron for such purposes in the past.

## B. NEUIRON PHYSICS

1. Detection of Symmetric Division in Spontaneous and Thermal Neutron Induced Fission df 251 Fm (W. Jonn, K. Hulet, R. W. Lougheed and J. J. Wesolowski)

Energy measurements have been made on the coincident fission fragments from the spontaneous and neutron-induced fission of 257 Fm . $5.10^{8}$ atoms of 257 Fm obtained from an underground nuclear explosion were placed on a thin foil located between two silicon detectors. The assembly was operated in the thermal column of the Livermore reactor. The mass and energy distributions for 15,000 spontaneous fissions of ${ }^{257} \mathrm{Fm}$ show peaks in agreement with extrapolation of asymmetric fission of lighter elements. However, there are also symmetric fissions (Fig. Bl) with total kinetic energies extending up to 250 MeV . The distributions for 90,000 thermal neutron-induced fissions of ${ }^{257} \mathrm{Fm}$ show a symmetric peak at 220 MeV extending up to 260 MeV . Asymmetric peaks are also observed, but some interference from 235 u contamination is present. The high kinetic energy of the symmetric fissions indicate that the fragments are formed with little excitation, probably as a consequence of the proximity to proton number 50 and neutron number 82. (Pertinent to request \#534 of WASH-1144.)
2. Thermal-Neutron Fission Cross-Section of ${ }^{257} \mathrm{Fm}$ (is. F. Wild)

We have measured the thermal-neutron fission cross-section of
102-d 257 Fm by counting the fissions induced by irradiations of this isotope with thermal neutrons. The absorption of thermal neutrons by 257 m results in either fission of the excited compound nucleus, 258 Fm , or in radiative capture to the ground state of 258 Fm followed by spontaneous fission decay with a half-life of 0.4 msec . In either case, the result is the occurrence of one fission event per neutron absorbed.

We assembled a sandwich between two pieces of $1 / 2^{\prime \prime}$-thick polystyrene of $\sim 5 \times 10^{8}$ atoms of 257 Fm , electroplated on a thin beryllium foil, and a 3 -mil-thick sheet of muscovite mica to detect the emitted fission fragments. We also included a weighed piece of gold foil to serve as a flux monitor. After each irradiation, the target was quickly disassembled to reduce the background exposure of the mica to


Fig. B1
fragnents from the spontaneous fission decay of ${ }^{257}$ Fra.
Preliminary calculations using the data obtained from five in radiations, which possibly do not include all systematic errors, indicate a value of $3080 \pm 200$ bams for the thermal-neutron fission cross-section of ${ }^{257} \mathrm{Fm}$. In our experiments, it was impossible to separate those fissions occurring in the ground state of 258 Fm from those occurring in the excited state. Nevertheless, we have supposed from fission systematics that only a few percent result from SF following neutron capture and, therefore, the measured cross-section most. likely results from direct neutron-fission reactions. Our results disagree with a value of $\geq 5600 \pm 600$ barns obtained by Dr. Curtis E. Bemis (private communication, August, 1970) at ORNL. (Pertinent to Request \#534 of WASH-1144)
3. The Transport of $14-\mathrm{MeV}$ Neutrons Through Iron (L. F. Hansen, M. Gregory, J. Kammerdiener and C. Wong)

Using the sphere transmission and time-of-flight techniques, through the neutron spectra $0.95,2.74$, and 4.72 mfp of iron have been measured. The targets were solid iron spheres of 4.46-, 12.94-, and $25.52-\mathrm{cm}$ radius and the neutron source was a nominal $14-\mathrm{MeV}$ neutron beam generated by the $T(d, n) \alpha$ reaction. The deuteron beam of 0.40 MeV energy was supplied by the ICT* accelerator facilities at Livermore and impinged on a tritium tanget centered at the spherical targets.

The measumed neutron spectra covered the energy range from about 75 eV to 14.8 MeV . This was accomplished by using high and low energy detectors as described below. The low energy measurements covered the range from 75 eV to 1.0 MeV , while the nigh energy measurements went from 1.6 to 24.8 MeV . Since the experimental techniques using these two detectors were different, they will be discussed separately.

## Low Energy Measurements

Neutrons with energies between 75 eV and I MeV were detected using a 6 Li loaded glass scintillator detector. The corrections for $\gamma$ background in the measured neutron spectra were accurately determined using an identical 7 Li loaded glass scintillator. The efficiency of the ${ }^{6} \mathrm{Li}$ detector as a function of neutron energy was experimentally measured by calibrating it against a low-efficiency fission chanber.

[^19]The ${ }^{6} \mathrm{Li}$ detector was located at 769.6 on from the center of the iron spheres and at $30^{\circ}$ with respect to the deuteron bean line. The neutron spectra were stored in the PDP-8 computer using 512 channels. The neutron spectrum measured with a chanmel width of 25 nsec and which covers the energy region between 1 MeV and $14 . \mathrm{keV}$ is shown in Fig. B2. The peak at $3.75 \mu \mathrm{sec}$ corresponds to the window in the iron total cross section at 24 keV .

## High Energy Measurements

The energy range covered in these measurements is from 14.8- to $1.6-\mathrm{MeV}$ neutrons. The neutron detectors were NE213 scintillators located at 300 and $120^{\circ}$ with respect to the deuteron beam line. The gamma background was reduced by using the pulse shape discrimination properties of NE213. The time resolution in these measurements was around 2 ns and the flight path for the erritted neutrons was 7.66 meters at $30^{\circ}$ and 9.75 meters at $120^{\circ}$.

Figure B3 shows the measured neutron time-of-flight spectra at $120^{\circ}$ plotted as function of neutron energy.

The low lying levels in iron below $2-\mathrm{MeV}$ excitation energy are not resolved, because they fall under the tail of the elastic scattering peak which results from large-angle scattering. The peak at around $10-\mathrm{MeV}$ neutron energy corresponds to two levels at $2.66-\mathrm{and} 3.119-\mathrm{MeV}$ excitation energy. The peak at around 8.5 MeV corresponds to the $4.50-$ MeV level in 56 Fe . This 4.5 MeV level has the largest cross section of all the inelastic levels, except the $0.845-\mathrm{MeV}$ level, and it would be reasonable to assume that it is the first $3^{-}$level in 56 Fe .

The analysis of these data is continuing and in the near future we hope to have a comparison of these data with calculated spectra using the Livermore Monte Carlo Neutron Transport Program, SORS. Preliminary design work for concrete spheres is finished and a pilot sphere is being fabricated. (Pertinent to Requests 99-103 of WASH-1144.)
4. Threshold Photoneutron Cross-Section Measurements (R. J. Baglan, C. D. Bowman and B. L. Berman

Measurements have been carried out for ${ }^{52} \mathrm{Cr},{ }^{56,57} \mathrm{Fe}$, and ${ }^{206} \mathrm{~Pb}$. Figure B4 shows the data for 56 Fe . The data for these and other nuclei have been analyzed for resonance parameters (for over 200 resonances) as well as other features of interest.

Evidence for doorway states in the photon channel has been obtained for 57 Fe at 50 and 250 keV above threshold in addition to the


DATA NOT FOR QUOTATION


The $135^{\circ}$ differential threshold photoneutron cross
Fig. 34 section for 56 Fe as a function of the laboratory energy of the emitted neutron (lower scale) and the excitation energy (upper scale). The locations, energies, and JT values of isobaric analogs of low-lying states in 56 Mn are indicated by the arrows below the data. The inset shows the cross section averaged with a square, $40-\mathrm{keV}$ wide smoothing function.
previously reported cases of 207 Pb at 125 and 400 keV (the latter also seen in the neutron channel) and 208 Pb at 500 keV ; the 208 Pb case represents the Ml giant resonance.

An attempt was made to detect the channel-resonance effect in ${ }^{53} \mathrm{Cr}$ and ${ }^{57} \mathrm{Fe}$, which is expected to produce a correlation between neutron and $\gamma$-ray widths; no significant correlation was observed for these nuclei. 2

An attempt was made to identify analog states in ${ }^{52} \mathrm{Cr}$ and ${ }^{56} \mathrm{Fe}$, in addition to the previously reported case of 25 Mg . ${ }^{5}$ The only successful candidate is the analog, at an excitation energy of $11.602 \pm 0.005 \mathrm{MeV}$ in 56 Fe , of the second excited state of 56 Mn (see Figure B4). This state has $J^{\pi}=1^{+}$, is excited by an M1 transition whose strength is about 10 eV , about $1 / 3$ of a Weisskopf unit.

A state at 7.3 keV above threshold in ${ }^{206} \mathrm{~Pb}$ has a peak height of nearly 3 b , which is the largest measured $(\gamma, n)$ cross section in any nucleus. This resonance is fairly well isolated and possibly could be used to produce a useful source of monoenergetic $7.3-\mathrm{keV}$ neutrons.

Electric-dipole strength functions $\left\langle\Gamma_{\gamma O} / D\right\rangle_{E 1}$ have been obtained for several nuclei and are given in the table. With the exception of ${ }^{207} \mathrm{~Pb}$, for which $\left\langle\Gamma_{\gamma O} / D\right\rangle_{\mathrm{El}}$ is anomalously large owing to the presence of the doorway state, the values of $C_{l}$ (defined in the Table), which is proportional to the single-particle estimate of $\left\langle\Gamma_{Y O} / D\right\rangle_{E I}$, ane essentially constant. The values for $C_{2}$ (defined in the Table) however, which is proportional to the extrapolated-giant-resonance estimate, systematically decrease with increasing $A$. Hence, these data indicate a preference for the single-particle estimate of the El strength function: (Pertinent to Requests 92, 108, 335, 336.)

El strength functions.

Nucleus	$\left.<\mathrm{C}_{\mathrm{YO}} / \mathrm{D}\right\rangle \times 10^{5}$	$\mathrm{c}_{1}{ }^{\text {a }} \times 10^{5}$	$\mathrm{C}_{2}{ }^{\text {b }} \times 10^{5}$
${ }^{26} \mathrm{Mg}$	$3.1 \pm 2.0$	$1.6 \pm 1.0$	$8.8 \pm 5.7$
${ }^{53} \mathrm{Cr}$	$1.6 \pm 0.8$	$1.6 \pm 0.8$	$4.0 \pm 2.1$
${ }^{57} \mathrm{Fe}$	$1.1 \pm 0.6$	$1.1 \pm 0.6$	$2.8 \pm 1.3$
${ }^{207}{ }_{\text {Pb }}$	$13 \pm 7$	$8.1 \pm 4.1$	$1.9 \pm 0.9$
${ }^{208}{ }_{\mathrm{Pb}}$	$4.0 \pm 3.6$	$1.9 \pm 1.7$	$0.4 \pm 0.4$

$a_{\text {Computed }}$ from the relation $\left\langle\Gamma_{\gamma O} / D\right\rangle=C_{1}\left[E_{\gamma}(\mathrm{MeV}) / 7\right]^{3}(\mathrm{~A} / 100)^{2 / 3}$
${ }^{b^{C}}$ Computed from the relation $\left\langle\Gamma_{Y O} / D\right\rangle=C_{2}\left[E_{\gamma}(\mathrm{MeV}) / 7\right]^{5}(A / 100)^{8 / 3}$

## 5. Evaluations (R. Howerton)

During the past six months, neutron cross section evaluations from $10^{-1}$ to 20 MeV were perforned for the following materials:

Total Evaluation: Li, ${ }^{6} \mathrm{Li}_{\mathrm{i}},{ }^{10} \mathrm{~B},{ }^{12} \mathrm{C},{ }^{14}{ }_{\mathrm{n}}$ : Partial Evaluation:

New Evaluat:ion (single reaction): ${ }^{54} \mathrm{Fe},{ }^{56} \mathrm{Fe},{ }^{58} \mathrm{Fe},{ }^{237} \mathrm{~Np}$

A recently completed processing code (CLYDE) produces group cross sections, transfer matrices, energy depositions, isotope production cross sections and isotope destruction cross sections, for neutronic codes. No limit is placed on number of groups, order of transfer matrices, or number of input energy-cross section pairs.

Experimental neutron cross section data are routinely received from NNCSC and by private communication and incorporated into the ECSIL library. At the present tine, there are about 750,000 data points in the system. This information is used for producing evaluations and to investigate systematics of neutron induced reactions.

One such study uses the 35,000 resolved resonance parameters in the ECSIL library. These data are being computer analyzed to: 1) select an evaluated set of resolved resonance parameters for an isotope; 2) determine in a consistent manner average resonance parameters, e.g., strength functions, level spacings, average resonance widths, etc., for all available isotopes; 3) investigate systematics of the averaged resonance parameters. At the current time, the study is in the second phase.

Evaluated neutron cross sections are tested by calculations,
both S. and Monte Carlo, of simple spherical critical assemblies, reflected by single materials of varying thicknesses. A computerized library of integral experiments, surrently containing about 1500 references, abstracts and comments, has been developed. From this library, about i80 critical assemblies have been evaluated for use in the cross-section-checking program. As new evaluations are produced for materials used either for cores or reflectors in any of the evaluated critical assemblies, k-eff values are calculated for the appropriate assemblies. The results of these calculations are not used to adjust evaluated cross sections in order to obtain a better $k$-eff value but, rather to form a basis for estimating the validity of the evaluated cross sections in appropriate energy regimes and for appropriate reactions.

## C. ACTIVATION ANAT,YSIS

1. Detection of $\mathrm{Pb}(\gamma, \underline{\mathrm{I}})$ by Activation Analysis (M. L. Stelts and C. D. Bownan

Lead pollution of the environment is a subject of much current interest. The commonly used techniques for detection involve wet chemistry which makes the analysis both time consuming and expensive. Reactor activation analysis with thermal neutrons is a much faster and less costly techrique for many elements, but it cannot be aoplied to lead. Preliminary experiments at the linac indicate that Fb can be detected via the $204 \mathrm{~Pb}(\gamma, n)$ reaction with a sensitivity of less than 100 ng of natural Pb . The experiments carried out to date are summar ized below.

A sample was prepared by passing a known amount of Livermore air through a cellulose filter paper. A $1 \mathrm{~cm}^{2}$ portion of this paper, through which $7 \mathrm{~m}^{3}$ of air had passed, was exposed to the linac bremsstrahlung bean along with a 22 mg natural lead standard sample. The bremsstrahlung was produced by a 190 ua average electron current with an energy of about 100 MeV incident on a 5 cm thick assembly of water cooled Ta plates. The imradiation of one hour can be compared with the 203 Pb half-life of 52 hours.

The filter paper was counted with a 20 cc coaxial $\mathrm{Ge}(\mathrm{Li}) \mathrm{de}-$ tector 72 hours after the end of the activation. A counting rate of 0.336 cpm for the 279.2 keV -ray was measured. By comparison with the 22 mg reference this activity was found to correspond to $8.7 \pm .8$ $\mu \mathrm{g}$ of Pb in the filter or a concentration of $1.2 \pm 0.1 \mu \mathrm{~g} / \mathrm{m}^{3}$ in the air in Livermore. The national average is in the 0.5 to $2 \mu g / \mathrm{m}^{3}$ range.

Under these conditions of analysis, the estimated maximum sensitivity is about I $\mu \mathrm{g}$ of natumal PD. However by bombarding 10 times as long, counting one half-life earlier, using twice the beam amount and a larger $\mathrm{Ge}(\mathrm{Ti})$ detector in a more efficient geornetry, the sensitivity probably could be increased into the 20 to 100 ng range. However the present sensitivity is adequate for most environmental problens.

## LOCKHEED PALO ALTO RESEARCH LABORATORY

## A. NEUTRON PHYSICS

1. "Best-fit" ${ }^{197} \mathrm{Au}(\mathrm{n}, \gamma)^{198} \mathrm{Au}$ Cross Section for Neutron Energies from 10 to 5400 keV (F. J. Vaughn and H. A. Grench)

The basic procedure adopted in arriving at the "best-fit" crosssection curve was similar to that described in detail in WASH-1068 (hereafter referred to as WASH). Namely, only sets of data which cover a significant range of neutron energies, and therefore give information on the shape of the cross section vs. energy, were used in the analysis. These sets of data were, in general, systematically adjusted in the process of arriving at the "best-fit" curve. We define "adjustment" as the multiplication of all the cross-section data of a particular experiment by a constant factor; thus adjustment affects the magnitudes of the cross sections but not the shape of the curve of cross section vs. energy.

However, three additional extensive sets of data have become available since the former work, and these were employed in the present reduction. Another difference was that the procedure followed in WASH relied on hand calculations; the present work employed computer calculations as far as possible. The third, and major, difference between the two procedures is that different assumptions were made in arriving at the initial "standard" portion of the cross-section vs. energy curve. This writeup will give only a brief outline of the steps followed in arriving at our new "best-fit" curve.

Fourteen sets of data were used as input information; they were chosen according to the criterion referred to above, which requires that a particular set of results extend over a significant range of neutron energy. The names of the first author of the articles in which these results are presented are listed below (complete references are given later on a figure). Fricke, Poenitz, Barry, Harris, Cox, Grench (WASH), Johnsrud, Diven, Miskel, Bergqvist, Bilpuch, Gibbons, Moxon, Spitz.

Reference to a particular set of data in the following discussion will be made by giving the appropriate name from this list (except WASH).

The data in these various sets were first renormalized to take into account information which became available after publication, for example newer ${ }^{235} \mathrm{U}$ fission cross sections. The sets affected were Harris, Cox, Johnsrud, Diven, Miskel, and Gibbons. It should perhaps be noted that what we refer to as renormalization is quite different from the process of adjustment described ahove, Renormalization refers merely to updating results in accordance with real physical information, and renormalization factors may, of course, differ with energy. Adjustment, however, is done not on the basis of physical evidence, but as part of the mathematical procedure of arriving at the best-fit curve; as stated above, adjustment factors are not energy dependent but are constant for all the cross-section data of a particular experiment. The renormalizations for all sets except Harris are described in WASH; a description of the procedure followed for the data of Harris is given in Ref. 1.

The so-called "standard" portion of the best-fit curve in WASH was obtained by assuming that the cross sections measured relative to that for 235 U fission (and also the data of Barry) are correct in the energy region from 200-1000 keV. This assumption was abandoned in the present work. Various alternative procedures were tried, but the one finally adopted was based on the assumption that the results of five different methods of measurement should all have equal weight in an energy region where good data are available from all methods, and in which the cross section has a simple shape (namely, is well fit by a low-order polynomial). This "stanaard" energy region was chosen to be $123-560 \mathrm{keV}$. The five methods were those employed by Fricke, Poenitz, Barry, Harris, and measurement relative to the ${ }^{235} \mathrm{U}$ 'fission cross section as made by cox, WASH, and Johnsrud.

An iterative procedure using a least-squares polymomial computer code was followed in arriving at the best-fit curve in the standard energy region. The reported cross-section uncertainties were first adjusted to make the total weight of the data using each of the five methods identical. Specifically, the total weights of the results of Fricke, Poenitz, Barry, and Harris were made equal, while the weights attached to the data of cox, WASH, and Johnsrud were adjusted so each had one-third the weight of the first four sets.

Best least-squares polynomial fits to the data from these seven sets were then obtained using the code referred to above. Fits of orders 1-8 were obtained. Examination of the results indicated that the best fits were obtained with polynomials of degree two and three, so only these were employed in the iterations. The second step of the first iteration consisted of obtaining adjustment factors for each set of data to the least-squares polynomials. These adjustment factors are the constants

[^20]by which the results of a particular set must be multiplied to give the best least-squares fit to the second- and third-degree polynomials obtained using all seven data sets. In accordance with the criterion that each method have equal weight, the set of seven adjustment factors was required to have a weighted average equal to unity. These requirements of equal weight for the various methods and a weighted-average adjustment factor equal to unity insured that the final cross-section curve in the standard region would essentially "split" the original unadjusted data, i.e., about the same number of points would be below the final curve as above.

The iterative procedure then was continued by obtaining new leastsquares polynomial fits using data adjusted by the factors found in the first iteration, and then finding new adjustment factors to these polynomials. The iterations were continued until the results converged, i.e., no further changes (greater than the convergence criteria) occurred in either the polynomials or the adjustment factors. This procedure thus led to both the least-squares-fit cross-section curve (second and third degree) and to final adjustment factors necessary to make the cross sections of the seven sets lie (as well as possible) on these final curves.

The best-fit curve was then extended to energy regions above and below the 123-5 0 keV "standard" region. This was done using iterative procedures similur to those described above. In the energy region from 400-1800 keV (note overlapping with "standard" region), the data from the seven sets used in the $123-560 \mathrm{keV}$ region, adjusted by the final factors obtained as described above, were first fit to polynomials of various degrees, using the same least-squares computer code. It was found that third- and fourth-degree polynomials gave the best fits in the 400-1800 keV region. Adjustment factors for the data of Diven and Miskel were then obtained. The iterative procedure was continued by obtaining new polynomial fits to the 9 sets of data--the 7 original with adjustment factors fixed from the "standard" region results, plus the adjusted Diven and Miskel results. The iterations were continued until the adjustment factors for Diven and Miskel converged and the final polynomials were obtained.

The best-fit curve in the $10-150 \mathrm{keV}$ region (again note overlap) was obtained using a procedure similar to that employed from $400-1800$ keV. In the low-energy region, however, it was found that best fits were obtained using a power law multiplied by a first- or second-degree polynomial. Again the initial fits were found by using the original data sets--iximsted by their appropriate factors from the "standard" region. One mj́a point should be noted; namely the data of Cox for energies in the $10-150 \mathrm{keV}$ region was treated as a separate set of data from that in the region extending upward from 200 keV . This was done because Cox's measurements in the lower-energy region were relative only, and were normalized to his result relative to the 235 U fission cross section at 200 keV .

Adjustment factors for the data of Cox, Bergqvist, Bilpuch, Gibbons, Moxon, and Spitz were then found, using the power law times polynomial fits obtained with the data from the sets used in the "standard" region. The usual iterative technique was then followed until the adjustment factors for Cox etc. converged and final fits were attained.

A minor point which should perhaps be mentioned is that the results from three sets of data which were not used in the "standard" region extend over more than one of the three separate energy regions used in the analysis. These three sets of data are those of Diven, Miskel, and Bergqvist. For these sets, weighted-average adjustment factors were found using the factors obtained in the pertinent separate regions. It should also be noted that one result of Bilpuch and 5 of Gibbons lie in the $123-560 \mathrm{keV}$ region; this was ignored since most of the data in these two sets lies in the $10-150 \mathrm{keV}$ region. Adjustment factors were found from the low-energy region results only for these two sets.

Use of the techniques described above led to final adjustment factors for all fourteen sets of data. The final portion of the crosssection vs. energy curve, namely that extending above 1800 keV , was found by fitting all adjusted data to polynomials in the $1200-5400 \mathrm{keV}$ region (note overlap of energy regions.) It was found that third- and fourthdegree polynomials gave the best fit.

The final best-fit cross-section curve was then obtained by combining the portions covering the separate energy regions. A small amount of hand adjustment was found necessary in order that the separate segments join smoothly. It was found necessary to use a hand fit in the region above 2500 keV because the highest-energy result of Johnsrud at 5400 keV is somewhat larger than his cross section at 4780 keV . Since these are the only two reported results in this energy region, the computer polynomial fits showed a rising cross section with increasing energy. Although this behavior of the cross section with energy may be real, it seems less probable than a monotonically decreasing behavior, and the hand fit was therefore used.

The final cross-section curve is composed of the following segments:

Energy Region (keV)	Type of Fit
10-120	Power law times lst deg
120-290	Hand transition
290-560	Second deg. polynomial
560-600	Hand transition
600-800	Fourth-deg. polynomial
800-1200	Hand transition
1200-2500	Fourth-deg. polynomial
2500-5400	Hand fit

It should be noted that all the hand adjustments consisted of very minor deviations from the computer-calculated fits.

The final cross-section curve is shown on Figure A-1. Figure A-2 includes all the adjusted data in aduition to the best-fit curve. Table A-l lists the final adjustment factors for the 14 sets of data employed in the analysis, while Table A-2 gives numerical values for the best-fit cross-section vs. energy curve.

A final important problem which will now be briefly discussed is that of obtaining the uncertainty of the best-fit cross-section curve. It was noted above that the iterative calculations in the various energy regions were carried out using more than one type of fit. Specifically, an attempt was made to determine the range of reasonable fits in the various regions. For example, in the "standard" energy region, 123-560 keV , fits were obtained for both 2nd- and 3rd-degree polynomials. These fits were obtained not only with the uncertainties of the individual data points adjusted so each method would have equal weight, but also using the uncertainties as reported by the various authors. In other energy regions likewise, calculations were made using various assumptions regarding the uncertainties and for more than one type of polynomial (or power law X polynomial) fit.

The results of these various types of calculations were then compared to determine the uncertainty arising from the range of reasonable fits. This uncertainty was then combined quadratically with the uncertainty of the final polynomial (or other) fit to give the relative uncertainty at a particular energy. The uncertainty of the final polynomial fit (width of the uncertainty band) was automatically calculated by the same computer code used in the iterative procedures described above. A final curve of relative uncertainty vs. energy was then obtained by drawing a smooth hand fit through the points obtained as described above; Figure A-3 shows this curve.

In order to obtain the absolute uncertainty of the best-fit curve, one must include the uncertainty in the normalization. This was obtained by examining the adjustment factors obtained in the "standard" region for the seven sets of data employed therein. It was found that the adjustment factors for 5 of these 7 sets are within $7 \%$ of unity (only that for Cox, namely . 84796 , exhibits a deviation significantly greater than $7 \%$. Therefore the absolute uncertainty of the best-fit cross-section curve (in percent) at a particular energy can be obtained by a quadratic combination of $7 \%$ and the value on the relative-uncertainty curve at the appropriate energy.

Another "best fit" cross-section curve for the ${ }^{197} \mathrm{Au}(\mathrm{n}, \gamma)^{198} \mathrm{Au}$ reaction has recently been obtained by $W$. D. Poenitz (private communication). The techniques employed and the results obtained by Poenitz differ considerably from those we used; we plan to make a detailed examination of these differences.


Figure A-1. "Best-fit" ${ }^{197} \mathrm{Au}(\mathrm{n}, \mathrm{y}){ }^{198}$ Au cross-section curve.


Figure A-2. "Best-fit" ${ }^{197} \mathrm{Au}(\mathrm{n}, \gamma)^{198}$ Au cross-section curve with adjusted data used in obtaining curve.

Table A-1. Adjustment factors for sets of data used in obtaining "bestfit" ${ }^{197} \mathrm{Au}(\mathrm{n}, \gamma)^{198} \mathrm{Au}$ cross-section curve.

Experiment	Adjustment Factor
Fricke	1.01567
Poenitz	1.07871
Barry	0.93771
Harris	1.06969
Cox	0.82853 for $\mathrm{E}<200 \mathrm{keV}$
	0.84796 for $E \geq 200 \mathrm{keV}$
Grench	0.93168
Johnsrud	0.991 .36
Diven	0.88967
Miskel	0.80486
Bergqvist	1.21143
Bil.puch	0.85055
Gibbons	1.22366
Moxon	1.20556
Spitz	1.28708

Table A-2. "Best fit" ${ }^{197} \mathrm{Au}(n, \gamma)^{158} \mathrm{f}$.u cross section.

$E$   $(\mathrm{keV})$	$\sigma$   $(\mathrm{mb})$	$E$   $(\mathrm{keV})$	$\sigma$   $(\mathrm{mb})$	$E$   $(\mathrm{keV})$	$\sigma$   $(\mathrm{mb})$	E   $(\mathrm{keV})$	$\sigma$   $(\mathrm{mb})$	$E$   $(\mathrm{keV})$	$\sigma$   $(\mathrm{mb})$
10	1410	42	527.4	190	275.7	600	119.9	2800	33.1
11	1313	44	513.2	200	270.8	650	111.0	2900	30.7
12	1230	46	500.2	210	266.1	700	103.8	3000	28.4
13	1160	48	488.3	220	261.5	750	98.16	3200	24.6
14	1099	50	477.2	230	256.8	800	93.71	3400	21.9
15	1045	52	466.9	240	252.2	850	90.27	3600	19.9
16	997.6	54	457.4	250	247.6	900	88.05	3800	18.7
17	955.3	56	448.5	260	243.0	950	86.08	4000	17.8
18	917.4	58	440.3	270	238.5	1000	84.45	4200	17.1
19	883.1	60	432.5	280	233.8	1100	81.73	4400	16.6
20	852.1	65	415.1	290	229.4	1200	79.53	4600	16.1
21	823.8	70	400.1	300	224.7	1300	77.53	4800	15.7
22	797.9	75	387.1	320	215.5	1400	75.20	5000	15.4
23	774.1	80	375.7	340	206.7	1500	7.61	5200	15.2
24	752.1	85	365.5	360	198.1	1600	69.80	5400	14.9
25	731.8	90	356.5	380	189.8	1700	66.81		
26	712.9	95	348.5	400	181.9	1800	63.68		
27	695.4	100	341.2	420	174.2	1900	60.46		
28	679.0	110	328.6	440	166.9	2000	57.17		
29	663.6	120	318.2	460	159.9	2100	53.86		
30	649.3	130	309.6	480	153.1	2200	50.56		
32	623.0	140	302.6	500	146.7	2300	47.30		
34	599.7	150	296.5	520	140.6	2400	44.09		
36	578.8	160	290.9	540	134.8	2500	40.98		
38	560.0	170	285.5	560	129.3	2600	38.0		
40	542.9	180	280.6	580	124.3	2700	35.5		



Figure A-3. Relative uncertainty of "best-fit" ${ }^{197} 7_{\mathrm{Au}(\mathrm{n}, \gamma)}{ }^{198} \mathrm{Au}$ cross-section curve.
2. Gross-Fission-Product Gamma-Ray Spectroscopy (W. I. Imhof, L. F. Chase, Jr., R. A. Chalmers, and F. J. Vaughn)

The products of the neutron-induced fission of ${ }^{235} \mathrm{U}$ and ${ }^{239} \mathrm{Pu}$ have been observed using high-resolution $G e(L i) \gamma$-ray spectroscopy. The irradiated samples were counted using an 8000-channel ADC for a vairety of bombardment and delay times in the range from $\sim 5$ minutes to $\sim 5$ days. The yields of various product isotopes from 235 U isission have been studied for neutron bombardments at thermal and at $0.05,0.42,0.52$, $0.62,0.71,0.81,0.90,1.00,4.5$, and 15 MeV .

The yields of fission products located on the sides of the two mass-distribution peaks show large variations over the full range of neutron energies covered. However, from 0.42 MeV to 1.0 MeV relatively little structure is observed.
3. Spin-Spin Effect in the Neutron Total Cross Section of ${ }^{59} \mathrm{Co}$
(T. R. Fisher, H. A. Grench, D. C. Healey,* J. McCarthy,* and D. Parks*)

In the last report, ${ }^{1}$ data on the "spin-spin" effect in the neutron total cross section of ${ }^{59}$ Co were presented. The data were obtained with a polarized 59 Co target and covered the energy region from 0.3 to 8.0 MeV. These results have been published ${ }^{2}$ and a detailed optical-model calculation is nearing completion.

Suitable optical parameters for ${ }^{59}$ Co were determined by fitting the total cross section for energies from 0.3 to 16 MeV and by fitting angular distributions at $1.0,4.0$, and 14.0 MeV . The parameters of Moldauer, 3 with a reduced radius of 4.87 f for the real potential, were adopted. A generalized spin-spin potential of the form

$$
-\frac{V_{S S}}{I} F(r)\left[I \cdot \sigma+\beta_{S S} \sum_{m_{\mu}} \sqrt{\frac{G_{M}}{5}}(11 \mu m-\mu \mid 2 m) I^{\mu} \sigma^{m-\mu} Y_{2}^{-m}(\theta, \varphi)\right]
$$

was used in the calculations. If $F(r)$ is chosen to have a Woods-Saxon shape, best fits to the data are obtained with $V_{S S}=-1.7 \mathrm{MeV}$ and $\mathrm{B}_{\mathrm{SS}}=2$. The strength of the spin-spin potential, $V_{S S}$, is about a factor of 10 greater than would be expected from the interaction of the incoming neutron with a single proton hole in the $f 7 / 2$ shell.

[^21]4. $\frac{\text { Deformation Effect in the Neutron Total Cross Section of }{ }^{59} \text { Co }}{\text { (T. R. Fisher, D. C. Healey,* J. S. McCarthy, }{ }^{*} \text { and D. Parks }}$

If a nucleus has a quadrupole moment, a deformation effect can be observed when the neutron total cross section is measured with an aligned target. This effect is defined as $\Delta \sigma_{\text {Def }}=\sigma_{\text {oriented }}-\sigma_{\text {unoriented }}$ and has been observed for the strongly deformed rotational nucleus ${ }^{165}$ Ho. 4 we have now observed a similar effect for the vibrational nucleus 59 Co . The data are shown in Fig. A-4. The classical black-nucleus estimate shown in the figure is just the change in geometrical cross section resulting from nuclear alignment. A DWBA calculation is in progress in an attempt to obtain a better understanding of the results.
5. Studies of the Decay of ${ }^{30}$ Al Produced by the ${ }^{30} \mathrm{Si}(\mathrm{n}, \mathrm{p})^{30}$ Al Reaction

The level structure of ${ }^{30}$ Si has been investigated by observing the $\gamma$ rays associated with both the $B$-ray decay of 30 Al and with the $30_{S i}(p, p ' y) 30_{S i}$ reaction. Previously unreported $\beta$-ray branches were found to the 4.81 - and $4.83-\mathrm{MeV}$ states in 30 Si . The $\gamma$-ray decay of these states, as well as that of the lower-lying excited states, was measured in both the $\beta-r a y$ decay and ( $p, p^{\prime} \gamma$ ) experiments. It was found that the $4.81-\mathrm{MeV}$ level decays to the ground, $2.23-$ and $3.50-\mathrm{MeV}$ states, whereas the $4.83-\mathrm{MeV}$ level decays only to the $2.23-$ and 3.50 MeV states. A search was made for a reported $T_{I / 2}=72.5 \mathrm{sec} 30 \mathrm{~m}_{\mathrm{Al}}$ activity. $5^{\circ}$ No evidence was found for such activity; an upper limit for the $30 \mathrm{Si}(\mathrm{n}, \mathrm{p}) 30 \mathrm{mAl}$ cross section induced by $15-\mathrm{MeV}$ neutrons was found to be less than $0.1 \%$ of the value previously quoted. 5
6. Studies of the Decay of ${ }^{26}$ Na Produced by the ${ }^{26} \operatorname{Mg}(n, p)^{26}$ Na Reaction
(H. A. Grench and R. Hirko*)

The 1-sec ${ }^{26}$ Na activity is being studied using high-resolution $\gamma$-ray spectroscopy. Several $y$-ray transitions in $26_{\mathrm{Mg}}$ not previously reported in the $\beta$-ray decay of ${ }^{26} \mathrm{Na}$ have been found.

[^22]

Figure A-4. Deformation effect in the ${ }^{59}$ Co neutron total cross section as a function of neutron energy.

## LOS ALAMOS SCIEINTFIC LABORATORY

## A. TIME OF FLIGHT WITH NUCIEAR EXPLOSIONS

1. Neutron Capture Gamma-Ray Yield of ${ }^{93} \mathrm{Mb}$ (M. V. Harlow, Jr., A. D. Schelberg, J. H. Warren, A. Phillips, and N. W. Glass) Relevant to WASH-1.144, Requests 208, 210.

The neutron capture gamma-ray yield of ${ }^{93}$ Nb was measured on Physics 8 for two sample thicknesses, $0.6543 \times 10^{-3}$ and $0.24519 \times 10^{-1}$ atoms/barn, respectively. Gamma rays were observed by Moxon-Rae detectors, and the neutron intensity was measured by $\sigma_{\mathrm{L} i}(\mathrm{n}, \alpha) \mathrm{T}$ beam monitors. Neutron energy was determined from the time-of-flight over a 250 m flight path. Linear electronics and high resolution drum cameras were employed for the primary data recording channels. Normalized gamma-ray yields from the thin sample exhibit clearly resolved resonances over the entire neutron energy range of 34 eV to 10 keV . Comparison of resonance energies with those of the Columbia total cross section data below 2200 eV shows good agreement. Areas of individual resonances in data below 1000 eV compare well with those obtained from calculations done with published resonance parameters. Further analysis of the thin sample data and the reduction and analysis of the thick sample data are being carried out.
2. Radiative Capture by ${ }^{232_{\text {Th }}}$ (I. Forman, A. D. Schelberg, J. H. Warren, M. V. Harlow, and N. W. Glass) Relevant to WASH-1144, Request 343.

Neutron capture in ${ }^{232}$ Ih has been investigated utilizing time-of-flight techniques with modified Moxon-Rae detectors on a neutron beam of the Physics-8 underground nuclear detonation. Area analysis of resonance data was possible between 20 eV and 2000 eV . For larger resonances, the capture areas are primarily sensitive to the radiation width, $\Gamma_{\gamma}$; preliminary values for $66 \ell=0$ levels are given in Table A-I. In the case of smaller levels ( $\mathrm{g} \Gamma_{\mathrm{n}} \ll \Gamma_{\gamma}$ ) capture areas are almost directly proportional to $g_{\mathrm{n}}$; approximately 130 of these levels are now being analyzed. It further appears feasible to determine average cross sections from 2 keV to 30 keV .
3. Fission, Capture, and Scattering Cross Sections of ${ }^{239}$ pu (J. A. Farrell, G. F. Auchampaugh, and P. A. Seeger) Relevant to WASH-1144, Requests 442, 447, 449.

Preliminary results of the Plysics-8 simultaneous measurement of the fission, capture, and scattering cross sections of 239 Pu were reported at the Helsinki conference on Nuclear Data for Reactors. The quality of the data obtained is illustràied in.Fig. A-l. From these data, it was possible to obtain alpha, the capture-to-fission ratio, in the keV region

TABIE A-I
Thorium-232 Radiation Widths (Preliminary)

$E_{0}$   Volts	「   MeV	$\begin{aligned} & \Gamma_{\gamma} \text { Asghar* } \\ & \text { MeV } \\ & \hline \end{aligned}$	E   Volts	$\begin{aligned} & \mathrm{r}_{\gamma} \\ & \mathrm{MeV} \end{aligned}$	$\Gamma_{\gamma} \text { Asghar* }$ $\mathrm{MeV}$
59.5	$22.7 \pm 6$	$23.2 \pm 2$	943.4	$29.6 \pm 4.3$	
69.1	$21.9 \pm 2.8$	$21.2 \pm 1.1$	982.9	$20.6 \pm 3.5$	
112.9	$21.0 \pm 4$	$20.1 \pm 1.1$	990.5	$18.4 \pm 2$	
120.8	$21.0 \pm 5.8$	$20.7 \pm .9$	1010.5	$20.2 \pm 3.2$	
170.2	$22.3 \pm 2.5$	$22.2 \pm 1.0$	1110.0	$31.3 \pm 11$	
192.6	$30.3 \pm 7.2$	$19.6 \pm 1.6$	. 139.0	$23.0 \pm 7$	
221.1	$21.9 \pm 3.4$	$20.3 \pm 1.2$	1227.8	$16.1 \pm 3.9$	
251.4	$22.2 \pm 3.0$	$21.1 \pm 1.4$	1248.7	$22.8 \pm 3.9$	
283.1	$17.3 \pm 3.1$	$17.8 \pm 1.6$	1292.1	$24.1 \pm 4.7$	
285.7	$18.8 \pm 2.4$	$21.8 \pm 1.6$	1301.6	$15.6 \pm 3.7$	
305.4	$18.3 \pm 3.2$	$24.2 \pm 1.9$	1354.8	$18.5 \pm 3.6$	
328.9	$21.8 \pm 2.3$	$22.9 \pm 1.2$	1377.9	$21.5 \pm 5$	
341.8	$20.6 \pm 3.4$	$20.5 \pm 1.2$	1397.7	$13.7 \pm 3.8$	
365.1	$21.8 \pm 5.7$		1426.6	$21.2 \pm 3.7$	
369.3	$21.2 \pm 5.8$		1433.7	$26.8 \pm 5$	
400.9	$19.3 \pm 10$		1518.4	$19.8 \pm 3$	
482.5	$19.3 \pm 3.5$	$21.5 \pm 1.3$	1524.1	$25.2 \pm 4$	
488.7	$17.2 \pm 3.8$	$19.2 \pm 1.3$	1581.0	$26.4 \pm 8.5$	
528.5	$17.4 \pm 3.8$		1589.1	$23.1 \pm 3.5$	
569.8	$30.2 \pm 10.5$	$19.3 \pm 2.4$	1602.7	$27.1 \pm 6$	
598.2	$38 \pm 20$		1630.6	$19.2 \pm 3.6$	
656.5	$16.7 \pm 3$		1640.6	$19.8 \pm 3.9$	
665.2	$14.6 \pm 2.5$		1661.0	$24.4 \pm 3.9$	
675.2	$18.4 \pm 2.5$		1677.8	$18.4 \pm 7$	
687.3	$18.1 \pm 3$		1746.5	$19.7 \pm 3.7$	
701.1	$28 \pm 7$		1762.7	$24.6 \pm 4.5$	
712.9	$13.1 \pm 4$		1803.2	$18.0 \pm 3$	
740.9	$19.8 \pm 2$	$21.6 \pm 1.5$	1811.8	$28 \pm 6$	
778.7	$24.2 \pm 4.5$		1824.4	$20.2 \pm 4.5$	
804.3	$19.5 \pm 2.3$	$20.5 \pm 2.1$	1853.9	$24.3 \pm 8$	
842.5	$20.8 \pm 4.2$	$23.2 \pm 5.0$	1861.5	$29.6 \pm 8$	
866.5	$26 \pm 7$		1951.2	$18.9 \pm 3.7$	
890.2	$24.4 \pm 3.4$		1971.2	$19.0 \pm 4.5$	

*M. Asghar, C. M. Chaffey, M. C. Moxon, N. J. Pattenden, E. R. Rae, and C. A. Uttley, Nucl. Phys. 76, 196 (1966).

## DATA NOT FOR QUOTATION

with an overall acmorecy comparable to other recent measurements, as shown in Fig. A-2. ETables A-II and A-III give average values of alpha and of the fission cross section of 239 Pu , respectively, compared to other measurements.

TABLE A-II
${ }^{239}$ Pu Alpha
Neutron Energy
Interval (keV)

9.0-10.0
$8.0-9.0$
$7.0-8.0$
$\frac{\text { Bityses } 8^{1}}{\because 0.74}$
$6.0-7.0$
$5.0-6.0$

$\underline{\text { ORNL }}{ }^{2}$	$\underline{\operatorname{LRT}}{ }^{3}$	Harwelı ${ }^{4}$	IETP 5
0.64	0.56	0.64	
0.58	0.56	0.56	
0.71	0.63	0.59	
0.88	0.85	0.59	
0.91	0.82	0.80	
0.98	0.81	0.72	0.83
1.25	0.90	0.73	0.95
1.38	1.02	0.92	1.23
0.97	0.89	0.69	1.02
0.81	0.65	0.55	0.71
1.07	0.65	0.53	0.78
1.05	1.03	0.94	0.94
1.89	1.47	1.44	1.72
0.78	0.70	0.63	0.75
0.50	0.53	0.44	0.45
1.31	0.84	1.13	1.23
1.06	1.01	0.79	1.07
0.98	0.76	0.95	0.88

$I_{J . ~ A . ~ F a r r e l l, ~ G . ~ F . ~ A u c h a m p a u g h, ~ M . ~ S . ~ M o o r e, ~ a n d ~ P . ~ A . ~ S e e g e r, ~ T h e ~}^{\text {a }}$ Second IAEA International Conference on Nuclear Data for Reactors. Helsinki, June 15-19, 1970, Paper CN-26/46.
$Z_{\text {R. Gwin, I. W. Westonn, G. de Saussure, R. W. Ingle, J. H. Todd, and F. E. }}$ Gillespie, Nucl. Wi Fng. 40,306 (1970) and private communication, R. Gwin, June, 1970. $\because$
$3_{J .}$. Czirr and J.MEZindsey, The Second IAEA International Conference on Nuclear Data for Reactors. Helsinki, June 15-19, 1970, Paper CN-25/47.
${ }^{4}$ M. G. Schomberg, M. G. Sowerby, D. A. Boyce, K. J. Murray, and Miss D. L. Sutton, The Second IAEA International Conference on Nuclear Data for Reactors. Helsinki, June 15-19, 1970, CN-26/33.
$5_{\text {F. N. Belyaev, K. G. Ignat'ev, S. I. Sukhoruchkin, S. P. Boroviev, V. V. }}$ Pavlov, M. V. Polozov, and A. N. Soldatov, The Second IAEA International Conference on Nuclear Data for Reactors. Helsinki, June 15-19, 1970, Paper CN-25/89.

## TABLE A-III

Average Fission Cross Sections of ${ }^{239} \mathrm{Pu}$

Neutron Energy Interval	Physies 8	$\text { ORNL }^{1}$	Saclay ${ }^{2}$
20.0-30.0 kev	1.85	1.80	1.86
10.0-20.0	1.94	1.90	1.89
9.0-10.0	2.11	1.97	1.96
8.0-9.0	2.48	2.33	2.48
7.0-8.0	2.44	2.22	2.00
6.0-7.0	2.23	2.23	2.00
5.0-6.0	2.59	2.35	2.22
4.0-5.0	2.59	2.48	2.37
3.0-4.0	3.28	3.25	3.09
2.0-3.0	3.47	3.40	3.35
1.0-2.0	4.47	4.59	4.53
0.9-1.0	8.67	8.75	8.71
0.8-0.9	5.43	5.10	5.18
0.7-0.8	6.11	5.60	6.05
0.6-0.7	4.50	4.25	4.77
0.5-0.6	16.2	16.2	15.7
0.4-0.5	10.3	9.70	9.91
0.3-0.4	9.43	8.35	9.04
0.2-0.3	20.6	18.0	18.0
0.1-0.2	21.1	18.4	19.2
90-100 eV	33.4		31.7
80-90	75.4		69.0
70-80	69.7		65.6
60-70	60.2		57.1
50-60	80.6		77.7
40-50	31.7		29.4
30-40	30.5		
20-30	35.2		

$\overline{I_{\text {R. Gwin }}}$ L. W. Weston, G. de Saussure, R. W. Ingle, J. H. Todd, and F. E. Gillespic, Nucl. Sci. Eng., 40, 306 (1970), and private comnunication, R. Gwin, June, 1970.
${ }^{2} J$. Blons', H. Derrien, and A. Michauden, The Second InEA International Conference on Nuclear Data for Reactors. Helsinki, June 15-19, 1970, Paper $\mathrm{CN}-2 \mathrm{G} / \mathrm{G} 3$.


Fig. A-1. The fission, capture, and scatterinf cross sections of 239 pu from 20 to 60 eV . Resonances in 240 Pu and ${ }^{241 \mathrm{Pu}}$ are identified. The apparent drop in the scattering cross section below 22 eV is spurious and is due to a rapidly decreasing neutron flux.


Fig. A-2. Alpha for 239pu as determined from the Physics-8 event, compared with other recent measurements. References are given in Table A-II.
4. Subthreshold Fission in ${ }^{242}$ Pu and ${ }^{244}$ Pu (G. F. Auchampaugh, J.

The subthreshold fission cross sections of ${ }^{242} \mathrm{Pu}$ and ${ }^{244} \mathrm{Pu}$ were measured in the Physics-8 event from 20 eV to 8 MeV . A preliminary analysis of these data has been completed. The threshold regions of ${ }^{242} \mathrm{Pu}$ and ${ }^{244} \mathrm{Pu}$ are plotted in Figs. A-3 and A-4. The ${ }^{242}$ Pu sample was viewed by two solidstate deteftors positioned at $55^{\circ}$ and $90^{\circ}$ to the neutron beam direction, and the ${ }^{44} \mathrm{Pu}$ sampleins: two detectors at $55^{\circ}$. The data from the ${ }^{242} \mathrm{Pu} 55^{\circ}$ signal above 4 MeV larenot been plotted because of nonlinear effects in the $55^{\circ}$ amplifier. The $12 \%$ difference between the $55^{\circ}$ and $90^{\circ} \quad{ }^{42} \mathrm{Pu}$ data below 4 MeV can be fansinned by an anisotropy in the fission fragment distribution. Similar values for the $55^{\circ} / 90^{\circ}$ ratio have been observed by Simmons and Henkel for even-even targets in this mass region. In the case of ${ }^{24}$ Pu the agreement between the two $55^{\circ}$ sets of data was better than $5 \%$ in the MeV region.

Intermediate structure was observed in both elements with the following observed $D_{I}$ and $D_{I I}$ level spacings:

	$\begin{gathered} \Delta E \\ (\mathrm{keV}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{D}_{\mathrm{I}} \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \mathrm{D}_{\mathrm{II}} \\ (\mathrm{keV}) \end{gathered}$
$2^{42} \mathrm{Pu}$	0 to 50   0 to .9	18.7	0.93
${ }^{244} \mathrm{Pu}$	0 to 18   0 to .1	14	1.8

Fission components in the class I resonances are observed in energy regions where the average class I fission strength is enhanced by the coupling to a class II resonance, and only above about 300 eV . Below 300 eV the fission strength is so weak that even with a $\varepsilon_{\gamma} / \varepsilon_{f}$ of $10^{-3}$ it is not possible to observe fission fragments in the presence of the large 3 ray packground in the resonances. The areas of those resonances in $242,244 \mathrm{Pu}$ which have an observable fission component are given in Tables $\mathrm{A}-$ IV and $\mathrm{A}-\mathrm{V}$.
${ }^{1}$ J. E. Simmons and R. L. Henkel, Phys. Rev. 120, 198 (1950).


Fig. A-3. Threshold fission cross section of ${ }^{24} 2_{\text {Fu }}$. The vertical error bars represent statistical errors only. The horizontal error bars indicate a $0.2-\mu s e c$ uncertainty in the zero time. The data of Butler (Phys. Rev. 117, 1305 (1950)) are plotted as a smooth curve.


Fig. A-4. Threshold fission cross section of ${ }^{244} \mathrm{Pu}$. The vertical error bars represent statistical errors only. The horjzontal error bars indicate a $0.2-\mu \mathrm{sec}$ uncertainty in the zero time.

## TABLE A-IV

Below 1 keV , isolated ${ }^{242}$ Pu class I fission areas. Above 1 keV , either isolated class I fission areas or a sum of class I areas over a class II resonance. The number in parentheses indicates the number of distinct resonances within the group.

$\begin{gathered} E \\ (\mathrm{keV}) \end{gathered}$	$A^{A^{I}, \int_{I I^{1}} A^{I} d E}$	$\begin{gathered} E \\ (\mathrm{keV}) \end{gathered}$	$A^{I}, \int_{I I^{A^{I}} d E}^{(b-e V)}$	$\begin{gathered} E \\ (\mathrm{keV}) \end{gathered}$	$A^{I}, \int_{I I^{\prime}} A^{I} d E$
0.374	$0.07 \pm 0.02$	1.852	$0.09 \pm 0.03$	15.00 (2)	$2.45 \pm 0.45$
0.382	$0.16 \pm 0.03$	1.892 (2)	$0.34 \pm 0.05$	16.03 (2)	$5.02 \pm 0.52$
0.410	$0.05 \pm 0.02$	2.748 (3)	$0.50 \pm 0.11$	16.88	$4.14 \pm 0.48$
0.424	$0.09 \pm 0.02$	3.179	$0.22 \pm 0.14$	17.23	$1.35 \pm 0.38$
0.474	$0.14 \pm 0.03$	3.145 (3)	$0.14 \pm 0.07$	18.46	$1.42 \pm 0.50$
0.483	$1.29 \pm 0.22$	3.459 (2)	$0.30 \pm 0.09$	18.74	$0.98 \pm 0.33$
0.505	$0.29 \pm 0.04$	3.490	$0.39 \pm 0.08$	19.40	$1.91 \pm 0.48$
0.537	$0.45 \pm 0.09$	3.514	$0.50 \pm 0.08$	20.58 (2)	$2.30 \pm 0.59$
0.549	$0.53 \pm 0.08$	3.539	$0.38 \pm 0.06$	22.25 (3)	$7.52 \pm 1.04$
0.577	$0.17 \pm 0.04$	3.575 (2)	$1.71 \pm 0.14$	23.47	$5.58 \pm 0.65$
0.596	$0.16 \pm 0.04$	3.660	$1.18 \pm 0.13$	23.90	$2.31 \pm 0.38$
0.500	$0.22 \pm 0.06$	3.577	$1.53 \pm 0.14$	24.35	$2.18 \pm 0.51$
0.612	$0.18 \pm 0.05$	3.716	$0.36 \pm 0.08$	24.74	$0.97 \pm 0.40$
0.671	$0.23 \pm 0.07$	3.778	$0.26 \pm 0.09$	26.18 (2)	$4.50 \pm 0.83$
0.694	$0.90 \pm 0.15$	3.828 (2)	$0.15 \pm 0.08$	27.15 (2)	$11.74 \pm 1.05$
0.713	$0.30 \pm 0.09$	4.861 (4)	$5.04 \pm 0.27$	28.25 (3)	$19.30 \pm 1.50$
0.738	$2.70 \pm 0.39$	4.904	$5.32 \pm 0.34$	29.34 (2)	$10.20 \pm 1.07$
0.757	$6.96 \pm 0.80$	5.925 (3)	$1.30 \pm 0.28$	31.16 (2)	$7.40 \pm 1.60$
0.763	$22.97 \pm 2.57$	6.461	$0.70 \pm 0.16$	32.46 (2)	$5.70 \pm 1.20$
0.790	$4.85 \pm 0.58$	6.659 (2)	$0.70 \pm 0.16$	33.31	$3.90 \pm 1.00$
0.795	$0.30 \pm 0.04$	5.943 (2)	$2.09 \pm 0.25$	34.05	$7.30 \pm 1.50$
0.825	$0.18 \pm 0.05$	7.740	$0.32 \pm 0.15$	35.02	$6.00 \pm 2.20$
0.838	$0.19 \pm 0.06$	8.164	$0.97 \pm 0.22$	35.64	$2.90 \pm 1.00$
0.857	$0.45 \pm 0.10$	8.492 (2)	$1.54 \pm 0.28$	37.11	$2.50 \pm 1.00$
0.857	$0.09 \pm 0.03$	9.547	$2.01 \pm 0.31$	37.79	$4.30 \pm 1.00$
0.879	$0.16 \pm 0.05$	9.995	$0.84 \pm 0.21$	39.09	$6.80 \pm 1.20$
0.887	$0.08 \pm 0.03$	10.30 (2)	$3.59 \pm 0.39$	40.05	$8.10 \pm 1.40$
0.923	$0.16 \pm 0.05$	10.85 (2)	$2.75 \pm 0.45$	41.02	$17.90 \pm 3.10$
1.308	$0.51 \pm 0.04$	11.64 (5)	$3.44 \pm 0.61$	42.02	$17.10 \pm 2.40$
1.598	$0.16 \pm 0.03$	12.95 (3)	$4.69 \pm 0.61$	42.99	$4.20 \pm 2.00$
1.751 (3)	$0.45 \pm 0.05$	13.81	$7.45 \pm 0.75$	45.41	$24.20 \pm 4.30$
1.792 1.839	$0.68 \pm 0.07$ $2.58 \pm 0.31$	14.65	$2.60 \pm 0.37$	45.41	$5.20 \pm 1.70$
1.839 (3)	$2.58 \pm 0.31$				

TABIE A-V
Sum of ${ }^{244}$ Pu class I fission areas over a class II resonance. The resonances at 1.16 and 2.33 keV are questionable. The resonance at 18.2 keV appears to be a doublet.

$\begin{gathered} E \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \int_{I I} A^{I} d E \\ & (b-e V) \end{aligned}$	$\begin{gathered} E \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \int_{I I} A^{I} d E \\ & (\mathrm{~b}-\mathrm{eV}) \end{aligned}$
1.15 (?)	$0.9 \pm 0.3$	7.53	$13.7 \pm 3.2$
1.65	$6.5 \pm 1.0$	11.4	$13.8 \pm 3.7$
2.33 (?)	$1.4 \pm 0.6$	12.2	$11.2 \pm 3.4$
3.74	$9.8 \pm 2.0$	14.5	$19.8 \pm 5.0$
5.45	$9.8 \pm 2.3$	18.2 (2)	$17.5 \pm 5.1$

5. Analysis of the Fission and Capture Cross Sections of Cm (G. A. Keyworth and M. S. Moore) Relevant to WASH-1144, Requests 499, 503-518.

Analysis of the Physics-8 measurement of the fission and capture cross sections of ${ }^{244} \mathrm{~cm},{ }^{2}{ }^{4} 5 \mathrm{~cm},{ }^{2}{ }^{4} \mathrm{Cm},{ }^{47} \mathrm{Cm}$, and ${ }^{248} \mathrm{Cm}$ has been completed. Final resonance parameters are given in Tables A-VI-A-X. The analysis of resonances in ${ }^{24}{ }^{4} \mathrm{Cm}$ is suggestive of intermediate structure in fission near 820 eV . This structure also persists to higher energies, as show in Fig. A-5. A paper describing these results in detail is in the final stage of preparation.
6. Fission Cross Section of ${ }^{24}{ }^{9} \mathrm{Cf}$ (M. G. Silbert, W. Ogle; R. W. Lougheed, J. E. Evans, and R. W. Hoff, IRI, Livermore) Relevant to WASH-1144, Request 521.
The neutron-induced fission cross section of ${ }^{249} \mathrm{Cf}$ has been measured from 15 eV to 3 MeV on the Physics-8 event. The preliminary cross section, measured by a detector at $90^{\circ}$ to the neutron beam, is illustrated in Fig. A-5 and selected integrals are listed in Table A-XI. In addition to the errors plotted, the systematic uncertainty in the cross section is estimated to be $\pm 10 \%$.

Preliminary theoretical fits to the cross section were carried out between 15 and 50 eV with the multilevel search routine of G. Auchampaugh. For the 32 resonances observed in this region the average level spacing is 1.4 eV . Assuming $\Gamma_{\gamma}=40 \mathrm{meV}$, the theoretical fit yielded values of $\left\langle\Gamma_{0}^{0}\right\rangle=0.45 \mathrm{meV}$ and $\left\langle\Gamma_{\mathrm{f}}\right\rangle \approx 150 \mathrm{meV}$. The s-wave neutron strength function $\left\langle\Gamma_{n}^{0}\right\rangle /\langle 0\rangle$ is then $(1.6 \pm 0.4) \times 10^{-4}$ for each of the two spin states ( $4^{-}, 5^{-}$) involved.

This even-odd, spin-parity $9 / 2^{-}$target is known to have a thermal fission cross section of 2700 b . The present results show abundant fission

TABIE A-VI
Resonance parameters for ${ }^{244} \mathrm{Cm}+\mathrm{n}$ with $\Gamma_{\gamma}=37 \mathrm{mV}$ assumed

$\begin{gathered} E_{0} \\ (\mathrm{eV}) \\ \hline \end{gathered}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{o} \Gamma_{\gamma} \\ & (\mathrm{b}-\mathrm{eV}) \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{0} \Gamma_{f} \\ & (\mathrm{~b}-\mathrm{eV}) \end{aligned}$	$\begin{gathered} \Gamma_{n} \\ (m V) \end{gathered}$	$\begin{gathered} \Gamma_{\mathrm{f}} \\ (\mathrm{mV}) \end{gathered}$
22.85	$140 \pm 10$	$14.0 \pm 0.6$	$0.88 \pm 0.09$	$3.7 \pm 0.3$
34.99	$350 \pm$ cown	$23.7 \pm 0.3$	$3.5 \pm 0.3$	$2.51 \pm 0.07$
52.78	$41 \pm 5$	$1.9 \pm 0.1$	$0.56 \pm 0.08$	$1.7 \pm 0.2$
57.99	$35 \pm$ 为	$2.9 \pm 0.1$	$0.67 \pm 0.07$	$3.0 \pm 0.3$
85.96	$710 \pm$ 或	$12.5 \pm 0.2$	$24.5 \pm 2.3$	$0.55 \pm 0.02$
96.12	$252 \pm$ "	$10.5 \pm 0.2$	$7.3 \pm 0.6$	$1.54 \pm 0.05$
132.8	$320 \pm 11$	$10.2 \pm 0.2$	$15.5 \pm 2$	$1.17 \pm 0.04$
139.1	$65 \pm 6$	$5.0 \pm 0.2$	$2.5 \pm 0.3$	$2.8 \pm 0.3$
171.2	$70 \pm 8$	$2.4 \pm 0.1$	$3.3 \pm 0.5$	$1.3 \pm 0.2$
181.6	$170 \pm 9$	$9.7 \pm 0.3$	$10 \pm 0.9$	$2.1 \pm 0.1$
197.0	$410 \pm 17$	$11.1 \pm 0.5$	$43 \pm 5$	$1.00 \pm 0.06$
209.8	$380 \pm 17$	$5.3 \pm 0.4$	$42 \pm 5$	$0.52 \pm 0.04$
220.1	$398 \pm 48$	$13.6 \pm 0.6$	$54 \pm 16$	$1.25 \pm 0.16$
230.5	$289 \pm 41$	$3.1 \pm 0.3$	$30 \pm 7$	$0.40 \pm 0.07$
234.9	$60 \pm 17$	$1.5 \pm 0.3$	$3.8 \pm 1.2$	$0.9 \pm 0.3$
242.7	$20 \pm 19$	$2.1 \pm 0.3$	$1.3 \pm 1.2$	> 2.2
264.9	$124 \pm 48$	$3.1 \pm 0.4$	$10 \pm 5$	$0.9 \pm 0.4$
274.1	$164 \pm 50$	$2.8 \pm 0.4$	$16 \pm 7$	$0.6 \pm 0.2$
316.8	$52 \pm 6$	$0.5 \pm 0.1$	$5.5 \pm 0.7$	$0.3 \pm 0.07$
329.5	$294 \pm 21$	$2.3 \pm 0.2$	$6.6 \pm 1.4$	$0.29 \pm 0.03$
343.5	$277 \pm 22$	$5.6 \pm 0.4$	$26 \pm 5$	$1.16 \pm 0.16$
353.1	$309 \pm 19$	$10.8 \pm 0.6$	$101 \pm 23$	$1.28 \pm 0.11$
361.7	$196 \pm 25$	$5.5 \pm 0.4$	$34 \pm 8$	$1.03 \pm 0.16$
354.4	$85 \pm 17$	$4.8 \pm 0.3$	$10 \pm 2$	$2.1 \pm 0.4$
386.2	$158 \pm 8$	$4.8 \pm 0.3$	$26 \pm 3$	1.11 $\pm 0.09$
$397.6^{\text {a }}$	$145 \pm 8$	$2.6 \pm 0.3$	$23 \pm 3$	$0.66 \pm 0.08$
415.0	$122 \pm 9$	$0.9 \pm 0.2$	$19 \pm 2$	$0.27 \pm 0.06$
$420.6^{\text {a }}$	$254 \pm 17$	$6.2 \pm 0.5$	$93 \pm 16$	$0.89 \pm 0.08$
426.9	$94 \pm 7$	$0.9 \pm 0.3$	$13 \pm 2$	$0.35 \pm 0.12$
43.4	$235 \pm 15$ \%	$5.3 \pm 0.6$	$86 \pm 19$	$0.82 \pm 0.11$
470.9	$250 \pm 17$ :	$13.0 \pm 0.7$	$167 \pm 58$	$1.84 \pm 0.16$
488.9	$88 \pm 7$ :	$1.2 \pm 0.3$	$15 . \pm 2$	$0.50 \pm 0.13$
491.9	$180 \pm 7$	$2.3 \pm 0.5$	$54 \pm 6$	$0.47 \pm 0.10$
512.4	$290 \pm 14$	$1.6 \pm 0.3$	Large	$1.6 \pm 0.3$
520.5	$116 \pm 7$	$8.0 \pm 0.6$	$26 \pm 4$	$2.55 \pm 0.26$
$596.4{ }^{\text {a }}$	$79 \pm 39$	$2.1 \pm 0.5$	$17 \pm 12$	$1.0 \pm 0.5$
612.4	$109 \pm 45$	$3.0 \pm 0.5$	$30 \pm 22$	$1.0 \pm 0.5$
620.0	$103 \pm 23$	$2.2 \pm 0.3$	$27 \pm 10$	$0.8 \pm 0.2$
627.8	$35 \pm 21$	$0.2 \pm 0.2$	$7 . \pm 4$	< 0.5
$637.9^{\text {a }}$	$49 \pm 21$	$0.9 \pm 0.3$	$10 \pm 5$	$0.7 \pm 0.4$
$646.9^{\text {a }}$	$321 \pm 31$	$5.9 \pm 0.5$	Large	$0.68 \pm 0.10$
652.4	$160 \pm 16$	$0.2 \pm 0.2$	$81 \pm 27$	- 0.1
691.3	$57 \pm 17$	$1.2 \pm 0.3$	$13 \pm 5$	$0.8 \pm 0.3$

## TABLE A-VI (Continued)

$\begin{gathered} E_{0} \\ (\mathrm{eV}) \end{gathered}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{0} \Gamma_{\gamma} \\ & (\mathrm{b}-\mathrm{eV}) \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{o} \Gamma_{f} \\ & (\mathrm{~b}-\mathrm{eV}) \\ & \hline \end{aligned}$	$\begin{gathered} \Gamma_{\mathrm{n}} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} \Gamma_{f} \\ (\mathrm{mV}) \end{gathered}$
695.3	$64 \pm 16$	$1.2 \pm 0.3$	$16 \pm 5$	$0.7 \pm 0.3$
704.5	$135 \pm 22$	$5.5 \pm 0.7$	$64 \pm 28$	$1.5 \pm 0.3$
712.8	$75 \pm 16$	$0.1 \pm 0.1$	$20 \pm 7$	$<0.2$
$731.6^{2}$	$128 \pm 15$	$0.6 \pm 0.3$	$50 \pm 19$	$0.17 \pm 0.09$
746.0	$18 \pm 9$	$0.8 \pm 0.3$	$4 \pm 2$	$1.6 \pm 1.0$
$759.7^{\text {a }}$	$193 \pm 14$	$0.9 \pm 0.5$	Large	$0.17 \pm 0.10$
778.6	$127 \pm 9$	$6.0 \pm 0.7$	$72 \pm 15$	$1.7 \pm 0.2$
790.1	$17 \pm 8$	$0.8 \pm 0.3$	$4 \pm 2$	$1.7 \pm 1.0$
797.5	$7 \pm 7$	$1.8 \pm 0.5$	$2 \pm 2$	$>3.7$
$802.5^{\text {a }}$	$29 \pm 9$	$2.4 \pm 0.6$	$7 \pm 2$	$3.1 \pm 1.2$
815.8	$41 \pm 7$	$3.3 \pm 0.7$	$11 \pm 2$	$3.0 \pm 0.8$
823.0	$69 \pm 13$	$17.4 \pm 1.5$	$28 \pm 7$	$9.3 \pm 1.9$
845.3	$24 \pm 14$	$1.1 \pm 0.4$	$6 \pm 4$	$1.7 \pm 1.2$
857.9	$82 \pm 19$	$3.2 \pm 0.5$	$33 \pm 14$	$1.4 \pm 0.4$
855.6	$47 \pm 22$	$5.2 \pm 0.7$	$15 \pm 9$	$4.1 \pm 2.0$
872.0	$66 \pm 16$	$1.8 \pm 0.6$	$23 \pm 9$	$1.0 \pm 0.4$
884.9	$107 \pm 19$	$0.7 \pm 0.4$	$52 \pm 29$	$0.2 \pm 0.1$
899.7	$131 \pm 14$	$0.5 \pm 0.3$	$128 \pm 62$	$0.14 \pm 0.09$
914.0	$146 \pm 20$	$2.3 \pm 0.7$	Large	$0.6 \pm 0.2$
925.3	$56 \pm 13$	$0.4 \pm 0.4$	$19 \pm 7$	< 0.5
946.9	$76 \pm 13$	$0.9 \pm 0.6$	$34 \pm 11$	$0.4 \pm 0.3$
971.5	$139 \pm 14$	$1.3 \pm 0.4$	Large	$0.35 \pm 0.11$

[^23]TABIE A-VII
Resonance parameters for ${ }^{246} \mathrm{Cm}+\mathrm{n}$ with $\Gamma_{\gamma}=37 \mathrm{mV}$ assumed

$\begin{gathered} \mathrm{E}_{\mathrm{O}} \\ (\mathrm{eV}) \\ \hline \end{gathered}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{0} \Gamma \gamma \\ & (\mathrm{~b}-\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{o} \Gamma_{f} \\ & (\mathrm{~b}-\mathrm{eV}) \end{aligned}$	$\begin{gathered} \Gamma_{\mathrm{n}} \\ (\mathrm{mV}) \\ \hline \end{gathered}$	$\begin{gathered} \Gamma_{\mathrm{f}} \\ (\mathrm{mV}) \\ \hline \end{gathered}$
84.43	$661 \pm 100$	$12.5 \pm 0.4$	$22 \pm 5$	$0.70 \pm 0.10$
91.84	$560 \pm 30$	$2.6 \pm 0.4$	$19 \pm 2$	$0.17 \pm 0.03$
158.4	$414 \pm 40$	$8.2 \pm 0.8$	$29 \pm .5$	$0.73 \pm 0.11$
250.7	$116 \pm 60$	$1.2 \pm 0.5$	$9 \pm 6$	$0.38 \pm 0.3$
278.3	$80 \pm 60$	$2.9 \pm 0.9$	$7 \pm 6$	$1.3 \pm 1.2$
288.2	$323 \pm 80$	$2.7 \pm 0.9$	$59 \pm 38$	$0.31 \pm 0.14$
313.4	$197 \pm 35$	$0.8 \pm 0.3$	$25 \pm 8$	$0.15 \pm 0.10$
$361.0^{\text {a }}$.	1-1	$3.5 \pm 0.7$		
381.1	$303 \pm 35$	$1.5 \pm 0.6$	$118 \pm 57$	$0.18 \pm 0.09$

## TABIE A-VIII

Resonance parameters for ${ }^{248} \mathrm{Cm}+\mathrm{n}$ with $\Gamma_{\gamma}=37 \mathrm{mV}$ assumed

$\begin{gathered} \mathrm{E}_{0} \\ (\mathrm{eV}) \\ \hline \end{gathered}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{0} \Gamma_{\gamma} \\ & (\mathrm{b}-\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \frac{\pi}{2} \sigma_{0} \Gamma_{f} \\ & (\mathrm{~b}-\mathrm{eV}) \\ & \hline \end{aligned}$	$\begin{gathered} \Gamma_{n} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} \Gamma_{f} \\ (\mathrm{mV}) \end{gathered}$
26.84	$2270 \pm 160$	$5.1 \pm 0.4$	$25 \pm 3$	$0.08 \pm 0.01$
76.08	$1830 \pm 200$	$162.0 \pm 10.0$	Iarge	$3.3 \pm 0.4$
98.79	$1640 \pm 90$	$21.0 \pm 1.3$	Large	$0.47 \pm 0.04$
140.0	--	$5.9 \pm 0.4$	--	. --
186.0	--	$7.1 \pm 0.5$	--	--
232.5	--	$2.3 \pm 1.1$	--	--
237.0	--	$8.8 \pm 1.1$	--	--
415.2	--	$2.8 \pm 0.8$	--	--

TABLE A-IX
Resonance parameters for resonances in ( ${ }^{245} \mathrm{~cm}+n$ ) between 20 and 60 eV . Phase angles refer to the fission-width-vector orientation in a two-fission-channel, single-spin-state analysis.

$\mathrm{E}_{\mathrm{o}}(\mathrm{eV})$	$\underline{2 g \Gamma}{ }^{\circ}{ }^{\circ}(\mathrm{mV})$	$\Gamma_{\gamma}(\mathrm{mV})$	$\underline{\Gamma_{f}(m V)}$	$\theta$ (degrees)
21.35	0.457	(40)	485	-16
24.90	0.521	(40)	226	99
25.84	0.007	(40)	549	89
25.83	0.147	(40)	131	160
27.63	0.174	(40)	165	90
29.42	0.538	(40)	328	-171
37.71	0.088	(40)	691	$-69^{\text {a }}$
32.99	0.064	(40)	4	-61
34.59	0.039	(40)	61	113
35.31	1.276	(40)	4195	54
35.32	0.256	(40)	189	177
39.45	0.104	(40)	102	$-126^{2}$
40.44	0.705	(40)	585	128
42.45	0.824	(40)	10	56
43.10	0.264	(40)	537	-55
44.57	0.391	(40)	694	-67
45.74	0.087	(40)	901	-9
47.51	0.516	(40)	28	28
49.20	0.728	(40)	1399	58
50.48	0.252	(40)	751	92
51.64	0.087	(40)	207	106
53.53	2.687	(40)	896	-173
54.63	0.045	(40)	1057	174
56.32	0.186	(40)	505	54
58.54	1.811	(40)	393	162
59.99	0.079	(40)	518	-39

[^24]TABLE A-X
Resonance parameters for resonances in ( ${ }^{247} \mathrm{Cm}+\mathrm{n}$ ) between 20 and 50 eV . Phase angles refer to the fission-width-vector orientation in a two-fission-channel, single-spin-state analysis.

$E_{0}(\mathrm{eV})$	$\underline{2 \mathrm{~g} \Gamma_{\mathrm{n}}{ }^{\circ}(\mathrm{mV})}$	$\Gamma_{\gamma}(\mathrm{mV})$	$\Gamma_{\mathrm{f}}(\mathrm{mV})$	$\theta$ (degrees)
21.30	0.027	(40)	404	-61
24.03	0.009	(40)	134	-153
25.35	0.002	(40)	25	-103
26.19	0.003	(40)	220	-129
28.04	c. 011	(40)	53	35
30.25	0.527	(40)	4	-94
30.62	0.034	(40)	52	-30
32.23	0.089	(40)	25	-92
35.35	0.270	(40)	61	-38
37.74	0.004	(40)	555	-153
37.76	0.217	(40)	13	-178
39.52	0.001	(40)	705	-153
39.95	0.015	(40)	157	19
40.61	0.005	(40)	48	-134
41.25	0.103	(40)	. 20	105
41.76	0.008	(40)	545	-11
43.39	0.029	(40)	4	117
44.87	0.313	(40)	32	11
45.21	0.085	(40)	60	-119
47.92	0.159	(40)	164	-75
48.85	0.973	(40)	82	25
50.08	0.334	(40)	55	-127
50.69	0.447	(40)	52	. 22
51.78	0.231	(40)	14	-154
52.19	0.175	(40)	4	-48
53.63	0.052	(40)	324	121
55.10	0.072	(40)	38	88
55.18	0.088	(40)	59	63
59.56	2.037	(40)	114	-68



Fig. A-5. The fission-to-capture ratio of ( ${ }^{2 / 44} \mathrm{~cm}+\mathrm{n}$ ) below 5 keV . The ordinate has been multiplied by 37, the value in meV assumed for the average capture width, so that the scale is appropriate for the average fission width in meV.


Fig. A-6. Preliminary fission cross section of ${ }^{249}$ Cf measured on the Physics-8 nuclear explosion. $90^{\circ}$ detector.
in the region studied, comparable to ${ }^{235} \mathrm{U}$, although it is of interest to note that the several-MeV plateau is significantly lower than predicted by systematic formulae which are adequate in the U-Pu region.

TABIE A-XI
Preliminary ${ }^{24} 9$ Cf fission cross section integrals ( $90^{\circ}$ detector)

$E_{1}$	$E_{2}$
$2 \times 10^{1}$	$10^{2}$
$10^{2}$	$3 \times 10^{2}$
$3 \times 10^{2}$	$10^{3}$
$10^{3}$	$3 \times 10^{3}$
$3 \times 10^{3}$	$10^{4}$
$10^{4}$	$3 \times 10^{4}$
$3 \times 10^{4}$	$10^{5}$
$10^{5}$	$3 \times 10^{5}$
$3 \times 10^{5}$	$10^{6}$
$10^{6}$	$3 \times 10^{6}$


$3.3 \times 10^{3}$ $5.3 \times 10^{3}$


85.2
30.3
41.7
17.5
$17.5 \quad 13.3$
8.4
7.2
5.2
3.3
4.1
2.9
2.8
2.3
2.2
1.9
1.8
1.7
1.4
1.6
B. VAN DE GRAAFF NEUIRON STUDIES

1. Neutron-Proton Scattering as a Nuclear Standard (J. C. Hopkins; G. Breit, SUNY, Buffalo) Relevant to WASH-1144, Requests 1-2.

A paper was accepted for publication in Nuclear Data on the $1_{H}(n, n)^{1}{ }_{H}$ scattering observables required for high precision fast-neutron measurements. Table B-I shows the most important results. The abstract is as follows:

The purpose of this paper is to provide the best possible values of the free $n-p$ scattering total cross sections, differential cross sections, and polarization, for neutron energies between 100 keV and 30 MeV . These are extremely important numbers because they are used as standards for most fast-neutron cross-section measurements above 2 MeV and are frequently used at much lower energies. The relevant data will be defined, much of which has not been used in previous evaluations of the n-p cross sections. It is shown that the differential cross sections below 10 MeV

TABLE B-I. Representation of the c.m. ${ }^{I_{H}(n, n)^{I_{H}}}$ Differential Cross Section in Terms of Legendre
Polynomials Using Yale Phase Shifts. $\quad \sigma(\theta)=C_{0}+C_{1} P_{1}+C_{2} P_{2}+C_{3} P_{3}+C_{4} P_{4} \mathrm{mb} / \mathrm{sr}$.

	Lab   Neutron   Energy   (MeV)	$\mathrm{C}_{0}$	$\mathrm{C}_{1}$	$C_{2}$	$\mathrm{C}_{3}$	$\mathrm{C}_{4}$	$\qquad$	$\begin{aligned} & \sigma_{\text {TOTAL }} \\ & \text { (Gamel) } \\ & \hline \end{aligned}$
5	0.1	$1.017 \times 10$	-5.691×10-1	$1.483 \times 10^{-4}$	$1.067 \times 10^{-8}$	$-6.368 \times 1{ }^{10}$	1.2775	12790
$\underline{5}$	0.2	$7.696 \times 10^{\prime \prime}$	$\cdots .8 .016 \times 10^{-1}$	$5.992 \times 10^{-4}$	$1.890 \times 10^{-11}$	$-5.520 \times 10^{-4}$	$\therefore 9671$	9700
S	0.4	$5.489 \times 10$	-1.052	$-4.551 \times 10^{-3}$	$4.872 \times 10^{-6}$	$5.029 \times 10^{-\prime}$	5897	6919
	0.6	$4.444 \times 10^{2}$	-1.226	$9.922 \times 10^{-3}$	$-7.035 \times 10^{-5}$	$1.821 \times 10^{-6}$	5584	5596
$\bigcirc$	0.8	$3.817 \times 10^{2}$	$-1.374$	-7.720×10-3	$-1.130 \times 10^{-4}$	$5.016 \times 10^{-6}$	4797	4801
0	1.0	$3.390 \times 10^{2}$	-1.489	$-7.403 \times 10^{-3}$	$-3.249 \times 10^{-4}$	$1.865 \times 10^{-5}$	4261	4259
	2.0	$2.320 \times 10^{2}$	-1.822	$-3.466 \times 10^{-2}$	$-7.535 \times 10^{-3}$	$3.119 \times 10^{-4}$	2915	2903
7	3.0	$1.825 \times 10^{2}$	-1.979	$-4.865 \times 10^{-2}$	$-1.446 \times 10^{-2}$	$1.702 \times 10^{-3}$	2293	2279
0	4.0	$1.517 \times 10^{2}$	-2.085	$-5.991 \times 10^{-2}$	$-2.821 \times 10^{-2}$	$2.433 \times 10^{-3}$	1907	1893
$\infty$	5.0	$1.301 \times 10^{2}$	-2.148	$-2.520 \times 10^{-2}$	$-4.613 \times 10^{-2}$	$3.117 \times 10^{-3}$	1635	1623
	6.0	$1.138 \times 10^{2}$	-2.163	$4.013 \times 10^{-2}$	$-6.596 \times 10^{-2}$	$5.142 \times 10^{-3}$	1430	1421
0	7.0	$1.010 \times 10^{2}$	-2.150	$7.064 \times 10^{-2}$	$-8.68 .2 \times 10^{-2}$	$1.198 \times 10^{-2}$	1269	1262
2	8.0	$9.065 \times 10^{1}$	-2.123	$6.830 \times 10^{-2}$	$-1.080 \times 10^{-1}$	$2.455 \times 10^{-2}$	1139	1135
0	9.0	$8.215 \times 10^{1}$	-2.100	$1.446 \times 10^{-1}$	$-1.320 \times 10^{-1}$	$3.069 \times 10^{-2}$	1032	1029
	10.0	$7.506 \times 10^{1}$	-2.088	$2.957 \times 10^{-1}$	$-1.599 \times 10^{-1}$	$3.194 \times 10^{-2}$	943.2	$940: 8$
$\pm$	12.0	$6.371 \times 10^{1}$	-2.065	$4.999 \times 10^{-1}$	$-2.131 \times 10^{-1}$	$7.742 \times 10^{-2}$	800.5	800.0
	24.0	$5.514 \times 10^{1}$	-1.981	$7.113 \times 10^{-1}$	$-2.557 \times 10^{-1}$	$1.078 \times 10^{-1}$	692.9	692.9
2	16.0	$4.837 \times 10^{1}$	-1.871	$9.248 \times 10^{-1}$	-2.934*10-1	$1.518 \times 10^{-1}$	607.8	608.8
	18.0	$4.289 \times 10^{1}$	-1.741	1.138	$-3.233 \times 10^{-1}$	$2.015 \times 10^{-1}$	539.0	540.9
	20.0	$3.838 \times 10^{1}$	-1.603	1.349	$-3.423 \times 10^{-1}$	$2.528 \times 10^{-1}$	482.3	485.1
	22.0	$3.462 \times 10^{1}$	-1.469	1.559	$-3.544 \times 10^{-1}$	$3.059 \times 10^{-1}$	435.0	438.4
	24.0	$3.143 \times 10^{1}$	-1.340	1.778	$-3.611 \times 10^{-1}$	$3.617 \times 10^{-1}$	394.9	398.8
	26.0	$2.869 \times 10^{1}$	-1.214	2.018	$-3.604 \times 10^{-1}$	$4.21 .1 \times 10^{-1}$	360.5	364.8
	28.0	$2.632 \times 10^{1}$	-1.089	2.259	$-3.531 \times 10^{-1}$	$4.822 \times 10^{-1}$	330.7	335.4
	30.0	$2.426 \times 10^{1}$	$-9.681 \times 10^{-1}$	2.489	$-3.368 \times 10^{-1}$	$5.406 \times 10^{-1}$	304.7	309.6

differ substantially from the isotropy that has frequently been assumed. In fact, the $\sigma\left(180^{\circ}\right) / \sigma\left(90^{\circ}\right)$ cross section ratios are approximately 1.023 at 7 MeV , 1.011 at 3 MeV , and 1.004 at 1 MeV . These anisotropies, minus 1.000, are higher than those predicted by the Gammel formula by factors of about 2 at 7 MeV , 5 at 3 MeV , 8 at 2 MeV , and 18 at 1 MeV . In adaition, it will be shown that the shape of the differential cross section is far from symmetric about $90^{\circ}$, the zero degree cross section, in fact, being less than the $180^{\circ}$ cross section for all energies below 30 MeV .

The cross sections given here differ significantly from previous estimates based only upon $n-p$ data up to 30 MeV . The present results are derived from calculations using phase shifts obtained by the Yale N-N Interaction Group. Comparisons have been made with the results obtained from calculations employing the IRL and Dubna phase shifts. In all cases, the general fesiures of large anisotropy and asymmetry are verified.
 Niiler;, M. Drosg, J. C. Hopkins, J. T. Martin, J. D. Seagrave, E. C. Kerr, and R. H. Sherman).

At the 3rd International Symposium on Polarization Phenomena, in Madison, Wisconsin, a talk was given by Niiler with the title "Phese Shifts from n- He Elastic Scattering Experiments Near 20 MeV ," a shorter version reported in IA-4455-MS.

The $n-{ }^{4} H e$ differential cross sections have been measured at 17.6, 20.9, and 23.7 MeV with a neutron time-of-flight technique using a l-mole sample of liquid ${ }^{4} \mathrm{He}$ as a scatterer. The energies of 17.6 MeV and 23.7 MeV were chosen to match Broste and Simmons' polarization measurements. Using the measured data and the polarization data, phase shift searches with Dodder's general reaction matrix code EIA2 were carried out. The results are given in Table B-II. These measurements have made a substantial contribution to the single energy phase shift analyses and also the energy dependent analyses. This is important because the $n-{ }^{4} \mathrm{He}$ polarization is used as a standard, and the polariration is calculated from the phase shifts.

The most significant differences between our set of phase shifts and that of Ref. 2 in Table B-II are smaller values for the $S_{1} / 2$ and $P_{1} / 2$ phase the somewhat larger values for the $D$ - and $F$-waves, and the need for small amounts of G-waves.

The final paper on this experiment is being prepared.
*Now at Edgewood Arsenal, Maryland 2l010.

TABLE BmII
n- He Phase Shifts in Degrees

		$\begin{gathered} \mathrm{E}_{\mathrm{n}} \\ (\mathrm{MeV}) \end{gathered}$	$\mathrm{S}_{1 / 2}$	$\mathrm{P}_{3 / 2}$	$\mathrm{P}_{1 / 2}$	$\mathrm{D}_{5 / 2}$	$\mathrm{D}_{3 / 2}$	$\mathrm{F}^{7 / 2}$	$\mathrm{F}_{5 / 2}$	$\mathrm{G}_{\text {g/2 }}$	${ }^{G} 7 / 2$
$\underset{D}{D}$	Ref. 2	17.5	93	95	56	6	3	1	1		
		20.9	90	92	53	9	6	3	3		
		23.7	85	89	52	12	6	4	4		
		17.6	89	93	52	7.2	3.2	0.4	0.2		
	Ref. 1	20.9	84	88	47	9.4	4.0				
$\underset{0}{2}$	Present Values Smooth Set	17.6	87	95	53.5	8	7.2	2.1	1.5	1.5	0.2
		20.9	79	92.5	48.5	11	10	3	3	3	0.8
		23.9 23.7	73	89	45.5	18.5	10.8	6.5	5.2	3.8	2.0
$\sum_{0}^{7}$	Present Values   Single Energy	17.6	84	95	52.5	9.1	7.9	2.1	1.8	2.2	0.6
		20.9	83.7	97.7	45.7	8.5	15.7	1.2	4.6	6.5	-0.3
		23.7	71.2	88.3	45.6	12.7	10.8	6.8	5.7	3.3	1.9

I. G. R. Satchler, I. W. Owen, A. J. Elwyn, G. I. Morgan, and R. L. Walter: Nucl. Phys. All2, I (1968).
2. B. Hoop, Jr., and H. H. Barschall, Nucl. Phys. 83, 65 (1966).
3. Elastic Scattering and Polarization of Fast Neutrons by Liquid Deuterium and Tritium (J. D. Seagrave, J. C. Hopkins, A. Niiler (Edgewood Arsenal), R. K. Walter (EG\&G), R. H. Sherman, and E. C. Kerr) Relevant to WASH-I144, Request 4.

Final cross section results are given in Tables B-III and B-IV. Model calculations were carried out by Lucke (SGS) this summer for some of the n-T cross sections which showed good fits but poor consistency of parameters as a function of energy. Arvieux (now at Grenoble) has corrected an error in his code for nucleon-deuteron phase shifft analysis, and we will accept his offer to run it with our n-D data.

$$
\text { 4. } \frac{\text { Fast Neutron Fission of }{ }^{244} \mathrm{Cm},{ }^{245} \mathrm{Cm},{ }^{246} \mathrm{Cm},{ }^{248} \mathrm{Cm} \text {, and }{ }^{249} \mathrm{Cf}}{\text { (D. M. Barton and P. G. Koontz) }}
$$

Data for calculation of the ( $n, f$ ) cross section of ${ }^{248} \mathrm{Cm}$ are now being gathered, and will be included in a report listing the ( $n, f$ ) cross section of ${ }^{24} \mathrm{Cm}$ at $1.0,1.5,3.0$, and 14.9 MeV .

Requests for material for a similar measurement on ${ }^{24}{ }^{4} \mathrm{~cm},{ }^{24} 6 \mathrm{Cm}$, and ${ }^{249} \mathrm{Cf}$ have been made to the Transplutonium Program Committee.

## C. THERMAI NEUYTRON CAPIURE GAMMA RAYS

1. The ${ }^{40} K(n, \gamma)^{41_{K}}$ Reaction and the Level Structure of ${ }^{4 I_{K}}$ (E. B. Shera and D. F. Beckstrand)
The low-lying level strufture of ${ }^{4 I_{K}}$ has been studied using the thermal-neptron capture reaction, ${ }^{40} \mathrm{~K}(\mathrm{n}, \gamma)^{4} l_{\mathrm{K}}$, on an isotopically separated target of 40 K . The $\gamma-r a y$ spectrum from this reaction has been investigated in the energy range from 0.1 MeV to 10.1 MeV using a Li-drifted Ge spectrometer system. $\quad \gamma-\gamma$ coincidence measurements using $G e\left(L_{i}\right)$ detectors have also been made. Spin and parity assignments for the excited states below 2450 keV are proposed, primarily on the basis of $\gamma$-ray branching to levels with established spin and parity values. The proposed level energy ( $I \pi$ ) values are $0\left(3 / 2^{+}\right)$, $980.4\left(1 / 2^{+}\right)$, $1293.4\left(7 / 2^{-}\right), 1559.9\left(1 / 2^{+}\right)$, $1582.0\left(5 / 2^{+}\right)$, $1677.5\left(5 / 2^{+}, 7 / 2^{+}\right), 1698.1\left(5 / 2^{+}, 7 / 2^{+}\right), 2144.1\left(5 / 2^{+}\right), 2166.0\left(1 / 2^{+}, 3 / 2^{+}\right)$, $2316.5\left(5 / 2^{+}, 7 / 2^{+}\right), 2447.9\left(1 / 2^{ \pm}, 3 / 2^{ \pm}\right)$. Additional levels have been observed at 2494.7, 2507.9, 2527.9, 2599.8, 2681.5, 2712.2, 2756.5, 2760.7, $3042.1,3142.1,3164.5,3213.4,3235.5$, and 3281.1 keV . The experimental findings are summarized in Fig. C-l. The low-lying excited states of 41 K are interpreted in terms of two-particle, one hole configurations of the form $p\left(d_{3 / 2}\right)^{-l_{n}\left(f_{7 / 2}\right)^{2} \text {. }}$

Differential Cross Sections for Elastic Scattering of Fast Neutrons by Deuterium

$\cos \theta^{\prime}$	$\sigma$	$\Delta 0$	$\cos 0^{\prime}$	0	$\Delta 0$	$\cos 0^{\prime}$	$\sigma$	$\Delta \sigma$
$\mathrm{E}_{\mathrm{n}}=5.55$	MeV'		$\mathrm{E}_{\mathrm{n}}=7.0 \mathrm{MeV}$			$\mathrm{E}_{\mathrm{n}}=8.0 \mathrm{MeV}$		
0.695	184.0	12.9	0.695	169.0	11.8	0.695	156.0	10.9
0.600	163.0	11.4	0.444	126.0	8.8	0.053	58.9	4.1
0.411	141.0	9.9	0.232	101.0	7.1	-0.120	44.1	3.1
0.120	99.5	7.0	0.064	76.5	5.4	-0.201	33.0	2.3
-0.140	60.7	4.3	-0.161	47.2	3.3	-0.241	33.5	2.3
-0.240	55.8	3.9	-0.388	38.4	2.7	-0.388	27.2	1.9
-0.396	47.9	3.4	-0.523	36.6	2.6	-0.470	28.0	2.0
-0.566	57.2	4.0	-0.704	56.9	4.0	-0.501	23.4	1.6
-0.704	89.1	6.2	-0.815	99.3	7.0	-0.612	28.2	2.0
-0.826	104.6	7.3	-0.912	103.0	7.2	-0.771	60.2	4.2
						-0.871	95.5	6.7
$\mathrm{E}_{\mathrm{n}}=9.0 \mathrm{MeV}$			$\mathrm{E}_{\mathrm{n}}=18.55 \mathrm{KeV}$			$\mathrm{E}_{\mathrm{n}}=23.0 \mathrm{MeV}$		
0.695	123.0	8.6	0.7478	88.2	6.8	0.7130	81.1	6.7
0.266	80.3	5.6	0.7132	87.9	7.1	0.6490	56.5	5.0
0.054	54.8	3.8	0.6199	68.3	5.8	0.5180	45.8	4.2
-0.099	44.7	3.1	0.5902	63.9	5.5	0.4870	46.1	4.2
-0.2i41	34.7	2.4	0.5183	53.8	4.8	0.3890	32.8	3.3
-0.430	25.0	1.8	0.3889	40.8	3.9	0.2660	17.5	2.2
-0.559	22.8	1.6	0.3556	39.2	3.7	0.1870	19.0	2.3
-0.688	34.6	2.4	0.2209	26.1	2.8	0.0749	13.6	2.0
-0.912	107.0	7.5	0.1870	27.2	2.9	0.0750	13.6	2.0
			0.1420	22.6	2.6	-0.0350	9.4	1.7
$\mathrm{E}_{\mathrm{n}}=20.5 \mathrm{HeV}$			-0.0131	15.3	2.1	-0.0990	9.5	1.7
0.7132	82.9	6.8	-0.0776	13.1	1.9	-0.2410	7.0	1.5
0.6951	73.5	6.1	-0.2404	14.6 7.8	2.0	-0.4860	3.0	2.2
0.6950	76.2	6.3	-0.2407 -0.2408	7.8 9.5	1.5 1.7	-0.6550	2.9 7.2	1.2
0.6000	64.2	5.5	-0.2408 -0.4297	9.5 5.1	1.7	-0.7490 -0.8000	7.2 9.2	1.5
0.4540	39.5	3.8	-0.4297 -0.4932	5.1 3.8	1.4	-0.8000	9.2 25.7	1.6 2.8
0.3889	35.7	3.5	$\begin{array}{r}-0.4932 \\ -0.6245 \\ \hline-0.621\end{array}$	3.8 5.0	1.3 1.3	-0.9090	25.7	2.8
0.3888	28.7	3.0	-0.6245	5.0 3.4	1.3			
0.2430	26.6	2.9	-0.6718	3.4 9.7	1.2			
0.0970	18.3	2.3	-0.7754	9.7 10.6	1.7			
0.0749	17.8	2.3	-0.8115	10.6	1.7 2.8			
0.01420	19.2	2.3	-0.8976	20.0 35.	2.8			
-0.1710	12.6	1.9	-0.9117	35.3	3.5			
-0.2010	9.8	1.7						
-0.3960	5.6	1.4						
-0.3961	5.3	1.4						
-0.5860	3.2	1.2						
-0.5861	3.1	1.2						
-0.77:40	5.7	1.4						
-0.7530	4.3	1.3						
-0.8590	19.5	2.4						
-0.9070	22.6	2.6						
-0.9071	29.0	3.0						

TABLE B-IV
Centermofmass Differential Cross Sections for Elastic Scattering of Fast Neutrons by Tritium

$\cos \theta^{\circ}$	$\sigma$	$\Delta \sigma$	$\cos \theta^{\prime}$	0	$\Delta \sigma$
$E_{n}=6.0 \mathrm{MeV}$			$\mathrm{E}_{\mathrm{n}}=9.0 \mathrm{MeV}$		
0.850	427.9	21.4	0.856	276.2	13.8
0.669	337.4	16.9	0.644	206.3	10.3
0.376	180.4	9.0	0.386	127.6	6.4
0.098	88.2	4.4	0.128	73.4	3.7
-0.048	54.1	2.7	-0.086	37.4	1.9
-0.197	39.0	2.0	-0.301	17.8	0.9
-0.444	4.5 .4	2.3	-0.481	18.6	0.9
-0.661	92.0	4.6	-0.655	39.7	2.0
-0.854	183.1	9.2	-0.854	91.7	4.6


$E_{\mathrm{n}}=19.5 \mathrm{heV}$		
0.791	142.0	7.3
0.756	129.9	6.7
0.661	106.8	5.5
0.454	68.7	3.7
0.178	33.0	1.9
-0.058	13.4	1.0
-0.318	2.6	0.5
-0.503	1.7	0.5
-0.608	3.3	0.6
-0.719	8.5	0.9
-0.837	20.0	1.6


$\mathrm{E}_{\mathrm{n}}=21.0 \mathrm{MeV}$		
0.798	124.3	6.4
0.710	101.6	5.3
0.492	63.0	3.4
0.317	45.5	2.5
0.049	17.7	1.2
-0.206	6.0	0.6
-0.414	1.3	0.4
-0.583	2.4	0.5
-0.672	5.0	0.7
-0.789	15.2	1.3
-0.854	19.2	1.5


$\cos \theta^{\prime}$	0	$\Delta \sigma$
$E_{\mathrm{n}}=18.0 \mathrm{MeV}$		
0.850	182.5	9.4
0.710	135.2	7.3
0.627	116.4	6.4
0.501	85.0	5.0
0.337	52.2	3.4
0.198	40.9	2.6
0.078	26.6	1.9
-0.058	15.8	1.1
-0.206	7.8	0.7
-0.406	2.3	0.5
-0.510	1.9	0.5
-0.644	5.4	0.7
-0.767	13.7	1.2
-0.847	22.9	1.


$\mathrm{E}_{\mathrm{n}}=23.0 \mathrm{MeV}$		
0.798	122.5	6.3
0.694	86.9	4.5
0.492	48.0	2.6
0.297	32.2	1.9
0.138	18.8	1.2
-0.086	9.7	0.8
-0.301	2.8	0.5
-0.523	1.7	0.5
-0.709	5.3	0.7
-0.758	8.0	0.9
-0.854	14.6	1.3



Fig. C-I. Level structure of ${ }^{4 I}$ K, showing relative garma-ray intensities.
2. High Energy Gimma Rays from Thermal Neutron Irradiation of ${ }^{235} \mathrm{U}$ and C39Pu 2 ? m. Jurney)

The internal target thermal neutron capture gamma facility at the Omega West Reactor has been used to abtain preliminary gama spectra between 4.4 and 5.8 MeV from targets of 235 U and 239 Pu . The measurements were made with a $26 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector inside a divided NaI annulus with the entire system opersers an double-escape pair spectrometer.


Table C-l and intensities are twsemsenas barns of partial absorption cross section. Excitation energies $f \pi \cdot$ values for the levels in the product nuclei have been assigned wewa it has been possible to identify gamma rays with neutron capture. Noterinat members of the ground-state multiplet are excited in both nuclei ( $2^{+}$and $4^{+}$in ${ }^{235} \mathrm{U}$, $2^{+}$in ${ }^{240} \mathrm{Pu}$ ). The peutron binding energy is $6544 \pm 2 \mathrm{keV}$ for ${ }^{2} 36 \mathrm{U}$ and $5534 \pm 2 \mathrm{keV}$ for ${ }^{2}{ }^{4} \mathrm{P}_{\mathrm{Pu}}$.

Of the 12 gammas which appear to be common to both spectra, 7 have about the same intensity and 5 are from 2 to 10 times more intense for Pu. Some of the difference might arise from the shift in the fission yield distribution. It is also possible that strong ${ }^{240} \mathrm{Pu}$ capture lines occur accidentally at energies coincident with lines in the $U$ spectrum.

Work on these interesting nuclei will continue. In particular, the range of observation will be extended to both lower and higher energies.
D. FISSION ISOMER STUDIES (H. C. Britt, B. H. Erkkila, J. E. Iynn, \#̈ and W. E. Stein)

Excitation functions have been measured for the production of fission

 appear to be $2.0-2.5 \mathrm{MeV}$ above the ground state and have measured halflives of $15 \frac{7}{2} 44 \mathrm{nsec},>40 \mathrm{nsec}$ and $23 \pm 5 \mathrm{nsec}$, respectively. The isomers
 apparent thresholds 3 mhov above the ground state. These isomers are believed to be examplestst the decay of an excited state in the secondary minimum. For these even-even nuclei the lowest shape isomeric state was expected to have a half-life $<1$ nsec which would be unobservable in the present experiment.

Excitation functions have been measured for isomer production from deuteron bombardment on targets of $235 \mathrm{U}, 237 \mathrm{~Np}, 239 \mathrm{Pu},{ }^{240} \mathrm{Pu},{ }^{242} \mathrm{Pu},{ }^{244} \mathrm{Pu}$. The isomers from bombardment of 237 Np and the Pu targets are primarily from

[^25]TABIE C-I
Garma rays between 4.4 and 5.8 MeV from thermal neutron irradiation of 235 U and ${ }^{239} \mathrm{Pu}$

$\begin{gathered} E_{\gamma} \\ (\mathrm{keV}) \end{gathered}$	${ }^{235} \mathrm{U}$ Target	$\underline{I_{\gamma}(\mathrm{b})}$	$E_{\text {ex }}\left(J^{\pi}\right)$	$\begin{gathered} \mathrm{E}_{\gamma} \\ (\mathrm{keV}) \end{gathered}$	${ }^{239}$ Pu Target	$\frac{\mathrm{I}_{\gamma}(\mathrm{b})}{}$	$E_{\text {ex }}\left(J^{\top}\right)$
				4432.5	0.3	3.5	
4453.4	0.3	1.9		4453.4	0.3	3.7	
4454.5	0.5	0.2		4454.5	0.4	3.1	
				4474.4	0.5	1.4	
4493.0	0.4	0.4		4493.7	0.4	1.5	
				4502.5	1.6	0.4	
				4555.7	0.4	1.1	
4563.2	0.5	0.3					
4573.8	0.8	0.1					
4611.8	0.5	0.1					
4538.0	1.0	0.07					
4645.8	0.3	0.7		4647.1	0.5	0.8	
				4554.3	0.3	1.9	
				4709.2	0.4	0.6	
4713.6	1.0	0.06					
4721.7	0.4	0.1					
4729.0	0.9	0.05					
4734.7	0.6	0.1	1810				
4748.3	0.5	0.1					
				4758.7	0.3	1.7	
4773.4	0.8	0.1					
4785.7	0.5	0.2					
4808.3	0.9	0.06					
4815.0	0.7	0.1					
4835.3	0.6	0.1					
4870.9	0.5	0.1					
4879.8	1.0	0.1					
4885.7	0.4	0.4					
4925.7	0.7	0.1		4926.9	0.4	0.7	
				4946.2	0.6	0.3	
4952.4	0.5	0.2					
4974.2	0.4	0.3					
4985.3	0.6	0.1					
				$5007 \cdot 3$	0.4 0.8	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$	(1527)
5020.1	0.5	0.2					
				5045.1	0.4	0.7	
5-19.9				5123.2	0.3	2.3	$1410\left(0^{+}\right)$
5146.0	0.5	0.2					
5163.8	0.9	0.1					
5187.4	0.4	0.4		5188.3	0.7	0.3	

TABLE C-I (Continued)

$\begin{gathered} \mathrm{E}_{\gamma} \\ (\mathrm{keV}) \\ \hline \end{gathered}$	$\frac{235}{}{ }^{25_{\gamma}}$	$\underline{\text { arget }}$ If	$\mathrm{E}_{\text {ex }}\left(\mathrm{J}^{\pi}\right)$	$\begin{gathered} \mathrm{E}_{\gamma} \\ (\mathrm{KeV}) \end{gathered}$	${ }^{239}{ }_{\text {Pu }}$ Target		${ }_{\underline{e x}}\left(J^{\pi}\right)$
5197.2	0.4	0.2					$1737\left(2^{+}\right)$
5203.0	0.7	0.05	2342				
5212.4	0.7	0.1					
5215.8	0.6	0.2					
5299.2				5289.5	0.9	0.2	
				5293.8	0.4	1.1	
	0.5	0.2					
5323.8	0.5	0.08		5311.4	0.6	0.3	
				5323.9	0.9	0.1	
				5397.3	0.6	0.3	
5405.9	0.3	0.5		5405.4	0.5	0.6	
5455.7	0.6	0.08					
5517.8	0.3	0.3		5518.0	0.5	0.2	
5533.8	0.6	0.1		5534.3	0.6	0.2	
5544.6	0.7	0.07	1000(2)				
5585.5	0.9	0.03	959( $2^{+}$)	5575.6	0.3	3.5	
				5595.1	0.8	0.2	937( $2^{+}$)
5507.8	0.5	0.08					
				5630.7	1.0	0.7	$902\left(2^{+}\right)$
				5534.3	0.5	0.4	
				5673.4	0.8	0.2	$860\left(0^{+}\right)$
				5931.3	0.8	0.2	
6211.4	0.5			5937.3 6212.3	0.5 1.4	0.4 0.08	597(1゙)
5395.4	0.5 0.3	0.4	149 (4)	6212. 3			
				5491.5	0.5	0.6	$43\left(2^{+}\right)$
5498.9	0.8	0.02	$45\left(2^{+}\right)$				
5780.0	0.4	0.1		5781.0	0.8	0.5	

( $\mathrm{d}, 2 \mathrm{n}$ ) reactions except for ${ }^{239} \mathrm{Pu}$ where for $E_{\mathrm{d}}>12 \mathrm{MeV}$ there is a significant contribution from the ( $\mathrm{d}, \mathrm{pn}$ ) reaction. Using our measurements and results from Copenhagen it is possible to correct our results for contributions from ( $\alpha, p$ ) and ( $\alpha, p n$ ) reactions and obtain excitation functions for the ( $\alpha, 2 n$ ) reactions.

In many cases the data obtained from the ( $\mathrm{d}, \mathrm{2n}$ ) reaction can be compared to data obtained from ( $\alpha, 2 n$ ), ( $p, 2 n$ ), or ( $n, 2 n$ ) reactions leading to the same final nucleus. Comparison of data from various reactions leading to fission isomers in $237 \mathrm{Pu}, 239 \mathrm{Am}$ and ${ }^{240} \mathrm{Am}$ show absolute measured ratios of the isomer to prompt fission cross sections agree to within $\pm 20 \%$. The agreement between results obtained with different reactions and the results obtained at two different laboratories with very different experimental systems is remarkable.

A model based on statistical considerations is being developed to try to fit the measured isomer excitation functions. For xn-evaporation reactions the calculations consider the competition between fission and neutron emission to the normal and isomeric deformation. For non-thermally fissioning nuclei the height of either the first peak, $E_{A}$, or the second, $\mathrm{E}_{\mathrm{B}}$, can be determined from the energy of the neutron fission threshold; the position of the secondary minimum, $E_{\text {II }}$, from the shape of the isomer excitation function; and the energy difference between the first and second peaks, $E_{A}-E_{B}$, from the absolute magnitude of the isomer cross sections. Then the curvatures of the two peaks $A$ and $B$ can be determined from measured spontaneous and isomer half-lives. Preliminary results give adequate fits to the isomer excitation functions and indicate for Pu, Am, and Cm isotopes that the first barrier is higher than the second fission barrier, $E_{A}>E_{B}$.

## E. RESEARCH IN SUPPORT OF NUCLEAR SAFEGUARDS

1. Delayed-Neutron Yield from Fission as a Function of the Energy of the Neutron Causing Fission (M. S. Krick and A. E. Evans)

Measurements of total delayed-neutron yields as a function of the energy of the neutron inducing fission have been extended to neutron energies over the range from 4 to 7 MeV for ${ }^{238_{\mathrm{U}}}{ }^{235} \mathrm{U}$, and ${ }^{233} \mathrm{U}$.

The experimental technique was as outlined previously. ${ }^{2}$ The higher energy neutrons from the $D(d, n) 3$ He reaction were produced by a 25 $\mu_{a m p}$ deuteron beam from the LASL $3-\mathrm{MeV}$ Van de Graaff accelerator impinging on a $1-\mathrm{mg} / \mathrm{cm}^{2} \mathrm{TiD}$ target. The accelerator beam was modulated to produce 40 -millisec bursts of neutrons, followed by a 50 -millisec "off" period. Delayed neutrons were counted during the final 50 millisec of the "off"

[^26]period, after bombarding the samples with the modulated beam long enough to allow the decay of all delayed-neutron groups to come into equilibrium with production. The fission rate of the sample materials was monitored by sandwiching the sample between two fission chambers containing some of the sample material. Delayed neutrons were counted using a calibrated $3_{\mathrm{He}}$-detector-polyethylene array described previously. 3

The results are shown in Figs. E-l to E-3. It is now established that, for the three isotopes measured, the delayed-neutron yield is independent of energy from 0 to 4 or 5 MeV ; the yield then decreases rapidly over a $\sim 2-\mathrm{MeV}$ interval to near the yield value previously measured at 14.9 MeV .4 This yield-vs-energy behavior strongly suggests that the energy dependence of the delayed-neutron yield is associated with the threshold for fission after inelastic neutron scattering. Since the fissioning nucleus has in this case one less neutron to distribute among fission products, it is reasonable to expect fewer neutron-rich precursors of delayed neutrons than in the case of conventional fission induced by capture of a neutron. These results are generally consistent with our understanding of the delayed neutron emission process and with known systematics of total delayed-neutron yields. 5

## F. FACILITIES AND TECHNIQUES

1. Time-of-Flight Neutron Resonance Radiography (L. Forman, C. U. Benton, D. A. Garrett, and A. D. Schelberg)

One possible application of cross-section data is the identification of elements by resonance structure. A technique has been developed at LASI whereby objects majy be radiographed in a desired energy interval. Transmitted neutrons create light in a Si-loaded fluor. The resulting image is recorded by a gated image intensified television camera tube in a time interval calculated by time of flight. In a feasibility study at the Sandia Pulsed Reactor Facility using a 13.2-meter flight path, radiographs were obtained about the $4.9-\mathrm{eV}$ resonance of gold, the $1.45-\mathrm{eV}$ resonance of indium, the $1.1-\mathrm{eV}$ and $2.38-\mathrm{eV}$ resonances of hafnium, and the $0.45-\mathrm{eV}$ resonance of erbium. The samples were not imaged at energies that were off resonance. A more detailed description of this work should be published soon in Rev. Sei. Instr.

3I. V. East and R. B. Walton, Nucl. Inst. Meth. 72, 161 (1969).
${ }^{4}$ C. F. Masters, M. M. Thorpe, and D. B. Smith, Nucl. Sci. and Eng. 35, 202 (1959).
${ }^{5}$ G. R. Keepin, Physics of Nuclear Kinetics, Addison-Wesley, Reading, Mass. (1955), p. 101.


Fig. E-1. Delayed neutron yield per fission as a function of neutron energy for ( ${ }^{233} \mathrm{U}+\mathrm{n}$ ).
\%


Fig. E-3. Delayed neutron yield per fission as a function of neutron energy for $\left({ }^{238} U+n\right)$.


Fig. E-2. Delayed neutron yield per fission as a function of neutron energy for ( ${ }^{235} \mathrm{U}+\mathrm{n}$ ).

## 2. Energy Loss Codes (J. D. Seagrave)

Eichsel's program has been released from disc storage and is now on on ipdate tape. Some minor modifications are planned. The program MTXEL winch uses $d E / d x$ cards from Bichsel's program is available to prepare tainles for binary mixtures. It has been used for various organic (and deuterated) scintillators and recently for irsI.

## 3. Iiquid Fuel High Intensity Neutron Source (I. D. P. King)

Work is proceeding on the testing of the properties of 3.1 M uranyl sulfate fuel plus additives under simulated conditions expected̄ in a full scale version of the Liquid Excursion Pulsed Reactor (IEPR) concept. A fixel capsule has been designed and pressure tested with explosives to hold a $0.1-\mathrm{cm}^{3}$ fuel sample in a $0.2-\mathrm{cm}^{3}$ cavity. The capsule and fuel have been shipped to the Iivermore Super Kukla burst facility and await calibration runs and a maximum burst exposure.

Two special fuel capsules have been fabricated with two lens apertures for fuel tests in a neodymium doped laser pulse (1.05- $\mu$ wavelength). Two laser tests have been completed in which about 1 joule/ $\mu$ liter is believed to have been absorbed in $a$ l- and $5 \cdot 3-\mu$ liter fuel sample. The physical and chemical composition of the fuel appears to have been maintained. Further laser fuel tests will be made as soor as higher pulse intensities become available without prelasing at Sandia and Los Alamos.

Slow progress continues on the Kinglet dynamic critical facility. This facility will be used as a proof test for the Kinetic Intense Neutron Generator (KING) concept. The equipment shown in Fig. F-l has been completed. The following principal items remain before tests of the nuclear operating characteristics can begin. Complete system checkout; bervilium reflector stacking; final static critical check using an 85-gram $235 \mathrm{U} / \mathrm{li}$ iter fuel solution; hydraulic checkout of all fiuel handling components using water instead of fuel solution; and loading with $\sim 500$ liters of fuel solution.


Fig. F-I. Experimental arrangement for the Kinglet dynamic critical facility.

A. NEUTRON PHYSICS

1. MeV Neutron Total Cross Sections (R. B. Sichwartz, R. A. Schrack, and H:T. Heaton II)



 ment with oflace onta, except that our results shom more structure than most of the older work.

Preliminary results on the beryllium crosir section also seem to be in good agreement with earlier data. We are cuatinuing the beryllium measurements, primarily to check on the possibilify of fine structure at the 2.7 MeV resonance.

We have measured the hydrogen-deuterium cross section difference by measuring the relative transmissions of heavy rater and normal water. These results were compared with the results of this recent Wisconsin measurements of hydrogen and deuterium. Our directly measured differences
 arate Wisconsin measurements, except for a slight discrepancy at 4 MeV , where our results imply a slightly higher deuterimm cross section. We plan to measure the deuterium cross section explicitly later this month using deuterated benzene samples.



Figure A-1

## IUCLEAR EFFECTS LABORATORY

A. SMALL-ANGLE ELASTIC SCATTERING OF FAST NEUTRONS (W. P. Bucher, C. E. Hollandsworth, F. D. Lamoreaux, and R. R. Sankey)

Data for the scattering of 7.55 and 9.5 MeV neutrons from $\mathrm{C}, \mathrm{N}$ $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ and $\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ have been obtained for scattering angles of $3^{\circ}, 7.5^{\circ}$, and $15^{\circ}$ using the special-purpose collimator described in previous reports. Time-of-flight over a 2 meter flight patin and neutron-gamma ray discrimination are used for background suppression. Reduction of the data is in progress. A Monte Carlo code to correct the data for multiple scattering effects has been written and is presently being checied.

Preliminary estimates of the corrections to be applied to the data indicate that the zero degree cross section for nitrogen will exceed previous estimates by approximately a factor of 2. Because of the importance of nitrogen in radiation transport calculations and the presence of a discrepancy in the existing nitrogen cross sections, ${ }^{1}$ further measurements for nitrogen are planned. (Data pertinent to requestis \#3i, \#33, \#39, \#40, and \#44; WASH 1144-Draft Version).

Measurements will also be carried out for the following elements: Be, $\mathrm{Al}, \mathrm{S}, \mathrm{Fe}, \mathrm{Cu}$, and Pb . (Pertinent to Requests \#22, \#61, and \#l00; WASH1144 - Draft Version).
B. DELAYED FISSION ISOMERS (D. Eccleshall, J. K. Temperley,
J. A. Morrissey; S. L. Bacharach (Catholic Univ.))

Isomers with half-lives of about 100 ns and 900 ns in ${ }^{237} \mathrm{Pu}$ are being studied via the ${ }^{237} \mathrm{~Np}(\mathrm{~d}, 2 \mathrm{n}){ }^{237} \mathrm{Pu}$ reaction. A pulsed and bunched beam from the tandem Van de Graaff accelerator is used, and the fission fragments are observed in surface barrier detectors. Data will be obtained for deuteron energies between 9 and 15 MeV . Data taken so far at 10 , 11 , and 12 MeV are consistent with a $(\mathrm{a}, 2 \mathrm{n})$ reaction. The isomers have comparable production cross sections, and the ratio of the two cross sections is relatively constant with energy. An abstract is being submitted to the New York American Physical Society meeting.

1 J. K. Dickens and F. G. Perey, Nucl. Sci. Eng. 36, 280 (1969).

## $\therefore$ OAK RIDGE RATIONAL IABORATORY

A. Neutron Physics

1. Total Cross Sections
a. Total Cross Section for ${ }^{16} 0$ for 1.75 - to $4.35-\mathrm{MeV}$ Neutitus frota a T( $p, n$ ) Source
(J. La Fonler, C. H. Johnson, and R. M. Feezel)

A detailê-innowledge of the neutron total cross section of ${ }^{16_{0}}$ is important for some shielding calculations; in particular, the minimum cross section at the well-known 2.35 Mov s-weve resonance is of interest because it is a "winaow" for escaping neutrons. Fowler et al. ${ }^{2}$ and Johnson et al. ${ }^{2}$ reported previously the neutron total cross section of 160 as measured with 2 - to $4-\mathrm{keV}$ resolution over most of the energy region from 1680 to 4340 keV . The source for that work was the $7 \mathrm{Ij}(\mathrm{p}, \mathrm{n})$ reaction induced by protons from the $5.5-\mathrm{MV}$ Van de Graaff. We have now covered about the same energy region with the $\mathbb{T}(p, n)$ reaction at $30-\mathrm{keV}$ resolution. The $7 \mathrm{Ii}(\mathrm{p}, \mathrm{n})$ source has the advantege that it yields neutrons with accurately known energies and good resolution but the disadvantage that it has a second neutron group. At most energies the corrections which we made for this second group were small, but at some energies these were large, e. g. at the 2.35 MeV swave minimum the corrections exceeded $100 \%$.

The data points in Fig. I(1.a) show our new mensurements with the $T(p, n)$ source, and the curve represents the earlier $7 \mathrm{Li}(p, n)$ data except for the oulssion of five very narrow ( $\Gamma<2 \mathrm{keV}$ ) resonances at 2888,3006 , 3212,3438 , end 3441 keV . We have adjusted the energy scale of the new work to agree with the older, more accurate scale. The cross sections are in good agreement except near narrow resonances. The new minimum for the s-wave resonance is $0.170 \pm 0.006$ barns; the correction for enerey resolution reduces this to ebout 0.12 berns in excellent agreement with our earlier value ( 0.133 barns) for the $7_{\mathrm{Li}}(\mathrm{p}, \mathrm{n})$ source. A higher energies the two sets gensrally agree with each other and with the earlier work of Fossen et al., ${ }^{3}$ but there are certain regions where slight disagreements in the data from the two

[^27]

Fig. I(la). Neutron total cross section of ${ }^{16} 0$ as measured with $T(p, n)$ neutrons with about 30 keV resolution. The curve represents earlier measurements with the $7_{\mathrm{Li}}(\mathrm{p}, \mathrm{n})$ source with 3 - to $4-\mathrm{keV}$ resolution. Five very narrow resonances are omitted from the curve.

$$
\begin{aligned}
& \because \pi \\
& \cdots \ldots \\
& \hdashline \ldots
\end{aligned}
$$

sources suggest that the corrections for the second group from the $7 \mathrm{Lj}(\mathrm{p}, \mathrm{n})$ reaction uere not quite right. For example, it appears that the correction should have been larger at the $4.1-\mathrm{heV}$ minimura and smaller Just above the 4.2 MeV peak. In this latter region we are not surprised that we over-corrected for the second group because the energy of the group happens to coincide with the strong $3.77-\mathrm{MeV}$ resonance.
b. Transmission Measurements on Separated Isotopes
(W. Fandaon, J. A. Harvey, and G. G. Slaughter) $\stackrel{y}{3}$
Instrum-sinion is still in progress for transmission measurements on separatici. isotopes. Depending upon the amount of sample available, such jnezsurements can be wade at energy resolution figures of from $0.3 \%$ at 18 M to $<0.1 \%$ at 80 M . Natural lead has been used for preliminary studies at 80 M . Energy discrepancies and background uncertainties are still under investigation. There appears, however, essentially a one to one correspondence between the levels observed in transmission and those reported in capture by Block et al. 1 meaning that seemingly every level. seen in capture has also been seen in transmission. With the completion of lead, measure ?nts will begin on calcium.*

IWASH-2079, p. 246 (1967).
${ }^{*}$ Request No. 72.

$$
\text { c. } \frac{\text { Transmission Measurements upon }{ }^{120}}{\text { Sn and }{ }^{118_{S n}}}
$$

Transmission measurements haye been made at. ORELA upon 2.57" gna $2^{n}$ thick samples of ${ }^{120} \mathrm{Sn}$ and ${ }^{218} \mathrm{Sn}$, respectively. A $4-1 / 2^{\prime \prime}$-Dia. ${ }^{6}$ Li gless scintillator was used with an 18 -meter flight path resulting in neutron energy resolution of $\sim 0.3 \%$. Several moderately strong resonances were observed in the 10 keV energy region which did not show asymmetries and, hence, are not s-wave resonances. The transmission data are laing analyzed by an area analysis program to obtain the neutron widther the resonances. Measurements upon enriched samples of ${ }^{124} \mathrm{Sn}$ aud $\frac{122}{} \mathrm{Sn}$ will be made at both the 18 -meter and 80. meter flight stations.
d. Parameters of Neutron Resonances in ${ }^{243}$ Am
(J. A. Harvey and G. G. Slaughter; F. B. Simpson and

Transmission measurements have been made on two small samples of $243_{\mathrm{Am}}$ ( $99.73 \%$ ) from 0.5 to 1000 eV using the Oak Ridge Electron Linear

[^28]Accelerator. High resolution data ( $\Delta E / E \sim 0.3 \%$ ) were taken using 20 nsec bursts of 140 MeV electrons, 10 nsec channel widths, the SEL computer, and a flight path of $i 8.5$ meters. The instrumental resolution was sufficiently good that Doppler broadening was the limiting effect in data analysis below 200 eV . Breit-lijgner single-level resonance parameters were obtained below 20 eV using a shape enalysis program. The radiation widths of 17 resonances have been measured giving an $\Gamma_{\gamma}$ of $39.0 \times 10^{-3} \mathrm{eV}$. Area analysis was used above 20 eV where the Doppler wiath was too large to permituispe analysis. Preliminary results up to 60 eV were given In the lasscreturt to the NCSAC (NCSAC.-31, page 69). Anelysis of 155 resomances observed resonevice spacine jur both spin states is $0.70 \pm 0.07 \mathrm{eV}$ and the s-wave strength function ( $10^{4} \times \bar{F}_{\mathrm{n}} 0 / \mathrm{D}$ ) is $0.88 \pm 0.0 \overline{9}$. These values are in good agreement with earlier data based on resonances up to 225 eV . Transmission faeasurements upon other small samples of transplutoniun isotopes are planned.

## 2. Radiative Capture Cross Sections and Spectra

a. Neutron Ceoture Cross Sections of ${ }^{13} \mathrm{C}$ and $16_{0}^{1}$

Measurements of the capture cross sections of 13 C and ${ }^{16} 0$ have been made at the Oak Ridge Iinear Accelerator (ORETA). The accelerator was pulsed at 800 pps , with a beam pulse width of 50 ns . Targets used. were a 1 gram, $58 \%$ enriched sample of ${ }^{13} \mathrm{C}$ and a $99.992 \%$ enriched $7 \mathrm{Ii}_{2} \mathrm{CO}_{3}$ sample which yielded data on both 160 and 7 Ij . Measurements were made at 40 meters, with a pair of total energy detectors (TED) which have been described previously. ${ }^{2}$ Figure $1(2 a)$ which is given for illustra. tion purposes is the relative yield of gamma rays from ${ }^{13} \mathrm{C}$.

The capture areas and radiative width are tabulated in Tabie I, together with the observed resonance energies and neutron widths. Also given are resonance parameters taken from the literature.

* on assignment from the Australian Atoraic Energy Commission.
${ }^{1}$ Submitted for publication irsphys. Rev.
${ }^{2}$ R. L. Nacklin and J. H. Gibbons, Fhys. Rev. 159, 1007 (1957).


DATA NOT FOR QUOTATION


Fig. I(2a)

DATA NOT FOR QUOTATION

## b. Neutron Eadiative Capture in Titenium ${ }^{2}$ (B. J. ATlen ${ }^{*}$ and R. L. Macklin)

The measurements have been completed for a determination of the capture cross section of natural titanium. The relative yield of cepture gamma rays which has been observed is shown in Fig. 1 (2b). The data are in process of being aualyzed and interpreted.

```
\(I_{\text {EANDC-85, Requests 232 and } 233 \text {. }}\)
*on assignment from
c. Neutron Radiative Capture in \(20 \mathrm{~Pb}^{\text {l }}\)
 (B. J. Allen \({ }^{\text {F }}\) and R. L. Yacklin)
```

Preliminary data have been taken to determine the radiatjve capture cross sections of 207 Pb . Analysis and interpretation are not complete but Fig. l (2c) is nevertheless a signiricant result which illustrates the superior resolution which is now attainable at ORELA. It will be seen that the yield returns to beckeround between the 37 and the 41 keV resonances with no indication of the asymmetry observed at Iivericore in the inverse reaction (See insert Fig. 1(2c)) and interpreted as an enhanced non-resonant capture. Note that the asymmetry in the $n, \gamma$ yleld (Fig. $l(2 c)$ ) is a consequence of multiple scattering in the sample; the observed shape of the resonance is consistent wiin a shape which is actually symmetrical.

Submitted for publication in Phys. Rev; Letters.

* On assignment from the Australian Atomic Energy Commission.
d. Neutron Radiative Capture in $9 \mathrm{Be}^{2}$ (R. L. Macklin and B. J. Allen')

Measurements acie made to detemine if there exist any predominantly radiativeig capturing levels in 9 Be and to detemine the cross sections accortivily. Below 600 keV no levels were detected.

[^29]

Fig. $1(2 \mathrm{~b})$


DATA NOT FOR QUOTATION
e. Program for Neasurin̄ Neutron Rediative Capture

Cross Sections at ORELA
(R. L. Macklin and B. J.Allen*)

The chromium isotopes (EAFDC.-85, Requests 267, 268, 269, 270, 271, 272) are in various stages of completion so far as the actual measurements are concerned. Ensuing measurements will then be on the separated isotopes of $\mathrm{Ba}, \mathrm{Te}, \mathrm{Sr}, \mathrm{Mg}, 20 \mathrm{~B}_{\mathrm{Pb}}$, and $10_{\mathrm{B}}(\mathrm{n}, \alpha \gamma)$ (EANDC Requests 616, 75, 78, 79), as well es Hg, 10 , Ti (TATMC-85, Requests 515, 516, 525, 528, 529, 232, 233). Of less practical interest but of comparable interest otherwise are the monotopes (or near monotopes) $\mathrm{F}, \mathrm{V}, \mathrm{Y}, \mathrm{A}, \mathrm{P}, \mathrm{Sc}, \mathrm{Mn}, \mathrm{Co}, \mathrm{As}, \mathrm{Na}, \mathrm{Rh}, \mathrm{La}, \mathrm{Pr}, \mathrm{Ta}, \mathrm{Bi}$, and 238 U .

[^30]f. Distribution of Partial Radiation Widths in $230 \mathrm{U}(\mathrm{n}, \gamma)<3 \mathrm{U}^{-}$<br>(O. A. Wassonl and R. E. Chrieril, and<br>G. G. Slaughter and J. A. Harvey)

The $\gamma$-ray spectra from neutron capture in 28 resolved resonances below 600 eV in 238 were obtained at the 10 m flight path of ORETA using a 10 cc Ge ( Li ) detector, with an $\gamma$-ray energy resolution, over the 10 daymrun, of 5.2 keV at 4.6 NeV . (Figure 1 (2f) shows the time spectra from which the resonances were chosen.) Several departures from a purely statistical decay of the compound nucleus have been noted. A strong correlation is observed between the intensities at the 3991 and $3982 \mathrm{keV} \gamma$ rays while no correlation is observed between partial radiation widths and resonant reduced neutron widths. The average value of the ML partial widths is within a factor of two of that for the El pertial widths. The intensity variation over resonences of 7 of the 12 highest energy $\gamma$ rays is consjistent with a $X^{2}$ distribution with 1 degree of freedom while a somewht narrower distribution is required for the others. The significance of these departures from the statistical model will be presented.

[^31]

Fig. $1(2 f)$

## DATA NOT FOR QUOTATION

## 3. Elastic and Inelastic Scattering Cross Sections <br> a. Neutron Inelastic Measurements at ORELA (F. G. Perey, W. E. Kinney, and R. L. Macklin)

We have started a program of inelastic scattering cross section measurements at ORELA. The scattering sample is placed 40 meters from the neutron target in a well collimated flight path (the neutron beam is collimated to a dimension of $1^{\prime \prime} \times 2^{\prime \prime}$ ). The gamma rays from the inelastic scattering events are detected in two nonhydrogenous liquid scintillators placed on each side of the scatterer approximating a $4 \pi$ geometry. The presently used detectors are fluorocarbon scintillators which are reasonably neutron insensitive and very adequate for the capture cross section measurement program. ${ }^{1}$ The use of these detectors presents some inconvenience for the inelastic gamma-ray measurements because of the neutron sensitivity of the detector via inelastic scattering of the fluorine. The low-lying levels at 110 and 197 keV in fluorine impose a limit of about 200 keV on the lower bias of the Compton spectrum for inelastic gamma rays observed. There is also a need to correct the data for the sensitivity of the detector to the neutrons of higher energies due to the fluorine levels above 1.4 MeV . Deuterated benzine, although sensitive to neutrons via the detection of recoil deuterons, allows the possibility of pulse-shape discrimination to render the detector neutron insensitive? and is being investigated as a detector for these neasurements. Because of the very good timing response of these detectors, and the very short intense burst capabilities of OREIA, inelastic cross sections can be measured with a few keV energy resolution at 1 MeV . The upper neutron enerey limit of the method as presently used. is about 4 HeV because of a combination of both lower neutron flux and greater neutron sensitivity of both scintillator materials via inelastic scattering in the carbon. Preliminary measure. ments have been performed by taking time-of-flight spectra as a function of pulse-height in the detectors for $\mathrm{TIL}, \mathrm{Na}, \mathrm{Si}, \mathrm{V}$, and Fe. Spectra were also taken using $\mathrm{CF}_{2}$ "end C as scetterers to determine the sensitivity of the detectors to neutrons and help in the background subtraction. Our present plans are to use the 7 Li measurements as a flux determination and measure the other cross sections relative to the $7 \mathrm{Li}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$ cross section. Since this cross section should be slowly varying over our energy resolution function, it could be used as a secondary standard. Corrections to be applied to the raw data because of finite angle, finite sample, and the sensitivity of the efficiency of the detector to the angular distributions of the garma ray are under investigation. As an example of the structure in the inelastic cross

[^32] to comms detected, \#per kev reutron energy interval, are shoma for Fe
 normalization wes pesforaed on the data show in these figures. The overell timing resulution of the system vas about 5 neec for these measuroments.



Fig. 2(3a)

## DATA NOT FOR QUOTATION

4. Neutron Reaction and Gomma-Ray Production Cross Sections
a. The $\mathrm{Fe}(\mathrm{n}, \mathrm{x} y)$ Reaction for $5.35 \leqslant \mathrm{E}_{\mathrm{n}} \leq 9.0 \mathrm{MeV}^{\mathrm{l}}$
(J. K. Dickens and F. G. Perey)

As part of a continuing program to obtain production cross sections for gamma rays produced by the interaction of neutrons with nuclei, we have measured differential cross sections for the reaction $\mathrm{Fe}(\mathrm{n}, \mathrm{x} \gamma$ ) for nine bombarding neutron energies between 5.35 and 9.0 MeV .

Because of difficulties associated with the complex spectra that were observed, it was decided to concentrate on reducing the data for the well-known transitions whose cross sections were large enough to report with reasonable confidence. These differential cross sections are collected in Table I. The uncertainties assigned to the cross section data are as follows: 10\% for do/du> $20 \mathrm{mb} / \mathrm{sr}$, $15 \%$ for $20 \geqslant d \sigma / \mathrm{dw}$ $\geqslant 2 \mathrm{mb} / \mathrm{sr}$ and $20 \%$ for $\mathrm{d} \sigma / \mathrm{d} \omega<2 \mathrm{mb} / \mathrm{sr}$. Our data are compared with previously published gamma-ray cross section data, ${ }^{2}$ and with curves computed using compoundmucleus formalism; ${ }^{3}$ the comparisons are show in Figs. I (4a) and 2(4a) for the 0.846 MeV transition from the first excited state in .56 Fe and the 1.238 m HeV transition from the second excited state. The solid lines represent the calculations which include the known or probable contributions for gama transitions from levels in 50 Fe up to 4.87 MeV excitation. As is seen for $E_{\mathrm{n}}>5.5 \mathrm{MeV}$ the calculations predict too little cross section for both trensitions shom. We conjecture that nearly all of the levels in ${ }^{56} \mathrm{Fe}$ with $E_{X}>4.87 \mathrm{MeV}$ decay through the first excited state. This conjecture is supported quite well by the nearly complete lack of gamm rais in our raw spectra which can be associated with ground-state transitions from highly excited states. The dashed curve in Fig. 1(4a) shows the predicted excitation junction for the $0.846-\mathrm{MeV}$ gamma ray if the conjecture were completely valia.

It is evident, however, that a bigger detector with more efficiency for high.energy gamma rays and better resolution as well as a better understanding of the 56 Fe nucleus will be required before we can reliably obtain more complete results on this element.
IJ. K. Dickens and F. Gu Ferey, ORNJ.-459 (Sept. 1970).
 (1966); W. E. Tucker, Phys. Rev. 140, Bl541 (1965); D. I. Broder, et al., Izv. Akad. Nauk. SSSR, Ser. Fiz 31, 327. (1968). Translation Bull. of the Acadery of Sciences of the USSR, Physical Series, Vol. 31 No. 2, 311 (Colurabia Tecinical Translations, White Plains, New York 1968); D. M..Drake, et al., Nucl. Sci: and Eng. 40, 294 (1970).
$3_{\text {W. E. Kinney and F. G. Perey, Galculated }} \overline{5 F}_{\mathrm{Fe}}$ Neutron ScatterIng and Gammanay Production Cross Sections from 1.0 to 7.6 MeV , 0 Mifl- 4249 (1958); W. E. Kinney and F. G. Perey, Nucl. Sci. and Eng. 40, 356 (1970).

Table 1.
Elemental Differential Cross Sections for Gamma-Ray Production Due to Neutron Interactions with Irona

$\underset{(\mathrm{kc}}{\boldsymbol{E}_{\boldsymbol{V}}}$	$\begin{aligned} & \text { Level } \\ & (\mathrm{keV}) \end{aligned}$	Cross Section ( $\mathrm{mb} / \mathrm{sr}$ ) for $E_{n}$ of -															
		$\begin{gathered} 5.35 \pm 0.20 \\ \mathrm{MeV} \end{gathered}$		$\begin{gathered} 5.85 \pm 0.02 \\ \mathrm{MeV} \end{gathered}$		$\begin{gathered} 6.40 \pm 0.20 \\ \mathrm{MeV} . \end{gathered}$		$\begin{gathered} 6.90 \pm 0.15 \\ \mathrm{MeV} \end{gathered}$		$\begin{gathered} 7.45 \pm 0.15 \\ \mathrm{McV} \end{gathered}$		$\begin{gathered} 7.95 \pm 0.10 \\ \mathrm{McV} \end{gathered}$		$\begin{gathered} 8.50 \pm 0.10 \\ \mathrm{MeV} \end{gathered}$		$\begin{aligned} & 9.0 \pm 0.1 \\ & \mathrm{MeV} \end{aligned}$	
		$55^{\circ}$	$90^{\circ}$														
${ }^{56}$ Fe Isotope																	
846	846	85.0	81.7	86.6	83.2	88.0	82.0	89.2	8.2	84.6	77.5	9-7.6	84.2	93.4	85.1	101.0	88.0
1038	3123	5.7	5.7	5.6	5.6	6.5	6.1	6.5	6.4	6.3	5.8	7.0	5.3	7.9	6.4	7.4	7.3
1168	$\left.\begin{array}{l}3826 \\ 4298\end{array}\right\}$	2.1	2.2	2.2	1.9	2.5	2.1	1.6	1.8	1.9	1.8	2.6	1.8	2.2	1.9	1.8	2.0
1238	2085	23.9	22.6	27.0	23.5	28.9	24.5	30.0	25.3	29.6	27.5	33.2	27.2	34.5	$31.1{ }^{\text {. }}$	40.0	33.7
1771	3857	2.2	3.2	2.4	3.3	2.4	2.4	2.6	3.1	1.9	2.2	2.0	2.0	2.3	2.3	2.4	1.8
1811	2658	9.3	10.6	11.2	9.6	9.9	8.9	11.0	9.5	9.6	8.2	9.6	8.1	9.2	8.5	9.6	9.0
2035	4120	1.4	1.9	2.8	2.1	2.4	2.3	1.6	1.7	2.2	2.5	2.0	1.4	2.8	2.2	2.6	2.4
2113	2960	5.5	5.9	5.1	5.2	5.4	4.9	5.2	4.7	4.2	4.2	4.3	3.7	4.1	3.7	4.3	4.4
2274	3123	3.3	3.4	2.4	2.9	2.1	2.6	2.2	2.6	2.5	2.8	2.3	2.0	1.7	1.6	2.4	1.8
$2523{ }^{\text {b }}$	3370	5.3	4.5	5.0	3.8	3.5	3.4	3.6	2.0	1.8	1.7	1.6	1.4	2.4	2.2	2.1	1.8
$2599{ }^{\circ}$	$34+5{ }^{c}$	3.7	5.8	5.3	5.2	5.6	6.3	6.0	6.7	5.S	6.0	5.5	5.8	5.8	6.0	5.1	5.7
2759	3604	3.2	3.1	3.2	2.6	2.6	2.1	2.4	1.7	1.7	1.7	1.7	1.5	1.9	1.4	1.0	1.1
3202	4049	2.4	1.9	2.7	1.5	1.6	1.8	2.3	1.8	1.6	1.4	1.9	1.7	2.2	1.8	2.1	1.4
34-43	$\left.\begin{array}{l}34+5 \\ +798\end{array}\right\}$	2.5	3.5	2.3	3.0	2.4	2.8	1.9	2.0	1.6	2.0	2.2	2.4	1.8	1.6	2.8	1.4
354:8	+298 4395	2.0	2.2	2.9	2.6	2.2	2.5	1.7	1.9	1.5	2.2	1.1	1.5	2.0	14	28	
$359 \mathrm{~S}^{\text {d }}$	$3595^{\text {d }}$	2.6	3.3	2.9	2.6	2.4	2.5	2.4	1.9	1.8	1.6	1.5	1.4	1.6	1.2	1.2	1.4
${ }^{54} \mathrm{Fe}$ Isotope																	
1130	2538	1.3	1.1	1.0	1.0	1.2	1.2	1.1	1.3	1.6	1.3	2.1	1.5	1.6	1.3	1.4	1.3
1405	1+0s	3.5	4.2	3.7	3.0	4.1	3.3	4.4	3.5	3.7	3.3	3.3	2.8	4.2	3.7	4.4	3.5

[^33]

Fig. 1(4a). Elemental differential cross sections for gamma-ray production due to neutron excitation of the $0.846-\mathrm{MeV}$ first-excited state in 56 Fe . The present data, for gamma-ray scattering angle of $55^{\circ}$, is compared with previously published data and with cross sections calculated using compound-nucleus formation combined with direct-interaction excitation (Ref. 3).


Fig. 2(4a). Elemental differential cross sections for gamma-ray production due to neutron excitation of the $2.084-\mathrm{MeV}$ second-excited state in 56 Fe compared with previously published data and with cross sections calculated using compound nucleus formation. The difference between the data and calculated curve suggests that levels with $\mathrm{E}_{\mathrm{x}}>4.871 \mathrm{MeV}$ de-excite through the $2.084-\mathrm{MeV}$ level.
5. Properties of Fissile Nuclides
a. ${ }^{238} \delta_{U}$ Capture Cross Section and ${ }^{235}$ U Capture and Fission Cross Section leasurements
(G. de Saussure, R. B. Perez, and E. G. Silver)

Measurements are in progress to obtain accuintee values for the neutron capture cross section of 238 U below 100 keV . wis is an important parameter for the IhMBR Program. The measuremmens are done using the Oak Ridge National Iaboratory Heectron Iinesx Accelerator (ORETA) and a 800-gal. liquid-scintillator total-absorption gama-ray detector installed on a 40 -meter flight path.

Preliminary results are estimsted to have an eccuracy of $6 \%$ and are compared with the EnDF/B evaluation and with tima data of $M$. Moxon (AERER-6074), Fig. 1(5a), and are sumerized in Tiable I. These measurements were pbtained with samples of $.003 \mathrm{In} .\left(\frac{7}{4} 10^{-4} \mathrm{a} / \mathrm{b}\right)$ and .025 in. $\left(28 \times 10^{-4} \mathrm{a} / \mathrm{b}\right)$.

Measurements with other sample thicknesses are tn progress as well as measurements of the fission and capture cross sections of $235 \mathrm{~J} \cdot$ obtained with the same equipment. The purposes of the measurements with 235 U are (1) to determine the capture cross section (and a) of that isotope over the range belor 100 keV , and (2) to detarmine the ratio of the capture in 238 U to the fission in 235 U over the same energy range.

The following additional measurements are contemplated (1) transmission and self-indication measurements on 238 G below 100 keV . The results will be used with capture data described above, to derive resonance parameters up to about 5 keV . The transuission and selfindication measurements will probably be initiated in early 1977. (2) Capture, transmission, and selfi-indication messurements on 230 and capture and fission measurements of 230 U on a flight path of 150 m are planned for the end of 1971. The purwose of the latter measuren ments will be to extend the work done at the 40 m flight path to cover the energy region of 100 to 300 keV .

Table I

Eneray (keV)	Sample		"Average"	ENDF/B	ORNL/EMDF	Davey	ORNL/Drvey
	".003"	".025"					
.5-. 6	$5.19{ }^{\dagger}$	5.03	5.11	4.55	1.12		
$.6-\quad .7$	3.86	3.80	3.83	3.17	1.21		
$.7-.8$	2.01	1.97	1.99	1.58	2.26		
.8- . 9	3.19	3.15	3.17	2.81	1.13		
.9-1.	4.39	4.45	4.42	3.89	1.14		
1. - 2 .	2.02	1.98	2.00	1.80	1.11		
2. - 3 .	1.54	2.49	1.52	2.32	1.15	1.31	2.16
3. - 4.	1.25	1.26	1.25	2.19	2.05	1.29	. 07
4. - 5.	. 955	. 978	. 966	2.10	. 88	2.73	. 85
5. - 6.	$(1.41)^{*}$	. 974	. 974	1.01	. 96	1.02	. 95
6. - 7 .	(.951) ${ }^{\text {a }}$	. 930	. 930	. 950	-98	.945	. 96
T. - 8 .	. 821	. 812	. 816	. 894	. 91	. 885	. 92
8. - 9.	. 738	. 718	. 728	. 84.5	. 86	. 839	. 87
9. - 10.	. 726	. 728	. 727	. 809	. 90	. 803	. 91
10. - 20.	. 649	. 643	. 646	. 687	. 94	. 672	. 96
20. - 30.	. 515	. 505	. 510	. 527	. 97	. 528	. 97
30. - 40.	. 461	. 462	. 461	. 443	2.04	. 449	1.03
$40-50$	. 394	. 397	. 396	. 386	1.03	.394	1.01
50. - 60.	. 328	. 333	. 330	. 334	. 99	. 349	. 55
60. - 70.	. 274	. 279	. 277	. 278	1.00	. 287	. 97
70. - 80.	. 235	. 244	. 240	. 230	1.04	. 236	1.02
80.1990	. 213	. 224	. 218	. 211	2.03	.221	. 99
90. - 100.	. 186	.197	. 191	. 203	. 94	. 208	. 92

The deta of the ".003" sample have $\varepsilon$ large uncertainty in the intervals 5. to 7. keV, essociated with an Al capture resonance at 5.9 keV . The ${ }^{238} \mathrm{U}$ sample was held in an Al frare. Ncw measurements without this Al frame are in progress.
$\dagger_{\text {All }}$ cross-section velues in barns.

## DATA NOT FOR QUOTATION



The ${ }^{238}$ U Neution Capture Cross Section in the Energy Range 0.5 to 100 keV .
Fig. $1(5 a)$
b. Measurement of $\overline{1}$ for ${ }^{239} \mathrm{Pu}$
(I. W. Weston Euch J. H. Todd)

Preliminary measurements were carried out to attempt to resolve the discrepancy between Fijnstein et al. ${ }^{\text {L }}$ et Rensselaer Polytechnic Institute and Ryabov et al. at Dhino. The method used for the present measurement was gute difienent from that previously used. Rather then counting themelized neutions following a fission with a high efficiency detector, the neutract were detected rith low efficiency using fast neutron detectors.anare was taken to avoid gamanamy sensitivity, The ratio of the coincijert sount rate between the fast neutron deteators and a fission chamber $t$ the total count rate in the fission chamber gave a relative measure of $\bar{j}$. Our preliminary deta do not indicate a separation into two grouvs of values according to the spin state of the resonance but indicate a mueh weaker correlation. The comelation that does exist is in the direction indicated by Weinstein et al., rather then that judicated by Ryaboy et al. Fjume 1 (5b) shows a comparison of our preliminery data wilh that of Weinstein et al.
IS. Weinstein, R. Reed, and R. C. Block, Fhysics and Chewistry of Fission, Proceedings of Vienne Conference, 1959, IAEA-SY-122/113.

## c. Promot Gerua Rays Emitted in the Thermal Neutron <br> Induced rission of cjou <br> (Frances Pleasomton)

Preliminary results have been obteined for the average total number and kiverage total enerey of gama rays enitted in the themal neutron irduced fission of 23 U U SThe work was carried out at the oak Ridge Reseerch Reactor as an extension of the experiment originelly periomed bj leiermeibnitz, Schoitt, end Arabrustex. ${ }^{2}$ The early work was besed on measurements of 3-fold coincidences of the fission fragments and the gavma rays, within a fixed resolving time of about 275 nsec. The present experiment dupljcates their geometry of detection but measures in addition the time elapsing between the detection of one fragment and the deirction of the gamma ray emitted in the same fission event.

The daṫ are anelyzed for various time intervals, es indicated In the table. The results Eiven are probably reliable to about $7 /{ }^{d}$, al.thouzh all sources of uncertainties have not been evalunded pending the collection of further data. Good agreanent is seen with the resulics of Peelle and Maienschejn and with those of Verbinski and Sund for comperable times of observation.
IH. Naier-Ieibinitz, H. W. Schmitt, and P. Arabruster, in Proceediags on the Symposium on the Fhysics and Chemistry of Fission, Salaburg,


Fig. (15b)

DATA NOT FOR QUOTATION

Gama energy   (MeV)	Time   interval   (nsec)	Gammas/Fission	MeV/Fission	MeV/Gamma/Fission
$0.030-10.4$	10	$6.19 \pm 0.6$	$6.02 \pm 0.6$	0.97
$"$	next 60	$1.89 \pm 0.2$	$1.00 \pm 0.1$	0.53
"	sum 70	$8.08 \pm 0.8$	$7.02 \pm 0.7$	0.87
"	275	$8.58 \pm 0.8$	$7.36 \pm 0.7$	0.86
$0.010-10.5^{\mathrm{a}}$	$69^{\mathrm{a}}$	$8.13 \pm 0.35^{\mathrm{a}}$	$7.25 \pm 0.26^{\mathrm{a}}$	$0.89^{\mathrm{a}}$
$0.14-10.0^{\mathrm{b}}$	$10^{\mathrm{b}}$	$6.69 \pm 0.3^{\mathrm{b}}$	$6.51 \pm 0.3^{\mathrm{b}}$	$0.97^{\mathrm{b}}$

ar. W. Peelle and F. C. Maienschein, ORNL-4457, UC-34-Physics, April 1970.
${ }^{b}$ V. V. Verbinski and K. E. Sund, DASA Report No. 2234, GA-9148, April 1969.
d. High Resolution Cross Section Measurements for ${ }^{234} \mathrm{U}(\mathrm{n}, \mathrm{f})$ and $230 \mathrm{U}(\mathrm{n}, \mathrm{r})$ at iveutron Energies Between 0.7 and 2 MeV (Helnut Rosler, Franz Plasil, and H. W. Schmitt)

Erperiments have been initiated at OREIA to measure the fine structure in the fission cross sections of ${ }^{234} \mathrm{U}$ ana ${ }^{236} U$ in the region of the fission threshold. The motivation is to find states that can be interpreted in terms of the double humped fission barrier. ${ }^{1}$ The measurements are made with ionization chambers. The energy range is about 0.7 to 2 NeV and the energy resolution is about 7 keV . The ORETA neutron spectrum is monitored by a fast plastic scintillator and a 235 U fission ionization chamber identical to the $234 \cup$ end 230 U chambers. $234 \mathrm{U}(\mathrm{n}, \mathrm{f})$ and $236 \mathrm{U}(n, f)$ cross sections relative to ${ }^{235} \mathrm{U}(n, f)$ can be extracted from the data. Estimated completion date is about October 1971.
*Guest assignee (NArO Fellowship) from Reaktorstation Garching, Munich, Germany.
${ }^{1}$ V. M. Strutinski, Nucl. Fhys. A95, 420 (1967).

## DATA NOT FOR QUOTATION

## 6. Theory and Analysis

```
a. Variation of the R Matrix
 (A. J. Mockel* and R.B. Perez)
```

The $R$ matrix of Wigner and Fisenbud is a function of a set of parameters (channel radii, boundary numbers, etc.) as well as of the energy of the incoming particle. Invariant imbedding techniques have been applied, which give the variation of the R iatrix with respect to changes of the parameters entering into the theory. A generalization of various formulas, derived originelly by Wigner and Teichmann and Wigner, to the multichannel case has been obteined. our general. results apply also to deformations of the nucleus other than spherical. An application of the invariant inbedding technique is also shown concerning Robson's theory of the isobaric spin analogs.
$\overline{1}_{\text {Abstract }}$ of paper submitted for publication in Phys. Rev.
*University of Florida, Gainesville, Florida.
7. Instrumental
a. Fest Neutron Capture Cross Section Facillity ${ }^{1}$ (R. L. Macklin and B. J. Allen ${ }^{\text {T }}$

The total energy weighting technique has been applied to measure fast neutron cepture in small separated stable isotope samples at the Oak Ridge Electron İnear Accelerator (OREIA). Nonhydrogenous ifquid scintillators provide low backgrounds below about 2.5 MeV neutron energy with time resolution better than 2 nanoseconds and ganma cascade efficiency typically $32 \%$ per neutron captured. The 40-meter flight path permits neutron energy resolutions ranging from $\mathrm{F}_{\mathrm{n}} / 600$ at several keV (roderator thickness Ifmited) to ebout $\mathrm{E}_{\mathrm{n}} / 400$ at 2 N V . On Ine data processing via multiple access computer allows (disc) storage to be reduced from over $4 \times 10^{6}$ channels $\sim 190,000$. The usual cor. rections for sample thickness, purity, deadtime, and a transformation to capture cross section vs neutron energy are accomplished off-line in a larger digital computer.
$I_{\text {Abstract of paper submitted to Nuclear Instruments and Methods. }}^{\text {and }}$ *On assignment from the Australian Atomic Energy Commission.

## b. Gamma Flash Sunpression for the ORELA Pulsed <br> Neutron Sourcel <br> (R. L. Hacklın)

A gamma ray tilash suppression system for neutron time-offljeht experinextes at the Oak R土dge Flectron Linear Accelerator (OREA) Las bes? found veiry eftective ron pextiel cross seation
$\therefore$ measurements.entr capture cross section measuraments at 40 m the residual pileusimash pulse from a typical sample is well within the neutron binding energy range, where the detector response is linear. This has allowed two paraneter (time and pulse beight) analysis down to $0.5 \mu \mathrm{sec}$ after the flash.
$\mathrm{l}_{\text {Abstract }}$ of paper to be published in Nuclear Instrmments and Methods. $\quad \therefore \quad \mathrm{B}$

```
diantionsebf a Pulsed Van de Graaff Accelerator and Time-
```



```
Bratycctroscony Eperiments 1
 "Mrignald J. Jaszczak*end R. L. Nacklen; F.. E. Dunnam,*
 H. A. Van Rinsvelt* and R. H. Bloomer*),
```

A pulsed beam of alpha partinles from a 5.5-NV Van de Graaff accelerator has been used to study radiative capture reactions. Time-of-flight techniques are used to discriminate against neutrons produced when the beam interacts with collimator/target contaminants, as well as against beam-Independent backsround due to casmic rays. With a beam pulse of less than 4 nsec (FWMA) duration anda a repetitiou rate of 2 MHz , a portion of the ${ }^{34} \mathrm{~S}(\alpha, \gamma){ }^{38} \mathrm{Ar}$ excitation function was examined near $F_{\alpha}=3.6 \mathrm{MeV}$ and the background found to be an approximate factor of 15 below thet of the effective a.c. Eratation function. In adiction it is demonstrated that an aggular distribution taken on resonence by this method requires substentionlly less background subtraction. The method has also been successfully applied to radiative capture studies in which the incilient beam energy is above the neutron threshold for the target nuciej.

IAbstract of paper submitted for publication in Rev. Sci. Instr. * Department of Physics, Universlty of Florida, Gainesville, Florida.

d. A Proton Recoil Nonitor for Neutron Flux Neaswements ${ }^{1}$ Roneld J. Jaszezak, K. L. Mackin, and M. C. Taylor"
cheofailight techniques have been used with a silicon
 neutron flux from the Oak Ridge Electron Iinear Accelerator in the energy region brtween 200 keV and 7 MEV . The 200 mm , surface barrier detector at 40 meters and constant fraction timins electronics axe used to measure tine-of-fligity, from which the neutron energies are inferred. A Monte Carlo profram has been written to detemine the efficiency, timing and energy characteristics of the monitor systew.
$\overline{I_{\text {Abstract }} \text { of a paper to be submitted for publication in the Rerr. Sci. }}$ Instr,
"Sairit Louts University, Seint Iouts, Hissouri.

## e. Qak Ridge Flectron Iineer Accelerator (ORELA) <br> (J. A. Harvey and F. C. Merenschein)

From fugust 25, 1\%99, until March 26, 1970, the accelerator operated on a 5 -day-per-week schedule and a total of 1780 research beam hours ( $71 \%$ of scheduled time) vere used by experimenters. on Wey 1 , 1970, operation was changed to a 7-cey-per-week schedule. From Aprill 1 to October 31, a total of 2.21 hours was used by experimenters. This period included a rajor shutdown in July and August for installation of collimators, a ner Ta target, and a Be target. During April and May difficulities were experienced with vacuurn leaks in the electron guns and the operation time of the accelerator was below normal. However, electron gun $5-2$ was installed May 29 and lasted until October 27 for a totel of 2742.6 beam hours exceeding our previous record of 1600 hours for an earlier gun. Three klystrons still in operation in the accelerator have averaged over 5000 hours each. Two klystrons were replaced in March and October after $\sim 2700$ hours average.

RENSSELAER POTYTECHNIC INSTITUTE

## A. CROSS SECTION MEASUREMENTS

1. Total MeV Cross Sections on Na and C from 0.5 to $40 \mathrm{MeV}^{*}$ (J. C. Clement, R. Fairchild, C. G. Goulding P. Stoler and P. F. Yergin)

As of this report we have completed measurements of the neutron total cross section of sodium. A 90 MeV LINAC electron beam enabled reliable measurements to be carried out from about 0.5 to 40 MeV . A neutron burst width of 7 nsec and an analysis channel width of 10 nsec limited our resolution to $0.05 \mathrm{nsec} / \mathrm{m}$. We used a newly fabricated metallic sodium sample with nl equal to 0.290 atoms/barn.

Thin layers of $B_{4} C$ and $C d$ were used to filter out low energy neutrons. A 1 -inch thick lead as well as a $\frac{1}{2}-$ inch thick tantalum filter reduced the gamma $\ddagger$ lash and neutron counting rate to a manageable number. A $1 \frac{1}{2}$-inch dianeter brass collimator before the sample replaced the 1 -inch diameter collimator used previously. 1 Other conditions remain identical to that reported earlier.

The cross sections thus obtained will be combined with our previous sodium cross sections to decrease the statistical error to the $1 \%$ range. The current run appears reliable from many points of view. The machine-independent background varies from $10 \%$ to $1 \%$ for sample in, with no more than $2 \%$ over most of the neutron energy spectrum. Examination of data taken at energies below the neutron threshold of our detector leads us to conclude that possible time-dependent background is below. $1.5 \%$. A more conclusive indication of reliability comes from excellent agreement between this run and previous ones made under somewhat different conditions. In comparing the cross sections with those obtained at Karlsruhe we find the agreement is quite good, being generally within a couple of percent from 6 to 30 MeV . However,

* Pertinent to requests 非 32 and 55.


## DATA NOT FOR QUOTATION

in the region of Fi , NeV , the present datare a few percent lower than Ref. 2 tn the valleys, whereas the peak values are quite close. inte sodium data are displayed in Figs. Al to A4. Only the data from the 30 hour long sodium run are presented, as analysis is still progressing on the combined set of runs.
thencintinc note that all the fine

 50 and 60 resonatis between 1 and 3 MeV .

In order to estimate overall capabilities of our system we measured the cross section of carbon from 0.5 to over 20 MeV . The 2.079 MeV resonance, and the other well known structures allow us to assess our resolution. We used a fairly thick sample with an $n l$ of 0.425 atoms/barn. The excellent agreement with the National Bureau of: Standards carbon measurements ${ }^{3}$ lends credibility to the sodium data.

Our carbon data are presented in Figs. A5, A6 and A. -They represent thepresent data, including statistical fluctuations. The solid curve is the National Bureau of Standards cross section of Schwartz et a1. ${ }^{3}$


DATA NOT FOR QUOTATION

SODIUM TOTAL NEUTRON CROSS SECTION


Figure A1


Figure A2


Figure A3



DATA NOT FOR QUOTATION


Figure A6

DATA NOT FOR QUOTATION


## DATA NOT FOR QUOTATION

2. The Neutron Total Cross Section of ${ }^{7} \mathrm{Li}$ from 125 keV to 2 MeV $^{\text {* }}$ (R. C. Block, R. E. Slovacek and T. Y. Byoun)

The neutron total cross section of ${ }^{7}$ Li has been determined by measuring the neutron transmission of Li $^{\text {i }}$ samples over the energy range from 125 keV to 2 MeV . Highly enriched metallic samples of $7_{\mathrm{Li}}$ were prepared at the Los Alamos Scientific Laboratory by distilling metallic lithium into thin-wall (0.010-inch thick) 2-inch diameter stainless steel containers. Measurements were carried out with sample thicknesses of $0.0560,0.1090,0.3187$ and 0.4675 atoms/barn, and the neutrons were detected with the $10_{\mathrm{B}}-\mathrm{NaI}$ detector located at the 27 -meter flight station. The four ${ }^{7}$ Li samples and a composite 'notch' filter package of A1, Na and Mn were alternately placed into the neutron beam under computer control, and the data were stored. in the PDP-7.computer. A $10.5 \mathrm{gm} /$ $\mathrm{cm}^{2}$ sulfur sample was left in the neutron beam throughout the experiments to determine the background in the vicinity of the 111 keV sulfur resonance. The background in the energy region near the $260 \mathrm{keV} 7_{\mathrm{Li}}$ resonance was approximately $3 \%$ of the open beam counting rate. The transmission data have been reduced to total cross sections and preliminary results are shown in Fig. A8 for these four sample thicknesses. In general, the results overlap to within the counting statistics. These preliminary data are being compared with the recently reported ${ }^{7} \mathrm{Li}$ cross-section measurements by Meadows and Whalen. ${ }^{1}$ Although it is premature to make a detailed comparison, there seems to be reasonable agreement between the two measurements, with the only exception being that this measurement is yielding a peak cross section slightly lower than that measured by Meadows and Whalen.

[^34]




3．KeV Neutron Capture and Transmission Measurements on ${ }^{50} \mathrm{Cr},{ }^{52} \mathrm{Cr},{ }^{53} \mathrm{Cr},{ }^{34} \mathrm{Cr},{ }^{60} \mathrm{Ni}$ and $\mathrm{V}^{\circ}$（R．G． Stieglitz，R．W．Hockenbury and R．C．Block）

The following is an abstract of a paper submitted for publication in Nuclear Physics．

Neutron capture and transmission measurements were performed on yanadium and enriched samples of ${ }^{60} \mathrm{Ni},{ }^{50} \mathrm{Cr}$ ， ${ }^{52} \mathrm{Cr},{ }^{53} \mathrm{Cr},{ }^{5}{ }^{4} \mathrm{Cr}$ with âll experimental resolution of 0.6 nan－ oseconds per meter．The capture measurements cover the energy range 0.1 to 200 keV while the transmission measure－ ments extend to over 300 keV ．Parameters are extracted for both s－wave and p－wave resonances．S－wave and p－wave strength functions，potential scattering radii，average cap－ ture cross sections and resonance absorption integrals are determined．The radiation width is found to vary widely among the s－wave resonances of each nuclide．

4．The Observation of Correlations Between $\Gamma_{n}{ }^{0}$ and $\Gamma_{\gamma}$ in the Mass Range 50 to $60^{*}$（R．C．Block，R．G． Stieglitz and R．W．Hockenbury）

The following abstract has been submitted for pre－ sentation at the 1－4 February 1970 American Physical Society Meeting at New York City．
＊Pertinent to requests $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 84， 87 and 113，WASH 1144.

## DATA NOT FOR QUOTATION

Neutron capture and transmissign meaşurements ${ }^{1}$ in the keV energy region upon ${ }^{50} \mathrm{Cr},{ }^{52} \mathrm{Cr},{ }^{53} \mathrm{Cr},{ }^{54} \mathrm{Cr}, V$ and ${ }^{60} \mathrm{Ni}$ have enabled 27 s-wave resonances to be analyzed for $E_{o}$, $J, \pi, \Gamma_{n}$ and $\Gamma_{r}$. The correlation coefficients between ${ }^{\circ}$ the neutron reduced width and the total radiation width, $\rho\left(\Gamma_{n}^{0}, \Gamma_{r}\right)$, is: $\rho=0.47$ for al1 27 resonances, $\rho=0.38$ for the 15 resonances in the odd (target) nuclei, and $\mathcal{\rho}=0.80$ for the 12 resonances in the even-even nuclei. The latter value of 0.80 is significantly different from zero. In addition, the resonance capture pulse-height spectra are dominated by strong high-energy gamma rays which we interpret as El transitions. The positive correlation, coupled with the strong E1 transitions, is interpreted as evidence of intermediate structure.
5. KeV Neutron Capture Measurements on ${ }^{240} \mathrm{Pu}^{*}$
(R. W. Hockenbury, J. D. Boice, W. R. Moyer and R. C. Block)

The ${ }^{240} \mathrm{Pu}$ data in the keV region have been reduced to capture and fission yields. The ${ }_{1}$ capture yield was normalized using the transmission data for the 92.5 eV resonance where both capture and transmission data give the same quantity, $g \Gamma_{n}$, and where fission is negligible. The uncertainty in the ${ }^{n}$ absolute normalization is $\pm 12 \%$, at present, due to cumulative errors in the transmission, capture and relative flux data. This uncertainty will be reduced by using other resonances in addition to the 92.5 eV resonance for normalization. This normalization method is not possible for the fission yield and the approximate detector efficiency for fission was used. The uncertainty in the fission yield is, at present, relatively large ( $\pm 35 \%$ ) due to possible errors in the detector efficiency, the large correc-

[^35]
## DATA NOT FOR QUOTATION

tion for the capture contribution, time-dependent and sample background corrections. Since the fission contribution is small relative to capture, the capture cross section is relatively insensitive to uncertainties in the fission cross section. For example, a $100 \%$ increase in the high bias correction to the low bias data results in $\sim 10 \%$ change in the capture cross section. The data analysis is not yet complete; however, preliminary results are given in this report.

The yield divided by sample thickness (N) for the region from $800-1000 \mathrm{eV}$ is shown in Fig. A9. Yield/N has the same units as cross section; however, they are not-usually equivalent since the yield contains resolution, selfshielding and multiple scattering effects. The isolated cluster in fission at 800 eV is one of the sub-threshold fission groups (observed originally at Geel) ; the capture cross section has the typical structure for a heavy nucleus. The capture and fission yields divided by sample thickness are shown in Fig. Al0 for the region from $4-30 \mathrm{keV}$. The gap in the data at 6 keV is due to a resonance in the Al sample container. In the $k e V$ region, corrections for self-shielding and multiple scattering effects will not exceed $10 \%$. There the yield divided by sample thickness may be considered equal to the cross section for comparison purposes. The previously mentioned uncertainties in the fission cross section are large; however, we present it here to show the marked structure due to sub-threshold fission in the keV energy range. Using the fission cluster at 800 eV as a reference, the energy span of each fission group can be estimated. Above $\sim 8 \mathrm{keV}$, with our experimental resolution, a fission group would show up as a single peak. Further analysis will be done to extract level spacing and, if posşible, fission widths from these data. An evaluation by Yiftah ${ }^{3}$ and a statistical ladder construction by Dyos ${ }^{4}$ are superimposed on the measured cross section in Fig. All. Detailed comparisons to these and other evaluations will be made in a forthcoming report on this work.


Figure A9

8
$\cdots$



Figure A10


Figure All

1. R. W. Hockenbury $\dot{\text { jad }}$ R. C. Block, 20, RPI-328-187.
2. E. Migneco and J. F. Theobald, Proc. of Conf. on Neutron Cross Section and Technology, Washington, D. C., N.B.S. Special Publication 299, Vol I (1968).
3. S. Yiftah, J. J. Smimidt, M. Caner and M. Segev, Fast Reactor Symposium, $\because \cap \Omega$ I, Karlsruhe (1967).
4. M. W. Dyos, Nuc1)ngi, Eng., 34, 181 (1968).
5. T. Ishiguro, S. 要tsuragi, M. Nakagawa and H. Takano, Nuc1. Sci. Eng., 40, 25 (1970).
6. The Differential Elastic Scattering Cross Section of keV Neutrons from Iron and Nicke1* (Ray Zuhr and K. Min)

In the program to measure the differential elastic scattering cross sections of $k e V$ neutrons the construction of the following experimental equipments was completed: (1) A scattering table which incorporates a scattering sample holder with two detector arms which can be rotated about the sample axis, (2) An eight-position automatic sample changer which can be used, with simple modifications, both for transmission and scattering measurements. (To fit the scattering geometry, only the alternate four sample positions are used.) The data acquisition capacity of this program was further improved by the feasibility of using a PDP-7 computer program originally written for the multiple-sample transmission experiments.

The time-of-jifght neutron spectra scattered from patural iron, nickel anc lead samples were measured with a ${ }^{6}$ Li-glass scintillator mounted on a XP 1040 photomultiplier tube; a flight path of approximately 25 meters was used for this experiment. The spectra for iron and lead (to be used as a comparison target) were obtained at the scattering

[^36]angles $135^{\circ}, 110^{\circ}, 90^{\circ}, 70^{\circ}$ and $45^{\circ}$, using the PDP- 7 computer and the linac operating at 500 pps and producing $50-\mathrm{nsec}$ wide pulses. The lead spectrum at $135^{\circ}$ is shown in Fig. Al2. The iron spectra at the same angle shows essentially the same features as reported previously in RPI-328-171, and it is not shown here. The Ni spectra shown in Fig. A13 were measured with 10 nsec beam pulse and the data were accumulated with a TMC time-of-flight unit.

With more accumulation of data for improved statistics, the iron and nickel cross sections will be extracted with respect to the known lead cross sections.

## B. THEORY AND ANALYSIS

1. Temperature-Dependent and Multi-Level Effects On Neutron Resonance Cross Sections (T. E. Shea)

The following is an abstract of the doctoral thesis of T. E. Shea.

The effects of temperature-dependence and multilevel interference on neutron resonance cross sections and their manifestations on cross-section-dependent quantities are examined through the application of the Quasi-Resonance Multi-Level cross-section formalism. Cross-section expressions in this formalism are derived from the level matrix form of the R-Matrix formalism, and are given in terms of Lorentzian shape functions. The effects of nuclear thermal motion on the cross-section expressions are given in terms of the standard Doppler broadening functions.

## DATA NOT FOR QUOTATION



Figure A12


DATA NOT FOR QUOTATION

The QuasíResonance Triplet Approximation is introduced to facilitalse the application of the formalism to the fissile nuclides. 'The Triplet Approximation fission parameters are studied in detail. For ${ }^{235} U$, they are determined to be negligibly intercorrelated and, in all cases studied, well represented by the chi-square frequency functions. The average symmetric fission parameter and its corresponding chi-square numberwingegrees of freedom are seen to be energydependent.

The $\operatorname{Triping}_{3}$ isproximation is applied to the calculation of the ${ }^{235} U$ fission cross section in the range from 18-66 eV. The approximation gives an improved representation of the cross-section line shape over the single-level type calculations. A weak- interference correction is introduced. When used with the Triplet Approximation, the comparisons with R-Matrix calculations are further enhanced. Fission integrals as well as point-wise cross sections are compared with experiment, with quite good agreement.

The average capture and fission cross sections and the average alpha for 235 U are computed in the energy range below 2.5 keV . Again, agreement between theory and experiment is quite good.

The Triplet Approximation is applied to be the Bramblett-Czirr experiment on shielded fission integrals for 235 U , in the resolved and unresolved resonance regions. The results indicate a need for additional cross-section measurements. Comparison calculations are in reasonable agreement with the data.


DATA NOT FOR QUOTATION

## 2. Analysis of Cross-Section Data Utilizing an Interactive Graphics Display (M. Lubert, N. C. Francis and R. C. Block)

The interactive graphics program permits a rapid analysis of the experimental data, eliminating the normal slow batch processing. The program MULTV is modular in design with all pertinent data transmitted through labelled common blocks. The base overlay is a monitor program which executes a specified calculational path in which the final results are optionally displayed on a CRT. The basic program blocks are (1) an $R$-matrix cross-section routine, (2) a Doppler broadening code, (3) a resolution function routine, (4) a Monte Carlo program to treat multiple scattering effects and (5) an interactive graphics package. The user can modify the path as well as the physical parameters for all the modules while in display mode. The final results, in addition to necessary paper output, are viewed on the CRT and may be automatically transferred to computer-generated plots, microfilm and/or printer plots. A typical analysis, comprising several isotopes and one hundred resonances, computes the resolution-broadened transmission for two thousand energy points in approximately 1-2 minutes on a CDC-6600.

The analysis of the nickel, chromium and vanadium transmission experiments using R-matrix theory has yielded good results. However, the analogous comparison to the capture yield measurements for the same isotopes has been poor. In order to improve the theoretical calculation, the R-matrix formalism currently in use is being modified from two viewpoints. First, the collision matrix has been modified to use a representation of the Wigner level matrix which contains non-diagonal terms. The level matrix is expanded to first order assuming random signs for the reduced width amplitudes. The collision matrix is then given by

$$
\begin{aligned}
U=0^{-1} \frac{1}{2}[I & +\sum_{\mu, \nu} 2 i \rho\left(\gamma_{\mu} x \gamma_{\nu}\right) \frac{\sigma_{\mu \nu}}{E_{\mu}-E-\frac{i}{2} \Gamma_{\mu}} \\
& \left.+{ }_{\mu}^{\Sigma_{,}^{\prime}} 2 i \rho\left(\gamma_{\mu} x \gamma_{\nu}\right)\left\{\left(E_{\mu}-E-\frac{i}{2} \Gamma_{\mu}\right)^{-1} \sum_{c}^{\Sigma \beta}{ }_{\nu c} \gamma_{\mu c}\left(E_{\nu}-E-\frac{i}{2} \Gamma_{\nu}\right)^{-1}\right\}\right] \rho \rho-\frac{1}{2} I
\end{aligned}
$$

## DATA NOT FOR QUOTATION

Lane and $L_{y n n}{ }^{2}$ have attempted to explain the direct mechanism contribution in neutron radiative capture. This model strongly selects those states which are single particle in nature. This can be included within the $R$-matrix representation by dividing the configuration space into an internal and external region and calculation the appropriate transition matrices. The contribution is largest for those transitions to low-lying single particle states and correlations between the partial radiative width and the final state reduced neutron width should exist. Several of the nickel and chromium isotopes have favored transitions to low-lying states. The contribution to the radiative capture cross sections should be evaluated.

The initial checkout of the program was performed by analyzing vanadiugm using the tiansmission data obtained by Stieglitz et al. The resonance energies, widths, spins and strength functions have been determined. The strength functions for the $3^{-}$and $4^{-}$states in the energy interval 4.0 to 88.0 keV are $9.4 \times 10^{-4}$ and $4.2 \times 10^{-4}$ respectively, in good agreement with values previously reported, 4,5 The resonance parameters are summarized in Tables 1 and 2. The results of this report (column 5) agree quite well with the results reported by other workers, except for the spin assigned to the 17 keV resonance. Our analysis indicates that the spin for this level is $3^{-}$.

[^37]
## DATA NOT FOR QUOTATION

TABLE 1

## Resonance Parameters for ${ }^{51} \mathrm{~V}$ <br> Resonance Energy (keV)

	Rohr, Friedland ${ }^{5}$	J. $\operatorname{Garg}^{6}$	Morgenstern et $1 .{ }^{7}$	R. Stiegli.tz ${ }^{3}$	This Report
0	4.17	4.16	4.169	4.16	4.17
$\stackrel{y}{7}$	6.89	6.8	6.886	6.79	6.85
D	11.81	11.68	11.81	11.52	11.68
	16.6	16.23	16.6	16.24	16.26
2	17.4	16.99	17.4	17.0	17.0
-1	21.65	21.75	22.32	21.67	21.75
	29.45	29.63	29.44	29.66	29.6
7	39.3	39.54	39.37	39.63	39.6
0	48.15 -	48.15	48.43	48.37	48.4
	49.55	49.48	49.28	49.63	49.79
0	51.95	51.98	51.69	52.22	51.95
C	53.0	53.0	52.73	53.15	53.0
0	62.9	63.9	62.7	63.14	63.2
2	68.1	68.6	68.3	68.5	68.3
$\overline{0}$	83.0	82.6	82.2	83.0	83.0
2	87.6	87.5	87.0	87.6	88.3

TABLE 2
Resonance Parameters for ${ }^{51} \mathrm{~V}$

## 몰

Rohr, Friedland ${ }^{5}$	J. Garg ${ }^{6}$	Morgenstern et al. ${ }^{7}$	R. Stierlitz ${ }^{3}$	This Report
508 (4)	500 (4)	508 (4)	520 (4)	500 (a)
1280 (3)	1230 (3)	1280 (3)	1280 (3)	1280 (こ)
5500 (3)	5580 (3)	5500 (3)	4850 (3)	5580 (3)
350 (4)	350 (4)	350 (4)	360 (4)	350 (4)
350 (4)	350 (3)	90 (4)	350 (3)	350 (3)
790 (3)	960 (3)	950 (3)	680 (3)	950 (3)
191 (4)	150 (4)	160 (3)	130 (4)	190 (4)
570 (3)		480 (3)	540 (3)	480 (3)
150 (4)		100 (4)	30 (4)	100 (4)
630 (3)		550 (3)	560 (3)	550 (3)
115 (4)		88 (4)	55 (4)	50 (4)
980 (3)		800 (3)	830 (3)	800 (3)
3800 (3)		3600 (3)	4200 (3)	3600 (3)
4700 (4)		3900 (4)	4800 (4)	3900 (4)
1200 (4)		1000 (4)	1600 (4)	1000 (4)
3200 (4)		2700 (4)	3000 (4)	2700 (4)

c.

1. Fast Reactor Physics Studies (E. R. Gaerttner, M. W. Golay, N. N. Kausha1, B. K. Malaviya and M. Becker)

Time-of-flight studies of fast neutron spectra in large blocks of single materials are continuing. These measurements are compared with spectra calculated by means of DTF-IV code using cross-section data from the ENDF/B file. Analytical results of continuous slowing down theory are used as aids to interpretation of such comparisons.

At.present, measurements on an aluminum assembly are in progress and are expected to be completed soon. Construction of a large cubical assembly of sodium is nearing completion and preliminary spectrum measurements on this assembly are expected to begin shortly.

Analysis of earlier measurements on iron and depleted uranium and current measurements on aluminum is being pursued concurrently. These analyses have revealed inconsistencies in various cross section compilations as well as programmatic errors in the codes used for this analysis. Our analysis of depleted uranium data indicates that the neutron spectra are quite sensitive to certain cross sections. Calculations are being performed using ENDF/B data and we expect to be able to make assessment as to the accuracy of these data. Our analysis of the measurements on iron has pointed out some deficiencies in the ENDF/B data and/or Karlsruhe (KFK-750) data. In particular, the following observations on the status of iron cross sections can be made on the basis of our analysis

1. ENDF/B data are not sufficiently resolved at high energies. However, the overall spectrum shape is not very sensitive to this lack of resolution. The main effect seems to be on the deep penetration problem at selected neutron energies.

## DATA NOT FOR QUOTATION

2. There is a substantial discrepancy in the average values of the scattering cross sections in the range $30-300 \mathrm{keV}$ between the ENDF/B data and the Karlsruhe data sets. The calculated spectra are quite sensitive to this discrepancy. The measured spectra are in better agreement with the calculations using ENDF/B data than those using Karlsruhe data.
3. In the neighborhood of and at the 27 keV resonance minimum, there is a clear discrepancy between the spectrum measurements and calculations using ENDF/B data.

Thus it appears that additional experimental and evaluation efforts are required for cross-section data in the 20-300 keV range. (These conclusions were presented at the (1970) Winter Meeting of the American Nuclear. Society).

BONFRNGUUCLEAR LABORATORIES, RICE UNIVERSITY
W\%
A. NEUTRON PHYSICS

1. Fast Neutron Spectroscopy of (d, $n$ ) Eeactions fremdié, Mutchler, Sweeney, Sandler and Phillips)
phathengriar distributions of fast meutrans from the 10 $\mathrm{m}(\mathrm{d}, \mathrm{n})$ meacion, at a bombarding energy of $11 . a \mathrm{MeV}$ have been mompleteopstan
: and the $1+1{ }^{2}=12^{C}(d, n)$, and ${ }^{13} \mathrm{C}(\mathrm{a}, \mathrm{n})$ reacitions, previously studied, hewsbeen analyzed in terms of zero range local DWBA, using the code DWUCK. Finite range and nonlocality effects have also been investigated. These results arre now being prepared for publication.
2. The ${ }^{2} \mathrm{H}(\mathrm{p}, \mathrm{pn}) \mathrm{p}$ Reaction at 9.0 MeV (Jackson, Emerson, Simpson, Joseph, Chere, Valkovic, Taylor, and Phillips)
The ${ }^{2} H(p, p n)$ reaction has been stidied at a bombarding energy of 9.0 MeV and several caincidence detection angles using the Rice University tanden Van de Graaff accelerator and computer-analyzer system. Whe energies of the detected, coincident particles were determined using a solidstate surface barrier detector for the proton and time-offlight measurement on the neutron. The contributions of the neutron-proton final state interaction and neutron-proton quasi-free scattering have been observed. The final state interaction contribution has been reproduced using Phillips, Griffy, and Biedenharn theory. The shape of quasi-free scattering contribution spectrum is in reasonable agreement with simple, impulse approximation prediction. The absolute value of cissssisection is a factor of two smaller than predicted by fis spectator model calculations. This work has been accepteritas falication in Nuclear Physics.


#### Abstract

4 3. Preparition of a Monoenergetic dyd Neutron Beam at Tandem Energies (Hochberg, Randié, and Phillips)

The study of combining neutron tive-ctit-flight technology using simultaneously pulsed beiw teginiques and associated particle techniques for the dfol reaxtion at tandem energies has resulted in an M.A. thesis (fior A. Hochberg). The conclusion. inas meached that the methodis wery promising  Howewer, it masmsmonuded that neither the present scintillamion nor thememmenter detection of the assumated particle ( He 3 ) is ademacere the necessary signal-to-maise and band width requirements.


## B. MULTI-PARTICLE BREAK-UP REACTIONS AND EEW NUCLEON PROBLEMS

1. $n-p$ and $p-p$ Quasi-free Scatterisg for the $p+d \rightarrow p+p+n$ Reaction (Valković, von witsch. Remdic, Otte, and Phillips)

Neutron-proton and proton-protore quasi-free scattering (QFS) has been studied in the reaction $p+\infty \rightarrow p+p+n$ for proton bombarding energies 4.5-13.0 Mev, and in symmetric geometry $-\theta_{l p} \operatorname{co\theta }_{2 p}=\theta_{n}=30^{\circ}$. The energy dependence (excitation curve) and the shapes of QFS peaks are reasonably well reproduced by spectator model calculations, although the absolute cross section is for a factor of 5 smaller than predicted by the simple impulse approximation.

## 2. Neutron-Deuteron and Proton-Deuteron Low Energy QFS in the $d+d \rightarrow n+p+d$ Reaction (Sweeney, Valković, Otte, Andrade, and Phillips)

Neutron-deuteron and proton-deuteron quasi-free elastic scadizwing has been studied in $d+d \rightarrow n+p+d$ reaction by coinciderce oferection of two outgoing particles and with $d E / d x$ parti天i" at deuteron 0 midaizaing energies $5.5 \mathrm{MeV} \leq \mathrm{E}_{\mathrm{d}} \leq 12.5 \mathrm{MeV}$ with $\theta d=-20^{\circ}$ and $\theta_{p}=\theta_{n}=20^{\circ}$. Measured spectia show the contribution of nucleon-deuteron QFS process at all bombarding energies. The applicability of the impulse approximation has been considered. Comparison of n-d ard p-d QFS was possible since no competing final state interactions were observed. The large cross section for $n-d$ QFS offers the possibility of using $d+d \rightarrow n+p+d$ reaction as a source of the neutrons in the energy interval 3-8 Mev.
3. Comparison of $p-p$ and $n-p$ QFS in $p+d \rightarrow p+p+n$ Reaction (Valković, Rendić, Otte, and Phillips)

Proton-proton and proton-neutron quasi-elastic scattering process contributions were measured simultaneously at proton energy of 12 MeV with $\theta_{1 p}=-30^{\circ}, \theta_{2 p}=\theta_{n}=30^{\circ}$. The ratio of the peak cross sections ( Cnp/ opplexp was found to be $2.0 \pm 0.2$, while the simple impulse approximation predicts ( $-n p / \sigma_{p p}^{-}$imp $=1.3 . \quad$ No coulomb effects were found to be significant. This work has been submitted for publication.
4. $p-n$ and $p-\alpha$ QFS in the Reaction $p+{ }^{9} B e \rightarrow p+n+\alpha+\alpha$
(Sweeney, Valković, and Phillips)
Measurements have been made of proton-neutron and proton-alpha QFS for $12-\mathrm{MeV}$ protons incident on ${ }^{9} \mathrm{Be}$. For the p-n QFS, we will compare the cross sections when the spectator $8_{\mathrm{Be}}$ is in either its ground state or first excited state The processes involving sequential decays through $9_{\mathrm{Be}}, 8_{\mathrm{Be}}$, and $5_{\mathrm{He}}$ states have been studied in order to obtain information on the reaction mechanism.
5. Four Body Break-up Reaction: $d+{ }^{11}{ }_{B} \rightarrow \alpha+\alpha+\alpha+n$
(Rendić, Valković, Otte, von Witsch, and Phillips)
Break-up in four particles in the final state was investigated in the $d+{ }^{1 l_{B}} \rightarrow 3 \alpha+n$ reaction. $\alpha-\alpha$ and $\alpha-n$ coincidences have been detected at bombarding energy of $E d=12.0 \mathrm{MeV} . \quad$ Preliminary results reveal the importance of sequential decay involving $8_{B e}$ and ${ }^{12} \mathrm{C}$ states and indicate $\left(n+8_{B e}\right)$ cluster structure of 9 Be rather than $(\alpha+5 \mathrm{He})$.
6. System for a Large Solid Angle Detection Chamber and Detector for Multi-particle Break-up studies (D. Rendić, and G. C. Phillips)

A chamber that will allow the mounting of two large multiwire counters has been completed. preparations are being made to make a system that uses two $x-y$ wire planes to detect the break-up particles. Each multiwire counter will subtend about 1 steradian. Testing of the multiwire counters already used in high energy physics, and adapting it for use in low energy physics, is in progress.
7. Neutron-Proton Coincidence Measurements in the $\frac{\text { Reaction }{ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{pn})^{8} \mathrm{Be}}{\text { Phillips) (Wilson, Sandler, Otte, }}$ and

This work has been completed and is being prepared for publication.
8. Investigation of the Reactions ${ }^{9} B e(p ; p, \alpha)^{4}$ HeN and $9 B e(p ; p, N)^{8} B e$ (Hungerford, Ivanovich, Sandler, and Phillips)

Interpretation and collection of data of the neutron and alpha decay of the 2.43 MeV level of ${ }^{9} \mathrm{Be}$ is in progress. Preliminary analysis shows a broad double peak in the decay particle spectra which cannot be described by either a simple sequential decay through $8_{\mathrm{Be}}$ or ${ }^{5} \mathrm{He}$. This experiment supplies additional information to that of ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{pn})^{8}{ }_{\mathrm{Be}}$ reported above. This work is being continued.

## c. INSTRUMENTATION

1. IBM-1800 Computer Hardware and Software (J. Buchanan, H . Jones, and M. Jones)

During this period (May l - October 31, 1970) development continued on the Bonner Nuclear Laboratories' dataacquisition system. The old experiment interface was abandoned with the new system put into exclusive service. The four old TMC ADC's were installed, bringing the total ADC's in the system to eight. Several experiments using all eight ADC's overlaid with off-process calculation have been accomplished. The BONER system is fully operational as originally designed. Major changes are being made to the print routine philosophy, including a streamed buffer counter. (This will facilitate the experimenter's correlation of multi-parameter streamed data with his single-parameter spectrum.) Also, we will soon have the option of double output buffers, which will speed up the maximum data rate by a factor of two. At the next major BONER update, we will load the latest modification of TSX version 3 - modification level 8.
2. $\frac{5.5 \text { MeV Van de Graaff Improvement }}{\text { Cox, Windish, Hardy, and Phillips) (J. R. Risser, }}$

The new terminal was let to bids and High Voltage Engineering corporation was awarded the contract. The new terminal should be installed in early 1971.

## 3. A Negative Ion Source for the tandem Van de Graaff (E. V. Hungerford and R. Y. Rodgers)

A negative ion source for injection into the Rice tandem Van de Graaff accelerator is being designed and built. A standard r-f source is used with acceleration of positive ions. up to 100 keV . Charge exchange will be accomplished by means of Li vapor in the energy range $80-100$ kev. The source will initially be used for ${ }^{4} \mathrm{He}$, for which positive ion current is presently about $800 \mu \mathrm{~A}$. Other ions to be investigated may possibly include carbon, neon, and nitrogen.
4. Multiwire Proportional Counter Camera for the Browne-Buechner Magnetic Spectrograph (Plasek, Buchanan, and Phillips)

A multiwire proportional counter with a backing scintillation counter has been designed, constructed, and tested in the Bonner Nuclear Laboratories' Browne-Buechner magnetic spectrograph. The position sensitive multiwire counter, coupled on-line to the 1800 IBM computer system, gives the $B \rho$ of the particles and the $d E / d x$ is given by the linear signal. When used with a pulsed-bunched beam to measure time-of-flight to the scintillation detector, the system will be capable of giving magnetic spectra versus $Z$ and $m$. Further testing of the system is proceeding.
5. Investigation of Multiwire Proportional Counters for Low Energy Nuclear Physics (N. D. Gabitzsch and G. C. Phillips)

Testing of low pressure multiwire proportional counters capable of detecting low energy (3-15 Mev) protons is now being conducted. These are very similar detectors as those used for (Task C) detection of high energy protons and $\pi+$. Each M.W.P.C. will subtend a solid angle of one steradian and an angular resolution of the order of $10^{-3}$ steradians.
D. INTERMEDIATE ENERGY PHYSICS (TASK C)

1. Multiple Scattering of 600 MeV Protons . (Hungerford, Mutchler, Scott, and Phillips (Rice University); J. C. Allred, Mayes (U. of Houston))

We have continued our investigation of the multiple scattering of 600 MeV protons from targets of C , $\mathrm{Al}, \mathrm{Cu}$, and

Pb at S.R.E.L. Siniminary studies showed a large deviation from the usuans moliere multiple scattering formulation for $C$ and Al with decreasing deviations for the larger $Z$ materials of Cu and Pb . Our latest, more definitive measurements, confirm these results. Calculations are in progress to support these results by theory.
2. Multiple Scettesing of $\pi \pm$ Mesons (Mutchler, Scott, Hungerforstiance Whillips (Rice); Allred, Lee, and Mayes ( $U$.
Previous $x$, at S.R.E.I. had indicated that the small angle multizerescattering of $365 \mathrm{MeV} / \mathrm{C} \pi^{-}$and 600 MeV protons is significantly effected by the interference between the nuclear and Coulomb amplitudes. We have extended these measurements to include an excitation curve spanning the $(3 / 2,3 / 2)$ resonance region for $C, A 1, C u$, and $P b$ using both $\pi^{-}$and $\pi^{+}$mesons. Preliminary analysis indicates that the effect is much smaller than previously noted. The discrepancy with earlier results is attributed to improved experimental set-up and plane performance.
3. Determination of Pion Momenta and Beam purity Using Multiwire proportional counters (Scott, Hungerford, Mutchler, and Phillips (Rice University); Mayes, Allred, and Goodman ( $U$. of Houston))
$\pi \pm$ beams of variable momentum have been produced with a $\mathrm{CH}_{2}$ production target in the external 600 MeV proton beam at the Space Radiation Effects Laboratory. This beam contains $\pi \pm, \mu \pm, e \pm$, and protons of various energies. The protons in the beam were differentiated by $d E / d x$ and time-of-flight measurements. The $\pi^{+}$flux is differentiated from the other relativistic particles by examining the meson distribution from the $\pi+\rightarrow \mu++\bar{\gamma}$ decay with thin multiwire proportional counters developed at Rice University. The opening angle of the fuon distribution is used to determine the incidence $\pi^{+}$momarim, and the integrated muon distribution is compared to a Monte Carlo calculation to determine the beam purity. The beam purity at a momentum of $330 \mathrm{MeV} / \mathrm{C}$ was found to be approximately $84 \%$ using this technique. The treatment of a $\pi^{-}$beam differs from the $\pi^{+}$beam in that there are no protons to discriminate.

[^38]4. Elementary Particle and Intermediate Energy Physics Theory (R. Guertin and I. M. Duck)

We are performing a $\rho$ bootstrap calculation including inelastic channels in an effort to extend the range of a rising $p$ trajectory to higher energies where single channel calculations indicate a falling trajectory. This work is just underway and will continue through the summer of 1971.
5. $\pi^{-} d$ capture Theory (N. Carron and I. M. Duck)

We are re-examining t:he $\pi^{-} d \rightarrow$ nn $\gamma$ final state interaction calculations of McVoy and Barden from which nn scattering length is determined. This work will use hard pion current algebra techniques and we hope to calculate the momentum dependent corrections to the shape of the endpoint of the gamma spectrum, thus providing a measure of the nn effective range.
6. Design of a Mobile On-Line Data Acquisition System for Intermediate Energy Physics (Buchanan, H.Jones, M. Jones, and Phillips)

In preparation for being a LAMPF user an on-line, mobile data acquisition system is being designed. Many small (mini) computers have been investigated, CAMAC studied, and one of our group (J. Buchanan) was a participant in the LAMPF summer study group that recommended specifications for the LAMPF computer systems.

A system concept, incorporating our experience with three prior Bonner Lab systems and the LAMPF study group conclusions, is under development. The design will emphasize a flexible mobile facility, capable of tying-in to various large laboratory computer and accelerator facilities (especially LAMPF) and capitalizing on our employment of large arrays of multi-wire proportional counters. The software, under development, is designed to be machine independent. the design will be completed, equipment purchased, and contracts let in early 1971.

## DATA NOT FOR QUOTATION

## TEXAS NUCLEAR

A. NEUTRON PHYSICS

1. Gamma-Rays from Nitrogen and Oxygen (W. E. Tucker, D. O. Nellis, P. S. Buchanan, and J. A. Stout)
(Work pertiment to requests \#43, \#47 WASH ll44) F
Work is critinuing on the gamma-ray measurements on oxygen and nitroge:iat 14.8 MeV using both Ge(Iii) and NaI (Tl) detectors. Most of the data have been obtained and a paper is in preparation.
2. Elastic and Inelastic Neutron Scattering from Nitrogen (P. S. Buchanan, T. C. Martin, W. E. Tucker, D. O. Nellis, and G. H. Williams)
(Work pertinent to requests \#39, \#40, \#41 WASH 1144)
Neutron scattering measurements for nitrogen have been completed at 9 and 11 MeV incident neutron energies. The Los Alamos Tandem Facility was used to obtain these measurements. Elastic scattering data have been obtained at 9 and 11 MeV at about 15 angles between $30^{\circ}$ and $120^{\circ}$ to the incident beam. These data have been analyzed except for multiple scattering corrections, which are in progress. In addition, inelastic scattering cross sections are to be obtained at two or three scattering angles at each incident energy.

Figure $A-1$ shows a typical time-of-flight spectrum of scattered neutrons from nitrogen. This spectrum was obtained at an incident energy of 11 MeV and at a scattering angle of $70^{\circ}$. The positions of the neutrons scattered inelastically to the various levels in ${ }^{14} \mathrm{~N}$ are shown.

## DATA NOT FOR QUOTATION

3. Elastic and Inelastic Scattering from Oxygen (D. O. Nellis, P. S. Buchanan, G. H. Williams, W. E. Tucker, and T. C. Martin)
(Work pertinent to requests \#44, \#45 WASH l144)
Elastic and inelastic scattering measurements have been made for oxygen at 9 and 11 MeV neutron energies at a number of scattering angles. A water scattering sample was used in the measurements. Figure A-2 shows a spectrum obtained for water at ll MeV and at $\theta=35^{\circ}$. The spectrum contains the resolved elastic peaks from ${ }^{16} \mathrm{O}$ and H and two inelastic neutron peaks corresponding to two pairs of excited doublets in ${ }^{16} 0$. The analysis of the data is in progress.
4. Elastic and Inelastic Neutron Scattering from Iron, Aluminum, Calcium, and Silicon (G. H. Williams, W. E. Tucker, D. O. Nellis, T. C. Martin, and P. S. Buchanan)
(Work pertinent to requests \#61, \#62, \#66, \#67, \#73, \#74, \#l00, \#101, \# 102 WASH 1144)

Neutron scattering data for $\mathrm{Fe}, \mathrm{Al}, \mathrm{Ca}$, and Si are being obtained at 9 and 11 MeV at a number of scattering angles. The analysis of these data are in progress.
5. Compilation of Neutron-Induced Gamma-Ray Cross Sections (P. S. Buchanan, D. O. Nellis; W. E. Tucker, and G. H. Williams)

A compilation is currently being revised to include all measurements made at Texas Nuclear of cross sections and angular distributions of gamma rays from ( $n, x y$ ) reactions. This compilation is to reflect Texas Nuclear research in this area from 1961 to the present and will include data for a large number of nuclei. It will supersede a previous 1969 compilation.

[^39]

Figure A-I


Figure A-2

DATA NOT FOR QUOTATION

## TRIANGEFANIVERSITIES NUCLEAR LABORATORY

## A. NEUTRON PHYSICS AND FISSION

1. Resonance Cross Section Measurements with Continuous Beam (J. MaTan, W. F. E. Pineo, E. G. Bilpuch, H. W. Newson, R. L. Walter)

The feasibisazory using the ${ }^{12} \mathrm{C}(\mathrm{d}, \mathrm{n})$ reaction as a neutron source to measure total neutron exreithertions has been investigated. A liquid scintillator in open geometry (i.e., exmeelimator) was used with a pulse height discriminator to reduce the effect of:zattered neutrons. The results indicate that this method is convenient for measuring cross sections in the energy region above 1.3 MeV which cannot be reached with the ${ }^{7} \mathrm{Li}(p, n)$ reaction at a 3 MeV accelerator. It will, however, be necessary to discriminate better against the high flux of scattered low energy neutrons which are present when a deuteron beam is used. The target chamber was redesigned to allow targets to be changed without breaking the vacuum. This arrangement was subsequently found to be very convenient. Using a high resolution deuteron beam of $\sim 8 \mu \mathrm{~A}$ on C foils of $\sim 5 \mu \mathrm{~g} / \mathrm{cm}^{2}$, a neutron energy resolution of less than 2 keV was obtained for neutron energies above 1.3 MeV . These techniques were applied to measurements of the total neutron cross section of radiolead ( $88 \%{ }^{200} \mathrm{~Pb}$ ) from 1.3 to 1.9 MeV , a region in which some structure from doorway states is expected. Indications from the raw data, however, are that the structure is complicated and only partially resolved which renders the detection of a doorway state very difficult. The data are being processed, and further measurements on ${ }^{206} \mathrm{~Pb}$ and possibly other elements are planned.

In order to facilitate higher resolution neutron measurements at energis below 1.3 MeV , a new type of LiF target was used. It is hoped that a "thickening" effect previously observed for Li targets on Ta can be eliminated by evaporating these targets on thin carbon backings, so that most of the heat is generated in the Ta beam stop rather than in the target. Targets of thickness $\sim .5 \mathrm{keV}$ were made and found to stand up weti.to proton beams of $\sim 6 \mu \mathrm{~A}$. This technique is to be used in total neutron cross sestion measurements on Sr and other elements for which some doorway state predictionthereralso been made. See Section A6.

## 2. Average Total Neutron Cross Sections (W. F. E. Pineo) <br> Inactive.

## DATA NOT FOR QUOTATION

3. Avestege Total Neutron Cross Sections and Strength Functions (W. F. E. Pines. M. Divadeenam,* E. G. Bilpuch, H. W. Newson)

Preparation of papers on this topic based on the theses of M. Divadeenam and W. F. E. Pineo is in progress.
 the doorway state at 500 keV in Pb is due to an excized core rother than a 2 plh state. ${ }^{2}$ )
6. Shell Model Calculation of the Neutron Resonancess and Intermediate Structure (F. T. Seibel,*** M. Divadeenam, W. P. Beres, H.W. Newson)

$$
\begin{gathered}
\ddot{i}_{4} \cdots \\
\vdots .
\end{gathered}
$$

Feshbach, Kerman, and Lemmer's doorway-state theory of intermediate structure is applied to the investigation of neutron doorway escape widths, $\Gamma_{d}$. Assuming that the target nuclei in the ground state are spherical in nature, the three compound nuclei $\mathrm{Zr}^{99}, \mathrm{Sr}^{89}$, and $\mathrm{Ca}^{49}$ are considered as test cases. A basis of $2 \mathrm{p}-\mathrm{lh}$ states in each of the above three compound nuclei is diagonalized via an effective two-body interaction. Doorway states of various angular momenta and of both parities are considered for the nuclei under investigation. Throughout the entire calculation proper Woods-Saxon potentials are used to generate both the neutron and proton wave functions. In the case of $\mathrm{Sr}^{89}$, and $\mathrm{Zr}^{81}$, the calculated $p-$ wave escape withs are large compared to the s-wave widths in the low energy region. This is a manitéstation of the single particle giant resonance phenomenon.

* Now at Norith Caroíina Central University, Dutham, Narth Carolina ** Now at Wayne State University, Detroit, Michigan
*** Now a Los Alamos Scientific Laboratory, Los Alamos, New Mexico

1) M. Divadeenam and W. P. Beres, Physics Letters 30B (1969) 598.
2) W. P. Beres and M. Divadeenam, Physical Review Letters 25, 596 (1970).

## DATA NOT FOR QUOTATION

The effect of shell closure is evident in $\mathrm{Ca}^{49}$; in that the spacing of levels is rather large and the lowest predicted s-wave doorway is around 1.5 MeV . These calculations predict correctly that there will be no observable s-wave resonances and also that most of the non s-wave resonances should be due to d-wave. These predicted J values are definitely confirmed for 4 out of 7 resonances and are consistent with all the data.

For comparison with low energy neutron scattering data, the sum rule $\Sigma \gamma_{n}{ }^{2}=\gamma_{d}{ }^{2}$ is employed, and the effect of doorway states on the local strength function and the fine structure observed is discussed. The widths of the $1 / 2^{+}$resonances of $\mathrm{Pb}^{207}$ have been determined well enough to confirm the sum rule which should hold if the isolated $1 / 2^{\dagger}$ resonance in $\mathrm{Pb}^{208}$ acts as a doorway state for both $\mathrm{Pb}^{207}$ and $\mathrm{Pb}^{206}$.
7. Charged Particle Induced Fission (F. O. Purser, J. R. Boyce, T. D.

The total cross section for proton induced fission of ${ }^{235} \mathrm{U}$ has been measured for proton energies from 5.75 MeV to 30.0 MeV . Data have been accumulated at proton energy intervals of 250 keV over most of this region, and accurate fission fragment angular distributions have been measured at six energies. It is planned to extend this measurement to all of the available uranium isotopes in the immediate future. The first data for ${ }^{235} U$ were reported at the Houston meeting of the Nuclear Physics Division of the American Physical Society.

For ${ }^{235} \mathrm{U}$ fragment mass and kinetic energy correlations have been obtained for selected proton energy regions to allow detailed study of energy dependent effects in the fission process at high excitation energies. This work will be continued and extended to the other uranium isotopes.

A corollary effort to the fission program has been instituted to measure proton elastic scattering and reaction cross sections for the actinide nuclei. The data available and optical model parameters applicable to these nuclei are extremely sparse. The systematic experimental study of this region has therefore been undertaken to facilitate analysis of our fission data.

Direct measurement of prompt neutron yields from proton induced fission is planned following the completion of development work currently in progress of the Cyclo-Graaff time of flight capability. This work would complement the

[^40]
## DATA NOT FOR QUOTATION

neutron measurements currently available from $E_{1} E_{2} T_{2}$ correlations being performed at Oak Ridge and elsewhere.

The possibility of using coulomb induced fission to investigate subbarrier resonance behaviour is being investigated.
8. Scattering of 8 MeV Polarized Neutrons from ${ }^{4} \mathrm{He}$ (Th. Stammbach,* J. Taylor, G. Spalek, R. L. Walter)

Published in Physical Review 2C, 2, 434 (1970).
9. Level Analysis of Nucleon- ${ }^{4} \mathrm{He}$ Scattering (Th. Stammbach, R. L. Wal-

A paper on this work was presented at the International Symposium on Polarization Phenomena in Nuclear Reactions at Madison, Wisconsin, 8/31/70:/4/70.
10. Comparison of the Analyzing Power for $n-4 \mathrm{He}$ Scattering Calculated from Several Sets of Phase Shifts (T. C. Rhea, Th. Stammbach, R. L. Walter)

A paper on this work was presented at the Madison Symposium on Polarization Phenomena.
11. The ${ }^{9}$ Be $(\alpha, n)$ Reaction as $A$ Source of Polarized Neutrons (Th. Stammbach, J. Taylor, G. Spalek, R. L. Walter)

A paper on this work has been published in Nucl. Instr. and Methods 80, 304 (1970).
12. Polarization in $\left({ }^{3} \mathrm{He}, \mathrm{n}\right)$ Reactions on ${ }^{9} \mathrm{Be},{ }^{11} \mathrm{~B}$ and ${ }^{13} \mathrm{C}$ (R. S. Thomason,** L. A. Schaller, ${ }^{* * *}$ Th. Stammbach, J. Taylor, R. L. Walter, R. M. Drisko (Univ. of Pittsburgh) ).

This work is being prepared for publication.

* Schweiz, Inst. f. Nuklearf, Neunnbrunnenstf. 85, 8050 Zurich, Switzerland
*     * 6606 B Reider Court, Edgewood, Maryland

13. Polarization of Neutrons from the ${ }^{6} L i(d, n)$ and ${ }^{7} L i(d, n)$ Reactions $(R$. S. Thomason, G. Spalek, R. L. Walter)

A paper on this work has been submitted to Nuclear Physics.
14. Polarization in the ${ }^{40} \mathrm{Ca},{ }^{24} \mathrm{Mg}$, and ${ }^{28} \mathrm{Si}(\mathrm{d}, \mathrm{n})$ Reactions (J. Toylor, Th Stammbach, G. Spalek, R. A. Hardekopf, R. L. Walter)

The neutron polarization angular distribution for the ${ }^{40} \mathrm{Ca}\left(\mathrm{d}, \mathrm{n}_{0}\right)$ reaction has been measured at 3.8 MeV , and the ${ }^{24} \mathrm{Mg}\left(\mathrm{d}, \mathrm{n}_{0}\right)$ and ${ }^{24} \mathrm{Mg}\left(\mathrm{d}, \mathrm{n}_{1}\right)$ polarizations have been obtained at 6 energies between 2.2 and 3.9 MeV . Neutron polarizations for the ${ }^{28} \mathrm{Si}_{\mathrm{i}}\left(\mathrm{d}, \mathrm{n}_{\mathrm{O}}\right)$ reaction were measured at 4 energies between 3.0 and 3.9 MeV and also at 8.1 MeV . DWBA calculations are being made for the ${ }^{40} \mathrm{Ca}$ and ${ }^{28} S_{i}(d, n)$ reactions and are essentially complete. A report of the ${ }^{40} \mathrm{Ca}(\mathrm{d}, \mathrm{n})$ data was given at the Quebec Symposium on Nuclear Reaction Mechanisms and Polarization Phenomena, and a paper on all of these reactions is being prepared for publication.
15. A DWBA Study of the Polarization of Neutrons from The $(\mathrm{d}, \mathrm{n})$ Reactions in the lp Shell (M. M. Meier, ${ }^{+}$R. L. Walter, R. Seyler ((Ohio State Univ.)), T. R. Donoghue ((OSU)), R. M. Drisko ((Univ. of Pittsburgh))

This work will be published in Nuclear Physics.
16. Polarization of ( $\mathrm{d}, \mathrm{n}$ ) Reactions on 1 p -Shell Nuclei from 3 to 4 MeV (M. M. Meier, R. S. Thomason, G. Spalek, J. Taylor, R. A. Hardekopf, Th. Stammbach, R. L. Walter)

This work is inactive at present.
17. The $j$-dependence in The ${ }^{11} B\left(d, n_{d}\right)$ and ${ }^{11} B\left(d, n_{1}\right)$ Polarizations from 3 to 12 MeV (J. Taylor, G. Spalek, Th. Stammbach; R. A. Hardekopf, R. L. Walter)

The j -dependence in this study is observed by noting the difference between the $n_{0}$ polarization ( $p_{3} / 2$ transfer) and the $n_{1}$ polarization (mostly $p_{1 / 2}$ transfer). Previously reported polarizations measured at 9 angles at about 8, 10 and 12 MeV have been supplemented by reaction cross section measurements at 7 , 10 , and 12 MeV and deuteron elastic cross sections at 8,10 and 12 MeV . DWBA

[^41]
## DATA NOT FOR QUOTATION

analysis of the data is proceeding and a preliminary report was submitted at the Madison Symposium. A more complete paper is being prepared for publication.
18. Remeasurement of The Neutron Polarization from The ${ }^{7} \mathrm{Li}(\mathrm{p}, n)^{7} \mathrm{Be} \mathrm{Re}-$ action for 3 to 4 MeV Protons (R. A. Hardekopf, J. M. Joyce, R. L. Walter)

The polarization of the $n_{0}$ group was measured accurately to calibrate the reaction as a source of polarized neutrons. The trend of the $n_{0}$ polarization was verified and the polarization of neutrons leaving ${ }^{7}$ Be in the first excited state was extracted from the data. Results were presented at the Madison Symposium on polarization phenomena.
19. $\frac{\text { Polarization of Neutrons from The } D(d, n)^{3} \mathrm{He} \text { Reaction }}{\text { Taylor, R. A. Hardekopf, Th. Stammbach, R. L. Walter) }}$ (G. Spalek, $\mathrm{N}^{2}$

The polarization of neutrons from this reaction has been measured for deuteron energies from 6 to 14 MeV . Polarizations were found to be consistently lower than polarizations of protons from the mirror $D(d, p)^{3} \mathrm{H}$ reaction contrary to expectation based on charge symmetry of nuclear forces. The measurements are being extended to 20 MeV utilizing the Cyclo-Graaff deuteron beam. Results from 6-14 MeV were presented at the Madison Symposium.

## B. GENERAL

1. IBM 360 and DDP 224 Programming (C. R. Gould, R. A. Hardekopf, J. M. Joyce, R. O. Nelson, C. E. Ragan)

The programs JIB3 (F. G. Perey), DWUCK (P. D. Kunz), SNOOPY (P. Schwandt), JUPITOR-2 (T. Tamura), M2 (D. J. Church) and FTAU (C. E. Ragan) mentioned in the last report continue to be used. The program BANDMIX (J. R. Erskine) now runs at TUCC. This program calculates Nilsson single particle wave functions for each band of a deformed nucleus and then mixes them through Coriolis coupling. Excitation energies, spectroscopic factors and stripping and pick-up cross sections are calculated for these mixed wave functions. The program CORPAR (T. P. Cardon) has been obtained for performing calculations based on intermediate coupling in the unified model. The program evaluates wave functions for a single particle coupled to a vibrating core. Up to three single particle orbitals and three

## DATA NOT FOR QUOTATION

phonon vibrations are considered and the program also calculates electromagnetic transition strengths between the levels.

A number of these programs have been chained into links to run on the 8K DDP-224. The program BANDMIX was adapted and displays experimental and theoretical energy levels after each calculation. Typewriter input facilitates parameter variation. An optical model code, utilizing subroutines from SNOOPY, has also been adapted for the DDP-224. This program is chained into four links on magnetic tape. Two links perform the optical model calculation for projectile spins of $0,1 / 2$ or 1 using up to 30 partial waves. A control link displays up to three sets of experimental and calculated cross sections and $p$ variations on the $20 \times 25 \mathrm{~cm}$ scope. The optional fourth link outputs calculated data on the lineprinter. A typical calculation takes about 10 sec .

## 2. Midstream Evaluation Conference (K. Way, S. M. Shafroth, J. Y. Park, H. W. Newson)

Three articles growing out of this conference are in process of publication in Nuclear Data Tables A8, No. 4. The titles and authors are "Midstream Evaluation, $A=88^{\prime \prime}, ~ C . ~ D . ~ G o o d m a n, ~ T . ~ A . ~ H u g h e s, ~ M . ~ W . ~ J o h n s, ~ a n d ~ K . ~ W a y ; ~$ "Midstream Evaluation, $A=89 "$, M. W. Johns, J. Y. Park, S, M. Shafroth, D. M. Van Patter, and K. Way; and "Midstream Evaluation, $A=90$ ", J. B. Ball, M. W. Johns, and K. Way.

Material in data journals edited at TUNL. Nuclear Data Tables and Atomic Data is listed in Appendix
3. Large-Capacity Foil Stripper for The Tandem Accelerator (T. B. Clegg, G. L. Morgan, T. G. Dzubay, G. Spalek)

The design has been completed. Construction will begin when shop time becomes available.
4. $\frac{\text { Tandem Energy Stabilization }}{\text { puch, H. W. Newson) }}$ (T. Dzubay, F. O. Purser, E. G. Bil-

An attempt is being made to minimize the energy spread in the tandem proton beam using a voltage correction signal of 0 to 6 KV applied to the target. A magnet at the exif of the accelerator deflects $\mathrm{H}^{+}$ions of energy $E$, which are then foccussed on a target in a conventional manner. A neutral beam of energy $E / 2$ emerges undeflected through this first magnet, passes through a carbon stripping foil, and is then deflected by a $90^{\circ}$ analyzing magnet. Signals from a pair of slits are amplified and applied to the target and stripping foil. A test of the beam transport system is ability to handle the two beams simultaneously has been satisfactorily completed. The electronic system has been bench tested, and the first test of the complete system in a closed loop mode is scheduled for the very near future.
5. Polarization Monitor for Polarized Proton Beams (E. J. Ludwig, T. B. wegg, A. C. Watkins)

A ${ }^{4} \mathrm{He}$ gas cell has been constructed to use at the exit of the $24^{11}$ scattering chamber to monitor continuously the polarization of proton beams produced by the polarized ion source. The gas cell will contain pressure up to 10 atmospheres of ${ }^{4} \mathrm{He}$. Two detectors are placed in the gas cell, one to the left and one to the right of the beam. The spin quantization axis of the incident beam is vertical, perpendicular to the scattering plane. "Venetian blind"-type slits define the angular range of the scattered particles.

The polarimeter has been calibrated now for incident proton energies between 9.5 and 13.5 MeV . The efficiency of about 20 counts $/ \mathrm{sec}$ and analyzing power of approximately 0.8 are satisfactory to provide accurate polarization monitoring for beam currents in the $1 \mu \mathrm{~A}$ range. Further work is necessary to provide good isolation so the monitor will serve as a good Faraday cup to use in cross section measurements. Work is in progress also to find a good method to monitor the deuteron beam polarization.
6. Beam Chopper (P. Nettles, E. J. Ludwig, S. Shafroth, N. R. Roberson)

A computer-controlled beam chopper is being constructed in the Duke University machine shop. This is to be installed between the high resolution magnets and will be used for studies of nuclear processes producing short-half life radioactivities and for time-of-flight studies.

## c. REPORTS OF PROJECT COMMITTEES

I. On-Line Data Acquisition And Analysis (S. E. Edwards, C. R. Gould, R. A. Hardekopf, J. Joyce, R. O. Nelson, N. R. Roberson)

The DDP-224 computer purchased by the University of North Carolina at Chapel Hill is being interfaced to an IBM Model 29 card punch. This feature should prove very useful for modifying or reproducing card decks and will facilitate transfer of data between different stages of analysis wither here or at the IBM 360 system at TUCC.

An automatic stabilization system for the $50 \mathrm{MH}_{2}, 8 \mathrm{~K}$ analog to digital converters is planned for the time share computer. This will primarily be for use in the acquisition of high resolution $\mathrm{Ge}(\mathrm{Li})$ spectra over long periods. Using an ultra stable double pulser, the computer will evaluate centroids of two reference peaks and make appropriate adjustments with stepping motors to the baseline and conversion gain of the ADC.

An interface to allow automatic read in and adjustment of the analyzing magnetic current and resonance frequency is also being constructed. This will be especially useful in the acquisition of yield curve data using the Cyclo-Graaff and will be a first step toward computer control of a number of Tandem and CycloGraaff accelerator operations.
2. Scattering Chambers (E. J. Ludwig, T. B. Clegg, A. Watkins)

A second $24^{"}$ scattering chamber is under construction at the Duke and UNC machine shops. This chamber will allow detectors on the top and bottom rotating plates to be continuously varied in position with respect to each other. It will be especially useful for high resolution studies of nuclear levels. The original $24^{\prime \prime}$ chamber will be altered so as to rotate around the beam axis. This feature will facilitate deuteron polarization measurements.
3. Lamb-Shift Polarized Ion Source (T. B. Clegg and G. A. Bissinger)

The Lamb-shift polarized ion source is now complete and is installed on the 7.5 MV Model FN tandem accelerator. The ion-source design follows largely that of two other such ion sources now operating of Los Alamos ${ }^{1}$ ) and Wisconsin. ${ }^{2}$ ) It utilizes the duoplasmatron, the extraction geometry, and the "spin-

[^42]filter" scheme developed at Los Alamos. It utilizes the Wisconsin modular vacuum system. Polarized beams are injected into the accelerator with two electrostatic mirrors and two spin rotation solenoids similar to the scheme at the Wisconsin installation.

The duoplasmatron is a copy of the Los Alamos design with positive beam being extracted at energies up to 22 keV before being decelerated to 550 eV for protons or 1100 eV for deuterons. The magnetic lens is important to obtain high transmission of the positive beam into the cesium tube. The cesium oven will hold up to 200 grams and the cesium flow is regulated by a bakeable stainless steel valve. Under normal operation, however, the cesium deposited inside the vacuum system must be cleaned out long before 200 grams is evaporated. The cesium tube itself is 1.2 cm in diameter and 22.5 cm long. Surrounding the cesium oven assembly is a Freon cooled baffle. Following the cesium tube are deflection plates 12.5 cm long made from screen to avoid cesium buildup on the plates.

The beam then enters the uniform magnetic field region necessary for operation of the spin filter. The solenoid required to create this uniform magnetic field is 51 cm long and contains four separate coils. It produces an axial magnetic field variable between 535 and 605 G . which is uniform to 0.1 G over a 25 cm axial distance. A duplicate of the Los Alamos four-section radio-frequency cavity is placed in this uniform field region. The circuitry for r.f. frequency and amplitude stabilization follows plans developed at Los Alamos. In addition to providing the uniform field region, the four-coil solenoid arrangement provides a fringing field on either end with a maximum gradient of the axial field of about $80 \mathrm{G} / \mathrm{cm}$. This slope is gradual enough to prevent significant quenching of the metastable beam upon entering and leaving the solenoid.

The beam leaving the spin filter region passes into the argon charge exchange tube which is 30 cm long and 6 cm in diameter. This is placed inside a solenoid which will make an axial magnetic field up to 200 Gauss. The negative polarized beam is then accelerafed to energies up to 80 keV and focussed in a three-gap acceleration system similar to the Los Alamos design.

This accelerated beam then enters the first of two electrostatic mirrors where it is reflected through $90^{\circ}$ into the first of two spin-rotation solenoids. The spin quantization axis can here be rotated through positive or negative angles. In particular, for proton and deuteron vector polarization measurements, the spin axis will be rotated alternately through $\pm 90^{\circ}$ here. The beam is then focussed by an einzel lens into a second electrostatic mirror where it is reflected onto the tandem beam axis. Before entering the accelerator, the beam passes through a second spin rotation solenoid. The combination of two electrostatic mirrors and two spin

## DATA NOT FOR QUOTATION

Totation solenoidswithe selection of any arbitrary direction for the spin quantization axis. The elextrostatic mirrors used on the TUNL ion source are not alike. The first is a copy of the design developed at Brookhaven using three slotted plates'? The second is a copy of the electrostatic mirrors used on the Wisconsin ion source. Preliminary tests indicate the Wisconsin design is superior because it allows the beam to be reflected without the focu sing associated with the Brookhaven design. \%
$\therefore$. . .
 fries for feertandans, and pumps are provided. The tops of three of the boses can be remsuard for easy access to the ion source campanents inside. A 4" diffusion pump is attached to the box housing the duoplcamatron. One 6" pump evacuates the cesium box and two 6" pumps are attached fo the box cortaining the spin filter and the argon charge exchange region. A $4^{n}$ purnp evacuates the box containing the first electrostatic mirror and spin rotation salenoid. Water cooling for the pumps is provided with a closed deionized water mysiem. Cooling for all the solenoids on the ion source is provided by a closed sysism circulating high dielectric strength transformer oil.

Construction began on the TUNL polarized source in September 1968 using funds granted by the U.S. AEC and the North Carolivic Board of Science and Technology. The ion source was built in Chapel Hill and initial beam tests were made there in the spring of 1970. Metastable beam currenfs of 8 nA of protons and 20 nA of deuterons were accelerated to 50 keV and focussed through a 0.63 cm diameter hole into the target chamber. With the spin filter operating, 2 nA of polarized proton beam was observed in each of the $\alpha$-states with an equal amount of unpolarized background current. It was later found that the magnetic field was accidentally not uniform in the spin-filter region causing the large unpolarized background beam.
$\therefore \quad$ In Jine 1970 the ion source was moved elever miles to TUNL and was nixasalled on thremeterator. In July initial tests showed that 2-3nA of polarized -protion or deutewn bearn could be obtained at the high entergy end of the acceleraWu: Since this to 4 nA with polarization of $68 \%$ have been obtained on target through $1 \mathrm{~mm} \times 3 \mathrm{~mm}$ slits. The proton polarizations were measured using $p-4$ He scattering. These target currents are approximately 10 to $15 \%$ of the current measumed at the Faraday cup immediately following the spin rotation solenoid. To try improve the transmission

[^43]of the polarized beam through the accelerator, a measurement of the polarized beam emittance and a study of the optical properties of the present low-energy beam fransport system are underway. Experiments are planned for the next few weeks to measure the deuteron polarization.

Remote controls for the lenses, mirrors, and spin rotation solenoids of the ion source are provided in the main accelerator control room. A system for changing the 575 Gquss coil current and the spin-rotation solenoid currents remotely has also been built and is now being installed. This will allow computer control of (1) the spin-state selection in the spin filter and (2) the orientation of the spin quantization axis.

## 4. Tandem Accelerator

The low energy extension has been modified to accept a spin precessian solenoid for use with polarized beams. In the process of installing this solenoid a through realignment of the low energy extension was completed.

An oxygen beam capability has been developed using a helium-oxygen mixture in the duoplasmatron and Lithium exchange. 200 nanoamps of $\mathrm{O}^{5+}$ have been obtained at the analyzing magnet control slits.

All circuitry and hardware have been constructed to install a beam energy homogenizer on the tandem for ultra high resolution work. The arrangement utilizes the uncharged component of the beam which exists when gas stripping is employed. This neutral beam is transmitted through the first analyzing magnet undeflected then stripped and focused onto the input slits of the high resolution analyzing system. The energy error signal developed at the output slits of this system is then amplified and applied to both the target and the external stripping foil so that the system operates as a null device. The natural bandwidth of this method of cancelling tandem energy fluctuations is limized generally only by the capacitance of the farget and/or stripper and thus avoids the frequency response difficulties introduced into voltage control systems by the slow response of the tondem terminal.

A complete cleaning of the columns and acceleration tubes and a thorough recheck of all resisiors, spark gaps and associated components has just been completed. The previously reported terminal instability and sagging associated with the insert of high gamma fluxes in the vicinity of the terminal continue to limit available ferminal energy and increase beam energy spread. Initial operation following the clean up indicates that the problem has not been alleviated by the massive overhaul. Present opinion points to the possibility of a very minor
pressure leak too small to be evident in the tube vacuum gauges but producing sufficient gas flow to initiate tube flashing. This will be thoroughly checked out at the next tank opening.

5. Beam Transport System (F. O. Purser, T. D. Hayward, J. R. Boyce, R. L. Rummel, M. T. Smith)

The high resolution analyzing and beam transport system has been placed in routine operation. Reliability and energy calibration characteristics have proven excellent. Determination of the ultimate resolving power of the system has proven difficult since at tandem energies the tandem beam energy spread is generally less than the designed resolving power while for Cyclo-Graaff energies sharply defined resonances are not available. The best measurements to date indicate an energy resolution for the system of $\Delta E / E \leq 1 / 4000$. Operation in the high transmission mode has been entirely satisfactory with $100 \%$ transmission being roufinely obfained.

New power supplies for the beam line $x-y$ steerers have been designed and manufactured in order to increase reliability and smoothness of response. The new supplies have been installed and appear :o perform well on initial tests.
6. Injector Cyclotron (F. O. Purser, T. D. Hayward, J. R. Boyce, H. W. Newson, R. L. Rummel, M. T. Smith)

A new power supply for the electrostatic deflector has been completed and tested. Based upon full curve rectification of a high frequency oscillator, the new supply minimizes ripple on the deflector voltage and also is compatible with feedback stabilization to insure positional stability of the beam injected into the tandem.

When the new deflector supply is installed it will be possible to resume development of dee voltage stabilization through use of a beam derived correction signal and an external feedback loop. All components and equipment necessary have been completed and on hand.

The hardware for the pulse suppression system for the cyclotron has been installed. Electronics required is nearing completion and will be tested in the near future. The pulse suppression device will allow time of flight studies with pulse repetition times ranging from 40 ns to 640 ns . Its initial use is planned in the charged particle fission program.

The variable azimuth resistor for the harmonic bump coils of the ex-
traction system has been installed and is ilim mormal use. An initial improvement in mextraction

A separate cooling water systexn for the cyclotron has been designed and is $80 \%$ installed. The present coolings system using o combination of iron and copper piping has proven most unsatisfactary for the low ion cantent water required to minimize power requirements for the varinous high voitage sapplies. Iron
Aeached from the pipes deposits in regions off high theman or clectric gradients and zasiftly:constrixtsicooling water flow to varinuss critical megions. The new system

 $\cdots$ :

## A. NEUTRON TIME-OF-FLIGHT STUDIES

1. Photoneutron Reactions (F.W.K. Firk, C.P. Wu, and B.L. Berman*)

Evidence for isospin splitting of the dipole state in 26 Mg has been obtained by studying the energy spectra of photoneutrons emitted from the states. Intense and energetic transitions from $T<$ states ( $T=1$ ) were observed below 18 MeV . Between 20 and 22.5 MeV , six states were positively identified as $T>$ states $(T=2)$ whereas no decays were observed from states in this region to low-lying states of 26 Mg even though it is known that appreciable $(\gamma, \mathrm{In})$ strength still exists up to 22.5 MeV . We conclude that this is clear evidence for isospin splitting of the dipole state in ${ }^{26} \mathrm{Mg}$. We note that, in addition to the T -splitting, effects due to the possible deformation of the ground state of ${ }^{26} \mathrm{Mg}$ may obviously occur. However, our measurement cannot throw any light upon such effects.
2. Polarization Studies (F.W.K. Firk, R.J. Holt, R. Nath, H.L. Schultz, and F.D. Brooks**)

### 2.1 Photo-disintegration Studies

We have re-measured the differential polarization of photoneutrons from the reaction ${ }^{16} 0(\gamma, n)^{150}$ at $45^{\circ}$ and $90^{\circ}$ using the liquid He polarimeter and nanosecond time-of-flight system described in a previous report. This time, however, a 1.2 m long, 4 KG solenoid was used to process the spins of the neutrons. Since all neutron energies between 2 and 30 MeV were measured in the experiment it was necessary to determine the angle of precession fox a given

[^44]
## DATA NOT FOR QUOTATION

neutron energy. This was deduced from accurately measured values of the magnetic field. In most af the present work, the field was set to precess the spin of a 6 MeV neutron through $180^{\circ}$. The results agree well with those obtained earlier by switching left-right neutron counters in the traditional way

Measurements of the polarization of photoneutrons from the $D(\gamma, n)$ p reaction are now in ans advanced stage. Identical targets of $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ (and also Cl 2 and $\mathrm{CH}_{2}$ ) have been used in these "difference" experiments. Preliminary measurements at $45^{\circ}$ and $90^{\circ}$ have been obtained in the photon energy range 5 to 30 MeV . The results are in general agreement with the predictions of Partovi.

### 2.2 Polarization in n-p Scattering

A neutron polarimeter, based mpon direction-sensitive pulse shape discrimination properifes of anthracene crystals, is being constructed. This vill be used in conjunction with a pulsed polarized neutron bean from photodisintegration of 160 to measure the polarization in $n-p$ scattering in the $6-30 \mathrm{MeV}$ range.


[^0]:    *South African Atomic Energy Board, Pelindaba, Transvaal, Republic of South Africa.
    **
    University of Birmingham, Birmingham, England.

[^1]:    * Ohio University, Athens, Ohio.
    ** J. L. Adams, R. O. Lane,
    C. E. Nelson, J. E. Monahan, A. J. Elwyn,
    F. P. Mooring, and A. Langsdorf, Jr., Phys. Rev. (in press).

[^2]:    * Department of Applied Science, BNL.
    ** State University of New York, Stony Brook.
    $\dagger$ IAEA Fellow, NRC Democritos, Athens, Greece.
    $\dagger \dagger$ On leave from JINR, Dubna, USSR.
    $\dagger \dagger \dagger$ Summer visitor from Nuclear Research Center - Negev, Beer Sheva, Israel.
    $\dagger+\dagger \dagger$ Guest Scientist, Centre d'Etudes Nucleaires, Grenoble, France.

[^3]:    ${ }^{*}$ Presently at Institut de Physique de $\ell$ ' Universite' de Neuchâtel, Neuchâtel, Switzerland.
    **
    Presently at Harshaw Chemical Company, Solon, Ohio.
    ${ }^{1}$ L. Rosen, J. G. Beery, A. S. Goldhaber and E. H. Auerbach, Ann. Phys. 34 (1965) 96; P. A. Moldauer, Nucl. Phys. 47 (1963) 65; F. Perey and B. Buck, Nucl. Phys. 32 (1962) 353; F. G. Perey, Phys. Rev. 131 (1963) 745; D. Wilmore and P. E. Hodgson, Nucl. Phys. 55 (1964) 673.
    ${ }^{2}$ J. T. Lindow, unpublished Ph.D. dissertation, CWRU (1970).

[^4]:    *Presently at Physikalisches Institut der Universitat Basel, Basel, Switzerland.
    $I_{J . ~ T . ~ L i n d o w, ~ P . ~ B o s c h u n g, ~ a n d ~ E . ~ F . ~ S h r a d e r, ~ N u c l . ~ I n s t r . ~ a n d ~ M e t h . ~}^{85}$ (1970) 151.
    ${ }^{2}$ W. W. Lindstrom, unpublished Ph.D. dissertation, CWRU (1970).

[^5]:    $\mathrm{l}_{\text {Dietzsch, et al., Nuclear Physics Ally }}$ (1968) 330. Bahnsen, et al. Phys. Rev. C2 (1970) 859.

[^6]:    Presently at Lewis Research Center, NASA, Cleveland, Ohio
    ${ }^{7}$ Work supported in part by the National Aeronautics and Space Administration; research conducted in part under the direction of R. Bercaw, Lewis Research Center, INASA.

[^7]:    $I_{\text {W. R. Gibbs, V. A. Madsen, J. A. Miller, W. Tobocman, E. C. Cox, and }}$ C. Mowry, unpublished NASA Technical Note No. D-2170 (1964).
    ${ }^{2}$ J. Arnold, unpublished Ph.D. dissertation, CWRU (1970).

[^8]:    ${ }^{2}$ J. Math. Phys. 4, 701 and 713 (1963).

[^9]:    ${ }^{1}$ Use of High Flux Beam Reactor facility courtesy of Dr. W. R. Kane, Physics Department, Brookhaven National Laboratory.

[^10]:    $\mathbf{1}_{\text {Paya et al., } 1968 \text { Dubna Conference. }}$

[^11]:    ${ }^{1}$ L. M. Bollinger, H. Diamond and J. E. Gindler, BAPS $\underline{8} 370$ (1963)
    ${ }^{2}$ J.E. Gindler, R.F. Flynn and J. Gray, Jr., J. Inorg. Nuc. Chem. 151 (1960)
    3Y. Y. Konakhovich and M. I. Pevsner. Atomic Energy 839 (1961)

[^12]:    $1_{\text {ci }}$ WASH 1093 , p. 36.

[^13]:    4
    M. C. Moxon, M. Sc. Thesis, London University (1968).
    ${ }^{5}$ R. L. Macklin and J. H. Gibbons, Phys. Rev. 159, 1007 (1967).

[^14]:    ${ }^{6}$ M. P. Fricke et al., International Conference on Nuclear Data for Reactors, CN-26/43, Helsinki (1970).
    ${ }^{7}$ H. Grench, private communication (1970).
    8
    M. C. $\therefore$ Moxon, Thesis - London University (1968).
    ${ }^{9}$ W. P. Poenitz et al., J. Nucl. Energy 22, 505 (1968).
    ${ }^{10}$ F. H. Fröhner, International Conference on Nuclear Data for Reactors, CN-26/8, Helsinki (1970).

[^15]:    ${ }^{11}$ H. O. Menlove and W. P. Poenitz, Nucl. Sci. and Eng. 33, 24 (1968).
    ${ }^{12}$ J. F. Barry et al., J. Nucl. Energy 18, 481 (1964). ${ }^{13}$ G. deSaussure, private communication (1970).

[^16]:    ${ }^{15}$ V. J. Orphan, C. G. Hoot, A. D. Carlson, Joseph John, and J. R. Beyster, Nucl. Instr. and Meth. 73, 1 (1969).
    A. B. Tucker, J. T. Wells, and W. E. Meyerhof, Phys. Rev. 137 , Bll81 (1965).
    ${ }^{17}$ E. Barnard et al., Nucl. Phys. All8, 321 (1968).

[^17]:    ${ }^{22}$ W. M. Lopez, M. P. Fricke, D. G. Costello and S. J. Friesenhahn General Atomic Report GA-8835 (1968) (unpublished).
    23
    D. G. Costello, S. J. Friesenhahn and W. M. Lopez, Nucl. Sci. Eng. 39, 409 (1970).
    24
    J. Als-Nielsen, Newsletter No. 6, Neutron Data Compilation Centre, European Nuclear Agency (1967).

[^18]:    *Massachusetts Institute of Technology.
    ${ }^{28}$ V. J. Orphan and N. C. Rasmussen, Nucl. Instr. and Methods 48,
    2 (1967).
    ${ }^{29}$ N. C. Rasmussen et al., Mass. Institute of Tech. Report MITNE85, January 1969.
    30
    T. L. Harper and N. C. Rasmussen, Mass. Institute of Tech. Report MITNE-104, July 1969.
    ${ }^{31}$ V. J. Orphan, N. C. Rasmissen and T. L. Harper, Gulf Radiation Technology Report GA-10248, July 1970.

[^19]:    *High Voltage Engineering Corp. 500-keV Insulated Core Transformer

[^20]:    ${ }^{1}$ Reports to the AEC Nuclear Cross Sections Advisory Committee, INCSAC-3I.

[^21]:    * Stanford University, Stanford, California.

    2 D. C. Healey et al., Phys. Rev. Letters 25, 117 (1970).
    3 P. A. Moldauer, Nucl. Phys. 47, 65 (1963).

[^22]:    * Stanford University, Stanford, California.

    4 卫. R. Fisher et al., Phys. Rev. 157, 1149 (1967).
    5 E. Peeters, Phys. Lett. I, 142 (1963).

[^23]:    ${ }^{\text {a Resonances marked with an "a" are probably unresolved doublets, which were }}$ analyzed as single resonances. The neutron widths are thus upper limits, and the fission widths are a weighted average, the weighting factors being unknown.

[^24]:    abest fits were obtained by placing those resonances marked with an a in a different spin group.

[^25]:    Consultant from AERE.

[^26]:    ${ }^{2}$ M. S. Krick and A. E. Evans, Bull. Am. Phys. Soc. 15, 87 (1970); Report LA-4358-MS, pp. 11-12 (1959), and previous report to the NCSAC.

[^27]:    ${ }^{1}$ J. I. Fowler, C. H. Johnson, and F. X. Haas, Proc. Ini. Symp. Fucl. Structure Contributions (Dubna, USSR, July 1969) p. I (1968).
    ${ }^{2}$ C. H. Johnson, J. L. Fowler, and R. M. Feezel, Report to the ABC Nuclear Cross Section Advisory Comittee, ORNL-TM-2998, p. 12 (1970). $3_{\text {D. }}$. E. Fossan, F. I. Malter, H. in Milson, and H. H. Rerschsill, Phys. Rev. 123, 209 (1951).

[^28]:    *Idaho Nuclear Corporation.
    ** Savanneh River Tmhnratnries.

[^29]:    EAIDC-85, Requests 54, 55.
    *on assignment from the Australian Atomic Fnergy Commission.

[^30]:    *on assignment from the Australian Atomic Bnergy Comission.

[^31]:    *Abstract submitied for the Fall Meeting of the American Physical Society, Houston, Texas, Oct. 15-17, 1970. 1

[^32]:    ${ }^{\text {I }}$ R. L. Macklin and B. J. Allen, Nuclear Instruments and Mcthods, in press (Oct. 1970).
    ${ }^{2}$ J. B. Czirr, Nuclear Instruments and Methods 72, 23 (1909).

[^33]:    ${ }^{0}$ Not corrected for relative abundances of the isotopes.
    $b_{25} 23$ - and $35.45-k e V$ lines each afpear to be doublet.
    These data include contributions from 2599 and $260+\mathrm{keV}$ transitions from $34+5$ - and $3-50-\mathrm{keV}$ levels.
    $d_{\text {These }}$ data include contributions from 3598 - and $3604 \cdot \mathrm{kcV}$ ground -tate transitions.

[^34]:    * Pertinent to request 非 17 .

    1 J. W. Meadows and J. F. Whalen, Nuc1. Sci. Eng. 41,351 (1970).

[^35]:    I Stieglitz
    Hockenbury, and Block (to be published).

    * Pertinent to requests 非 459 and 461.

[^36]:    * Pertinent to request $\# 119$.

[^37]:    ${ }^{1}$ A.M. Lane and R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958). ${ }^{2}$ A.M. Lane and J.E. Lynn, Nucl. Phys. 17, 563 (1960). ${ }^{3}$ R. G. Stieglitz, R.W. Hockenbury and R.C. Block, "KeV Neutron Cpature and Transmission Measurements on ${ }^{50} \mathrm{Cr},{ }^{2} 2 \mathrm{Cr}$, $53^{\mathrm{Gr},}{ }^{54} \mathrm{Cr},{ }^{60} \mathrm{Ni}$ and $\mathrm{V}, "$ (submitted for publication).

    4 M.C. Moxon and R.W.K. Firk, Proc. Phys. Soc. 82, 447 (1963).
    $5^{5}$ G. Rohr and E. Friedland, Nucl. Phys. A104, 1 (1967).
    6
    J. Garg, private communication.

    7 J. Morgenstern et al., Nuc1. Phys. A123, 561 (1969).

[^38]:    1 Report to the A.E.C. N.C.S.A.C., April 30, 1970, G.I
    2
    Ibid G. 2

[^39]:    ${ }^{1}$ P. S. Buchanan, Texas Nuclear Report ORO-2791-28
    (January 1969).

[^40]:    * Oak Ridge National Laboratory, Oak Ridge, Tennessee

[^41]:    + Now at National Bureau of Standards, Washington, D. C.

[^42]:    1) G. P. Lawrence, G. G. Ohlsen and J. L. McKibben, Phys. Left. $28 B$ (1969) 594
    2) T. B. Clegg and G. A. Bissinger, Bull. Am. Phys. Soc. 15 (1970) 598.
[^43]:    3) J. A. Benjamin, D. Larsen, H. Wegner, Rev. Sci. Instr. 39 (1968) 272.
[^44]:    * On leave 1969-70 from LRL Livermore, California
    ** On leave from 1970-71 from University of Cape Town, South Africa.

