

NCSAC-40 EANDC(US)-158 "A" INDC(USA)-32 "G"

.

SURVEY OF MANPOWER AND FACILITIES TO MEET THE NEEDS OF THE U.S. APPLIED NUCLEAR ENERGY PROGRAM

:

May 21, 1971

•

.

Survey of Manpower and Facilities to Meet the Needs

of the U.S. Applied Nuclear Energy Program

The USAEC Nuclear Cross Sections Advisory Committee (NCSAC) has been asked to prepare a survey of manpower and facilities available to fill the needs for nuclear cross-section measurements. These needs are assayed from a working document of the Committee entitled "Compilation of Requests for Neutron Cross Section Measurements," which is periodically issued by the NCSAC. The latest version of this document (NCSAC-35) was issued in March 1971.

Final reports of NCSAC disciplinary subcommittees, reviewing the Request Compilation, were issued as NCSAC-36 in April 1971. In these subcommittee reviews, estimates were made of the manpower and facilities required to meet the needs, and specific recommendations were made for action to be taken in various special problem areas. Subcommittee estimates of manpower required to fill the average request varied from 1/3 - 1/2 man year per request for reaction, scattering, and total cross sections to 2.5 - 4 or more man years per request for fission, $\overline{\nu}$, and standards measurements. The total effort required to fill all the present requests in the compilation was conservatively estimated to be ~ 800 man years. The Committee recognizes that this is a lower limit, applicable in a static technology; it is apparent that both the measurement techniques and the demands for nuclear data are changing rapidly.

In October 1970, a questionnaire was sent to a number of U.S. institutions, asking about the manpower and facilities available to meet the needs of the U.S. applied nuclear energy program. The responses received from this questionnaire are summarized in Tables 1-3. (A copy of the questionnaire is appended.) Table 1 lists the institutions to which questionnaires were sent and the total manpower in man years actively working this fiscal year in various applied areas. Of the 37 institutions surveyed, 24 replies were received. A partial list of experimental facilities, manpower, and percentage of running time given to the applied work is given in Table 2 for NCSAC contributors and others who answered the questionnaire. Comments received on requirements for separated sample material, possibilities of sample activation, and special fabrication needs are summarized in Table 3.

The intent of the survey was to point out special problem areas which currently may not be receiving the attention they deserve. The results of the survey indicated that about 118 man years of effort are currently being expended each year in measurements which are applicable to the needs of the U.S. nuclear energy program. The effort is fairly well correlated with the needs, as shown in Table 4, with the exception of problem areas in measurements requiring radioactive samples, and, to a lesser extent, in measurements of reaction cross sections.

The conclusions of the survey are based on comments received from those who responded: Present U.S. facilities appear to be adequate, but the available manpower is not. Budgetary restrictions are forcing many who have been productive in the field to seek funding in other areas, often unrelated to the needs reflected here. While still further curtailment of effort is the most likely prospect, it is hoped that the trend can be reversed.

Laboratory	Total Manpower	Scattering	Capture	Fission	Total	Resonance Integral	Reactions	Thermal.) Evaluations	Standerûs	Safeguards	Source Reactions	Spectra	Other or Unspeci- fied	Comments
Argonne Nat. Lab.	2.25	2	2	3	1		1	1	2.25	1	 0.5	 1		2	
Brookhaven Nat. Lab.	9,75		3.75	2	0.25			0.25	3.5						
Case Western Res. U.	0														
Columbia U.	12		2	4	6										
Gulf Rad. Tech.	6		4				1.5							0.5	
Idaho Nucl. Corp.	(8)			(1)	(2)	2			(2)		(1)				Incomplete
LRL Livermore	16		3	4.5			0.5	0.5	2.5		l		4		
Lockheed Palo Alto	7			4	2				1						
Los Alamos Sci. Lab.	17	2.5	2	3					4	3	1	1.5			
Nat. Bureau Standards	3			1	0.5					1.5					
Nuclear Effects Lab.	7	4.2	1.4		0.14		0.55							0.7	
Oak Ridge Nat. Lab.	18.3	2.6	4.2	2.8	3-5	1.1			3.1					1.0	
Rensselaer Poly. Inst.	13.4	1	3	1	0.65	0.65	1.5		1.2				4.4		
Rice U.	(2)					~~						(1)		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	No reply
Texas A \propto M U.														(1)	NO reply
Texas Nuclear Corp.	2.0	1.3	1.3									 }			
Triangle U. Nuclear Lab	17.2	0.5		2.7	1.7		0.					4.0		8.3	
Iale U. U. Kentucku	0+	15	1		<u></u>										
U Tlinois	(0)	1.)	-		01										No reply
U. Michigan	· (0)														No reply
H. Washington	0														NO ICPIJ
U. Oregon	7	2					٦					2			
Towa State II.	5			4										2	
U. Virginia	(0)														No reply
U. Colorado	(0)		~												No reply
U. Calif. (Berkeley)	(o)														No reply
U. Maryland	0+														
Princeton U.	(0)														No reply
Purdue U.	(0)														No reply
U. Minnesota	(0)		~												No reply
Kansas State U.	(0)														No reply
U. Kansas	0											~-			
U. Arizona	0														
U. Calif. (Los Angeles) Johns Howkins U.	(0) (0)														Incomplete No reply
Washington State U.	0+														
Subtotal of answers received	118.5	17.6	27.65	31	13.7^{h}	3.75	8.05	1.75	20.55*	5.5	3+5	9.5*	8.4*	16.5*	

Table 1. List of institutions to which questionnaires were sent, and breakdown of manpower into categories.

.

.

Note: The entry O+ implies some interest or future plans but no significant active program at present.

"Not included in manpower subtotal.

Table 2. Experimental facilities for applied measurements

• •

•

Laboratory	Facility	Total Manpower	Fraction of time for applied work	Special Features
ANL	4 MV Dynamitron	2	33%	1 mA protons DC, 2.5 ma bunched to 1 ns, on-line computer
**	CP-5 Reactor	4	100%	Internal target for 7-spectra, precision 7 spectroscopy
18	20 MV Electron Linac	0.5	20%	8 A electrons in 5 ns pulses, ΔE = 3% at 10 MeV
**	8 MV Fast Neut. Gen.	7	100%	High intensity, pulsed and DC, large liq.scint.,time of flight
11	FN Tandem	2	10%	heavy ion accel, mag. spectrograph, on-line computer
BNL	HFBR + Fast Chopper	3	50%	High beam intensity, 0.5% duty cycle, low background
**	HFBR + 2 Crystal Spec.	3.25	90%	Polarization capability, low background, high intensity
CWRU	4 MV Van de Graaff	0	0	Mobley buncher, 5 µA average current, polarimeter
GRT	40 MV Electron Linac	6	*	Large liq. scint.(2), total absorption GeLi detectors
INC	EBR-II Reactor	2	*	Mass spectrometer for fission yields
LRL (L)	100 MV Electron Linac	6	33%	Three target areas, short flight path, positron accel, rabbit
н	3 MW Reactor	6	33%	*
11	14 MV ICT	1.5	33%	Highest intensity 14 MeV neutrons in U.S.
**	30 MV Cyclograaff	*	33%	High intensity, high resolution, high energy
Lockheed	3.5 MV Van de Graaff	7	10%	Triton accel, nuclear orientation capability
LASL	5 MV Van de Graaff		25%	Mobley buncher
11	15 MV Van de Graaff) 6	25%	Klystron buncher
**	Nuclear explosion	8	100%	High intensity single burst
NBS	3 MV Van de Graaff)	75%	
11	150 MV Electron Linac	j 2	10%) Availability of 3 machines in 1 group
**	Beactor	, 1	100%	
NET.	FN Tendem) _	40%	I ns pulse, 3°-15° forward scattering collim. large target room
11	750 kV C-W	ý 7	50%	3 nS pulse
RPI	100 MV Electron Linac	í q	100%	3 ns pulse, 15-20 A current planned, 4 flight tubes
Yale U.	Electron Linea	0+	20%	ns time-of-flight system, advanced technique devel.
U. Kentucky	Van de Graaff	2.5	*	l ns pulse, dynamically biased neutron detector
U. Oregon	4 MV Van de Graaff	7	*	Intense ns pulsed beam, 4 beam pipes
Towa State U.	70 MV Synchrotron)	50%	$\Delta E = 20 \text{ keV at 70 MeV. Compton scattering spectrometer}$
н, и и	5 MW Reactor) ⁶	100%	Isotope separator for fission products
U. Marvland	Cyclotron	, 0+	0	Up to 100 MeV neutrons at 10 ⁶ /sec
U. Arizona	*	0	õ	ж.
U. Kansas	*	õ	0	*
Columbia II	EEO MeV proton gunchroguel	19	1 od	Nighest everyge intensity presently obtainable for high resolution neutron spectroscopy.
Corambia C.	3 O MU Von de Graaff	25	100%	large anti-Compton total absorption gamma spectrometer.
TEXAS NUCLEAR TINT.	5 MV Van de Graaff)	1000	Targe mini-omption coord description Banna Spectrometer.
TUND	h hat yes de Grade) 17.0	> = 04	Weth recolution U. Ho house from 1 15 NoV
TUNL	4 MV Van de Graaii) 1(•=	- 50%	high resolution n, he deams from 1-17 wev,
TUNL	15 MV Tandem)		ingle resolution neutron beams at high energy.
TUNL	30 MV Cyclograaff	/ *	0	H here to 24 6 MeV. He here to 27 MeV. I so hundhing to 18 MeV.
U. Washington	25 MV 3-stage van de Graaff	r.	0	h deall to 24.5 met, he deall to 21 met, i ho builting to its het.
U. Washington	DU INCH CYCLOTTON	<u>^</u>	U	TOO HU SS MEA GEORGEOUS OF AS MEA STELLS? BATER MIGHT O.1 US.
wasn. St. U.	Z My Van de Graaii	, 0+	*	Radiochemical facilities also available.
Wash. St. U.	1 MW Triga 111 Reactor	/	lood	We were late $(\Gamma + \pi + 1\Gamma + 1)$ element design data consistion
ORNL	140 MV electron linac)	100%	nigh resolution () as at 15 A), advanced design data acquisition.
ORNL	5.5 MV Van de Graaff) \ 18 2	05% F.M	nigh performance pulsed beam (2 ma, 1 ns), on line data acquisition.
UNIT	j.j mv van de Graali	1 10.3	つし物	nigh performance pursed beam, special facility for d, d neutrons, on-line data acquisition.

*Unspecified

Table 3. Separated sample and Cabrication requirements.

~

Laboratory	Facility	Separated sample requirements	Will activat: Occur?	ion Special fabrication requirements
ANL	4 MV Dynamitro	n Only occasional demand	No	Standard form OK for scattering. Need also thin foils.
11 11	CP-5 Reactor Electron Linac Fast Neut. Gen	l g amounts of broad range of isotopes ~5 samples of 0-10 g amount, irradiated ~8 samples of 10-50 g each year. Broad rang . Need high purity, low fabric. cost.	Yes Yes ge. No No	 Powdered samples are convenient. Standard samples could be used. Standard samples OK, form not critical Standard form too small. Need metal samples,
1*	^m ondom	Small amounts on this fails	No	fission foils.
BNL	Chopper	High purity & enrichment, 100 g quantities of 233,234,236U, 240,242Pu, 91Zr, 147Sm, 185,187Re, 195Pt, 105Pd, 187Os, 143Nd, 199,201Hg, 191,193In, 111Cd, 135Ba,	No	Standard samples not useful. Powdered oxides are most convenient.
	Crystal Specs.	143,145 _{Nd} , 147,149 _{Sm} , 155,157 _{Gd} , 235 _U (low 234 U), 5-10 g of 0s, clean 237 Np, 242 Pu, some 124 Xe	No	Standard sizes OK, need precise analyses & uniformity. Rectangles l'x 1.5", thicknesses 0.1, 0.3, 1.0 g/cm ²
INC	Reactor	> 99% enriched stable fission products	Yes	Probably none.
LRL	Linac	Larger & greater purity Cm samples and heavier isotopes.	No	Fission foil fabrication.
Lockheed	Van de Graaff	Gram quantities of 3^{0} Si, 2^{5}_{ME} , 4^{8}_{Ca} , & rare earths.	No	Metallic samples in cylindrical shape. Rare earths in single crystals or poly . crystals.
LASL	Nucl-Explosion	Need 10-20 mg separated radioactive targets	Yes	Thin deposits on stainless steel backings.
NBS	Linac	Thin foils 6 _{Li} , 10 _B , 235 _U , 238 _U , 239 _{Pu} , 237 _{Np} . Need 100-500 g ²³⁸ U.	No	Fission foils.
NEL	Tandem	Very small quantities, need D/T for neutron sources.	No	None
RPI	Linac	l mole quantities of reactor structural, shielding, and fissionable isotopes	No	Need metals, 1/2x1/2x1/32" modules would be useful.
U. Kentucky	Van de Graaff	0.1-0.5 moles of highly enriched (> 90%) in elemental form. Metal cylinders of isotopes	No	High enrichment, uniform density, high purity ($\leq 1\%$ Oxygen) metal cylinders, not less than
		of Ce, Ba, Te, Ru, Pd, Sn.		0.1 mole. Standard size mentioned is useable but circular disks are preferable.
U. Oregon	Van de Graaff	~100 mg metallic samples of all metal iso- topes below Sn, having (p,n) thresholds <4 MeV.	No	Foils for use in charged-particle beams in vacuo.
Iowa State U.	Synchrotron	Thin foils ~1 x 3" of fissile isotopes	No	Fissile foils in shape of cylinder 1"D x 3".
U. Maryland	Cyclotron	0.1 g or less thin foils as targets	Yes	Fabrication by AEC lab preferred.
U. Arizona		0.1 g needed of various materials	No	None.
ORNL	ORELA	0.05 g-atom of separated isotopes; kg of high purity 235U	No	Standard samples OK in most cases.
TUNL	Cyclograaff	Rare isotopes with A < 60, magic nuclei, Pb, Tl, Ba, Sr	No	Standard samples should be adequate.
U. Washington	Van de Graaff	mg quantities of magic nuclei, Ca, K, Ti; Rb, Sn, Y, Zn, Mo; Cd, In, Sn, Sb, Te; Tl, Pb.	Yes	Thin foils, 10-500 μ g/cm ² with 1 cm ² area, fabricated in-house.

.

•

Category	Fraction of Requests in this Category	Fraction of Effort Expended in this Category
Elastic, inelastic scattering, gamma radiation from inelastic scattering	0.125	0.156
Gamma-ray production and radiative capture, stable targets	0.239	
Resonance parameters, non-fissile	0.029) 0.245
Fission, $\overline{\nu}$, alpha, eta, and nuclear) data for safeguards)	0.260	0.306
Resonance parameters, fissile)		
Resonance integrals	0.026	0.033
Thermal and moderator cross sections, mensurements with radioactive samples	0.111	0.015
Total cross sections (incl. standards)	0.047	0.122
Fast neutron reactions and thresholds	0.124	0.072
Standards	0.040	0.049

Table 4. Distribution of requests for measurements and effort currently being expended.

- 1. How many man-years per year of scientific staff (excluding support staff) are currently involved in measurements or evaluations related to the U. S. applied nuclear energy program, as reflected in the <u>Compilation of Requests for Nuclear Cross Section</u> Measurements (WASH-1144)?
- 2. Of these scientific man-years of effort, what part will be involved this fiscal year in the following categories?
 - A. Elastic and inelastic scattering of fast neutrons
 - B. Neutron capture or gamma-ray production
 - C. Fission or other measurements on fissile nuclides
 - D. Total neutron cross sections
 - E. Resonance integrals
 - F. Fast neutron reaction cross sections and thresholds
 - G. Thermal neutron cross sections
 - H. Evaluations (please specify)
 - I. Other (please specify)
- 3. What facilities will be used to make the measurements or evaluations, and what fraction of running time will be used for applied work of this type?
- 4. What are the unique features of your facility?
- 5. What specific requirements for isotopically separated samples do you foresee over the next several years?
- 6. Will any of these samples be activated to a significant extent by the measurement?
- 7. Will you require special sample fabrication (metallic samples, special shapes, etc.) for separated material? Could you use standardized samples, such as $1/2" \ge 1/2" \ge 1/32"$ squares which could be stocked according to your needs. Please specify what you would need.