
REPORT OF THE NCSAC AD-HOCSubcommittee on Safeguards
Subcomnittee Membership
Dr. Charles D. Bowman, Chairman
Lawrence Radiation Laboratory
Dr. Richard L. BramblettGulf Radiation Technology
Dr. Harold Jackson
Argonne National Laboratory
Dr. B. Ieonard
Battelle Northwest
Dr. Eugene V. Weinstock
Brookhaven National Labonatory
Dr. Charles Weisbin
Los Alamos Scientific Laboratory

CONTENTS

Page
I Introduction 1
II Revjew of the Request List 2
III General Discussion of Requests 4
IV Role of Evaluation and Data Compilation 5
V Promotion of Measurements 5
VI Handling of Future Section Satfeguards Requests 7
VII Corments and Recormendations 7
Appendix
Al Request List
A2 Recommended Priority Criteria
A3 Committee-Member Weisbin's Letter

I. INTRODUCTION

The safeguarding of nuclear materials in the domestic power programs from illicit use--the production of nuclear explosives, is presently a substantial activity of the AEC and the nuclear industry. As the use of nuclear power grows (by 12 times from 1970 to 1975 and by another 2.4 times from 1975 to 1980) the amount of material to be safeguarded will also grow in proportion. The national need for effective Safeguards is apparent.

There are many problems encountered in the implementation of Safeguards adequate to eliminate the possibility of clandestine production of nuclear explosives. These problems include: complexity of the national reactor fuel system, variable and sometimes long hold up-times in parts of the system, the uncertainty in production and conversion of nuclear materials within the system, inaccessibility of lange quantities of fuel in reactors or cooling ponds for verification purposes, and, underlying all these, the uncertainty or high cost of measurements of the amounts of nuclear materials in each part of the nuclear fuel cycle.

In many cases, there do not exist measurement techniques adequate for the problem. In other cases, such as bulk trash containing nuclear materials, new techniques are just now being proven in field tests. The bulk of nuclear materials assay has been, and probably will always be wet chemical techniques. However, the amount of material in the fuel cycle unmeasurable by such techniques is large, roughly a 3% fabrication loss to waste alone.

Despite the existence of possible nondestructive assay techniques for nuclear materials such as measumement of the gamma rays or neutrons emitted spontaneously or neutron activation techniques, they have not been extensively applied for a number of reasons, including econonic disincentives, uncertainty of the assay results, uncertain reliability of available instrumentation, and a lack of techniques that have a broad range of application. Refinement of long existing techniques such as those measuring passive radiations is called for, but enough information on those techniques exists to know that many nuclear materials measurement problems cannot be solved with sufficient accuracy by them. Newer techniques, such as bremsstnahlung or neutron iterrogation, can cover a broader range of problems with higher accuracy, and warrant more intensive development.

The need for nuclear data in the Safeguards RED programs spans a broad range and has a highily variable priority. Useful data would include highresolution gamma ray spectra, half-lives for β decay and spontaneous fission, \bar{v}, delayed neutron yields and spectra, neutron- and photo-fission cross sections.

The Office of Safeguands and Materials Management (OSMM) of the AEC has asked the NCSAC to use its auspices to promote measurements of nuclear data relevant to the Safeguards Program. Mr. W. Bartels from OSMM and Dr. R. L. Bramblett from GRT presented a review of nuclear data needed for the

Safeguards Program at the December 1970 meeting of the NCSAC in Livermore, Ca. (The NCSAC had already received requests for nuclear data infomally through its various laboratory representatives.) It was established at the meeting that, in the future, the OSMM will forward a list of requests, after internal deliberations, to the NCSAC for inclusion in a request compilation.

In order to review the existing requests, a nuclear safeguards committee was established with Charles D. Bowman as chairman. In addition the conmittee was to review the requests submitted to the IAEA by individual requesters in this country.

The membership of the committee consisted of:
R. L. Bramblett Gulf Radiation Technology
H. E. Jackson Argonne National Laboratory
B. R. Leonard, Jr. Battelle Northwest
E. V. Weinstock Brookhaven National Laboratory
C. R. Weisbin Los Alamos Scientific Laboratory

The first meeting of the committee with all members present was. hosted by R. L. Bramblett at La Jolla on February 18 and 19, 1971. In addition, Mr. L. R. Norderhaug of the OSMM of the AEC attended and Dr. M. P. Fricke of GRT served as recording secretary to the group.

II REVIEW OF THE REQUEST LIST

A major portion of the meeting was devoted to a review of the requests for data needed by the Safeguards program. The requests included all of those data requests submitted to the IAFA by U.S. organizations and any other requests which the NCSAC has reviewed:

The committee began its work in this anea with a review of the criteria which were adopted by the IAEA fon this purpose. After some discussion the cormittee modified these criteria slightly to the form given as follows:

Priority I

First priority shall be given to those requests for nuclear data that:
(1) are essential for the development of a new and promising technique for the nondestructive assay and control of Special Nuclear Material in amounts that are significant to the Safeguands System.
(2) are necessary for the refinement of an existing technique in order to bring its accuracy to within acceptable linits for Safeguards purposes.

Priority II

Second priority shall be given to those requests for nuclear data that are essential for the use or interpretation of an existing or proposed technique for nondestructive assay and that are now obtained either by extrapolation or by an empirical method but for which experimental confirmation is desirable.

Priority III
Third priority shall be given to those requests for nuclear data that:
(1) may be needed for the nondestructive assay of materials not now included in the safeguands system but that are likely to be in the future, on
(2) may be needed for the development of new techniques for nondestructive assay for which the required technology does not now exist but which may reasonably be expected to in the future.

Even in their slightly modified form the cormittee found these criteria difficult to work with, particularly with regard to experiments which might form the basisfor new techniques. Nevertheless for lack of time, the comnit-

- tee chose to work with these criteria. We feel that there was suff气cient balance in the committee that no gross ermors were made in our consideration of priority. Of the 50 requests in the list, which is attached as Appendix A-1, only 8 were given priority I status.

As a result of its experience, the comittee has decided that in the future a new list of criteria, which are presented in Appendix A-2, would be easjer to work with. We urge the OSMM to adopt these criteria for the use of review cormittees and of those requesting measumements.

The conmittee soon found that the WASH-1144 format was somewhat cumbersome and difficult to use for two reasons. First, the committee felt that many measurements requested were new or unusual enough as to be quite confusing unless considerable information was provided in the conment column Second, many measuren would be unfamiliar with many of the intended applications since Safeguards is still a relatively new field to many Aperimentalists. A section was therefore added for each request in terms the intended use for the information; in the request list this becomes "justification."

The additional information. required made the WASH-1144 format somewhat inconvenient, since only one request could be made per page in many cases. The IAEA format, which is more suitable for the purpose of the Safeguards' requests, was therefore adopted for this request list.

Many of the requests reviewed by the conmittee were incomplete at the time of our meeting. Nearly every requester has supplied additional information requested by the committee which was not available for the meeting. The conmittee found that it could not make reasonable judgments on the requests of Dr. Larry Kull of Science Applications Incorporated owing to the lack of information. After a written request for more information was not answered, the conmittee concluded that those requests should be omitted from the request list.

III GENERAL DISCUSSION OF REQUESTS

In general the requests appear to be reasonable in the sense that techniques either already exist or could almost certainly be developed to obtain the needed data. No new facilities, such as reactors or accelerators are required to camy out these measurements. The requests are related to either of two means of interrogation; (1) bremsstrahlung-induced reactions under consideration at GRT and (2) neutron-induced reactions under consideration at LASL and BNL.

For the photonuclear interrogation the γ-ray transport is well known and no experiments are required; however, the reactions that these γ-rays or bremsstrahlung induce are less well known than the neutron reactions. The requests on bremsstrahlung-induced data can be divided_into three classes: prompt-neutron yreld, prompt-fission neutrons, and delayed neytrons and γ - pays from fission. Measurements are requested using a tantalum electron-to-bremsstrahlung converter and are made relative to deuterium which is to be used as a standard. The prompt-neutron-yield measumements are needed mainly for determining background for the other experiments. The prompt-fission neutrons allow assay of fissile material when its composition is identified. The delayed neutrons and γ-rays not only permit assav but often will permit discrimination between different fissile materials.

For the neutron interrogation, neutrons are derived primarily from (d, d) or (d, t) generators and often moderated in varying degree depending on the reaction which is of primary interest. The data of interest for neutron interrogation techniques concern both the slowing down process in the sample and the interaction cross section used as the "signature". The neutron reactions of interest consist mainly of delayed neutron and γ-rays from fissile materials. Conmittee-member Weisbin strongly expressed the feeling that for neutron transport studies in safeguards, evaluations are more urgently needed than any single new piece of data. However the "signature" cross sections need more work. This technique promises to assay known materials with high accuracy and also to identify different materials on the basis of intensities of delayed neutrons and γ-rays.

IV ROLE OF EVALUATION AND DATA COMPILATION

The cormittee considered the questions regarding the role of evaluation and data compilation in the Safeguards program and the degree of concern which the NOSAC should show in these matters. Evaluations appear to be particularly important for the cross sections required for transport of neutrons used for interrogation and also, to some degree, delayed neutrons. However, since the NCSAC has not concerned itself in the past with evaluations to any significant extent, it seems appropriate for the OSMM to take requests for evaluation, which it cannot handle "in-house," directly to the National Neutron Cross Section Center (NNCSC). The most useful evaluations are almost certainly to be obtained by dinect OSMM funding where those aspects of the cross sections of greatest sensitivity to the OSMM are emphasized.

The NNCSC also handles compilation and evaluation of microscopic isotopic neutron data. However, since the evaluations are funded primarily by DRDT, the emphasis of the evaluation of data might not be the most appropriate for safeguards purposes.

For photonuclear data, no active data evaluation or compilation group exists anywhere in this country. With the increasing interest in application of photonuclear reactions for example in isotope production, activation analysis, defense, and STafeguards, it seems appropriate that the subcommittee urge the NCSAC to use its auspices to promote the evaluation and compilation of photonuciear data.

V PROMOTION OF MEASUREMENTS

Each committee member submitted comments on actions which the conmittee could take on reconmend which would promote the measurements required for Safeguards. The committee recommended that the Safeguands requests be included with WASH 1144. The neutron-induced reactions should be included along with the rest of the neutron reaction requests. However, the photonuclear requests should be included as a separate section of the report. Alsc the comnittee felt that the Safeguards program would benefit j.f photonuclear requests from other agencies besides OSMM were also included since greater attention might then be focussed on the photonuclear measurements as a group.

The committee also proposed that the Safeguands requests be published as a group by OSMM or AEC. These requests, with some portions of this report, should be sent to the Safeguards Data Requesters, to the NCSAC request list distribution AEC supporting agencies, and the AEC Safeguards Advisory Cormittee.

The distribution should also be sent to all institutions with facilities suitable for measuring the requested data. The committee listed the following facilities; electron LINACs, microtrons, betatrons, van de Graaffs,
reactors, $14-\mathrm{MeV}$-neutron generators, cyclotrons and ${ }^{252} \mathrm{Cf}$ sources. The comnittee was particularly anxious that the nuclear engineering and applied science departments, with suitable facilities, should have these needs for nuclear data brought to their attention.

The degree of effort required for these measurements is significant in the sense that one can use this as the basis of detemining when the requests will be satisfied. If we assume that the requests represent only $1 / 2$ the challenge as the average request for neutron cross sections on heavy elements, which were considered by the NCSAC subconmittee on fission, one estimates about 1 man-year of scientific effort per request. For the 50 requests included in this neport, approximately 50 man years of effort are estimated to satisfy these requests. At a total cost of about $\$ 40,060$ per man year, this works out to a funding level from some source of about two million dollars. It therefore appears that twelve scientists working for 4 years and funded at a level of $\$ 500,000$ per year could satisfy these requests. This figure can be compared with the OSMM funding for FY 1971 of $\$ 835,000$ for development of active interrogation techniques.

Committee-member Weisbin of Los Alamos expressed a minority view that new data might not be needed for the Safeguards program. The second paragraph of a letter received on this subject follows:
"At the present time there are, in my opinion, at least three factors to be considered before actively embarking upon a measurement program for nuclear safeguards. Foremost among these is the reliance upon standards during the actual assay. For the cases of well defined samples (feed, product material etc.) such a procedure, to first orcler, effectively eliminates the need for detailed knowledge of cross section behavior. The second point relates to the case for which reliance upon standands might be readily challenged, i.e., the assay of scrap and waste. Here, however, refinement of cross section information usually appears as a second order comection because the inaterials contained in the sample are frequently unknown. Finally, to my knowledge, there have not been any calculations to indicate the sensitivity of a particular assay result to specific cross section features. The cross section requests reviewed by our cormittee, including LASL's, were based primarily upor intuition of what probably is important. The limited sensitivity investigations begun at our laboratory indicate that certain specific knowledge relating to the sample is important, e.g., the presence of hydrogen; on the other hand, we have not yet found limitations arising from a lack of fundamental data. I believe that the above three factors played an important part in what seemed to me a general downgrading of priorities for the requests reviewed, i.e., very few priority 1 requests."

The full text of his letter on this subject is included as Appendix A-3. He also pointed out that LASL has facilities and OSMM funds to carry out any measurements of data which it really needs.

In summary the subconmittee feels that the most effective way to promote these measurements is to circulate the request list with attached supporting material to as wide a distribution as possible. This should accomplish the purpose of alerting the nation's scientists to these needs and of ordering the prionity.

VI. HANDLTNG OF FUIURE SAFEGUARDS REQUESTS

The present collection of safeguards requests is a somewhat casual list by comparison to the Wash-1144 compilation and also as evidenced by the changes already made by the committee. A more systematic review by a group representing the requesting organization would give the list more impact and status. A suggested procedure for such requests which is analogous to that used by DRDT would include review by a committee in OSMM which would consider the list from the point of view of the requestors. A subconmittee in the NCSAC would then be charged with determining the status and capability for making the measurement. Presumably the ad hoc NCSAC subcommittee would be replaced by a standing subcommittee on safeguards requests.

The following recommendation was actually made at the last NCSAC committee meeting. "Future safeguand requests should be considered within OSMM by an appropriate review group and priorities established. The resulting list will then be formally transmitted to NCSAC for review by a standing subcommittee." After such a review the requests would be included in the NCSAC cross section compilation and also returned to OSMM to receive whatever additional distribution the OSMM might want to provide.

The subcomnittee feels that the justification for its existence is somewhat marginal if the OSMM provides the review outlined above. If the role of this ad hoc committee were expanded to include also the review and promotion of related measurements such as photonuclear cross sections or simply general nuclear data other than cross sections essential to applied prograns, there probably would be adequate justification for it to continue to function.

VII. COMIENTS AND RECOMMENDATIONS

1) The committee feels that both neutron and photonuclear reactions will play a significant role both in the discovery and refinement of new techniques useful to the Safeguands Program. The cormittee urges the NCSAC to use its auspices to promote measurements in both these areas.
2) Neutron cross sections evaluations should play a significant role in the Safeguands Program. However, evaluations funded by agencies other than OSMM probably frequently will be very useful since they will be relevant to those aspects of the cross section related to OSMM needs. The OSMM should fund any evaluations it decides are directed to problems peculiar to Safeguards.
3) Requests for evaluations or information on evaluations should be handled by direct contact between OSMM and the NNCSC.
4) For photonuclear data no active evaluation or compilation group exists anywhere in the country. With the increasing interest in application of photonuclear reactions, for example in isotope production, activation analysis, defense and Safeguards, it seems appropriate that the NCSAC actively encourage the evaluation and compilation of photonuclear data.
5) Future requests for nuclear data should be reviewed for accuracy and priority by OSMM before forwarding the requests to the NCSAC. To implement this the OSMM might consider formation of a group of experts similar to ACRP.
6) The criteria or priority of Appendix 2 appear to be appropriate to Safeguards needs and, in the opinion of the subcomittee, are easy to use in practice.
7) The neutron data requests for Safeguards should be included in NCSAC 35 along with other neutron data requests. The photonuclear requests should be broken out into another section which includes these requests as well as other requests for photonuclear data from other agencies.
8) The comnittee urges the OSMM to issue its own document which includes all requests for nuclear data relative to Safeguards and distribute it as widely as possible. The requests must be published to attract the measurers' attention to these experiments.
9) The conmittee estimates that about 50 man-years of effort and an expenditure of two million dollars would be sufficient to satisfy these 50 requests. This works out to the support of about twelve scientists and their support for four years for a total of $\$ 500,000$ per year.

APPENDIX A-3.

COMMENTS
$\begin{array}{ll}\text { BNL Req. \#392 } & \text { Subcommittee assigned priority II, requester } \\ & \text { used I. Used requester's priority. } \\ \text { BNL Req. \#448 Same comment. }\end{array}$

Req. No. Target	Reaction Type Quantity Variable	Priority	Incident Energy	$\%$ Accuracy	Lab/Org.	Requestor, Comments, Status	Year
94-Pu-239	Capture γ ray spectra $P(E)_{g}$ (also yield y rays per $\mathrm{E}_{\mathrm{g}}^{\mathrm{MeV}} \mathrm{Cl}, 2$ capture to ~20:0) Justifi $\sim 20 \%$)	III ecent da ion: Dev	Thermal to 100 eV at thermal lonment of	Ge(Li) resolution (2.5 keV at 1. 2 MeV) from Jurney ew $\mathrm{Pu}-239$ a	LASI (LASL-197 say techni	Weisbin and Walton ogress :eport) y-ray specta	70 MeV
25 4-Be-9	$(n, p) L i^{9} \rightarrow B e^{9}+n$ Status: Justific	$\begin{gathered} \text { II } \\ \text { Prelimina } \\ \text { PR } 13 \\ \text { tion: Bac } \end{gathered}$	14 MeV measurem 128 (1903) round in de	10 ents at LASI at 16 MeV aved neutro	LASL measurem assavs.	Weisbin and Watton of Alburger	70
New 92-U-236	Fission neutron spectrum Status: Justific	II Evaluation tion: Bac	one energy above fission threshold f Parker A round corr	10 WRE 030/64 ctions in U -	LASI 35 spent fu	Weisbin and Walton	70

PRIORITJES FOR REQUESTS FOR NUCLEAR DATA FOR SAFEGUARDS PURPOSES

First Priority

First priority shall be given to those requests for nuclear data that
(1) are necessary for the refinement of an existing technique in onder to bring its accuracy to within acceptable limits for safeguards purposes, or
(2) are essential for the development of a new and promising technique for the nondestructive assay and control of Special Nuclear Material in amounts that are significant to the safeguards system.

Second Prionity

Second priority shall be given to those requests for nuclear data that
(1) are essential for the use or interpretation of an existing on proposed technique for nondestructive assay and that are now obtained either by extrapolation or by an enpirical method but for which experimental confirmation is desirable, or
(2) are necessary for the development of a technique for nondestructive assay that may reasonably be expected to be useful for safeguards purposes.

Third Prionity

Third priority shall be given to those requests for nuclear data that
(1) may be needed for the nondestructive assay of materials not now included in the safeguards system but that are likely to be in the future, or
(2) are necessary for the assessment or elimination of minor sources of erron in the assay of Special Nuclear Material, or
(3) are needed for the exploration of new techniques for nondestructive assay for future applications, or
(4) may be needed for the development of new techniques for nondestructive assay for which the required technology does not now exist but which may reasonably be expected to in the future.

APPENDIX A-3

Weisbin's Letter

Abstract

"Our experience has shown that a lange majority of practical nuclear safeguards problems cen be treated by either passive assay or active interrogation with a neutron source. The nuclear data required for the development of instmmentation based upon these techniques is, with some few exceptions, generally available from a technology wiich is now more than twenty five years old."

"At the present time there are, in my opinion, at least three factors to be considered before actively embarking upon a measurenent progran for nuclear safeguards. Foremost anong these is the reliance upon standards during the actual assay. For the cases of well defined samples (feed, product material etc.) such a procedure, to first order, effectively eliminates the need for detailed knowledge of cross section behavior. The second point relates to the case for which reliance upon standards might be readily challenged, i.e., the assay of scrap and waste. Here, however, refinement of cross section information usually appears as a second order correction because the materials contained in the sample are frequently unknown. Finally, to my knowledge, there have not been any calculations to indicate the sensitivity of a particular assay result to specific cross section features. The cross section requests reviewed by our comittee, including LASL's, were based primarily upon intuition of what probably is important. The limited sensitivity investigations begun at our laboratory indicate that certain specific knowledge relating to the sample is important, e.g., the presence of hydrogen; on the other hand, we have not yet found limitations arising from a lack of fundamental data. I believe that the above three factors played an important part in what seened to me a general downgrading of priorities for the requests reviewed, i.e., very few priority 1 requests."
"I do feel, however, that it is vital to keep an up-to-date evaluated data file for the materials of interest to nuclear safeguands. Such an evaluated file is presently kept by the National Neutron Cross Section Center at Brookhaven supported by DRDT. Newer evaluations are presently available for most of the fissionable and fertile isotopes but, in some cases, information of interest to safeguands (e.g., delayed neutron properties, fission product yield data) has been omitted. Furthermore, the present evaluations for some materials (e.g., $\mathrm{Be}, \mathrm{Pb}, \mathrm{C}$) could use some reexamination. I under $\quad \mathrm{Pb}$ is presently being evaluated by Oak Ridge but possibly with different support and thus different emphasis on certain cross section features. For example, depending upon who is doing the evaluation, more emphasis might be placed on (n, γ) than ($n, 2 n$) spectra. One possible future role for this subconnittee might be to try and influence the choice of materials and description of the type of evaluation desired." .
"Finally, a possible role for the subccrmittee, in addition to review of fundamental nuclear data request might be to consider the problem of data handling and manipulation in general. This could, in principal, include a library of evaluated microscopic and selectively group averaged neutron and photon information of interest to people working in the safeguands field.

This should not require an extensive amount of work since most of the information is presently available but scattered throughout several labs across the country. Such a program might be mutually beneficial to all concerned."

