USNDC-5 EANDC(USA)-177/L INDC(USA)-51/L

STATUS OF MEASUREMENTS FOR THE U.S. NUCLEAR ENERGY PROGRAM

Reports of the USNDC Subcommittees February 1973

H. E. Jackson, Secretary, USNDC

Argonne National Laboratory

NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

USNDC-5 EANDC(USA)-177/L INDC(USA)-51/L

STATUS OF MEASUREMENTS FOR THE U.S. NUCLEAR ENERGY PROGRAM

Reports of the USNDC Subcommittees

February 1973

H. E. Jackson Secretary, USNDC

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

TABLE OF CONTENTS

	Page
INTRODUCTION	4
REPORT OF THE USNDC SUBCOMMITTEE ON STANDARDS	5
REPORT OF THE USNDC SUBCOMMITTEE ON SCATTERING	23
REPORT OF THE USNDC SUBCOMMITTEE ON FISSION	45
REPORT OF THE USNDC SURCOMMITTEE ON RESONANCE PARAMETERS	
RESONANCE INTEGRALS, AND TOTAL CROSS SECTIONS	60
REPORT OF THE USNDC SUBCOMMITTEE ON TOTAL CAPTURE CROSS SECTIONS	73
REPORT OF THE USNDC SUBCOMMITTEE ON GAMMA RAY PRODUCTION	80
REPORT OF THE USNDC SUBCOMMITTEE ON FAST NEUTRON REACTIONS	95
REPORT OF THE USNDC BIOMEDICAL SUBCOMMITTEE	10 ³

INTRODUCTION

In accordance with its operating guidelines, the U.S. Nuclear Data Committee periodically reviews the status and needs of microscopic neutron and other nuclear cross section measurements in the U.S. These status reviews are included in a document entitled "Compilation of Requests for Nuclear Cross Section Measurements." These reviews are handled by the thirteen disciplinary subcommittees which provide technical support to the USNDC. Because of their general interest, these subcommittee reviews are being issued separately in the present document, in much the same form in which they were presented at the USNDC meeting of October 1972, at the National Bureau of Standards. They are reproduced from copies of individual reports subcommitted to the meeting; hence in some cases they are fragmentary and incomplete. In some cases these reports also contain comments on the overall programs within the subcommittee disciplines and guides to future needs. With the object of inexpensive and quick distribution, no editing or retyping has been done. Where request numbers are cited in these reviews, the reference is to the previously issued request list, NCSAC-35, LA-4652-MS.

These reports include contributions from the following subcommittees: Standards, Scattering, Fission, Biomedical, Resonance Parameters, Total Capture Cross Sections, Gamma Ray Production and Fast Neutron Reactions.

> Robert E. Chrien, Chairman USNDC February 1973

REPORT OF THE USNDC SUBCOMMITTEE ON STANDARDS -

Ъy

R. S. Caswell
W. W. Havens, Jr.
B. R. Leonard
W. P. Poenitz
L. Stewart

Final Report, February 12, 1973

I. FUNCTIONS OF THE USNDC STANDARDS SUBCOMMITTEE

1. To know the status of nuclear standards work in progress and planned, to review proposals submitted to the USNDC for standards measurements, and to try to foster meaningful standards studies.

2. To originate nuclear standards requests for applied purposes and to establish priorities for them and for other requests for nuclear standards submitted to the USNDC.

3. To answer specific questions on nuclear standards referred by the USNDC, in particular, to review requests for measurements of standards cross sections submitted for publication in the USNDC Request List.

4. To supply current information on what is being done and what needs to be done in the area of nuclear standards. In the past this has chiefly meant standard neutron cross section measurements, but the broadening scope of the USNDC requires the inclusion of other types of nuclear standards work.

5. To foster topical conferences or symposia in the area of nuclear standards such as the Symposium on Neutron Standards and Flux Normalization held at Argonne in October 1970 under EANDC sponsorship, 6. To be aware of instrumentation developments which might relate to standards measurements.

7. To be cognizant of the activities of other standards working groups and subcommittees, especially within the United States.

II. ACTIONS OF THE SUBCOMMITTEE

Assuming that the functions listed above are the responsibility of this Subcommittee, we have summarized a few general comments which bear on several of the Subcommittee's functions and then described the individual actions taken at the last meeting.

1. General Conclusions

The Subcommittee recognizes that to definitively establish a standard cross section, it is essential that all the physics relative to the cross section be understood and give a consistent picture. Thus many kinds of information can contribute to our complete understanding and confidence in a standard cross section: the total and all the other partial cross section (if the standard is a partial cross section), nuclear level parameters, polarization effects, consistency with inverse cross sections, etc.

Nevertheless, after considerable discussion, the Subcommittee decided to be quite selective in the designation of priority neutron standards requests. In order to encourage work which can be expected to make major improvements in nuclear standards in the near future, we have eliminated many requests which have less bearing or only longterm impact on standards questions. For example, the measurements of

a total cross section which does not give new or better information on an (n, α) standards cross section might be perfectly well-justified as a total cross section request and may eventually contribute to checking the standard cross section, but we might very well not consider justified as a present priority standard cross section request. Such a request would be referred to the subcommittee having cognizance over total cross sections. However, if a measurer proposes to measure the (n, α) cross section in question by a careful total cross section measurement combined with some improved way of determining the scattering cross section, so that the goal of the measurement is the (n, α) standard cross section, then this would be considered a valid response to a standard cross section request. The Subcommittee feels that in this way work will be better directed towards the goal of improving standards. This would avoid the problem of laboratories continuing to measure total cross sections under the justification of standards work if the work does not so contribute. It often occurs that in the determination of a standard cross section from a total cross section large uncertainties are introduced which result in no improvement in the standard cross section.

The Subcommmittee also believes that it is not sufficient for the United States to rely only on data from Europe and other countries in the area of standards. It is necessary that good standards work be done in the United States, and consistency among United States laboratories involved in cross section measurements be established and maintained.

2. Review of Proposals for Standard Cross Section Measurements

Two proposals were reviewed at the request of the main committee of the USNDC. Both measurements were proposed for hydrogen, one on the total cross section, and the other on both the total and scattering cross sections. Our recommendations are summarized below.

A. Measurement of total cross section of hydrogen by Wilson

The Subcommittee was asked to investigate the question of the (n,p) cross section. In particular the Subcommittee was asked to comment on a proposal by Richard Wilson for new measurements of the scattering length of hydrogen at thermal and epi-thermal neutron energies, and to determine if there is a need for additional measurements from the standpoint of neutron cross section standards. The Subcommittee has reviewed this proposal and feels that, while interesting and valuable basic physics may be learned from implementing this proposal, there is not likely to be any immediate direct impact on the (n,p) cross section as a standard. This experiment may be expected to contribute to the physical understanding of the (n,p) cross section standard, and would become of greater interest if accuracies at the 0.1% level become necessary in the future and if recoil detection techniques are improved.

B. <u>Measurement of total cross section and elastic angular</u> distributions of hydrogen. (Western Michigan)

This proposal, prepared by Robert E. Shamu, consists of two parts: (1) measurement of the total hydrogen cross section to an absolute uncertainty of 0.3% at about 2.5 MeV and at a number of energies

between 5 and 20 MeV; and (2) measurement of the angular distribution of hydrogen elastic scattering to an accuracy of from 1 to 2 percent at neutron energies of 7, 10, and 20 MeV. As discussed later, the Subcommittee feels that the accuracy of the total cross section is at worst 0.5% to 1% from 100 keV to 10 MeV, and that the limit on the accuracy of standards measurements is the knowledge of the angular distribution of hydrogen scattering. Therefore, we cannot endorse the total cross section measurement proposal on the basis of standards. The angular distribution measurements proposed are appropriate to Request #2 (see below) and very much needed. The proposal seems technically appropriate to the cross section request; however, we have not compared this proposal with any others. It is most essential that this measurement be done carefully by competent workers.

3. Review of the Standards Requests for the USNDC Request List.

In the following, cross section requests by number refer to <u>Compilation of Requests for Nuclear Cross Section Measurements</u>, NCSAC-35 (LS-4652-MS) 1971. Some new information and comments have become available to us (for example, from the November 1972 Second IAEA Panel on Neutron Standard Reference Data) since the writing of the previous version of this report on which the request list priorities were based. Such information is included below, but changes in priorities and addition of new requests to the list is deferred for consideration by the Subcommittee and inclusion in the next report. Priorities given below are therefore consistent with the request list.

HYDROGEN-1

<u>Request #1</u> includes a USNDC request for the total neutron cross section of ¹H from 100 keV - 20 MeV with an accuracy of 0.5%. The Subcommittee feels the accuracy of the total cross section is at worst 0.5% to 1% from 100 keV to 10 MeV, and that the total cross $\sigma_{\rm T}$ is not the limit on the accuracy of standards measurements (the limit is the lack of precise information on the angular distribution of the hydrogen scattering). The Subcommittee considers this request satisfied. It should, therefore, be deleted from the list. The Subcommittee recommends reconsideration of the requests by Avery, Hemmig, and Maienschein (DRDT) for the same cross section.

<u>Request #2</u> is for the ¹H elastic scattering angular distribution, $\sigma(\theta_n)$. This USNDC request with priority I is for angular distribution measurements from 3 to 20 MeV with 0.5% accuracy. The calculations of Hopkins and Breit indicate an asymmetry of 5%, at 8 MeV, whereas earlier experimental measurements were analyzed by Gammel to indicate symmetry. Hydrogen is used as a standard cross section in two ways in the MeV range: (1) in a flux-measuring counter telescope where the protons are typically measured at forward angles near 0°, corresponding to neutron scattering at 180° in the center-of-mass system (for which higher accuracy is greatly needed); and (2) as a standard in neutron scattering angular distribution measurements where scattering angles of $\leq 50^{\circ}$ are of primary interest. The request should be changed to ask for full angular distribution at 2 or 3 widely spaced energies to check the Hopkins-Breit calculations in the energy region

from 8 to 20 MeV, accuracy requirement of 2% or better. It is felt by some that one can simply extrapolate angular distributions downward from higher energies where the asymmetries are larger to check Hopkins-Breit in this energy region; however, the Subcommittee feels direct experimental measurements are needed for the high degree of certainty required.

<u>Request #3</u> is for 1 H $\sigma_{n,\gamma}$ from 1-15 MeV to an accuracy of 2%, priority II. This request is an impossible request to fill. Request #3 should be deleted, and the inverse reaction $D(\gamma,n)$ should be measured instead. This request has been referred to the Photonuclear Subcommittee.

<u>Request #6</u> is for the total cross section of ³He from 1 keV -3 MeV to an accuracy of 1%, priority I. The comments accompanying this request read: "As a standard cross section for ³He detectors. Absolute values are required." The comment "absolute values required" makes no sense. The Subcommittee doubts the importance of the total cross section as a standard cross section since measurements are usually based on the ³He(n,p) cross section. We have asked the requestor for a re-evaluation of this need.

<u>Request #8</u> is for the ³He(n,p) cross section from 1 keV - 3 MeV to an accuracy of 3%. This is an USNDC request for which the Subcommittee feels the priority should be II rather than I. Although the cross section is important for use in various ³He detectors, it is less important than other standards such as ${}^{10}B(n,\alpha)$, ${}^{6}Li(n,\alpha)$, and 1 H(n, α). The status comment is inconsistent with Costello's report at the Argonne meeting on Neutron Standards and Flux Normalization where the cross section above 100 keV is considered known to 10%. However, CSEWG considers the cross section known to 5 - 8%. LITHIUM-6

<u>Request #10</u> for the total ⁶Li cross section should be withdrawn because many measurements of the total cross section have been made but they have not resolved the ⁶Li(n, α) standard cross section problem (e.g., Duke, Argonne, Harwell), and because the uncertainties in the scattering cross section prevent better total cross section measurements alone from improving the knowledge of the (n, α) cross section. This is not to discourage total cross section measurements if made in connection with ⁶Li(n, α) cross section measurements.

<u>Request #14</u> for measurements of the ⁶Li(n,a) cross section from thermal to 14 MeV for the USNDC, priority I, should be changed to indicate an energy range from 10 keV - 14 MeV since satisfactory measurements exist below 10 keV. An accuracy of 3% is useful, 1% desired below 100 keV and 3% above. This cross section request continues to be of highest priority. Los Alamos would be interested in the angular distribution in order to use the tritons at a fixed angle as a flux monitor. Absolute cross sections would be required. <u>Request #15</u> for measurement of the ratio of ${}^{6}Li(n,\alpha)$ to ${}^{10}B(n,\alpha)$ from thermal to 100 keV is considered satisfied based on measurements from Harwell. It should be removed from the request list.

Request #17 for ⁷Li total cross section from 0.1 keV - 3 MeV to check Van de Graaff measurements has been satisfied by measurements by RPI and Argonne and should be deleted.

<u>Request #20</u> is a USNDC request for the ⁷Li(α ,n) cross section measurement from 4 - 6 MeV with 1% accuracy. This reaction is the inverse reaction to ¹⁰B(n, α_{o}). The energy corresponds to 10 keV -1 MeV in the ¹⁰B(n, α_{o}). The request for accuracy is changed from 1% to 2%, which is felt to be a more realistic value.

BORON-10

<u>Request #26</u> is for measurements of the total ¹⁰B cross section with priority I from thermal to 100 keV and with priority II from 100 keV to 1 MeV with 1 - 3% accuracy. This USNDC request is changed to be from 10 keV to 1 MeV with 1% accuracy, priority II. This measurement is desirable for "assessing" the ¹⁰B(n, α) cross section.

Request #27 is for the elastic scattering angular distribution $\sigma(\theta_n)$ for ${}^{10}B$. The old USNDC request is priority I from 1 - 100 keV with an accuracy of 1 - 5%, and priority II from 100 keV - 1 Mev, accuracy 1 - 3%. Since the elastic scattering together with the total presents a method of checking the ${}^{10}B(n,\alpha)$ reaction cross section measurements, it is felt that priority II is more appropriate than priority I for this request.

<u>Request #28</u> is a USNDC request for the ${}^{10}B(n,\alpha)$ cross section with priority I from thermal to 100 keV and priority II from 100 keV -1 MeV, with errors of 1 and 4%, respectively. Subcommittee proposes to delete these two requests and replace them by a priority I request from 1 keV - 1 MeV, with an accuracy of 2%. The data of Friesenhahn, Carlson, Orphan, and Fricke, GULF-RT-A12210 (1972) applies to this request up to 100 keV.

<u>Request #29</u> is for the ${}^{10}B(n, \alpha_{\gamma})$ cross section for production of the 478 keV gamma ray from 50 keV to 1 MeV. This request should have priority I, since this reaction leading to a gamma ray is used as a standard in linac neutron cross section measurements. The request accuracy is improved from 4% to 2%. It is understood the GRT (Friesenhahn <u>et al</u>) is measuring this reaction to good accuracy.

These preliminary results of Friesenhahn <u>et al</u> may be combined to yield a measurement of branching ratio ${}^{10}B(n,\alpha_{1}\gamma)/{}^{10}B(n,\alpha)$. The Friesenhahn <u>et al</u> results for the ratio are then significantly lower than the results of Macklin and Gibbons (Phys. Rev. <u>165</u>, 1147 (1968)) and Sowerby, Patrick, Uttley, and Diment (J. Nucl. Energy <u>24</u>, 323 (1970)) above about 40 keV. The Subcommittee will consider in its next report whether a priority request needs to be made for this branching ratio.

<u>Request #30</u> is for total alpha production from 10 B, priority II from 1 - 18 MeV. The request is from McElroy (HEDL). The cross section is used as a standard for dosimetry. The Subcommittee believes that this request should be priority I in view of its importance to reactor dosimetry.

CARBON-12

Request #32 is for ¹²C elastic scattering angular distribution $\sigma(\theta_n)$ with priority I from 1 keV to 2 MeV. This request is deleted as it appears that improved accuracy is not required for Van de Graaff measurements since satisfactory data by Langsdorf (Argonne), Cox (Argonne), and BCNN (Geel) are in agreement up to 1.5 MeV. GOLD-197

<u>Request #336</u> is for the ¹⁹⁷Au(n, γ) cross section, priority II, with energy range from 1 - 100 keV, 2% accuracy requested. This request is changed to the energy 10 keV to 1 MeV. In view of the use of gold activation as a standard in environments where other methods cannot be used, we feel that priority I would be justified. URANIUM

<u>Request #360</u> for ²³³U fission ratio to ²³⁵U, <u>Request #362</u> for ²³³U ∇ , and <u>Request #389</u> for ²³⁵U $\sigma_{n,s}$ are not USNDC Subcommittee requests and are referred to the Fission Subcommittee.

<u>Request #390</u> for 235 U $\sigma_{n,f}$ for measurements with 1% accuracy from 10 keV - 14 MeV is reaffirmed with priority I. Energy resolution of 3% is desired and energy calibration to 1%.

Request #391 for 235 U $\sigma_{n,f}$ measured with respect to hydrogen above 1 MeV and with respect to 10 B below 1 MeV, priority I, with 1% accuracy from 10 keV - 14 MeV is established as a USNDC standards request. Intermediate accuracy of 3% would be useful. This measurement is needed to check out consistency between standards.

The following requests are referred to the Fission Subcommittee as being requests for fission information, not particularly related to standards. We assume high-accuracy requests are not necessarily standards (perhaps this question should be considered by USNDC).

<u>Request No.</u>	Target	Quantity	<u>Variable</u>
392	235 _U	Eta	
395	²³⁵ U	Nu bar	
418	²³⁸ U	Fission ratio	wrt ²³⁹ Pu
419	238 _U	Nu bar	

PLUTONIUM

The following requests are referred to the Fission Subcommittee:

<u>Request No</u> .	Target	Quantity	<u>Variable</u>
436	²³⁸ Pu	Fission ratio	wrt ²³⁵ U
451	^{2 39} Pu	Fission ratio	wrt 235_{U}
252	²³⁹ Pu	Nu bar	· . ·
265	240 _{Pu}	Fission ratio	wrt ²³⁵ U
475	241 _{Pu}	Fission ratio	wrt ²³⁵ U
476	²⁴¹ Pu	Nu bar	

CALIFORNIUM-252

<u>Request #534</u> is a USNDC standards request for 252 Cf $\overline{\nu}$ with priority I and 0.25% accuracy. There has existed a 2% discrepancy between liquid scintillator methods on the one hand, and manganese sulfate bath and other moderation methods on the other. However, new studies by Boldeman with the scintillator tank reported at the November 1972 IAEA Panel on Neutron Standard Reference Data, and corrections to other experiments, are claimed to give a value of $\tilde{v} = 3.733$ with an uncertainty of 0.3%. However, some people feel that it is not clear that the uncertainty is less than 1%. If the new \tilde{v} value is adopted, then there is a discrepancy with Π values. In this connection the proposal to have J. R. Smith make new measurements of \tilde{v} is most interesting since he is one of measurers of Π . The Subcommittee proposes to let the request stand until this situation can be carefully reviewed. \tilde{v} for 252 Cf is very important as a primary standard for \tilde{v} measurements, and also as a fission-like reference neutron field.

A new USNDC standards request is made for the 252 Cf fission spectrum, with priority I above 10 keV. There are worse discrepancies in the 252 Cf spectrum than in the 235 U fission spectrum. Accuracy desired for P(E_n'), the shape of the spectrum, is 5%. Also the uncertainty in the energy scale, ΔE_n ', should be held to 5%. The situation has been reviewed by Conde in EANDC(OR) 102L. This problem has also been discussed in the recommendations of an IAEA Panel on Fission Spectrum. The shape of the californium spectrum is most important for use of californium as a standard reference neutron field and for cross section validation.

To determine the amount of 235 U in fission foils from α -ray counting and mass spectrometric mass ratios, the half-life of 234 U is needed. Extensive work reported on the half-life of 234 U was reported by BCMN (Geel) at the November 1972 Second IAEA Panel on

Neutron Standard Reference Data yielding a value of $T_{1/2} = 2.446 \pm 0.3\%$ (3 Gerror) × 10⁵ years. Further measurements of ²³⁴U half-life are apparently not needed. However, for ²³³U the half-life is only known to 2%, and for ²³⁹Pu there is a discrepancy between calorimetric and counting methods of half-life determination of 1.3%. Priorities for fissionable nuclide half-life determinations will be considered in the next Subcommittee report.

			<u>Table I</u>	Exported	Magguromonto	Completion	
Nuclide	Measurement	Energy Range	Resolution	Accuracy	Underway	Date	Laboratory
6 ₁₁	σ _T	1 keV-1 MeV	0.5%	1%	Yes	9/72	NBS
6. L1	σςς	1 keV-1 MeV	-	< 3%	No	5/74	NBS
6 _{L1}	σ(n,α)	1 keV-1 MeV	-	2%	No	1/75	NBS
6 L1	σ(n,α)	l keV-l MeV	~ 27.	1%	Yes	12/73	GRT
⁶ Li	σ(n, α)	90 keV-600 keV	-	3%	Yes	12/73	ANL
10 _B	$10_{B(n,a_{1})}^{7}L_{1+}^{10}B(n,a_{1})^{7}L_{1+}^{11}$	l keV-l MeV	~ 2%	1%	Yes	5/72	GRT
235 _U	σ _f rel to H	1.5 MeV-7 MeV	5%	≤ 3%	Yes	9/72	LASL
235 _U	σ_{f} rel to H	50 keV-16 MeV	< 3%	< 2%	Yes	9/73	LLL
235 _U	σ _f rel to H	20 keV-15 MeV	l nsec/m	2 %	No	/75	ORNL
235 _υ	of rel to H	6 MeV-15 MeV	5%	≤ 3%	No	9/73	LASL
235 _U	σ_{f} rel to $Li(n,a)$.01 eV-100 keV	< 3%	< 2%	Yes	6/73	LLL
235 _U	σ_f rel to $Li(n,a)$	30-150 keV	5-15 keV	-	Finished	12/72	ANL
235 _U	σ_{f} rel to $B(n,a)$	Up to 100 keV	l nsec/m	.6%	Yes	6/73	ORNL
. ²³⁵ U	σ_{f} rel to ${}^{10}B(n,a)$	10 kev-1.5 MeV	l nsec/m	6%	Yes	/74	ORNL
235 _U	σ_f rel to ¹⁹⁷ Au(n, γ)	30,150,500 keV	15,15,50 keV	3%	Finished	12/72	ANL
235 _U	σ_f rel to Gray	0.15 to 3.5 MeV	15-150 keV	2%	Finished	12/72	ANL
	Neutron Detector						
235 _U	σ _f rel to Black	2-5 MeV	20-50 keV	1-2%	Finished	12/72	ANL
235 _U	Neutron Detector σ_f absolute Cr	500-650 keV	80-100 keV	2 %	Finished	12/72	ANL
235 _U	σ_f absolute Na Be	9 66 keV	-	2-3%	Yes	12/72	ANL
235 _U	σ_{f}^{-} absolute ⁵¹ V Bath	500 kcV	50 keV	2 - 3%	No	12/72	ANL
235 _U	σ_f^{235} U rel to σ_Y^{238} U	Thermal and 24 keV	8%	< 1%	No	1/74	RPI

.

4. NEUTRON STANDARDS CROSS SECTION MEASUREMENTS IN PROGRESS AND PLANNED

Nuclide	Measurement	Energy Range	Resolution	Expected Accuracy	Measurements Underway	Completion Date	Laboratory
235 _U	σ _f absolute	Avg. over ²⁵² Cf spectrum	-	4%	Finished	9/72	NBS
235 _U	σ _f absolute	Avg. over ²⁵² Cf spectrum	-	2%	Yes	6/73	NBS
235 _U	$\sigma_{f}^{absolute}$	Avg. over ²³⁵ U(n,f) spect.	-	4%	No	12/73	NBS
²⁵² Cf	Neutron age in H ₂ O	Avg. over ²⁵² Cf spectrum	-	2%	Yes	12/72	NBS

Table I (Continued)

LABORATORY

- ANL Argonne National Laboratory
- GRT Gulf Radiation Technology
- LLL Lawrence Livermore Laboratory
- LASL Los Alamos Scientific Laboratory
- NBS National Bureau of Standards
- ORNL Oak Ridge National Laboratory
- RPI Rensselaer Polytechnic Institute

5. Relation to CSEWG and CSEWG Activities with Respect to Standards.

Overlapping membership is held with the Cross Section Evaluation Working Group (CSEWG), which is responsible for the U.S. evaluation program of neutron cross sections. CSEWG and the USNDC have different functions, the former being primarily concerned with ENDF/B cross section evaluations and the latter being concerned with fostering measurements and improving measurement standards. However, CSEWG does recommend measurements needing to be made to the Division of Reactor Development and Technology of AEC and this function does overlap one of the purposes of the USNDC Subcommittee on Standards.

Estimates of all the major standard cross sections have been reviewed in the past year by CSEWG, except for the 238 U and 235 U fission cross sections. For example, six of the evaluated neutron files from ENDF/B, Version III have already been adopted as primary standards and approved by the AEC for world-wide distribution. These are identified as follows: hydrogen scattering, 3 He(n,p)T, 6 Li(n,t) α , 10 B(n, α), 12 C scattering, and 235 U(n,f). Complete files for each isotope on the ENDF/B were released. These data were extensively reviewed by both the Normalization and Standards and the Data Testing Subcommittees of CSEWG. Both internal and external consistency checks could be made since CSEWG has established a complete file on each isotope which covers a wide range of energies (from 10⁻⁵ eV to 15-20 MeV). The total cross section had to be the sum of all the partials and absorption and fission ratios were checked against experimental

measurements. For calculational models, all cross sections for each isotope must be given along with the energies and angular distributions of all the emitted neutrons and the ENDF/B files satisfy these criteria.

Although the primary objective of CSEWG has been to construct and constantly update complete neutron files, expansion to other areas is underway and some of the areas are related to standards. For example, CSEWG currently has under review by the Non-Neutron Induced Data Subcommittee the problem of establishing a chargedparticle evaluated library which could then contain the standard neutron source reaction cross sections. Already underway are: a partial cross-section file for specific dosimetry applications; some of which will be denoted as primary and secondary standards, and the preparation of photon production and photon interaction cross section files.

Although the USNDC and CSEWG have different functions, their interests and responsibilities naturally overlap with respect to the U.S. standards program. Since the primary objective of the USNDC is to foster new experiments and to improve measurement standards, such effort can contribute significantly to the national ENDF/B evaluation program which is sponsored by the DOD and three divisions of the USAEC. Therefore, close contact will be maintained with CSEWG with respect to the standard cross section evaluation program.

November 15, 1972

Report of:

The USNDC Subcommittee on Scattering."

Subcommittee Members:

- H. Goldstein
- J. Hopkins
- F. Perey
- A. Smith, Chr.

I. Introduction.

The Subcommittee has the explicit responsibility of reviewing the request compilation in the areas of Elastic and Inelastic Scattering and of Nu-bar and Fission Neutron Measurements. The latter charge is ad-hoc. Responses to these reviews are given explicitly in Tables II and III, respectively. Some impression of the distribution of priorities and accuracies is given in Table I. In addition, consideration is given to: the character of the requests, the status of the field and the subcommittee organization. Subjective opinions as a consequence of these considerations are outlined in subsequent sections. They are consistent with individual subcommittee opinion, where expressed, and particularly reflect the impressions of the chairman.

II. Scope of Requests.

The scattering requests are grouped into the major areas: a) standards, b) shielding materials, c) structural components and d) fissile and fertile materials--largely relevant to fission reactors. Desired accuracies range from qualitative to fractional per cent and there appears to be a trend to both higher energies and higher priorities. In particular, the number of priority-III requests is relatively small. This may reflect some lack of interest in speculative and/or long term endeavors. There are some significant omissions. Only one request has as its primary motivation physical understanding. Such areas as deformed nuclei remain largely ignored and yet the physical interpretation of direct interactions in these nuclei is a continuing problem in the applied use of fissile, fertile and fission product nuclei and direct processes will become far more important in the higher energy range of CTR applications. Even in the context of fission reactors long term needs may not have been given proper consideration and it is noted, for example, that there is no request for

^aThese remarks are based primarily on the comments and opinions of J. Hopkins, F. Perey and A. Smith. scattering from Pu²⁴¹ and higher isotopes that will inevitably appear in long term fuel cycles.

There is concern that the request list is not representative of needs for: physical understanding, long term requirements of current programs (e.g. fission reactors) and new areas of endeavor which are on the threshold of conceptual decisions.

III. Resources: Programs, Facilities and Manpower.

During the period of this review the major United States scattering effort was largely centered at four facilities as follows:

a. ORNL.

Final reduction of data obtained using 6 MeV VDG and new work at ORELA.

b. Ohio University

8 MeV tandem Van de Graaff working primarily in lightnuclei region.

c. University of Kentucky

5.5 MeV Van de Graaff (HVEC-CN) working in mediumnuclei region.

d. ANL

8 MeV tandem Dynamitron working primarily in mediumand heavy-nuclei.

During the past 18 months the ORNL program has utilized the VDG for studies in the energy range 4.2-8.6 MeV acquiring data on: C,N,O,Ti,⁵²Cr,Cr,⁶⁰Ni, Ni,⁶³Cu,⁶⁵Cu,W,^{206,207,208}Pb and U²³⁸. Results have been formally reported and further reports are in preparation.^C The results generally include both elastic and inelastic neutron scattering processes. These reports will terminate the ORNL-VDG program and the manpower will be shifted to ORELA for elastic and inelastic (primarily n:n' γ) studies using the white source. The schedule goal for operation is January 1973.

The Ohio University work is well summarized in "Structure Studies of Light Nuclei with Neutrons" presented at the recent Budapest Meeting (EANDC (US)-172AL) and includes scattering from ${}^{6}\text{Li}$, ${}^{7}\text{Li}$, ${}^{10}\text{B}$, ${}^{11}\text{B}$, ${}^{12}\text{C}$ and ${}^{14}\text{N}$. The work is continuing and will include both differential scattering cross sections and scattered neutron polarizations in the light nuclear region.

c. See notations on pertinent requests.

The University of Kentucky program has emphasized elastic and inelastic scattering from nuclei in the mass region A \sim 100 to energies of \sim 8 MeV. Results for $^{92}, ^{94}, ^{96}, ^{98}, ^{100}$ Mo are in press and studies of $^{92}, ^{94}, ^{96}$ Zr are in progress. In addition recent results of a study of scattering from 12 C from \sim 3-6 MeV have been published.

The Argonne program has emphasized the final reduction and reporting of data obtained with the previous VDG accelerator (E ~ 1.5 MeV) and a new measurement program at the Fast Neutron Generator currently emphasizing the energy range 1.5-4.0 MeV. The program stresses elastic and inelastic neutron scattering measurements from structural and core materials (eq. $A\sim45-90$ and $A\sim232-240$). All measurements are by time-of-flight and currently employ a unique 10-angle detection system with flight paths to 7 meters at angles of 20-160 degrees.

Only operation of a) and d), above, are AEC supported. Manpower associated with these activities is difficult to assay due to conflicting commitments. However, an average of 1-3 man/yrs per facility seems a reasonable estimate. Certain other facilities work in special problem areas: e.g. small-angle scattering at the Aberdeen Center. In any event, the manpower applied to this problem area is grossly inconsistent with the requests for information. It is noted that the facilities generally represent good-totop quality technology for this type of work and that more manpower could be effectively utilized.

There is very little United States activity in nu-bar studies. The ANL bath measurements have been terminated. RPI studies of nu-bar in the resonance region are near completion. There is some new work at LLL. Generally, in the immediate future, most United States knowledge of nu-bar may well come from foreign sources.

Microscopic studies of prompt fission spectra are apparently not in progress within the United States and none are planned^d NBS (Grundl) continues studies of threshold (and other) index responses in such spectra.

An extensive program of delayed neutron yield measurements is in progress at ANL. Work is proposed at LASL and spectral measurements are underway at the University of Washington. Accuracies in total yield of better than 5% for U^{233} , U^{235} , U^{238} and Pu^{239} are a reasonable near-term expectation. The higher Pu isotopes will be more difficult.

IV. Experimental Practice and Quality.

In providing for many of the requests in this area there is no substitute for quality and it is not necessarily synonymous with quantity or newness. It should be a matter of concern that some recent results are not appreciably better than those obtained a decade ago with more modest facilities and that some of the current "flaps" tend to be due to premature or inaccurate new information. If many of the more difficult and more precise requests are to be fulfilled there must be a return to more careful experi-

d. Subsequent to the preparation of this report LASL studies of fission neutron spectra have been described (See USNDC Status Reports - 1972).

mental procedures. These must be carried out within a rational physical framework and the results fully analyzed before transfer to the data center files. Too often physical reality and analysis are ignored with a consequent waste of experimental effort. Inherent in many of the measurements are large experimental perturbations. In the context of precise data requests, these cannot be ignored. Far more careful attention must be given to such things as multiple scattering corrections if success is to be achieved.

What is needed for success is a "disciplined physical approach" to the measurement program.

V. Subcommittee Structure,

The somewhat moribund status of United States neutron scattering activities is reflected in the Subcommittee, only two members of which spends more than one half of their time actively engaged in scattering studies. This may, unfortunately, be representative of National activity in the area but it does not result in a comprehensive grasp of the problem area without an inordinate amount of work on the part of subcommittee members. Consideration should be given to restructuring the subcommittee. One alternative is to place it on an ad-hoc stand-by basis or incorporate its activities within another subcommittee; neither likely to improve the situation. A more attractive option is an enlargement/or change of membership to include personnel actively working in the field. The latter are very limited and must include individuals outside direct USAEC support. This may require some changes in policy. These are recommended and not inconsistent with the recent restructuring of the parent committee. With such changes, one can hope for an improved cooperative and coordinated approaches to the respective nuclear data problems and even the stimulation of the field by the active physicalresearch orientation it so badly needs for new life.

IV. Review of Request List.

The Subcommittee has explicitly reviewed the Request Compilation in the pertinent areas. The results are given in the Tables I through III. Table I summarizes the number of requests by priority and by "high" (53) accuracy. Table II is responsive to scattering requests item-by-item. Table III is responsive to nu-bar and fission property requests item-by-item. These are not a comprehensive bibliographies but rather a current commentary emphasizing new results. It is presumed the requester is familiar with the formally reported literature as, for example, indexed in CINDA. Where appropriate, it is suggested that the requester review his requirements in the light of new information.

Distribution of Priorities	No. of Requests			
	I	riority	7	
Reaction	1	2	3	
Scattering ^b	73	62	12	
Total Req. ^a = 147				
Nu-bar + fission Prop. ^C	14	17	2	
Total Req. ^a = 33				

a. summed by priority designation.

b. No. of Reqs. with accuracies $\frac{4}{3}$ 3% = 6. c. No. of Reqs. with accuracies $\frac{4}{3}$ 3% = 14.

•

.

NCSAC-35 No.	DIST. No.	Request Statement
2	2	1 ^{H¹ Elastics 3-20 MeV}
		Change status to:
		LASL-Hopkins + Briet, Nucl. Data <u>A9</u> - 137 (1971)
New	3	1 ^{H² Elastic th-1 keV}
		Status-Quo.
4	4	1 ^{H³ Elastic 14 MeV}
		Change status to:
		LASL-Seagrave has data, LA-DC-8859.
7	7	2 ^{He³ Elastic 1-14 MeV}
		Change status to:
		LASL-Seagrave has data, LA-DC-8859
		LASL-Drosg <u>et al</u> ., Data at 14 angles and five energies 8-24 MeV
11	11	3 ^{Li⁶ Elastic 1-100 keV}
		Status-Quo.
New	12	Elastic ~ 14 MeV
		This request is likely satisfied to 15% accuracy.
		See BNL-400 and CINDA
12	13	Emission 8-14 MeV
		Add to status:
·		AWRE-Cookson <u>et al</u> . have data at 10 MeV,
		LA-DC-8023

Table	II.	Review	of	Neutron	Scattering	Requests.
-------	-----	--------	----	---------	------------	-----------

NCSAC-35	DIST.	29
<u>No.</u>	<u>No.</u>	Request Statement
New	22	$3^{\text{Li}^{7}}$ Elastic \sim 14 MeV
		Probably satisifed to required 15% accuracy.
		See CINDA and BNL-400
New	23	Inelastic thr - 14 MeV
		Add to status:
		AWRE-Cookson et al., data at 10 MeV-LA-DC-8023
18	24	Emission 5-16 MeV
		See status of $#23$ above
22	30	4 ^{Be} Elastics 7-20 MeV
		Status-Quo.
23	31	Emission 1.8-5 MeV
		Status-Quo.
27	36	5 ^{B¹⁰ Elastic 1-1000 keV}
	,	Add to status:
	• • • •	Ohio ULane - Review of Status.
33	39	6 ^C Elastics 6-15 MeV
		Add to status:
	•	Ohio ULane <u>et</u> al., data at 6 MeV, Budapest Conf.
	:	ORNL-Perey et al, data to 8.7 MeV, ORNL-4441.
	•	U.Ky-Galati <u>et</u> <u>al</u> , data to 7.0 MeV
32	40	Elastics 1-2.5 MeV
		Change status as follows:
		Delete Lane etc: too old.
	• •	Retain Knitter Ref.
		Delete Nikolaev
New	41	Elastics 2-14 MeV
		Combine status of #39 and #40, above.

.

NCSAC-35	DIST.	
<u>No.</u>	<u>No.</u>	Request Statement
	f	6 ^C (Contd.)
34	42	Emission 7-15 MeV
		Change status to:
	•	ORNL - Perey <u>et al</u> ., Data to 8.7 MeV, ORNL-4441
New	45	Inelastic(1st) 4.4-14 MeV
		Add to Status:
		ORNL - Perey <u>et al</u> ., Data to 8.7 MeV, ORNL-4441
37	47	Polariz 4-5.5 MeV
		Status:
		Ohio U Lane Report to Budapest Conf. Detail Analysis
39	48 &	7 ^N Elastic 7-15 MeV
49		ORNL - Perey <u>et al</u> . have new data See NS+E <u>46</u> 428 (1971)
70	50	Emission 7-15 MeV
		See #48, above
43	53	8 ⁰ Elastic 0.01-15 MeV
		Add to status:
		ORNL - Kinney <u>et</u> <u>al</u> ., Data in Range 4.3-8.5 MeV, ORNL-4780
44	54	Emission 7-15 MeV
		Add to status:
		ORNL - Kinney et al., Data in Range 4.3-8.5 MeV, ORNL-4780
		Sweden - Lundberg <u>et</u> al.,
		Associated gamma rays at 7.5 MeV, EANDC(OR)-104
50	59	9 ^F Elastics 3-20 MeV
		Status:
		Chalk River - Clarke and Perrin have 14 MeV data
		ANL - Smith <u>et al</u> . have preliminary results to 3.0 MeV.

• •

NCSAC-35 No.	DIST. No.	Request Statement
		9 ^F (Contd.)
New	60	Inelastics 10-14 MeV
		Status: See Chalk River of #59, above.
51	61	Emission 0.5-20 MeV
		See Status remarks of #59, above.
55	66	11 ^{Na} Elastics 8-15 MeV
		Status:
•		ORNL - Perey et al., Data to 8.5 MeV,ORNL-4518
56	67	Inelastics 2-10 MeV
		Status-Quo
57	68	Emission 4-15 MeV
		Status-Quo.
60	72	13 ^{A1} Elastics. 8-16 MeV
		Add to Status:
		U. Ky Brandenberger has data at 8 and 9 MeV
		ORNL - Kinney <u>et al</u> ., data to 8.5 MeV, ORNL-4516
		Sweden - Holmqvist <u>et</u> <u>al</u> ., data at 8 MeV, AE-430
New	75	Inelastic Thr - 14 MeV
		Status:
· · ·		ORNL - Kinney <u>et</u> <u>al</u> ., ORNL - 4516, data to 8.5, also
		ORNL - TM-3284
		U. Ky Brandenberger, data at 8 and 9 MeV
·		NOTE: Great number of older measurements should satisfy 15% accuracy of request to 3 or 4 MeV. Lower limit should be raised.
61	76	Emission 8-15 MeV
		Add to status same items as $\#75$, above (i.e. ORNL, U.Ky

17 -	Dones	t. Etabamant
NO.	Reques	
85	14 ^{Si}	Elastics 8-15 MeV
	Add to	status:
		ORNL - Kinney et al., Data at 8.5 MeV, ORNL-4517
86		Emission 8-15 MeV
	Status	as of #85, above
91	20 ^{Ca}	Elastics 8-15 MeV
	Add to	Status:
		ORNL - Perey <u>et al</u> . have data to 8.5 MeV, ORNL-4519
92		Emission 8-15 MeV
	Add to	Status:
		ORNL - Perey <u>et al</u> . have data to 8.5 MeV, ORNL-4519
104	23 ^V	Elastic 1.4-10.0 MeV
	Add to	Status:
		Sweden - Holmqvist data to 8.0 MeV, AE-430
107		Inelastic 1.5-10 MeV
	Add to	Status:
		Sweden - Almen <u>et al</u> ., Helsinki Conf.
108		Inelastic Thr - 15 MeV
	Same S	tatus as #107, above
117	24 ^{Cr}	Elastic 2-14.0 MeV
	Add to	Status:
		ORNL - Perey <u>et al</u> . have data to 8.6 MeV
118		Inelastics 0.5-10.0 MeV
	Add to	status as per #117, above
119		Inelastics Thr - 14.0 MeV
	Add to	status as per #117, above
	No. 85 86 91 92 104 107 108 117 118 119	No.Reques8514Add to86Status91209120Add to92Add to1042310423107Add to108Same S11724CrAdd to118Add to119Add to

•

ICSAC-35 No.	DIST. No.	Request Statement
97	135	26 ^{Fe} Elastics 0.5-14 MeV
		Revise Status to:
		ANL - Smith <u>et al</u> ., Data available satisfying intermediate resolution requirements to 3.8 MeV
		ORNL- Perey <u>et</u> <u>al</u> ., ORNL - 4515, data 4.19-8.56 Me
		Sweden - Holmqvist <u>et al</u> ., AE-337, and Helsinki Conf., Data to 6 MeV.
		TNC - Williams <u>et al</u> ., NCSAC-33, Data 9-11 MeV
98	136	Elastics 6-16 MeV
· ·		Status-Quo
00	137	Inclustic 85-10 MoV
77	131	Request satisfied to 2 MeV by ORNI. ANI. PEL work.
		This is priority 1 region.
	, · · · ·	Revise Status to:
		ANL-Smith et al., Preliminary results to 3.8 MeV
		ORNL-Results 0.85-2, 4-8.5 MeV, Knoxville Conf.
•		ORNL-4515 (Dickens <u>et al</u> .).
		CEA-Naouat et al., Knoxville Conf. 2-14 MeV
	•	Sweden-Almen et al., Helsinki Conf. to 4 MeV
		TNC-Williams et al., NCSAC-33, 9-11 MeV
New	138	Inelastics thr - 14 MeV
		Change status to that of #137, above.
100	141	Emission 5-15 MeV
		Status:
		TNC-Williams et al., NCSAC-33, Results at9,11 MeV
101	142	Emission 7-16 MeV
		Status as per #141, above.
	· • • •	
118	170	28 ^{Ni} Elastic 1.5-14 MeV
		Change Status to:
		ANL-Smith <u>et</u> al., Preliminary data to 3.0 MeV, work continues.
		ORNL-Perey <u>et al</u> ., ORNL-4523, 6.5-8.6 MeV also new data available
	e de la se	AE-Holmqyist et al., Helsinki Conf. 1.8-8 MeV.

Delete other remarks of former status.

NCSAC-35 No.	DI ST. No.	Reques	t Statement			·
		28 ^{N1} ((Contd.)			· · · · · · · · · · · · · · · · · · ·
119	171		Inelastics	1-10 MeV		
		Change	Status to:		,	
. :	· · · · · ·	C	ANL-Smith en work cor	<u>al.</u> , Prelimin Itínues.	nary data to	3.0 MeV,
· .			ORNL-Perey e also ne	et <u>al</u> ., ORNL-45 w data availab	23, 6.5-8.5 le.	MeV,
New	172		Inelastics	thr - 14 MeV	· ·	
. ,		Same s	tatus as #171	l, above.		
New	189	189 ^{Cu}	Inelastics	thr - 14 MeV		
• • • • • •		Status			·	
			ANL-Prelimin Work continu	ary data 0.3-3 ues, Smith et a	3.0 MeV. 11.	
			ORNL-Perey	et al., work in	1 progress	
137	207	32 ^{Ge}	Emission	1-15 MeV		
	,	No Cha	nge			
139	209	33 ^{As}	Elastic	th - 14 MeV		
	• • • •	No Cha	nge			
140	210		Emission	thr - 14 MeV		
		No Char	nge		÷	
153	223	40 ^{Zr}	Elastic	0.2-1.5 MeV	· · · · · · · · · · · · · · · · · · ·	
				7-14.0 MeV		
			The 0.2-1.5 quired. Rec E<1.5 MeV.	MeV is availab quest should be	to $\sim 10\%$ dropped for	as re-
		Revise	status to;	· · · · · ·	· .	•
			ANL-Working	above 1.5 MeV	•	•
New	224		Inelastics	thr -14 , MeV		
	· · ·	Change	status to;	• • •		
	·		ANL-Working 90-92-94	to ∿ 5.0 MeV v 4 (Smith <u>et</u> al.	vith even iso .)	topes-
			U.KyWorkin 6 MeV	ng with even is (McEllistrem e	sotopes 90-92 et al.).	94 to
		•		•		

		35
NCSAC-35 No.	DIST. No.	Request Statement
		40 ^{Zr} (Contd.)
154	227	Emission 2-14 MeV
		Status should change to that of #224, above.
166	244	40 ^{Zr⁹⁰ Elastic 100 keV-10 MeV}
		Replace status with:
		U.KyMcEllistrem <u>et</u> <u>al</u> .
		Preliminary results 1.5-6.0 MeV.
		ANL- Smith <u>et al</u> ., preliminary results. 1.5-3.0 MeV.
167	245	Inelastic 14 MeV
	· · · ·	Delete status remark and replace with "None".
		Is only the 14 MeV point wanted?
New	246	Inelastic 5-15 MeV
		Update status to that of #244, above.
168	247	Emission 1-15 MeV
		Change status to that of #244, above.
174	251	40 ^{2r⁹¹ Elastic 0.1-10 MeV}
	•	Change status to:
		ANL-Work in progress
175	252	Inelastic 2.5-14 MeV
		Change status to that of #244, above.
183	257	40 ^{Zr⁹² Elastic 0.1-10.0 MeV}
		Change status to that of #244, above.
184	258	Inelastic 14 MeV
	· .	Change status to "None"
New	259	Inelastic 2.5-10 MeV
		Change status to that of #244, above.
NCSAC-35 No.	DIST. No.	Request Statement
-----------------	--------------	--
190	263	40 ^{Zr⁹⁴ Elastics eV-10 MeV}
	`	Add to status:
		U. Ky Working on problem.
191	264	Inelastics 14 MeV
		Change status to "none"
199	269	40 ² Elastics 0.1-10 MeV
		This remains a sample problem.
203	272	41 ^{Nb} Inelastic thr - 14 MeV
		Status:
		ANL-Data to 4.0 MeV in detail.
		AWRE-Data from 1.5-5.0 MeV.
		AWRE-0-66.71, R. Coles
		AE-Almen <u>et al</u> ., Helsinki Conf.
204	273	Inelastic thr - 15 MeV
		(isomeric State)
		Status: None
205	274	Emission 1.5-15 MeV
		Status should be revised to that of #272, above.
220	295	42 ^{Mo} Inelastic 1.5-3.0
	÷	Change status to:
		AWRE-Coles, AWRE-69/70, Data to 5.0 MeV.
		ANL-Smith et al., all even isotopes to 1.6 MeV
		working to > 5 MeV.
		KY-McEllistrem <u>et</u> <u>al</u> ., Data on even isotope
		1.5-6.0 MeV.

NCSAC-35	DIST. No.	Request Statement
		42 ^{Mo} (Contd.)
New	296	Inelastic th - 14.0 MeV
		Status should be same as #295, above.
221	299	Emission 1.5-15 MeV
	• ••• •	Status should be same as #295, above.
273	352	64 ^{Gd} Elastic 1.5-10 MeV
274	353	Emission 1.5-10 MeV
		Revise status of both to:
		 Delete ANL-Sherwood. It is out of energy range.
		<pre>2. Status: None. (Apparently no active work).</pre>
311	388	72 ^{Hf} Elastic 1.5-10 MeV
	•	Delete ANL - Sherwood.
	•.	Add to status:
• •		AE-Holmqvist <u>et</u> <u>al</u> ., Helsinki Conf.
312	389	Emission 1.5-10 MeV
		Delete ANL - Sherwood.
		Current status: None.
320	397	73 ^{Ta} Emission 1.5-15.0 MeV
		No Change.
323	400	74 ^W Emission 4-16 MeV
		Add to status:
		ORNI-Perev et al have data / 3-8 6 Mov

ORNL-4803

•

NCSAC-35 No.	DIST. No.	Request Statement
338	415	82 ^{Pb} Emission 3-16 MeV
		Change status to:
	·	ORNL-Perey <u>et</u> <u>al</u> . have data to 8.6, work in progress.
341	418	Isom. State th-15 MeV
		Change status as per #338, above.
344	421	90 Th Elastic 1-5 MeV
۰.		No Change.
345	422	Inelastic 1-4 MeV
	,	No Change.
355	431	92 ^{U²³³ Inelastic 0.04-7.0 MeV}
356	432	Emission 5-7 MeV
		Status of both unchanged.
381	453	92 ^{U235} Elastic 1-7 MeV
		Reyise Status to:
		BCMN-Coppola and Knitter have data to 5.5 MeV
		ANL-Measurements to 3.5 MeV. (Smith)
382	454	Inelastics 1,5-6,0 MeV
		Revise status to that of #453, above.
383	455	Emission 5-15 MeV
		Status:
		BCMN-Coppola and Knitter have data at 5.5 MeV
384	456	Emission 1-20 MeV
		Statusi

Same as #453, above.

NCSAC-35 No.	DIST. No.	Request Statement
412	487	92 ^{U²³⁸ Elastics 0.001-10.0 MeV}
		Statement "Factors of 2 lower accuracy would be useful
•		on short term" should be deleted as this value has been
		achieved at many energies.
		Revised status:
		ANL-Smith_et al. (NS+E 46 356, 1971)
		Data to 1.7 MeV and measurements underway to
		5 MeV.
		BCMN-Ahmed has data to 2.3 MeV.
•		ORNL-Perey et al. have data to 8.6 MeV, work in
•		progress.
413	488	Inelastics 0.1-10 MeV
		"Useful" 20% accuracy is met to \sim 1.2 MeV and possibly
		higher. This 20% useful accuracy should be deleted
		from the Reg. Com.
		Revised status:
		ANL-Smith <u>et al</u> . (NS+E <u>46</u> 356, 1971) to 1.7 MeV
		work in progress to 5 MeV.
		BCMN-Ahmed has data to 2.3 MeV.
		ORNL-Perey <u>et</u> <u>al</u> . have data to 8.6 MeV, work in progress.
414	486	Emission 5-15 MeV
	•	Add to status:
		ORNL-Perey et al. have data to 8.6 MeV,
		work in progress.
	· · · ·	

39 ·

NCSAC-35 No.	DIST. No.	Request Statement
444	517	94 ^{Pu²³⁹ Elastics 1-7 MeV}
		Request is satisfied to 2,5-3.0 MeV within the scope
÷.	¢	of the broad Resolution Requirements of $\Delta E = 500$ keV.
		Status:
I.		ANL-Data to 3.0 MeV and work to 4.0 MeV in
· · · ·		progress. (Smith <u>et al</u> .)
		BCMN-Data to 5.5 MeV Coppola and Knitter ZP-232
		286, (1970).
445	518	Inelastics 0.010-10 MeV
		Replace old status with:
		BCMN-Data to 5.5 MeV, temp.
		Distributions, Zp-232 286 (1970).
		ANL-Work in progress to 4.0 MeV.
446	519	Emission 5-15 MeV
		Status:
		BCMN-Coppola and Knitter, Data to 5.5 MeV,
		ZP- <u>232</u> , 286 (1970).
463	538	94 ^{Pu²⁴⁰ Inelastics 1.5-10 MeV}
		Revised status:
		ANL-Smith et al., Data to 1.5 MeV,
		(NS+E 47 19, 1971), work planned to higher
ι.		energies.

NCSAC-35 No.	DIST. No.	Request Statement
341	437	$92^{U^{233}}$ Nu-bar th - 30 keV
	· .	Add to status:
	·. ·	AWRE-Mather <u>et al</u> ., Review of U ²³³ data to 4.0 MeV,EANDC(UK)49S
362	438	Nu-bar 30 keV-3 MeV
	· . · ·	See status of #437, above.
New	441	Nu-bar 7-20 MeV
	•	Status-Quo.
380	452	92 ^{U²³⁴ Nu-bar 0.5-20 MeV}
· · · ·		Status-Quo.
395	467	$92^{U^{235}}$ Nu-bar th - 3 MeV
		Add to status:
•	•	AWRE-Mather <u>et</u> <u>al</u> . Review AWRE-0-55/71.
396	468	Fission Neuts. th - 3 MeV
	аны — н Х	Note: Reg. Com. does not make sense.
		Status:
۰.		(Delete old one)
	а • •	IAEA-Consults meeting proceedings to be
		published. Sweden-Holmqvist et al.,
		to be published, data to E_n '> 10. MeV
	•	BCMN-Knitter et al., Detailed results for
		$E_{in} = 40 \text{ keV}.$
397	470	Delayed Neuts. th - 5 MeV
	n iki seri Alamatika	Replace ANL in status with ANL-Cox, work in progress Also add AERE-See review of Tomlinson, AERE-6993

Table III. Review of Nu-bar and Fission Neutron Requests.

NCSAC-35	DIST. No.	Request Statement
		92 ^{U²³⁵ (Contd.)}
New	471	Delayed Neuts. 5-14 MeV
		Add to status:
۰ ۰	ý.	AERE-See review of Tomlinson, AERE-6993.
407	480	92 ^{U²³⁶ Nu-bar 0.5-14 MeV}
		Change status to:
		Sweden-Conde <u>et al</u> . Results to 7.0 MeV, EANDC
		(or) 105, to be published in J. Nucl.
		Energy.
New	481	Fis. Spect. > Thr
		Status-Quo.
419	494	92 ^{U²³⁸ Nu-bar 1-10 MeV}
		Status-Quo.
New	495	Delayed Neuts. 5-14 MeV
		Add to status:
		ANL-Cox, work in progress.
420	496	Delayed Neuts. Thr - 5 MeV
		Add to status:
,		ANL-Cox, work in progress.
437	512	94 ^{Pu²³⁸ Nu-bar 0.01-15 MeV}
÷	· .	Status-Quo.
452	525	94^{Pu}^{239} Nu-bar th - 10 MeV
-		Add to status:
		RPI-Block et al., studying resonance region.
•		AWRE-See review of Mather <u>et al</u> .

.

NCSAC-35	DIST.	Request Statement
		Du ²³⁹ (Suntil)
		94 ^{Pu} (Conta.)
453	526	Delayed Neuts. th - 5 MeV
		Add to status;
		ANL-Cox, working on problem.
		AERE-See Tomlinson review AERE-6993.
New	527	Delayed Neuts. 3-14 MeV
		Add to status:
		ANL-Cox, working on problem.
	·	AERE-See Tomlinson review, AERE-6993
466	541	94^{Pu}^{240} Nu-bar Thr - 10 MeV
		Status-Quo.
New	542	Delayed Neuts. 0.7 - 14 MeV
		Delete old Diven status.
	,	Add:
		ANL-Cox, studying problem.
476	550	94 ^{Pu²⁴¹ Nu-bar 0.001-10 MeV}
		Status-Quo.
477	551	Nu-bar 0.5-14 MeV
		Status-Quo.
481	555	Delayed Neuts. th - 14 MeV
		Add to status:
		ANL-Cox, May measure at lower energies.
486	558	94 ^{Pu²⁴² Nu-bar 0.5-10 MeV}

Status-Quo.

· · ·

NCSAC-35	DIST.	·
No.	No.	Request Statement
	, , , , , , , , , , , , , , , , , , ,	94 ^{Pu²⁴² (Contd.)}
487	559	Nu-bar 0.5-14 MeV
		Status-Quo.
488	560	Delayed Neuts. 3-14 MeV
		Status-Quo.
535	603	98 ^{Cf²⁵² Nu-bar Spon.}
		Add to status:
		ANL-DeVolpi final value = 3.729 ± 0.015.
535	604	Nu-bar Spon.
		Drop request and add Alter to #603, above.
		Request is redundant.
New	605	Fis. Spec. Spon.
		Add to status:

NBS-Grundl has new threshold-index values.

REPORT OF THE USNDC SUBCOMMITTEE ON FISSION

M. S. Moore, Chairman

C.	D.	Bowman	R.	W. Hockenbury
W.	G.	Davey	Ε.	Melkonian
G.	de	Saussure	Ј.	A. Grundl
			•	

A review of current status of requests for nuclear data measurements on fissionable materials has been carried out: Preliminary, updated status comments are enclosed as Table I. In accordance with the ground rules for status comments to be included in the Request Compilation, comments relating to published data which will be referenced in CINDA are deleted, and only work planned or in progress is referenced.

While the status comments reflect primarily U.S. effort, some attempt has been made to include comments on measurements being carried on outside the U.S. These are often neither complete nor up to date, since the documentation used is not always current or complete. In general, those documents with limited distribution are not referenced in the status comments. In constructing the present report, the following documents were found to be useful:

- 1. "Current and Planned Fission Measurements in the U.S.," USNDC Report Submitted June 23, 1972, by C. D. Bowman. (Limited Distribution)
- "Experimental Neutron Cross Section Status Survey for the Heavy Actinides - the ²⁵²Cf Chain," DPST-72-426, July 21, 1972, by R. W. Benjamin. (Private Communication)
- 3. "Report to the AEC Nuclear Cross Sections Advisory Committee," and Reports to the U.S. Nuclear Data Committee," NCSAC-42, USNDC-1, USNDC-3, November 1971, May 1972, October 1972, respectively; Compiled by H. E. Jackson.

- "Status of the Energy Dependent V Values for the Heavy Isotopes (Z≥90) from Thermal to 15 MeV, and of V Values for Spontaneous Fission," INDC-(NDS)-34/G, July 1972, by F. Manero, V. A. Konshin. (Limited Distribution)
- 5. "UK Nuclear Data Progress Report, Mid 1971-March 1972," EANDC(UK)140 AL, INDC(UK)15G, June 1972, by M. G. Sowerby. (Limited Distribution)
- 6. "Progress Report on Nuclear Data Research in the Euratom Community," May 1972, EANDC(E)150/U. Unfortunately, this report includes no contributions from the Federal Republic of Germany, such as Munich, Julich, Kiel, or Karlsruhe.
- 7. "Compilation of Fission Product Yields, Vallecitos Nuclear Center 1972," NEDO-12154, January 1972, by M. E. Meek and B. F. Rider.
- "Experimental Neutron Cross Section Status Survey for the Heavy Actinides the ²³⁸Pu Chains," DPST-72-470, by R. W. Benjamin, September 8, 1972. (Private Communication)

Table I.Status Comments, Involving Active and PlannedWork Relating to the U. S. Request List.

$358 = {}^{233}$ U(n,f) 0.001 eV-1 keV

- LLL Behrens⁺ have measurements in progress above 0.01 eV, see NCSAC-42.
- BCMN Deruytter⁺, relative to ¹⁰B, from 0.01-45 eV, in progress. EANDC(E)150/U
- SAC Blons, NSE, to be published, data at LN temperature.

$359 = \frac{233}{0} U(n, f) 1 - 30 \text{ keV}$

- LLL Behrens⁺ have measurements in progress; NCSAC-42.
- RPI Block[†] plan measurements

SAC Blons, NSE, to be published, data at LN temperature

- $360 = \frac{233}{3}$ U(n,f) 1 keV-15 MeV, rel. to $\frac{235}{3}$ U
 - LLL Behrens⁺ have measurements in progress; NCSAC-42.
 - RPI Block⁺ plan measurements below 200 keV.
 - ANL Poenitz⁺ have measurements in progress, 150 keV-3.5 MeV.
- - RPI Reed have measurements in progress, thermal to 200 eV and 24 keV.
- 362 ^{2 3 3}U V 30 keV-3 MeV
 - AUA Walsh⁺ JNE <u>25</u>, 321, find evidence for structure (~2 per) below 1 MeV.
 - LLL Howe⁺ plan measurements; NCSAC-42.

363 ²³³U alpha 0.001 eV-1 keV

No active work. Data of Weston⁺, NSE 42, 143, have estimated uncertainties in eta of 1/2 per below $\overline{0.2}$ eV up to 1 per at 1 eV. The 2 per discrepancy with older data of Smith⁺ at 0.15 eV appears to be resolved; see INC Smith⁺ NCSAC-53, p. 87. Data of Weston⁺ NSE 34, 1, below 2 keV give est. uncertainty of ~2 per integral eta.

364 ²³³U alpha 1 keV-3 MeV

No active work.

365 ²³³U \overline{v} prompt 7-20 MeV

LLL llowe[†] plan measurements to 15 MeV; NCSAC-42.

367 ²³³U res. param. Th-5 keV

- COL Felvinci⁺ have analysis in progress, USNDC-1.
- LASL Keyworth⁺ have measurements of J,K in progress at ORELA.
- SAC Blons⁺, single-level analysis completed to 100 eV, 100-150 eV in progress, EANDC(E)150/U

370	²³³ U	Fiss.	prod.	Υ.	of	¹³⁵ Xe,	Th
371	²³³ U	Fiss.	prod.	Υ.	of	¹³⁷ Cs,	Th
372	²³³ U	Fiss.	prod.	Υ.	of	¹⁴⁷ Nd,	Th
373	^{2 3 3} U	Fiss.	prod.	Υ.	of	¹⁴⁹ Sm,	Th

GE Meek and Rider compilation summarizes status; NEDO-12154.

380 234U V prompt 0.5-20 MeV

No active work.

- $387 \quad {}^{235}U(n,f) \quad 1 \quad eV-1 \quad keV$
 - LLL Czirr⁺ have measurements in progress rel. to Li(n,a); NCSAC-42.
 - BCMN Theobold⁺ in progress, to 2 keV; EANDC(E)150/U.
 - BCMN Deruytter⁺ in progress, rel. to ¹⁰B, EANDC(E)150/U.
 - SAC Blons⁺, NSE, to be published.

388 ²³⁵U(n,f) 1 eV-10 MeV at isolated values

- LLL Czirr⁺ have linac measurements in progress, NCSAC-42, covering this range.
- ANL Poenitz⁺ have completed measurements, 30, 150, 500 keV.

389 390 391	²³⁵ U(n, ²³⁵ U(n, ²³⁵ U(n,	f) 1 keV-14 MeV f) 10 keV-15 MeV f) 1 keV-14 MeV rel. to H, ¹⁰ B	
	IASL	Barton ⁺ have measurements in progress, 1.5-7 MeV, and plan measurements 6-15 MeV.	
	LLL	Czirr ⁺ have measurements in progress, rel. to H above 50 keV, rel. to ⁶ Li(n,ā) below 100 keV.	
	ANL	Poenitz ⁺ have completed measurements rel. to ⁶ Li(n, \overline{a}), 30-150 keV; rel. to ¹⁹⁷ Au(n, \overline{g}), at 30, 150, 500 keV; rel. to Grey neutron detector above 150 keV; rel. to Black neutron detector 2-5 MeV; absolute (⁵¹ Cr)500-650 keV. Absolute points at 500, 966 keV planned or in progress.	
	ORNL	Gwin ⁺ , rel. to ¹⁰ B to 200 keV, find agreement with Lemley ⁺ data to ~ 2 per.	
	ORNL	de Saussure ⁺ have measurements in progress rel. to ${}^{10}B(n,\overline{a})$ and ${}^{6}Li(n,\overline{a})$ up to 1.5 MeV.	
	ORNL	Peele ⁺ , measurements rel. to H planned, to 15 MeV, USNDC-3.	
	ORVL	de Saussure ⁺ have measurements in progress rel. to ${}^{10}B(n,\overline{a})$ up to 1.5 MeV; measurements rel. to H planned, to 15 MeV.	
	AERE	Gayther ⁺ have measurements in progress, 1 keV-1 MeV to <5%.	
	BCMN	Deruytter ⁺ to 100 keV, rel. to ¹⁰ B, EANDC(E)150/U.	
	CEA	Szabo finds older results should be renormalized downward by 2-4 por FANDC(E)150/U.	
392	²³⁵ U eta Th-50 keV		
	No acti	ve work; however, see alpha, nubar.	
<u>393</u>	²³⁵ U al	pha 0.001 eV to 7 MeV	
	ORNI.	de Saussure, to 100 keV, in progress, USNDC-1.	
	0.45		

 $394 \xrightarrow{2.3.5} U(n, f)$ and (n, \overline{g}) at $77^{\circ}K$, Th-1 keV

and the set of

· .

· .

SAC Blons, NSE, to be published

۰.

14 - 14 A

1

- $395 \frac{235}{\sqrt{2}} \sqrt{\sqrt{2}}$ Th-3 MeV
 - RPI Reed⁺ have measurements in progress, thermal to 200 eV and 24 keV.
 - LLL Howe have measurements in progress, NCSAC-42, see also USNDC-3.

ORNL Peele⁺ plan measurements to 1.5 MeV.

- 396 ²³⁵U Fission Neutron Y. Th-3 MeV
 - ANL Smith⁺ have measurements in progress below 1.6 MeV.
 - AERE Rose⁺ find evidence for nonlinearity above 6 MeV, at $E_n = 130$ keV.
 - LASL Auchampaugh⁺ have verified spectrum linearity to 12 MeV at $E_n = 1.85$ MeV, USNDC-3.
 - CEA Abramson⁺ have data to be analyzed at $E_n = 8-50$ keV, EANDC(E)150/U.
- 397 ²³⁵U Delaved Neutron Y. Th-5 MeV

LASL Evans⁺ report corrected data, USNDC-3.

ANL Cox, work in progress.

New ²³⁵U Delayed Neutron Y. 5-14 MeV

ANL Cox, work in progress.

- 400 ²³⁵U Res. Par. Th-200 eV
 - CRNL de Saussure⁺ to 60 eV, plan to extend to 200 eV, USNDC-1.
 - LASL Keyworth⁺ measuring J,K in progress, USNDC-3.
 - ANC Smith⁺ in progress, single- vs multi-level comparison studies, USNDC-1.
 - COL Felvinci⁺ in progress, NCSAC-42.

SAC Blons⁺ in progress, EANDC(E)150/U, to 150 eV.

 235 U Fiss. prod. Y. of 135 Xe, Th 235 U Fiss. prod. Y. of 137 Cs, Th 235 U Fiss. Prod. Y. of 149 Sm, Th 235 U Fiss. prod. Y. of 149 Sm, Th

GE

Meek and Rider compilation summarizes status, NEDO-12154

407 $^{236}U\overline{v}$ prompt

Data of Conde and Holmberg, JNE 25, 331 (1971), extend from 0.8-6.7 MeV, quoted accuracy <2 per.

New ²³⁶U Fission spect., at one point above threshold

BCMN/ CNEN Coppola have data at 1.5, 1.9, 2.3 MeV, to be analyzed, EANDC(E)150/U.

New ²³⁶U Delayed Neutron Y. 3, 14 MeV

None

408 ²³⁶U RI to 10%

No active work. Existing measurements agree to within requested accuracy.

409 $^{235}U(n,\gamma)$ Th-1 keV

BCMN Rohr⁺, in progress to 3 keV, rad widths reported by Carlson⁺ NP A141, 577, have accuracy within 10 per.

- 410 237 U(n,f) 100 eV-16 MeV
- LASL McNally⁺ to 1.8 MeV, to be published; see LA-4420. Accuracy requested not met.
- 411 ²³⁷U Destruction of Target 1 keV-15 MeV
 - LASL McNally⁺ have fission data to 1.8 MeV, LA-4420.
 - LASL Barr⁺ have critical assembly core and reflector integral fission measurements.
- 417 ²³⁸U Fission ratio to ²³⁵U, 500 keV-15 MeV
 - ANL Meadows⁺ have data to 5.3 MeV, to be published. See USNDC-1.
 - ANL Poenitz⁺ have points at 2, 2.5, 3 MeV, with quoted accuracy ~2 per. USNDC-1.

LLL Behrens⁺ have measurements in progress, NCSAC-42.

418 ²³³U Fission ratio to ²³⁹Pu 500 keV-14 MeV

ANL work planned.

419 ²³⁸U v 1-10 MeV

LLL Howe have measurements in progress.

New ²³⁸U Delayed Neutron Yield 5-14 MeV

ANL Cox⁺, work in progress.

LASL Evans⁺ have recorrected older work, see USNDC-3, NSE to be published.

420 ²³⁹U Delayed Neutron Yield, P(En') Th-5 MeV

ANL Cox planning work.

- $424 = {}^{238}U(n,\gamma) \text{ wrt } {}^{235}U(n,f) \text{ or } {}^{239}Pu(n,f) 10 \text{ keV-10 MeV}$
 - ORNL de Saussure⁺ have measurements rel. to ²³⁵U and ⁶Li in progress to 100 keV, plan to extend to 800 keV.
 - LLL Czirr⁺ plan measurements rel. to ²³⁵U to 1 MeV, USNDC-1.
- 429 $2^{37}N_{p}(n,f)$ 1 keV-5 MeV

NBS Bowman⁺ plan measurements rel. to U(n,f) to 2 MeV.

430 ²³⁷Np(n,f) 20 eV-15 MeV

NBS Bowman⁺ plan measurements 10 keV-2 MeV.

435 ²³⁸Pu(n,f) 1-10 MeV

LASL Silbert⁺ data to be published Phys. Rev., see USNDC-3.

436 ²³⁸Pu(n,f) 10 keV-5 MeV

None that satisfy accuracy requirements.

438 ²³⁸Pu v prompt

LLL 1 Howe have measurements in progress, see NCSAC-42.

439 238 Pu(n, γ) Th-10 MeV

LASL Silbert⁺ data to be published Phys. Rev., 18 eV-200 keV, see USNDC-3.

- 441 $^{2.38}$ Pu(n, γ) 0.1-300 keV
 - LASL Silbert⁺ to be published Phys. Rev., to 200 keV, see USNDC-3.
- 443 ²³⁸Pu Destruction of Target 1 keV-15 MeV
 - LASL Silbert⁺ capture and fission data to be published Phys. Rev., see USNDC-3.
- 449 ²³⁹Pu(n,f) Th-1 keV
 - LLL Behrens[†] have measurements in progress, NCSAC-42.

RPI Block⁺ plan measurement rel. to ²³⁵U, Th and 24 keV.

BCMN Theobold^{\dagger} in progress to 2 keV, EANDC(E) 150/U.

SAC Blons, NSE, to be published.

- 450 ²³⁹Pu(n,f) 1 eV-10 MeV
 - LLL Behrens⁺ have measurements in progress, NCSAC-42.

ORNL Gwin⁺ to 1.5 MeV, in progress, see NCSAC-42.

- ANL Poenitz⁺, 0.15-5 MeV rel. to ²³⁵U in progress.
- NBS Bowman⁺ plan measurements 0.1-2 MeV.
- RPI Block⁺ have measurements in progress, 1-200 keV.
- AERE Gayther⁺ have measurements in progress, show agreement with evaluation by Sowerby⁺ AEREM 2497, to 5 per.
- SAC Blons, NSE, to be published, to 30 keV.
- ORNL Peele⁺, rel. to H, ¹⁰B, and ²³⁵U, plan measurements to 15 MeV, USNDC-3.

451 ²³⁹Pu Fission ratio wrt ²³⁵U 10 keV-15 MeV

	NBS	Bowman ⁺ plan measurements 0.1-2 MeV, 2-5 per.						
	ANL	Poenitz ⁺ in progress 0.15-3 MeV, 1 per.						
	LLL	Behrens ⁺ in progress, expect 2 per, see NCSAC-42.						
	ORNL	Gwin ⁺ in progress to 1.5 MeV, expect 2 per, see NCSAC-42, USNDC-3.						
	RPI	Block ⁺ in progress to 200 keV, expect 1 per.						
CEA Szabo ⁺ have completed new measurements 17 keV-1 MeV, EANDC(E)150/U.								
	ORNL	Peele ⁺ plan measurements, USNDC-3.						
452	²³⁹ Pu v	Th-10 MeV						
	RPI	Reed+ plan measurements, Th-200 eV.						
	ORNL	Weston ⁺ in progress, Th-200 eV, plan to extend to 1.5 MeV.						
	LLL	Howe in progress rel. to \overline{v}^{252} Cf, see NCSAC-42.						
	SAC	Trochon and Ryabov find no evidence for spin correlation, EANDC(E)150/U.						
	AAEC	Boldeman and Walsh have data below 2 MeV, to be published.						
453	²³⁹ Pu D	elayed Neutron Yield 3-14 MeV						
	LASL	Evans ⁺ report recorrected older work, NSE, to be published, USNDC-3.						
	ANL	Cox, in progress.						
454	²³⁹ Pu et	ta Th-1 eV						
	No acti	ve work; however, see alpha and nubar.						
455	²³⁹ Pu a	lpha 100 eV-10 MeV						
	RPI	Block ⁺ plan measurements, 1-200 keV.						
458 459	²³⁹ Pu F 239Pu F 239Pu F	ission Product Yield of ¹³⁵ Xe at Thermal ission Product Yield of ¹³⁷ Cs at Thermal						

460 ²³⁹ Pu Fission Product Yield of ¹⁴⁷Nd at Thermal
 461 ²³⁹ Pu Fission Product Yield of ²⁴⁹ Sm at Thermal

GE

Meek and Rider compilation summarizes status, NEDO-12154.

.

į

464	²⁴⁰ Pu(r	n,f) 500 eV-10 MeV				
	LLL	Behrens ⁺ have measurements in progress, see NCSAC-42.				
•	ORNL	Weston ⁺ have measurements in progress to 250 keV.				
	AERE	Belcher ⁺ have measurements in progress rcl. to ²³⁵ U to 1 MeV.				
465	²⁴⁰ Pu I	Fission ratio to ^{2.35} U, 1 keV-15 MeV				
	LLL	Behrens ⁺ have measurements in progress, see NCSAC-42.				
	AERE	Belcher ⁺ have measurements in progress to 1 MeV.				
467	²⁴⁰ Pu Delayed Neutron Yield 750 keV-14 MeV					
	ANL	Cox will try, if sample is available.				
470	²⁴⁰ Pu a	alpha 150 keV-7 MeV				
	ORNL	Weston ⁺ have measurements in progress to 250 keV.				
474	^{2 4 1} Pu(r	n,f) Th-10 MeV				
	ORNL	Weston ⁺ in progress, rel. to ${}^{10}B(n,\alpha)$, to 200 keV.				
	LLL	Behrens ⁺ in progress, rel. to ²³⁵ U, NCSAC-42.				
	CEA	Szabo ⁺ have completed measurements 17 keV-1 MeV, EANDC(E)150/U.				
	SAC	Blons ⁺ report data taken at LN temperature to 30 keV, NSE, to be published.				
475	²⁴¹ Pu I	Fission ratio to ²³⁵ U 10 keV-15 MeV				
	LLL	Behrens ⁺ in progress, NCSAC-42.				
476	²⁴¹ Pu 7	<u>J 1 keV-10 MeV</u>				
	LLL	Howe ⁺ plan measurements above 10 keV, see NCSAC-42.				
477	241 Pu V	v prompt 500 keV-14 MeV				
	LLL	llowe ⁺ plan measurements, see NCSAC-42.				
478	241Pu(1	1,γ) Th-30 keV				
	ORN L	Weston ⁺ in progress.				

Ļ

479	²⁴¹ Pu	alpha 1 keV-2 MeV			
	ORNL	Weston ⁺ in progress to 250 keV.			
480	241 Pu R	es. Par. Th-400 eV			
	SAC	Blons ⁺ , least squares multilevel analysis in progress, EANDC(E)150/U.			
481	²⁴¹ Pu D	elayed Neutron Yield Th-14 MeV			
	ANL	Cox may attempt if sample is available.			
485	²⁴² Pu(n	,f) Th			
	None				
486	²⁴² Pu V	500 keV-10 MeV			
	None				
487	²⁴² Pu V	prompt 500 keV-14 MeV			
	None				
488	²⁴² Pu [clayed Neutron Yield 3,14 MeV			
	LASL	Evans ⁺ report recorrected older data, to be published NSE, see USNDC-3.			
489	²⁴² Pu(r	(γ) Th-7 MeV			
	RP I	Block ⁺ plan measurements 20 eV-30 keV.			
490	^{2 4 2} Pu(r	$(1,\gamma)$ 0.1-300 keV (Oct)			
	RPI	Block ⁺ plan measurements to 30 keV.			
	BCMN	Rohr ⁺ to 1 keV, in progress, EANDC(E)150/U.			
496	2^{2} Am (n, γ) Th-10 MeV				
	ORNL	de Saussure [†] in progress, to 250 keV.			
497	²⁴¹ Am(r	$(1,\gamma)$ 0.1-300 keV			
	ORNL	Weston [†] in progress, to 250 keV.			

56

499 242 Am(n,f) Th-10 keV

LLL Browne⁺ plan measurement, see NCSAC-42.

- $500 = {}^{2^{4}2}Am(n,\gamma)$ Th-10 MeV
 - No active work.
- 505 ²⁴³Cm Total Th-10 keV

No active work.

506 ²⁴³Cm(n,f) Th-100 keV

LASL Diven has data to be analyzed from Physics 8.

LLL Browne⁺ plan measurements, see NCSAC-42.

507 ²⁴³Cm(n,γ) Th-10 keV

No active work.

508 244Cm Total Th-10 keV

SRL Benjamin⁺ have data to be analyzed.

510 ²⁴⁴Cm(n,f) 10-100 keV

No active work in this energy region.

512 ²⁴⁴Cm(n, γ) Th-10 MeV

No active work.

513 ²⁴⁴Cm(n, γ) 0.1-300 keV

No active work.

- 514 ²⁴⁵Cm Total Th-10 keV No active work.
- 515 $\frac{2^{n+5}Cin(n,t)}{2^{n+1}Cin(n,t)}$ Th-100 keV

LLL Browne⁺ plan measurements, NCSAC-42.

516 245 Cm(n, γ) Th-10 keV

No active work.

518 246 Cm(n, f) 10-100 keV

No active work in this energy region.

 $519 ^{246}$ Cm(n, γ) Th-10 keV

No active work.

520 ²⁴⁷Cm total - Th-10 keV

No active work.

521 ²⁴⁷Cm(n,f) Th-100 keV

LLL Browne⁺ plan measurements, NCSAC-42.

522 ${}^{247}Cm(n,\gamma)$ Th-10 keV

No active work.

523 ²⁴⁸Cm total Th-10 keV

SRL Benjamin⁺ plan measurements at ORELA.

 $524 = {}^{248}Cm(n,f) = 10-100 \text{ keV}$

No active work in this energy region.

- 525 $\frac{248}{Cm}(n,\gamma)$ Th-10 eV
 - SRL Benjamin⁺ will try to infer from total cross section measured on ORELA.

• {

 $528 = {}^{249}Cf(n,f)$, 10-100 keV

- LASL Silbert has data to be published, see USNDC-3.
- LLL Browne⁺ plan measurements, NCSAC-42.

533 ²⁵²Cf(n,f) 10-100 keV

No active work.

5.38 ²⁵³Es(n,f) 10-100 keV

No active work in this energy region; see LASL, Silbert, USNDC-3.

541 ²⁵⁷Fm(n,f) 10-100 keV

No active work in this energy region.

REPORT OF THE USNDC SUBCOMMITTEE ON RESONANCE PARAMETERS, <u>RESONANCE INTEGRALS AND TOTAL CROSS SECTIONS</u> August 31, 1972

(R. Block, Chairman, A. Carlson, J. Farrell, W. Havens,

M. Kalos and O. Simpson)

This subcommittee was charged with the review of all requests involving the measurement of resonance parameters, resonance integrals, and total cross sections. A summary of the request type, number, number satisfied, and estimate of man-years of scientific effort required to complete these requests is contained in Table I. A total of 68 requests were reviewed, and to date 9 of these requests have been confirmed as satisfied by direct consultation with the requestor (or his delegated representative). The Estimated Scientific Man Years Required to Complete the Requests represents our best guess at what would be necessary to carry out these requests, assuming (as in the case of the transplutonic nuclei) that suitable samples can be provided. The lower limit represents the minimum time it would take to satisfy all or the bulk of the request, with today's facilities, while the upper limit is a much cruder estimate of the maximum time required. However, the (+) indicates that for some of the requests it is about impossible today to provide the required accuracy over the indicated energy range and that considerable more time will have to be spent to get the request satisfied. A typical request in this (+) category is Request Number 533 for the resonance parameters of ²³⁹Pu in the keV region; a large number of reasonably good measurements have already been made and a considerable amount of additional work will have to be expended to improve the status of these parameters. It is also not clear how many confirmation measurements will have to be carried out at different laboratories before the requestor is satisfied that his accuracy has been obtained; the estimated man years only represent a thorough measurement by one group at one laboratory.

The requests were reviewed in detail by the committee. The following questions were answered for each request: (i) Is the request satisfied? If so, the requester was contacted for his confirmation, (ii) Does the request make sense? Should it be modified? (iii) Can it be carried out with present day facilities, samples? (iv) How many scientific man-hours are needed to complete the request? (v) Is there any active work on the request? Specific comments upon the requests relating to these questions are contained in Tables II and III.

A few general comments can be made about our review. Most of the requests contained in Table II on Resonance Integrals and Resonance Parameters also appeared in the previous (January 1971) review of these requests by this committee. Since most of the comments pertinent at that time still apply today, these were generally not repeated in the comments in Table II. In fact, it is the opinion of the Chairman that many of these previous comments were never reviewed by the requester, since it appears that they have had little effect one-way-or-the-other on the current request list. Perhaps the personal contact between reviewer and requester this time will have a more tangible impact on updating requests. In the previous report we recommended that a dE/E facility be set up at at least two laboratories to carry out resonance integral measurements, and that for the most part existing U.S. pulsed accelerator and nuclear explosion facilities are adequate for the resonance energy measurements; this recommendation applies again for this review. Again, as for the previous report, we recommend that a task force type of approach be carried out when measurements of total, capture, resonance parameters, resonance integrals, etc. upon a particular set of isotopes have been requested (as in the case of Zr).

REQUEST TYPE	NUMBER OF REQUESTS				NUMBER OF REQUESTS SATISFIED OR WITHDRAWN	ESTIMATED SCIENTIFIC MAN- YEARS REQUIRED TO COMPLETE REQUESTS
	Priority I	Priority II	Priority III	Total		
Resonance Integral	12	4	0	16	3	15 to 22 (+)
Resonance Parameter (non-fissile)	11	5	0	16	0	24 to 38 (+)
Resonance Parameters (fissile)	2	5	0	7	0	16 to 32 (+)
J, T	1	3	2	6	0	11 to 20 (+)
Total Cross Section <u>TOTAL</u>	<u>15</u> 41	<u>7</u> 24	$\frac{1}{3}$	<u>23</u> 68	<u>6</u> 9	<u>16 to 34 (+)</u> 82 to 146(+)

TABLE I

TABLE II

RESONANCE INTEGRALS AND RESONANCE PARAMETERS

REQ. NO. 70 Na $(\Gamma_n \text{ and } \Gamma_v \text{ of } 3 \text{ keV res.})$

(i) Γ_n is already known to be better than 10%. The problem is in Γ_v .

(ii) BNL Chrien finds significantly different capture spectra at resonance and thermal energies which could lead to larger Γ_{y} than predicted by thermal capture cross section. (iii) COL Rahn+, USNDC-1(1972): Γ =388 eV, J=1, 1=0. (iv) ORNL Macklin and Allen, NCSAC-42(1971), pg. 185: report $\sigma(n, y)$ measurement.

REQ. NO. 128 Cr (capture RI)
 (i) KFK Beer+, KFK-1271, 117 (1971) have measured par. of 15 res in ⁵⁰Cr and 19 res. in ⁵²Cr.

REQ. NO. 131 53 Cr (Γ_{y})

(i) It is extremely doubtful that Γ will ever be determined for the resonances near 600 keV. (ii) KFK Müller and Rohr, NP Al64, 97 (1971), report J, Γ_n for 30 res. in ⁵³Cr from 17 to 250 keV. (iii) KFK Plan measurements on separated isotope.

REQ. NO. 154 Fe (capture RI)

(i) An accurate 0.0253 eV to 1 keV capture crosssection measurement would help in clearing up discrepancy between the calculated thermal capture cross section and the measured value. The shape of the capture cross section over this energy range should help in determining the effect of negative energy levels.

TABLE II(cont'd) Fe (Γ_n and Γ_γ) 57_{Fe} (Γ_n) REQ. NOS. (155 (160

COL Rahn+, NSE 47, 372 (1972): measured total cross (i)section-minima.

RPI Block+, USNDC-1(1972): measured total cross-(ii)section minima.

(iii) ORNL Harvey+, USNDC-1(1972): measured total crosssection minima.

(iv) ORNL Harvey+, measured transmission of separated isotopes and should obtain Γ_n 's.

REQ. NO. 156 $Fe(J,\pi)$ (i) No active work.

REQ. NO. 162 Co (res. par.) (i) LUCAS HTS. Bird+, AAEC/PR33, pg. 14(1970): T

REQ. NO. 168

168 58 Co (J, π) Unique determination of the spins and parities of : (i) all levels in 58 Co from 25 keV to 3 MeV is a very big job (if it is possible at all.) For many levels it is known that only a few values of J^{π} are possible. It may be worthwhile for the requestor to try various possible combinations in his calculations in order to determine the sensitivity of the calculations to the $J^{\boldsymbol{\Pi}}$ values. (ii) Xenoulis, NP A170, 369 (1971).

REQ. NO. 182 Ni (capture RI) KFK Ernst+, Proc. of Helsinki Meeting, Vol. 1, 633 (i) (1970), Γ of 14 resonances between 7 and 37 keV. (ii) RPI Hockenbury+, USNDC-1(1972), capture measurements on ⁶¹Ni. (iii) KFK Beer+, KFK 1271/3, parameters for 15 res. in 60 Ni, 13 res. in 62 Ni and 19 res. in 64 Ni.

REQ. NO. 188 ⁰¹Ni (Γ

(i) RPI Hockenbury+, USNDC-1(1972), capture measurements of separated isotope and will obtain Γ_{γ} and Γ_{n} ; will make transmission measurements to several hundred keV.

(i) ORNL Macklin has finished capture measurements from 2.5-500 keV. He is in the process of analyzing the data. Resonance parameters should be obtained up to \sim 100 keV for the even isotopes and \sim 25 keV for the odd isotopes.

(ii) ORNL Good is waiting for samples and will make a total measurement in the energy region of 0.5-500 keV. The total and capture data will be combined to yield the best set of resonance parameters, E_0 , Γ_n , and Γ_γ for the resolved resonances above 2.5 keV.

(iii) There are still bad discrepancies among the existing data sets for some of the levels below 2.5 keV. Capture and total measurements should be made covering these resonances.

(iv) A complete evaluation should be done incorporating all earlier measurements plus the new measurements at ORNL and the results submitted to ENDF/B.

(v) BNL Mughabghab, BAPS 17, 18AE17(1972) and USNDC-1
 (1972), deduced J for 7 resonances in ⁹¹Zr.

REQ. NOS. (230 Zr (capture RI) (248 90 (254 91 2r (" ") (256 92 2r (" ")

(260	⁹² Zr	(11	11)
(265	⁹⁴ Zr	(11	11)
(271	96 _{Zr}	(11	, H)

65

TABLE II(cont'd)

Requests 265 and 271 are satisfied. KAPL Fullmer Nuc. Sci. and Engr. <u>45</u>, 314 (1971) (i) (ii)for isotopes of 94 and 96. (iii) ORNL Macklin's capture and Good's total data will produce resonance parameters for levels above 2.5 keV. ⁹⁰Zr (J,[¬]) REQ. NO. 250 The evaluation by K. Way indicates that this re-(i) quest is essentially satisfied. Only a few levels are uncertain as to J^{T} . The requestor should perform calculations to see (ii)if these uncertain levels are significant. Ball, Phys. Rev. <u>C4</u>, 196 (1971). (iii) Glenn, NP A165, 533 (1971) (iv) ⁹¹Zr (J, m) REQ. NO. 256 This is an extremely difficult task. (i)The level spacing is very small. The requestor should decide if the maximum excitation energy could be lowered. (ii) Glenn, NP A165, 533 (1971). REQ. NO. 262 9^{2} Zr (J, π) (i) No active work. ⁹⁴Zr (J,π) REQ. NO. 267 (i) The spins and parities of the levels are fairly well known at lower excitation energies (up to ~2.6 MeV). The requestor should determine if the 4 MeV upper limit is necessary. (ii) Ball, Phys. Rev. <u>C4</u>, 196 (1971). REQ. NOS. (356 Gd (capture RI) $^{154}_{Gd}$ (Γ_n and Γ_γ) $^{155}_{Gd}$ (capture RI) (357 (359 ¹⁵⁵Gd (Γ_n and Γ_γ) (360 156_{Gd} (capture RI) (362

REQ. NOS. (363 (365) $156_{Gd}^{TABLE} II(cont'd)$ (365) $157_{Gd} (\Gamma_n \text{ and } \Gamma_\gamma)$ (366) $157_{Gd} (\Gamma_n \text{ and } \Gamma_\gamma)$ (368) $158_{Gd} (\Gamma_n \text{ and } \Gamma_\gamma)$ (369) $158_{Gd} (\Gamma_n \text{ and } \Gamma_\gamma)$ (370) $160_{Gd} (Capture \text{ RI})$ (371) $160_{Gd} (\Gamma_n \text{ and } \Gamma_\gamma)$

(i) COL Rahn+, NSE 48, 219(1972): Resonance capture integrals for 154 Gd, 158 Gd, 160 Gd.

(ii) COL USNDC-J(1972), Res. par. up to 1 keV for 154 Gd and to 10 keV for 158,160 Gd.

(iii) Req. No. 366: SAC Ribon (Ph.D. Thesis).

REQ. NO. 442 ²³³U (res. par.)

(i) If 10% accuracy on parameters is required, this does not make sense as multilevel parameters of fissile nuclei are not unique. It is, however, possible to obtain parameters which reproduce the observed cross section to 10%.

(ii) Keyworth will measure spins at ORELA. Combining this data with cooled-sample cross-section data should give parameters to 100-190 eV with perhaps 10% accuracy. This is probably the best that can be done at present. (iii) It appears that average parameters could be obtained in the higher energy region by measuring the average cross sections as a function of sample thickness and temperature.

(iv) COL Rahn+, USNDC-1(1972), deduce parameters for 38 resonances.

REQ. NO. 474 ²³⁵U (res. par.)

(i) If 10% accuracy on parameters is required, this does not make sense as multilevel parameters of fissile nuclei are not unique. It is, however, possible to obtain parameters which reproduce the observed cross section to 10%.

TABLE II(cont'd)

(ii) Keyworth will measure spins at ORELA. Combining this data with cooled-sample cross-section data should give parameters to 100-190 eV with perhaps 10% accuracy. This is probably the best that can be done at present. (iii) LASL Keyworth+, NCSAC-42(1971) will measure spins by polarization to ~100 eV at ORELA. (iv) BNL Chrien+, NCSAC-42(1971), deduced J,π for 7 resonances.

REQ. NO. 483 ²³⁶U (RI)

(i) Request satisfied

(ii) GEEL Theobald+, NP A181, 639 (1972), deduced Γ_{f} for 16 resonances below 415 eV.

REQ. NO. 502 ²³⁸U (res. par.)

(i) There is a vast amount of data available (especially with recent Columbia measurements). Additional measurements seem pointless unless significant improvements can be made.

(ii) Perhaps this request is now as satisfied as it is likely to be for some time.

(iii) COL Rahn+, NCSAC-42(1971) and USNDC-1(1972)

Trans. and self-indication measurements.

REQ. NO. 533 ²³⁹Pu (res. par.)

(i) The Saclay data are probably as good as can be obtained with current techniques. There appears to be no point in repeating the considerable amount of work for a slight improvement of the parameters.

REQ. NO. 546 ²⁴⁰Pu (res. par.)

(i) Apparently satisfied by recent RPI results and renormalized Geel results.

(ii) RPI Hockenbury+, NSE (1972); capture, fission and total measurements to 30 keV. Deduced res. par. for 35 resonances below 500 eV.

TABLE II(cont'd)

(iii) Geel Weigmann (private communication), renormalized their data to revised Harwell results and are now in agreement with RPI T results.

(iv) ORNL Weston (private communication), measured capture in 240 Pu and is in agreement with RPI results.

REQ. NO. 554 ²⁴¹Pu (res. par.)

(i) Accuracy of 5% does not seem possible, especially need 400 eV.
(ii) Need to assign spins before it will be possible to

do much better than currently available data. Even if this is done, the multilevel fits are not unique.

REQ. NO. 574 ²⁴²Cm (res. par.)

(i) Suitable samples can probably be obtained.
(ii) Sample is rather hot for present day accelerators, but perhaps measurement could be done. A measurement could be done easily with a bomb shot, but none are planned at present.

TABLE IIITOTAL CROSS-SECTION REQUESTS

¹H (total) REQ. NO. 1 (i) Probably satisfied (see USNDC Standards Subcommittee Report, Aug. 8, 1972). ³He (total) REQ. NO. 6 (i) RPI/LASL Stoler and Seagraves: have data from 0.7 to 30 MeV. (ii) Validity of this request is questionable (see USNDC Standards Subcommittee Report, Aug. 8, 1972). ⁶Li (total) REQ. NO. 10 (i) RPI Goulding+, USNDC-1, pg. 572, (1972): have data from 0.7 to 30 MeV. (ii) Request withdrawn. REQ. NO. 21 ⁷Li (total) (i) Request withdrawn. REQ. NO. 34 10 B (total) (i) No active work. REQ. NO. 65 Na (total) (i) No active work. REQ. NO. 116 Cr (total) (i) No active work. REQ. NO. 134 Fe (total) (i) COL Rahn+, NSE <u>47</u>, 372, (1972) Measured trans-mission of thick samples (to obtain data near crosssection minima).

TABLE III (cont'd)

(ii) RPI Alfieri+, USNDC-1, pg. 178, (1972) Measured transmission of thick samples (to obtain data near cross-section minima).
(iii) ORNL Harvey+, NCSAC-42, pg. 183, (1971) Measured transmission of thick samples (to obtain data near cross-section minima).

- REQ. NO. 169 Ni (total) (i) No active work.
- REQ. NO. 211 ⁸³Kr (total) (i) No active work.
- REQ. NO. 243 ⁹⁰Zr (total) (i) No active work.
- REQ. NO. 479 ²³⁶U (total) (i) Request satisfied.
- REQ. NO. 564 ²⁴¹Am (total) (i) No active work.
- REQ. NO. 568 ²⁴²Am (total) (i) No active work.

REQ. NO. 571 243 (i) Request satisfied. (ii) ANC Simpson+, ANCR 1060 (Feb. 1972), meas. trans. from 0.5 to 1000 eV.
REQ. NO. 575 (i) INC Berreth+, BNL-50298 (1971), meas. trans. and deduced res. par.

REQ. NO. 578 (i) Request satisfied. (ii) ANC Simpson+, meas. trans.

REQ. NO. 583 ²⁴⁵Cm (total) (i) LLL Bowman and ORNL Dobbs plan to make meas. (probably fission)

REQ. NO. 586 246Cm (total)
(i) LASL Moore+, Phys. Rev. C3, 1656 (1971), report
res. par. above 20 eV.

REQ. NO. 589 ²⁴⁷Cm (total) (i) LLL Bowman plans to make meas. (probably fission)

REQ. NO. 592 ²⁴⁸Cm (total) (i) ORNL Halperin plans to make integral meas. (ii) SRL MacMurdo, has data on capture integral. (iii) SRL/ORNL Benjamin+, plan to make res. energy meas. (iv) SRL/ORNL Benjamin+, NSE 47, 203 (1972), meas. thermal and res. int. fission.

REQ. NO. 595 ²⁴⁹BK (total) (i) LLL Bowman plans to make meas. (probably fission)

REQ. NO. 598 ²⁵⁰Cf (total) (i) ORNL Halperin, ORNL 4706, has res. int. data.

REPORT OF THE USNDC SUBCOMMITTEE ON TOTAL CAPTURE CROSS SECTIONS

Status Comments

R. L. Macklin, ORNL, Chairman
R. C. Block, RPI
M. P. Fricke, GRT
W. Poenitz, ANL
J. B. Czirr, LLL

Revised November 14, 1972

New Request	01d NCSAC-35	Target	Status
32	24	4Be	See CINDA
62	52	9F	Nystroem PS <u>4</u> , 95-99, 1971
77		13A1	Macklin data above 2.5 keV, Nystroem PS <u>4</u> , 95-99, 1971
87	67	14Si30	See CINDA
88	68	16S34	See CINDA
90	70	19K41	Stet
9 5	75	20Ca44	Macklin data above 2.5 keV
97	77	21Sc	See CINDA
109		23V	See CINDA
110	86	23V	See CINDA
122	90	24Cr	See CINDA
123		24Cr	No News
132	9 5	25Mn55	See CINDA
143	-	26Fe	See CINDA, Kenny AUJ <u>24</u> , 805 (1972), Moxon plans
144	~	26Fe	No News
157	107	26Fe54	See CINDA, KFK Ernst+, Kenny AUJ <u>24</u> , 805 (1972), RPI Hockenbury+, USNDC-1 (1972): have capture data from 0.1 to 200 keV on separated isotope (no data given).
161	111	26Fe58	See CINDA, Hockenbury+, USNDC-1 (1972): have capture data from 0.1 to 200 keV on separated isotope (no data given), Beer-KFK plans.

New <u>Request</u>	01d NCSAC-35	Target	Status
163	113	27Co	No News
164	114	27Co	See CINDA, Elgart OA-328 (NTU-pile act), Beer- KFK plans
166		*27Co58	See CINDA
167		*27Co58	See CINDA
176		28Ni	No News
192		29Cu	See CINDA Supp.
198	128	29Cu63	Stet
199	129	29Cu63	Macklin data above 2.5 MeV
202	132	29Cu65	Stet
205		30Zn64	See CINDA
212	142	36Kr83	See CINDA
214	144	*37Rb83	No News
217	147	*37Rb84	No News
228	155	40Zr	See CINDA, Poenitz, Czirr (USNDC-1, 8 & 94), ANL Poenitz, measurements, 400-1500 keV started
229		40Zr	No News
238	160	*40Zr88	See CINDA Supp.
241	163	*40Zr89	See CINDA Supp.
268	196	*40Zr95	See CINDA Supp.
270	200	40Zr96	.020 <u>+</u> .003 B NSE <u>46</u> , 312 (1971)
278	207	41Nb	Data Harlow+; Poenitz; plans Macklin
288	211	*41Nb91	No News
291	214	*41Nb92	No News
293	216	*41Nb93	No News
294	218	*41Nb95	See CINDA
300	222	42Mo	See CINDA, data Weigmann; Macklin; ANL Poenitz measurements started 400-1500 keV

New <u>Request</u>	01d NCSAC-35	Target	Status
301		42Mo	See CINDA
309	225	*42Mo99	See CINDA Supp.
310	226	*44Ru103	See CINDA Supp.
311	227	45Rh	See CINDA, Carlson, Glass+ data
312	228	*45Rh105	See CINDA & Supp.
313	229	*46Pd107	See CINDA Supp.
314	230	47Ag109	See CINDA Supp.
315	231	*52Te127	No News
316	232	*52Te132	See CINDA Supp.
317	233	*531133	See CINDA Supp.
318	234	54Xe131	See CINDA Supp.
319	235	*54Xe133	See CINDA Supp.
320	236 [.]	*54Xe135	See CINDA Supp.
322	238	55Cs	See CINDA & Supp.
323	239	55Cs.	See CINDA & Supp.
324	240	60Nd143	Add Macklin data
325	241	60Nd145	Add Macklin data
326	243	*60Nd147	See CINDA Supp.
327	244	*61Pm147	See CINDA Supp.; Harker (USNDC-1, 1) 1972
328	245	*61Pm148	Stet
329	246	*61Pm148	See CINDA, Pile activation
330	247	*61Pm149	See CINDA
331	248	*61Pm151	See CINDA
332	250	62Sm150	See CINDA Supp.
333	251	*62Sm151	See CINDA Supp.
334	253	62Sm152	See CINDA Supp.; Harker (USNDC-1, 1) 1972
335	254	*62Sm153	No News
336	255	63Eu	See CINDA

New <u>Request</u>	01d NCSAC-35	Target	Status
339	258	*63Eu148	See CINDA Supp.
341	260	*63Eu149	See CINDA Supp.
343	262	*63Eu150	See CINDA Supp.
345	264	63Eu151	See CINDA Supp.
346	265	63Eu151	See CINDA & Supp.
347	266	*63Eu152	See CINDA
348	267	63Eu153	See CINDA & Supp.
349	26 9	*63Eu154	See CINDA & Supp.
350	270	*63Eu154	See CINDA & Supp.
351	272	*63Eu155	See CINDA & Supp.
354	275	64Gd	See CINDA & Supp.
358	279	64Gd155	See CINDA & Supp.
361	282	64Gd156	See CINDA & Supp.
364	285	64Gd157	See CINDA & Supp.
367	288	64Gd158	See CINDA & Supp., Hacken (NCSAC-42, 61) 1972RI
372	293	66Dy	See CINDA & Supp., Slaughter data
375	298	*69Tm167	See CINDA Supp.
377	300	*69Tm168	See CINDA Supp.
379	302	69Tm	See CINDA & Supp., Czirr (USNDC-1, 94)
380	303	*69Tm170	See CINDA Supp., Miyano JPJ <u>31</u> , 1304 (1971)
381	304	*69Tm171	Stet
383	306	*71Lu173	See CINDA Supp.
385	308	*71Lu174	See CINDA Supp.
387	310	71Lu175	See CINDA & Supp., Hacken+ (NCSAC-42, 61) 1972
390	313	72Hf	See CINDA & Supp.
391	314	72H£174	See CINDA Supp.
392	315	72Hf176	See CINDA & Supp.

New <u>Request</u>	01d <u>NCSAC-35</u>	Target	Status
393	316	72H£177	See CINDA & Supp., Rohr data-Budapest Conf.
394	317	72Hf178	See CINDA & Supp.
395	318	72Hf179	See CINDA & Supp.
396	319	72Hf180	See CINDA & Supp.
398	321	73Ta	See CINDA & Supp.; ANL Poenitz, measurements in 400-1500 keV range started; Czirr+, Block+ (USNDC-1, 94 & 176) 1972, and paper to be pre- sented at ANS Topical Mtg., Kiamesha Lake, N.Y., Sept. 1972: determined capture cross section at ~24 keV (with filtered beam). Plan to extend
			to ~ 80 keV and above.
403	326	74W180	See CINDA & Supp.
405	328	74W182	See CINDA & Supp.; ANL plans; COL Camarda+, to be published in Phys. Rev. C (1972): measured trans. (& self indication) and determined resonance parameters
406	32 9	74W183	See CINDA & Supp.; ANL plans; COL Camarda+, to be published in Phys. Rev. C (1972): measured trans. (& self indication) and determined resonance parameters
407	330	74W184	See CINDA, ANL plans; COL Camarda+; to be pub- lished in Phys. Rev. C (1972): measured trans. (& self indication) and determined resonance parameters
408	331	74W184	See CINDA, ANL plans
410	333	74₩186	See CINDA & Supp.; ANL plans; COL Camarda+; to be published in Phys. Rev. C (1972): measured trans. (& self indication) and determined resonance parameters
411	334	760s186	See CINDA & Supp.
412	335	760s187	See CINDA & Supp.
413	336	79Au	See CINDA & Supp., Moxon; Froehner; Macklin data; Czirr (USNDC-1, 94); Moxon-revisions in progress, and new data; RPI Block+, USNDC-1 (1972) and paper to be presented at ANS Topical Mtg., Kiamesha Lake, N.Y., Sept. 1972: determined capture cross section at ~24 keV (with filtered beam), plan to extend to ~80 keV and above.
414	337	*81T1204	See CINDA
420	343	82Pb208	Allen+, preprint in preparation.

New <u>Request</u>	01d <u>NCSAC-35</u>	Target	Status
424	347	90Th	Stet, Moxon revisions in progress; ANL Poenitz, measurements, 200-2000 keV in '73
429	353	91Pa231	See CINDA & Supp.
430	354	* 9 1Pa233	See CINDA & Supp.
451	378	92 U234	See CINDA & Supp., RPI Block+, plan to make capture measurements
484	409	92U236	See CINDA & Supp., Rohr-Geel data
497	421	92U238	See CINDA & Supp., Block+, Czirr+ (USNDC-1, 176 and 94 resp.) 1972; Moxon revisions in progress, Beer-KFK data; Pearlstein-Harwell plans; Ryves, Nat. Phys. Lab., UK, measured in 150-650 keV range; ANL Poenitz, measurements in 400-1500 keV range started.
498	422	92U238	See CINDA & Supp., Czirr+ (USNDC-1, 94) 1972; Moxon revisions in progress and new data; Beer- KFK data; Pearlstein-Harwell plans; Ryves, Nat. Phys. Lab., UK, measured in 150-650 keV range; ANL Poenitz measurements in 400-1500 keV range started; RPI Block+, paper to be presented at ANS Topical Mtg., Kiamesha Lake, N.Y., Sept. 1972: determined capture cross section at ~24 keV (with filtered beam), plan to extend to ~80 keV and above.
500	424	92U238	Stet
506	431	93Np237	See CINDA & Supp.
507	432	*9 3Np238	See CINDA & Supp.
513	439	ر 94 Pu 238	See CINDA & Supp.
514	441	94Pu238	See CINDA & Supp.
543	468	94Pu240	See CINDA & Supp.; RPI Hockenbury+, accepted for publication in NSE: measured capture and fission cross section up to 30 keV, transmission up to \sim 1 keV and obtained resonance parameters.
544	469	94Pu240	See CINDA & Supp.; Froehner+ plans, Beer-KFK plans
552	478	94 Pu 241	See CINDA & Supp.; Smith+; Moat+ data
561	489	94 Pu 242	See CINDA & Supp.; James NP A123, 24; Beer-KFK plans; RPI Hockenbury+, capture measurements up to 30 keV are in progress

h

.

			79
New <u>Request</u>	01d NCSAC-35	Target	Status
562	490	94Pu242	See CINDA & Supp.; James NP <u>A123</u> , 24; Czirr (foil available, exp. planned); Beer-KFK plans; RPI Hockenbury+, capture measurements up to 30 keV are in progress.
566	496	95Am241	See CINDA & Supp.
567	497	95Am241	No News
570	500	95Am242	See CINDA
572	502	95Am243	See CINDA & Supp.
573	503	*96Cm242	See CINDA & Supp.
577	507	96Cm243	See CINDA & Supp.
581	512	96Cm244	See CINDA & Supp.; Berreth+ (NCSAC-42, 4) 1972 THR
582	513	96Cm244	See CINDA & Supp.
585	516	96Cm245	See CINDA & Supp.
588	519	96Cm246	See CINDA & Supp.
591	522	96Cm247	See CINDA & Supp.
594	525	96Cm248	See CINDA & Supp.
596	527	97Bk249	See CINDA & Supp.
600	531	98Cf250	See CINDA & Supp.
601	532	98Cf251	See CINDA & Supp.
606	536	98Cf252	See CINDA & Supp.
607	537	*98Cf253	See CINDA & Supp.

• •

•

REPORT OF THE USNDC SUBCOMMITTEE ON GAMMA RAY PRODUCTION

H. E. Jackson, Chairman R. E. Chrien H. T. Motz J. K. Dickens V. J. Orphan September 1972

The sub-committee on Gamma Ray Production has completed its review of the status of requests for gamma ray production measurements on stable nuclei contained in the current USNDC request compilation. Attached is a listing of the results of this review by individual request. For each entry the request number, appropriate target, request reviewer, and status comment is included. Also attached is a listing of the results of a review of requests for measurements requiring radioactive samples. In the area of gamma ray production progress since the last review of the request compilation (1970) has not been substantial. All of the requests for gamma ray production cross section contained in the previous compilation (NCSAC-35) have been carried over in the new request retrieval. Where thirty-six requests for gamma ray production data were considered in the previous review seventy-six requests are listed in the new tabulation. A large majority of these requests involve measurements for incident neutrons in the range of 1-15 MeV, and this energy region continues to be the area of greatest difficulty and most limited progress. In spite of the continuing shift in emphasis to requests for production cross sections at higher neutron energies, the national capability for meeting this need has at best remained a constant and most likely has diminished. In the USA at the present time, the only active programmatic efforts in the area of MeV gamma-ray production cross section are at ORELA (ORNL) and Gulf Radiation Technology.

Some progress has been made in the past several years in developing new techniques for measuring gamma-ray production cross sections. The use of white sources of neutrons (usually produced with a linac or cyclotron) and time-of-flight techniques allow $(n,x\gamma)$ cross sections to be measured continuously as a function of neutron energy

over a wide range in an efficient manner. This technique provides data in an important energy range, approximately 9-14 MeV where measurements with monoenergetic neutron sources are quite difficult because clean neutron sources from Van de Graaff accelerators are not generally available. The success of the linac technique in providing (n, xy) cross sections in the 9-14 MeV range may relieve the urgency for developing clear neutron sources at these higher energies. However, cases remain where measurements of angular distributions of resolved or discrete gamma rays from (n, xy) reactions are important. For these nuclei measurements with Van de Graaff and tandem facilities will likely be necessary. In addition the use of pulsed monoenergetic sources and time discrimination allows effective elimination of troublesome scattered neutron backgrounds from (n, xy) measurements. In this regard the committee wishes to affirm its earlier recommendation: a substantial research effort should be directed toward adapting the $T(p,n)^{2}$ He and D(d,n) He reactions as accurate and reliable sources of neutrons above 10 MeV and developing target collimation and shielding materials which will alleviate the severe backgrounds characteristic of their use. Substantial neutron backgrounds may continue to be the major failing of white source experiments on linacs at higher neutron energies, but efforts to determine the possibilities for linac experimentation with 10-20 MeV neutrons should be actively pursued.

The number of man-years of experimental effort required to meet GRP requests reviewed by the committee is difficult to assess because development of experimental techniques remains an important element. In addition to the study of appropriate sources of high energy neutrons considerable effort is currently focused on developing Ge(Li) detectors and associated methods of analysis as tools for measuring discrete and continuum gamma-ray spectra. For observation of discrete lines high resolution Ge(Li) systems are currently preferable, and their use in systematic studies of line intensities as a function of neutron energy will be necessary for relating observed production spectra to nuclear level

schemes and for developing calculational techniques for generating production spectra in the absence of experimental data. On the other hand at higher neutron energies line broadening impairs the usefulness of Ge(Li) systems. At these energies and also for those specific requests where spectral cross sections for broad energy groups are sufficient, NaI spectrometers may continue to provide a major portion of the information if proper care is taken in shielding and data analysis. If we assume ~1.0 man-years of effort per request and allow approximately 20 man-years of effort for development of experimental techniques outlined in this discussion, then approximately 90—100 man-years of experimental effort will be required to meet current cross section requests in the area of gamma-ray production.

Requests for Gamma-Ray Production Measurements

No. 9 Li	Reviewer-Dickens	(NCSAC-35 No. 9)
	Status — BYU + MIT, Rogers+, Trans. Am. Nucl. Soc	Integral $E_n = 5-10$ MeV, . 13, 864
	(Frankfurt), Presser+ Phys. A182, 321	Bass, $\mathbf{E}_{n} = 1-9$ MeV, Nucl.
No. 37 B-10	Reviewer-Orphan	('NCSAC-35 No. 29)
	Status—GRT, Friesenhahn+, C Accuracy 1.5% to 4.59 Harwell, Coates+ prel	Gulf-RT-A12210, 4 to 1000 keV, % iminary data from ~1-240 keV
No. 43 C	Reviewer-Dickens	(NCSAC-35 No. 35)
	Status – ORNL, Morgan+, E_g θ_g = 90, 125 deg ORNI	= 4.43 MeV E_{n} = 5-20 MeV L-TM-3702
No. 52 N	Reviewer-Dickens	(NCSAC-35 No. 42)
	Status — BYU + MIT, Rogers+, $E_g = 2.317 \text{ MeV}$, Tran ORNL, Dickens+, $\theta_g =$ in progress ORNL, Dickens+, $E_n =$ <u>40</u> , 346. Lund, Nyber <u>4</u> , 165.	Integral E = 5-10 MeV as. Am. Nucl. Soc. <u>13</u> , 864 = 125 deg E _n = 2-20 MeV = 8-11 MeV, Nucl. Sci. Eng. g+, E _n = 15 MeV, Phys. Scri.
No. 56 O	Reviewer-Dickens	(NCSAC-35 No. 46)
	Status – Lund, Nyberg+, $E_n = 1$ ORNL, Dickens+, $\theta_g =$ progress, also Nucl. So 11 MeV GRT, Orphan+, Nucl. 6.4-16.5 MeV	5 MeV, Phys. Scri. 4, 165 = 125 deg $E_n = 6 - 20$ MeV in ci. Eng. 40 283, $E_n = 6.7 - $ Sci. Eng. 42 352, $E_n = $
No. 71 Na	Reviewer-Chrien	
	Status — Unpublished data on 3 (Chrien), Harwell (Lyn Some differences betwe spectra are noted; mea required accuracy.	keV spectrum exist at BNL n), and ORNL (Slaughter). een resonance and capture ssurements may not be of
No. 81 Al	Reviewer-Orphan	(NCSAC-35 No. 62)
	Status — Strecher-Rasmussent, Orphant, GGA Report	NP A181, 225 GA-10248

۰,

Reviewer-Orphan

Status – GRT, Orphan+, Gulf-RT-A10743, Line + Continuum γ -rays, $E_n = 0.86-16.7 \text{ MeV}$ ORNL, Linac + NaI $E_n = 1 - 20$ MeV in progress Nyberg+, Physica Scripta 4, 165 (1971), $E_n = 15$ MeV Dickens, PR C5, 100 (1972), E = 3.53-9.0 MeV TNC, Buchanan+, ORO-2791-32, $E_n = 3.6-4.6$ MeV, 14.8 MeV Kravcov+, USSR, 72 Kiev, Gamma-Spectrum with Ge(Li) Young+, LASL, Complete Reeval., LA 4726

No. 82 A(

Reviewer-Orphan (NCSAC-35 No. 63)

Status -- GRT, Orphan+, Gulf-RT-A10743, Line + Continuum γ -rays, $E_n = 0.86 - 16.7 \text{ MeV}$ ORNL, Linac + NaI $E_n = 1 - 20 \text{ MeV}$ in progress Nyberg+, Physica Scripta 4, 154 (1971), $E_n = 15 \text{ MeV}$ Dickens, PR C5, 100 (1972), $E_n = 3.53 - 9.0 \text{ MeV}$ TNC, Buchanan+, ORO-2791-32, $E_n = 3.6 - 4.6 \text{ MeV}$, 14.8 MeV Kravcov+, USSR, 72 Kiev, Gamma-Spectrum with Ge(Li) Young+, LASL, Complete Reeval., LA 4726

No. 83 Al Reviewer-Orphan

Status — Stecher-Rasmussen+, NP A181, 225 No suitable data for non-thermal capture

No. 93 Ca Reviewer-Dickens (NCSAC-35 No. 73)

Status – ORNL, Dickens+, $E_n = 5.9$ MeV Conf-710301, 235 (Knoxville) ORNL, Dickens, $E_n = 4.8-8$ MeV, $\theta_g = 125$ deg., Nucl. Sci. Eng. <u>48</u>, 78

No. 98 Ti Reviewer-Dickens (NCSAC-35 No. 78)

Status-ORNL, Dickens, E = 5-6 MeV in progress

No.	99 Ti	Reviewer-Dickens	(NCSAC-35	No.	79)
110.	// 11	Reviewer Dickens	(1100M0-33	110.	- (7)

Status – ORNL, Dickens, $E_n = 5-6$ MeV in progress

	05
· ·	
No. 114 V	Reviewer-Dickens
· · · ·	Status – AWRE, Porter+, $E_n = .3-4$ MeV Ge(Li) Detector (n, n') gamma-ray data AWRE-0-78/70
No. 100 Ti	Reviewer- (NCSAC-35 No. 80)
· · · ·	Status—ORNL, Dickens, $E_n = 5-6$ MeV in progress
No. 115 V	Reviewer-Dickens
	Status—ORNL, Bird+, ORNL-TM-3379 $E_n = 20-60 \text{ keV}$
No. 126 Cr	Reviewer-Dickens
• •	Status – Tagesen + Hille, Öster Akad Wiss Math <u>174</u> , 85 spectrum for $\theta_{\gamma} = 90^{\circ} E_{\gamma} = 1-2 \text{ MeV}$
No. 127 Cr	Reviewer-Orphan
	Status — ANL, Thomas+, USNDC-1, 18 Orphan+, GGA Report GA-10248
No. 129 Cr	Reviewer-Orphan (NCSAC-35 No. 92)
	Status — Degtjarev+, IZV 35 2341, $E_n = 1.0-3.4 \text{ MeV}$
No. 130 Cr	Reviewer-Orphan (NCSAC-35 No. 93)
	Status — Degtjarev+, IZV 35 2341, $E_n = 1.0-3.4 \text{ MeV}$
No. 133 Mn	Reviewer-Chrien (NCSAC-35 No. 96)
	Status — Spectra for first four resonances known (Chrien, BNL). 2 keV capture spectrum from MTR, IN-1317, p. 116 (1970).
No. 148 Fe	Reviewer-Dickens
	Status - ORNL, Dickens+, E _n = .85-20 MeV ORNL-4798
No. 149 Fe	Reviewer-Chrien
	Status-keV capture work of Kenny Aust. J. Phys. 1961, 24, 805-19 Energy dependence of branching ratios known from thermal to 1 keV from BNL work, see BNL 12268

No. 151 Fe	Reviewer-Chrien	(NCSAC-35 No. 103)
t -	Status - No additional work be	yond that noted in status comments.
No. 152 Fe	Reviewer-Chrien	
¢	Status — Redundant request, co	overed by 149 and 151.
No. 153 Fe	Reviewer-Orphan	(NCSAC-35 No. 105)
	Status – GRT, Orphan+, Gulf- γ -rays, $E_n = 0.86-16$ ORNL, Dickens+, E_n 4798	RT-A10743, Line + Continuum 7 MeV = .85-20 MeV ORNL-
•. •	TNC, Buchanan+, OR Kravcov+, USSR, 72 P	D-2791-32, E _n = 14.8 MeV (iev, E _n = 14 MeV
No. 165 Co	Reviewer-Chrien	(NCSAC-35 No. 115)
· · ·	Status—Additional measureme	ents noted in CINDA 71 Suppl. 2.
No. 180 Ni	Reviewer-Motz	
	Status — ORNL Dickens+, NCS at 6 MeV, not yet rec ORNL Dickens+, priv NaI data at ORELA 4 E _n 7 keV to 20 MeV, MIT Rasmussen+, GA neutron capture spec	AC-42, p. 195, have Ge(Li) data luced. 7. comm., Aug. 7, 1972, have 7 m station; E_{γ} 0.7 to 10 MeV, not yet reduced. A-10248/DASA-2570, Thermal trum.
No. 181 Ni	Reviewer-Motz	
• .	Status — ORNL Dickenst, priv have NaI data at ORE to 10 MeV, E _n 7 keV MIT Rasmussent, G Thermal neutron cap	. comm., Aug. 7, 1972, LA 47 m station; E_{γ} 0.7 to 20 MeV, not yet reduced. A-10248/DASA-2570, ture spectrum
No. 183 Ni	Reviewer-Motz	(NCSAC-35 No. 122)
	Status — ORNL Dickens+, NCS data at 6 MeV, not ye ORNL Dickens+, priv data at ORELA 47 m to 20 MeV, not yet re	AC-42, p. 195, have Ge(Li) et reduced. 7. comm., Aug. 7, 1972 have NaI station; E_{γ} 0.7 to 10 MeV, E_n 7 keV educed.

	87	
No. 183 (cont	'd.) MIT Rasmussen+, GA neutron capture spectr	-10248/DASA-2570, the=mal um.
No. 184 Ni	Reviewer-Motz	(NCSAC-35 No. 123).
· · ·	Status — ORNL Dickens+, NCSA at 6 MeV, not yet redu ORNL Dickens+, priv. NaI data at ORELA 47 E 7 keV to 20 MeV, m	AC-42, p. 195, have Ge(Li) data iced. comm., Aug. 7, 1972, have m station; E_{γ} 0.7 to 10 MeV, not yet reduced.
No. 195 Cu.	Reviewer-Dickens	
· .	Status — ORNL, Dickens+, $E_n =$	= 0.7-20 MeV in progress.
No. 196 Cu	Reviewer-Dickens	
	Status – ORNL, Maerker+, ORI Idaho Nuclear Greenwo (IN-1407) UC-80 ORNL, Bird+; ORNL- ORNL, Macklin+, E	NL-4382 E_n = thermal bod+, E_n = 2 keV, TID-4500 TM-3379 E_n = 20-50 keV = 3-500 keV in progress
No. 197 Cu	Reviewer-Dickens	(NCSAC-35 No. 127)
	Status ORNL, Dickens+, E _n =	7-20 MeV in progress
No. 203 Zn	Reviewer-Dickens	(NCSAC-35 No. 133)
	Status — ORNL, Maerker+, OR	NL-4382.
No. 204 Zn	Reviewer-Dickens	(NCSAC-35 No. 133)
2	Status — (Russian) Konobeevski Nauk (Physics) <u>35</u> , 234 ORNL, Dickens, E _n =	+, E _n = 1-1.6 MeV IZV Akad 45 5-6 MeV in progress
No. 208 Ge	Reviewer-Chrien	(NCSAC-35 No. 138)
	Status — None	
No. 233 Zr	Reviewer-Motz	(NCSAC-35 No. 157)
	Status—MIT Rasmussen+, GA- neutron capture spectr	10248/DASA-2570, the rmal um.

No.	234	Zr	Reviewer-Dickens
	1		Status – BET Blickstein+, $E_n = 2.8-6$ MeV 90 Zr Phys. Rev. <u>C4</u> , 1818
			BET Glickstein+, E _n = 1.2-2.4 MeV ⁹¹ Zr Conf-710301 241 (Knoxville)
No.	235	Zr	Reviewer-Motz
(Status—MIT Rasmussen+, GA-10248/DASA-2570, thermal neutron capture spectrum.
No.	236	Zr	Reviewer-Motz (NCSAC-35 No. 158)
			Status—BETTIS Glickstein+, Phys. Rev. 4C, 1819 (71). Discrete gammas for 8 levels, E _n 2.8 to 6 MeV.
No.	282	Nb	Reviewer-Motz (NCSAC-35 No. 208)
			Status — MIT Rasmussen+, GA-10248/DASA-2570, thermal neutron capture spectrum.
No.	283	Nb	Reviewer-Motz
	,		Status — ORNL Dickens+, NCSAC-42, p. 195, have Ge(Li) data at 6 MeV, not yet reduced.
No.	284	Nb	Reviewer-Motz
	¢		Status—MIT Rasmussen+, GA-10248/DASA-2570, thermal neutron capture spectrum.
No.	285	Nb	Reviewer-Motz (NCSAC-35 No. 209)
			Status — ORNL Dickens+, NCSAC-42, p. 195, have Ge(Li) data at 6 MeV, not yet reduced.
No.	286	ŃЪ	Reviewer-Motz
÷	•		Status — ORNL Dickenst, NCSAC-42, p. 195 have Ge(Li) data at 6 MeV, not yet reduced. MIT Rasmussent, GA-10248/DASA-2570, thermal neutron capture spectrum.

Status—Orphan+, GGA report GA-10248, Line + Continuum γ -rays Barchuk+, USSR, 72 Kiev, Ge(Li) data for MO-94, 96, 98, 100

No. 305 Mo Reviewer-Orphan

Status - None

No. 306 Mo

- Reviewer-Orphan
- Status For THR capture same as for 304 Wasson+, USNDC-1 134, 6-50 keV Wasson+, USNDC-1 27-up to 100 keV Cole+, NCSAC-42, 185, 10-100 keV Chrien+, NCSAC-42, 40, 12-48 keV

No. 307 Mo

Reviewer-Orphan

Status — For capture, same as for 306 None

No. 308 Mo Reviewer-Chrien (NCSAC-35 No. 224)

Status — Resonance capture spectra available to ~20 keV from ORELA; Wasson and Slaughter, for Mo-92 and Mo-98.

No.	321 Xe-135	Reviewer-Motz	(NCSAC-35	No.	237)	

Status-None

No. 337 Eu Reviewer-Motz (NCSAC-35 No. 256)

Status — None

No. 355 Gd Reviewer-Motz (NCSAC-35 No. 276)

Status - None

No. 373 Dy	Reviewer-Motz	(NCSAC-35 No. 294)
	Status — None	
No. 399 Ta	Reviewer-Motz	(NCSAC-35 No. 322)
	Status — ORNL Yost+, NSE <u>47</u> , yields for Ta-181, E keV, in agreement wi ORNL Morgan+, ORN Cross sections and sp E 7 keV to 20 MeV o n	(72) claim calculated gamma , 1-6 MeV, E _n thermal to 900 th reactor spectrum data. L-TM-3702, Feb. 8, 1972. Dectra from E 1 to 10.5 MeV, Observed at 90 ⁹ and 125 degrees.
No. 401 W	Reviewer-Orphan	(NCSAC-35 No. 324)
	Status—Tucker+, TNC report Orphan+, GGA report	DASA 2333, 5-11 MeV GA-9121, 2 eV-100 keV
No. 402 W	Reviewer-Orphan	(NCSAC-35 No. 325)
	Status — Tucker+, TNC report ORNL Morgan+, E _n =	DASA-2333, 5-11 MeV 1-20 MeV, in progress
No. 416 Pb	Reviewer-Orphan	(NCSAC-35 No. 339)
	Status — Dickens+, NCSAC 42- Buchanan+, TNC repo 208 (1-5 MeV, 14.8 N	-194, 4.9-8.0 MeV ort ORO-2791-32, Pb-206, 207, NeV)
No. 417 Pb	Reviewer-Orphan	(NCSAC-35 No. 340)
	Status — Dickens+, NCSAC-42 Degtjarev+, USSR, IZ Buchanan+, TNC repo 208 (1-5 MeV, 14.8 N	194, 4.9-8.0 MeV 2V 35 2341, 0.1-3.4 MeV ort ORO-2791-32, Pb-206, 207, MeV)
No. 426 Th	Reviewer-Orphan	(NCSAC-35 No. 349)
	Status — None	
No. 427 Th	Reviewer-Chrien	(NCSAC-35 No. 350)
	Status — Resonance spectra for BNL fast chopper - v	r first 4 resonances + thermal, on Egidy et al. Phys. Rev. C6,

266 (1972).

ί

.

.

No. 428 Th	Reviewer-Chrien	(NCSAC-35 No. 352)
Statu	s—No additional comments	3,
No. 443 U-233	Reviewer-Chrien	(NCSAC-35 No. 368)
Statu	s — Delete present commen	t.
No. 444 U-233	Reviewer-Chrien	(NCSAC-35 No. 369)
Statu	s— No additional comments	3.
No. 469 U-235	Reviewer-Chrien	
Statu	s — Eliminate present comm µsec after fission for U GRT: quoted in USNDC	nents. Add "γ-rays to 1 J-235, Pu-239, Sund et al.; -1 p. 79 (May 1972)."
No. 472 U-235	Reviewer-Chrien	(NCSAC-35 No. 398)
Jian	NCSAC-42 p. 48; low e Coceva et al., Geel, r June 1972-14 spin ass BNL transmission data and polarized sample a 9 eV for U-235. Reson assigned for nine reson and Postma	nergy y-ray data recorded by eported at Aix-en-Provence ignments made. with polarized neutrons are now available up to nance spins have been nances by Reddingius
No. 473 U-235	Reviewer-Chrien	(NCSAC-35 No. 399)
Statu	us — No change in status cor	nments.
No. 499 U-238	Reviewer-Chrien	(NCSAC-35 No. 423)
Statu	Average capture spects Argonne; to be publish capture spectrum by J	rum results available; Bollinger ed in Phys. Rev. 1972; thermal urney Los Alamos NCSAC-42.
No. 501 U-238	Reviewer-Chrien	(NCSAC-35 No. 425)
Statu	us — Delete status comment	3.

,	· · · · ·	
No. 530 Pu-239	Reviewer-Chrien	(NCSAC-35 No. 456)
Stati	us - No change in status c	omments.
No. 531 Pu-239	Reviewer-Orphan	
Statu	is-Kimhof+, NCSAC 42 1	42, 4 min-24 hrs.
No. 532 Pu-239	Reviewer-Motz	
State	15 — None	
No. 547 Pu-240	Reviewer-Chrien	(NCSAC-35 No. 472)
Ct. t.		

Status — Thomas (Harwell) has resonance (n, γ) data from Pu-240 in eV region, shows delayed component, UKNDC (72) p. 37.

· · · · · · ·

1

t _

``

. .

' ,

. ..

Requests for Measurements Requiring Radioactive Samples

(NCSAC-35 No. 244) No. 327 Pm-147 Reviewer-Jackson Status-Codding, Nucl. Sci. Eng. 43, 58 has total, 0.01-1000 eV and RI (NCSAC-35 No. 266) No. 347 Eu-152 Reviewer-Jackson Status^{*}- LASL Harlow & Wash-1127 prelim data to 6 keV (NCSAC-35 No. 272) No. 351 Eu-155 Reviewer-Jackson Status-Can. Jour. Physics 48, 1933 gives eff. sig. thermal = 4040 ± 125 b (NCSAC-35 No. 304) No. 381 Tm-171 Reviewer-Jackson Status^{*}- Inc Simpson has some res. par. to 60 eV No. 430 Pa-233 Reviewer-Jackson (NCSAC-35 No. 354) Status-Bet, Connor, WAPD-TM-837, gives RI and sig. thermal (NCSAC-35 No. 410) No. 485 U-237 Reviewer-Jackson Status-LASL, McNally, LA 4420, data for 44 eV-1.8 MeV No. 573 Cm-242 (NCSAC-35 No. 503) Reviewer-Jackson Status-ANC, Schuman, Wash-1136, gives Res. Int = 150 ± 40 b (NCSAC-35 No. 537) No. 607 Cf-253 Reviewer-Jackson Status-Nucl. Sci. Eng 41, 146 gives sig. eff = 17.6 b (NCSAC-35 No. 538) No. 608 Es-253 Reviewer-Jackson Status^{*} LASL, Silbert, Wash-1136, has data 30 eV up (NCSAC-35 No. 541) No. 611 Fm-257 Reviewer-Jackson Status^{*} ORNL, Bernis, ORNL-4581, 6100 \pm 600 b $\sigma_{abs'}$ pile neutrons LRL Wild, NCSAC-33, 3080 ± 200 b thermal neuts.

*Status comment from 19 May 1972 retrieval

For each of the following requests:

Status -- NoneReviewer-JacksonNo.'s 29, 166, 167, 168, 213, 214, 215, 216, 217,218, 219, 220, 221, 222, 237, 238, 239, 240, 241,242, 268, 287, 288, 289, 290, 291, 292, 293, 294, 309,310, 312, 313, 315, 316, 317, 319, 320, 321, 326, 328,329, 330, 331, 333, 335, 338, 339, 340, 341, 342, 343,349, 350, 374, 375, 376, 377, 380, 382, 383, 384, 385,414, 507, 574, 609, 610

Please note that in some cases the above entry represents a deletion of information reported earlier.

The above request list corresponds to requests listed in NCSAC-35 as follows:

No.'s 21, new, new, 116, 143, 144, 145, 146, 147 148, 149, 150, 151, 152, 159, 160, 161, 162, 163, 164, 196, 210, 211, 212, 213, 214, 215, 216, 218, 225, 226, 228, 229, 231, 232, 233, 235, 236, 237, 243, 245, 246, 247, 248, 253, 254, 257, 258, 259, 260, 261, 262, 269, 270, 297, 298, 299, 300, 303, 305, 306, 307, 308, 337, 431, 504, 539, 541

REPORT OF THE USNDC SUBCOMMITTEE ON FAST NEUTRON REACTIONS

H. Alter D. G. Barr J. Brownlee G. Butler D. E. Gardner

The subcommittee has completed a review of that portion of the cross section measurement request compilation pertinent to fast neutron reactions. One-hundred-twenty-nine (129) requests were reviewed. Of these it was determined that one (1) has been essentially satisfied; twenty-seven (27) have been withdrawn; thirty-seven (37) have had modifications made to their status comments; and sixty-four (64) remained unchanged with respect to status. Modifications reflected in the comments include the upgrading and/or downgrading of specific requests with respect to priority and changes in the energy range over which a measurement was requested.

Of the 129 requests reviewed, not including the 27 withdrawn requests, 45 fall into the priority 1 category, 59 into the priority 2 category, and 12 are classed as priority 3. Note that the sum of the above exceeds 102, since several of the requests have more than a single priority category assigned.

A breakdown of requests by organization is given below:

<u>Organization</u>	No. of Requests	<u>% of Total</u>
DCTR	42	36
DMA	35	30
DRDT	21	18
DNA	9	7.7
DNR	5	4.2
Mísc.	6	5.1

It is apparent from a review of the status comments that there is a somewhat less than total dedication being applied to satisfy the fast neutron cross section requests for measurement. Some effort is being expended for nuclides with mass less than 10. However, for the major portion of the request compilation, the measurement effort in this country appears minimal. Since more than 3/4 of the total number of requests are from the DCTR, DRDT, and DMA organizations, it would be reasonable to expect these organizations to assume the lead in the effort to satisfy their requirements. It is recommended that this need for guidance be brought to the attention of appropriate personnel within these organizations.

Request Number	NCSAC 35 Vumber	Target Z A	Reaction Type	Status
5	5	1 ^{H³}	(n, 2n)	1972 Status: None.
ზ	8	2 ^{He³}	(n, p)	Change priority of Caswell's USND request to II. (USND Caswell, private communication 1972) 1972 Status: Costello + Nuc. Sci. Eng. 39, 409, 0.3-1.1 MeV, 10 per.
14	13	3 ^{Li⁶}	(n, 2n)	1972 Status: AWRE Mather AWRE-0-47/69, data at 14 MeV, 5 per.
15A	New	3 ^{Li⁶}	(n, n'd)	1972 Status: No data to required accuracy.
16	New	3 ^{Li⁶}	(n, t)	1972 Status: No data to required accuracy.
17	14	3 ^{Li⁶}	(n,α)	Change Caswell's USND request to indicate an energy range from 10 keV-14 MeV since satisfactory measurements exist below 10 keV. (USND Caswell, private communication 1972) Also change last Requestor Comment to read as follows: Accuracy 1 per below 100 keV, 3 per above NCSC.
			v	Change LASL Motz request to cover an energy range of 100 KeV to 13 MeV. (LASL Stewart, private communication 1972).
				1972 Status: AERE Uttley CONF 710301, 551 (Knoxville Conf.) reviews data below 1.7 MeV.
18	15	3 ^{Li⁰}	(n,a) Ratio wrt B ¹⁰	This request should be removed from the request list since it is considered satis- fied based on measurements from Harwell. (USND Caswell, private communication 1972)
19	16	3 ^{Li⁶}	Tot a prod.	1972 Status: None.
25	19	.3 ^{Li}	(n, 2n)	1972 Status: None.
26	New	3 ^{Li}	(n, n't)	1972 Status: Present accuracy is 25 percent at 8 MeV, 15 percent at 14 MeV.
27	New	3 ^{Li⁷}	$(n, n't \theta_{n'})$	1972 Status: None.
29	21	4 ^{13e⁷}	(n, p)	1972 Status: None.

	AC 35 ber		97	
Request Number	NCS/ Numl	Target Z A	Reaction Type	Status
33	25	4 ^{Be}	(n, p) Li ⁹ β Be $\frac{9*}{-}$ n	1972 Status: Measurements planned at LASL.
36	28	5 ^{B¹⁰}	(n, a)	Oates, AERE-FR/NP 18 (1972). Fricke, New Measurements, GRT (1972)
38	30	5 ^{B¹⁰}	Tot a prod.	Change the priority to I. (USND Caswell, private communication 1972). 1972 Status: None.
44	36	6 ^C	Absorption	1972 Status: None.
46	New	6 ^{C¹²}	(n, n' 3a)	1972 Status: Grin, Helv. Phys. Act. 42, 990 (1969) get 190 + 20 mb for $E_n > 1$ MeV at 14.1 MeV.
51	41	7 ^N	Absorption	1972 Status: None.
55	45	8 ⁰	Absorption	1972 Status: None.
63	New	9 ^F	Absorption	1972 Status: None.
64	53	9 ^{F¹⁹}	(n,α)	Crumpton, Nucl. Instru. Methods 92, (1971) 533.
69	58	11 ^{Na²³}	Absorption	Measurements at Columbia and ORNL underway (1972)
73	New	13 ^A	(n, 2n)	1972 Status: No data to required
74	New	1341	$(n, 2n \theta_{n'}, E_{n'})$	1972 Status: None.
78	New	13 ^A	(n, p)	1972 Status: Partington, Analyst 95, 257 (1970) get 80±5 mb at 14 MeV. See also Husain, Phys. Rev. C1, 1233 (1970); and Salaita, Nucl. Phys. A170, 193 (1971) at 14.8 MeV.
79	New	13	(n, α)	1972 Status: Bresesti, Nucl. Sci. Eng. 40, 331 (1970) reviews previous experimental work.
				LASL Prestwood gets 122.6+3 mb at 14.1 MeV, (private communication 1972).
84	64	13 ^A	(n, p) Act.	1972 Status: FRK Bass + EUR 119c have data 6-9 MeV. ANL has measured values WRT U235 fission between 3 and 6 MeV. (1972)

	5 U 32		98	
Request Number	NCSA	Target Z A	Reaction Type	Status
89	69	16 ^{S³⁶}	(n, 2n)	Request withdrawn.
9.1	74	20 ^{Ca¹⁰}	(n,α)	Request withdrawn.
96	76	20 ^{Ca⁴⁶}	(n, 2n)	Request withdra wn.
101	81	22 ^{Ti⁴⁶}	(n,p)	Ghorai, Diss. Abstracts 32B (1971) 1138 and J. Nucl. Energy 25 (1971) 319. ANL measured values WRT U235
102	82	22 ^{Ti⁴⁷}	(n, p)	Meadows, NCSAC-42, <u>10</u> (1972) Ghorai, Diss. Abstracts <u>32B</u> (1971) 1138 and J. Nucl. Energy <u>25</u> (1971) 319
103	83	22 ^{Ti⁴⁸}	(n,p)	Ghorai, Diss. Abstracts $32B(1971)$ 1138 and J. Nucl. Energy 25(1971) 319. ANL measured values WRT U235 fission between 4.5 and (MeV (1972)
105	New	23 ^V	(n, 2n)	1972 Status: None.
106	New	23 ^V	(n, 2n) ($\theta_{n'}, E_{n'}$)	1972 Status: None.
111	New	23 ^V	(n, p)	1972 Status: None.
112	New	23 ^V	(n,α)	1972 Status: None.
120	New	24 ^{Cr}	(n, 2n)	1972 Status: None.
121	New	24 ^{Cr}	(n, 2n)	1972 Status: None.
			(0 _{n'} , E _{n'})	
124	New	24 ^{Cr}	(n, p)	1972 Status: None.
125	New	24 ^{Cr}	(n, a)	1972 Status: None.
139	New	26 ^{Fe}	(n, 2n)	1972 Status: None.
140	New	26 ^{Fe}	(n, 2n) (_{0n} , E _n)	1972 Status: None.
145	New	26 ^{Fe}	(n, p)	ANL has measured values WRT U235
146	New	26 ^{Fe⁵⁶}	(n,α)	fission between 4 and 6 MeV. (1972) 1972 Status: None.
147	New	26 ^{Fe}	(n, a)	1972 Status: None.
150	102	26 ^{,Fe}	Abso rption	1972 Status: None.
158	108	26 ^{Fe⁵⁴}	(n,p)	Paulsen measuring from 1.5-6 MeV and from 12-20 MeV, Gel. (1972) ANL has measured values WRT U235 fission between 2 and 6 MeV. (1972)

			99	• · · · · · · · · · · · · · · · · · · ·
Reques Numb e r	r NCSAC 35 Number	Target Z [.] A	Reaction Type	Status
159	109	26 ^{Fe}	(n, 2n)	1972 Status: None.
173	New	28 ^{Ni}	(n, Zn)	1972 Status: None.
174	New	28 ^{Ni}	(n, 2n) (0 _n , E _n)	1972 Status: None.
175	120	28 ^{Ni}	Absorption	Measurements underway in keV region, AAEC (1972)
177	New	28 ^{Ni}	(n, p)	Paulsen, Measurements in progress, 12-20 MeV, Gel. (1972)
178	New	28 ^{Ni}	(n, α)	1972 Status: None.
179	New	28 ^{Ni}	(n, a)	1972 Status: None.
Í85	New	28 ^{Ni⁵⁸}	(n, p)	Paulsen, Measurement in progress 1-6 MeV, Gel. (1972). ANL values WRT
186	124	28 ^{Ni⁵⁸}	(n,p)Act.	U235 fission 1-6 MeV. (1972) Paulsen, Meas urement in progress 02-20 MeV, Gel. (1972)
187	125	28 ^{Ni 60}	(n, p)	1972 Status: None.
190	New	29 ^{Cu}	(n, 2n)	1972 Status: None.
191	New	29 ^{Cu}	(n, 2n) (_{0n'} , E _{n'})	1972 Status: None.
193	New	29 ^{Cu}	(n, p)	1972 Status: None.
194	New	29 ^{Cu}	(n,a)	1972 Status: None.
200	130	29 ^{Cu⁰³}	(n, a)	Bormann, Nucl. Phys. Galley Proof 3429, 3/28/72.
201	131	29 ^{Cu} 05	(n, 2n)	Kanda, At. Energy Research Inst., Tokyo (1972) 1207.
		66		Qaim, Nucl. Phys. <u>A185</u> (1972) 614. Mogharrab, Atomkernenerie <u>19</u> (1972) 107.
206	136	30 ²ⁿ 00	(n, 2n)	Qaim, Nucl. Phys. A185 (1972) 614.
213, 2 216, 2 219, 2 221, 2	215, 143, 218, 146, 220, 149, 222, 151,	145 148 150 152	;	Requests withdrawn.

Request Number	NCSAC 35 Number	Target ZA	Reaction Type	Status
225	New	40 ^Z r	(n, 2n)	Bari, U. of Ark., Activation Cross Section at 14.8 MeV. (1972) Nethway, LLL, has data to 5% for Zr^{90} at 14.1 and 14.8 MeV (Relative to Al^{27} (n, α). (1972).
226	'New	40 ^{Zr}	(n, 2n) (_{θn} , E _n)	1972 Status: None.
231	New	40 ^{Z.r}	(n, p)	Bari, U. of Ark., Activation Cross Section at 14.8 MeV (1972)
232	New	40 ^{Zr}	(n, a)	Bari, U. of Ark., Activation Cross Section at 14.8 MeV (1972)
237, 2 240, 2	39,159, 42, 162,	161 164		Requests withdrawn.
253	177	40 ^{Zr⁷¹}	(n, a)	1972 Status: None.
275	New	41 ^{Nb}	(n, 2n)	Haring, et al, Quotes 1.35+.25 2, Physik 244, 352 (1971)
				Bari, U. Ark., Act. Cross Section at 14.8 MeV. (1972) Nethway, LLL, Data to 5% at 14.1 and 14.8 MeV (1972)
276	New	41 ^{Nb}	(n, 2n) (θ_n, E_n)	1972 Status: None
277	206	41 ^{Nb}	(n, 2n) Act.	Haering, Z. Physik 244 (1971) 352. Blow, J. Nucl. Energy 26(1972) 9. Bari, U. of Ark. Activation Cross Section at 14.8 MeV (1972).
280	New	41 ^{Nb}	(n, p)	1972 Status: None.
281	New	41 ^{Nb}	(n,α)	Bari, U. of Ark. Activation Cross Section at 14.8 MeV (1972). Bormann, U. Hamburg, Angular Distribution, Energy Spectrum at 14.2 MeV (1972)
287, 20 290, 21	89,210, 92,213,	212	· ·	Requests withdrawn.
, 297	New	12 ^{Mo}	(n, 2n)	1972 Status: No data to required accuracy.
298	New	12 ^{Mo}	(n, 2n θn')	1972 Statust None.

,

request	VCSAC 3 (umber	Target	Reaction	Con o se
Number	~7.7.	7 <u> </u>	Туре	Status
302	New	42 ^{M0}	(n, p)	1972 Status: None.
303	New	12 ^{Mo}	(n, a)	1972 Status: None.
338, 340 342,), 257, 2 261	259		Requests withdrawn
344	263	63 ^{Eu} ¹⁵¹	(n, 2n)	1972 Status: None.
374, 376	297,2	.99	•	Requests withdrawn
378	301	69 Tm	(n, 2n)	Druzhinin, Yad. Fiz. <u>14</u> (1971) 682.
382, 384	305,	307	· · ·	Requests withdrawn.
386	309	71 Lu 192	(n, 2n)	1972 Status: None.
104	327	74 ^{W182}	(n, 2n)	1972 Status: None.
409	332	74 ¹⁸⁶	(n, 2n)	1972 Status: None.
419	342	82 ^{Pb²⁰⁶}	(n, α)	Request withdrawn
423	346	90 Th	(n, 2n)	1972 Status: None.
425	348	90 Th	Absorption	Rahn, Columbia, Resonance Parameters to 2.9 keV (1972)
433	357	92 ^{U²³³}	(n, 2n)	1972 Status: None.
4-19	376	92 ^{U²³⁴}	(n, 2n)	1972 Status: None.
450	377	92 ^{U²³⁴}	(n, 3n)	1972 Status: None.
457	385	92 ^{U²³⁵}	(n, 2n)	1972 Status: None.
458	386	92 ^{U²³⁵}	(n, 3n)	1972 Status: None.
490	415	92 ^{U²³⁸}	(n, 2n)	1972 Status: None.
491	416	92 ^{U²³⁸}	(n, 3n)	1972 Status: None.
503	428	93 ^{Np²³⁷}	(n, 2n)	1972 Status: None.
508	433	94 ^{Pu²³⁸}	(n, 2n)	1972 Status: None.
509	434	94 ^{Pu²³⁸}	(n, 3n)	1972 Status: None.
515	442	91 ^{Pu²³⁸}	(n, p)	1972 Status: None.
520	447 [.]	94 ^{Pu²³⁹}	(n, 2n)	1972 Status: LASL Barr gets 150 mb + 20 per at 14 MeV, priv. comm. Measurements with lower accuracy not helpful, LLL.

· . .

101

S

Request Number	NCSAC 35 Number	Target Z A	Reaction Type	Status
521	448	94 ^{Pu²³⁹}	(n, 3n)	1972 Status: LASL Barr gets 1.5+0.5 mb at 14 MeV, priv. comm.
556	484	94 ^{Pu²⁴²}	(n, 2n)	1972 Status: None
563	492	94 ^{Pu²⁴²}	(n, p)	1972 Status: None.
565	495	95 ^{Am²⁴¹}	(n, 2n)	1972 Status: None.
5 7 9	509	96 ^{Cm²⁴⁴}	(n, 2n)	1972 Status: None.

REPORT OF THE USNDC BIOMEDICAL SUBCOMMITTEE

Prepared by James S. Robertson, BNL E. M. Smith, U. Miami

November 1972

NUCLEAR DATA NEEDS

I. Radionuclide Production

Some potentially useful cyclotron-produced radionuclides are listed below. Optimum production techniques using the selected reaction modes can be evaluated provided the excitation functions are known. The required energies are up to 15 MeV for deuterons, 27 MeV for protons, 30 MeV for α -particles, and 39 MeV for He-3.

Fluorine-18

the second se			•
1. a.	¹⁶ 0(³ He,n) ¹⁸ Ne	₿₽	¹⁸ F
b.	$16_{0(3_{\text{He},p})} 18_{\text{F}}$		
2. a.	$16_{0(\alpha, 2n)}$ 18 _{Ne}	<u></u> <u></u> +	18 _F
b.	$16_{0(\alpha, pn)}$ 18 _F		
3.	$20_{\rm Ne(d,\alpha)} = 18_{\rm F}$		
4	$22_{\text{Ne}(p,\alpha p)}$ 18_{F}		
	18_{0} 18 _F		
J.	$19_{\rm p}$ $18_{\rm Nz}$	8,+	18
b. a.	F(p, 2n) Ne 19		Ľ
ь.	F(p,pn) F		
Potassium-43			
7.	$40_{Ar(\alpha, p)}$ 43_{K}		
8. a.	$44_{Ca(d, 3_{He})} 43_{K}$		
b.	$44_{Ca(d,\alpha)}$ 42_{K}		
<u>Gallium-67</u>			
9.	⁶⁶ Zn(d,n) ⁶⁷ Ga		
10.	67 Zn(d,2n) 67 Ga		
11.	$^{65}Cu(^{3}He,n)^{67}Ga$		
12.	65 Cu(α , 2n) 67 Ga		
13.	⁶⁷ Zn(p,n) ⁶⁷ Ga		
14.	⁶⁷ Zn(p,2n) ⁶⁷ Ga		
Strontium-82			
15.	82 Kr (3 He, 3n) 82 Sr		
16.	80 Kr(α , 2n) 82 Sr		
17.	84 Sr(p, 3n) 82 Y	<u>₿</u> +	⁸² Sr

ł			
Iron-52			
18.	50 Cr(α , 2n) 52 Fe		
19.	⁵² Cr(³ He,3n) ⁵² Fe		
Vttrium-87	Strontium-87m		
<u>10011011-07</u>	87 ₂₁ , 3 ₁₁ , 3-287		
20.	87, 87.		
21.	Sr(p,n) Y 88. (
22.	Sr(p,2n) Y		
Indium-111			
23.	$109_{Ag(\alpha,2n)}$ 111 _{In}		
24.	109 _{Ag} (³ He,n) ¹¹¹ In		
25.	$111_{Cd(p,n)}$ 111_In		
26.	$112_{Cd(p,2n)}$ 111 _{In}		
27.	$110_{Cd(d,n)}$ 111 In		
28.	¹¹¹ Cd(d,2n) ¹¹¹ In		
Iodine-123			
	$\frac{122}{Te(d,n)}$,	•
30.	$122_{Te}(3_{He}, 2n)^{123}_{Xe}$	<u>5</u> +	123 ₁
31	$123_{Te(n-n)}$ $123_{Te(n-n)}$		-
32	$123_{Te(d,2p)}$ 123		
32.	$123_{T_{0}}(3_{H_{0}},3_{T_{0}})$ $123_{V_{0}}$	<u>8</u> +	123 _T
37.	$124_{mo(n-2n)}$ $123_{mo(n-2n)}$		4
	1e(p,2n) 1		
<u>Cesium-129</u>	120 120	۰	120
35. a.	Ba(p,2n) ¹²⁹ La		¹²⁹ Cs
ь.	$130_{Ba(p,2p)}$ 129 Cs		
36.	132 Ba(p, α) 129 Cs		
37.	$127_{1(\alpha,2n)}$ ¹²⁹ Cs		
38.	$127_{1(3He,n)}$ 129Cs		
Dysprosium-	147		
39.	$159_{\text{Tb}(p,3n)}$		
40.	$156_{Gd}(3_{He,2n})$ 157 _{Dv}		
41	$155_{Gd(\alpha, 2n)} 157_{Dy}$		

.

II. Radiation Detection

Radioactive materials are administered to patients for diagnostic, therapeutic and research reasons. In all of these it is important to be able to measure quantitatively the radioactivity in a given location of the body or in samples of tissue or fluids from the body.

Since many aspects of radiation detection such as attenuation in tissue are dependent on radiation type and energy, an accurate knowledge of the decay schemes of the nuclides in use is essential. In particular, it is necessary to know the absolute fraction of disintegrations that involve a particular gamma ray. This is mentioned because often the abundance of gamma rays is given relative to each other rather than to the disintegration rate. Of course many other features of the decay scheme such as the energies and half lives are important but in general these do not involve a problem of the user not being able to find the information.

III. Activation Analysis

Activation analysis is applied in medicine both for <u>in vitro</u> and <u>in vivo</u> measurements. In the <u>in vitro</u> applications it is used principally for the determination of the amounts and location of tracer elements. The <u>in vivo</u> applications also include studies of substances such as calcium, which are present in the body in relatively large quantities but which are difficult to determine quantitatively by other methods because they are in locations such as bone which are inaccessible and do not turn over rapidly enough to be studied by exchange methods for example.

Here, of course, the essential nuclear data are the neutron capture cross sections as functions of neutron energy.

IV. Biological Effects of Radiation

In therapy, but also in all uses of radioactive materials, it is necessary to be able to measure or compute the radiation dose associated with the procedure. In some situations dose calculations may become quite complex because a variety of factors in addition to the physical decay characteristics such as biological localization and turnover are also involved.

For internally distributed nuclides, again a knowledge of the decays scheme is essential. In addition to the gamma ray components, for dose calculations it it also necessary to have full information on beta-ray energies, Auger electrons, x-rays and any other component that can contribute to the dose. One difficulty in the use of available data that may be singled out as being most important (or at least annoying) is the specification of β energies. In general only the E₀ is given, whereas what is needed for dose calculations is the E_{AVE}. In some cases, where E_{AVE} has been determined experimentally, as by calorimetry, it is given but otherwise it is omitted. It is recognized that EAVE can always be computed from E_o, but the computation is a not-so-simple function of Z as well as E_o, is different for B and B, and is dependent on whether the transition is allowed or forbidden. In the case of some of the forbidden spectra (for example Ra E, or 210 Bi) the experimentally determined spectrum is substantially different from the hypothetical allowed spectrum. It would therefore be more reliable if an expert in the field would make the necessary calculations and make the EAVE available along with E_o in the nuclear data compilations.

It may be mentioned that there is a committee of the Society of Nuclear Medicine, known as MIRD (Medical Internal Radiation Dose Committee) that evaluates decays schemes and presents the data in a form useable for internal radiation dose calculations.

Future applications in medicine may involve neutron, proton and π meson beams directly, and all of the nuclear data pertinent to these particles and their reactions with tissue and other target materials will become of interest in this field.

It should be emphasized that for users in the Medical area the nuclear data requirements are usually incidental to other principal problems and these users cannot keep up to date by the method of referring to the physics literature. Compilations are necessary for these users to have ready access to the required information. At present the principal references in use are the Lederer, Hollander, and Perlman Table of Isotopes, the K. Way et al, Frequent Use Tables, and the MIRD publications.

<u>NOTE:</u> <u>Section I</u> is the contribution of E. M. Smith, Division of Nuclear Medicine, U. Miami School of Medicine

Sections II, III and IV are by James S. Robertson, Medical Department, Brookhaven National Laboratory