. Compet Constantion

INDSWO (US):5

INDSWE-35

Variation of Fission Fragment Kinetic Energy Distribution and Yield of Long Range Alpha Particles in the Resonance Neutron Induced Fission of U²³⁵.

× 's

Girijesh K. Mehta

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Pure Science, Columbia University

1963

.

.

3

ABSTRACT

The ratio of fission yields from thick and thin U²³⁵ targets was measured in the energy region where resonances can be resolved in order to measure the variation in the kinetic energy distribution of fission fragments from resonance to resonance. Also, the ternary alpha yield from a thick U²³⁵ sample was compared with the thin U^{235} foil binary fission yield for several resonances as a measure of the variation of the yield of ternary alphas per fission from level to level. In each set of results differences in the ratios were observed far outside the errors. The data were found to be incompatable with a single average value on the basis of a Chi-square test. The data for each set were compatable with two values of the ratios suggesting a grouping which may correspond to the two possible J values of the resonances.

Our assignments of the resonances to two groups, made on the basis of variation in kinetic energy distribution of fission fragments, agree well with the assignments made by Cowan, et. al. from the radiochemical measurements on symmetric fission for those levels with definite assignments in both sets of data. A definite physical interpretation of the results of relative variation of ternary alpha yield from resonance to resonance could not be made because of the lack of measurements on ternary alpha yield with a thin U target.

CONTENTS

.

,

.

.

I.	Introduction		
II.	Experimental Equipment		
	A. Neutron Spectrometer	12	
	B. Detector	12	
	C. Fission Chamber	14	
`	D. Timing Circuit	15	
III.	Experimental Details	19	
	A. Measurements	19	
	B. γ - Burst	22	
	C. Time Resolution	22	
	D. Data Taking and Processing	25	
	E. Correction for Timing Drifts	26	
IV.	Analysis and Results	28	
	A. Overall Results	28	
	B. Background	28	
	C. Analysis of the Yield Measure-		
	ments and the Final Results	30	
ν.	Conclusions	36	

Page No.

Appendix 1	'Single Level Breit-Wigner Formula and the Doppler Broadening	4 <u>1</u> .
Appendix 2	Yields from Thick Targets and Shielding Effects	45
Appendix 3	Surface Barrier Detector Fabrication	51
Appendix 4	Response of the Fabricated Detectors to Alphas and	·
Appendix 5	Fission Fragments Investigation of Problems Associated with the Semi-	54
	conductor Detectors	56
Appendix б	Detector Arrays and Matching	62
Appendix 7	Preamplifier Selection	67
Appendix 8	 (A) Charge Sensitive Pre- amplifier with a Single Detector (B) Charge Sensitive Pre- amplifier in Conjunction 	70
	Detectors in Series	71
Appendix 9	Three Parameter System (3PS)	73
Appendix 10	Pulse Height Information and Three Parameter Measurements	75
Appendix 11	The Mean Positions and the Width of a Peak and their Statistical Errors	77
Appendix 12	Pick-up Rejection Circuit	79

	Page No.
References	85
Figure Captions	88
Figures	93
Tables	134

.

· .

Figure 11	Experimental curves: results in the energy interval of $\sim 12 \text{ ev}$	1.07
	. to ~ 40 ev.	105
Figure 12	Experimental data in the energy interval \sim 39 ev to \sim 85 ev.	104
Figure 13	Experimental data displaying the energy interval of ~ 60 ev to	
	∼ 1300 ev.	105
Figure 14	A representative computer plot of the experimental data and the	
	computed curve.	106
Figures 15-25	Experimental data and the least Square fitted curves for the	
	three measurements.	107-117
Figure 26	Ratio of alpha particle yield to the uranium fission yield (A) and the ratio of thick uranium fission yield to thin U fission yield (B).	n 118
Figure 27	Ratio R ₂₃ (thick U fission yield/ thin U fission yield) plotted as a function of resonance energy.	119
Figure 28	Ratio of thick uranium fission yield to thick uranium alpha yield (R ₂₁), in arbitrary units, as a function of resonance energy	120
Figure 29	Ratio (R_{43}) , in arbitrary units, of fission yield from two thin U targets (200 μ gm/cm ² and 50 μ gm/ cm ²) as a function of neutron energy.	121
	-	

.

Page No.

•

Figure	A-1 '	Thickness effect on fission yield (a) and alpha yield (b).	122
Figure	A-2	Pulse height distribution of alpha policicles (Th228 source) for a detector 12 mm in dia- meter, resistivity 200 Ω -cm, operating at 70 volts.	123
Figure	A-3	Pulse height distribution of fission fragments in the thermal neutron fission of y^{235} .	124
Figure	A4	U^{235} fission fragment spectrum recorded for a surface barrier detector, 1 cm in diameter and of resistivity 200 Ω -cm, at two different voltages.	125
Figure	A-5	Probing of the surface of a 2.2 cm diameter surface barrier detector (200 Ω -cm) using a collimated Po source.	126
Figure	А-б	Circuit diagram for the voltage distribution in the ternary alpha detector array.	127
Figure	A-7	Circuit diagram of a detector array along with the double pulser used for the matching.	128
Figure	A-8	Charge sensitive preamplifier with (a) single detector, and (b) two detectors in series.	129

.

· ·

Page No.

Figure A-9 ·	(1.) T f t (B) A p e	ernary alpha yield as a function of the neutron time-of-flight. Average height of all the pulses corresponding to each time-of-flight	130
	С	hannel.	130
Figure A-10	(A) F U	Ission yield from thick I sample as a function of	1 71
	(B) A	verage height of all the	т)т
	p n	oulses corresponding to each neutron time-of-flight	1
	с	hannel.	131
Figure A-11	(A) F	Fission yield as a function	
	o f	of the neutron time-of-flig For a 50 µgm/cm ² U ²³⁵ dep-	nt
	c	osit.	132
	(B) M	lean of the total kinetic	
	е	energy distribution of	
•	f	ission fragments corres-	
	r	onding to each neutron	•
	· t	ime-of-flight channel.	132
Figure A-12	Block	diagram of the pick-up	
	rejec	etion circuit.	133