

GOVERNMENT OF INDIA

 ATOMIC ENERGY COMMISSION
NOS LIBRARY COPY

VAN DE GRAAFF LABORATORY
PROGRESS REPORT
Compiled by
T. P. David
Nuclear Physics Division

This document was distributed by the Nuclear Data Unit of the International Atomic Energy Agency. It has been made available under the auspices of the International Nuclear Data Committee.

$$
\begin{aligned}
& \text { KARNTNER RINGI. A-10Io vienna, AuStria }
\end{aligned}
$$

GOVERMIENT OF INDIA
ATOMIC EITERGY COMLISSION

VAN DE GRAAFF LABORATORY PROGRESS REPORT

Compiled by
T.P. David
Nuclear Physics Division

BHABHA ATOMIC RESTEARCH CENTRE
BOIBAY, INDIA
1967.

CONTENTS

Page

Introduction 1
Accelorator 2
Research Experiments 9
Instrumentation and data processing 41
Radiation Survey 45
Seminars 46
Indien Nuclear Date Group 47
Iibrary 43

INTRODUCTION

This report covers the operation and utilization of the 5.5 MeV Van de Graaff accelerator at Trombay during the year 1966, the fifth year of the accelerator operation. Thraughout this period the accelerator has been worked on round the clock basis.

The ion sources reprocessed in the laboratory have been in use since November 1965 and these have given satisfactory and fairly long service. By the end of 1966 the accelerating tube has been working for more than 22,000 hours.

Experiments with charged particle reactions for the study of nuclear structure and huclear reactions as well as angular currelation ex feriments have been continued ${ }^{1}$. A number of research experiments have been carried out during the year and ses reported under the section on research experiments.

A chart showing the machin availability for research Wreriments giving the time loss due to breakdowns during the 5 year period of its operation has been included.
) Van de Graaff Progress Report T.P. David,AEET 254 (1966).

ACCBLERATOR

Machine utilization

1. Time. used by research groups $\quad 4844$ Hours
2. Time used for conditioning the machine 593 Hours
3. Time used to check machine calibration 96 Hours
4. Time lost due to failure of experimental. 247 Hours facilities

5780 Hours

[^0]
II. Component replacements:

1. Ion source bottiles are being regularly reprocessed in the Laboratory 1). These reprocessed ion sources have been used in the accelerator fron November 1965 and have given excellent service. The aluminiun canals which are renewed every time the sources are reprocessed, are fabricated in the fuclear Physics Workshop. Extreme care is taken in the fabrication of these canals as even a very minute error in the canal axis is found to ause an undesirable shift of the beam position at the defining slits above the analyzing magnet。 A total of 9 reprom cessed ion sources have been used during the year giving an average service of 640 hours each.
2. Thermomechanical leaks for use in the gas feed line to the accelerator ion source bottle are fabricated in the laboratory ${ }^{2}$). Stainless steel cylinders are now used instead of brass as these are found to give longer service before developing any cold leak. The themomechanical leaks have been renewed 4 times during the period under report.
3. A number of small components such as high voltage bushings and corona collector units are now fabricated in the laboratory for replacements.
1) AR de $254(1965)$ Ieloratory Arogress Report - T.P. David
2) Van de Graaff Laboratory Progress Report - Top。David $A M E 214$ (1965) 10.

III. Modifiogtions and additions:

1. Fabrication and assembly of one more pair of electromagnetic quadrupole focusing lenses with an aperture of 2.5 cms have been completed. This has been installed in one of the side ports of the switching magnet and has been working satiafactorily. More such quadrupole lenses are under fabrioation.
2. Isolation valves have been fitted with all the vacuum gauges in the acoelerating and differential tubes.
3. A liquid nitrogen trap auitable for installation between the main and booster diffusion pumps of the accelerator vacuum system has been dosignod and fabricated. The trap is undergoing vacuum test prior to installation.
4. Selsyn motors driving the terminal control cords have been a constant souroe of trouble necesaltating the opening of the a ooelorator tank for repaire. It is planned to replace these systens with reveraible geared. DC motors. A prototype with purh button oporation inoorporating limit awitches and indicating lamps has been oonetruoted and tested. Several such units are under fabrication. Tho roplacement is to be oarried out in the impediate future:

IV A00elerator breakdowns:

Mogt of the tine loot in breakdowne has been due to the faile ure of the various eleotrical and olectronic components as can be aeen from the table given below: A fuw more of the aocelerating tube giags sections have developed oracks due to heavy aparking
and these sections are electrically shorted to avoid further dange. The total number of sections thus shorted are 12 in the upper and 2 in the lower tube sections. However, no apparent change in the beam focusing characteristics has been so far observed in the working of the accelerator due to this shorting of acceleraring sections.

Component

1. Selsyn motors
2. Column resistors
3. Column spring
4. Charging resistor
5. Nolfor. Power supply
6. Focus supply series resistor
7. Belt charge supply*
8. Analysing magnet supply
9. Balance amplifier
10. Corona assembly
11. Switching magnet supply
12. Ierminal high voltage bushing
13. Accelerator vacuum system
14. Auxiliary vacuum system 1
15. Corona collector replacement

Failure of the components may be attributed to the high humidity in the accelerator room, beam room and control room, particularly during the monsoon months. Attempts are being made to improve the air conditioning system to take care of humidity
onntrol.
V. Operation Analysis - Five year period:

A month to month analysis of accelerator operation during the last five years has been made. Fig. (1) gives the time the accelerator was utilized for research experiments as a percentage of the maximum possible experimental time without breakdowns.

VI. Development oroject:

1. Five port switching magnet 1).T.P. David, N. Sarma, M. Bhatia and P.R. Sunder Rao - The magnet yoke and pole pieces have been fabricated from Tata 'A' grade steel and assembled. A magnet mount has been designed and fabricated with provision for levelIIng and for movement of the magnet by $\pm 1.5 \mathrm{cms}$ in the direction perpendicular to the beam axis. The magnet coil has been fabricated from electrical grade aluminium tubing of 12.7 mm square sectLon. Insulation between the turns has been provided by winding PVC insulation tape over the tube throughout its length. The coil : : made in units. of double layers of 11 turns each and taped. ".. Lese units are assembled on the pole pieces and welded end-to-end to maintain continuity of current as well as the flow of cooling witer. A high current variable DC supply has been built for feedIng the main coils. This aupply is stabilized. by a bank of series controlled transistors. The stabilization unit has been built by the Technical Physics Division.

It is proposed to provide each exit port with a pair of adjustable insulated pick up slits. The amplified signals picked up by these slits would control a low current power supply feeding an

lens system are under test. It would be quite interesting to study the effect of such a system just below the ion source because it requires less voltage, minimizing insulation and power supply miniaturization problems.

1) Van de Graaff Laboratory Progress Report - ToP. David ABYT - 254 (1966).

RESEARCH EXPERIMENTS

1. Total Cross Section for the reaction ${ }^{51} V(p, n)^{51} \mathrm{Cr}-$
K.K. Sekharan, M.K. Mehta and A.S. Divatia - The total neutron yield for the ${ }^{51} V(p, n)^{51}$ Cr reaction has been measured in the incident proton energy range 1.56 to 5.53 MeV using a 4π neutron counter. A thin Vanadium metal target evaporated on to a thick tantalum backing was bombarded with protons, the incident protons being monitored by a current integrator. The step in which the yield was measured varied from 6 to 10 KeV . The excitation function a part of which is shown in figure 2 shows a number of peaks which are overlapping. The dots are the total cross section values obtained by a separate measurement using a thick target.
${ }^{51} \mathrm{~V}+\mathrm{p}$ in the incident energy range 1.56 to 5.53 MeV leads to an excitation energy of about 12 to 16 MeV in the compound nucleus ${ }^{52}$ Cr which is the statistical region. The data was, therefore, analyzed on the basis of the fluctuation theory. Since the neutron yield increases rapidly with the incident energy the data was split into three ranges of energy namely $1.56-2.55,2.55-3.84$ and $3.34-5.53 \mathrm{MeV}$. The auto correlation function $C(\epsilon)$ was evaluated using the equation.

$$
C(\epsilon)=\frac{\Delta E}{E_{2}-E_{1}} \sum_{E_{1}}^{E_{2}}\left(\frac{\sigma\left(E_{i}\right)}{\left\langle\sigma\left(E_{i}\right)\right\rangle}-1\right)\left(\frac{\sigma\left(E_{i}+\epsilon\right)}{\left\langle\sigma\left(E_{i}+\epsilon\right)\right\rangle}-1\right)
$$

for the three energy ranges separately for various values of the averaging interval, \dot{C}. In figure $3 \mathrm{C}(0)$ is shown as a function of δ for the three energy ranges. $C(0)$ remains constant for a certain range of values of S for all the three curves. Averaging interval is chosen from this range for evaluating the average

With. To In the upper portion of figure 2, $C(\in)$ against small values of ϵ is plotted for averaging intervals equal to 225,313 , 237. 345,304 and 378 KeV . Crosses are the experimental points. Phe dots are the calculated values using the formula $C(6)=$ $O(0) \frac{\Gamma^{2}}{\Gamma^{2}+\epsilon^{2}}$ where Γ is the average level width. Since the energy step in which the neutron yield is measured is large compared to the average width obtained there are only two or three experimental points which lie on the Lorentzian. Since there are only two or three points on the curve error as much as $\pm 50 \%$ of Γ could be assigned to the value of Γ though the F.R.D. error is much smaller.

In the present experiment the experimental resolution P is about 1.5 KeV which is less than the average width Γ and the energy step $\Delta \mathbb{E}$. In an ideal case for which fluctuation analysis Le apolied F and ΔE should be less than Γ. Corti et. al.1) have developed a method of extracting Γ where $\Gamma<\rho$. For applying this method a necessary condition is that E should be equal to P. In the present experiment aince P is less than ΔE Corti ${ }^{9}$ mathod Wna not applied.

The average width Γ obtained for levels in the ${ }^{52}$ Cr nucleus in the exoftation energy range 12 to 16 MeV is 3.5 KeV .

1) M. Corti, M.G. Marcazzan, I. Milazzo Colli and M. Milazzo, Energia Nucleare, 13. (1966) 312.
2. Study of lovels in ${ }^{28}$ Si- - S.S. Kerekatte. A.S. Divatia, $^{\text {S. }}$ M.K. Mehta, K.B. Nambiar and K.K. Sekharan - Some excited levels in ${ }^{28}$ S1. Iying in the 14 MeV region 0 have been studied by the toohnique of Lastio sosttoring of alphe particies by ${ }^{24}$ Mg: The
（qu）NOILJヨS SSOYO 0ヨ1V89ヨ1NI

fig. 3
analysis will be done in order to confirm the spin and parity assignments, and to obtain the resonance parameters.
1) S.S. Kerekatte, et al, Proc. Nucl. Phys, \& Solo. State Phys.,Sympo, Bombay (1966) 120.
3. Computer programmes for the analysis of particle-gamma ray angular correlation measurements in nuclear reactions - M.A. Eswaran - For the analysis of the particlemgamma ray angular correlation measurements in the nuclear reactions of the type X ($a, b r$) y employing the 'method II' of Litherland and Ferguson 1) a computer programme has been written in Fortran for the CDC 3600 of T.I.F.R. According to this method, the angular correlateion expression is written as a linear combination of contributions due to various magnetic substates of the level excited in the respdual nucleus. Due to the special choice of 0°. or 180° detection for the outgoing particles, the substates which are populated in the residual nuclear state are limited by the sum of the target, spin and the spins of the bombarding and outgoing particles. The angular correlation function can be put in the following form, from the equations given in ref: (2)

$$
W\left(\theta_{r}\right)=\sum_{k} a_{k 0}^{b} Q_{k} \sqrt{2 k+1} P_{k}(\cos \theta)
$$

when re

$$
a_{k_{0}}^{0}=\sum_{m} p(m) \sum_{L L^{\prime}} \delta P C_{k_{0}}^{0}
$$

Q_{k} are the angular correlation attenuation factors due to the gamma counter size and δ is the quadrupole to dipole amplitude mixing ratio for the gama ray. $L L^{\prime}$ refer to the multipolarities of the gamma ray and $p=0,1$ and 2 for $L L^{\prime}=11,12$ and 22 .

Fox each spin choice of the level the angular correlation cooficients are fed ac input in the programe from the tables of Smitin ${ }^{2)}$ and a lineaf least squares fitting procedure is used with the magnetic substate population parameters as unknowns. The reeult of this fitting procedure is a value of χ^{2}, the weighted sum of the squares of the deviations. This procedure is repeated to cover the whole range of the quadrupole to dipole mixing amplitude ratio parameter δ. In the programue δ is taken as $\tan \tau$ and χ^{2} values are obtained for different values of τ from -90° to $+90^{\circ}$ in any desired steps. In the programne some conditional loops were included to overcome the problem of nonphysical solution which may arise in the linear least squares fitting procedre when a magnetic substate population parameter turns out to be negative. When this happens, that particular yarametor is auppressed to zero and the fit is repeated to get a new value of χ^{2} with this constraint. Provision has also been made in the programne to investigate the effect on χ^{2} of small population of higher magnetic sub-states due to finite particle counter size.

Another programme was written extending the above programe for use in the apecific case of ${ }^{26} \mathrm{Mg}\left(\mathrm{d}_{,} \mathrm{p}_{3} \gamma_{1} \gamma_{2}\right)^{27} \mathrm{Mg}$, where the primary and secondary gama rays are very close in energy that they are not resolved in the NaI gamma detector. In this case $p_{3}-Y_{1}$ and $j_{3}-Y_{y}$ with Y_{1} unobserved are treated together and the combined ancular correlation is analyeed as described in the next Beotion.

1) A.E. IIthe rland and Fergus on Can. J.Phye. 32.(1961) 788.

2）P．B．Smith in Nuclear Reactions Vol II ed．by Endt and Snith． Torthmiclland Publ。Co．（1962）．

4．Stuay of the 1.94 HeV state in ${ }^{27}$ Mg by means of the reaction
 －As a continuation ${ }^{1)}$ of the studies on the properties of the low lying excited states in ${ }^{27} \mathrm{Mg}$ the 1.94 MeV third excited state has been studied by oroton－gama ray angular correlation measure monts in the reaction ${ }^{2 \sigma_{\mathrm{Mg}}}(\mathrm{d}, \mathrm{p} r)^{27} \mathrm{Mg}$ employing the Litherland and Ferguson ${ }^{2}$ ）method which is independent of any assumption regarding reaction mechanism．The experimental details are desce ribed in ref．＇1）．The dewexcitation gama ray spectrum in coin－ cidence with the protons feeding the 1.94 MeV state，detected at 0° to the beam is shown in fig．6．The angular correlation data， for the combined $(0.98+0.96) \mathrm{MeV}$ ganma ray peak due to the two transitions $1.94 \rightarrow 0.93 \mathrm{MeV}$ and $0.98 \rightarrow 0 \mathrm{MeV}$ ，are plotted in Fig．7。

This represents the sum of the following two angular correlations：
a）Angular correlation of the gama ray due to the transition $1.94 \rightarrow 0.98 . \mathrm{MeV}$ in oincidence with the protons feeding the 1.94 MeV state。
b）Angular correlation of the gamma ray due to the transition $0.98 \rightarrow 0 \mathrm{MeV}$ in coincidence with the proton feeding the 1.94 MeV state with the intermediate gama ray due to the $1.94 \rightarrow 0.93$ Mev transition unobserved．
Tie data mere malysed by a method ${ }^{3)}$ similar to the one used for ＂nethod I＇of Litherland and Ferguson．The correlation functiona for（a）and（b）can be put in the following forma from the
expressions quoted in ref. (4).
$W_{a}\left(\theta_{r}\right)=\sum_{L_{1}^{m} L_{1}^{\prime}} P_{(m)} \sigma_{1}^{p_{1}} \sum_{K} C_{K_{0}}^{0}\left(J_{1} J_{2} L_{1} L_{1}^{\prime} m\right) \sqrt{2 K+1} Q_{K} P_{K}(\cos \theta)$
and
$W_{V}\left(\theta_{r}\right)=\sum_{L_{1} L_{1}^{\prime} L_{2} L_{2}^{\prime}} P_{m} \delta_{1}^{p_{1}} \delta_{2}^{p_{2}} \sum C_{0 M}^{0}\left(J_{1} J_{2} J_{3} L_{1} L_{1}^{\prime} L_{2} L_{2}^{\prime} n_{n}\right)$

Where all the quantities are as defined in ref (4) J_{1}, J_{2} and J_{3} are the spins of the three states $1.94,0.98$ and 0 MeV of ${ }^{27} \mathrm{Mg}$ and δ_{1} and δ_{2} are the quadrupole to dipole mixing amplitude ratio of the first and second gama rays due to $1.94 \rightarrow 0.98 \mathrm{MeV}$ and $0.98 \rightarrow 0 \mathrm{MeV}$ transitions respectively. P (m) is the population parameter of the magnetic substate ' m ' of the 1.94 MeV state of spin J_{1}. The combination of two angular correlations (a)\&(b) is represented by sum of the above two equateions (1) (2) ie. $W_{a}\left(\theta_{r}\right)+W_{l}\left(\theta_{r}\right)$ with the constant term of each of these equations being normalized to unity.,

A computer programme was written for the UDC - 3600 computer of T.I.F.R. to carry out the analysis of the data winch proceeds through a linear least squares fit of the data points using the above equations with magnetic substate population parameters P (n) as the unknowns. The values of magnetic substates mare limited to $1 / 2$ and $3 / 2$ due to the 0° detection of the protons in the reaction (2). The vector addition coefficients C° Ko and C° oM. were obtained from the tables of Smith^{4}). The spins J_{2} and J_{3} for the states 0.98 and 0 MeV are known to be ${ }^{1), 5)} 3 / 2$ and

FIG- 6

FIG-7
$1 / 2$ Hence the fit is performed for a fixed apin value J_{1} of the 1.94 HeV state, and for fixed values of δ_{1} and δ_{2}. The fit is repeated over the ranges of δ_{1} and δ_{2} appropriate to the spin value chosen for J_{1} with the multipolarithes being limited to quadrupole and dipole. In the programire δ_{1} and δ_{2} are taken as $\tan \tau_{1}$ and $\tan \tau_{2}$ where τ_{1} and τ_{2} varied from -90° to $+90^{\circ}$ in steps of 5°. The result of this fitting is a series of χ^{2} values for various combinations of δ_{1} and $\delta_{\text {a }}$ for each spin choice for J_{1}, χ^{2} is given by

$$
\begin{equation*}
x^{2}=\sum_{i}\left[y\left(\theta_{i}\right)-w\left(\theta_{i}\right)\right]^{2} / \sigma^{2}\left(\theta_{i}\right) \tag{3}
\end{equation*}
$$

where $\sigma\left(\theta_{i}\right)$ is the uncertainty assisned to the gamma ray yield $y\left(\theta_{i}\right)$ at angle $\theta 1$ due to counting statistics. The minima in x^{2} Tend to conclusions about sfin assimments. These fits were obtained for choice of $1 / 2,3 / 2,5 / 2$ and $7 / 2$ for J_{1}.

This analysis showed that χ^{2} values were insensitive to . variations in δ_{2}. Choosing a value ${ }^{6}$) of 0.176 for δ_{2} the χ^{2} . Iots are shown as a function of $\tau_{1}\left(=a \Omega \operatorname{ctg} . \delta_{1}\right)$ in fig. 8 for various spin choices J_{1} for the 1.94 MeV state. This analysis shows trat spin value of $5 / 2$ gives the best fit for the observed correlation with fairly large quadrupole mixture in the $1.94 \rightarrow 0.98 \mathrm{MeV}$ tranaition. Hence spin of $5 / 2$ can be assigned to the 1.94 MeV third exofted state. Further measurements are planned to be made to dotemmine conclusively the value of multipole mixing ratio of the gamma ray due to the $1.94 \rightarrow 0.98 \mathrm{MeV}$ tranation. From the oofnoidence opectrum in fig. 6 , the cascade
to oross over branching ratio of 1.94 MeV state（ioe．）
$I(1.94 \rightarrow 0.93) / I(1.94 \cdots 0)$ is estimated to be 2.0 ± 0.3.
In conclusion it is observed that the spin sequence and level energies of the states at $0,0.93$ and 1.94 MeV are consi－ stent with the expectation that they form the members of the ground state rotational band．

1）Proc．of NaP。 and S．S．P．Sympo．Bombay（956） 144 and BARC report 276 （1967）．

2）A．E．Litherland and A．d．Ferguson，Can。J。Phys．39，（1961）788．
3）C．Broude and M．A．Eswaran，Can。J。Phys．42，（1964）1300．
4）PoB．Smith in Nuclear Reactions，Vol．II ed．by PoMo Endt and P．B．Smithe North Hilland Publ．Co．Amsterdam（1962） 248.
5．）P．M．Endt，and C．van der Leun，Nucl．Phys． 34 （1962）1。
6）J．M．Lacambra，D．R．Tilley and N．R．Roberson Phys．Letters 20．（1966）649．

5．Proton－gamma ray angular correlation measurements in the reaction ${ }^{24} \mathrm{Mg}\left(d, p_{3} \gamma\right)^{25 \mathrm{Mg}}$－M．A．Eswaran，N．I．Ragoowansi and PoC．Mitra－To obtain direct evidence for the spin of the 1.61 MeV state in ${ }^{25} \mathrm{Mg}$ ，the level was excited in the reaction ${ }^{24} \mathrm{Mg}\left(\mathrm{d}, \mathrm{p}_{3} \mathrm{~V}\right)^{25} \mathrm{Mg}$ using 2.1 MeV deuteron beam and detecting the outging protons feed－ Ing the atate，at 0° to the beam in an ORTEC surface barrier dete－ ctor，the angular correlation of the subsequent 1.61 MeV de－excita－ tio．Y－ray was measured\％Measurements were analysed by a computer programe based on the Iitherland and Ferguson ${ }^{1 \text { ）}}$ method which is Independent of any assumption regarding reaction mecahnism．Re－ sults can be fitted with a spin choice of $3 / 2$ or $7 / 2$ for the state． Spin value $7 / 2$ for this 1.61 MeV state agrees with the expectation from other evidences．For this spin value the values of quadrupole
x^{2} vs τ_{1} WHERE TAN $\tau_{1}=\frac{\text { QUADRUPOLE AMPLITUDE }}{\text { DIPOLE AMPLITUDE }}$

to dipole mixing amplitude ratio parameter $|\delta|$ ，for which the data could be fitted are 0.18 and 2．14．The value of 0.18 for $|\Sigma|$ ，is consistent with the known life time ${ }^{2)}$ of the 1.61 MeV level．

1）A．E．Iitherland and A。J．Ferguson。Can．Jo．Phys．39，（1961）788
2）Pomo Endt and C．van der Leun Nucl．Phys．34，（1962）1．

6．Fluctuation analysis of the compound nucleus levels of $\underline{{ }^{52} \mathrm{Cr}}-$ C．M．Lamba，N．Sarma，NoS．Thampis D．K．Sood ${ }^{*}$ and V．K．Deshpande＊－A brief account of all possible aspects of the fluctuation theory as applied on the reaction elastic scattering of protons from ${ }^{51} \mathrm{~V}$ 1）is presented in this work．

Excitation functions at angles（ $100^{\circ}, 120^{\circ}, 140^{\circ}, 160^{\circ}$ ） covering energy range 4.005 to 5.515 in steps，δE of 5 KeV are measured with an experimental resolution ρ_{0} of 1 KeV and are shown in Fig．（9）．The cross section for inelastic proton and alpha groups was too small to cross background barrier．

1．1 Auto correlation analysis for full range of data。Autos． correlation functions ${ }^{1)}$ for total energy range，were calculated． It is found that $C_{p}(t)$ does not fluctuate about E axis but has a linear modulation imposed on it．This behaviour is attri－ buted to energy dependent non fluctuating process．In such a case the modified auto－correlation function ${ }^{1)}$ is a lorentzian之isplaced by an amount $K_{0}^{\prime}(t)$ from ϵ axis（fig．10）。 $K_{0}^{\prime}(0)$ is a measure of modulation．The，form of $K_{0}{ }^{\prime}(t)$ could not be

[^1]calculated accurately but is visually estimated toby a straight Lie. This shows the presence of strong modulation. The width Than (ignoring modulation) and $\Gamma_{\text {cove }}$ (corrected for modulation) are shown in Table I。

The modulation effects are eliminated by taking local average of' Q points of energy width $q \Gamma$. The value of \mathscr{V} is chosen from the q dependence of $\mathcal{C}_{p}^{(}(0)$ (fig.11). The agreement ai and (Cf table I) shows that this method eliminates modulateLon effects. The level width Γ_{G} are also shown.

In Fig. 9 the averaged cross section $\sigma_{q}\left(E_{i}\right)$ for $q \Gamma$ $=400 \mathrm{KeV}$ and Ruthorford scattering cross sections are shown With thick and dotted lines respectively. Minimum at 4.955 MeV at all angles gives an idea of the presence of intermediate structure of width 900 KeV . However, considering that $\sigma \mathcal{V}$ (ii) comprises of so many other factors, it is not possible to isolate intermediate structure.
2.1 Determination of Γ by variable energy resolution method: The autocorrelation analysis is not a very sensitive tool when $S E>f$ and $\delta E>\Gamma$. As it has been made sure that $C_{p}(0)$ and probability histograms (section 5.1) do not vary with step size a method proposed by Corti is a more reliable tool for extracting Γ. (To ensure that two excitation function of 151 puinte each were constructed at each angle with $\delta E=10 \mathrm{KeV}$ using alternate points). $C_{p}(f)$ the normalised variance decrelse rapidly as increases, the rate of decrease depending on f - By successive application of formula $F \cdot \sigma_{r}\left(E_{i}\right)=\frac{1}{r} \frac{\sum_{S}=L}{S=L}\left(E_{r}\right)$ nev excitation

FIG. 9

FIG: 10

TABLE I										
$\left\lvert\, \begin{gathered} \theta_{\text {LAB }} \\ \mathrm{DEGREES} \end{gathered}\right.$	$C_{p}(0)$	$K_{0}^{\prime}(0)$	$C_{p}(0)-K_{j}^{\prime}(0)$	$c_{p}^{q}(0)$	$\Delta C_{p}(0)$	「raw (KeV)	$\Gamma_{\text {CORR }}$ (KeV)	$\begin{gathered} \Gamma_{q} \\ (\mathrm{KeV}) \end{gathered}$	$\Gamma_{\text {CORTI }}$ (KeV)	$\frac{\Delta \Gamma}{\Gamma}$
100	0.0636	0.0512	0.0124	0.0166	± 0.0040	22.4	3.5	4.0	3.6	± 0.084
120	0.0348	0.0164	0.0184	0.0206	± 0.0048	17.3	3.5	4.4	4.0	± 0.086
140	0.0422	0.0222	0.0200	0.0236	± 0.0048	34.5	4.0	4.1	4.3	± 0.084
160	0.0583	0.0300	0.0283	0.0363	± 0.0065	24.0	3.5	4.0	4.4	± 0.085

FIG. 11
function with worse resolution are obtained. If square resolution function, $f=\left\{\right.$ new resolutions for the $y^{\text {foperat- }}$. inn is $\gamma \%$. In the present case $f=\mathbb{E} E$ so for $\gamma=1,2$, $3 \ldots$ excitation function are assumed to have resolution , $f, 25 E, 3 \mathrm{~S}, \ldots \mathrm{respectively}$.

The function $C_{f}(f)$ is fitted with Gibb's formula ${ }^{2)}$ for various f values. This function is very sensitive to the value of Γ chosen (Fig. 12). The values of Γ obtained are shown in Table I as Γ cormI.
3.1 Cross correlations: Angular cross correlations were calculated and a rise with increasing \boldsymbol{q}^{1} is found and is ascribed to modulation effects. It is found that cross correlations for $\left(100^{\circ}, 120^{\circ}\right),\left(100^{\circ}, 140^{\circ}\right),\left(100^{\circ}, 160^{\circ}\right)$ are $.703, .6076$ and .4906 respectively.

Thooretical ectimate of coherence angle when y_{D} is high is difficult to make。
4.1 The energy is then divided in four equal parts (shown by vertica lines in Fig. (9), because firstly y_{0} is less dependent on energy over a saller range so that probability distribution analysis to get N and y_{D} assuming constant y_{D} is justified and secondly a systematic variation of $C(0)$ and Γ can be studied. 4.2 The auto correlation analysis for 4 parts separately has indicated the following:
(i) Asfr_{g} (Ei) do not differ from $\left\langle\sigma\left(E_{i}\right)_{F}\right\rangle$ (dotted lines parallel to energy axis in Fig. (3), $K_{o}^{\prime}(0)$ is small and functions and $c_{p}^{\prime \prime}(b) \& c_{p h r e}$ identical.
(li) C(0) varies very much within energy range thus showing variation of y_{c} over energy range assuming if constant. (iii) Γ^{1} does not vary with energy within the error of 0.8 KeV . 5.1 Probability distribution: 32 sets of experimentally normalised probability histograms $P_{\theta}^{E_{x}}(y)$ for full range and local averages are found quite similar. Theoretical distributeions $P_{N}\left(y, y_{D}\right){ }^{3}$) were also calculated. As N is quite large increase in either N or Y_{D} produces similar effects. As a result large number of (N, Y_{D}) sets fit experimental distributeions equally well. These sets (Cf.Fig.13) were restricted by following constraints.
(a) N does not vary through an energy block
(b) $\sigma_{D} \geqslant\left\langle\sigma_{R_{\text {wi }}}\right\rangle$
(c) such $\left(\mathbb{N}, y_{D}\right)$ sets should give a $C(0)$ value which agrees to experimental one within errors (Fig. 13)

Angle N

$100^{\circ} 24 \pm 3$	0.85 ± 0.05	0.85 ± 0.05	0.60 ± 0.10	0.70 ± 0.10
$120^{\circ} 20 \pm 3$	0.33 ± 0.03	0.87 ± 0.05	0.50 ± 0.10	0.75 ± 0.05
$140^{\circ} 20 \pm 3$	0.80 ± 0.07	0.75 ± 0.05	0.60 ± 0.12	0.70 ± 0.07
$160^{\circ} 15 \pm 3$	0.76 ± 0.04	0.67 ± 0.05	0.53 ± 0.08	0.67 ± 0.06

As expected by theory if falls at backward angles. Theoretical value of N at 90° is 128 in this present reaction. This prediction of theory is not at all satisfactory as from data $\mathbb{N} \exp =\frac{1}{C_{p}^{2}(0)}$ at 100° is 60 and any direct process y_{D} will lower N exp further.

FIG. 12

FIG. 13

vonclusions：

（！）A large ange（enemgy and ansle）of datamust be studied s， thet modulation，which standard theory does not describe，may become apparent．
（2）Γ obtained by different metrods agree well but Corti＇s method is found to be more reliable in present circumstances．
（3）Tor local averages proper averaging interval shouid be carsen。
（4）Probebility distribution analysis shows that is meaningful to distinguish direct and compound contribution even at high excitations where compound nucleus lives for a very small time．
（5）Probability histugrams and normalised variance are unaffect－ ed by steo size provided smple is large enough．

1）B．W．Allardyce et al．Nucl．Phys． 35 （1960） 193
2）1i．Corti et al．Eneigia Nucleare 13 （1966） 312.
3）Bxperimental evidence of statistical fluctuations． ＇I Mayer Kuckuk．Hencegnovi Lectures．

7．A search for the level at 303 KeV in ${ }^{51} \mathrm{Cr}-\mathrm{K} . \mathrm{V} . \mathrm{K}$ ．Iyengar＊， B．Lal ${ }^{*}$ ，SoK。 Gupta＊and MoD．Deshpande＊－The 803 KeV Ievel found in ${ }^{51}$ Cr through the ${ }^{50} \operatorname{Cr}(d, p)^{51} \operatorname{Cr}$ reaction does not seem to be senerated in the ${ }^{51} \mathrm{~V}(\mathrm{p}, \mathrm{n})^{51} \mathrm{Cr}$ reaction to an intensity greater then 2% of the 747 KeV level as determined by observing the direct gamma radiations with a lithium－drifted gexmanium detem ctor with incident orotons of energy in the range $2.310-$ 3.100 MeV 。

Published in Nuclear Physics A 93 （1967） 257.
＊Tata Institute of Pundamental Research，Bombay．

3．Stuay of the ${ }^{5!} V(0, n)^{51}$ Or reaction $-K . V . K$ ．Iyengar＊ S．Ko Gupta and B．Lal＊The excitation functions of the 0.75 ， 1．27． 1.35 and the unresolved 1.50 plus 1.56 MeV gamma rays rem sulting from the ${ }^{51} V(p, n)^{51} C r_{r}^{*}$ reaction have been measured from their respective thresholds upto 5.5 MeV ．They all vary smoothly with proton energy and exhibit no significant structure．The ratio of the measured yield of the 0.75 MeV gama rays to that of the 1.17 MeV gamma rays as a function of incident proton energy is compared with the ratio predicted by the Hauser－Fesh－ bach Theory，and the spin of the levels was deduced to be $3 / 2$ and $5 / 2$ resjectively．The $n_{1}-0.75 \mathrm{MeV}$ gamma and $n_{2}-1.17 \mathrm{MeV}$ gamma angular correlations have been measured at proton energies 3．1， 3.3 and 3.5 MeV in the plane of the reaction and at． 3.1 and 3.3 MeV in the plane perpendicular to it．The shapes of the meastred correlations are not in complete agreenent with the pre－ dictions of the compound nucleus statistical model and seem to indicate either the preponderance of a cluster of compound nucl－ eus Ievels or some interference effect．

$$
\text { Published in Nucl. Phys. A } 36(1967) 417 .
$$

9．Fluctuations in the integrated cross section of the reaction ${ }^{45} \mathrm{Sc}(\mathrm{p}, \mathrm{n})^{45} \mathrm{mi}-K . V . K$ ．Iyengar ${ }^{*}$ ，S．K。Gupta＊，K。K。 Sekharan，MoK．Iehta and A．S．Divatia－The integrated cross seotion of the reaction ${ }^{45} \operatorname{Sc}(\rho, n)^{45}$ Ti as a function of incident proton ellergy has been measured in the energy interval 2.410 to 5.250 MeV with energy steps of 5 KeV ．The overall enefgy

[^2]mosution yas anout 3.5 KeV 。 Tho excitation function shows fluotutions around an average．This average increases with Woun encray．The statistical theory of Ericson was apulied； the ado－correlation was oplalatod and usod to determine the avorage wiath of levels in the compound nucleus ${ }^{46}$ Ti in the excitation energy range 13.230 to 15.140 MeV ．The analysis yields an nverage width $\left\langle\Gamma^{1}\right\rangle$ of 6 KeV coresponding to a conpound nucleus lifetime of $1.1 \times 10^{-19} \mathrm{sec}$ 。

Published in Nuclear Physics A 96（1967） 521.
10．Search for the 0.510 and 0.630 MeV levels in ${ }^{55} \mathrm{Fe}$ and the ancular distribution of camma rays from ${ }^{55} \operatorname{Hn}(p, n \gamma)^{55}$ Fe reaction －K．V．K．Iyengar＊，B．Lai＊and S．K．Gupta＊－The 0.510 and 0.580 MeV levels in ${ }^{55} \mathrm{Fe}$ do not seem to be generated in the $55 \mathrm{~m}(p, n)^{55}$ Fe reaction to an intensity higher than 5% of the 0.410 HeV level as detemined by observing the direct gama上adiations with a lithium drifted germanium detector，with inci－ dent protons of enengy $2.40-3.50 \mathrm{MeV}$ ．The measured angular Aistributions of the 0.333 and 1.322 MeV gama rays at $\mathrm{E}_{\mathrm{p}}=2.40$ and 3.50 MeV and that of the 1.413 MeV gamma rays at $\mathrm{E}_{\mathrm{p}}=3.50$ MeV are in reasonable agrement with those calculated from stat－ ietical model．The reaction proceeds through the compound nu－ cleus amd the random phase aporoximation appears to be valid for the compound mucleus of ${ }^{56} \mathrm{Fe}$ at an excitation energy of about 13 MeV 。

To bo published in the Proceedings of Nuclear Physics and Solid State Physics Symposium，India（1967）．

[^3]
Calculated efficiencies of cyLindrical type Ge（Li）

 detectors－ $\mathrm{H} . \mathrm{V} . \mathrm{K}$ 。 Iyengar＊and B 。 Lat＊－Gama ray detection efficiencies of Ge（Li）detectors of cylindrical shape for point sources placed on the axis of the detector were calculated on a CDC－ 3600 computer．Detectors of cross sectional area 1 － 10 sis cm．，depletion depths $2-10 \mathrm{~mm}$ and source to crystal distances $1: 25 \mathrm{~cm}$ were chosen for calculation．These efficiencies will be useful for quantitative measurements of gamma－ray intensities in nuclear reactions as well as in the study of the decay of radioactive nuclei．The detection efficiency ε defined as the ratio of the number of counts to the number of gama rays emitted by the source is given by the expression

$$
\varepsilon=\frac{1}{4 \pi} \int\{1-\operatorname{xep}(-\mu x)\} d \Omega
$$

where k is the thickness of the detector as seen by the gamma ray，doe the solid angle subtended at the source by the deter－ otor and μ the total absorption coefficient $i . e .$, the sum of the photoelectric absorption coefficient，pair production absorpt－ ion coefficient plus the compton absorption and compton in－ coherent scatter components．

$$
\begin{aligned}
& x(\theta)=t \sec \theta \text { for } 0 \leqslant \theta \leqslant \tan ^{-1} \frac{y}{h+k}=\alpha \\
& x(\theta)=y \operatorname{cosec} \theta-h \sec \theta \text { for } \alpha \leqslant \theta \leqslant \tan ^{-1} \frac{r}{h}=\beta \\
& d \Omega=2 \pi \sin \theta d \theta
\end{aligned}
$$

The expression for the efficiency was written as the sum of the three integrals
＊Tate Institute of Fundamental Research，Bombay 。

$$
\begin{array}{r}
\therefore=\frac{1}{2}\left[\int_{0}^{\beta} \sin \theta d \theta-\int_{0}^{2} \exp (-\mu x(\theta)) \sin \theta d \theta\right. \\
\int_{0}^{\beta} \exp (-\mu x(\theta)) \sin \theta(\theta)
\end{array}
$$

S10 latter two of which wore evannatco
using Gauss quadrature method by means of a programme written for ODU - 3600 computer at Tata Institute of Fundamental Research.

Shown in fig. 14 is the geonetry of the cylindrical detector and fig. 15 a family of curves representing the type of total efficiency curves (obtained by calculation) for a Ge(Li) detector of area $2 \mathrm{sq.cm}$ and of depletion depth 2 mr for source heights (moasured from the front face of the detector) ranging from $1-25 \mathrm{~cm}$ 。

A orogramme is also being written for CDC - 3600 computer to celculate the full energy peak efficiencies of cylindrical type Ge(Li) detectors by a Monte Carlo metnod to take into acoount multiple interactions of gamma rays in the detector volume to suplement the total efficiency data to make them more useful.
12. Computer programe for calculating (N, N^{9} Y) correlation in nuclear reactions, nucleon angular distributions and gama angular distributions oroceeding through the compound nucleus reactLon mechanism - K.V.K. Iyengar* - Satchler and Sheldon have derived expressions for (i) (N, $N^{\circ} \gamma$) angular correlations where Tis any nucleon (ii) nucLeon angular distributions and (iii) Gama ray angular distributions for cases in which the nuclear reaction proceeds tnrough the compound nucleus reaction mechanism.

* Tata Institute of F'undamental Research, Bombay.

The following expressions are valid when there is no intervening unobserved radiation. See references 1-3) for an explanation of the notation used here.

$$
\begin{align*}
& W\left(\theta_{1}, \theta_{2}, \varphi\right)=\frac{\lambda^{2}}{32 \pi} \frac{\left(\hat{J}_{2}\right)^{2}}{\left(\hat{J}_{0}\right)^{2}} \sum_{\mu, \nu, \lambda, J_{0}-J_{1}-J_{2}+J_{3}+\dot{\gamma}_{1}(\pm), \dot{\gamma}_{2}(\pm)}^{(\pm)} \\
& x\left(\hat{J}_{1}\right)^{4}\left(\hat{\gamma}_{1}^{(\pm)}\right)^{2}\left(\hat{\gamma}_{2}^{(\pm)}\right)^{\cdots} \delta_{ \pm}\left[\left\langle\mu \text { gl } \gamma_{1}^{(\pm)} \gamma_{1}^{(\pm)} \frac{1}{2}-\frac{1}{2}\right\rangle\right. \\
& \left.x<\operatorname{Vol}_{0} \dot{\partial}_{2}^{(\pm)} \dot{\partial}_{2}^{(\pm)} \frac{1}{2}-\frac{1}{2}\right\rangle\left[W \left[W\left(J_{1} J_{1} \dot{\gamma}_{1}^{(\pm)} \dot{\partial}_{1}^{(\pm)} ; \mu J_{0}\right]\right.\right. \\
& x\left[(\hat{L})^{2}<\lambda \omega|L L|-1>N\left(I=I_{2} L L ; \lambda J_{3}\right)\right. \\
& +2 \Delta \hat{L} \hat{L}^{\prime}<\lambda 0 \mid L L^{\prime} 1-1>W\left(J_{2} J_{2} L L^{\prime} ; \lambda J_{3}\right) \\
& \left.+\Delta^{2}\left(\hat{L}^{\prime}\right)^{2}<\lambda e\left|L L^{\prime}\right|-1>W\left(J_{2} J_{2} L^{\prime} L^{\prime} ; \lambda J_{3}\right)\right] \\
& x\left(1+\Delta^{2}\right)^{-1} X\left(J_{1} J_{1} \mu ; \dot{\gamma}_{2}^{(\pm)} \dot{J}_{2}^{(\pm)} \nu ; J_{2} J_{2} \lambda\right) \\
& \begin{array}{l}
x \tau^{\prime} S_{\mu \nu \lambda}\left(\theta_{1}, \theta_{2}, \phi\right)-\cdots \cdots-\cdots(-)^{J_{0}-2 J_{1}+J_{2}-1}\left(\hat{J}_{1}\right)^{4}\left({\left.\left.\hat{\gamma_{1}}\right)^{2}\right)^{2}\left(\hat{j}_{2}\right)^{2} /\left(\hat{J}_{0}\right)^{2}}_{=}=\frac{1}{8} x^{2}\right.
\end{array} \\
& x<\nu 0 \left\lvert\, \gamma_{1}^{(\pm)} \gamma_{1}^{(\pm)} \frac{1}{2}-\frac{1}{2}><\nu 0 \cdot \ddot{\gamma}_{2}^{(\pm)} \dot{\gamma}_{2}^{(\pm)} \frac{1}{2} \cdots \frac{1}{2}>\right. \\
& \times W\left(J_{1} J_{1} \dot{\gamma}_{1}^{(\pm)} \dot{\gamma}_{1}^{(\pm)} ; \nu J_{0}\right) W\left(J_{1} J_{1} \dot{\gamma}_{2}^{(\pm)} \dot{\gamma}_{2} ; ~ \nu J_{2}\right) T P_{\nu}\left(\cos \theta_{1}\right) \\
& \left(\frac{d \sigma}{d \Omega}\right)_{\gamma} \\
& =\frac{1}{5} \lambda^{2} \sum(-) J_{0}+\dot{\gamma}_{2}^{(\pm)}-2 J_{1}-2 J_{2}-1 \cdot 5+J_{3} \frac{\left(\hat{J}_{1}\right)^{4}\left(\hat{J}_{2}\right)^{2}\left(\dot{\gamma}_{1}^{(\pm)}\right)^{2}}{\left(\hat{J}_{0}\right)^{2}} \tag{2}\\
& x<\lambda 0 \left\lvert\, \dot{\gamma}_{1}^{(\pm)} \dot{\gamma}_{1}^{(\pm)} \frac{1}{2}-\frac{1}{2}>W\left(\dot{\gamma}_{1}^{(\pm)} \dot{\partial}_{1}^{(\pm)} J_{1} J_{1} ; \lambda J_{0}\right) W\left(J_{1} J_{1} J_{2} J_{2} ; \lambda \dot{j}_{2}^{(\pm)}\right)\right. \\
& \times \operatorname{TP} \lambda\left(\cos \theta_{2}\right)\left(1+\Delta^{2}\right)^{-1}\left[(\hat{L})^{2}<\lambda 0|L L|-1>W\left(L L J_{2} J_{2} ; \lambda J_{3}\right)\right. \\
& +\left(\hat{L}^{\prime} \hat{L}^{\prime}\right)<\lambda 0\left|L L^{\prime}\right|-1>W\left(L L^{\prime} J_{2} J_{2} ; \lambda J_{3}\right) \\
& +\left(\hat{L}^{\prime}\right)^{2}<\lambda 0 \mid L^{\prime} L^{\prime} 1-1>W\left(L^{\prime} L^{\prime} J_{-} J_{2} ; \lambda J_{3}\right)
\end{align*}
$$

FIG-14

TOTAL COUNTING EFFICIENCY

Programe in Fortran language have been written for the ODO－3600 comouter at the Tata Institute of Fundamental Research to evaluate the above expressions to obtain nucleon－y triple correm lation and also nucieon and ganala angular distributions．All the three programes were designed to handle arbitrarily hich values of nuclear spin（integer and half integer）and gamma radiation of mixed multiolarity．Results could automatically be obtained not only for a specified multipole mixture（using Δ from input data）but also for $\Delta=0$ contributions from any number of partial waves could be taken into account in both the incident and exit channels．The grograme was capable of taking into account the decay of the compound nucleus through all the energetically allowed channels．The spins and parities of the ground state of the target and residual nucleus and the excited stares of the residual nucleus were supplied as inputs．The Q values for excitation of the different states of the residual nucleus（or molei when more than one reaction was possible） vas also read into the arograme as input。 A subroutine was used to derive the transmission coefficients at the desired incidert and emitted nucleon energies，fron the transmission coefficients read into the programe for the incident and emitt－ ed nucleons at certein discrete energies for each partial wave。 The Clebsch－Gordon coefficients，Racah coefficients，Fano or X coefficients，associated Legendre polynomials and Legendre plymomials which were required in the main expression were graluated as separate functions as part of the main programme。 Typical time taken for evaluating a triple correlation was
sconerin of the ordex of about 90 secs. The time required for computing nucleon and gama aqular distributions was very moon less. These programes have becn extensively used to calculate $n_{1}-0.75 \mathrm{MeV}$ gama ray and $n_{2}-1.17 \mathrm{IfeV}$ gama ray angular correlations in ${ }^{51} V(p, n y)^{51}$ Cr reaction and to calcilate gamma ray anmiar distributions in ${ }^{55} \mathrm{Mn}(\mathrm{p}, \mathrm{ar}){ }^{55}$ Pe reaction and also to calculate the 0.75 MeV and 1.17 MeV gama ray gama ray excitation functions in the reaction ${ }^{51} \mathrm{~V}(\mathrm{p}, \mathrm{n} \boldsymbol{r})^{51} \mathrm{Cr}$.

1) 2. Sheldon, Revs. Mod. Phys. 35 (1963) 795.
1) N: Sheldon, Rhys. Rev. 133 (1964) B732.
2) E. Sheldon and D.M. Van Patter, Revs. Mod. Phys. 38 (1966)143.
13. Kinetic energy distribution of fission fragments in the fission of 235 induced by noutrons with enorgy ranging from Thermal to 2 IheV - D.In. Nadkarni and B.R. Ballal - Measurements ${ }^{1}$) of angular distribution of fission fragments have indicated that thore is a lange jairing gap of about 2.7 INeV in the transition state spectrum of heary even-oven nuclei. On this basis single particle levels in the transition state spectrum of ${ }^{236}$, J are not expected to be effective until the energy (E_{n}) of incident neutrons bombarding the ${ }^{235} \mathrm{U}$ target exceeds about 2.1 MeV . With a view to stwdy the possible dependence of the average kinotic energy of fission fragments \bar{E}_{k} on the collective Levols in the transition spectrum, \bar{E}_{k} has been measured in the fission of 235 U induced by neutrons with energies ranging from thermal to 2.1 MeV . The fission chamber consisted of a gridded ionization chamber filled with purc Argon gas at 1.5 atm . The cathode of the ion chamber was coated with $100 \mu \mathrm{~g} / \mathrm{cm}^{2}{ }^{235} \mathrm{U}$ 。
mio uathode-gnid and grid-collootom distances wero 2.1 cms and
 formance itth eathode, grid and coliectore at oV, +425 and +1050 V respectively and the oollector pulae height spoctrum was moorded on a ioo-channel analyzer after ampification. Thitrons of energy 300 KeV to 2.13 heV were obtained from $\mathrm{T}(\mathrm{p}, \mathrm{n})^{3} \mathrm{He}$ reaction using the 5.5. MeV Van de Graaff foceleratoro The tritium target thickness was ebout 100 KeV for 1 HeV protonso Energy calibration was gehieved using thernal neutron induced fission and this was done by surnounding the chamber with thick oaraffin blocks: For the fast neutron runs the energy regicn from 300 Kev to 2.1 HeV was divided into 21 roughly equal divisions amd each ore was selected at random. At each of these energies 2.5×10^{4} to 7.5×10^{4} events were recordedo From the newsured speotrum E_{k} was obtained and corrections were made for tre motion of the contre of mass ${ }^{2}$) $\left[\bar{E}_{k}\left(I_{n}\right)-\bar{E}_{k}\right.$ (themal)] versus E_{n} is shown in Fig .16 .
H_{k} found to remain essentially constant within about 0.6% ($\because 1$ meV) men the incident neutron energy was varied from therma to 2.1 MeV . Within this linit however, there is an indication of small dip it $\mathrm{E}_{\mathrm{n}}=370 \mathrm{KeV}$ and 370 KeV and a sulal peak at $\mathrm{E}_{\mathrm{n}} \therefore 650 \mathrm{KeV}$ and 1.24 Me . Although some of these variation could be attributed to statistical fluctuation the possibility that these are associated with the nature of the transition states accessible at these energies cannot be ruled out. BIyumkina et a1 ${ }^{3}$) have observed a dip at $E=400 \mathrm{KeV}$ and a smaller $d i_{i}$ anound 1 lieV and a peak at $E_{n}-770 \mathrm{KeV}$ 。

The energy balance equation is $Q+E_{n}=\bar{E}_{k}+\bar{E}_{\nu}+\bar{E}_{\gamma}$ whore $\overrightarrow{\mathrm{E}}_{1}$ is the average total kinetic energy of the fragments， \bar{F}_{v} and \bar{E}_{y} are the average energy emitted in the form of prompt neutrons and ganma rays respectively．Assuming that \bar{E}_{y} is independent of incident neutron energy，as reported by Proto－ popor et $\mathrm{al}^{4)}$ ，the variation of the average number of prompt neutrons emitted per fission（ $\bar{\nu}$ ）with E_{n} have been calculated using the measured values of E_{k} and compared with the measured values of $\bar{\nu}$（Fig．17）．The measured as well as the calculated $\bar{\nu}$ do not show a monotonically increasing dependen of of $\bar{\nu}$ on E_{n} ． The calculated values are consistently higher than the measured ones probably due to an increase of \bar{E}_{y} and of the average energy of the prompt neutrons with increasing E_{n} ．Also the number and average energy of prescission neutrons may vary with E_{n} 。 In vien of these considerations $\bar{\nu}$ vs E_{n} data is not very suitable for studying the variation of internal excitation energy of fission fragments with E_{n} ．The most convenient is to look for the variation of E_{k} with E_{n} 。

Blyumkina et al ${ }^{3)}$ ，have suggested that these variation can be accounted for by assigning a higher $\overline{\mathrm{E}_{\mathrm{k}}}$ for states having odd spin－parity．However，the observed variation can also come about if there is a rapid variation of the fragment mass distri－ bution with E_{n} 。 In particular an increase of symnetric yield results in a decrease of jk ．Cunninghame et a1 ${ }^{5}$ ）observed a decrease in peak to valley ratio of the nass distribution as E_{n} is increased from 65 KeV to 1 MeV ．It is passible to correlate the dependence of average kinetic energy，excitation energy and

FIG-17
aass distribution on the collective states of the transition state spectmun on the basis of the collective models of Bonr ${ }^{6}$ ） and Theeler ${ }^{7}$ ．

1）H．C．Britt，et al．Phys．Rev．Letts，11，（1963） 343.
2）J．s．Wahl，Phys．Rev．95，（1954）126．
3）Yu．A．Blyunkina et al．Nucl．Phys．52，（1964）648．
4）A．N．Protopopov and B．M．Sirijager，JEmP $I_{8}(1958) 231$.
5）J．G．Cunninghame et al，Nucl．Phys．27，（1961）154。
6）A．Bohr，Proc．Int．Conf。At En．$\quad \therefore$（1956）911。
7）J．A．Wheeler，Fast Neutron 2hys．Parit II，（1963）。
14．Angular anisotropy of fission fragments in 3 MeV neutron induced binary and ternary fission of ${ }^{235} \mathrm{U}$－DoM．Nadkarni－To understand，the nechanism of ternary fission，fission accompanied by long range alpha particles（IRA），it is important to know at what stage of the process these particles are emitted．The ． measurement of fragment angular distributions in ternary fission can be expected to provide an understandirg cibout the stase at which IRA are emitted．Previous measurements ${ }^{1 \text { ）}}$ of anular distri－ bution fragments in ternary fission indicated that the anisotro－ pies in binsery and ternary fission are different．In the present work using solid state detectors the anisotropy of fragments in ternary fission of U^{235} induced by 3 MeV neutrons has been measured．

Two diffused－junction type solid state detectors werc used to detect fission fragments emitted along and at right angles to the incident neutron bean direction and the third solid state detector mas kept very close to the fissile target to detect LRA in nearly 2π georetry，（Fig．18）．${ }^{235} \mathrm{U}$ target was $1 \mathrm{mg} / \mathrm{cm}^{2}$ thick
on a. $3 \mathrm{~m}_{6} / \mathrm{cm}^{2}$ Al backing which allowed only IRA to reach the back detector. 3 HeV neutrons were produced with $T(p, n)^{3}$ He reGotion using the 5.5 MeV Van de Graaff Accelerator. The very loy cross-section for fast neutron induced ternary fission necessitated keeping the fragment detectors near the target resulting in poor angular resolution ($\approx 35^{\circ}$)。 The spectra of fission fragment kinetic energy in 0°-and 90°-detectors in coincidence and anti-coincidence with the IRA pulse were recorded simultaneously in four 100-channel analyzers. Efficiency correction factors for 3 MeV neutron induced binary and ternary fission were made using the isotropic fragment distribution in thernal neutron induced binary and ternary fission respectively. The thermal neutron measurements were carried out by surrounding the fission chamber with paraffin blocks and keeping the chamber configuration constant. About 810 events of 3 MeV neutron induced ternary fission and about 1590 events of the rmal neutron induced ternary fission were recorded in a series of runs lasting nearly 100 hours.

The results of these measurements are (i) Binary fragment anisotropy $\left(\mathbb{N}(0) / \mathbb{N}\left(90^{\circ}\right)=1.04 \pm 0.01\right.$ (ii) Ternary fragment anisotropy (N $\left(0^{\circ}\right) / N\left(90^{\circ}\right)=0.87 \pm 0.06$ (iii) The ternary to binary cross-section ratio was found to be about 50% and 25% loner for 3 MeV neutron fission as compared to thermal neutron fission in the 0° and 90° directions respectively. (iv) The decrease in the averare kinetic energy of ternary fission fragments comarod to that of binary fragnents was found to be approximately equal ($14 \pm 3 \mathrm{MeV}$) both in the thermal and 3 MeV neutron induced

FIG 18

fission.

The rather low binary anisotropy is attributed to the poor angular resolution as vell as to the variation of the noutron flux across the fissile target. The binary feagment anisotropy was separately measured for the case where the neutron flux is nearly uniforn acrosis the fissile target and was found to be 1.107 ± 0.017. Using the values of binary anisotropies mesured in the present work and that reported by Simons and Henke1 ${ }^{2}$), approximate correction for the angular resolution and non-uniform flux of nentrons across the target have been made to the ternary fission data. The corrected ternary anisotropy was found to be (0.91 ± 0.07) 。

It is of interest to correlate ($n,(x)$ anisotropy in 3 MeV neutron inducod ternary fission of ${ }^{235} U$ 3) with the anisotropy of ternary fragments measured in the present vork. According to the Dvaporation Model 1) the angular distribution of IRA is given by

$$
n_{\alpha}(\theta)=1+\frac{\alpha^{2} \bar{T}^{2} \theta^{2}}{2} \cos ^{2} \theta \approx a+b \cos ^{2} \theta
$$

Imposing on this the condition that illa and temary fission fragments are emittod at right angles to each other, the ternary
 Using the LRA aniantrupy ${ }^{3}$ (11.32 ± 0.12 this gives for the temary fragment anisotropya valuo of 0.36 ± 0.05 which is in fair areement with the value obtained in the present measurements. The results of the present work suggest that due to the emission of IRA the K-distribution at the scission state in tornary
fission is different from that in binary fission.

1) IR.Ramanna, K.G. Nair and S.S.Kapoor, Phys.Rev.129, (1963) 1350 D. D. Nadkarni, Proc.Nucl. Phys.Symosiun, India (1966) 35。
2) J.E. Simmons and RoL.Henkel, Phys. Rev.120, (1960) 198.
3) V.A. Hattangadi, T.Methasiri, D.M. Nadkarni, R. Ramanna and P.N. Rama Rao, SM-60/71, IAEA.Symposium on Phys \& Chem. of Pission, Salzburg (1965).
15. Total and partial widths for levels in 170-A.S. Divatia, K.K. Selcharan and M.K. Mehta - Motal widths for 16 levels in ${ }^{17} \mathrm{O}_{\mathrm{O}}$ in the excitation energy region 7.9 to 10.5 HeV have been obtained fron a study of the total cross section for the ${ }^{13} C(\alpha, n){ }^{16} 0$ reaction ${ }^{1)}$, for the incident alpha energy range $1.95-5.57 \mathrm{MeV}$, using a 4π neutron detector. Partial widths Γ_{α} and Γ_{μ} and the corrcsponding reduced widths γ_{α}^{2} and γ_{m}^{2} have been determined for the four levels at $8.40,8.50,9.19$ and 9.83 MeV .

To be published in the Physical Review.

1) K.K. Sckharan, A.S. Divatia and M.K. Mehta, Proceedings of N.P. and S.S.P. Symposium, India, (1966) 93.
16. Study of the structure in the excitation functions for the reactions ${ }^{27} \mathrm{Al}\left(p, \alpha_{d}\right)^{24} \mathrm{Mg}$ and ${ }^{27} \mathrm{Al}\left(\rho, \alpha_{1}\right)^{24} \mathrm{Mg}^{*}-\mathrm{M}$. K. Mehta, A. S. Divatia, S.S. Kerekatte and K.K. Sekharan - In continuation of previous work ${ }^{1)}$, the yields from the reactions $27_{\mathrm{Al}}\left(\mathrm{p}, \alpha_{o}\right)^{24} \mathrm{Mg}$ and ${ }^{27} \mathrm{Al}\left(p, x_{1}\right)^{24_{\text {Mg }}}$ * have been measured at a few angles for the range of proton bonbarding energy from 4 to 5.5 MeV . The excitation functions reveal a gross structure on which finer variations are superimposed. A cross-correlation analysis is under progress to determine whether the strong resonance like stfuetures
are indeed resonances representing individual levels in the com－ ound nucleus ${ }^{28}$ Si and not the so called Irioson fluctuations．

1）H．K．Mehta and A．S．Divatia，Proceedings of the $\mathbb{N} . P_{\text {．}}$ and S．S．P．Symposium India（1966）80．

17．A non－linear least square fit programe for gaussian fitt－ Lnc－S．K．Gupta＊－A non linear least square fit programe for fitting the pulse height spectra with gaussian peaks and flat background has been written up combining the exact process of linear least square fitting for linearly occuring parameters and minimizing process of a non－linear function。 Davidon 1）and Fletcher and Powell ${ }^{2}$ ）process has been used for the latter．It has been observed that this combination speeds up the fitting． The time taken on the CDC－ 3600 computer for one peak is～3 soconds．Already 225 spectra of 100 chamels each have been anslyzed．The form $A \exp \left(-\left(n-N_{0}\right)^{2} / \sigma^{2}\right)$ seened better than the form $\frac{A}{\sigma} \exp \left(-\left(N-N_{0}\right)^{2} / \sigma^{2}\right)$ for gaussian．With first forn the process always succeeded but with the second form the nrocess failed $\sim 30 \%$ times giving inaccurate estimate of vari－ ance－convariance matrix．

1）W．C．Davidon，ANL－5990（Rev。），1959。
2）R．Fletcher and M．J．D．Powell，Computer Journal（1963），163． 13．The 6．57 MeV level in ${ }^{10} \mathrm{~B}$－K．B．Nambiar，MoBalakrishnan and M．K．Mehta－The 6.57 MeV energy level in ${ }^{10} \mathrm{~B}$ has been stouled by tho elastic scattering of α－particles from ${ }^{6}$ Li． This level appears to be well－isolated from the neighbouring ones and it should，therefore，be possible to assign spin and ＊Tata Institute of Fundamental Research．，Bombay。
parity by the apolication of the single level resonance theory. Homever, the channel spin 1 involved in this reaction, makes the job rather complicated.

Selecting four angles which correspond to the zeroes of the Legendre polynomials $P_{4}, P_{3}, P_{4} \& P_{2}$, excitations were obtained in the energy range $\mathrm{E}_{\alpha}^{(\mathrm{lab})}=3.00 \mathrm{MeV}$ to $\mathrm{E}_{\alpha}^{(\mathrm{lab})}=$ t. 42 HeV in steps of 10 KeV . The spectrometer consisted of four solid state detectors mounted at laboratory angles $43^{\circ}, 56^{\circ}, 71^{\circ}$ and 34° which correspond to the zeroes of the Legendre polynomials P_{4}, P_{3}, P_{4} and P_{2}. The pulses obtained, after suitable amplification were fed into a TMC 400 channel analyzer. A cursent integrator was used to measure the total charge deposited by the α-bean in a Faraday cup, during each run.

A typical excitation curve obtained at $\theta_{\text {lab。 }}=56^{\circ}$ is shown in fig. 19. The anomaly observed at E_{\propto} (lab。) $=3.50 \mathrm{MeV}$ cxhibits striking changes in the shape at the four angles. This is more obvious in fig.20. A shape analysis of the resonance is being done in order to determine the spin and parity of the corresponding 6.57 MeV level in ${ }^{10} \mathrm{~B}$. A general computer prograrme for analysing the cross sections of elastically scattered (-particle by shape fitting is being written. This programme makes use of Wigner's R-matrix formalism using single level approximation for a general case of arbitrary spin. If a successful shape analysis can be perfomed on the resonance at 3.5 HeV , it will be tried on other resonances too.

FIG-19

19．Study of the energy levels of odd mass isotopes of $\mathrm{In}_{2} \mathrm{Ag}$ ， Rh and No by the inelastic scattering of protons－V．R．Pandha－工ipande＊，K。G。Prasad＊and R。P．Sharma＊－The energy levels of the odd mass isotopes of $\mathrm{In}, \mathrm{Ag}, \mathrm{Rh}$ and Nb have been studied by the inelastic scattering of protons of energy $3.5,4.0$ and 4.5 Mev．The emitted gama radiation in this reaction has been obscrved on a lithium drifted germanium detector．The yield of various transitions as a function of ene rgy has been determined． The various excited tates in the abovernentioned nuclei have been established by combining the present data with the earlier known energy levels in this region．

20．Coulomb excitation studies in ${ }^{127}$ I－S．H．Devare＊，P．N． Tandon ${ }^{*}$ and H．G．Devare＊－The gama spectra in the Coulomb excitation of ${ }^{127}$ I have been stuaied using both a scintillation and a high resolution $G e(L i)$ solid state detector．Alpha par－ ticles and motons accelerated upto 5.25 MeV energy in the Van do Graaff machine were used for these studies．The gama spectra recordud at various charged particle energies were analyzed and the excitation curves plotted from the thick target yields． The $B(E 2)$ values for the excitation of various levels were cal－ culated taking into account the branchings and conversion co－ ufficients known from radioactive decay。

21．On the estimation of background in（X，Garma）reactions－ M．N．Viswesvariah－A method for the determination of the ampli－ tude of the photopeak in a measured gemna spectrum in the
wesmen of an unkom patground is prowsed. This involves a gronetrical conetruction making use of the to, of the photopeak, the compton edge and the valley point. It is ustrul for gama energiss up to 2 MeV . A criterion is also proposed for the detcraination of the foot of the photopeak from where background subtraction can begin in the study of gana spectra of radio auclidus. The nethod is usuful for singlo ganaz chergies or Gama encrites whose photopeaks are separated further apart than the photopear - compton edse soperation for a single gama energy o The proposed moceaure can bo adooted for a conzuter programe in the analysis of gama spectra。
22. The ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{14} \mathrm{~N}$ and ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}^{3} \mathrm{He}\right)^{12} \mathrm{C}$ reaction $-N$. So Thampi, C.M. Lemba, N. Sama and D.K. Soud ${ }^{*}$ - The angular distributions for the reactions ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{Ho}, \mathrm{P}\right)^{14} \mathrm{~N}$ and ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)^{12} \mathrm{C}$ for various outgoing woton groups have beon measured in steps of 10 KeV at a incident energy around 5.3 MeV from the Van de Graafis acoldrator. Angular distrioutions are found to be invariant mith energy. These have bern fitted witri a series of Le \quad adre polynomials. A DWBA analysis of clastic scattering of ${ }^{3}$ He is being oerformed to yield optical model parameters which are to be utilised for DHBA analysis of ractionis.

* Indian Institute of Technology, Kanpur.

IUSGRUMBHATION AIND DATA PROCESGING

1. A circuit for preventing acoumulation or experimental data whan the nuclear reaction rate exceeds a preset value - Sok. Gupta* ${ }^{*}$ K.V.K. Iyengar* and P.J. Bhalerao - A circuit has been devisea to restrict accunulation of (n, γ) angular comelation datia in $A(x, n y) B$ type reactions only, to periods when the counting rate in the gama detector is below the fatigue level of the p"otomltiplier and its gain insensitive to changes in the counting rate.

Published in Nacl. Instr: and Meth. 44 (1966) 123.
2. An anti-coincidence ring countor around Ge(Li) detector $P_{s} J$, Bhalerao and $K . V . K$. Iyer an* - An anti-coincidence ring counter using a 10 cm . thick plastic scintillator of about 30 cm dia。is Being devoloped (gince NaI(M) scintillators of this size are not arailaile) to anti-coincidence gate the pulses observed in Ge(Ii) doterton of 1.8 cm diam. and 0.2 mai depletion dexth. The light flashes generated in the plastic scintillator by compton scattered ganta rays escaping from the Ge(Ii) detector will be collected by a bank of four RCA 6342 A photomultipliers, whose anode outputs

 gate the spectrumin the Ge(tio detedorwith the objectof reducing the intehse compton tain aue to hif gheng gatma rays othe onise oresent to facilitatedetection and measurementof the

[^4]intensity of weak low energy gama rays riding on the compton tail of higher energy gama rays. It is planed to use this detector assembly by itself and also in conjunction with a large NaI(Tl) crystal and photomultiplier assembly for study of gamina rays from ${ }^{45} \mathrm{Sc}(\mathrm{p}, \mathrm{n}){ }^{45} \mathrm{Ti},{ }^{51} \mathrm{~V}(\mathrm{p}, \mathrm{n}){ }^{51} \mathrm{Cr},{ }^{55} \mathrm{Mn}(\mathrm{p}, \mathrm{n})^{55} \mathrm{Fe}$ etc. to obtain information on the decay scheres of the levels of ${ }^{45} \mathrm{Ti}$, ${ }^{51} \mathrm{Cr},{ }^{55}$ Fe etc.
3. Fast discriminator circuits - IM.Y. Vaze and K.V.K.Iyengar* - Fast discriminator circuits capable of triggering on low level pulses are being developed using tunnel diodes and transistors to obtain pulses of extremely short rise time and constant height. These will then be shaped by delay cables and will be used in conjunction with time-to-height converters to determine neutron energies precisely by measuring their time-offlight with respect to a reference signal and also to measure short half-lives in the ns region.
4. On the ion-optics of a split pole magnetic spectrograph - M.N. Viswesvariah and N. Sarma - The ion-optics of a split a: pole, magnetine: speotrograph have beenc inverstigated theoretigaly. Expmestong ane derived for therfinalrime distance, median plane and vertican mandifeationtadispersion, and mpmenturasolutipnorothe offect) of Doppier broadening due to sumblear reation kinematics has adso beentaken into account. \therefore The equationg were programd for a CDE - 3600 computer and results obtained for a given pole face layout.

5. Current Integrator - SoK. Gupta* - A transtorized current intorrater has been designed to integrate curcents renging fron 1 nA to 10 pa. The principle of the instrunent is illustrated by the following block diagram:

The condenser C_{1} is charged using a D.C. ampifier. The rise of the voltage at the input is $\sim 7 \mathrm{mV}$. When D.C. amplifier voltage reaches trigger level the discriminator actuates the multivibrator which in turn operates the discharge unit to remove a constant quantum of charge. .The precision of the instrumen is mostur arpadmt uron the wonstancy of discharge quantum.

The discharge unit consists of a transistor and two low leakage silcon diodes (IN3579) with a capacitor. The charging capacitor C_{1} and the discharging capacitor have been chosen for Fary low leakage (Hemetically sealed silvered mica capacitors have proved to have lowest leakage). The capacitor C_{2} quenches the voltage surges. The gated multivibrator provides occasional ovempad handing. The inout leakage of the circuit is estimated to be $\sim 5 \times 10^{-12}$ amp. The circuit is being improved to incrase

* Tatia Institute of Fundamental Researcis, Bombay.
the range of currents handed and to improve the reliability of the circuit.

6. The ion potics of a generalized constant deviation marnotic sjectrograph - Dillo. Viswesvariah and N. Sarma - The problem of obtaining a third order focus in a constant deviation spectrograph has been treated analytically and a condition obtained siving rise to a number of possible combinations of incident anglas E_{1} and deviations \varnothing. One of the E_{1}, \varnothing pairs of values agrees with the value used for a spectrograph built at Copenhagen ${ }^{1)}$. For the other pairs of E_{1}, \varnothing values, the first order ion optical parameters like final image distance, horizontal and vertical magnifications, monentum dispersion and resolution have been calculated. It is observed that the momentum resolution increases not only linearly with change in orbit radius a, but also with change in source distance, which makes it possible to obtain a desired resolution by a suitable change in source distance. A type of pole edge contouring used for the splitpole spectrograph ${ }^{2}$, has been proposed for the constant deviation spectrograph also and the necessary changes in the equations for the calculation of vertical magnification have been taken into account.
1) Borggreen et al Nucl. Instr. \& Methods 24 (1963) 1。
2) M. N. Viswesvariah and N. Sarma Nucl. Instr. \& Hethods (to be published).

RADIATION SURVEY

G. Muthukxishnan*

During the period under report ${ }^{3}$ He beam was used for experiments in the Van de Graaff Accelerator. Fast neutron surveys were conducted at various places in the beam room and accelerator room. $A B F_{j}$ counter, surrounded with paraffin was used for the survey. It was calibrated with the standard 50 me Ra-Be source and it was found to have a sensitivity of 2 cpm/unit neutron flux. The results of the survey are tabulated below:

Bram Room

$\begin{aligned} & { }^{3} \mathrm{He} \\ & \text { energy } \\ & \mathrm{HeV} \end{aligned}$	Beam current μa	Focus Pick-up pa	Bombarded material	Location F	Fast neutron fliv neutrons/ $\mathrm{cm}^{2} / \mathrm{sec}$
2.5	0.15	0.9	V target	```meters from the analysing magnet```	20
2.5	0.15	0.9	V target	shielded antrance passage	- 8
2.5	0.15	0.9	V target	Outside beam room door	0
5.5	0.2	1.8	V target	6 reters from the analysing magnet	. 200
5.5	0.2	1.8	V target	shielded entrance passage	- 43
5.5	0.2	1.8	V target	outside bean room door	10

[^5]Acoglerator Rocin

$\begin{aligned} & { }^{3} \mathrm{He} \\ & \text { enorgy } \\ & \\ & \mathrm{HeV} \end{aligned}$	Beam curaent $\mu \mathrm{a}$	Focus pick-up $\mu \mathrm{a}$	Bumbarded material	Wocation F	$\begin{aligned} & \text { Fast neutron } \\ & \text { flux } \\ & \text { neutrons } \\ & \mathrm{cm}^{2} / \text { sec. } \end{aligned}$
2.5	0.15	0.9	V target	flour hatch	12
2.5	0.15	0.9	V target	Near the wall	0
2.5	0.15	0.9	V target	outside Acce- lerator room door	0
5.5	0.2	1.8	V target	floor hatch	50
5.5	0.2	1.8	V target	near the wall	40
5.5	0.2	1.8	V target	outside accele rator room do	or 0

SIMIITNARS

Weckly seminars were conducted in the Van de Graaff Laboratory. Personnel working on different problems gave interesting talks at these seminars. A series of lectures on 'Statistical analysis of the experimental data' were given by S.K. Gupta; DroA.S. Divatia and K.B. Nambiar dealt with High Vacuurn Physics in a series of six lectures.

TDINT RUGMR DEL GROP

(Oonvener), D.M. Kundu ${ }^{* *}$, B.E. Restogi, M. Sirinivasan and G. Venkataraman.

Information relevant to nuclear data collected from various institutions and laboratories has been ompiled and published as the thind progress report on Nuclear Data Messuring Activities in India. Copies of this report and other BARC reports of interest have been sent to the International Nuclear Data Committee (INDC) which is a part of the International Atomic Ensrgy Agercy, for:international distribution.

Reguiar contributions were sent to the CINDA programme of the INDC. This programe involves scanming of all relevant Indian Journals and reports every month and sending the information regarding nuclear data contained in them in a specified CIUDA-antry form.

The ${ }^{15} 0(n, x)^{13} \mathrm{C}$ reaction cross sections have been obtained from the ${ }^{13} C(x, n)^{16} O$ reaction, using the principle of reciprocity, in the incident neutron energy range 3.95 to 6.50 MeV . A paper on this was presented at the IABA sponsored conference on Nuclear Data, held at Paris, during October 1966 ${ }^{1 \text {) 。 }}$

For accurate calibration of the 4π neutron counter a gas target set up for using the known reaction $D(d, n)^{3}$ He as the

* Tata Institute of Fundamental Research, Bombay
** Saha Institute of Nuclear Physics, Calcutta.
onioratim reaction, 73 built. A manometer using a silicon oll as the liquiq helps to neasurs the gas pressure and hence the targat thiclmess very acourately.

All reports pertaining to nuclear data recoived from the Inja are maintained sovaratoly in the Physios Group Library at Van de Gradef Iaboratory, and are available for use. A list of those roports is prepared periodically and the list can be obteined on requast.

1) A.S. Divatiz, K.K. Sekharan and MoK. Mehta, The ${ }^{16} \mathrm{C}(n, \alpha)^{13} \mathrm{C}$ Rezotion Cross Sections from the ${ }^{13} \mathrm{C}(\alpha, n){ }^{16} 0$ Reaction Cross Sections; To be published in the proceodines of the IAEA Conference on Nuclear Date-Hicroscopic Cross Sections and other Data Basic for Reactors, Paris, October 1955.

IIBRARY

The physics Group Librany at the Van de Graaff Laboratorine rasistened a further growth during the year and is argin exporiencing a space shortage for the growing stock. A programate to assess the extent to which the computer can be used for proesaing the rabearch reports in under study.

Library Oollection: The library received 504 bouks and 235 bound volunes of periodicals during the year taking the total collect-
 wh:ol also registered an increase over the previous period.

Duplecte copios of rosearch reports on Tuclear Phrsics and ailiod subjects reorived at tho Dopository library have been tronsferyed to Van de Grapfe Iibrary daring the year.
ificro film reader: A micro film reader has beon installed in the library. Steps to convert it into a micro-fiche reader which is fonn to be are of us: is under consideration.

Library Guide: A panphlet "A Guide for users of Van de Graiff Library" is maden preparation. It is proposed to issue cyolostyled copies of this panphlet to the library usexs.

[^0]: * 660 hours have been spent for transfer of insulating gas and accelerator tank roughing.

[^1]: ＊Indian Institute of Technology，Kanpur．

[^2]: ＊Iata Institute of Fundamental Research，Bombay．

[^3]: ＊Tata Institute of Fundamental Research，Bombay．

[^4]:

[^5]: * Health Physics Division.

