

INDC(IND)*020/R

GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION

SELF-SHIELDED CROSS SECTIONS FOR THE MAIN FERTILE AND FISSILE NUCLEI

by

R. Shankar Singh and G. A. Desai Reactor Engineering Division

GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION

SELF-SHIELDED CROSS SECTIONS FOR THE MAIN FERTILE AND FISSILE NUCLEI

bу

R. Shankar Singh and G.A. Desai Reactor Engineering Division

ATOMIC ENERGY ESTABLISHMENT TROMBAY
BOMBAY, INDIA
1966

CONTENTS

	Pa	age
Abstract	••	(i)
I. Introduction	,	1
II. Method of Computation		1
i) The Code DOPINT		1
ii) Heterogeneity Effects	• •	2
iii) Resolved Resonances in Fissile Nuclei	• •	2
iv) Unresolved Resonances	••	2
III. Discussion of Resonance Parameters and Results	• •	3
i) Thorium - 232		3
ii) Uranium - 238	••	5
iii) Uranium - 235		5
iv) Plutonium - 239	••	7
References	. 1	7 10

ABSTRACT

Self-shielded cross-sections for Th-232, U-235, U-238 and Pu-239 which exhibit resonance behaviour in their reaction cross-sections with neutrons are necessary to represent the proper effective values in a multigroup analysis of reactors and to predict accurately the reactivity coefficients due to Doppler effect etc. These have been evaluated here from resonance integral calculations under the NR approximation using the latest available resonance parameters at four temperatures (300, 750, 1500 and 2500° K) and at φ (potential scattering cross section per absorber atom) values of 40 and 60 barns for Th-232 and U-238 and 126, 200, 300 and 400 barns for U-235 and Pu-239. The status of resonance parameters for these elements has also been discussed in detail.

by

R. Shankar Singh and G.A. Desai

I. INTRODUCTION

Several elements exhibit resonance behaviour in their reaction cross sections with neutrons. The presence of resonances causes fluctuations in the neutron spectrum of a reactor and it is necessary to evaluate effective cross sections in such resonance regions. This is done by calculating the effective resonance integrals which are a function of the total potential scattering cross section ' P' per atom under consideration (governed by the composition) and the temperature. The effective cross sections over a certain energy range (group), so evaluated, are known as the self-shielded cross sections. Such cross sections are not only necessary to represent the correct values in a multigroup analysis of reactors, but are also essential in predicting the temperature coefficients of reactivity due to Doppler effect etc. The main fertile and fissile nuclei considered here are Th²³², U²³⁸, U²³⁵ and Pu²³⁹. Self-shielding for these elements is significant only below about 25 Kev, and the self-shielded cross sections have been evaluated from time to tome using the basic resonance parameters for these nuclei. The present work uses the latest resonance parameters which have been determined over larger energy ranges (1), made possible by the recent improvements in the energy resolution of neutron spectroscopy. Composition and temperature dependent cross-sections have been evaluated over a range of ' op ' values and temperatures to represent the composition of a number of reactor types. These have been evaluated under the narrow resonance (NR) approximation (2) without the resonance overlap effects and are presented in the lower groups of a 22-group (3) structure.

II. METHOD OF COMPUTATION

i) The Code DOPINT:

A computer program DOPINT $^{(4)}$ has been written for CDC-3600 to evaluate the resonance integrals and multigroup cross sections. The Narrow Resonance (NR) approximation which is valid for many resonances except a few at the lower energies,

has been used to compute the resonance integrals in this code. Both the resolved and unresolved resonances can be treated and the effective group cross sections in the energy group structure of user's choice, can be evaluated.

ii) Heterogeneity Effects:

Whereas the self-shielding provided by the geometry (size) of the fuel elements plays an important role in thermal reactor calculations, such heterogeneity effects are negligible in fast reactor analyses wherein only the self-shielding due to the resonances is significant and resonance integrals are usually evaluated for a homogeneous mixture. Nevertheless, the code DOPINT contains the option for geometries like slab, cylinder and sphere and the heterogeneity is taken into account with the usual equivalence theory by defining a modified $\frac{1}{p}$, the potential scattering cross section per absorber atom. It has been again shown by several people $\frac{1}{p}$, that heterogeneity effects are negligible in fast reactors and hence the present calculations have been performed for homogeneous mixtures only.

iii) Resolved Resonances in Fissile Nuclei:

Since the data on the resonance parameters of fissile nuclei available hitherto has been meagre, resonance integral calculations have been based only on the average parameters in the unresolved region. As the situation in this respect is improving and more resonances are being resolved and parameters determine for fissile nuclei, resolved resonance integral calculations have been introduced in the code DOPINT for fissile nuclei also. This has been used for Pu resolved resonances below 300 ev.

iv) Unresolved Resonances:

In the unresolved resonance region, average resonance integrals at specified energies are evaluated using the average single level resonance parameters. Distribution functions for neutron and fission widths are taken into account by using ten discrete values for neutron width and five for fission width. The effect of overlapping of resonances has not been taken into account in the present work.

To present a fairly wide range of compositions that are of interest in the current studies of fast reactors, values of $\neg p = 40$ and 60 barns are chosen for Th^{232} and U^{238} and $\text{U}^{p} = 126$, 200, 300 and 400 barns are used for U^{235} and Pu^{239} . Since the resonance integrals are weak functions of the potential scattering cross section per absorber atom $\neg p$, the errors involved in interpolation of cross sections for intermediate values of $\neg p$ or using the cross sections corresponding to the $\neg p$ s selected here when they are close to the actual ones in particular cases, are likely to be small. Four temperatures, T=300, 750, 1500 and 2500° K are chosen to represent the normal and extreme reactor operation conditions.

III. DISCUSSION OF RESONANCE PARAMETERS AND RESULTS:

The resonance parameters used in the present work for the four elements ${\rm Th}^{232}$, ${\rm U}^{238}$, ${\rm U}^{235}$ and ${\rm Pu}^{239}$ and the cross sections derived therefrom have been discussed below.

i) Thorium-232:

The recent improvements in the energy resolution of the neutron resonance experiments have resulted in the extension of the upper limit of the energy range in which the resonances are resolved. For Th²³², resonances have been resolved and analysed (1) upto 4000 eV. But, there remained considerable uncertainity in the radiation width , its values varying from 40 mv in the original Columbia measurements to 18 mv in some early Harwell measurements. In the earlier studies (7) pertaining to thorium self-shielded cross sections, values of between 20 mv and 30 mv for resonances below 800 ev, a value of 35 mv for resonances between 800 and 3000 ev and another value of 40 mv in the unresolved resonance region from 3 Kev to 25 Kev were used.

L.W. Nordheim proposed (8) a value of 34 mv for \$\infty\$ and showed that a very good agreement with this value is obtained between the calculated and experimental results of not only the infinite dilution resonance integral, but also for thorium metal and oxide rods.

To resolve this uncertainity in Γ for Th^{232} , a group at General developed a method based on the measurements of the absorption γ -rays

as a function of energy which permits the determination of / directly. They have obtained an average value of 24.5 mv for // for the resonances measured below 222 ev. Nordheim (10) has shown that the new value of 24.5 mv when used to evaluate the resonance integrals gives a resonable agreement with the measured values when the experimental uncertainities are taken into account.

In the present work, resonance integrals for Th^{232} have been evaluated using the GA parameters (10) upto 222 ev and Columbia values (1) with a Γ_7 of 24.5 mv above this energy in the resolved resonance region.

In the unresolved resonance range the following parameters were employed.

s-waves
$$:\langle \overrightarrow{D} \rangle = 0.69 \times 10^{-4}$$
; D = 17.5 ev : γ =0.0245 ev p-waves $:\langle \overrightarrow{D} \rangle = 2.2 \times 10^{-4}$; D1/2 = 17.5 ev; γ =0.0245 ev D_{3/2} = 8.75 ev;

The p-wave strength function of 2.2 x 10^{-4} (as compared to 1 x 10^{-4} in earlier work (7)) suggested by C.A. Uttley (11) and shown to give a good fitting between the computed and experimental values of the total cross section (7), has been used here. This has resulted in a higher p-wave contribution to the capture cross sections in the unresolved resonance region (Table 1) than was obtained earlier (7). But the s-wave contribution has become lower because of the lower value of 7 used in the present work.

The self-shielded capture cross sections for ${\rm Th}^{232}$ at \sqrt{p} =40 and 60 and four temperatures, in the unresolved resonance region are given in Table 1 and those in the resolved resonance region are given in Table 2.

The changes in capture cross sections of thorium brought about in the present work may affect the reactivity coefficients studied earlier $^{(7)}$ to some extent which can be examined more closely by re-evaluating some of those

cases with the present data.

ii) Uranium - 238

The most reliable source of U²³⁸ resonance parameters presently available is the high resolution Columbia data⁽¹⁾. More than 220 resonances were observed and analysed in this experiment. J.J. Schmidt⁽¹²⁾ has compiled the resonance parameters for U²³⁸ from almost all the available sources of experimental data. These include the low energy p-wave resonances analysed recently by Thomas and Bollinger⁽¹³⁾ in a high resolution fast chopper transmission experiment. This data has been used in the present work wherein 239 resolved resonances are present.

Columbia data $^{(1)}$ gives the s-wave strength function as 0.9 x 10^{-4} and the mean level spacing as $17.7 \text{ ev for } U^{238}$. These values along with a p-wave strength function of 2.5 x 10^{-4} as proposed by Uttley (11) and the well established in the unresolved resonance region at $\sigma_p = 40$ and temperature 300°K. The values so obtained seemed to be rather high. To select the final parameters in the unresolved resonance region, two more sources of data were chosen and the capture cross sections were evaluated at the same op and temperature. These were the ANL (3) and Schmidt (12) data. The ANL data has a p-wave strength function of 1.5 x 10^{-4} . The Schmidt data recommends a p-wave strength function of 2.5 x 10^{-4} , but gives the level spacings as $D_{1/2}$ = 20.8 and $D_{3/2}$ =8.85 ev. The capture cross sections evaluated in the three groups of the unresolved resonance region using these different data are given in Table 3. Columbia data gives higher capture cross sections where as ANL data gives lower values, with Schmidt data giving intermediate values. Parameters suggested by Schmidt have been finally chosen to evaluate the cross sections in the unresolved region, in order to give weight to his detailed analysis of resonance parameters.

The results obtained at two p values and four temperatures are presented in Table 4 for the unresolved region and in Table 5 for the resolved resonance region.

iii) <u>Uranium - 235</u>

Resonance parameters for fissile nuclei have always been a troublesome

feature because of the difficulties involved not only in the experiments, but ass in their analysis due to multilevel effects etc. The fission and capture with are obtained from the ' α ' or ' γ ' measurements also.

Schmidt $^{(12)}$ has presented parameters for U^{235} resolved resonances $^{(217)}$ in number) upto an energy of 147 eV, selecting the values from different sources of measurements. Since there are many uncertainties in these values and they are resolved only to an energy of \sim 150 eV, resolved resonance integral calculations have not been done for U^{235} here.

The self-shielded capture and fission cross sections have been calculated only in the unresolved resonance region from 200 ev. to 12,000 ev. in the groups 13 to 21. The choice of resonance parameters has been made as follows:

The fission widths f estimated for the resolved resonance in the experiments are rather low (\sim 65 mv) compared to those deduced from < values in the unresolved resonance region. The f values resulting from statistical theory fits to \propto in the unresolved resonance range are more than twice as large as the resolved resonance f. Hence, if the low values of f (given for E < 50 ev by Schmidt) are employed for calculating the cross sections, the values so obtained do not agree with the experimental results in the higher energy regions.

The choice of \int_{7}^{7} = 120 mv and \int_{8}^{7} = 33 mv, values used earlier by Hwang (14), has been made in the present work with the level spacing for the two spin states as D_{3} = 1.72 and D_{4} = 1.34 ev and the number of channels per fission as \mathcal{Y} =2. The values obtained from the capture and fission cross sections using the above parameters agree fairly well with measured values (15).

The fission and capture cross sections calculated with the above parameters at four p values and four temperatures are given in Tables 6 and 7. The self-shielding effects are seen to be small at higher energies and become significant only at lower energies.

It should be noted as pointed out by Schmidt (12) that there are many inconsistencies, descrepancies and not understood facts in our present picture of U²³⁵ resonance fission and the cross sections evaluated here only represent the values as far as the resonance parameters hold. Future improvements in the

knowledge of better resonance parameters should always be looked for and due corrections made.

iv) Plutonium - 239

The situation regarding the resonance parameters for Pu²³⁹ is slightly better than for U²³⁵. Resonances are now resolved upto 300 ev and have been compiled by Schmidt (12). Earlier computations of self-shielded cross sections for Pu²³⁹ have normally been made using the average resonance parameters in the unresolved range due to lack of resolved resonance parameters at higher energies. Schmidt's parameters upto 300 ev have been used here to evaluate the resolved resonance capture and fission integrals and the cross sections in groups 21 and 22 covering these resonances.

Schmidt has observed that the average fission widths $\int_{\mathbf{f}}^{\mathbf{f}}$ apparently sub-divide into two groups-one with rather small and another with very large values. From the considerations of channel theory of fission, he expects the larger $\int_{\mathbf{f}}^{\mathbf{f}}$ to belong to J=0 and the smaller $\int_{\mathbf{f}}^{\mathbf{f}}$ to J=1 resonances. He has pointed out the rather anomalous behaviour of d of Pu^{239} , measured by Diven and Hopkins (16) showing an abrupt decrease in the energy range 15 to 60 KeV, as a second check to his above observation on $\int_{\mathbf{f}}^{\mathbf{f}}$. The following parameters recommended by him in the unresolved resonance region have been used in our present calculations.

s - wave strength function:
$$\langle D \rangle = 1.07 \times 10^{-4}$$
; $\gamma = 0.0387 \text{ ev}$.
For $\gamma = 0$, $\gamma = 8.78 \text{ ev}$ and $\gamma = 2.8 \text{ ev}$
 $\gamma = 1$, $\gamma = 3.12 \text{ ev}$ and $\gamma = 0.057 \text{ ev}$
No. of channels per fission: $\gamma = 2.8 \text{ ev}$

The fission and capture cross sections corresponding to the four pvalues and four temperatures have been presented in Tables 8 and 9. Contribution from p-waves has not been evaluated in the absence of reliable parameters and the present values do not contain the p-wave contribution.

The fission and capture cross sections in the present results are slightly higher than the corresponding ones from ANL (17) in groups 14 to 20. The fission cross sections in groups 21 and 22 are considerably higher than the ANL ones, but compare well with the higher values used by other organizations in the intercomparision studies (18, 6). Since resolved resonance parameters have been used in the last two groups (21 and 22), one can perhaps put better confidence in the values presented here.

Table 1. Th²³² Capture Cross Sections in Unresolved Region (barns)

$$\sigma_{\overline{P}} = 40 \text{ barns}$$

$$\left\langle \frac{\Gamma_{\text{n}}^{\circ}}{D} \right\rangle = 0.69 \times 10^{-4} \text{ for S-wave } ; D_{\frac{1}{2}} = 17.5 \text{ ev } ; \Gamma_{\text{r}} = 0.0245$$

= 2.2 x 10⁻⁴ for p-wave ; D_{3/2} = 8.75 ev

				,		5 5 3 W H		
E1 (kev)	$\frac{T}{s-wave}$ $1=0, J=\frac{1}{2}$	p-wave	p-wave 1=1.J=3/2	Total	() () () s-wave () 1-0 i-1	p-wave	p-wave	Total
	en dans larde delig min delse arm date delse bereit.)	1=1,J= <u>2</u>	1=1, j=3/2	00
1900	0.164	0.114	0.333	0.611	0.169	0.115	0.339	0.623
		0.136	0.367	0.744	0.254	0.138	0.374	0.766
4.0	0.367	0.148	0.390	0.905	0.397	0.151	0.399	0.947
E _L (kev)		r = 1500°)	T =	2500°	
15.0 9.1 4.0	0.173 0.262 0.417	0.116 0.139 0.153	0.342 0.378 0.404	0.631 0 0.779 0 0.974 0	0.175 0.267 0.430		0.342 0.379 0.406	0.633 0.786 0.990
	15.0 9.1 4.0 EL (kev) 15.0 9.1	S-wave 1=0,J=\frac{1}{2} 15.0	(kev) s -wave p -wave $1=0, J=\frac{1}{2}$ $1=1, J=\frac{1}{2}$ 15.0 0.164 0.114 9.1 0.241 0.136 4.0 0.367 0.148 EL (kev) $T = 1500^{\circ}$ 15.0 0.173 0.116 9.1 0.262 0.139	(kev) s -wave p -wave p -wave 1 =0, J = $\frac{1}{2}$ 1 =1, J = $\frac{1}{2}$ 1 =1, J = $\frac{3}{2}$ 1 =1, J = \frac	(kev) s-wave p-wave p-wave Total $1=0,J=\frac{1}{2}$ $1=1,J=\frac{1}{2}$ $1=1,J=3/2$ Ge 15.0 0.164 0.114 0.333 0.611 9.1 0.241 0.136 0.367 0.744 4.0 0.367 0.148 0.390 0.905 EL (kev) T = 1500° 15.0 0.173 0.116 0.342 0.631 0.10 0.262 0.139 0.378 0.779	(kev) s-wave p-wave p-wave Total s-wave $1=0, J=\frac{1}{2}$ $1=1, J=\frac{1}{2}$ $1=1, J=\frac{1}{2}$ $1=1, J=\frac{1}{2}$ $1=0, j=\frac{1}{2}$	(kev) s-wave p-wave p-wave Total s-wave p-wave $1=0, J=\frac{1}{2}$ $1=1, J=\frac$	(kev) s —wave p —wave p —wave 1 =0, $J=\frac{1}{2}$ 1 =1, $J=\frac{1}$ 1 =1, $J=\frac{1}{2}$

$\overline{\mathbf{q}_p} = 60 \text{ barns}$

-				-80	
J 	EL	300°	750°	1500°	2500°
12	15.0	0.623	0.632	0.637	0.639
13	9.1	0.765	0.782	0.791	0.797
14	4.0	0.946	0.979	0.999	1.013
-	-				

Table 2. Th²³² Capture Cross Sections in Resolved Region (barns)

ij	E _L -	<u> </u>	p = 40 ba	rns		Q Q		σp = 60 k	parns
maj etas que	(kev)	300°	750°	1500°	2500°	300°	750 °	1500°	2500°
15	2.8	0.601	0.664	0.707	0,736	0.662	0.717	0.754	0.778
16	2.0	0.695	0.798	0.874	0.928	0.795	0.892	0.961	1.008
17	1.4	0.734	0.869	0.978	1.059	0.869	1.008	1.113	1.189
18	1.0	0.899	1.050	1.166	1.250	1.046	1.194	1.303	1.379
19	0.55	0.982	1.197	1.384	1.531	1.205	1.441	1.637	1.786
20	0.30	1.054	1.314	1.571	1.795	1.339	1.664	1.971	2.230
21	0.10	1.482	1.817	2.177	2.512	1.903	2.351	2.816	3.234
22	0.03	0.815	0.924	1.053	1.182	1.035	1.191	1.369	1.542

Table 3. Parameter Variation in Unresolved Region for U^{238} (s-wave + p-wave Capture cross sections in barns) $\overline{p} = 40 \text{ barns} \quad ; \quad T = 300^{\circ} \text{K}$

j	E _L (kev)	Columbia	ANI.	Schmidt
		data *	data**	data***
12	15.0	0.6555	0.5495	0.5678
13	9.1	0.8098	0.6650	0.7130
14		0.9646	0.7853	0.8639

* Columbia data

s- waves :
$$\langle \frac{n^{\circ}}{D} \rangle = 0.9 \times 10^{-4}$$
; $D_{\frac{1}{2}} = 17.7 \text{ eV}$; $T_{y} = 0.0246 \text{ eV}$
p-waves : $\langle \frac{n^{\circ}}{D} \rangle = 2.5 \times 10^{-4}$; $D_{\frac{3}{2}} = 8.85 \text{ eV}$

**ANL da ta

s- waves :
$$\left(\frac{\Gamma_n^{\circ}}{D}\right) = 0.9 \times 10^{-4}$$
; $D_{\frac{1}{2}} = 17.7 \text{ eV}$; $\Gamma_{\mathbf{y}} = 0.0246 \text{ eV}$
p-waves : $\left(\frac{\Gamma_n^{\circ}}{D}\right) = 1.5 \times 10^{-4}$; $D_{\frac{3}{2}} = 8.85 \text{ eV}$

*** Schmidt data

s-waves
$$:\left(\frac{\prod_{n} \circ}{D}\right) = 0.9 \times 10^{-4}$$
; $D_{\frac{1}{2}} = 20.8 \text{ eV}$; $\prod_{k=0.0246 \text{ eV}} = 0.0246 \text{ eV}$
p-waves $:\left(\frac{\prod_{n} \circ}{D}\right) = 2.5 \times 10^{-4}$; $D_{\frac{3}{2}} = 11.4 \text{ eV}$

TABLE 4

U²³⁸ Capture Cross Sections in Unresolved Region (Barns)

$$\left\langle \frac{\Gamma_0}{D} \right\rangle = 0.9 \times 10^{-4}$$
 s wave $D_{\frac{1}{2}} = 20.8 \text{ eV}$
= 2.5 x 10⁻⁴ p wave $D_{\frac{3}{2}} = 11.4 \text{ eV}$ $\Gamma_{Y} = 0.0246$

j	$_{(ext{kev})}^{ ext{E}_{ ext{L}}}$	more during about more commonwell (2003	T=3	00 ° K	the the chi am are are and	T	= 750°K	COCH THE P STATE S	
Room party sking	(ve.)	s-wave $1=0, J=\frac{1}{2}$	p-wave 1=1,J=3/2	p-wave 1=1,J=3/2	Total	0 s-wave 1=0, $J=\frac{1}{2}$	p-wave $1=1, J=\frac{1}{2}$	p-wave 1=1,J=3/2	Total
12	15.0	0.145	0.109	0.314	0.568	0.151	0.111	0.321	0.583
13	9.1	0.212	0.136	0.365	0.713	0.226	0.139	0.375	0.740
14	4.0	0.320	0.157	0.387	0.864	0.350	0.161	0.399	0.910
j	EL	. The days were some while good ways take day	T = 15	00°K	9	Т	= 2500°K	no than each sight ager (C/I) then each each blad show	man traps delta delta Capa paca Ca
12	15.0	0.155	0.112	0.325	0.592	0.158	0.113	0.326	0.597
13	9.1	0.235	0.140	0.380	0.755	\$		0.383	0.764
14	4.0	0.371	0.163	0.406	0.940 Å			0.409	0.958

$\sigma_{p} = 60 \text{ barns}$

date part and		a desiral states and company of the	the that the third may show that the	ch CHIE NAME COMO SECUL SHASH COMO SHASH COMO AND	
j	E _L	300°	750°	1500°	2500°
					to see and the the see was the time that the time
12	15.0	0.582	0.594	0.601	0.604
13	9.1	0.739	0.759	A 774	
		- 4123	0.173	0.771	0.778
14	4.0	0.909	0.947	0.971	0.986
Annual Section Section 6	and spire over the case and said the case of				

_{...}238

TABLE 5

₁₁ 238	
U238 - Capture Cross Sections in Resolved Region	n (hama)
	/II (Daries)

			هم نامن منط شاه منبع ماهه هميو شام . ه						***
ال مريد	EL		= 40 ba	rns			□ =	60 barns	
******	(kev)	300°	750°	1500°	2500°	300°	750°	1500°	2500 º
15	2.8	0.492	0.550	0.592	0.662	0.549	0.603	0.640	0,666
16	2.0	0.586	0.669	0.735	0.783	0.671	0.754	0.816	0.861
17	1.4	0.619	0.720	0.803	0.866	0.726	0.829	0.912	0.973
18	1.0	0.744	0.871	0.976	1.058	0.874	1.008	1.116	1.196
19	0.55	0,882	1.055	1.213	1.342	1.067	1.266	1.440	1.578
20	0.30	0.766	0.925	1.067	1.180	0.930	1.109	1.263	1.384
21	0.10	1.252	1.439	1.643	1.838	1.570	1.819	2.087	2.338
22	0.03	2.250	2.382	2.551	2.732	2.792	2.986	2.233	3.495
				-		··· /•. / /-			9.93

TABLE 6

U²³⁵- Fission Cross Sections (barns)

s-wave:
$$\left(\frac{\int_{n}^{0}}{D}\right) = 1 \times 10^{-4}$$
 $D_{3} = 1.72 \text{ ev}$ $\int_{4}^{\infty} = 0.033 \text{ ev}$ $\int_{4}^{\infty} = 1.34 \text{ ev}$ $\int_{5}^{\infty} = 0.120 \text{ ev}$ $\int_{5}^{\infty} = 0.120 \text{ ev}$

j		TC:	σ	p = 126	barns					$\sigma_p = 20$	0 bar	ns	
ęl eks-	owa coall	E _L	300	750	1500	2500	3	00	750	1500		2500	PO como dano chial caso obsessione
1	3	9.1	1.883	1.889	1.892	1.89	4 1	.889	1.893	1.895		1.896	
12	4	4.0	2.682	2.697	2.706	2.71	0 2	.697	2.708	2.713		2.716	
1!	5	2.8	3.834	3.872	3.894	3.90	6 3	.874	3.900	3.914		3.922	
1	б	2.0	4.608	4.671	4.706	4.72	6 4	.675	4.717	4.740		4.754	
1	7	1.4	5.495	5.593	5.650	5.68	3 5	.603	5.669	5.650		5.730	
1	8	1.0	6.518	6.669	6.761	6.81	5 6	.690	6.795	6.761		6.892	
19	9	0.55	8.010	8.264	8.424	8.52	2 8	.311	8.490	8.424		8.666	
2	0	0.30	10.276	10.735	10.047	11.24	8 10	.857	11.200	11.047	**	11.565	
2	1	0.10	13.704	14.547	15.189	15.63	9 14	•909	15.602	15.189		16.444	¥
j	nara dela	E _L	2	Оp	= 300	barns	anna anna arch dirib paga-puna	ence also gots. CHR war sp	er man anne der freih enne enne en	Q	p = 4	00 barns	that class class was control also
1	3	9.1	1.8	93 1	.895	1.897	1.897	1.89	94 1.	897 1	.898	1,898	
1	4	4.0	2.7	07 2	.714	2.717	2.719	2.7	11 2.	717 2	.720	2.721	
1	5	2.8	3.8	98 3	.916	3.926	3.931	3.9	10 3.	924 3	.932	3.936	
1	б	2.0	4.7	'15 4	•744	4.760	4.770	4.73	35 4.	758 4	.771	4.778	
1	7	1.4	5.6	68 5	.715	5.741	5.757	5.70	02 5.	7 38 5	.758	5.770	
1	8	1.0	6.7	95 6	.869	6.912	6.937	6.8	50 6.	907 6	•940	6.960	
. 1	9	0.5	5 8.4	.99 8	.628	8.706	8.752	8.59	99 8.	699 8	.760	8.796	
2	0	0.3	0 11.2	40 11	.495 1	1.658	11.758	11.44	49 11.	652 11	.780	11.859	
2	1	0.1	0 15.7	7 1 16	.324 1	6.709	16.964	16.20	69 16.	728 17	.041	17.245	

TABLE 7

U²³⁵- Capture Cross Sections (barns)

(Resonance Parameters same as given in Table 6)

.J.	E _L (kev)		o p = 126	barns		(5	0p = 3	200 barns	š
MMM SLIP more upon	(470 +)	300	750	1500	2500	300	750	1500	2500
13	9.1	0.843		0.847	0.847	0.845	0.847	0.848	0.848
14	4.0	1.232	1.239	1.243	1.245	1.239	77. 37. 5W V	1.246	960 (400 - 0
15	2.8	1.805	1.823	1.833	1.839	1.824	1.836	1.843	1.24
16	2.0	2.194	2.224	2.242	2.251	2.227			1.846
17	1.4	2.641	2.692	2.720	2.737	2.696	2.729	2.258	2.264
18	1.0	3.159	3.240	3.287	3.314	3.247	3.302	2.748	2.759
19	0.55	3.910	4.053	4.138	4.188	4.067	4.168	3.334 4.337	3.351
20	0.30	5.032	5.305	5.480	5.589	5.344		4.227	4.261
21	0.10	6.648	7.185	7.570	7.828	7.307	5.549 7.754	5.675 8.057	5.751
and the sin the i	charge volum to just many states drope it.	and delicated role and the desired	or the state which were state from the species an			-	「・IノT	8.057	8 .2 53
a ton the own releases	EL		$\sigma_p = 300$	barns	8 W.S		$\sigma_p = 40$	00 barns	down major must desprive steps (2010)
3	9.1	0.847	0.848	0.849	0.849	0.848	0.849	2 040	
4	4.0	1.243	1.246	1.248	1.249	1.246		0.849	0.849
5	2.8	1.835	1.844	1.848	1.850	1.841	1.248	1.249	1.250
6	2.0	2.246	2.260	2.268	2.272	2.256	1.848	1.851	1.853
7	1.4	2.728	2.752	2.765	2.772		2.267	2.272	2.276
8	1.0	3.301	3.339	3.361	3.373	2.745	2.763	2.773	2.778
9	0.55	4.167		4.280	4.304	3.329	3.359	3.375	3.385
) . C		5.552			5.851	4.219	4.276	4.307	4.326
		7.788	320 %	_		5.666	5.789	5.861	5.903
		1 • 1 •	O # 147 ;	8.701	8.528	8.069	8.369	8.560	8.678

TABLE 8

Pu²³⁹ Fission Cross Sections (Barns)

S-wave :
$$\left(\frac{\Gamma_0}{D}\right) = 1.07 \times 10^{-4}$$
 ; $\Gamma_V = 0.0387 \text{ eV}$; $\Gamma_V = 0.$

\$0 ±0		- ', D ₁	- J.12 6V	and	1 gi = 0.	•057 e v			
	£.,.	Note: Reso	lved reso	nance par	ametere ar	re used in	groups	21 and 2	22
j	E _L	₫ p	= 126 bar	ns			$\sigma_{p} = 2$	00 barns	3 .
arder (Spille Spille) an	(kev)	300°	750°	1500°	2500°	300°	750 °	1500°	2500°
14	4.0	2.298	2.322	2.337	2.345	2.327	2.343	2.353	2.359
15	2.8	3.295	3.355	3.392	3.414	3.369	3.410	3.435	3.450
16	2.0	3.955	4.048	4.107	4.143	4.071	4.138	4.178	4.203
17	1.4	4.696	4.837	4.928	4.986	4.876	4.979	5.043	5.083
18	1.0	6.007	6.251	6.420	6.531	6.333	6.523	6.649	6.728
19	0.55	6.725	7.033	7.254	7.403	7.150	7.398	7.568	7.678
20	0.30	8.563	9.044	9.420	9.691	9.288	9.711	10.024	10.242
21	0.10	10.375	11.068	11.698	12.206	11.723	12.420	13.019	13.481
22	0.03	16.024	16.707	17.486	18.230	18.573	19.413	20.317	21.147
	a come dome filed to be don't stand o	₫p:	= 300 ban	ns -	tina tina tina Casa and and and and and	a dirin. Arron yandi SAMA Cassa qayay diring Sama' Assan.	$O_p = 4$	00 barns	Table and then some since their wide to
14	4.0	2.344	2.356	2.363	2.367	2.353	2.362	2.367	2.370
15	2,8	3.413	3.443	3.460	3.471	3.437	3.460	3.473	3.481
16	2.0	4.144	4.192	4.221	4.238	4.183	4.221	4.243	4.256
17	1.4	4.991	5.067	5.113	5.141	5.053	5.113		5.171
18	1.0	6.554	6.670	6.793	6.851	6.677	6.795	6.870	6.915
19	0.55	7.445	7.641	7.770	7.852	7.614	7.775	7.879	7.944
20	0.30	9.829	10.188	10.440	10.611	10.155		10.675	10.815
21	0.10	12.832	13.491	14.029	14.430	13.552		14.646	14.996
22	0.03	20.862	21.810	22.793	23.663	22.470		24.496	25.367

TABLE 9.

Pu²³⁹ Capture Cross Sections (barns)

(Resonance parameters same as given in Table 8)

j.	E	Op = 126 barns				Op = 200 barns				
the and take then on	(kev)	300°	750°	1500°	2500°	300°	750°	1500°	2500°	
14	4.0	1.114	1.131	1.140	1.146	1.132	1.143	1.149	1.153	
15	2.8	1.664	1.710	1.735	1.751	1.713	1.744	1.761	1.772	
16	2.0	2.029	2.103	2.147	2.173	2.110	2.162	2.192	2.209	
17	1.4	2.434	2.551	2.622	2.665	2.562	2.648	2.698	2.728	
18	1.0	3.125	3.342	3.482	3.571	3.367	3.536	3.641	3 .7 05	
19	0.55	3.484	3.766	3.955	4.078	3.803	4.032	4.177	4.268	
20.	0.30	4.316	4.784	5.128	5.365	4.870	5.285	5.573	5.763	
`21	0.10	5.068	5.771	6.375	6.838	6.036	6.751	7.331	7.759	
22	0.03	7.550	8.538	9.599	10.563	9.453	10.708	11.990	13.111	
,	(Tp = 300 barns						Tp = 400 barns			
\$1.00 MAN \$140 CHAR POLICE	H COMPLETED CAME TOTAL CAME OF					Armer streets weren (SSA) Miletin allege Armer (Allen Armer)		**** *** *** *** *** *** *** **	alajo (malaryona) Cirillo sanos Milas (Talig ASSA) apaga (STAS) sanos	
14	4.0	1.143	1.151	1.155	1.157	1.148	1.154	1.157	1.159	
15	2.8	1.743	1.765	1.777	1.784	1.759	1.776	1.785	1.790	
16	2.0	2.160	2.198	2.219	2.231	2.188	2.217	2.233	2.242	
17	1.4	2.646	2.709	2.744	2.765	2.691	2.741	2.769	2.784	
18	1.0	3.535	3.665	3.742	3.788	3.629	3.735	3.796	3.832	
. 19	0.55	4.032	4.212	4.323	4.389	4.164	4.313	4.402	4.455	
20	0.30	5.299	5.652	5.885	6.034	5.563	5.868	6.064	6.186	
21	0.10	6.879	7.563	8.092	8.468	7.449	8.090	8.571	8.903	
22	0.03	11.386	12.863	14.305	15.517	12.889	14.500	16.016	17.256	

REFERENCES

- 1. J. Garg, et.al, Neutron Spectroscopy III. Th²³² and U²³⁸, Phys. Rev. Vol. 134 No. 5B, B985 B1009. (1964).
- 2. L. Dresner, Resonance Absorption in Nuclear Reactors, Pergamon Press (1960).
- 3. H.H. Hummel and A.L. Rago, "Effect of Parametric Variations in Doppler Effect Calculations". ANL-6792, p.747. (1963).
- 4. R.S. Singh and G.A. Desai, "DOPINT A Program to Calculate Resonance Integrals and Multigroup Cross Sections". Internal Report, RED/TRP/117 (1966).
- 5. P. Greebler, et.al, "Calculated Physics Parameters and their uncertainties in a 1000 MWe Fast Ceramic Reactor", ANL 7120, p.24 (1965).
- 6. H.H. Hummel, et.al, "Recent Investigations of Fast Reactor Reactivity Coefficients". ANL-7120. p.413. (1965).
- 7. R.S. Singh and H.H. Hummel, "Parametric Studies of Reactivity Coefficients for large U-233 Th fuelled fast reactors. ANL-6930 (1966).
- 8. L.W. Nordheim, "Resonance Absorption". GA-3973 (1964).
- 9. E. Haddad, et.al, "Thorium Resonance Parameters" for Neutron Energies from 20 to 222 ev". GA-6272 (1965).
- 10. L.W. Nordheim, "Resonance Cross Sections". GA-6177 (1965).
- 11. C.A. Uttley, "Nuclear Data for Reactors". EANDC (UK) 35 "L". (1964).
- 12. J.J. Schmidt, "Resonance properties of the main fertile and fissionable nuclei". Paper presented at the ANS Topical Meeting on Reactor Physics in Resonance and Thermal Regions, February, 1966.
- 13. Thomas, G.E. and L.M. Bollinger, EANDC Conf. on Study of Nuclear Structure with Nuetrons, Antwerp, 1965. P/96.

- 14. R.N. Hwang, "Doppler Effect Calculation for fissile materials", ANL 6792, p-727. (1964).
- 15. J.J. Schmidt, KFK 120, Parts II and III.
- 16. B.C. Diven and J.C. Hopkins, Nucl. Sci. Eng. 12, 169, (1962).
- 17. H.H. Hummel, "Sensitivity of Fast Reactor Parameters to Cross Section Uncertainties". Paper presented at the Conference on Neutron Cross-section Technology, March, 1966.
- 18. D. Okrent, Summary of Intercomparision Calculations.
 ANL 7120, p.3. (1965).